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CHAPTER I 

INTRODUCTION 

  

The study on the structure of nuclei with high angular momentum and high 

thermal energy has been an important area of investigation in nuclear physics. With 

the advent of heavy ion fusion reactions [Ramamurthy 1970, Nix 1972, Cerny 1974, 

Ansari 1976, Hua 2002, Henss 1988, Bernstein 1995, Svensson 2001, Yu 1999, 

Simpson 1988 and Lagergren 2001], nuclei can be imparted with very high angular 

momentum and excitation energy.  In a complete fusion evaporation reaction, the 

projectile nucleus carrying a large kinetic energy and angular momentum fuses with 

the target nucleus to become a fused composite nucleus.  After the particle emission, 

the residual nucleus is left with fairly high excitation energy and orbital angular 

momentum.  This stage where the nucleus is bound to particle is called only entry 

state [Herskind 1986] subsequent to which the cooling of the residual takes place 

through γ rays. 

a) One way is to align the spin vectors of individual nucleons resulting in an 

irregular nuclear level structure.  This happens in the case of weakly deformed 

nuclei. 

b) Another way is by way of collective rotation about an axis normal to the 

nuclear symmetry axis resulting in a regular level structure and this happens 

for well deformed nuclei.  

Normally most of the states are a mixture of these modes. Thus, the 

introduction of high angular momentum and excitation energy opens the possibility of 

perturbing the nucleus and observe the changes of energies of quantum states as well 

as the properties of nucleus itself.  Interplay of temperature and spin with the final 

compound system reached in these heavy ion fusion reactions, together with the 
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deformation degrees of freedom [Nix 1972] sets the stage for interesting problems 

such as phase and shape transition, shape coexistence and super-deformation.  Some 

phenomena are given below: 

 

Fig.1.1: Schematic illustration of various phenomenon observed in yrast line. 

 

1.1 Yrast line 

 The yrast line connects the states with the lowest energy for each angular 

momentum value.  Consequently no states exist below this line.  Above the yrast line 

moving up in energy and temperature, new classes of phenomena may be explored 

[Szymanski 1983].  Examples include the phase transitions, quasi – continuum and 

rotational damping, giant resonances, the melting of shell structure and the transition 

from order to chaos. 
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1.2 Moment of inertia 

 Fast nuclear rotation leads to strong modification and mixing of single particle 

orbital in nuclei.  The sequence of energy levels and their distances in the rotational 

band depend essentially on one parameter, the nuclear moment of inertia.  

Investigations on the shape of energy versus spin have given a lot of information 

about the effect of high angular momentum upon the structure and deformation of 

nuclei.  When the nucleus rotates it is found that the moment of inertia does change 

with spin.  Hence for a rotating nucleus, the rotational energy spectra can be discussed 

in terms of two spin – dependent moments of inertia defined by Bohr and Mottelson 

[Bohr 1975], which is related to first – order (j
(1)

) and second – order derivatives (j
(2)

) 

of excitation energy with respect to aligned angular momentum (M). 

 Back-bending is a paradigm of structural changes in a nucleus under rotation.  

A sudden increase of a nuclear moment of inertia in the yrast rotational band at some 

critical angular momentum or rotational frequency discovered a few decades ago 

[Jhonson 1971] continues to attract considerable attention.  There is a general notion 

that this phenomenon is a result of the rotational alignment of angular momenta of a 

nucleon pair occupying a high – j intruder orbital near the Fermi surface.  The 

moment of inertia of a classical rotor depends both on the shape and the flow pattern 

of its matter.  Many of the low lying levels in a rotational band are described in terms 

of a nucleus with constant moment of inertia (j).  But at high spin the value of j will 

be considerable increased.  The larger j could be a reflection of a larger deformation 

or of a considerable reduction in the number of nucleons paired off.  The effect of j is 

an indirect evidence for an energy gap caused by pairing. 
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1.3 Pairing  

 Pairing correlations and related superfluid properties are the robust features of 

quantum many – body systems and have gained a lot of interest recently.  The Cooper 

phenomenon is a primary reason for the thriving of pairing [Cooper 1956].  The 

occurrence of pairing correlation in nuclei is well supported by a number of 

experimental evidences such as the zero spin for the ground state of all even – even 

nuclei (≈ 1 MeV) that to the odd mass nuclei, observation of lower value of measured 

moment of inertia compared to the rigid body values, the observation of low value of 

binding energies of the odd – even and odd – odd nuclei compared to the mean 

binding energy of the two nearby even – even nuclei etc.  Indeed questions of phase 

transitions [Chomaz 2005], interplay with other collective modes [Bahri 1998], 

continuum effects [Barranco 2001] and thermodynamic properties of small systems 

are important in present day science and technology. 

 Pairing correlations in nuclei are the result of the short range character of the 

effective particle – particle force which favors pairs of identical nucleons coupled to 

zero angular momentum.  This can be explained in a graceful manner by the BCS 

approach initially invented for infinite systems in the theory of superconductivity, and 

employed to finite nuclei by Bohr, Mottelson and Pines [Bohr 1958] and also by 

Belyaev [Belyaev 1965].  Analogous to the superconductor where one notices a phase 

transition to a normal conductor for a sufficiently high magnetic field and for 

increasing temperature, it has been expected that for nuclear superfluidity, an overall 

pairing collapse at higher angular momenta should take place allied with the breaking 

of individual pairs by the Coriolis force and also by higher temperature in which the 

increasing excitation energy allows the population of unpaired configuration. 
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1.3.1 Effects of pairing correlation 

 The structural properties of the nuclei get modified in the presence of pairing 

interaction, as they afford further binding force to the nuclei.  Under the influence of 

this force, the nucleons persist in scattering with their paired partners depending upon 

the availability of the nearby vacant orbits around the Fermi surface.  Thus the 

unoccupied orbits also play a vital role in the nuclear dynamics.  If a single particle 

energy level lies above the Fermi surface then it acts more like a particle state while 

the one below is like a hole state.  This gives rise to quasi – particle states or orbits, 

[Bardeen 1957] i.e. a mixture of particle and hole states, near the Fermi surface rather 

than pure particle (above the Fermi level) and pure hole (below the Fermi level) 

states, which are the solutions of the overall nuclear Hamiltonian including the pairing 

interaction.  Accordingly, these correlations reduce the moment of inertia as 

compared to the rigid rotor value and the nucleus is said to be in the superfluid phase. 

 

Fig.1.2 Compound nucleus reactions and yrast line 
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As the spin of the nucleus increases, the effect of pairing decreases since when 

the nucleus rotates, the individual nucleon experiences centrifugal and Coriolis forces.  

The Coriolis forces tend to counteract the pairing force and consequently, the pairing 

force reduces with the increasing rotational frequency.  At some critical value of the 

rotational frequency, the Coriolis forces become as strong as the pairing correlation 

results in a sudden increase in the moment of inertia known as backbending [Stephens 

1972].  Consequently, the energy level spacing deviates from the M(M+1) rule 

resulting in an increase in moment of inertia having value nearly equal to that of the 

rotating rigid body.  The yrast region contains sequence of rotational bands parallel to 

the line, as indicated by A in fig. 1.2.  With the increase of the angular momentum, 

the centrifugal forces produce an effect comparable to the shell structure effect.  This 

will tend to make the prolate shape gradually changes into a triaxial shape and 

exhibits many more collective states.  The changes in the yrast region result in a 

crossing band structure indicated by B in fig.1.2.  Further increase in the angular 

momentum results into an oblate deformation of the nucleus, indicated by C in fig.1.2.  

The total angular momentum in this case is aligned along with the symmetry axis 

rather than the perpendicular axis as in the case of the prolate nuclei.  Finally, before 

the nucleus undergoes fission, it passes through another phase of triaxial shapes, 

where again the collective bands are observed to exist [Andersson 1976].  In this 

triaxial region, a very large increase in the moment o inertia is observed and is known 

as giant backbending.  

 

1.4 Objective of the present study 

Of the many achievements of the nuclear theory, a prominent one is its ability 

to explain the occurrence of a variety of shapes and its ability to predict the location 

of nuclear shapes in the whole of the nuclear chart. With the advent of highly 
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sophisticated experimental techniques and faster computation capabilities, the 

theoretical investigations have ultimately led to a more realistic and transparent 

analysis of nuclear structure changes in the entire mass region. Although studies of 

nuclear shapes of hot rotating nuclei have been carried out in terms of measurement of 

giant dipole resonance (GDR) built on excited states, alpha-gamma angular 

correlations, rotational damping and so on, studies of ground state deformation with 

temperature seem to be insufficient in some cases and hence this present study, which 

is a study of thermal and rotational response to nuclear properties, has been 

undertaken. In particular, the present study focuses on phase transition and shape 

evolutions in the framework of the statistical theory. 

