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We study spinless electrons in a single-channel quantum wire interacting through attractive interaction,
and the quantumHall states that may be constructed by an array of suchwires. For a singlewire, the electrons
may form two phases, the Luttinger liquid and the strongly paired phase. The Luttinger liquid is gapless to
one- and two-electron excitations, while the strongly paired state is gapped to the former and gapless to the
latter. In contrast to the case in which the wire is proximity coupled to an external superconductor, for an
isolated wire there is no separate phase of a topological, weakly paired superconductor. Rather, this phase is
adiabatically connected to the Luttinger liquid phase. The properties of the one-dimensional topological
superconductor emergewhen the number of channels in thewire becomes large. The quantumHall states that
may be formed by an array of single-channel wires depend on the Landau-level filling factors. For odd-
denominator fillings ν ¼ 1=ð2nþ 1Þ, wires at the Luttinger phase form Laughlin states, while wires in the
strongly paired phase form a bosonic fractional quantum Hall state of strongly bound pairs at a filling of
1=ð8nþ 4Þ. The transition between the two is of the universality class of Ising transitions in three
dimensions. For even-denominator fractions ν ¼ 1=2n, the two single-wire phases translate into four
quantum Hall states. Two of those states are bosonic fractional quantum Hall states of weakly and strongly
bound pairs of electrons. The other two are non-Abelian quantumHall states, which originate from coupling
wires close to their critical point. One of these non-Abelian states is the Moore-Read state. The transitions
between all of these states are of the universality class of Majorana transitions. We point out some of the
properties that characterize the different phases and the phase transitions.
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I. INTRODUCTION

Luttinger liquid theory is a powerful tool for the
theoretical study of interacting systems in one dimension,
allowing for detailed analysis of their low-energy properties
[1,2]. Many attempts have been made to extend the theory
for the study of systems of higher dimensions. A particu-
larly successful approach employs an array of quantum
wires, each being described as a Luttinger liquid of spinless
electrons, to construct two-dimensional topological states
of matter. This coupled wire construction was originally
formulated to describe Abelian fractional quantum Hall
states [3] and has been generalized to describe non-Abelian
quantum Hall states [4], as well as other two- and three-
dimensional topological phases [5–15].
While for systems of spinful electrons, or systems of

more than one channel, Luttinger liquid theory is able to

analyze instabilities towards other phases, including super-
conductors or spin-gapped states, it does not find such
instabilities for the minimal one-dimensional system: a
single-channel quantum wire of spinless fermions.
In this work, we use the Luttinger liquid as a starting

point for exploring phases and phase transitions of a single-
channel wire of spinless electrons that attractively interact.
We have two goals: Within the realm of one dimension, we
are interested in the possible superconducting phases that
are constructed in finite one-dimensional systems, where
the number of electrons is conserved. In particular, we are
interested in the distinction between a Luttinger liquid, a
topological superconductor, and a nontopological super-
conductor in such systems.
Beyond the one-dimensional realm, we are interested in

using wires of attractively interacting electrons as building
blocks for two-dimensional fractional quantum Hall states.
Here, we are motivated by the understanding that the most
prominent series of non-Abelian quantum Hall states, the
Read-Rezayi series [16,17], is intimately related to clusters
of electrons. In particular, the ν ¼ 5=2Moore-Read state is
a paired state. We seek a coupled wire construction of this
state that incorporates the pairing physics and simplifies the
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construction of Ref. [4], which involved an unnatural
spatial modulation of the magnetic field.
Our study begins with a single-channel quantum wire,

continues with wires of many modes, and then focuses on
quantum Hall states formed by an array of single-mode
wires. For single-mode wires, we analyze the strong-
pairing and weak-pairing superconducting phases that
occur for attractively interacting electrons. Interestingly,
we find that the weakly paired phase is adiabatically
connected to the Luttinger liquid phase formed by repul-
sively interacting electrons, but it is separated by a phase
transition from the strongly paired phase. The two phases
differ in their spectrum of single-electron excitations. While
the strong-pairing phase is gapped to single electrons and
gapless to pairs of electrons, we find that the weak-pairing
phase, like the Luttinger liquid phase, is gapless to both.
These results are different from those obtained in the mean
field theory (MFT) of superconductivity, which is appli-
cable when the superconductivity in the wire is induced by
proximity coupling to an external bulk superconductor.
For multimode wires, we discuss even-odd modulations

of the ground-state energy as a function of the number of
electrons, as well as single-electron tunneling density of
states; we contrast the results of the multimode wire to the
case of a single-mode wire coupled by proximity to an
external superconductor. We examine the way by which the
two systems become similar in the limit of a large number
of modes.
For quantum Hall states formed of arrays of single-

mode wires, we focus on states in which the edge is
composed of a single charged mode. We find two distinct
phase diagrams as a function of the strength of the pairing.
For odd-denominator filling factors ν ¼ 1=ð2nþ 1Þ (with
n ¼ 0; 1; 2;…), there are two possible states—a strong-
pairing state, which is essentially a bosonic fractional
quantum Hall state of filling 1=½4ð2nþ 1Þ�, and a
Laughlin state. The two states differ in topological proper-
ties such as the quasiparticle charge and the ground-state
degeneracy on a torus. The transition between the two is of
the 3D Ising universality class. For even-denominator
filling factors ν ¼ 1=2n, there are three types of states—
strong-pairing states, non-Abelian states of the Moore-
Read type, and anisotropic Abelian quantum Hall states,
with defects that carry non-Abelian localized Majorana
fermions. In addition to the conventional Moore-Read state,
our construction allows a related state that has counter-
propagating charge and Majorana modes at the edge. This
state has the same topological order as the particle-hole
symmetric Moore-Read state that has recently been dis-
cussed in the context of the theory of the particle-hole
symmetric half-filled Landau level [18].
We present the physical picture that emerges from our

study and a summary of our results in the next section,
Sec. II. Following that, in Sec. III, we present our analysis
of the single-mode wire. In Sec. IV, we discuss the wire

construction of quantum Hall states. Finally, Sec. V con-
cludes the paper.

II. PHYSICAL PICTURE AND SUMMARY
OF RESULTS

A. Single wire

We begin by considering a single-channel quantum wire
with attractive interactions. Bardeen-Cooper-Schrieffer
(BCS) MFT predicts two topologically distinct supercon-
ducting states, which both have a single-particle energy
gap. In the paradigmatic Kitaev chain [19], the transition
between the trivial and the topological superconducting
phases is driven by tuning the chemical potential across the
band edge. In the topological phase, there exist zero-energy
Majorana modes at the ends of the wire. Domain walls
between the trivial and topological phases also host
Majorana modes, and the presence of four or more domain
walls leads to a topological degeneracy in the ground state.
Recent work has examined the role of fluctuations in

the superconducting order parameter [20,21] in number-
conserving one-dimensional superconductors [22,23].
Emphasis was placed on the case of quantum wires with
several channels. It was found that in the weak-pairing
phase, the finite-size splitting in the topological ground-
state degeneracy is suppressed only as a power law of
the distance between Majorana modes, rather than the
exponential behavior predicted by MFT. The power-law
dependence is a consequence of backscattering amplitudes
that are introduced by impurities or by nonuniformities
(e.g., the nonuniformity that gives rise to the existence of
topological-trivial interfaces). The exponent in the power
law depends on the interactions as well as the number of
channels, and when the number of channels is large, the
exponent becomes large, effectively recovering the MFT
behavior. These works did not explicitly address the fate
of the single-particle energy gap, the low-energy single-
particle tunneling density of states, or the nature of the
transition to other one-dimensional phases.
In our analysis, we go beyond MFT by describing the

wire as a coexistence of two coupled fluids: charge e
fermions and charge 2e bosonic Cooper pairs. The two are
coupled by a nonquadratic pairing term that breaks a
bosonic pair into two electrons and pairs two electrons
into a bosonic pair. This term makes the Hamiltonian
charge conserving and couples the low-energy fluctuations
of the gapless mode, whose existence is guaranteed by
translational invariance, to the superconducting pairs. We
show that this model has two phases, which we refer to as
strong- and weak-pairing phases. We find that in the strong-
pairing phase, the single-electron fluid is gapped as in the
MFT. In contrast, the weak-pairing phase is gapless to the
introduction of single electrons.
The weak-pairing phase can be viewed in two ways: It

can be considered as a one-dimensional topological
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superconductor with a fluctuating phase, or it can be
considered as an ordinary single-channel Luttinger liquid
with attractive interactions. These two pictures are in fact
equivalent: The topological superconductor is adiabatically
connected to the single-channel Luttinger liquid and,
ultimately, to noninteracting electrons. Despite this equiv-
alence, we continue using the name “weak-pairing phase”
when pairing aspects are the focus of our attention.
In MFT, there is a gap for adding single electrons to the

bulk of a topological superconductor. The same is true in
our theory for “bare” single-electron operators that do not
couple to the bosonic sector. However, we show that when
fluctuations in the charge 2e sector are accounted for, there
exist “composite electron” operators, which carry a single-
electron charge and commute with the pairing term, leading
to gapless charge e excitations. The composite electron
operators involve scattering off of the finite wave-vector
density fluctuations in the charge 2e fluid and transfer
momentum to the bosonic fluid. Alternatively, adding a
composite electron is equivalent to adding a bare electron,
along with tunneling a superconducting vortex across the
wire. The vortex tunneling leads to a 2π phase slip in the
superconducting order parameter. In a topological super-
conductor, this process by itself leads to a change in the
local fermion parity of the ground state, resulting in an
excited quasiparticle above the gap [19,24]. Adding the
bare fermion then couples the system back to the low-
energy sector with no quasiparticles excited.
We establish the equivalence between the weak-paired

superconductor and the Luttinger liquid by employing a
unitary transformation that transforms the original charge-e
fermion mode and charge-2e boson mode into a bosonic
charge mode and a fermionic neutral mode. In doing
so, we generalize the conventional bosonization formulas
to account for the possibility of a strong-paired phase.
The bosonic charge mode resembles the bosonic mode of
an ordinary single-channel Luttinger liquid, while the
neutral mode describes the degrees of freedom of a 1þ 1-
dimensional transverse-field Ising model, where the
ordered and disordered phases of the Ising model corre-
spond to the weak and strong-paired phases, respectively.
In Sec. III B, we show that composite electron operators
may be written in the form

