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1. Introduction

Among superconformal field theories, the most interesting and strange are the 6-dimensional
(2,0) theories. They preserve 16 supersymmetries with SO(5) R-symmetry in flat space, thus being
maximally supersymmetric. These theories arise as a world-volume theory of M5-branes. But
what makes them even more attractive for study are the wide variety of compactifications of these
theories. For example, compactification on the torus T 2 reduces it to N = 4 super Yang-Mills,
and compactification on the circle S1 leads to 5D maximally supersymmetric Yang-Mills (MSYM)
[1, 2].

The field content of 6D (2,0) theories includes five scalars, four chiral fermions and a 2-
form potential B with self-dual strength H = dB = ?dB. The presence of this last field makes a
Lagrangian description of these theories problematic, if not impossible. Moreover, being isolated
fixed points of RG flows in 6 dimensions, they have neither a dimensionful nor a dimensionless
parameter. All this makes 6D (2,0) theories very difficult to describe and to study.

One possibility left is to use the conjecture of duality between 6D (2,0) theories and M-theory
on an AdS7×S4 background. In the large N limit M-theory reduces to supergravity, which we can
use to calculate different observables, even without having a Lagrangian description for the theory
we study. One of the most important results obtained in this way is N3 behavior of the free energy
and conformal anomaly [3, 4].

Another possible way to study these theories is through their compactifications. As we have
mentioned above, (2,0) theory on the circle reduces to 5D MSYM. The relation between the circle
radius R6 and the coupling constant gY M follows from the mapping of Kaluza-Klein modes of (2,0)
theories to the instanton particles of 5D MSYM [2]:

R6 =
g2

Y M

8π2 . (1.1)

Recently it has been proposed that 5D MSYM contains all degrees of freedom of the (2,0)
theories [5, 6, 7]. This proposal allow us to use 5D MSYM to define the (2,0) theories and study
them. This idea seems strange, since 5D SYM is a non-renormalizable theory, so it needs extra
degrees of freedom for a UV completion. To overcome this problem in [5] it was proposed that
5D SYM is finite and thus does not need extra degrees of freedom. In this case it should reveal the
same N3 behavior of free energy as (2,0) theories do. Recently it has been shown that 5D SYM is
divergent at six loops [8], so this cannot be the whole story.

However, in this contribution we will consider recent results [9, 10] on 5D MSYM partition
function. Using results of the supersymmetric localization we will show that partition function of
5D MSYM indeed has N3 behavior. The ingredient essential for this behavior is the presence of a
hypermultiplet in the adjoint representation. Moreover, we will show that with a proper choice of
the hypermultiplet mass and a renormalisation of the coupling constant, we can reproduce not only
a qualitative but even a quantitative picture of the 5D/6D correspondence.

2. Free energy of 5D SYM

In this section we will briefly derive the free energy of 5D SYM on the sphere S5. In flat
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space we can have N = 1 SYM preserving 8 supercharges enhanced to maximally supersymmetric
N = 2 SYM. The latter case has the N = 1 vector multiplet as well as a massless N = 1 adjoint
hypermultiplet. Putting 5D SYM on the sphere cannot be done in a canonical way as it is not a
conformal theory. However SYM with arbitrary hypermultiplet on S5 has been constructed recently
by adding proper terms to the Lagrangian [11]. As was shown in [12], in order for this theory
to preserve 16 supercharges we should consider the adjoint hypermultiplet with mass M = 1/2r,
where r is the radius of S5 . We will call theories with massive adjoint hypermultiplet N = 1∗

SYM.
In order to compute the free energy we will use supersymmetric localization [13]. This is a

very powerful technique, that allows one to reduce path integrals of supersymmetric observables to
matrix integrals, which in many cases are much easier to analyse. Unfortunately, this technique is
applicable only for supersymmetric observables, which leaves us only two possible observables in
5D SYM theory: its free energy and a supersymmetric Wilson loop, which we consider in detail in
the next section.

