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Abstract

In this report, I briefly describe the life and work of Wolfhart Zimmermann. The highlights of his scien-
tific achievements are sketched and some considerations are devoted to the man behind the scientist.

The report is understood as being very personal: at various instances I shall illustrate facets of work and 
person by anecdotes.
© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The present report is based on a colloquium talk given at the end of a memorial symposium 
to honour Wolfhart Zimmermann:
Max Planck Institute for Physics, Munich (May 22–23, 2017)

I borrowed freely from the following obituaries:
Physik-Journal 15 (2016) Nr. 12 S.50 W. Hollik, E. Seiler, K. Sibold
Nucl. Phys. B193 (2016) 877–878 W. Hollik, E. Seiler, K. Sibold
IAMP News Bulletin, Jan. 2017 p. 26–30 M. Salmhofer, E. Seiler, K. Sibold

2. The beginning

Wolfhart Zimmermann was born on February 17, 1928 in Freiburg im Breisgau (Germany) as 
the son of a medical doctor. He had an older sister with whom he liked to play theater and, when 
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visiting Gymnasium, to talk to in “Giganisch” – a language which he invented, because he found 
Latin too easy.

In 1946 he entered the university in Freiburg to study mathematics and physics.
As far as lectures and seminars are concerned WZ was somewhat sceptical about their useful-

ness for him: “Either they were too fast or too slow for me. Either I had to think about the new 
content – then I was too slow. Or I understood it instantly, then I was too fast and the lecture 
boring.”

A good measure to evaluate this statement and to put it in the right perspective is to look 
at the facts. Already in 1950 he finished with a doctoral degree in mathematics. His thesis was 
devoted to topology [1], published in [2]. He once told that he had written an earlier dissertation, 
but abandoned it because he found out that the main result could be proven in a much simpler 
way, hence considered this work as inadequate for a doctoral degree. He published a further 
article on topology [3]. These papers were written in style and spirit of BOURBAKI, on which 
he commented privately “I can read BOURBAKI like the newspaper.”

3. LSZ – the first highlight

In 1952 Wolfhart Zimmermann joined the group of Werner Heisenberg at the Max-Planck-
Institut für Physik in Göttingen as a Research Associate, a position which he held until 1957. 
Remarkably, his first physics paper [4] did not deal with quantum field theory (QFT), but with 
the thermodynamics of a Fermi gas in interaction. He bought his ticket to Heisenberg’s group, 
later called “der Feldverein”, with a paper on the bound state problem in field theory [5]. It was 
co-authored by Vladimir Glaser, a Croatian physicist, who was to accompany Wolfhart Zim-
mermann on his scientific way for a long time. Truly famous, however, were three papers [6–8]
written together with Harry Lehmann and Kurt Symanzik. They contained what later was coined 
the “LSZ formalism” of quantum field theory. Based on the principles of Lorentz covariance, 
unitarity and causality of Green functions and the S-matrix they provided the first axiomatic for-
mulation of quantum field theory. Lehmann, Glaser and Zimmermann [9] then, conversely, gave 
sufficient conditions which a set of functions has to fulfil such that these functions give rise to a 
field theory in the sense of LSZ.

LSZ did not refer to perturbative expansions, but nevertheless proved to be greatly successful
in its perturbative realization and thus extremely powerful in practice. Until the present day it 
serves as the most efficient description of scattering amplitudes in particle physics.

The key idea is the following: in the remote past and future a scattering experiment (idealized) 
deals with free particles, whereas interaction takes place only in a finite region of spacetime. The 
respective fields are related by the asymptotic condition:

φ(x) −→
x0→±∞

√
zφout

in
(x), (1)

where z is a number and φout
in

are free fields which satisfy the field equations

(� + m2
)

φout
in

(x) = 0, (2)

whereas φ(x) is an interacting field. The limit is understood in the weak sense, i.e. it is valid 
only for matrix elements. (In parentheses we note that this notion of weak convergence which is 
of utmost importance has presumably been introduced by LSZ for the first time in the theory of 
particle physics.)
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In a scattering experiment ni particles are prepared in an initial state and go over into nf

particles in the final state. The transition is described by the S-operator with matrix elements Sf i . 
Those are given by the famous LSZ-reduction formula