Ψ†
R=L ∼ ðσx þ iσyÞeiðφρ�θρÞ; ð1Þ

where φρ and θρ are the bosonic fields in the charge sector,
and σx;y are spin variables characterizing the transverse-
field Ising neutral sector. In the ordered phase of the Ising
model (the weak-paired phase), σx has long-range order and
may be replaced by its expectation value hσxi. We therefore
recover the conventional bosonization of a single-channel
Luttinger liquid. In the disordered phase of the Ising model
(the strong-paired phase), σx;y have short-range correlations
in space and time, which implies that there is a gap for

charge e excitations. The relation between the pairing
transition and the Ising transition has previously been
explored in the context of molecular and atomic superfluids
[25,26].
As in the conventional theory of bosonization, there are

additional composite charge-e fermion operators that
involve 2kF backscattering, leading to operators similar
to Eq. (1) with all odd integer multiples of θρ. However, our
generalized theory includes an additional class of charge-e
operators with an even number of θρ ’s. For example, the
“bare” fermion operator has the form

Ψ†
0 ∼ ðγ1 þ iγ2Þeiφρ : ð2Þ

While this operator has the “wrong” number of θρ ’s, it is
accompanied by Majorana fermion operators γ1;2 acting in
the neutral sector. These are related to σx;y by a Jordan-
Wigner string. These operators are usually unimportant at
low energies because γ1;2 have a gap in both the ordered
and disordered phases of the Ising model. However, γ1;2 are
gapless at the transition, as well as near a boundary that
hosts a Majorana zero mode in the weak-paired phase.
The picture we outline above also applies to a wire with

multiple channels when an attractive interaction leads to a
superconducting energy gap in all but a single collective
charge mode. For a weak attractive interaction, an odd
number of channels form a weakly paired superconductor,
with the set of properties described above. In contrast, an
even number of channels form a strongly paired super-
conductor. However, this even-odd dependence on the
number of channels does not hold when the attractive
interaction is not weak. In fact, the weak- to strong-pairing
transition that occurs with the opening of new channels
when the interaction is weak is a particular case for which
our analysis applies, but it is not the general case. In either
phase, however, the wire is described by the generalized
single-channel Luttinger liquid theory described above,
with a Luttinger parameter Kρ that depends on the number
of channels. When the number of channels is large, Kρ is
large. In the limit Kρ → ∞, we recover the classical MFT
behavior.
In MFT, the transition between the weak and strong-

paired phases is a transition between two gapped states, and
it is in the 2D Ising universality class. At the transition, a
pair of counterpropagating Majorana modes described by
γ1;2 become gapless. For a charge-conserving wire, the
transition is between two states that each have a gapless
collective charge mode. One may wonder whether the
nature of the transition changes. This problem has been
studied in Refs. [27,28]. The coupling between the Ising
variables and the gapless charge mode is found to be
marginally irrelevant but nonetheless changes the nature of
the critical behavior at the transition because it leads to a
strong renormalization of the velocities of the modes.
Depending on the coupling, there are two possible
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behaviors: Either the transition is converted to a discon-
tinuous first-order transition, or the transition exhibits a
continuous transition that resembles the Ising transition, but
with a logarithmic renormalization of the velocity.
The distinction between the strong- and weak-paired

phases can be probed experimentally in two ways: (1) the
tunneling density of states at the bulk and at the end of the
wire and (2) the dependence of the ground-state energy of a
finite system on the parity of the number of particles. In
the strong-pairing phase, both of these properties follow the
MFT prediction. There is a single-particle energy gap in the
tunneling density of states, and the ground-state energy
exhibits an even-odd effect, in which the energy difference
for an odd and even number of electrons remains finite in
the thermodynamic limit, as is observed in mesoscopic
superconductors.
For the weak-paired topological superconductor, it is

interesting to compare these properties with those of a
single-channel Luttinger liquid, as well as with noninter-
acting electrons. Because of the composite electron oper-
ator, the tunneling density of states in the bulk of the
weak-paired phase vanishes like a power of energy. This
behavior is identical to an ordinary Luttinger liquid. For a
finite wire, the tunneling density of states at the end differs
from that of the bulk. As argued in Refs. [20,21], the
δ-function peak at zero energy due to the Majorana mode
predicted by MFT is replaced by a power-law divergence in
the tunneling density of states. The same behavior arises in
a single-channel Luttinger liquid, where tunneling density
of states at the end of the wire is different from that in the
middle [29]. When the interactions are strong or the number
of modes in the wire is large, the exponent in the bulk
becomes large, and we effectively recover the gap predicted
by MFT. In parallel, the exponent at the end approaches
−1, and we recover the sharp peak characteristic of a
Majorana mode.
In MFT, the even-odd effect in the weak-pairing phase

depends on the boundary conditions. For open boundary
conditions, the even-odd effect is exponentially small in the
system size L because the odd electron can be added to the
Majorana end mode. For periodic boundary conditions
(a ring), however, there are no Majorana modes, and the
even-odd effect is finite for large L. Since fluctuations
eliminate the single-particle gap, we expect this to be
modified. We predict that for open boundary conditions, the
even-odd effect remains exponentially small in the system’s
size, while for periodic boundary conditions, it vanishes
only as 1=L. This distinction between periodic and open
boundary conditions can be understood by considering the
ground-state energy of a single-channel Luttinger liquid,
and it persists even for noninteracting electrons. The
difference between the two boundary conditions is most
easily understood at the noninteracting level. For a wire
with periodic boundary conditions, the single-particle
spectrum is doubly degenerate, leading to an even-odd

pattern in the ground-state energy as a function of the
number of electrons. This degeneracy is absent in a wire
with open boundary conditions.

B. Array of wires as a fractional quantum Hall state

The coupled wire model constructs quantum Hall states
by connecting neighboring wires by tunneling in a way that
mutually gaps a right-moving mode on one wire with a
left-moving mode on its neighbor. Provided the tunneling
conserves momentum, this leads to a bulk gap, while chiral
modes are left gapless on the edge. The balance of
momentum equates the momentum transferred to the
tunneling charge by the Lorentz force with the total change
in the electrons’ momentum as a consequence of the
tunneling. For tunneling of charge q across the interwire
spacing d in magnetic field B, the Lorentz force provides
momentum qBd. Fermionic Laughlin states are stabilized
by a process in which this momentum is balanced by the
momentum 2kFð2nþ 1Þ associated with an electron tun-
neling from momentum state kF on one wire to momentum
state −kF on the neighbor, while backscattering n electrons
from þkF to −kF on each wire (here, n ¼ 0; 1; 2;…).
The balance is satisfied at the Laughlin filling factors
ν ¼ 2kF=qBd ¼ 1=ð2nþ 1Þ. When the constituent par-
ticles are bosons, the Laughlin states at ν ¼ 1=ð2nþ 2Þ
are formed if the tunneling boson applies a density operator
of momentum ðnþ 1Þ2πnb in the two wires involved.
In the present work, we consider a wire construction in

which the wires are in (i) the weak-paired phase, (ii) the
strong-paired phase, and (iii) the critical point between
them. For the weak-paired phase, we simply reproduce the
construction described above for the Laughlin states [3].
This is consistent with the equivalence we draw for the
weakly paired phase with the Luttinger liquid. In the
strong-paired phase, the single electrons are frozen, and
the wires may be regarded as composed of bosons of charge
2e. Tunneling then leads to a sequence of strong-paired
quantum Hall states of charge-2e bosons at (electron)
filling factors ν ¼ 4=ð2nÞ, which have quasiparticles with
charge 2e=2n with statistics angle 2π=ð2nÞ and a degen-
eracy 2n on a torus. Notable examples include ν ¼ 2 with
semionic charge-e quasiparticles, ν ¼ 1 with charge e=2
quasiparticles, and ν ¼ 1=2 with charge-e=4 quasiparticles
[30], known in the literature as the K ¼ 8 state [31].
For odd-denominator filling factors ν ¼ 1=ð2nþ 1Þ,

there exist both ordinary Laughlin states (for weak-paired
wires) and strong-paired states (for strong-paired wires).
We argue that the transition between them is in the 3D Ising
universality class.
For even-denominator filling factors ν ¼ 1=ð2nþ 2Þ,

“composite electrons” cannot tunnel in a way that con-
serves momentum. The wires are then coupled by pair
tunneling, which gaps the gapless modes in the bulk. In the
strong-pairing regime, a bosonic fractional quantum Hall
effect (FQHE) state is obtained. On the weak-pairing side,
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gapless Majorana zero modes are left at the wires’ ends.
The ends may be coupled by single-electron tunneling, in
which case the localized Majorana end modes disperse into
a pair of counterpropagating Majorana modes. Defects in
the array, e.g., wires that break or terminate at the bulk of
the sample, carry localized zero-energy Majorana modes
that do not hybridize with the gapped bulk. These modes
are static non-Abelian defects, of the type found at the ends
of 1D topological superconductors.
When the individual wires are at the transition between

weak and strong pairing, each wire carries both a gapless
charged pair of modes and a gapless neutral pair of
Majorana modes. It is then possible to construct an electron
operator that allows for single-electron tunneling with
momentum conservation. This operator couples both to
the charge and to the neutral modes. Together with pair
tunneling that couples only to the charge mode, the bulk is
gapped, and the edge remains to carry chiral charge and
Majorana modes. The precise form of the single-electron
tunneling determines the relative direction of motion of the
charge and Majorana modes on the edge. When they
copropagate, the resulting state is topologically identical
to the Moore-Read state, which is a px þ ipy supercon-
ductor of composite fermions. When the two edge modes
counterpropagate, the resulting state is a px − ipy super-
conductor of composite fermions. Its edge structure is
symmetric to a particle-hole transformation. For electrons
on a plane, the px − ipy state is believed to be inferior in
energy to the Moore-Read state since the latter may be
associated with a trial wave function (the “Pfaffian” wave
function) that is entirely within the lowest Landau level,
while the former necessarily involves states from higher
Landau levels. For weakly coupled wires, a limit that is far
from that of electrons on a plane, it is possible to have
situations in which the two states are comparable in energy.
The starting point in which each wire is in a critical state
also allows for construction of the anti-Pfaffian, the
particle-hole conjugate of the Moore-Read state. Since this
state carries more than one charged edge mode, its con-
struction requires interwire tunnel coupling that goes
further than nearest-neighboring wires.

