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1. Introduction

A few years ago the Parma group embarked on an ambitious program: three loops compu-
tation of Lattice QCD renormalization constants by means of Numerical Stochastic Perturbation
Theory (NSPT) [1]. Results were first presented for finite quantities (i.e. the Zs for vector and
axial currents, finite ratios of scalar and pseudoscalar currents) [2]: results could be obtained in the
continuum limit, but quite large finite volume effects prevented at that time the reliable computa-
tion of logarithmical divergent renormalization constants (e.g. those of the scalar and pseudoscalar
currents). A consistent scheme was later introduced [3] to compute finite volume corrections and
to allow a careful extraction of the infinite volume limit.
We addressed three loops computations for two schemes which can be relevant for comparison
with non-perturbative determinations of the same quantities. The schemes are defined by Wilson
fermions and Tree Level Symanzik (TLS) or Iwasaki gauge actions. The number of flavors is n f = 2
(TLS) an n f = 4 (Iwasaki) respectively. We notice that, since we work in the massless RI’-MOM
scheme, results for (plain) Wilson fermions also hold in a Twisted Mass scheme.

In the following we recall a few issues of our approach: while for the NSPT method we refer
the reader to the literature [1], we point out the basic points that are relevant for the computation
at hand. We then proceed to the results (still preliminary), which we present here for the first time
both for TLS and for Iwasaki actions.

2. Three loops NSPT computations for RI’-MOM

The scheme we work in is the masseless RI’-MOM, which is defined by the renormalization
conditions

ZOΓ
(µ,g)Z−1

q (µ,g)OΓ(p)|p2=µ2 = 1. (2.1)

The OΓ(p) are defined by projecting onto the three level structure

OΓ(p) = Tr
(
P̂OΓ

ΓΓ(p)
)

the amputated Γ functions which come from Landau gauge computation of quark bilinears brack-
etted in fixed momentum states (S(p) is the quark propagator)

ΓΓ(p) = S−1(p) GΓ(p) S−1(p) GΓ(p) =
∫

dx〈p| ψ(x)Γψ(x) |p〉.

The scheme has been extensively used in Lattice QCD: it is peraphs the most popular one
for the non-perturbative computation of renormalization constants. Since there is no conceptual
obstacle for a perturbative determination of either finite or logarithically divergent Zs, a high loops
computation opens the way to a valuable cross-check of non-perturbative results. In perturbation
theory, in the continuum limit a→ 0 the generic Z reads

Z = 1+ ∑
n>0

dn(L)α(µ)n dn(L) =
n

∑
i=0

d(i)
n Li L = log(µa) (2.2)

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
2
4
0

Three loops renormalization constants in NSPT Masayasu Hasegawa

where the lattice cutoff (a) is in place and the expansion is in a renormalized coupling. For finite
quantities (e.g. vector and axial currents) d(i)

n = 0 for i > 0. To compute the Zs in NSPT, a main
step will be to eventually obtain expansions in the bare coupling α0

Z = 1+ ∑
n>0

cn(L)αn
0 . (2.3)

Such epressions can be directly read from the NSPT simulations, provided one can properly disen-
tangle the finite lattice spacing artifacts. We now proceed to comment on the reasons that make the
NSPT computations at hand effective.

• An ovious limitation of a perturbative computation is of course its finite order. In diagramatic
perturbation theory (which is very cumbersone in the lattice scheme) two loops computations
are in practice the maximum one can achieve. While NSPT can in general address very
high orders, one could be worried this can not hold in the computation of Eq. (2.3), since
the latter involves logarithms whose determination would require an irrealistic numerical
precision. This is actually not the case, since three loops results can be taken for free from the
continuum computation of RI’-MOM anomalous dimensions [4]. By differentiating Eq. (2.2)
with respect to log(µa) one obtains the expression for the anomalous dimension

γ =
1
2

d
dL

logZ.

Demanding that the resulting expression matches the three loops expansion which is known
from [4]

γ = ∑
n>0

γn α(L)n

one can read the expressions of all the d(i)
n (all the logarithms have to cancel out). The cn of

Eq. (2.3) can finally be obtained by re-expressing the expansion in Eq. (2.2) as an expansion
in the bare coupling α0. The cn turn out to be a function of the γn and of the coefficients of
the matching of the continuum and the lattice scheme couplings.