Sf i = 〈f |i〉 ≡ 〈p1 . . . pnf
|q1 . . . qni

〉 (3)

=
(−1√

z

)nf +ni

lim

nf∏
k=1

(p2
k − m2)

ni∏
j=1

(q2
j − m2)G̃(−p1, ...,−pnf

, q1, ..., qni
) (4)

=
(

i√
z

)nf +ni ni∏
k=1

∫
dxke

−iqkxk (�xk
+ m2)

nf∏
j=1

∫
dxj e

ipj yj (�yj
+ m2) ×

G(y1 . . . ynf
, x1 . . . xni

)| q0
k =ωk

p0
j =ωj

(with lim: p2
k → m2, q2

j → m2, p0
k > 0, q0

k > 0).
Here G(y1, . . . , ynf

, x1, . . . , xni
) denote the Green functions

G(y1, . . . , ynf
, x1, . . . , xni

) = 〈T ϕ(y1)...ϕ(xni
)〉, (5)

the vacuum expectation value of the time ordered product of field operators.
They thus permit to calculate the S-matrix and are themselves determined by equations of 

motion.
An important generalization of this reduction formula expresses the matrix elements 

of a (composite) operator O in terms of the Green functions with an insertion (details see below).

〈p1, ..., pn|O(x)|q1, ..., ql〉 =
(−1√

z

)n+l

lim
n∏

k=1

(p2
k − m2)

l∏
j=1

(q2
j − m2) ×

× G̃O(x)(−p1, ...,−pn, q1, ..., ql)

GO(x)(y1, ..., yn, x1, ...xl) = 〈TO(x)ϕ(y1)...ϕ(xl)〉
〈TO(x)ϕ(y1)...ϕ(xl)〉 = R〈T :O(0)(x) : ϕ(0)(y1)...ϕ

(0)(xl)e
i
h̄

∫
L(0)

int 〉
Historical remark: Another axiomatic formulation of QFT was initiated by Wightman (1956). 

The relation of the LSZ-scattering theory to those axioms and clarification of the role of funda-
mental fields were given by Haag (1958, 1959) and in particular by Ruelle (1962).

As mentioned above these formulae for Green functions and the S-matrix can be satisfied in 
a perturbative manner. In practice the most often employed technique is in terms of diagrams as 
introduced by Feynman. With every elementary interaction one associates a vertex (symbolizing 
the specific interaction) and emanating lines which stand for particles propagating in spacetime.

x1 x2

x3x4

A scattering process is described by diagrams where these elementary vertices are linked by 
lines. The vertices and lines are interpreted in terms of mathematical prescriptions, the “Feynman 
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rules”, which eventually permit to calculate Green functions and the S-matrix. In the most naive 
version diagrams are ordered according to the number of vertices they are made of; this results 
into a power series of coupling constants: the perturbation series. Since the diagrams mimic 
physical processes, they are intuitively appealing and, therefore were overwhelmingly used in 
particle physics (and beyond: e.g. in condensed matter physics). But, of course, the mathematical 
expressions for Feynman rules have to be derived by a consistent algorithm. Usually it exploits 
the Gell-mann-Low formula for Green functions

G(x1, ..., xn) = 〈T (φ(x1)...φ(xn))〉 (6)

=
〈
T

(
φ(0)(x1)...φ

(0)(xn)e
i
∫
L(0)

int

)〉
〈
ei

∫
L(0)

int

〉 (7)

For the S-operator this is tantamount to the Dyson formula

S = T ei
∫
Lint (8)

On this level it is (almost) evident that the fundamental axioms – Lorentz covariance, unitar-
ity and causality – are satisfied. For the subsequent discussion it is crucial to observe that the 
propagator for a (real, spinless) field

�̃c(p) = i

p2 − m2 + iε
(9)

is, mathematically speaking, not a function, but rather a distribution. This can be seen by cal-
culating the product at the same point �c(x − y)�c(x − y). The result is infinite, hence apriori 
meaningless. It implies that many of the Feynman diagrams containing closed loops are mean-
ingless. Therefore one faces the problem to give mathematical meaning to such expressions and 
at the same time not to violate the fundamental axioms in doing so. Of course, theoreticians 
(notably Schwinger and Dyson) found ways to go around this difficulty, but it required much fur-
ther work, in particular by Bogoliubov and Parasiuk and Hepp to provide satisfactory solutions. 
A particularly appealing and useful one was given by Wolfhart Zimmermann (see below).