III. PAIRED STATES IN 1D

We begin with a simple model of spinless charge-e
fermions with density ρe ≪ 1 on a one-dimensional lattice.
Consider the Hamiltonian

H ¼
X
i

− tðc†i ciþ1 þ c†iþ1ciÞ þ
X
i;p

Vpniniþp ð3Þ

with first and second neighbor interactions V1 and V2, and
Vp>2 ¼ 0. For V1, V2 > 0, this system will be a Fermi gas
with repulsive interactions, and at low energy, it will be a
Luttinger liquid with gapless charge-e excitations. For
V1 < 0, however, the ground state will favor forming

two-particle bound states. For V2 > −2V1 and small t,
the system will form a gas of charge-2e bosons with
repulsive interactions. Thus, at low energies, the system
will be a Luttinger liquid of charge-2e particles, and there
will be a gap jV1j for creating charge-e particles.
We wish to develop a low-energy theory that is capable

of describing both of these phases, as well as the behavior
of a transition between them. Our approach is to consider a
low-energy “two-fluid model” consisting of a channel of
charge-e fermions coexisting with charge-2e bosons.

A. Two-fluid model

Consider a single wire described by a single fermionic
channel with dispersion EðkÞ ¼ ϵ0 þ k2=2m and average
density ρ̄f coupled to a Luttinger liquid of charge-2e
bosons with average density ρ̄b. The Hamiltonian density
is H ¼ H0

f þH0
b, where

H0
b ¼

v
2π

�
Kð∂xφÞ2 þ

1

K
ð∂xθÞ2

�
− 2μð∂xθ=2π þ ρ̄bÞ; ð4Þ

H0
f ¼ ψ†ðϵ0 − ∂2

x=2m − μÞψ þ uðψ∂xψe2iφ þ H:c:Þ: ð5Þ

Here u is the pair tunneling between the fermion channel
and the boson Luttinger liquid channel, which is neces-
sarily a pwave. Note that ∂xθ=2π describes the fluctuations
in the boson density about ρ̄b, and ½φðxÞ; θðx0Þ� ¼
iπΘðx − x0Þ. The chemical potential μ couples to the total
charge density ρe ¼ ψ†ψ þ 2ρb.
MFT treats φ as a classical variable, in which case H0

f

is a one-dimensional version of the Read-Green model of a
p-wave superconductor. It describes a transition between a
trivial and a topological one-dimensional superconductor,
as a function of ϵ0, where ϵ0 < 0 is the strong-paired phase,
while ϵ0 > 0 is the weak-paired, or topological, phase,
which exhibits Majorana modes at the end. In mean field
theory, there is a gap for adding a charge-e particle in both
the strong and weak-paired phases. In order to correctly
describe the correlation functions for a charge-e particle in
both phases, it is necessary to go beyond the mean field
theory.
The low-energy fluctuations in the boson density have

important contributions near wave vectors qn ¼ 2πnρ̄b,

ρbðxÞ ¼ ρ̄b þ
X
n

ρnðxÞ: ð6Þ

The long-wavelength boson density fluctuation is
ρ0ðxÞ ¼ ∂xθðxÞ=π. The density wave at q ∼ 2πρ̄n has a
phase modulated by θ,

ρnðxÞ ∝ ein(2πρ̄bxþθðxÞ): ð7Þ

Importantly, the operators ρn are local operators.
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The bare fermion operator ψ is a local operator, but it is
gapped when ϵ0 ≠ 0 because of the pairing term. However,
the local composite electron operators

Ψ†
þ;nðxÞ ∝ ψ†ρn ð8Þ

and

Ψ†
−;nðxÞ ∝ ψe2iφρn ð9Þ

are not necessarily gapped because e�inθ introduces a 2πn
phase slip into the superconducting phase 2φ. It is well
known that when the phase across a topological-insulator
Josephson junction is advanced by 2π, there is a level
crossing that results in an excited quasiparticle, along with
a shift in the fermion parity of the ground state. It follows
that when n is odd and the fermions are in the topological
superconducting state, the fermion operator can annihilate
this extra quasiparticle, returning the system to the low-
energy sector with no gapped quasiparticles. Therefore, in
the weak-paired phase, the operators Ψ�;�1 create gapless
excitations and have power-law correlations characteristic
of a charge-e Luttinger liquid.

B. Bosonization near the Ising transition

In order to make contact with the more familiar
bosonization of the charge-e Luttinger liquid, it is useful
to introduce a transformation that decouples the fermions
and bosons by effectively transferring the charge of the
fermions to the bosons. We perform a canonical trans-
formation H → UHU† generated by

U ¼ ei
R

dxðψ†ψ−ρ̄fÞφðxÞ; ð10Þ

where ρ̄f is the average fermion density. Identifying the
new boson and fermion fields as φρ, θρ, and ψσ, this has the
effect of transforming

ψðxÞ → ψσðxÞe−iφρ ; ð11Þ

φðxÞ → φρðxÞ; ð12Þ

θðxÞ → θρðxÞ þ π

�
ρ̄fxþ

Z
∞

x
dxψ†

σψσ

�
: ð13Þ

Thus, ∂xθρ=π now describes the fluctuations in the total
electron density about the average value ρ̄e ¼ ρ̄f þ 2ρ̄b.
The fermion field ψσ is neutral.
The transformed Hamiltonian has three terms,

H ¼ Hρ þHσ þHint: ð14Þ

The term describing the charged degrees of freedom is

Hρ ¼
v
2π

�
Kρð∂xφρÞ2 þ

1

Kρ
ð∂xθρÞ2

�
− μð∂xθρ=π þ ρ̄eÞ;

ð15Þ

where we identify Kρ ¼ K. The term describing the neutral
degrees of freedom is

Hσ ¼ ψ†
σðϵ0 − ∂2

x=2mÞψσ þ iuðψσ∂xψσ þ ψ†
σ∂xψ

†
σÞ ð16Þ

and the interaction term is

Hint ¼
ð∂xφρÞ2
2m

ψ†
σψσ −

i∂xφρ

m
ψ†
σ∂xψσ −

v∂xθρ
Kρ

ðψ†
σψσ − ρ̄fÞ:

ð17Þ

The second term, Hσ, can be recognized as the mean
field Read-Green model, which has a second-order topo-
logical transition at ϵ0 ¼ 0 that is in the 2D Ising univer-
sality class. Since ψ has dimension 1=2 at the transition, the
first two terms in Hint have dimension 3 and are strongly
irrelevant. The third term, however, with dimension 2 is
marginal, and it affects the critical behavior [27,28]. Before
describing the critical behavior, we examine the correspon-
dence between the phases and critical behavior of our
model withHint ¼ 0 and the corresponding behavior of the
Ising model. Our motivation for doing this is that, away
from the transition, the gap in ψσ renders Hint irrelevant.
Moreover, we find theHint ¼ 0 limit a useful starting point
in Sec. IV when we consider two-dimensional gapped
phases constructed from coupled wires, which have a
gapped charge mode.
The connection between Eq. (16) and the Ising model is

well known. It is convenient to view the fermion fields ψσ

as the continuum limit of lattice fermion fields ψ j, which
may be written as the Jordan-Wigner transformation of
lattice spin variables σ�j ¼ σxj � iσyj via

σ�j ¼ ψ�
j e

iπ
P

i>j
ψþ
i ψ

−
i : ð18Þ

Here, we write ψþ ≡ ψ†
σ and ψ− ≡ ψσ . As reviewed in

Appendix A, the Hamiltonian (16) is then the continuum
limit of a 1þ 1-dimensional transverse-field Ising model,

HI ¼
X
j

hσzj − Jσxjσ
x
jþ1; ð19Þ

with ϵ0 ¼ 2ðh − JÞ. The weak-paired phases ϵ0 < 0 cor-
respond to the ordered phase of the Ising model with a
nonzero order parameter hσxi ≠ 0. The strong-paired phase
ϵ0 > 0 is the disordered phase with hσxi ¼ 0.
The local composite electron creation operators given in

Eqs. (8) and (9) can now be written as
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Ψ†
�;n ∝ ξ�n eiφρeinðkFxþθρÞ; ð20Þ

where kF ≡ πρ̄e comes from the total electron density and

ξ�n ¼ ψ�einπ
R

∞
x

ψ†ψ : ð21Þ

From Eq. (18), it is clear that when n is even, the Jordan-
Wigner string has no effect, while when n is odd, the
Jordan-Wigner string converts the fermion variable into the
Ising variable. We thus have