 

1.5 Scope of the thesis 

 This thesis studies the nuclear shapes under the framework of statistical theory 

of hot rotating nuclei with the incorporation of deformation, collective and non-

collective rotational degrees of freedom, shell effects and pairing correlations (BCS 

formalism). Pairing – phase transition from super fluid to normal state and shape-

phase transition such as deformed to spherical shape, prolate to oblate shapes with 

increasing temperature and angular momentum are observed. The interplay of 

different degrees of freedom and their effect on the behaviour of the nuclei that are of 

particular interest are investigated with specific focus to the following nuclear 

structure properties level density parameter, nucleon separation energies, moment of 

inertia, spin cut off parameter and nuclear specific heat.  

Level densities are very crucial in all the statistical model calculations since 

they help determining the nuclear reaction rates. Thermal energy produces changes in 

the shape of the nucleus which is closely linked to phase transition associated with 

level density.  We have used statistical theory to investigate the above mentioned 
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nuclear structure parameters.  One of the achievements of this theory is its explanation 

for asymptotic fission which is because of the shell structure of nuclei and its 

application in the studies reported in this thesis gives a strong support of its use. 

Ramamurthy et al. [Ramamurthy 1970] prescribed a statistical method which is 

equally efficient as the Strutinsky’s method in extracting shell correction of liquid 

drop energies. Thus statistical theory proved to yield microscopic as well as 

macroscopic details.  Also the statistical theory proved to be successful in describing 

heavier nuclei, with their collective and non-collective degrees of freedom and energy 

levels that are more closely spaced. If the excitation energy is high enough, the levels 

that are overlapped will be excited and the number of energy levels becomes so high 

that an individual treatment is impossible. Statistical theory circumvents this problem 

and gives a good description. A successful application of statistical theory has been 

brought about by the meticulous development of the theory by many [Bethe 1936, 

Ericson 1960, Ignatyuk 1969, Moretto 1973 and Rajasekaran 1988]. 

 The basic ingredient of the statistical theory is a suitable shell model level 

scheme generated for various nuclear deformations. Two types of parameterizations 

are practiced. One is on the basis of expanding the harmonic oscillator frequencies 

and the other is on the basis of expanding the nucleus surface in terms of spherical 

harmonics where Wood-Saxon potential is used. In this thesis, we have given due care 

in choosing the various parameters involved in the deformed harmonic oscillator 

Hamiltonian for hot rotating nuclei.  Triaxial deformations are assumed in the 

diagonalization of the Hamiltonian as needed by situation. 

 Nuclei that are formed in collisions can attain very high spin. There are two 

ways of attaining angular momentum states in the statistical theory, namely, 

Statistical Theory of Hot Rotating Nuclei (STHRN) and Cranked Nilsson Model 
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(CNM). The first method was formulated by Moretto [Moretto 1971]. In this method, 

triaxially deformed single particle levels are used and lagrangian multipliers are used 

to project out different angular momentum states of the system from the grand 

partition function [Feynmann 1972, Eisenberg 1975 and Parthia 1972].  

The nuclear rotational motion is provided by the cranking model introduced 

by Inglis in 1954 [Inglis1954], the nucleons move in a cranked Nilsson potential with 

the deformation given by ԑ and γ. The cranking is done about one of the principal 

axes and the cranking frequency is given by ω. As the statistical theory inputs the 

microscopic single particle levels [Nilsson 1969] corresponding to the deformed 

Nilsson harmonic oscillator potential [Scholes 2004 and Miller 1989], the results 

show the shell structure effect of the system at different deformation.  Methods of 

obtaining biaxial, triaxial, energy eigen values and Cranked-Nilsson-Strutinsky 

approach are explained in this thesis. 

 Chapter II deals with the theoretical background of this thesis, elaborating on 

the statistical theory. It outlines the ways of producing angular momentum states used 

in the calculation of nuclear properties on the basis of a shell model level sequence 

with and without pairing correlation. Statistical theory applies a rigorous treatment of 

high spin states by including rotation in the thermodynamic potential. This might be 

one of the ways to treat the very high spin nuclei formed in highly excited states in a 

cogent manner. The determination of the grand partition function [Nilsson 1969,  

Jing-Ye-Zhang 1989, Langanke 1991 and Pathira 1972] is one of the usual procedures 

in statistical mechanics which basically describes the average behavior of the 

compound nucleus and its decay. The lagrangian multipliers in the grand partition 

function are fixed by the conservation of proton number, neutron number, total 

angular momentum and the total energy of the system. The calculation of the 
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occupation probability in each single particle level is also done. Statistical definitions 

are used for the calculation of entropy, excitation energy, level density parameter and 

nuclear level density etc. 

The shape is one of the fundamental properties of the nucleus, along with its 

mass and radius.  It is governed by the interplay of macroscopic, liquid drop like 

properties of the nuclear matter and microscopic shell effects.  In a nucleus with the 

partially filled shells the valence nucleons tend to polarize the core towards a 

deformed mass distribution.  The deformation can be described by a multipole 

expansion with the quadrupole deformation being the most important deviation from 

spherical shape.  Such quadrupole shapes can either have axial symmetry, in which 

one distinguishes elongated (prolate) and flattened shapes (oblate), or the deformation 

can be without axial symmetry resulting in different elongations along the two or 

three axes of the system, referred to as biaxial or triaxial shape respectively.   

In some areas of the nuclear chart, the shape is very sensitive to the structural 

effects and can change from one nucleus to its neighbor.  In addition to the shape 

changes with the proton or neutron number, the shape can also change with excitation 

energy or angular momentum within the same nucleus.  Such changes cause the 

rearrangement of the orbital configurations of the nucleons or by the dynamic 

response of the nuclear system to rotation.  In some cases configurations 

corresponding to different shapes coexist at similar energies.  The wave functions of 

such states can then mix according to the laws of quantum mechanics.     

Cohen et al. [Cohen 1979] have predicted that the nucleus undergoes shape 

changes with increasing angular momentum by assuming the nucleus as a structure 

less and charged liquid drop subjected to Coulomb and surface forces.  The behavior 

of nucleus with increasing spin in the different regions of deformation was studied by 
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Bohr and Mottelson [Bohr 1975].  Neergard et al. [Neergard 1976], Anderson et al. 

[Anderson 1976] and Bengtsson et al. [Bengtsson 1975] have investigated nuclei by 

employing Strutinsky’s prescription, which have yielded good results for the 

deformation behavior of the nuclei at high spins.  Different methods are available for 

studying shape transition in nuclei which are given below. 

 1. Finite temperature Hartree – Fock Bogoliubov Cranking methods 

2. Finite Temperature Strutinsky Method     

3. Relativistic mean field theory   

4. Monte Carlo method 

5. Landau Theory of Phase Transition 

6. Jacobi Transition 

 

The mean field theories, both relativistic and non-relativistic, such as finite 

temperature Hartree – Fock Bogoliubov cranking theory (FTHBCS) [Goodman 1983] 

or finite temperature cranked Strutinsky methods (FTCS) [Alhassid 1988] have been 

used to study structural changes in hot rotating nuclei.   A systematic study of 

temperature dependence of the shapes and pairing gaps of some isotopes in the rare 

earth region was made in the relativistic Hartree – Fock Bogoliubov theory (RHFB).  

As we have already mentioned the major objective of this present study to investigate 

the behavior of the fused compound nuclear system found in fusion reactions at high 

excitation angular momentum states.  These behaviors have been studied by many 

theoretical formalism are presented in chapter III 

Chapter IV describes the evaluation of the structural properties of hot rotating 

nuclei such as level density parameter, single neutron separation energy and single 

proton separation energy using statistical theory of hot rotating nuclei.  These 

parameters are extracted as a function of angular momentum, temperature and 
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deformation parameter.  Nuclei are finite quantum systems, having uniquely 

transitional features.  In nuclei, two types of phase transition such as: (i) pairing phase 

transition (superfluid to normal fluid) and (ii) shape-phase transition (deformed to 

spherical shape) occur.  The second type of phase transition is also called as quantum 

phase transitions and these have also been extended to excited state, which has a 

qualitative change in the properties of the system as a function of the excitation 

energy [Iachello 2011].  The shape of the nucleus is determined using the deformation 

parameter at various temperature and angular momenta.  To have a complete and 

comprehensive picture of shape transitions and other intrinsic properties of nuclei, a 

systematic study of thermodynamic properties using statistical approach has been 

done.   