4. Intermediate years

In 1957 Wolfhart Zimmermann left Göttingen and held positions at the Institute for Advanced 
Study in Princeton and the University of Hamburg. From there he was visiting the Physics De-
partment of UCB (Berkeley), CERN, and the University of Vienna. Into this period fall studies 
of the bound state problem, of one-particle singularities of Green’s functions and, more gener-
ally, of the analyticity structure of scattering amplitudes. In 1962 he was appointed professor of 
physics at New York University. Visits led him to The Enrico Fermi Institute (Chicago) and IHES 
(Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France). At this time it is noteworthy 
that he contributed to the so-called relativistic SU(6)-symmetry, which in hindsight turned out 
to prepare the way to supersymmetry, because anticommutators entered the scene to form Jordan 
algebras, as pointed out by Hironari Miyazawa. This structure was later understood to define a 
super-algebra, i.e. graded algebra.
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5. Renormalization theory – the second highlight

5.1. Finite diagrams, equations of motion, symmetries

The absolute landmark work of the next period is dedicated to renormalization theory. Bo-
goliubov, Parasiuk, Hepp (BPH) had worked out a recursive prescription of rendering Feynman 
diagrams finite. In a first step Wolfhart Zimmermann solved this recursion explicitly with the help 
of his “forest formula” which located potentially divergent “renormalization parts” such that they 
do not “overlap”, i.e. influence each other uncontrollably. In a second step he introduced subtrac-
tions in momentum space for every Feynman diagram such that the resulting integrals become 
absolutely convergent (as compared to conditional convergence in BPH) [10,11]. Within this 
BPHZ renormalization scheme, as it is now called, one is not only able do derive S-matrix ele-
ments, but also the Green functions involving arbitrary composite operators. Thus, this method 
made it possible to study rigorously e.g. equations of motions, currents and symmetries in Quan-
tum Field Theory. In particular it was now possible to define precisely the notion of anomalies, 
providing a fruitful link to mathematics, and also, from the point of view of physics, exhibiting 
truly quantum mechanical effects, not present on the classical level. Pivotal is a set of identities 
between different normal products introduced by and named after Zimmermann. These identities 
have meaning even beyond perturbation theory.

Let us now go in more detail.

5.1.1. Finite diagrams
From its explicit expression in p-space it is clear that the propagator decreases for large p like 

1/p2, hence (as an example) the “vertex correction”

∼ λ2
∫

d4k
1

(p − k)2 − m2 + iε

1

k2 − m2 + iε

integrand ∼ (k)0 integral 	
(

ln(
�

m
)

)

leads to a logarithmically divergent integral. (� denotes a cut-off for the integration.) This in-
tegral becomes absolutely convergent if we subtract from the integrand the first Taylor term at 
p = 0 and introduce Zimmermann’s ε’s prescription (εZ = ε(m2 +p2)). In the limit of vanishing 
ε the integral results into a Lorentz covariant function.

When checking diagrams containing more than one closed loop one faces no serious problem 
for non-overlapping diagrams like

Here one can remove the divergences by subsequently removing in an analogous way first those 
of the subdiagrams and thereafter that of the entire diagram. The result does in particular not 
depend upon in which order the subdiagrams have been subtracted.
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However, in diagrams like

γ λ1

λ2 λ3

the removal of divergences in one of the subdiagrams λ interferes with those of the others and the 
removal of the overall divergence (i.e. of γ ): the diagram γ contains “overlapping divergences”. 
Here WZ invented a prescription which first of all corresponded to an explicit solution of the 
recursion problem involved and second dealt properly with the overlaps. This is encoded in his 
famous “forest formula”

R
(p, k) =
∑

U∈F


S


∏
γ∈U

(−t
d(γ )
pγ Sγ )I
(U) (10)

Here the sum runs over all families of non-overlapping diagrams contained in 
, t denotes 
Taylor subtractions at p = 0 and S relabels the momentum variables appropriately.

Instead of discussing this formula in detail I refer to a remark by Wolfhart Zimmermann: 
“When I had found the forest formula I tried to explain it. But somehow audiences were reluctant 
to follow my explanation. Very soon I abbreviated the forest formula by writing instead: I
 −· · ·
(subtractions).