ξ�n ¼
�
σ� ¼ ðσx � iσyÞ=2 n odd

ψ� ¼ ðγ1 � iγ2Þ= ffiffiffi
2

p
n even;

ð22Þ

where σx;y are the continuum limit of Pauli spin matrices
σx;yj defined on each lattice site, while γ1;2 are Majorana
fermion operators that form the continuum limit of the
lattice fermion operators ψ�

j .
Equations (20) and (22) can be viewed as a generaliza-

tion of the conventional bosonization formulas to the
vicinity of the pairing transition. Deep in the weak-paired
phase, the Ising spins have long-range order, so in the terms
with odd n, they may be replaced by their nonzero
expectation value hσ�i ¼ hσxi. These terms give the con-
ventional bosonization formula for a charge-e Luttinger
liquid, in which the integer coefficients of φρ and θρ have
the same parity. The usual left- and right-moving fermions
ΨR and ΨL are given by the n ¼ �1 operators. Note,
however, that in the strong-paired phase, hσ�i ¼ 0, and the
Ising spins have exponentially decaying correlations. It
follows that in the strong-paired phase, there are no charge-
e operators with long-range correlations, reflecting an
energy gap for charge-e particles. Charge-2e particles,
created by e2iφρ, do not have a gap.
The even n terms, which have the “wrong” number of

θρ’s, involve ψσ , which has a gap everywhere except in the
vicinity of the Ising transition. Near the transition, Ψ�;0

couples to the gapless Majorana modes present at the
transition. Expressed in terms of the Majorana operators,
Eq. (16) becomes

Hσ ¼ γT ½−iu∂xτ
z þ ðϵ0 − ∂2

x=2mÞτy�γ; ð23Þ

where the Pauli matrices τa act on γ ¼ ðγ1; γ2ÞT . At the
transition ϵ0 ¼ 0, γ1 and γ2 can be recognized as right- and
left-moving chiral Majorana modes. Nonzero ϵ0 introduces
a mass term that couples γ1 and γ2, leading to an
energy gap.
The spectral properties of single electrons can be

summarized by the imaginary-time, local, single-particle
Green’s function GðτÞ ¼ hTτ½ψeðx; τÞψ†

eðx; 0Þ�i, where, in
general, the electron operator ψ†

e is a sum over all possible
composite operators,

ψ†
e ¼

X
aþ;nΨ†

þ;n þ a−;nΨ†
−;n; ð24Þ

with coefficients a�;n that depend on the interactions
between the charge-e and charge-2e fluids. It follows that

GðτÞ ¼
X
n

1

τ
1
2
ðK−1

ρ þn2KρÞ
gn;σðτÞ: ð25Þ

Each term factorizes into a Luttinger liquidlike power law
in the charge sector times a contribution gn;σðτÞ from the
neutral sector. The latter depend crucially on whether n is
even or odd. The behavior in the weak and strong-paired
phases can be analyzed by considering the low-energy
behavior near the Ising transition ϵ0 ∼ 0, where the neutral
sector should exhibit scaling behavior.
For even n, gneven;σ describes the correlation function of

1D Majorana fermions with a mass gap jϵ0j. Since ψ has
dimension 1=2 at the transition, we expect

gneven;σðτ; ϵ0Þ ∼
1

τ
Feðϵ0τÞ: ð26Þ

The scaling function satisfies Feðx → 0Þ ∼ 1, reflecting the
gapless Majorana mode at the transition. In the opposite
limit, Feðx → �∞Þ ∼ e−jxj, reflecting the mass gap propor-
tional to jϵ0j on either side of the transition.
For odd n, gnodd;σ describes the correlation function of

the Ising spin operator σx. Since σx has dimension 1=8 at
the transition, we expect

gn odd;σðτ; ϵ0Þ ∼
1

τ1=4
Foðϵ0τÞ: ð27Þ

The scaling function satisfiesFoðx → 0Þ ∝ 1, describing the
behavior at the transition exactly. The behavior for x → �∞
reflects the spin correlations on either side of the transition.
On the ordered side, for ϵ0 > 0, we expect hσxðτÞσxð0Þi ∼
ϵ2β0 independent of τ, with β ¼ 1=8. Thus, Foðx → ∞Þ∼
x1=4. On the disordered side, ϵ0 < 0, the spin correlations
decay exponentially in τ with a correlation length ξ ∝ jϵ0j−ν
with ν ¼ 1. Therefore, Foðx → −∞Þ ∼ e−jxj.
The behavior described above can be summarized as

follows: In the strong-paired phase,GðτÞ ∼ e−ϵ0τ, reflecting a
gap, while in the weak-paired phase, the electron operator is
dominated by n ¼ �1, giving GðτÞ ∼ 1=τðKρþK−1

ρ Þ=2. At the
Ising critical point, the n ¼ 0 and n ¼ �1 terms compete,
andwehaveGðτÞ ∼ 1=τMinðK−1

ρ =2þ1=4;Kρ=2þK−1
ρ =2þ1Þ. Thus, for

Kρ < 3=2, the n ¼ 1 term dominates, while for Kρ > 3=2,
the n ¼ 0 term dominates. As discussed in the following
section, however, this critical behavior will be modified by
the interaction with the charge mode.
Finally, we note that in the weak-paired state, the fermion

sector has a topologically nontrivial gap. This means that
there exist zero-energy Majorana zero modes at the ends of
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the wire. Therefore, at the ends, Ψ†
�;0 ∼ ψ�eiφρ is not

gapped, and it exhibits long-range temporal correlations
with GðτÞ ∼ τ−K

−1
ρ . This reflects the well-known fact that the

exponent for tunneling into the end of a Luttinger liquid
differs from the exponent for tunneling into the middle of a
Luttinger liquid [29].

C. Critical behavior

The effect of the marginal interaction λ∂xθρψ
†
σϕσ (with

λ ¼ v=Kρ) on the critical behavior of the Ising transition
has been analyzed in Refs. [27,28]. These works performed
a renormalization group (RG) analysis that showed how λ,
as well as the velocities u and v, is renormalized at low
energies at the transition. Here, we write the RG equations
in a scheme in which space and time are renormalized at
identical rates and the coefficient of the ð∂xφρÞ2 term in
Eq. (15), namely, the product vKρ, is held fixed. The RG
equations are then

d log v
dl

¼ −
Kρλ

2

4uv
; ð28Þ

d logKρ

dl
¼ Kρλ

2

4uv
; ð29Þ

d log u
dl

¼ −
Kρλ

2

ðuþ vÞ2 ; ð30Þ

d log λ
dl

¼ −
Kρλ

2ð2uþ vÞ
2uðuþ vÞ2 : ð31Þ

These equations were found to result in two distinct types
of flows. For the first type, u, v, and λ flow to zero with
u=v ¼ 1. This fixed point describes a continuous transition
in which the fermions and bosons are decoupled but their
velocities both vanish logarithmically at low energy. In the
second type of flow, the boson velocity v renormalizes to
zero faster than u, λ, and it flows to zero at a finite l. This
signals a first-order transition that resembles a transition
between the degenerate ground states associated with the
Peierls instability. The separatrix between the two types of
flow is not known precisely.
When the initial conditions are such that λ ≪ v and

u ≪ v, the transition is expected to be continuous, with a
flow of the first type. While we do not provide a detailed
estimate of the microscopic parameters, we make two
observations. First, in the situation where superconductivity
is induced into a semiconducting wire by proximity to
metallic one-dimensional channels (see, e.g., Albrecht et al.
[32]), we expect v ≫ u since v originates from the metal
while u originates from the superconductivity induced in
the semiconductor. Second, in our analysis above, the
initial value of λ is given by v=Kρ. As we review in
Sec. III D 2, when the number of channels Nch is large, we

expectKρ ∝ Nch, such that the initial value of λ → 0. In this
case, Eqs. (31) imply that the effect of renormalization
becomes significant only at exponentially low energy.
However, this analysis is modified if the interchannel
Coulomb interaction is included. In that case, we find that
Kρ, vare both proportional to N1=2

ch in the limit Nch → ∞
[33]. The initial values of the parameters are then not
necessarily small, which complicates the determination of
the RG flow.

D. Distinguishing characteristics of the two phases

We now discuss two physical characteristics that dis-
tinguish the weak-paired/Luttinger liquid phase from the
strongly paired phase in a one-dimensional wire. We also
explore the case in which the wire has a large number of
channels.