Numerical results obtained using the formalism given in chapter II for the Te 

and Se isotopes are presented in this chapter.  The dependence of nuclear temperature 

and spins on the excitation energy, nuclear level density parameter and spin cut off 

parameter is studied for the nuclei considered in this text.  The hodograph of the 

nuclei drawn shows the shapes of the nuclei as a function of angular momentum, 

temperature and deformation.  The excitation energies extracted are compared with 

available experimental data and shell model results.   It is seen that the calculated 

parameters as a function of angular momentum, temperature, deformation parameter ԑ 

and γ should experience an abrupt change for these heavier systems beyond angular 

momentum M ≈ 12ħ for Te isotopes and M ≈ 8ħ for Se isotopes.  This abrupt fall 

causes a minimum in the parameter values and it corresponds to a shape transition 

from collective prolate to non collective oblate.  It is also seen that the values of the 

rotational frequency and kinematic moment of inertia show very good agreement with 

the available experimental data. 
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The analogy of back-bending phenomenon to a behavior of superconductors in 

magnetic field is prompting researchers to apply Landau theory of phase transitions to 

nuclei [Goodman 1983].  It is a common property of rotating classical fluids that 

beyond a certain angular momentum, the equilibrium shape changes abruptly from a 

slightly flattened configuration to a triaxial shape rotating about its shortest axis.  

With increasing angular momentum, this configuration elongates very rapidly and 

eventually fissions at a characteristic angular momentum.  The original discovery of 

such a transition from oblate to triaxial shapes was made in 1934 by Jacobi, in the 

context of rotating, idealized, incompressible, gravitating masses. 

In 1996, the oblate to triaxial shape transition was found to take place in the 

more realistic nuclear Thomas – Fermi model under the assumption of synchronous 

rotation i.e., all the mass elements rotate with a common angular velocity.  Shell 

effects can produce sharp deviations from average binding energies and shapes, more 

over, the assumption of synchronous rotation is known to be strongly violated at low 

angular momenta where pairing effects are important.  

Conventional superdeformed nuclei owe their elongation to shell effects, and 

are conserved down to relatively low angular momenta.  On contrary, the existence of 

Jacobi like configuration is due to the centrifugal force, and without help from shell 

effects, such shapes would appear only at very high angular momentum, but they 

should then occur over a wide range of nuclei rather than in the small pockets 

characteristic of the effects driven by the shell structure.  Thus phase transition arises 

as a result of competition between three different factors: a pairing like force, a 

monopole interaction and finite temperature effects and rich variety of situations thus 

ensues.  In this thesis, a statistical approach has been employed for a precise 

understanding of the phase transitions in finite nuclei.    



14 

 

In the modern classification scheme, phase transitions are divided into tow 

broad categories, named similarly to the Ehrenfest classes.  The first-order phase 

transition are those that involve a latent heat.  During such a transition, a system either 

absorbs or releaes a fixed amount of energy and many important phase transiitons fall 

in this category, including the solid/ liquid/gas transitions.  The second class of phase 

transitions are the continuous phase transitions, also called second – order phase 

transitions.  Examples superfluid transition.  Lev Landau gave a phenomenological 

theory of second order phase transiitons and can be applied to nuclear systems.  

Examples of nuclear phase transitions are given below: 

(i) The emergence of superfluidity in nuclei when temperature or angular 

momentum reaches a critical value. 

(ii) The breaking of axial symmetries in the ground state as regards the 

deformed to spherical transition. 

In recent years [Kargar 2013, Dhivya 2016, Sofia 2017 and Danilo 2013] a lot 

of effort has been made to describe the behavior of paired small systems such as 

atomic nuclei.  The investigation on specific heat is important since it plays a 

significant role within the determination of the phase transition in finite nuclei.  

Several authors [Algin 2008, Alhassid 2000, Dukelsky 1991, Rossingoli 1998, Ngyen 

1990 and Bhaduri 1988] have investigated the existence of phase transition in finite 

nuclei.  The change in the nuclear shape induced by thermal excitation is related to 

this phase transition.  Danilo [Danilo 2013] have discussed the pairing phase 

transition from specific heat capacity (CV) in hot nuclei by finite – temperature 

variation after projection BCS approach (FT – VAP).  The pairing correlations 

existing in nuclei are counteracted by interactions induced in nuclear rotation.The 

gradual decreasing of gap parameter with respect to temperature, followed by a 
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sudden decrease is interpretated as a rapid breaking of nucleon Cooper pairs and also 

the suppression of pairing correlation.  This is often related with the S shape heat 

capacity. 

Chapter V describes the importance of pairing phase transition of the method 

of evaluating the specific heat capacity CV as a function of angular momentum (M) 

and temperature (T).  In the framework of statistical theory one important tool to 

study the phase transition is the specific heat.  The specific heat is recognized as a 

quantity which indicates the occurrence of phase transition.  The nuclear specific heat 

of a fused compound system formed in heavy ion collision can be estimated if the 

excited states spectrum is well-known.  Elementary examples of this are stated by 

Pathria [Pathria 1972], including the free particle, the harmonic oscillator and rigid 

rotor. The behavior of nuclear specific heat at high temperature directly yields the 

information about the relevant degrees of freedom in the spectrum of Dulong and 

Petit’s law. Tanabe, Goodman, Cole, Miller and others [Tanabe 1981, Goodman 

1984, Cole 1989, Miller 1989, Dukelseky 1991, Civitarese 1990 and Bhaduri 1998] 

have emphasized the role of nuclear specific heat in the determination of important 

properties of the nuclei. One motivating feature is the peak structure in specific heat 

which endorses the existence of phase transition.  The occurrence of phase transition 

is predicted in three rare nuclei along with their isotopes such as 
141, 142

Ce, 
145 , 146

Nd 

and 
150 , 151

Sm.  The results of our calculations on specific heat  capacity shows a 

predominant appearance of a hump in the low temperature region which is considered 

as the suppression of pairing correlation and it is an indication of phase transition.  It 

is also noted that the occurrence of the peak in the specific heat at low temperature is 

a contribution of the ground state rotational band [Huang 2002]. 
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In chapter VI of this thesis, a comparative study of the influence of pairing on 

the nuclear structure properties are given.  For illustrative purpose calculations have 

been carried out for heavier nuclear systems like 
161, 162 

Dy and 
171,172

Yb.  It is found 

that there is no much difference in the values of both with and without pairing 

correlation in the parameters such as excitation energy, entropy, level density 

parameter and heat capacity at very low temperature.  However there is a remarkable 

difference in their values at high temperature. 

In chapter VII , a brief summary and conclusion are drawn. 
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CHAPTER II 

STATISTICAL THEORY OF HOT ROTATING NUCLEI 

 
2.1 Introduction 

In heavy ion reactions, one of the main interests is the formation of fused 

systems in excited states.  The behavior of these excited compound systems provide 

important and interesting problem in understanding the structure of the nucleus.  At 

the low excitation energy the nucleus is excited to levels, characterized by energy, 

spin and parity.  These levels are discrete and the level density can be determined by 

direct counting.  However, at higher excitation energies, the nuclear level density 

increases so rapidly that it is practically impossible to study the transition between the 

levels and hence statistical approach is more appropriate one to employ the average 

behavior of the compound nucleus.  Fused compound systems are described as 

thermodynamical system of fermions with several degrees of freedom like 

temperature, angular momentum, deformation, collective and non-collective rotations, 

fluctuations etc. [Blatt 1979].  For such a complicated system, the statistical theory of 

nuclei is developed by several nuclear researchers [Bethe 1936, Ericson 1960, 

Ignatyuk 1969, Nilsson 1969 and Rajasekaran 1988 & 2008].  A number of 

phenomenological extensions were made and statistical approaches have been 

developed for the present work.  The statistical theory is used for extracting 

information about many nuclear properties and level density by determining the 

excitation energy as a function of angular momentum and temperature for finite 

nuclear systems.  More significantly, low energy nuclear structure properties show a 

strong dependence on the nuclear pairing force [Moller 1992].  In calculations of low-

lying quasiparticle energies and other quantities that depend on the low energy 

microscopic structure of the nucleus, it is therefore crucial to consider the pairing 
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effects.  A sophisticated pairing model and an appropriate choice of pairing model 

parameters are both important for obtaining realistic results.  A microscopic study 

based on the BCS Hamiltonian is made by incorporating the effects of pairing 

interaction within the framework of the statistical theory [Moretto 1971]. 