Everybody understood then the forest formula and was happy with it.”
The result is the theorem that the integral over the internal momenta of the closed loops is 

absolutely convergent and yields in the limit εZ → 0 a Lorentz covariant vertex function or (for 
general Green functions) a Lorentz covariant distribution.

5.1.2. Normal products, Zimmermann identity
Once this existence result has been proved for the standard vertices of a model it is clear 

that one can construct composite operators via Green functions with the composite operator as a 
special vertex appearing in every diagram and using thereafter the respective reduction formula. 
In technical terms

〈T (Q(x)ϕ(y1)...ϕ(yk))〉 =
〈
T

(
Nd [Q(x)]ϕ(0)(y1)...ϕ(yk)

(0)ei
∫
L(0)

int

)〉
(0)

Here d denotes the naive dimension of Q.
If one inspects the convergence proof for normal products closely enough one finds that (with 

some restrictions) one may associate with an insertion Q a subtraction degree δ

δ = d + c c ∈ N

This results into the Zimmermann identity

Nδ[Q] · 
 = Nϕ[Q] · 
 +
∑

u
(Q)
i Nϕ[Qi] · 

i
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This innocently looking identity harbours all fundamental deviations of quantum field theory 
from classical field theory and indeed requires correspondingly deep insight into the structure of 
normal products.

5.1.3. Action principle, symmetries, anomalies
We introduce functional differential operators which represent field transformations. For a 

transformation δX expressed on the generating functional for vertex functions 
 they read

WX
 ≡ i

∫
d4x δXϕ(x)

δ

δϕ(x)

. (11)

In the context of a self-interacting, massive scalar field with


eff =
∫

d4x (
1

2
(∂ϕ∂ϕ − m2ϕ2) − λ

4!ϕ
4) + 
counter (12)

the action principle reads

δXϕ(x)
δ

δϕ(x)

 =

[
δXϕ(x)

δ

δϕ(x)

eff

]
· 
 ≡

[
QX(x)

]
· 
 (13)

for the non-integrated transformation.
Replacing δXϕ by 1 gives via LSZ-reduction rise to the operator field equation which has now 

a mathematically well-defined meaning.
Suppose that the variations δX satisfy an algebra, then

[
WX,WY

]
= iWZ, (14)

which implies algebraic restrictions on the insertions QX. Exploiting the restrictions perturba-
tively one can with calculations performed on the classical level decide whether the resulting 
QX(x) can be interpreted as a variation. If this is the case one can modify suitably 
eff and 
arrange a symmetry. If not, one has an anomaly, the symmetry cannot be implemented on the 
quantum level. (After a respective observation by Wess and Zumino (1971) in an effective theory 
this has been enlarged to a powerful technique by Becchi, Rouet and Stora (1975).)

It is to be noted that the method is constructive: the insertion QX(x) in (13) is determined 
uniquely and can be characterized by covariance and power counting. This is a very helpful tool 
in practice.

5.2. Operator product expansion

He found another, constructive way of arriving at these normal products by looking at the 
singularities of Green functions, expressed as sums over Feynman diagrams, when the endpoints 
of external lines merge to form a vertex which corresponds to a composite operator. Isolating the 
singularities and capturing them as coefficients of operators he arrived at the operator product 
expansion [12] which had been introduced by Kenneth Wilson [13]. This provided an existence 
proof for the operator product expansion in perturbation theory.
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Here a diagram describing the situation for a bilinear composite operator

· · ·

x1 x2

· · ·

x

One studies the limit of ξ going to zero for x = (x1 + x2)/2 and ξ = (x1 − x2)/2.
In the context of the standard model of particle physics, in particular in Quantum Chromo-

dynamics (QCD) the operator product expansion has been widely used to derive measurable 
quantities governing e.g. in deep inelastic scattering of electrons and neutrinos from hadrons. 
They confirmed their composite structure. After derivation of the directional dependence of 
composite operators [14] lightlike and spacelike operator product expansions were found to carry 
important general information on the physical processes involved. Eventually the sector of strong 
interactions of the standard model of particle physics was confirmed in this way.