1. Even-odd modulation of the ground-state energy
as a function of the electron number N

We define the energy alternation ΔEðLÞ, for a system of
length L, by

ΔEðLÞ ¼ 2
X∞
N¼0

eiπnENwðNÞ; ð32Þ

where EN is the ground-state energy of a system with N
fermions in the length L, and wðNÞ is a smooth weight
function, with a maximum at a value N ¼ n0L and a width
that is large compared to unity but small compared to n0L.
For example, wðNÞ might be a Gaussian with a second
moment equal to n0L. We are interested in the behavior of
ΔE as L becomes large, with the mean fermion density n0
held fixed.
Note that ΔEðLÞ samples the even-odd modulation of

the ground-state energy over the range of wðNÞ, and it is
rather insensitive to the smooth variation of EN . In MFT,
for a wire with Majorana end modes, it may be interpreted
as the energy splitting due to interactions between the
Majorana modes at the two ends of the wire, when such
modes exist. It should not be confused with the second
difference,

Δ2ðENÞ≡ ENþ1 − 2EN þ EN−1; ð33Þ

with N ≈ n0L. For a particle-conserving system in the
topological superconducting state, with short-range inter-
actions, the value ofΔ2ðENÞwill only go to zero as 1=L, for
large L, regardless of the number of channels, as the second
difference samples the smooth dependence of EN on N. For
all phases, there is a smooth contribution to the ground-
state energy of the form EcðN − N0Þ2=2which accounts for
charging energy. This contribution determines Δ2ðENÞ ¼
Ec ∝ ð1=LÞ but does not lead to an even-odd effect and
gives a negligible contribution to ΔEðLÞ.
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Focusing on ΔEðLÞ, we note that for a strong-paired
superconductor, there is another contribution ð−1ÞNΔ,
originating from the superconductor having an unpaired
electron. This leads to ΔEðLÞ, which is independent of L.
The weak paired state, however, does not have a gap for
single electrons, but rather, it behaves as a Luttinger liquid
described by Eq. (15). The dependence of the ground-state
energy on parity depends on the boundary conditions. For
open boundary conditions, there is just a single chiral
channel that reflects back and forth from the ends. For a
segment of length L, the energy is then

Esegment
N ¼ 2πv

LKρ
ðN − N0Þ2: ð34Þ

This gives a negligible contribution to ΔEðLÞ, reminiscent
of the absence of an even-odd effect in a topological
superconductor due to the Majorana end modes. In con-
trast, for a ring geometry, there are independent left- and
right-moving chiral modes with integer charges NR=L,
withN ¼ NR þ NL. The energy for a ring of circumference
L is then

Ering
N ¼ 2πv

L

�
1

Kρ
ðNR þ NL − N0Þ2 þ KρðNR − NLÞ2

�
:

ð35Þ

The ground state therefore has an even-odd modula-
tion ΔEðLÞ ¼ 2πvK=L.
We note that this behavior of the even-odd effect persists

even for noninteracting electrons. In this case, in the
segment geometry, the single-particle states are nondegen-
erate and evenly spaced, leading to Eq. (34), while in the
ring geometry, every state (except at k ¼ 0) is doubly
degenerate, leading to Eq. (35).
It is interesting to compare these conclusions to the

conclusions of MFT, in which a quantum wire is proximity
coupled to an ideal infinite bulk superconductor. In that
case, the electron number N is not a good quantum number.
Then, the ground state of the wire, at a given chemical
potential, will be a superposition of states with different
values of N but a fixed number parity. When the wire is in a
topological state and the geometry is that of a segment, the
number parity of the ground state will alternate between
even and odd as L is increased, but the energy difference
between even and odd parity should decrease exponentially
with L. This would not happen for a ring, in which ΔEðLÞ
would stay independent of L, since the MFTweakly paired
phase is gapped to single electrons.

2. Tunneling density of states

A quantity of particular interest is the spectral density
Aðε; xÞ for tunneling an electron into the wire at a position x
and energy ε, measured relative to the Fermi energy. Within

MFT, if the position x is close to the end of a semi-infinite
wire in the weak-pairing topological state, there will be a
peak in spectral density at very low energies, which is
associated with a localized Majorana mode at the wire end.
In the case of the hybrid wire, coupled to an infinite
superconductor, this peak should be a delta function at zero
energy. The amplitude of the delta function will fall off
exponentially as x moves away from the end of the wire,
and there will be an energy gap about zero energy, where
the spectral density is zero for any position x.
For a wire with conserved particle number, for x near the

end of the wire, Aðx; εÞ will have only power-law diver-
gence at ε ¼ 0. The finite spectral density at ε ≠ 0 occurs
because the injected electron will necessarily produce
phononlike excitations of the charge density in the wire,
which exist down to arbitrarily low energies in a semi-
infinite wire. Although the amplitude of the zero-energy
singularity will decrease with increasing x, there should not
be a hard gap in the spectral density, even for x in the
middle of an infinite wire. In the weak-pairing phase, there
will always be some weight at low energies, in the middle
of the wire, though this weight will typically decrease
rapidly with the number of channels in the wire.
The tunneling density of states is closely related to the

single-particle Green’s function discussed in Sec. III B. We
find that the spectral density for tunneling an electron into a
point near the end of a semi-infinite wire should have the
form, for ε → 0,

Aðx; εÞ ∼ CðxÞjεjβ; ð36Þ

β ¼ K−1
ρ − 1; ð37Þ

where Kρ is the Luttinger parameter defined in Eq. (15)
above. For a multichannel wire, the prefactor C should fall
off exponentially with distance from the end for short
distances, and it should fall off as a power law for large
distances. By contrast, the spectral density for tunneling at
a point in the bulk of the wire, infinitely far from an end,
should have the form

AbulkðεÞ ∼Djεjα; ð38Þ

where

α ¼ Kρ þ K−1
ρ

2
− 1; ð39Þ

and D is a constant of proportionality. For a wire with
attractive interactions, we expect to find Kρ > 1, so both α
and β are positive; thus, the spectral density at the end of the
wire should diverge for ε → 0, while it vanishes in this limit
in the bulk. The expressions for these power laws have
precisely the same form as in the well-known case of
single-channel spinless Luttinger liquid, where, typically,
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Kρ is not very different from unity. In contrast, for a
multichannel wire with weak attractive interactions, we
expect the Luttinger parameter of the charge mode, Kρ, to
increase with the number of channels, Nch, as may be seen
by the method presented in Ref. [33]. The bosonic variables
describing the charge channel are the total density
½ð∂xθρÞ=2π� ¼ ½1=ð2πÞ�P ∂xθi and the conjugate variable
φρ ¼ ½1=ðNchÞ�

P
ϕi (where the sums are over the chan-

nels). The total density scales like Nch. In the absence of
interaction between the channels, both the energy associ-
ated with density-density interactions and the kinetic
energy should scale like Nch, requiring the velocity v to
be independent of Nch and the Luttinger parameter to
follow

Kρ ∼ κNch; ð40Þ

where Nch is the number of channels and, for weak
attractive interactions, κ is a number slightly larger than
unity. Thus, the exponent α will become large, when Nch is
large, and β will be close to −1; thus, the right-hand side of
Eq. (36) will be close to a delta function at zero energy. In
the presence of an interchannel density-density interaction,
both v and Kρ scale like N1=2

ch [33].
We remark that there will be a constant of proportionality

on the right-hand side of Eq. (38), which should, itself,
become small in the case of a large number of channels
with weak interactions. This is because the bare fermion
creation operator ψ†ðxÞ does not couple directly to low-
energy excitations. Instead, we must employ an operator of
the form Ψ† ∼ ψ†η, similar to the operators in Eqs. (8) and
(9), where η is an operator that produces a phase slip of
strength�2π in the superconducting phase φ. For wire with
Nch ¼ 2nþ 1, the operator η will involve excitation of n
particles and n holes in 2n different channels. Thus, the
operator Ψ† will appear only at order n in perturbation
theory, and it should therefore be small, proportional to the
nth power of the ratio between the interaction strength and
the Fermi energy, for weak interactions. (In Ref. [20], these
higher-order terms were overlooked, and it was incorrectly
suggested that there should be a hard gap in the spectral
weight for a wire with three or more channels.)
In contrast to the weak-paired phase, the strong-paired

phase has a gap for single-particle excitations. The coef-
ficient D in Eq. (38) is zero, and AðεÞ ¼ 0 for ε < Δ.
However, since two-particle tunneling is allowed in the
strong-paired phase, there will remain a nonzero tunneling
conductance G, due to a process analogous to Andreev
reflection, which is suppressed by both a higher power
of energy and a higher power in the bare electron tunneling
matrix element. While in the weak-paired phase G ∼
t2AðεÞ ∼ t2εKρ=2þK−1

ρ =2−1 (where ε is the larger of temper-
ature or voltage), we find that in the strong-paired
phase G ∼ t4ε2ðKρþK−1

ρ Þþ2.

Both the weak- and strong-pairing states are one-dimen-
sional versions of a superconductor, in the sense that they
have superconducting order parameters with quasi-long-
range order. Specifically, the correlation functions for
operators that inject a pair of electrons at a point x and
remove a pair at point x0 will fall off as a power of jx − x0j,
with an exponent that becomes small as the number of
channels becomes large.
In a multichannel wire with weak interactions between

the electrons, there is a difference between an even and an
odd number of channels. For an odd number of channels,
with weak attractive interactions, the ground state is
predicted to be a one-dimensional version of a topological
superconductor, with low-energy properties that coincide
with the weak-pairing state discussed above [20,21]. For a
wire with an even number of channels and weak attractive
interactions, the ground state is expected to be effectively a
one-dimensional version of a nontopological superconduc-
tor, with a finite energy difference between states of even
and odd number parity, and an energy gap for adding a
single electron to the wire. The low-energy properties of
this state coincide with those of the strong-pairing situation
discussed above.

IV. PAIRED QUANTUM HALL STATES
IN THE COUPLED WIRE MODEL

We now apply the formalism developed in Sec. III to
describe paired quantum Hall states. Strong-paired quan-
tum Hall states can occur when electrons are strongly
bound into pairs, which themselves form fractional quan-
tum Hall states of bosonic charge-2e particles. The simple
bosonic Laughlin states occur at electron filling factors
ν ¼ 4ν2e ¼ 4=m, where m is an even integer and
ν ¼ ρeh=ðeBÞ ¼ 4ρ2eh=ð2eBÞ. For ν ¼ 1=2, the strong-
paired state is equivalent to charge-2e bosons at filling
ν2e ¼ 1=8. Strong-paired phases can also occur at other
filling factors, such as ν ¼ 1 (ν2e ¼ 1=4).
Here, we show how these states can be formulated within

the coupled wire model. We begin by reviewing the
coupled wire model and then show how it is modified
by incorporating pairing into the Luttinger liquids. We then
demonstrate two applications of this technique. First, we
show that the transition between the conventional ν ¼ 1
state and the strong-paired ν ¼ 1 state is in the 3D Ising
universality class. Second, we provide an explicit con-
struction of the Moore-Read quantum Hall state, as well as
related weak-paired states at ν ¼ 1=2, and a new, intrinsi-
cally anisotropic, quantum Hall state at ν ¼ 1=2.