Depending on the system under study, one can chose among different kinds of 

statistical ensembles in order to derive thermodynamic quantities.  The 

thermodynamic quantities derived within different ensembles give the same results in 

the thermodynamic limit.  On the other hand, the choice of a specific ensemble may 

change results significantly for small systems.  For example, the caloric curves 

derived within the microcanonical and canonical ensembles coincide for large 

systems; but the two caloric curves depart from each other for small systems [Schiller 

2005 and Tavukcu 2002].  The microcanonical ensemble is commonly accepted as the 

appropriate ensemble to use in investigating atomic nuclei, as the nuclear force has a 

short range and the nucleus does not share its excitation energy with its surroundings. 

However some thermodynamic quantities such as temperatures and heat capacities 

may have large fluctuations and negative values when derived within the 

microcanonical ensemble.  On the other hand, the canonical ensemble averages too 

much over structural changes of the system.  Therefore, it is difficult to choose an 

appropriate ensemble for a small system.  Apart from that, we use grand-canonical 

ensemble to study the thermodynamic properties of the system. 

Statistical descriptions of many-body quantum systems are based on the 

grand-canonical ensemble average which contains all the information about the 

statistical average of energy, angular momentum and entropy that determine the phase 

space of the system.  The main assumption for statistical analysis is the microscopic 

equilibrium which means that all the states with the same excitation energy are 
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equally populated.  The Lagrangian multipliers in the grandpartition function are fixed 

by the conservation of the energy, number of particles and angular momentum of the 

system.  We have also treated the system with constant angular momentum, which is 

possible within restricted configuration spaces.  Ignatyuk [Ignatyuk 1969] performed 

the calculations with pairing correlations and in his work only constant values of 

Nilsson parameters [Nilsson 1969] are used for all the shells.  Strutinsky [Strutinsky 

1967] has given an expression for thermodynamical potential of rotating nuclei and 

shell correction at a finite temperature.  Civitarese has [Civitarese 1983] investigated 

the temperature dependence of level density parameter with BCS formalism 

[Civitarese 1990] but neglected the effect of angular momentum.  Rajasekaran 

[Rajasekaran 1988, 2003 & 2008] has studied the dependence of both temperature and 

angular momentum on level density parameter and separation energy.  

There are two ways of generating the angular momentum in nuclei 

[Hamamota 1983]: 

i) by introducing the z projection of the angular momentum as a constant of 

motion through the Lagrangian multiplier occurring in the Fermi distribution 

corresponding to the single-particle spins by assuming the cranking frequency  

ω = 0.  

ii) by discarding the Lagrangian multiplier corresponding to the single-particle 

spins in the Fermi distribution function but adjusting and fine tuning the 

cranking frequency term ω in the Nilsson Hamiltonian itself. 

 

The former method which we have used is valid only for the rotation around the 

symmetry axis but cannot be applied to nuclei rotating about an axis perpendicular to 

the symmetry axis since the spin projection mz is not a good quantum number in this 

case.  The Lagrangian multiplier and the collective frequency of rotation of the system 
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should be equal to one another as long as the single-particle spin projections along the 

symmetry axis are good quantum numbers.  For axially symmetric shapes of the 

nuclei, the single-particles spin projections mz are good quantum numbers while for 

triaxial deformations the single-particle spin projections mz are not good quantum 

numbers as the matrix elements for triaxially deformed system connects states of 

different mz [Huizenga 1972].  Moretto [Moretto 1973] has exemplified that the 

laboratory fixed z – axis can be made to coincide with the body fixed z¢ - axis and it 

is possible to identify and substitute M for the total angular momentum I.  In the 

quantum mechanical limit the z component M of the total angular momentum is

2/1+®+= IMMM
ZN

.  This chapter describes the formulation of statistical 

theory used in the estimation of nuclear properties on the basis of a shell model level 

sequence with and without the inclusion of pairing correlation. 

 

2.2 Statistical formalism 

In the grand-canonical partition function, the statistical properties of the 

system are given by,  

                          ,                (2.1)   

where the Lagrangian multipliers  and λ that conserve the proton number, 

neutron number, angular momentum along the space fixed z-axis and total energy for 

a given temperature T = 1/   are fixed by the following equations [Rajasekaran 

2008]: 

    ,          (2.2) 

     ,          (2.3) 

    ,          (2.4) 
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                           and    .              (2.5)  

The corresponding equations in terms of single - particle levels for protons  with 

the spin projections Z

i
m  and neutrons  with the spin projection N

i
m are 

 ,           (2.6) 

 ,           (2.7) 

  ,               (2.8) 

 .              (2.9) 

where,  and  are occupational probabilities of the i
th

 shell corresponding to 

neutron and proton.  The above coupled non-linear equations have to be solved to 

determine the Lagrangian multipliers for a given temperature T.   

 

The entropy is calculated using the relation, 

     .   (2.10) 

 

The spin cut-off parameter  is computed using the following expression 

           .     (2.11) 

 

The excitation energy E
*
 is obtained using the relation 

                (2.12) 

where, E is the total energy and  is the ground state energy of the system.   

 

The free energy of the system contains all the thermodynamic information and is 

computed as, 

            (2.13) 
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2.3 Inclusion of pairing correlations in statistical formalism 

By incorporating the effect of pairing correlations in the statistical formalism, 

the grand canonical partition function is described as [Rajasekaran 2011], 

 

      (2.14) 

 

where,  is the proton quasiparticle energy, GZ the pairing 

strength and ΔZ the gap parameter. The quantity β is the reciprocal of the temperature                   

(β = 1/T) and μZ the proton chemical potential.   

 

The particle number equations for protons, the equations for angular 

momentum and energy are given below: 

,          (2.15) 

,            (2.16) 

        (2.17) 

 

The gap parameter ΔZ is obtained as a function of β, λZ, and μZ by solving the gap 

equation 

            .           (2.18) 

The entropy S
Z
 of the system is then determined as  

            

                                                 (2.19) 

 

Equations (2.11) and (2.14) are solved for particular values of and  to 

obtain  and ΔZ.  A similar set of equations for neutrons also exist.  The pairing gap 

parameter Δ is an important aspect in the statistical formalism and it is a measure of 
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the pairing correlation.  The Δ value is very sensitive to the number of levels taken for 

pairing calculations especially when the system is excited.  The total energy E, total 

angular momentum M and total entropy S are obtained as, 

   ,          (2.20) 

                                                    (2.21) 

                             and .                              (2.22) 

The spin cut-off parameter  is derived as,     

  .     (2.23) 

The excitation energy  and free energy  of the system are given by, 

    ,      (2.24) 

                                                .      (2.25) 

where,  is the total energy of the system for a given temperature and  is the 

ground state energy of the system.   In the statistical formalism, the equilibrium shape 

of the nucleus at given angular momentum and temperature has been obtained by 

minimizing the free energy as a function of deformation.  The basic ingredient to the 

statistical theory is a suitable microscopic shell model level scheme generated for 

various nuclear deformations and are discussed in subsequent sections. 
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2.4 Nuclear models 

The basic satisfactory microscopic ingredient to the statistical theory is a 

suitable shell model level scheme generated for various nuclear deformations.  The 

nuclear deformation is a feature which depends more upon the details of the shell 

structure than upon the smooth nuclear properties.  Therefore it is of utmost 

importance to study the thermodynamic properties of the nucleus corresponding to 

different deformations.  Shell model level scheme obtained by diagonalising the 

Nilsson and cranked Nilsson Hamiltonian and both are used in different 

circumstances of the present work.  Considerable attention has been devoted to 

choose the various parameters involved in the deformed harmonic oscillator 

Hamiltonian [Irvine 1972 and Sulaksono 2005].  The purpose of this chapter is to 

predict procedure of obtaining energy levels by biaxially deformed and triaxially 

deformed oscillator potentials. 

 

2.4.1 Biaxially deformed single particle levels 

The generalization of the phenomenological shell model to deformed nuclear 

shapes was first given by [Nilsson 1969], and this version is often referred to the 

Nilsson model.  Hence, the single particle energy eigenvalues are generated using the 

Nilsson Hamiltonian for biaxially deformed nuclei.  The principal idea is to make the 

oscillator constants different in the different spatial directions:   

                                                 (2.26) 

 

Here ′ ′
′  are the coordinates of the particle in body fixed axes and 

 are the oscillation frequencies along X, Y and Z axis (space fixed).  

Hence the Hamiltonian including the spin orbit coupling term  and the 

centrifugal term ( ) leads,  
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                                                                            (2.27) 

 

In this deformed shell model the following assumptions are made, 

a) Constancy of surface potential 

b) Volume conservation and 

c) Axial symmetry 

 

By the first assumption: 

Surface potential of a spherically symmetric potential = Surface potential of the 

Nilsson model. 

                      
            

(2.28)
 

where,  is the oscillator constant for the equivalent spherical 

nucleus.   