6. Reduction of couplings – the third highlight

In 1974 Wolfhart Zimmermann became scientific member of the Max Planck Society and di-
rector at the Max Planck Institute for Physics, Munich, Germany. In 1977 he was also appointed 
honorary professor at the Technical University of Munich. His visits led him to Centre de In-
vestigación y de Estudios Avanzados del IPN, Mexico City, Mexico and Purdue University West 
Lafayette, IN, USA.

The prime subject of his group was the formulation of gauge and supersymmetric models 
to all orders of perturbation theory. Only with his renormalization technique was it possible to 
construct such theories unambiguously.

In the course of studying asymptotically free theories like QCD, he and Reinhard Oehme 
were naturally led to analyze the Renormalization Group in models with several effective cou-
plings. By eliminating the running parameter Wolfhart Zimmermann found a set of ordinary 
differential equations whose solutions guarantee that several “secondary” coupling constants, 
chosen to be functions of a “primary” one, maintain this relation in the course of renormal-
ization. For power series solutions one is still in the realm of ordinary perturbation theory; the 
functional relations between the different couplings compatible with renormalization provide a 
generalization of the concept of symmetry [15,16]. Zimmermann called this the “principle of 
reduction of couplings” and applied it to various theories.

Let us be specific. Suppose a perturbatively renormalizable model has a primary coupling g
and n secondary couplings λi , i = 1, ..., n. Then the effective couplings satisfy the renormaliza-
tion group equations

d
ḡ(t) = βg(ḡ, λ̄i)

d
λ̄i(t) = βλi

(ḡ, λ̄i) (15)

dt dt
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Eliminating the scale parameter t one arrives at

βg(ḡ, λ̄(ḡ))
d

dḡ
λ̄i(ḡ) = βλ̄i

(ḡ, λ̄(ḡ)). (16)

These are the ordinary differential equations to be solved. Since the β-functions are supposed 
to vanish at vanishing couplings, the differential equations are singular and require a case by 
case study, accompanied by stability considerations. Asking for power series solutions implies 
initial value conditions with no free parameter. The general solution contains as a rule n free 
parameters which are appropriate for this set of differential equations. They replace the couplings 
λi appearing in the original non-reduced model.

If the reduced model admits a symmetry then that will appear amongst the solutions.
Simple examples [15]:

(1) In a massless theory of one self-interacting pseudo-scalar field B and a single spinor field ψ
with interactions terms

igψ̄γ5Bψ − λ

4!B
4

there is for positive λ and sufficiently small g one uniquely determined power series solu-
tion starting with λ = 1

3 (1 + √
145)g2 embedded into a general solution with a contribution 

d11g
2
5

√
145+2 + higher orders, and d11 arbitrary.

(2) In the massless Wess–Zumino model with the couplings g and λ of the interaction terms

gψ̄(A + iγ5B)ψ − λ

2
(A2 + B2)2

one finds the supersymmetric solution λ = g2 embedded into a non-supersymmetric general 
solution with λ = g2 + ρ3g

8 + ∑
ρjg

2j+2, ρ3 arbitrary. A third solution with λ = − 4
5g2 +∑

ρjg
2j+2 is not related to supersymmetry.

Notable further examples are the non-supersymmetric embeddings of models which can have 
N = 2, 4 supersymmetry.

It is an interesting result that non-abelian gauge symmetry can be found as the unique solution 
once one postulates rigid invariance for the embedding theory (Kraus, 1990). Further, one was 
able to show that many “finite” models exist, finite meaning that their β-functions vanish to all 
orders, hence realizing superconformal symmetry in a straightforward way as in the classical 
theory. In particular they scale “naively”, i.e. without anomalous dimensions and also provide 
naive conformal behaviour.

Whereas such models are mainly of theoretical interest, it is clear that the reduction principle 
also has enormous phenomenological implications. Within the standard model of strong and 
electroweak interactions bounds on Higgs and top mass were derived.