A. Coupled wire model

The coupled wire model provides an explicit formulation
of fractional quantum Hall states that takes advantage of the
power of Abelian bosonization for describing strongly
interacting quantum systems. The power of studying the
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anisotropic limit of quantum Hall states has long been
known in the theory of the integer quantum Hall effect [34].
A coupled wire construction for Abelian fractional quan-
tum Hall states was introduced in Ref. [3] and later
generalized in several directions [4,5,7–12].
We begin by considering an array of coupled wires that

are each single-channel Luttinger liquids described by
conventional bosonization. This is equivalent to consider-
ing Eqs. (20) and (22) for n odd and setting σ� to a
constant. In this case, there is only a single fermion
operator, so we will omit the � subscript on Ψj in
Eq. (20). It is convenient to choose a periodic boundary
condition of circumference L for the 2D system in which
wire j at x ¼ L connects to wire jþ 1 at x ¼ 0. Thus, the
2D system consists of a single wire that is “wrapped on a
spool” withΨjðxÞ≡Ψðxþ jLÞ. In this model, the coupled
wires resemble the grooves on a phonograph record, with a
single wire that begins on the outside and ends on the
inside. In this case, since there is only a single wire, the
anticommutation between fermion operators is automati-
cally built in, so additional Klein factors are not necessary.
Suppose there is a magnetic flux per unit length

b ¼ ρ̄eϕ0=ν between the wires [here, ρe ≡ 2kF=ð2πÞ is
the total electron density per wire, and ϕ0 ¼ h=e is the flux
quantum]. Tunneling an electron between neighboring
wires is associated with a phase 2πbx=ϕ0 ¼ 2kFx=ν.
The allowed momentum-conserving tunneling terms are
determined by comparing the magnetic field phase to the
phase due to the momentum in the electron operators.
Consider electron tunneling operators of the form

Ψ†
j;mΨjþ1;−me2πibx=ϕ0 þ H:c: ð41Þ

for odd integer m, where j and jþ 1 enumerate the wires.
When the filling factor is ν ¼ 1=m, the oscillating factor
e2πibx=ϕ0 is exactly canceled by the phase e2imkFx in the Ψ’s.
Expressed in bosonized form, the tunneling term then has
the form

H ¼ Hρ þ
X
j

t1 cosΘρ;jþ1=2; ð42Þ

where

Θjþ1=2 ≡ φρ;j − φρ;jþ1 þmðθρ;j þ θρ;jþ1Þ: ð43Þ

Here, Hρ is a sum of terms of the form (15), as well as
forward scattering interactions that couple the wires. In the
spirit of the coupled wire model, we assume that the
forward scattering interactions are such that t1 is relevant
under the renormalization group and that it flows to strong
coupling. It then follows that the set of mutually commut-
ing variables Θρ;jþ1=2, which are defined on each link
between wires, are pinned at an integer multiple of 2π,
resulting in a gapped quantum Hall state. A kink in which

Θρ;jþ1=2 jumps by 2π corresponds to a charge-e=m
Laughlin quasiparticle.
To describe a strongly paired quantum Hall state, it is

tempting to consider the momentum-conserving tunneling
of pairs of electrons between the wires, described by

H ¼ Hρ þ t2
X
j

cos 2Θρ;jþ1=2: ð44Þ

This term pins Θjþ1=2 at a multiple of π. A kink in which
Θρ;j jumps by π has a charge e=ð2mÞ that is expected for a
Laughlin quasiparticle of charge-2e bosons at filling
1=ð4mÞ.
However, having t2 flow to strong coupling, with t1 ¼ 0,

does not describe the strong-paired phase because it is
unstable to the perturbation t1, which is still a local
operator. When t1 ≠ 0, the π kink no longer connects
degenerate ground states, so the charge-e=ð2mÞ quasipar-
ticles are confined. This phase is just the conventional
ν ¼ 1=m Laughlin state.
To describe the paired quantum Hall states, we need to

augment the single- and pair-tunneling terms with intrawire
pairing. We employ our generalized bosonization approach,
Eqs. (20) and (22), which includes the σ sector and
incorporates strong pairing into the 1D wires. We thus
consider

H ¼ Hρ þHσ þ
X
j

V1j þ V2j; ð45Þ

where Hρ and Hσ are the single-wire Hamiltonians (15)
and (16), and the tunneling terms have the form

V2j ¼ t2 cos 2Θρ;jþ1
2
; ð46Þ

V1j ¼

8>><
>>:

P
a;b
t1;abσajσ

b
jþ1 cosΘρ;jþ1

2
m odd

P
a;b
t1;abγaj γ

b
jþ1 cosΘρ;jþ1

2
m even:

ð47Þ

Here, we have chosen to express the four allowed tunneling
terms involving Ψ�;j;m and Ψ�;jþ1;m in Eq. (20) in terms of
the Hermitian operators σx;y or γx;y. We again assume that
pair tunneling between the wires, described by Eq. (44), is
relevant and leads to the pinning of Θρ;jþ1=2 at multiples of
π. The choice between the two lines of Eq. (47) is dictated
by the need to cancel the magnetic field phase e2πibx=ϕ0 .
When m is odd, in addition to the conventional ν ¼ 1=m

Laughlin state, we describe the strong-paired Laughlin state
as well as the critical behavior of the transition between the
weak and strong-paired phases. When m is even, strong
pairing on the wires leads to a strong-paired ν ¼ 1=m
Laughlin state, while weak pairing on the wires leads to a
novel anisotropic quantum Hall state. When the wires are
near the transition between the weak and strong-paired
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phases, we find that coupling the wires leads to states we
can identify with the Moore-Read state as well as gener-
alizations of it. For both even and odd m, the V2j terms gap
the charge modes at the bulk and hence suppress the effect
of the intrawire interaction Hamiltonian Hint in Eq. (17).
Thus, the modifications to the critical behavior that we
found for a single wire in Sec. III C do not occur in arrays of
coupled wires. As we see below, the phase transitions in the
two-dimensional arrays of wires are continuous second-
order transitions and involve a closure of the gap to neutral
excitations.
We consider the cases of odd and even m separately in

the following two sections.

B. Pairing transition for ν= 1 (or m odd)

In this section, we study the strong-paired ν ¼ 1=m state
form odd, as well as the critical behavior of the transition to
the conventional ν ¼ 1=m Laughlin state. The simplest
case is ν ¼ 1. To this end, we consider the strong coupling
limit t2 → ∞. In the ground-state sector in which no
quasiparticles are present, we may set Θρ;jþ1=2 ¼ 0. We
first introduce a mapping to a 2þ 1-dimensional trans-
verse-field Ising model, which allows us to show that the
transition is in the 3D Ising universality class. We then
explore the scaling behavior near the transition, which can
be probed by transport and thermodynamic measurements.

1. 3D Ising transition

When m is odd, the Hamiltonian in the neutral sector
involves Eq. (16) on each wire, as well as the tunneling
terms due to t1;ab [the top line of Eq. (47)]. Since the
tunneling term is best described by the Ising variables, it is
convenient to also employ the Ising lattice-regularized
description for the neutral sector of the wires’
Hamiltonians, as seen in Eq. (19) and reviewed in
Appendix A. This then leads to an anisotropic 2þ 1D
lattice model of the form

H ¼
X
i;j

hσzi;j þ Jσxi;jσ
x
i;jþ1 þ t1;abσai;jσ

b
iþ1;j; ð48Þ

where σai;j describes the spin on the jth site of the ith chain.
If we consider the anisotropic limit t1;ab → 0 and bosonize
the weakly coupled chains using the “spool” boundary
conditions discussed at the beginning of this section, then
we arrive at a model with precisely the same Jordan-Wigner
strings as the fermion model.
For simplicity, consider first the case where t1;xx is the

only nonzero term. Then, we have precisely an anisotropic
2þ 1D transverse-field Ising model. This model has two
phases that are separated by a critical point in the 3D Ising
model universality class.
The “high-temperature phase” of the Ising model,

hσai ¼ 0, is the strong-paired phase. In this phase, there

is a single-particle energy gap—even at the edge. However,
the charge sector has a gapless chiral Luttinger liquid edge
mode, which allows the low-energy tunneling of pairs of
electrons. Bulk quasiparticles correspond to kinks where
Θρ;jþ1=2 jumps from one minima to another in Eqs. (46) and
(47). In the high-temperature phase, the single-particle
tunneling term in Eq. (47) is suppressed by the disordered
Ising spins, so π kinks inΘρ;jþ1=2, with charge-e=ð2mÞ, have
a finite energy. It follows that the charge-e=ð2mÞ quasipar-
ticle is deconfined, as expected in the strong-paired phase. In
addition, in the “spoolmodel”, the channel inwhichΘρ;jþ1=2

is defined begins on the outside edge and ends on the inside
edge like the groove in a phonograph record. A charge-
e=ð2mÞ quasiparticle can thus be transported from the outer
to the inner edge. It follows that the inner and outer edges
support charge-e=ð2mÞ quasiparticles.
In the low-temperature phase of the Ising model,

hσxi ≠ 0. There remains an energy gap in the bulk, but
now the single-particle propagator is gapless at the edge.
This is the ordinary ν ¼ 1=m Laughlin state. In this case, a
pair of π kinks with charge �e=ð2mÞ are confined because
between them Θρ;jþ1=2 is not at the minimum of Eq. (47).
There is thus an energy cost proportional to their separation
leading to confinement. Similarly, the edges do not support
charge-e=ð2mÞ quasiparticles.
The other tunneling terms t1;xy and t1;yy will not modify

the phases or critical behavior—at least when they are
weak. At the 3D Ising critical point, there is a single
relevant operator, and all remaining operators are irrelevant.
Therefore, adding these terms as perturbations can only
shift the location of the transition but not modify it.