 

The condition of incompressibility of nuclear matter requires that the volume 

of the ellipsoid should be the same as that of the sphere, implying R
3
 = XYZ, and this 

impose a condition on the oscillator frequencies, 

                                                             (2.29) 

         

Now assume axial symmetry around the z axis, i.e., , and a small 

deviation  from the spherical shape given by a small parameter δ.  

                                    
                                     (2.30)   

 

                                               
.
           

          (2.31) 

For the incompressibility condition to hold generally we require ωo to be 

function of the deformation:  
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                                 (2.32) 

In equation (2.24), 

                    (2.33) 

The deformation parameter δ is defined by,  

                                                                                                              (2.34) 

                                         

                                                  (2.35) 

                                         

 Changing the coordinate scale by, 

 

 

 

In , we have  

            

 

   (2.37) 

                                                                       (2.38) 

where,  is the spherical harmonic oscillator potential,                   

 is the quadrupole deformation operator and is related to the spherical 

harmonics by .    

Therefore,  

                                                                             (2.39) 



 

27 

 

Substituting equation (2.35) in equation (2.34), we get 

                                                                                (2.40) 

Therefore, , thus the total Hamiltonian given by equation (2.27) 

becomes, 

                                                                                 (2.41)                                                    

  

The  term is introduced phenomenologically to lower the energy of the 

single particle states closer to the nuclear surface in order to correct for the steep rise 

in the harmonic-oscillator potential there.  κ and μ may be different for protons and 

neutrons and also depend on the nucleon and number.  The Hamiltonian may be 

diagonalized in the basis of the harmonic oscillator using either spherical or 

cylindrical coordinates depending on the application.  The energy levels in the 

spherical basis are given by,  

            (2.42) 

with the principle quantum number , radial quantum number , 

angular momentum quantum number , and projection m.  In the cylindrical basis they 

are replaced by, 

                   .                           (2.43) 

where,  is the  number of quanta in the z direction,  is that of radial excitations, 

and m is again the angular momentum projection on the z axis.  For the spherical 

shape the levels will be grouped according to the principle quantum number N (with 

the splitting by the spin-orbit force then determined through the total angular 

momentum j), but the behavior with deformation depends on how much of the 

excitations is in the z direction.  For prolate deformation, the potential becomes 
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shallower in this direction, and the energy contributed by   excitations decreases.  

The cylindrical quantum numbers are thus helpful in understanding the splitting for 

small deformations.  For very large deformations, on the other hand, the influence of 

the spin-orbit and  2
l

2
l  terms becomes less important and one may classify the levels 

according to the cylindrical quantum numbers.  It has thus become customary to label 

the single-particle levels with the set .  The projection of total angular 

momentum , and the parity  are good quantum numbers while N, nZ and m are 

only approximate and may be determined for a given level only by looking at its 

behavior near the spherical state.   

Thus, the single particle energies εi and spin projections mi as a function of 

deformation parameter δ are obtained by diagonalizing the Nilsson Hamiltonian in 

cylindrical basis.  Calculations are carried out by varying deformation parameter δ 

values from -0.6 to 0.6 in steps of 0.1.  Figure 2.1 show the resulting generated single 

particle energy levels as functions of deformation.  At first sight this Nilsson diagram 

appears to be a confusing mixture of intersecting levels, yet a number of interesting 

features can be observed.  The highly degenerate spherical levels split up into the 

individual state pairs characterized by  and the parity, which is determined by the 

orbital angular momentum in the case of a spherical shape.  For the spherical levels 

the magic numbers and the conventional nomenclature for orbital and total angular 

momentum are also indicated.   

The projection   and the parity are indicated for all the levels arising from 

spherical multiplets below the magic number 82.  The way in which the levels diverge 

can be understood quite easily: states with a larger projection should have smaller 

quantum number nZ, so that for oblate deformation, where the frequency in the z 

direction increases, they are lowered with respect to the other states and the opposite 
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happens for prolate deformation.  This systematic behavior of the levels is made more 

complicated by avoided energy level crossings.  As a general rule, levels with the 

same quantum number numbers should never cross if they are plotted as functions of 

a single parameter.  Thus degeneracy should always be caused by a symmetry which 

produces additional quantum numbers to distinguish the states.  If two levels with the 

same quantum numbers get close to each other, they are repelled.  For example in      

fig.2.1, the 1/2
- 
level coming from the f5/2 spherical multiplet below magic number 40.  

Going towards negative deformations it is first repelled by the 1/2
- 
level from the p1/2 

state above and then by the one from the p3/2 below.  It is not, however, forbidden 

from crossing the 9/2
+
 coming from the above.  This type of level diagram is essential 

for understanding many of deformed nuclei.    

To evaluate the matrix elements corresponding to the above Hamiltonian, we 

choose the uncoupled basis SlNl . 

 where,  

 N – Harmonic oscillator principal quantum number, N = 0, 1, 2… 

  l – Orbital angular momentum quantum number,  = N, N-2, N-4 … 

  λ – Projection of , λ = -  to  in steps of unity. 

  Σ – Projection of intrinsic angular momentum, Σ = ± ½.  

The projection of total angular momentum is given by S+=W l  is a good quantum 

number. 

Diagonal matrix element: 

                                   ,                   (2.44) 

                                    ,
  

        (2.45)
 

                                   ,
             

(2.46) 

                                    ,            (2.47)
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To find the matrix element of   , 

Matrix element of H0: 

                            .
         

(2.48)
 

Using Wigner Eckart theorem, 

 (2.49) 

Matrix element of r
2
: 

 The selection rule for gives , 

.                 

                                                                                                                                              (2.50)
 

Matrix element of : 

                            
(2.51)

 

Matrix element of : 

                         
                      

(2.52)
 

The constants of C and D are given in terms of other two constants κ and μ, the 

relations are, 

     
02 w

k
h

C
= ,           (2.53) 

     
.

2

C

D
=m

           
(2.54) 

The energy eigenvalues corresponding to the Hamiltonian can be written as 

             .       (2.55) 

                                          
                    

(2.56) 

      
          

(2.57) 
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where, 

                                                       (2.58) 

Nilsson defined new form of deformation parameter η given by 

          

( )
.

0

0

khw

ddhw
h =

        

(2.59) 

Therefore, 

                                (2.60) 

                     
                            

(2.61) 

where, 

WN
r - Eigenvalue of operators. 

N – Total number of oscillator quantum number. 

Ω – Quantum number corresponding to J. 

Using the set of κ and μ values corresponding for principle quantum number 

N, the energy eigenvalues and the spin projections are generated.  For our 

calculations, we have generated energy levels upto N = 11. 
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Fig. 2.1: Nilsson diagram for protons and neutrons.  Single-particle energies as a 

function of deformation δ are shown for Z or N ≤ 50.  The even and odd parity levels 

are denoted by solid and dashed lines respectively.  The labeling of levels are by 

asymptotic quantum numbers .   
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2.4.2 Triaxially deformed single particle levels 

Another method for the calculation of mass parameters is the cranking model 

invented by [Inglis 1954].  The name reflects the idea of an external influence forcing 

the phenomenological single-particle potential.  A simple and widely used way to 

describe the change of the single-particle structure with rotation is given by the 

cranked Nilsson model.  Therefore, the deformed harmonic oscillator is assumed to be 

cranked and the oscillator level scheme generated by diagonalising the cranked 

oscillator shells which is used to investigate hot  as well as hot rotating nuclei.  This 

model gives a microscopic description of the influence of rotation on the single-

particle motion.  The nucleons are considered as independent particles moving in the 

rotating potential well with the deformation described by deformation parameter ε and 

shape parameter γ.  The single-particle level scheme as a function of deformation 

parameter ε and shape parameter γ is obtained by diagonalizing the cranked Nilsson 

Hamiltonian in the cylindrical basis states.  The single-particle Hamiltonian is given 

as, 

                     ′ ′ ′  ,             (2.62) 

where,  is the rotational frequency and  is the triaxial Nilsson-Hamiltonian for a 

single particle in the non-rotating system and is given by, 

 .        (2.63) 

In the Cranking model, the nucleons move in a potential that is set to rotate 

with a rotational frequency ω.  This is realized by the addition of the term  to the 

intrinsic Hamiltonian for the cranking to be around any one of the principal axes z 

with the classical correspondence of both the coriolis force and the centrifugal force.  

It is known from earlier studies that this model accounts only for small rotational 
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frequencies.  A more exact treatment is necessary for high rotational frequencies in a 

nucleus induced by heavy ion collisions. 