To obtain them one had to generalize the reduction principle slightly because the gauge cou-
plings of the standard model have different asymptotic behaviour: whereas the coupling of the 
abelian subgroup is in the infrared asymptotically free, the couplings for the non-abelian sub-
groups are asymptotically free in the ultraviolet. Including two-loop corrections and using as 
input the values of MZ, α3(MZ), sin2θW (MZ), αem(MZ) one found in 1991

mt = 89.6 ± 9.2 GeV, mh = 64.5 ± 1.5 GeV

At that time these values were already overruled indirectly by precision experiments – i.e. 
assuming the existence of Higgs and top quark, without having direct evidence for them – hence 
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it was clear that the model had to be extended. (“clear” means the following: assuming that the 
coincidence of experimental values in the standard model with theoretical predictions – upon 
parts per million – is not a sheer accident, but rather points to the fact that naively summed up 
perturbation theory is much better than it has mathematically any reason to be, one concludes 
that a perturbation taking into account the relative magnitudes of gauge couplings is alright and 
thus a partial reduction is reasonable.) And indeed, by applying the reduction principle in this 
way to supersymmetric extensions of the standard model the Higgs mass was predicted two years 
before it was discovered [17]. Wolfhart Zimmermann was pleased by this.

7. The man behind the scientist

In 1991 he was awarded the Max-Planck-Medal, the highest prize of the German Physical 
Society. In 1996 he retired, but kept ties to the institute until his end.

So far we considered essentially the scientist and his work, but of course he was also a man 
of flesh and blood. He enjoyed eating and drinking well, showing exquisite taste also in this 
respect. He loved having company for dinner in his house, where his wife was a graceful and 
competent host. He was also well known for his generosity towards members and guests of the 
institute. He cared very much about his three daughters, their performance in school and later 
their professional and personal development. He was lover of music and theater and the flowers 
in his terrace garden.

Let’s have a closer look at the person via anecdotes.
Why did WZ never do refereeing work for journals? His answer which comes close to how 

he commented lectures and seminars during his studies: “If the problem addressed in the paper 
is interesting I am attracted to solve it myself. If I don’t find it interesting I can not press myself 
to read it further and just do nothing but criticising. In any case it distracts me too long from my 
own work.”

He simply hated committee meetings, in particular those of the directorate of the institute. 
There was just too much of trouble and strife and bad behaviour for him. In the breaks of di-
rectorate meetings he used to come to my office to discuss physics as a kind of recreation. At 
some time there was a “chance” that he had to become executive director (Geschäftsführender 
Direktor). His comment: “Ach wissen Sie, ich habe einen Zettel in meiner Jackentasche. Darauf 
steht: mir kann ja nichts passieren.” Indeed, nothing happened to him; a colleague of his was 
very eager to get this job.

In which sense if any was he the “boss” of the theory group?
Two remarks may serve as an appropriate answer. The first is when he quoted a well-known 

mathematician: “Mr. X at university Y said once in public: ‘Ich bin ein Bonze und möchte als 
solcher behandelt werden.’ I would never say this.”

The other one is the fact that he himself filled in and kept the list of vacation days for the 
members of the theory group and not the administration of the institute. Clearly, he had the opin-
ion that a scientist is most effectively controlled by his work ad not by administrative measures 
like presence in the institute. To the best of my knowledge there was no abuse of this freedom in 
the theory group, people there knew and quite well understood that their rank is being fixed by 
their scientific reputation.

It is obvious which sort of atmosphere is being created on such a background.
In the same spirit he supervised the guest program of the theory group. The only relevant cri-

terion for admission was the expected scientific outcome and its quality. Mainstream arguments 
were not considered to be sufficient. And, of course, the program was international. No argu-
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ments like “Germany first” have ever been heard. This was seemingly trivial at that time. But it 
has to be made explicit today.

8. Summary

When looking at the highlights a clear pattern emerges:

• LSZ clarify basic notions in their fundamental papers. Those have been used over and over 
again and have become textbook knowledge.

• WZ improves the basis of renormalization theory. A wealth of papers tackles successfully 
the structure of models: equations of motion, symmetries, anomalies.

• WZ proves operator product expansion in Minkowski space. Measurable quantities in QCD

become available; they confirm the theory.
• WZ formulates the principle of reduction of couplings. Within supersymmetric extensions 

of the standard model the Higgs mass can be predicted to quite some level of accuracy.

“Wenn Könige bauen, haben die Kärrner zu tun!”
(F. Schiller in den “Xenien” (1798) über Kant.)

He has ended a journey in which he not only devoted his gifts to mathematics and physics but 
above all of this to his family, his friends and his collaborators. We will miss him.
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