2. Critical behavior

At the transition between the strong-paired and conven-
tional ν ¼ 1=m states, the charge gap remains finite, so this
transition will not exhibit scaling in the longitudinal dc
conductance that occurs in conventional quantum Hall
transitions. To access the critical behavior, it is necessary
to probe the neutral degrees of freedom that acquire long-
ranged correlations at the critical point. In this section, we
discuss two quantities: the heat capacity and the edge
tunneling conductance. We argue that both quantities
exhibit scaling behavior that is sensitive to the bulk 3D
Ising transition.
The scaling of the heat capacityCðT; δÞwith temperature

T and distance to the critical point δ can be deduced from
dimensional analysis. With an appropriate linear rescaling
of space and time, the critical point exhibits a Lorentz
invariance. The only length scale is the correlation length,
which diverges as ξ ∼ δ−ν, where ν ¼ 0.630 is the corre-
lation length exponent of the 3D Ising model. The only
energy scale is Δ ∼ v=ξ ∼ δν. Since the heat capacity per
unit area has units L−2, precisely at the transition, we must
have CðT; δ ¼ 0Þ ∝ T2, which is characteristic of any 2D
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Lorentz invariant system. More generally, it is expected to
exhibit scaling behavior,

CðT; δÞ ¼ T2fðδ=T1=νÞ: ð49Þ

Since for fixed δ ≠ 0 there is an energy gap Δ, we can
deduce the asymptotic behavior

fðX → �∞Þ ∝ e−jXjν : ð50Þ

At a fixed low temperature, we therefore expect CðT; δÞ to
exhibit a peak as a function of δ near δ ¼ 0. The peak is
predicted to sharpen as the temperature is lowered, and data
from different temperatures should collapse to a single
curve in a scaling plot.
Tunneling into the edge is another probe of the pairing

transition. On the weakly paired side, the edge tunneling is
described by the conventional Luttinger liquid theory,
which, for filling 1=m, predicts a low-temperature tunnel-
ing conductance due to tunneling of single electrons that
scales as G1ðTÞ ∼ t2Tm−1, where t is the electron tunneling
matrix element. On the strongly paired side, there is a gap
for tunneling single electrons. The dominant contribution
comes from tunneling pairs of electrons. This leads to a
tunnel conductanceG2ðTÞ ∼ t4T4mþ2. In the critical region,
the single-electron tunneling G1ðT; δÞ will exhibit critical
behavior, while the two-particle contribution will behave
smoothly. Here, we focus on G1ðT; δÞ, which dominates in
the large barrier limit t → 0.
The single-electron tunneling density of states follows

from the single-particle Green’s function, GðτÞ ¼
hTτ½ΨðτÞΨ†ð0Þ�i, where Ψ† ∝ σþeiϕρ . Here, eiϕρ adds a
charge e in the charge sector, while in the neutral sector, it
involves the Ising spins. The charge-sector operators
exhibit the usual Luttinger liquid behavior,

heiϕρðτÞe−iϕρð0Þi ∼ 1=τm; ð51Þ

when the filling is 1=m. On the ordered side of the
transition, we expect hσxi ∝ δβ, while on the disordered
side, hσxi ¼ 0. In the critical region, the correlation
function exhibits scaling,

hσxðτÞσxð0Þi ¼
1

τ1þη gðδτ1=νÞ; ð52Þ

where gðX → 0Þ ∼ X2β and gðX → ∞Þ ∼ Xν and the expo-
nents β ¼ 0.326 and η ¼ 0.036 are related by
2β ¼ νð1þ ηÞ. This in turn leads to scaling behavior in
the tunneling conductance. We find that near the transition,
the single-particle tunneling conductance has the form

G1ðT; δÞ ¼ Tmþηh

�
δ

T1=ν

�
; ð53Þ

where hðX → ∞Þ ¼ X2β ¼ Xνð1þηÞ and hðX → −∞Þ∼
e−cX

ν
.

In Fig. 1, we show the predicted behavior for m ¼ 1
using a simple approximate scaling function hðXÞ that
interpolates between the known limits at X ¼ �∞.
Figure 1(a) shows G as a function of δ for several values
of T. At low T, it shows a sharp transition and grows as δ2β

for δ > 0. At higher temperatures, the transition is rounded.
Figure 1(b) shows a log-log plot of G as a function of T for
several values of δ. For δ < 0, the low-temperature con-
ductance approaches a constant (or, more generally, Tm−1),
while for δ > 0, it goes to zero exponentially. Precisely at
the transition δ ¼ 0, GðTÞ ∝ Tmþη.
In the above analysis, we assumed that the critical

behavior for correlation function (52) at the Ising transition
is the same on the boundary of the system as it is in the bulk.
The boundary exponents can, in general, be different. This
will modify the exponents and scaling functions, but the
general form of the scaling behavior will remain the same.

C. Paired phases for ν = 1=2 (or m even)

We now consider the case of even m, for which the
simplest example is ν ¼ 1=2. In this case, there is no
Laughlin state for fermions, but we expect to describe a
strong-paired state, as well as a non-Abelian Moore-Read
state. Our starting point is to have each wire at the pairing
transition so that there exist gapless charge and Majorana
modes on each wire. We then consider perturbations that
couple the wires and lead to paired quantum Hall states.
When m is even, the single-electron tunneling term is

shown in the second line of Eq. (47), and we can work with
the 1D continuum fermion theory description of the wires’
neutral sectors. We again consider the strong coupling limit
t2 → ∞, and in the absence of quasiparticles, we set
Θρ;jþ1=2 ¼ 0. The Hamiltonian for the neutral sector then
becomes H ¼ H0 þHt,

H0 ¼
X
i

γTi ½−iuτz∂x þ ðϵ0 − ∂2
x=2mÞτy�γi ð54Þ
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FIG. 1. Critical behavior of the edge tunneling conductance G
as a function of temperature T and tuning parameter δ near the 3D
Ising critical point. Panel (a) shows G as a function of δ for
several values of T, highlighting the zero-temperature behavior in
which Gð0; δÞ ∼ θðδÞδ2β. Panel (b) shows G as a function of T for
several values of δ, highlighting the behavior at the critical point
GðT; 0Þ ∼ Tmþη.
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and

Ht ¼ i
X
i

γaTi t1;abγbiþ1: ð55Þ

Fourier transforming, we may write

H ¼ γTð−kÞhðkÞγðkÞ ð56Þ

with the 2 × 2 matrix

hðkÞ ¼ T1 sinkyIþðukxþΔ1 sinkyÞτz
þðϵ0þ k2x=2mþT2 coskyÞτyþΔ2 sinkyτx; ð57Þ

where T1 ¼ t1;11 þ t1;22, T2 ¼ t1;12 − t1;21, Δ1 ¼ t1;11−
t1;22, and Δ2 ¼ t1;12 þ t1;21. Here, T ¼ T1 þ iT2 can be
interpreted as the complex tunneling amplitude Tψ†

jψ jþ1,
while Δ ¼ Δ1 þ iΔ2 can be interpreted as the complex
pairing term with py symmetry, Δψ jψ jþ1.
The T1 term violatesC2 symmetry, andΔ1 is a py pairing

term with the same phase as the px pairing term on the
wires. To get a gapped phase in the bulk, the important
pairing term is Δ2, which gives �ipy pairing. We therefore
consider the simplified model

H¼ γT ½ukxτzþðϵ0þ k2x=2mþT2 coskyÞτyþΔ2 sinkyτx�γ:
ð58Þ

As a function of ϵ0 and Δ2, this model exhibits several
phases indicated in Fig. 2 and discussed below.

1. Strong-paired phase

When ϵ0 is large and positive, each wire is in a strong-
paired phase, so the resulting phase is simply a strong-
paired quantum Hall state of charge-2e bosons at filling
1=ð4mÞ. This phase describes the region of the phase
diagram with ϵ0 > jT2j.

As was the case when m was odd, it is a quantum Hall
state with a bulk energy gap and a gapless chiral charge
mode on the boundary. There is a single-particle energy gap
everywhere, including the edge. This phase is pictorially
represented in Fig. 3(a) for the case where t1;ab ¼ 0 and
ϵ0 > 0, where the Majorana modes couple within each wire
to open a gap in the neutral sector.

2. Pfaffian and PH-Pfaffian phases

For jϵ0j < jT2j, the neutral sector fermions exhibit a 2D
topological phase with a nonzero Chern number
N ¼ sgnΔ2. The neutral sector has the structure of a weakly
paired px � ipy superconductor, and there exists a chiral
Majorana edge mode, in addition to the charge mode at the
edge (which is identical to that in the strong-paired phase).
Interestingly, there are two distinct phases depending on

the sign of Δ2, which correspond to interactions that
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 PH-Pfaffian
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FIG. 2. Phase diagram for m odd as a function of parameters ϵ0
and Δ2 in Eq. (58).

