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1 Introduction

Students of physics at our University are very well aware of the amount of

mathematical skills needed in today’s theoretical physics. In some areas,

they are even better educated than our average students of mathematics,

say in group representations or in vector bundles. However, the enormous

growth of connections to algebraic geometry, which occurred during the

last twenty years, seems to be underestimated on the part of physicists.

The aim of my lectures at the Summer School in Modern Mathematical

Physics or M ∩ Φ for short, held in Sokobanja, in August 20011, was to

stress this point of view, through presentation of some classical, as well as

contemporary tools and results in algebraic geometry. The present text2

describes the three main parts of my lectures.
1The Summer School took place in the beautiful Serbian spa resort Sokobanja, and

I am indebted to Prof. Branko Dragovich (Institute of Physics, Belgrade, and Steklov

Mathematical Institute, Moscow), for his invitation
2The text was written under different circumstances, in the beautiful surroundings

of the University Guest House in the old picturesque town of Pécs, Hungary, for which

opportunity I am indebted to Prof. Judit Nagy (University of Pécs, and Hungarian

Society of Nephrology)
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2 Viète, Maxwell, Arnol’d, and M ∩ Φ

2.1 Viète’s theorem and symmetric powers

Let’s start with the simplest and perhaps the oldest algebraic formula - the

high-school formula

x1,2 =
−p±

√
p2 − 4q

2

for the roots of quadratic equation x2 + px + q = 0. Since the equation

is uniquely determined by the pair of its coefficients (p, q) ∈ C
2, we can

think of equations as points in C
2. The formula then gives rise to mapping

C
2 −→ C

2, (p, q) �→ (x1, x2). Does this mapping have an inverse? The

high-school Viète’s formulae

x1 + x2 = −p

x1x2 = q

give the answer to this question: yes, it does, but unfortunately, it is 2-

to-1 almost everywhere, since (x1, x2) �→ (p, q) and (x2, x1) �→ (p, q). In

other words, if we consider the action of the symmetric group S2 on C
2 by

interchanging the coordinates, then we obtain a bijection C
2/S2

∼= C
2.

This reasoning may be generalised in two ways. The first is to projec-

tivise. Put simply, it means to take the infinite point∞ into account. So, x

becomes x = u
v or (u : v) and the equation transforms into a homogeneous

quadratic form au2+buv+cv2. The mapping is thus ((u1 : v1) , (u2 : v2)) �→
(a : b : c). In this way we obtain a projective version of the classical Viete’s

theorem: P
1
C
× P

1
C
/S2
∼= P

2
C
.

Another way to generalise is to increase the dimension. This gives rise

to generalised Viète’s formulae associated with the equality

xn + a1x
n−1 + . . . + an = (x− x1) (x− x2) . . . (x− xn)
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and to bijection C
n/Sn

∼= C
n. Finally, the combination of the two processes

gives us P
1
C
× . . .×P

1
C
/Sn
∼= P

n
C
. The object on the left-hand-side is known

as the n-th symmetric power Symn (X) of the manifold X = P
1
C
. So, the

general projective Viète’s theorem can be expressed in the following form

Symn
(
P

1
C

) ∼= P
n
C.

2.2 Maxwell’s theorem and spherical harmonics

What happens over the reals? Topologically, P
1
C

is a sphere. If we use

real numbers instead of complex ones, would it be possible to describe the

symmetric powers of the real projective plane P
2
R
, which is a non-orientable

surface? In the brilliant paper of V.I. Arnol’d [1], a connection is established

between symmetric powers of P
2
R

on one hand, and the famous Maxwell’s

theorem on multipole representation of spherical functions on the other.

This connection brings to attention an interesting and strange algebraic

fact.

It is elementary to verify that

x2 + 2y2 + 3z2 = (z − x) (z + x) + 2
(
x2 + y2 + z2

)

or, more generally,

x2

a2
+

y2

b2
+

z2

c2
= (αz − γx) (αz + γx) +

1
b2

(
x2 + y2 + z2

)

where the coefficients are α =
√

b2−c2

bc and γ =
√

a2−b2

ab , and a ≥ b ≥ c.