In the Inglis model, the disturbance in the nucleons caused by the rotation is 

treated as a perturbation of the ground state intrinsic field whereas for high spins the 

coupling between the nucleons and the rotational motion is treated in a non 

perturbative way by [Bengtsson 1984].  At very high spins the quantum mechanical 

wobbling can be neglected so that the rotation is assumed to take place around a fixed 

axis.  The Coriolis force strives to align the spin vectors of the nucleons along the 

rotational axis.  As the rotational frequency increases, more and more nucleons 

become aligned.  Since the aligned nucleons have a density that is symmetrical around 

the rotational axis, prolate nucleus rotating around an axis perpendicular to the 

symmetry axis will change its deformation to a triaxial form.  At still higher angular 

momenta, such a nucleus might even get an oblate shape.  It is evident that it is 

possible to describe the transition from prolate shapes, with the rotation axis 

perpendicular to the symmetry axis, to oblate shapes with the rotation around the 

nuclear symmetry axis.  Microscopic calculations of deformation energy using a many 

body Hamiltonian and trial wave functions have been done in [Faessler 1976].  Based 

on Strutinsky shell correction method, several groups [Poloszajctak 1977, Neergard 

1975, Anderson 1981, Faber 1979 and Hammamoto 1983] have performed 

calculations in which full cranking Hamiltonian is diagnolised for a deformed 

nucleus. 

 

The three oscillator frequencies are given by  

,                        (2.64) 

,        and                        (2.65) 
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                          (2.66) 

with the constraint that the total volume remains constant, i.e., 

             (2.67) 

The value of undeformed oscillator spacing ħωo = 35 MeV/ (A
1/3

 +0.77) is 

used in our level scheme and the κ and μ values are taken from [Jinge-ye-zhang 1989 

and Bengtsson 1984].  The parameter  corresponds to the elongation or 

flattening of the potential, while γ describes its non-axiality, where ‘a’ is the semi 

major axis, ‘b’ is the semi minor axis and   is the radius of equivalent sphere.  

Calculations are carried out for the deformation parameter in steps of 

0.1 and for shape parameter γ = -180
o
 (oblate non-collective) to γ = -120

o 
(prolate 

collective).  The basic ingredient in the statistical theory is a single particle level 

scheme which is generated up to N = 11 shells for the finite temperature range.  The 

significance of various regions of deformation with respect to the rotation axis is 

illustrated in fig. 2.2 – 2.4.   

 

 

Fig. 2.2: Polar plot of nuclear deformation for rotation around x-axis. 
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Fig. 2.3: Polar plot of nuclear deformation for rotation around y-axis. 

 

 

 

Fig. 2.4: Polar plot of nuclear deformation for rotation around z-axis.
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CHAPTER – III 

NUCLEAR SHAPE TRANSITIONS 

3.1 Introduction 

 Nuclear structure studies is about probing the changes occurring in the nuclei 

that are hot and rotating and which have high excitation energy. The resulting effect 

of these two physical quantities i.e, temperature and angular momentum in the nuclei 

causes shape transition. Factors such as deformation parameter at different 

temperatures and momenta decide the shape of the nuclei. Different types of shape 

transitions can occur as a result of increase in temperature, such as: spherical to 

deformed, prolate to oblate and prolate to spherical. With increase in angular 

momentum, certain nuclei have the proclivity to transition from prolate to triaxial and 

certain other nuclei such as deformed rare earth nuclei tend to possibly transition from 

prolate to oblate shapes [Rajasekaran 1988 and Rajasekaran 2003]. Shell effects are 

the reasons for static deformations in nuclei at low temperatures and these static 

deformations vanish with the increase in temperature. Nevertheless, there are cases 

where the nuclei respond in a different way as a result of increase in temperature 

[Goldenfeld 1992].  Studies of theoretical and experimental nature have been done to 

explain the shape transition behavior, such as some given below. 

[Neergard 1976 and Anderson 1976] and [Bengtsson 1975] have studied 

independently nuclei using Strutinsky shell correction method and their calculations 

have produced conforming results for the nuclei deformation behavior of nuclei with 

high angular momentum [Bohr 1975]. Using finite temperature Hartree – Fock –

Bogolibov cranking theory, [Goodman 1989] has produced remarkable prediction of 

transition of prolate collective to oblate non-collective in 
158

Yb nucleus at an angular 

momentum of M = 39ħ. Bohr [Bohr 1975] studied nuclear behavior of the spinning 
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nuclei in the various regions of deformation.  Castanos [Castanos 1979] investigated 

the transition of Sm isotopes using the interacting boson approximation model. 

 Werner [Werner 2000] have come up with expressions for moments up to 

sixth order of the ground state quadrupole operator and calculations of different 

shapes have been done analytically using interacting boson model(IBM).  Li [Li 

2010] have used the self-consistent relativistic mean field theory in the BCS 

calculation of quadrupole energy surfaces in Ba and Xe isotopes. [Rajasekaran 1988] 

have done extensive investigations in shape and phase transition in 
154

Dy with neutron 

number N = 88.  
154

Dy showed a shape transition from prolate collective to oblate 

non-collective in and around the angular momentum of 50 (ħ) and excitation energy 

of 50 MeV. Other nuclei with neutron number 88 showing similar behavior have been 

reported by [Simpson 1988] for 
158

Er, by [Cranmer 1987] for 
154

Dy.  Henss [Henss 

1988] experimentally found shape transition from a collective prolate shape to oblate 

using the spin generated by single particle motion. Other experimental studies such as 

the Giant Dipole Resonance (GDR) built on excited states have also been done 

[Gaardhoje 1992, Nanal 1999 and Chakrabarty 2012] 

The search for signature of transition between varieties of shapes has earned 

substantial attention and interest in nuclear structure physics.  There are numerous 

experimental techniques to explore the shapes of hot rotating nuclei.  The response of 

nuclear shape to thermal excitations has been experimentally investigated from the 

shapes of GDR built on excited states.  The fact that the phase transition to deformed 

shapes causes a splitting of the giant resonance has been well known for many years 

and it is used to study the shape changes as a function of angular momentum or 

temperature by means of fine structure of the GDR.   
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 A very simple understanding of the universal features of shape transitions in 

nuclei as a function of angular momentum and temperature is given by Levit [Levit 

1984].    A major activity in the study of shape – phase transitions for nuclei in the 

ground state has been carried out with the interacting boson model (IBM) at zero 

temperature.  The IBM naturally incorporates different symmetry limits associated 

with specific nuclear properties.   The shell model approaches are very appropriate for 

describing various aspects of nuclear structure.  The nuclear shell model (SM) treats 

the single particle and collective degrees of freedom equally and appears to be 

extremely successful in the calculation of the back-bending curve in light nuclei.  

However the drastic increase of the configuration space for medium and heavy 

systems makes the shell model calculations impossible.  Similarly, the HFB 

calculation employ a model Hamiltonian in a limited model space with pairing – plus 

– quadrupole interaction but this may not be realistic once temperature comes into 

play.  A self consistent mean field attained with the aid of cranked Nilsson or Saxon – 

Woods potentials and pairing forces has been quite competitive up to now. 

 

3.2 Finite temperature Hartree – Fock – Bogoliubov Cranking method 

 In the finite temperature Hartree – Fock – Bogoliubov Cranking calculations 

(FTHBC), Hamiltonian H [Goodman 1983 and Tanabe 1981] is written as, 

                                        H = e - -  -  +  .           (3.1) 

Here, e,  and  are spherical single-nucleon energy, chemical potential and 

angular velocity respectively. The Hartree-Fock and pair potentials are 

                                       = ,                        (3.2)                    

                                       = ,             (3.3)                             

where,  are the Hartree-Fock and pairing densities. 
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 The quasi-particle occupation probabilities in terms of temperature T and 

eigenvalues of FTHBC equation i.e., quasi-particle energies  are given by, 

                                           = [1+ ,                     (3.4)    

          The chemical potentials and the angular velocity are varied to satisfy the 

number constraints and spin constraints respectively.   

                                                    = Z,  = N,              (3.5) 

                                                      = [I (I+1)  .              (3.6) 

By the iteration method, the self-consistent solution to Eqs. (3.1) to (3.6) is obtained. 

The free energy is                   

                                                       F =E – TS,                                                         (3.7) 

With entropy S and energy E is given by 

                                                      S = -            (3.8) 

                                                     E =  = Tr [(e+  r)                       (3.9) 

The FTHFBC equation determines the values of the quadrupole deformation 

nd the values of the pairing gaps  

 defines the equilibirium or most probable state 

of the nucleus for the given spin and temperature. 