(e) C-SP:   = 1/2, c = 0 

t2t 1,RL
(2)

(b) Pfaffian:   = 1/2, c = 3/2

t2t 1,LR
(1)

(c) PH-Pfaffian:   = 1/2, c = 1/2

t2t 1,RL
(1)

(a) Strong Paired:   = 1/2, c = 1

t2

0

(d) Anti-Pfaffian:   = 1/2, c = -1/2

t1,RL t2
(3)

FIG. 3. Schematic diagrams for quantum Hall states at ν ¼ 1=2.
Each shaded region depicts a wire at the pairing transition with
right- and left-moving Majorana modes (dashed lines) as well as
right- and left-moving charge modes (solid lines) describing
ϕR=L
ρ;i ¼ φρ;i �mθρ;i with m ¼ 2. The charge modes are coupled

by t2 in Eq. (46), leaving a single unpaired chiral charge mode on
each edge. The Majorana modes are coupled in different ways as
described in the text, resulting in topologically distinct states with
different numbers of chiral Majorana edge modes. In panel (d),
C-SP refers to the particle-hole conjugate of the strong-paired state.
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produce either a px þ ipy phase or a px − ipy phase in the
neutral sector. The px þ ipy state has the same topological
order as the Moore-Read Pfaffian state, which has cop-
ropagating charge and neutral modes at the edge, leading to
a chiral central charge c ¼ 1þ 1=2 ¼ 3=2. In contrast, for
the px − ipy state, the neutral Majorana mode propagates in
the opposite direction from the charge mode, leading to a
chiral central charge c ¼ 1 − 1=2 ¼ 1=2. This state has the
same topological order as the variant of the Moore-Read
state, dubbed the PH-Pfaffian [18], which has recently been
discussed in connection with the particle-hole symmetric
half-filled Landau level. Though our coupled wire model
does not have particle-hole symmetry, the topological order
of this state is compatible with particle-hole symmetry.
These states can most easily be pictured in the limit

ϵ0 ¼ 0, and only t1;RL (or t1;LR) is nonzero, as shown in
Figs. 3(b) and 3(c). In this case, the chiral Majorana modes
on neighboring wires couple and open a gap, leaving a
single chiral Majorana mode at the edge.

3. Anti-Pfaffian phase and generalizations

Though it is outside of the scope of the simple model in
Eqs. (54)–(57), the coupled wire model also allows the
construction of additional paired quantum Hall states if
further neighbor interactions are included. Here, we keep
the pair tunneling in the charge sector to be given by t2 in
Eq. (46), and we consider the effect of further neighbor
hopping of single electrons.
A momentum-conserving electron tunneling term that

connects wire j to wire jþ p can be written as

VðpÞ
1j ¼

X
a;b

tðpÞ1;abγ
a
j γ

b
jþp cos

�X
l¼1;p

Θρ;jþl−1=2

�
: ð59Þ

This term involves both tunneling of an electron from wire
j to wire jþ p and backscattering of electrons on the wires
in between. When Θρ;jþ1=2 is pinned by Eq. (46), this leads
to a Hamiltonian for the Majorana fermions γaj that couples
pth neighbors. When expressed in momentum space, as in
Eq. (56), hðkÞ can be characterized by a more general
Chern number N, such that jNj ≤ p. This leads to phases
with N chiral Majorana modes, where N > 0 (N < 0)
indicates they are right (left) movers. Taking into account
the charge mode, this leads to a quantum Hall state with
chiral central charge c ¼ 1þ N=2. The cases N ¼ 0
(strong paired), N ¼ 1 (Pfaffian), and N ¼ −1 (PH-
Pfaffian) were discussed above.
The anti-Pfaffian state [35,36] fits into this more general

construction. This state is the particle-hole conjugate of the
Pfaffian state, with ν ¼ 1=2 and c ¼ 1–3=2 ¼ −1=2. This
corresponds to Chern numberN ¼ −3, which is depicted in
Fig. 3(e) when tð3Þ1;RL couples right- and left-moving
Majorana modes on third neighbors, leaving three upstream
Majorana modes at the edge.

In principle, there is a hierarchy of different states with
all possible values of N. States with even N will be Abelian
states. For instance, the state with N ¼ −2, depicted in
Fig. 3(d), with c ¼ 0, is topologically equivalent to the
particle-hole conjugate of the strong-paired state. When N
is even, quasiparticles will bind an even number of

Majorana zero modes. In principle, a kink where tðp¼jNjÞ
ab

changes sign can bind an unpaired Majorana mode.
However, unless there is an extra symmetry that forbids

odd-neighbor coupling, tðp¼oddÞ
ab , the unpaired Majorana

modes will, in general, be confined. Finally, we note that
particle-hole conjugate states can also have an alternative
simpler construction by considering “antiwires” inside a
ν ¼ 1 quantum Hall state or, equivalently, “shifted wires”
made from the right-moving electron modes of wire i
paired with the left mover on wire iþ 1. However, we will
not pursue that direction here.

4. Anisotropic phase

When ϵ0 is large and negative, we have an anisotropic
quantum Hall state that, to our knowledge, has not been
discussed before. Both the charged and neutral sectors are
gapped in the bulk. However, the neutral sector has a
topological structure similar to that of the decoupled limit
tab → 0. The neutral sector of each wire has the structure of
a 1D topological superconductor, and for ϵ0 < −jT2j, these
1D topological superconductors are coupled together to
form a “weak topological superconductor”.
This phase does not have unpaired Majorana modes

bound to the charge-e=2m quasiparticles. However, at the
ends of the wires in the decoupled limit, each wire has a
Majorana zero mode at the end. When the wires are coupled
together, these Majorana modes broaden to form a band.
Provided the lattice of wires has the symmetry under
translation by one lattice constant, this band of Majorana
modes is necessarily gapless.
If we label the Majorana mode on each wire as γj, then

the low-energy Hamiltonian will be

H ¼
X
j

itγjγjþ1: ð60Þ

This has precisely the structure of Kitaev’s 1D Majorana
chain. The discrete translation symmetry by one lattice
constant guarantees that it is precisely at criticality. The
Majorana modes will have dispersion

Ek ¼ t sin k; ð61Þ

which exhibits a pair of helical Majorana modes at k ¼ 0
and k ¼ π. Furthermore, defects in the wires’ array, e.g.,
dislocations, would bind static non-Abelian defects in the
form of isolated Majorana modes.
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V. DISCUSSION AND CONCLUSION

This paper has developed a framework for incorporating
the physics of pairing into the traditional Luttinger liquid
formulation of interacting fermions in one dimension. We
argued that for sufficiently strong attractive interactions,
even a single-channel Luttinger liquid composed of spin-
less fermions can exhibit a strong-paired phase that is
qualitatively distinct from a weakly paired Luttinger liquid.
It is distinguished by the existence of a single-particle
energy gap, despite the existence of gapless two-particle
excitations and a gapless collective charge mode.
These two phases of a Luttinger liquid are in one-to-one

correspondence with the topological and trivial super-
conducting phases of a one-dimensional superconductor.
The fluctuating phase of the one-dimensional supercon-
ductor describes a Luttinger liquid, and the topological and
trivial phases of the superconductor are indistinguishable
from the strong and weak-paired phases of the Luttinger
liquid. We have shown that the hallmarks of 1D topological
superconductors associated with Majorana end modes—
including the zero-energy peak in the tunneling density of
states at the end and the absence of an even-odd effect in the
ground-state energy—have a natural correspondence in a
single-channel Luttinger liquid.
It will be interesting to demonstrate this correspondence

experimentally in a Rashba nanowire coupled to a one-
dimensional superconductor. In that case, by tuning a
magnetic field and gate voltage, it should be possible to
alternate between trivial and topological superconducting
phases on the nanowire as even and odd numbers of
channels in the nanowire are populated. Provided the 1D
superconductor is not too stiff (so that Kρ is not too large),
then by tunneling into the middle of the wire, it should be
possible to demonstrate that there is a gap to single-particle
excitations in the trivial (strongly paired) phase, while there
is no gap to single-particle excitations in the topological
(weakly paired) phase.
We have also found that paired Luttinger liquids offer

new insights into the quantum Hall effect using the coupled
wire model. In addition to allowing the formulation of a
new (and much simpler) coupled wire model for the
Moore-Read state, it allows us to describe a number of
additional phases and critical points at filling ν ¼ 1=m,
including the particle-hole symmetric PH-Pfaffian phase,
an intrinsically anisotropic phase when m is even, and a
strongly paired state when m is odd.
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APPENDIX: MAPPING TO ISING MODEL

Here, we review the fermionization of the 1þ 1D
transverse-field Ising model, which demonstrates the iden-
tification of the spin operator above.
On a 1D lattice, the transverse-field Ising model has

Hamiltonian

HI ¼
X
j

hσzj − Jσxjσ
x
jþ1: ðA1Þ

This can be fermionized by introducing lattice fermion
operators

c†j ¼ σþj
Y
i<j

σzi ; ðA2Þ

where σ� ¼ ðσx � iσyÞ=2. This result leads to a Kitaev-like
lattice fermion model,

HI ¼
X
n

hð2c†jcj− 1Þ− Jðc†jcjþ1þ cjcjþ1þH:c:Þ ðA3Þ

or

HI ¼
X
k

2ðh − J cos kÞc†kck þ 2J sin kðc−kck þ H:c:Þ:

ðA4Þ

For h ∼ J, this has a topological transition. Near that point
we can take the continuum limit; expanding around k ¼ 0
and moving to real space, we have

HI ¼ ψ†ðϵ0 − ∂2
x=2mÞψ þ iuðψ∂xψ þ H:c:Þ; ðA5Þ

with ϵ0 ¼ 2ðh − JÞ, 1=2m ¼ J, and u ¼ 2J. This result has
precisely the form of Hf. Introducing Majorana operators
ψ ¼ γ1 þ iγ2, we may write this as

HI ¼ γT ½−iuτz∂x þ ðϵ0 − ∂2
x=2mÞτy�γ: ðA6Þ

By undoing the Jordan-Wigner transformation, we can
express the spin operators in terms of fermions,

σþj ¼ c†je
iπ
P

i>j
c†mci : ðA7Þ

In the continuum, we thus obtain

σþðxÞ ¼ ψ†ðxÞeiπ
R

∞
x

dx0ψ†ψ : ðA8Þ
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