• In order to profit from the previous matchings, a two loops matching of continuum and lattice
couplings has to be obtained (only one loop result is known from the literature [5]). We have
obtained this by computing the matching to a third scheme, namely the potential scheme
defining αV

V (R) = 2δm−CF
αV (R)

R
.

By computing convenient Wilson loops (to be definite, Creuts ratios) αV is obtained as a
series in the lattice schemes (TLS or Iwasaki) we work in. Since the matching of αV to the
continuum coupling we are interested in is known, this immediately leads to the matching
we need. For the details of this approach we refer the reader to [6]. We plan to improve the
precision of these matching computations by changing the intermediate scheme to take into
account the Schroedinger Functional scheme, for which NSPT results are on their way.

• Since the scheme we adhere to is a massless one, one needs to compute everything at zero
quark mass. While in the non-perturbative analogue of our computations this requires to go
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through a chiral extrapolation, there is no extrapolation at hand in our case. We recall the
definition of the critical mass, i.e. the addittive quark mass renormalization which the Wilson
fermions regularization inherits from the breaking of chiral symmetry:

aΓ2(p̂, m̂cr,β
−1) = aS(p̂, m̂cr,β

−1)−1

= i/̂p+ m̂W (p̂)− Σ̂(p̂, m̂cr,β
−1)

Σ̂(p̂, m̂cr,β
−1) = Σ̂c(p̂, m̂cr,β

−1)+ Σ̂V (p̂, m̂cr,β
−1)+ Σ̂o(p̂, m̂cr,β

−1)

Σ̂(0, m̂cr,β
−1) = Σ̂c(0, m̂cr,β

−1) = m̂cr

Since two loops results are available [7], we can insert this expansion of the critical mass and
thus enforce the massless limit in our computations at three loops level. As a byproduct, on
top of this we obtained the three loops critical mass.

• Once we know the logarithms which are present in Eq. (2.3), these can be subtracted by the
quantities one numerically computes (i.e. the OΓ). As a result, the only remaining depen-
dence on pa is an irrelevant one. This dependence can be fitted by keeping in mind that it
must comply to the relevant (H4) symmetry group, e.g. for the quark self-energy (p̂ = pa)

Σ̂(p̂, m̂cr,β
−1) = Σ̂c(p̂, m̂cr,β

−1)+ Σ̂V (p̂, m̂cr,β
−1)+ Σ̂o(p̂, m̂cr,β

−1)

we have
Σ̂V = i∑

µ

γµ p̂µ

(
Σ̂

(0)
V + p̂2

µ Σ̂
(1)
V + p̂4

µ Σ̂
(2)
V + . . .

)
where for example

Σ̂
(n)
V = α

(n)
1 1+α

(n)
2 ∑

ν

p̂2
ν +α

(n)
3 ∑

ν

p̂4
ν/p2 +O(a4).

The only term surviving the a→ 0 limit is α
(0)
1 , which is the only one we are interested in.

Notice that the example of the quark self-energy is trivial at first loop in Landau gauge (one
loop anomalous dimension of the quark field being zero); the notation is however valid at
any order.

• The last issue we have to deal with are finite size corrections, which are unavoidable since any
numerical computation can only be performed on a finite lattice. On dimensional grounds
we expect (take once again Σ(n)) pL effects

Σ̂
(n)
V (p̂, pL) = Σ̂

(n)
V (p̂,∞)+

(
Σ̂

(n)
V (p̂, pL)− Σ̂

(n)
V (p̂,∞)

)
= Σ̂

(n)
V (p̂,∞)+∆Σ̂

(n)
V (p̂, pL)

so that a better expansion to fit is

Σ̂
(n)
V (p̂, pL) = α

(n)
1 1+α

(n)
2 ∑

ν

p̂2
ν +α

(n)
3 ∑

ν

p̂4
ν/p2 +

+ ∆Σ̂
(n)
V (p̂, pL)+ . . .
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The key observation is that in first approximation

∆Σ̂
(n)
V (p̂, pL)∼ ∆Σ̂

(n)
V (pL)

But pµL = 2πnµ

L L = 2πnµ , i.e. we expect the same correction on different lattice sizes for the
same {n1,n2,n3,n4}. This enable us to fit only a few extra parameters[3].