 

3.3  Finite temperature Strutinsky method 

In this method [Ignatyuk 1969], the potential V(r) is the sum of harmonic 

oscillator term and the correction term  

                                      V(r) =  +                                              (3.10)  

With, 

                       (3.11) 
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                                   (3.12) 

           The first term in Eq. (3.10) depends on the two quadrupole deformation 

parameters  and  which decide the nuclear shape. The second term is introduced to 

describe the inertia properties. 

         The expression for the routhian function of a nucleus at a temperature T rotating 

with the angular frequency  is, 

                 (3.13) 

Here, is the liquid drop component of the energy, are the 

energies of single particle states and (T) is the occupation probability of the i
th

 shell.  

The last term in Eq. (3.13) is the Stravinsky – smeared sum of single particle energies 

for T = 0.  As this procedure is a direct consequence of the correct calculation of the 

nuclear moment of inertia, renormalization of the average moment of inertia is not 

necessary. On the basis of the relation 

                                    (3.14) 

Eq. (4.13) may be rewritten as, 

   (3.15) 

The rigid body moment of inertia Jrig is valid at T = 0 with good accuracy. 

Here, the shell correction is written as,  

                                          (3.16) 

Routhian function given in Eqs.  (3.13) and (3.15) is used for studying the rotation in 

cold nuclei. The applicability of this method at T = 0 can be extended to nuclei at 

non-zero term. 
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3.4 Relativistic mean field theory 

A classical relativistic field theory starts from a number of fields qj(x). Their 

dynamics is determined through a Lagrangian density, L(q, ∂uq, t) and the variational 

principle, 

              .          (3.17) 

The energy momentum tensor is given by, 

               μν μυ

μ

υ .           (3.18) 

It obeys the continuity equation, 

                μ
μυ .             (3.19) 

In relativistic mean field theory of the nucleus the fields qj(x) are given by the 

wave functions of the nucleons, several meson fields and the electromagnetic 

potentials. The nucleons are described by Dirac spinors ψi(x,s,t) with four 

components, where, x = (t,r) is the space-time coordinate, s labels the four Dirac 

components and t = p, n characterizes the isospin. 

 

The Dirac equation for the nucleon in  version of Relativistic Mean 

Field (RMF theory [Agarwal 2001, Jian-You Guo 2010, Bhuyan 2011 and Fu 2013] 

is, 

                                    [-                     (3.20) 

The vector potential V(r) is, 

                                            (3.21) 

and the scalar potential S(r) is, 

                                                       .                                               (3.22) 

The Klein-Gordon equation for the mesons and the electromagnetic fields are 
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                                 {-  }  - ,         (3.23) 

                               {-  }             (3.24) 

                                 {-  } ,            (3.25) 

                                              -             (3.26) 

where, , ,  and are the corresponding densities, neglecting the negative 

energy states.  The occupational probability at finite temperature in the constant 

pairing gap approximation (BCS) is, 

          (3.27)                 

where,  is the distribution function and is the single particle energy  for the 

state. The chemical potential  for the protons (neutrons) is obtained from the 

requirement 

            (3.28) 

          Free energy,   F = E – TS is minimized to find the equilibrium value of the 

quadrupole deformation   and the proton (neutron) pairing gaps . The total 

energy , 

                    =          (3.29) 

where, etc., having the usual meaning  [Agarwal 2001].  

 

3.5 Monte Carlo method  

Auxiliary-field Monte Carlo (AFMC) account for correlation effects in full, it 

is necessary to include all fluctuations – both thermal and quantal of all the auxiliary 

fields σ (including large-amplitude quantal fluctuations).  This requires an integration 

over a very large number of σ fields (at all time slices), and in practice can only be 

done by Monte Carlo methods.  Such a quantum Monte Carlo method is generally 

known as the auxiliary- field Monte Carlo (AFMC) method and has been used in 
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strongly correlated electron systems. In the context of the configuration-interaction 

shell model the method is known as the shell model Monte Carlo (SMMC). 

 

3.6 Landau theory of phase transition 

This theory was developed by Landau in the 1940’s , originally to describe 

supercondutivity.  Landau theory [Landau 1980] is a mean field theory, in the sense 

that the system is assumed to be adequately escribed by a single macroscopic state.  

Not only we can use Landau theory to describe and understand the nautre of phase 

transiitons among ordered (and disordered) states, but we can use it as a starting point 

for understanding the behaior of ordered states. 

 Landau made a series of assumptions to approximate the free energy of the 

system in such a way that it exhibits the non – analyticity of a phase transition and 

turns out to capture much of the physics.  Applying very basic ideas of Landau theory 

of phase transitions, Levit et al. [Levit 1984]  expanded the free energy in terms of the 

deformation parameters and obtained a very simple understanding of the universal 

features of phase transition in nuclei as a function of angular momentum and 

excitation energy.  By analogy, we have used a statistical theory to explore the nature 

of phase transition and its temperature and angular momentum dependence.   

 

3.7 Jacobi transition 

In 1961, Beringer and Knox suggested that a transition might be expected in 

the case of atomic nuclei, idealized with surface tension [Landau 1980].  Subsequent 

theoretical studies in 1974 and in 1986 confirmed this conjecture.  It was also realized 

that the mathematical problem of a rotating, uniformly charged drop goes over 

smoothly into Jacobi’s classic astronomical problem by making the magnitude of the 

repulsive electrostatic energy decrease through zero to negative values, at which point 
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it becomes a Newtonian attraction.  Evidence for Jacobi effects must be sought in the 

quasi – continuous gamma spectrum emitted from states of very high angular 

momentum.  For example, Maj et al. [Maj 2001] have presented evidence for a Jacobi 

transiiton in 
46

Ti, based on the analysis of the gamma spectrum associated with 

devays of the giant – dipole resonance. 
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CHAPTER IV 

SHAPE TRANSITIONS IN Te AND Se ISOTOPES 

4.1. Introduction 

 Structure studies of Tellurium nuclei with two protons outside the major shell                       

(Z = 50) has become essential in describing their observed energy spectrum 

experimentally [Saxeena 2014 and Fotaides 2014].  The present work has been 

extended to investigate the shape phase transition in even – even isotopes of Te for 

mass number 110, 114, 116, 122, 124 and 130 via the Statistical Theory of Hot 

Rotating Nuclei (STHRN).  The thermodynamic properties such as excitation energy, 

level density parameter, level density, rotational energy, rotational frequency, 

kinematic moment of inertia, spin cut off parameter and neutron emission probability 

has been calculated and the impact of shape transition exhibited in these quantities has 

been observed.  The STHRN method incorporates various degrees of freedom such as 

temperature, angular momentum and deformation parameters [Rajasekaran 2008, 

2003].  Statistical descriptions of finite nuclear systems are generally based on grand 

canonical ensemble averages with good quantum numbers like angular momentum or 

particle number [Kandhimadhi 2011] and it is described in the formalism part.   

 Experimental study on 
124

Te by [Fotiades 2014] found that the non-collective 

oblate states with I
π
 = 16

+
 at excitation energy above 5.5 MeV.  Several theoretical 

models [Vikas 2015 and Stuchberyet 2013] have been employed to investigate the 

structure of Te nuclei.  Theoretical investigations of Te isotopes near the proton drip 

line were discussed by Mamta et al. [Mamta 2009] employing STHRN method.  The 

results reveal that proton rich Te nuclei are less deformed with prolate collective or 

nearly prolate shapes than those near the stability valley which are well deformed 

with oblate non-collective shape.  In our previous work [Rajasekaran 2008], the 

behavior of nucleons and their reactions to the collective rotation for 
154

Dy has been 
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studies using the theoretical framework of STHRN.  In STHRN method, the 

thermodynamical system of fermions is nothing but the compound nuclei formed 

through heavy ion fusion reaction at high excitation energy.  With the increase in the 

excitation energy of the compound system the nuclear levels becomes 10
6
 times 

smaller than the average single – particle spacing.  Therefore the knowledge on 

nuclear level density becomes essential to understand the structural phenomena.  

Moreover, the interest in studying high spin populated state is to estimate the 

probability for phenomena such as fusion, fission and quasi – fission.  Thus the 

neutron emission probability is also an important factor to determine the probable 

nuclear reaction. 

Statistical approach is the most prominent one to describe the average 

behavior of the compound nucleus [Gupta 2008] using the grand partition function of 

the system.  The main assumption of the statistical theory is the microscopic 

equilibrium, which means that all states with same excitation energy are equally 

populated.  The intrinsic properties of these nuclei may be described as a function of 

temperature, spin and deformation.  Also the statistical theory of the nucleus 

incorporating the deformation degrees of freedom, pairing correlation and collective 

rotation of the system to obtain the separation energy of nucleons [Moretto 1973].  