Slightly more difficult will it be to show that, if a =
(
1 +
√

2
) 1

3 −
(
1 +
√

2
)− 1

3 is the real root of the cubic equation x3 +3x− 2 = 0, then the

following formula holds:

x3 + y3 + z3 =
1

a2 + 1
(ax− y − z) (−x + ay − z) (−x− y + az) +

+
a2 − a + 1

a2 + 1
(x + y + z)

(
x2 + y2 + z2

)

494



The formula was found with a little help of my computer and Mathematica

program package.

The general algebraic fact, of which the above are examples, was discov-

ered by Arnol’d: for any real homogeneous polynomial f (x, y, z) of degree

n in three variables, there exists a unique representation in the form

f (x, y, z) = g (x, y, z) +
(
x2 + y2 + z2

) · h (x, y, z)

where g (x, y, z) = l1 · l2 · . . . · ln is the product of n real linear forms and

h (x, y, z) is real homogeneous of degree n − 2. The proof involves some

beautiful classical methods of algebraic geometry: projection in the space

of all real algebraic curves, and dimensional reasoning.

What does this have in common with symmetric powers and spherical

harmonics? Now, Maxwell’s theorem appears to be the physical counter-

part of that algebraic fact: every spherical function of degree n on the unit

sphere in R
3 (i.e. the restriction of a homogeneous harmonic polynomial

of degree n) can be uniquely represented in the form g (X, Y, Z)
(

1
r

)
where

X = ∂
∂x , Y = ∂

∂y , Z = ∂
∂z and g (X, Y, Z) is the product of n real linear

forms g = l1 · . . . · ln (the so-called multipole representation). On the other

hand, this was used by Arnol’d to show that

Symn
(
P

2
R

) ∼= P
2n
R

which is even a diffeomorphism. What a nice example of M ∩ Φ!

3 General abstract nonsense

Category theory has been developing since the middle of the XXth cen-

tury. In this section of my talk, a brief exposition of basic notions such

as categories, functors, natural transformations, universal arrows, limits

and adjoints, was presented following the excellent textbook of MacLane
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[2]. It included many examples, such as interpreting abelian groups as col-

imits of their finitely generated subgroups, or interpreting p-adic numbers

as limits of groups Z/pk. Special attention was payed to adjoints and to

connection between the existence of adjoints and the corresponding be-

havior of functors. Let’s recall a definition of an adjoint pair. If C and

D are categories and F : C −→ D and G : D −→ C is a pair of func-

tors, then we say that F is a left adjoint of G (and G is a right adjoint of

F) if for all objects c ∈ C and d ∈ D there is a bijection of morphisms

HomC (c,Gd) ∼= HomD (Fc, d), natural in both c and d. The adjoint pairs

occur everywhere in mathematics: free constructions in algebra and for-

getful functors, limits or colimits and diagonal functors. A functor which

possesses a left (or right) adjoint must preserve limits (or colimits), i.e.

←−limG (di) = G (←−limdi)(or −→limF (ci) = F (−→limci)). This can

be very helpful in the interpretation of behaviour of many constructions

in mathematics and physics. Say, categorial product of groups is a group

on the cartesian product of their underlying sets. More examples of this

philosophy were shown, such as the comment on different behaviour of the

direct and the inverse image of a function [3].

4 Why sheaves?

In the last part of my lectures, the notion of sheaf was introduced and

explained with some basic examples and properties. The following points

are concerned as the advantages of such approach:

- sheaves enable us to introduce different geometries (differentiable,

complex or algebraic) in a uniform way;

- sheaves make it possible to treat singularities in a convenient way;

- sheaves form an abelian category which gives rise to extensive use of

algebraic categorical tools (exact sequences, cohomology, etc.).
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Then a short description of (Čech) cohomology theory with sheaf coef-

ficients was given. As a good motivation for the sheaf theory for students

of physics, the interpretation of classes of line bundles as elements of the

first cohomology H1 (X,O∗) of the multiplicative sheaf O∗ of functions on

the manifold X was explained.

The expository paper [4], which was written as an introduction and a

digest for students, covers some of the topics mentioned, and contains ref-

erences to many excellent textbooks which do exist in the area of algebraic

geometry.
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