The partition function for 5D N = 1 SYM with gauge group G and massive hypermultiplet
in an arbitrary representation R is given by the following expression [11, 14, 15, 12]:

Z =
∫

Cartan

[dφ ] e
− 8π3r

g2
Y M

Tr(φ 2)− πk
3 Tr(φ 3)

Zvect
1−loop(φ)Z

hyper
1−loop(φ)+O(e

− 16π3r
g2
Y M ) , (2.1)

where 1-loop contributions are given by

Zvect
1−loop(φ) = detAd j

(
sin(iπφ)e

1
2 f (iφ)

)
(2.2)

Zhyper
1−loop(φ) = detR

(
e−

1
4 f ( 1

2−im−iφ)− 1
4 l( 1

2−im−iφ)+(φ→−φ)
)

(2.3)

Here m stands for the dimensionless mass of the hypermultiplet m= irM and the detailed properties
of the special functions l(z) and f (z) can be found in [10].

As we wish to relate our result to supergravity calculation of the 6D theory we take the gauge
group to be SU(N) with the hypermultiplet in the adjoint representation and then take large N limit
of (2.1). In this limit the partition function is governed by the saddle-point equation

16π3N
λ

φi = π ∑
j 6=i

[(
2− (φi−φ j)

2)coth(π(φi−φ j))

+
1
2

(
1
4
+(φi−φ j−m)2

)
tanh(π(φi−φ j−m))

+
1
2

(
1
4
+(φi−φ j +m)2

)
tanh(π(φi−φ j +m))

]
, (2.4)

where φi are the eigenvalues of the φ matrix. In the expression above λ = g2
Y MN/r is the ’t Hooft

coupling constant.
In the weak coupling limit λ � 1 this equation reduces to

16π3N
λ

φi ≈ 2∑
j 6=i

1
φi−φ j

, (2.5)
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whose solution for the density of eigenstates is the well-known Wigner semicircle distribution:

ρ(φ)≡ 1
N

dn
dφ

=
2

πφ 2
0

√
φ 2

0 −φ 2; φ0 =

√
λ

4π3 , (2.6)

from which we obtain the following behavior of the free energy:

F =− logZ ≈−N2 log
√

λ . (2.7)

In the strong coupling limit λ � 1 we can assume that a generic separation between the eigen-
values is of order λ so that |φi−φ j| � 1. Under this assumption our saddle point equations (2.4)
turn into

16π3N
λ

φi = π

(
9
4
+m2

)
∑
j 6=i

sign(φi−φ j) . (2.8)

Assuming that the eigenvalues φi are ordered, we get the solution

φi =

(
9+4m2

)
λ

64π2N
(2i−N) , (2.9)

which corresponds to an eigenvalue density

ρ(φ) =
32π2

(9+4m2)λ
|φ | ≤ φm , φm =

(
9+4m2

)
λ

64π2

= 0 |φ |> φm . (2.10)

Substituting this solution back into the partition function leads to the following result for free
energy in strong coupling:

F ≡− logZ ≈−g2
Y MN3

96πr

(
9
4
+m2

)2

. (2.11)

As we can see, 5D SYM indeed has N3 behavior for the free energy at large N and strong
coupling. This analytical result is consistent with numerical results [10], which supports the ap-
proximation of large separations we have used in our calculations. In [10] we have also shown
numerically that N = 1 SYM with only a vector multiplet does not have N3 behavior for the free
energy, thus leading us to conclude that the presence of an adjoint hypermultiplet is essential for
this kind of free energy behavior.

3. Supersymmetric Wilson loop

Now to make our result even stronger and move from qualitative to quantitative conclusions
we will compare results for the matrix model and supergravity for the other observable. Namely,
the supersymmetric Wilson loop, where we can also use localization. To preserve supersymmetry
the Wilson loop should wrap the equator of S5. In analogy with [13] we write down the expectation
value of Wilson loop in the following form:
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〈W 〉= 1
N
〈Tre2πφi〉 . (3.1)

Then at strong coupling by using the approximation of large separation between the eigenval-
ues we get

〈W 〉 ∼ 1
N

∫
∏

i
dφi ∑

i
e2πφie

− 8π3N
λ

∑
i

φ 2
i +

π

2 (
9
4+m2) ∑

j 6=i
∑
i
|φi−φ j|

. (3.2)

From this expression it is clear that each of the exponents in the sum will give a negligible contri-
bution to the position of saddle point. Thus we can rewrite the Wilson loop expectation value in
the following form:

〈W 〉=
∫

dφρ(φ)e2πφ , (3.3)

where ρ(φ) is the eigenvalue density given by expressions (2.10) and (2.6) for respectively strong
and weak coupling. Using these expressions for the density we get:

〈W 〉 ≈ exp
(

λ

8π

)
, (3.4)

at weak coupling, while at strong coupling, using the eigenvalue distribution in (2.10), we find

〈W 〉 ∼ exp
(

λ

8π

(
9
4
+m2

))
. (3.5)

4. Comparison with supergravity calculations

In this section we compare our strong coupling results (2.11) and (3.5) with the corresponding
results in (2,0) theory obtained with supergravity. We will consider supergravity on AdS7×S4 with
AdS boundary chosen to be S1×S5, in order to obtain SYM on S5 after an S1 compactification. The
radii of AdS7 and S4 are ` and `/2 respectively, where `= 2`pl(πN)1/3. The AdS7 metric is given
by:

ds2 = `2(cosh2
ρ dτ

2 +dρ
2 + sinh2

ρ dΩ
2
5) , (4.1)

where dΩ2
5 is the unit 5-sphere metric. The τ direction is compactified and has the identification

τ ≡ τ +2πR6/r, where R6 and r are the radii of the S1 and S5 boundaries.
The AdS/CFT correspondence identifies the free energy of the boundary field theory with

the classical supergravity action. This action is divergent and needs to be regularized by adding
counterterms [16, 17]. In [10] we follow the minimal subtraction scheme and arrive at the following
expression:

IAdS =−
5πR6

12r
N3 . (4.2)
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Now we can consider the gravity dual of the Wilson loop, that we described in the previous
section. In AdS7×S4 the Wilson loop is related to the world-volume of an M2 brane:

〈W 〉 ∼ e−T (2) ∫ dV , (4.3)

where T (2) = 1
(2π)2l3

p
is the tension of the brane. In order to describe the Wilson loop wrapping the

equator of S5 in 5D SYM, we should wrap the M2 the S5 equator and the compactified direction
τ . The third direction should go from the boundary to the bulk. Using the minimal subtraction
scheme to regulate the volume of M2 brane we arrive at the following expression:

〈W 〉 ∼ exp
(

2πNR6

r

)
. (4.4)

Now we can compare the matrix model results in (2.11) and (3.5) with the corresponding
results in (4.2) and (4.4). Doing this we obtain the following pair of relations:

R6 =
g2

Y M

40π2

(
9
4
+m2

)2

; R6 =
g2

Y M

16π2

(
9
4
+m2

)
. (4.5)

In order for these two relations to be consistent we should fix hypermultiplet mass at m = 1/2, and
the flat space relation (1.1) between YM coupling gY M and radius of compactification R6 should be
replaced with the following one:

R6 =
5g2

Y M

32π2 . (4.6)

In [12] the authors found that the global symmetry is enhanced when the hypermultiplet mass
is M = 1/(2r), and that at this value the supersymmetry is increased to 16 supercharges. This
leads to m = i/2 rather than the value m = 1/2 that we obtained. But in order for supersymmetric
localization to work properly we need to rotate hypermultiplet mass M → iM in the same way
we rotate all scalar fields [10]. This eventually leads us to the conclusion that supersymmetry
enhancement happens at the value m = 1/2 of hypermultiplet mass, which is perfectly consistent
with our result.

Finally, we note that the identification (4.6) doesn’t conflict with the flat space limit (1.1).
Notice that with a fixed value for g2

Y MN, the ’t Hooft coupling limit goes to zero, i.e. weak coupling
in the flat space limit r→∞, while all our calculations are valid in the strong coupling limit. In fact,
this change of relation between gY M and R6 can be considered as result of rescaling the physical
coupling constant when going from weak to strong coupling [10].

5. Conclusions

We have shown that 5D N = 1 SYM free energy exhibits N3 behavior provided that its matter
content include anadjoint hypermultiplet. Moreover we have shown that matrix model calculations
for 5D SYM reproduces supergravity results for (2,0) theories not only qualitatively but even
quantitatively, provided we fix the mass of hypermultiplet at the supersymmetry enhancement point
and assume rescale of physical coupling constant.
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