3. Results

3.1 Critical mass

As we said, as a byproduct of our computations we obtained the three loops coefficients of the
expansion of the critical mass. Results are presented in Tab. (1) and in Tab. (2), referring to n f = 2
TLS and n f = 4 Iwasaki respectively. Here and in the following results are presented as expansion
in β−1.

m(1)
cr 1.3209 (analytic)

m(2)
cr 0.1911 (analytic)

m(3)
cr 3.94(4)

Table 1: Critical mass for n f = 2 Symanzik

m(1)
cr 2.0489 (analytic)

m(2)
cr 1.9836 (analytic)

m(3)
cr 0.77(2)

Table 2: Critical mass for n f = 4 Iwasaki

One does not expect that these expansions can be that meaningful for a power-divergent quan-
tity. Still, it will be interesting to check the outcome of three loops summations in different cou-
plings, a job we postpone to the final publication of results.

3.2 Currents renormalization coefficients: Tree Level Symanzik

In Tab. (3) and Tab. (4) we present our results for one, two and three loops of the renormaliza-
tion constants scalar, pseudoscalr, vector and axial current for n f = 2 Tree Level Symanzik gauge
action (expansions are in β−1). We explicitely contrast our one loop results with analytical ones.

Analytic Z(1)
S -0.6893

Z(1)
S -0.683(5)

Z(2)
S -0.789(13)

Z(3)
S -1.9(1)

Analytic Z(1)
P -1.1010

Z(1)
P -1.098(2)

Z(2)
P -1.18(2)

Z(3)
P -3.1(2)

Table 3: Renormalization constants ZS and ZP

for n f = 2 Symanzik gauge action

Analytic Z(1)
V -0.8411

Z(1)
V -0.834(6)

Z(2)
V -0.896(12)

Z(3)
V -1.88(3)

Analytic Z(1)
A -0.6352

Z(1)
A -0.644(26)

Z(2)
A -0.618(9)

Z(3)
A -1.21(3)

Table 4: Renormalization constants ZV and ZA

for n f = 2 Symanzik gauge action
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3.3 Currents renormalization coefficients: Iwasaki

In Tab. (5) and Tab. (6) we present our results for one, two and three loops of the renor-
malization constants scalar, pseudoscalr, vector and axial current for n f = 4 Iwasaki gauge action
(expansions are in β−1).

Analytic Z(1)
S -0.4488

Z(1)
S -0.435(9)

Z(2)
S -0.16(2)

Z(3)
S -0.82(5)

Analytic Z(1)
P -0.7433

Z(1)
P -0.735(3)

Z(2)
P -0.202(8)

Z(3)
P -1.01(9)

Table 5: Renormalization constants ZS and ZP

for n f = 4 Iwasaki gauge action

Analytic Z(1)
V -0.5623

Z(1)
V -0.553(6)

Z(2)
V -0.073(9)

Z(3)
V -0.37(4)

Analytic Z(1)
A -0.4150

Z(1)
A -0.410(4)

Z(2)
A -0.055(9)

Z(3)
A -0.079(16)

Table 6: Renormalization constants ZV and ZA

for n f = 4 Iwasaki gauge action

4. Conclusions and Future

Three loop computations for renormalization constants are feasible, with good control on sys-
tematics. A few final comments are in order:

• Perturbative corrections to leading order appear to be small for Iwasaki action. One should in
any case keep in mind that the values of β corresponding to comparable values of the lattice
spacing are roughly different by a factor of two with respect to TLS action.

• To make a meaningful comparison with non-perturbative results [8], we are going to assess
summations of the expansions in different couplings: we contrast this with what is usually
referred to as boosted perturbation at one loop level of accuracy, not to be regarded as really
stable. This job will be dealt with in the final publication.

• Results are still preliminary. A few technical details to improve our fitting procedure of the
irrelevant contributions were still under development at the time of the conference.
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