The statistical theory of hot rotating nuclei is used to predict the nuclear properties 

which are related with the shape transition. The statistical calculation involves the 

determination of the grand partition function of the system with the condition that it 

conserves energy, the particle number, and the total angular momentum of the system.  

The statistical theory which incorporates different degrees of freedom like 

deformation parameter, angular momentum, and temperature is used to study some of 

the structural properties of nuclei.  The following parameters can be studied on the 
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basis of statistical theory: Nuclear level density parameter, Entropy, Rotational 

energy, Excitation energy, Moment of inertia, Level density, Single nucleon 

separation energy. Also, the shape changes of nuclei from prolate shape to oblate is 

investigated by statistical theory, adopted by Moretto [Moretto 1972].  In this present 

work, the above mentioned thermal and rotational properties were studied for the 

isotopes of 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te. 

Also, calculations of excitation energy based on the statistical theory of hot 

rotating nuclei in the most neutron deficient Se isotopes such as 
68

Se, 
70

Se, 
72

Se, 
74

Se 

for an angular momentum range of 0ħ - 14ħ and a temperature range of 0.4 MeV – 1.0 

MeV in steps of 0.1 MeV show a comparable results with the experimental data.  A 

shape transition was found which is reflected in other thermodynamical parameters 

such as spin cut off parameter and rotational frequency with respect to angular 

momentum.  A comparison of excitation energy of 
74

Se based on the statistical model 

with its experimental counterpart was also done in the form of an energy level 

diagram and a closeness of the theoretical and the experimental values for the same 

momenta was found. 

 

4.2 Determination of structural properties 

Shape transition are investigated for high spin hot rotating nuclei 
110

Te, 
114

Te, 

116
Te, 

122
Te, 

124
Te & 

130
Te and for 

68
Se, 

70
Se, 

72
Se & 

74
Se using statistical theory of 

hot rotating nuclei by the following structural properties of nuclei.  The statistical 

theory of hot rotating nuclei is employed to study the structure of the nucleus at high 

spin states.  The single particle energy levels are engendered from triaxially deformed 

harmonic oscillator explained in Chapter II.  The shape transition is investigated by 

obtaining the following structural properties of nuclei: 

(i) Excitation energy 
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(ii) Level density parameter 

(iii) Spin cut off parameter 

(iv) Rotational energy 

(v) Kinematical moment of inertia 

(vi) Neutron emission probability 

(vii) Single nucleon separation energy 

 

4.2.1 Excitation energy 

Excitation energy is the amount of energy required to excite the nucleons from 

the ground state to an excited state by means of temperature (T) at a given angular 

momentum (M).  The excitation energy ( )TME ,*
is obtained by taking the difference 

between the ground state energy (0,0)E and the excited state ,E M T which is 

derived from the grand partition function given in eq.2.9.  Therefore, ,E M TE M T  is 

expressed as, 

    , , (0,0).E M T E M T EE M , ,, , (0,0)., , (0, , (0   (4.1)   

where, E(0, 0) is the ground state energy of the nucleus and is given by, 

    .)0,0(
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Z

i

Z

i

N

i

N

iE ee    (4.2) 

4.2.2 Level density parameter 

 The single particle level density parameter ‘ a ’ as function of angular 

momentum M, temperature T, deformation parameter  and shape parameter γ is 

extracted using the expression,  

                          
2( , ) ( , , , ) 4 ( , , , ).a M T S M T E M T, ) 4 ( , , , )., ) 4 ( , ,4 ( , ,4 (4 ( , ,4 () ( , ,2) (2) ( , ,) ( , ,2

   (4.3) 

where,  S is entropy and 
*

E  is excitation energy. 
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4.2.3 Spin cut off parameter 

The spin cut-off parameter is a free parameter and it is related to an effective 

moment of inertia.  The spin cut-off parameter  as a function temperature T and 

angular momentum M is given as,

 

                                        (4.4) 

 

4.2.4 Rotational energy 

The rotational energy rotE is expressed as, 

    ( ) ( ).,0, TETMEErot -=              (4.5) 

4.2.5 Kinematical moment of inertia 

The kinematical 
( )1j  and moment of inertia are given by, 

    

1

(1) 2 .rotE
j I

I

11
E

1

j I
E

II
.

E2
j I

2 ErotErotErotErotErot

II

rot

II
              (4.6) 

4.2.6 Neutron emission probability 

The number of neutrons emitted with an energy interval En and (En+ dEn) is 

evaluated as ,  

                                                                                  (4.7) 

where, U = E
* 

- Erot – SN – En and En is the outgoing neutron energy and the level 

density  at an excitation U is obtained using the formula. 

                                            

ħ

                                       (4.8) 
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4.2.7  Single nucleon separation energy 

The nucleon separation energy as a function of angular momentum M, 

temperature T and the deformation parameters ε and γ is calculated using the 

expressions, 

                                                  (4.9) 

                                       .

                                

(4.10)

  

4.3 Results and discussions 

Figures 4.1(a-f) illustrate the hodograph of the deepest energy minima of the 

nuclei as a function of the deformation parameters ε, γ and angular momentum M 

obtained for temperatures T = 0.5 MeV.  The equilibrium shape of the system is 

determined by minimizing the free energy with respect to the deformation parameters 

ε, γ at finite angular momentum M and temperature T and it is denoted by a dot in 

these figures.  It is observed from fig.4.1(a) that the nucleus 
110

Te is found to be 

spherical (ε = 0.0) for the angular-momentum range M = 0 – 9ħ and finally reaches 

the highly deformed non-collective oblate shape (ε = 0.1 and  

γ = −180◦) for M = 10 – 25ħ.  Figure 4.1(a) shows that the nucleus 
114

Te remains at 

spherical shape with ε = 0.0 for the angular momentum range M = 0 – 7ħ and 

becomes oblate shape (ε = 0.1 and γ = −180
o
) for M = 8 – 25ħ in fig. 4.1(b).  A 

similar behavior is exhibited in figs. 4.1(c), 1(d), 1(e) and 1(f) for four other nuclei 

116
Te, 

122
Te, 

124
Te and 

130
Te. 

Figure 4.2 gives a comparative analysis of excitation energy calculated from 

STHRN method for 
124

Te and 
126

Te for different angular momenta with the available 

experimental data and other theoretical models such as shell model.  It is quite 

obvious that the shell model closely matches with experimental data for the states of 

the lower angular momenta but at higher angular momenta the results seems to 
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deviate from the experimental data.  From the excitation energy diagram it is observed 

that the STHRN method produces the results more accurately for the states of the 

higher angular momenta.   

 

Fig. 4.1 (a-f): The shape evolution of 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te as a 

function of the angular momentum M(ħ) at the temperature T = 0.5 MeV.  The dot 

refers to the free energy minimized with respect to deformation parameters ε and γ for 

a particular range of angular momentum M.   

 

 It is seen that the calculated parameters as a function of angular momentum, 

temperature and deformation parameter Ԑ and ϒ showed an abrupt change for these 

heavier nuclei beyond the angular momentum M =12ħ. This abrupt  fall causes a 
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minimum in the parameter values and it corresponds to a shape transition from 

spherical to non collective oblate. 

 

Fig.4.2: Excitation energy E
*
(MeV) for 

124
Te and 

126
Te as a function of the angular 

momentum M(ħ) at the temperature T = 0.5 MeV.  Results are compared with 

available experimental data and with shell model. 

 

Fig. 4.3: Comparison of calculated and experimental excitation energy E
*
(MeV) for 

74
Se. 
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Fig.4.4: Excitation energy E
*
(MeV) as a function of angular momentum M(ħ) for 

various temperatures T (MeV) for Te isotopes. 
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Fig.4.5: Excitation energy E
*
(MeV) as a function of angular momentum M (ħ) for 

various temperatures for Se isotopes. 

 

From fig.4.2 it is illustrated that the excitation energies that correspond to 2ħ 

and 4ħ are higher than those that correspond to the same states of the experimental 

data.  This might be due to the temperature dependence (0.5 MeV), as STHRN 

method takes into account the effect of temperature.  As the angular momentum 

increases to higher values, one can observe the tendency of the excitation energies 

getting close to the experimental data.  Especially, the levels that corresponds to 14ħ 

and 16ħ exhibit remarkable proximity to the corresponding experimental data 

[https://www.nndc.bnl.gov//]. 
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Figure 4.3 illustrates the excitation energies obtained using the statistical 

model at 0ħ  - 8ħ for the 
74

Se were compared with the experimental values [Nomura 

2017, https://www.nndc.bnl.gov//] corresponding to the same angular momenta.  The 

comparison showed greater agreement between the two for certain angular momenta.  

Figure 4.4 shows the excitation energy for the Te isotopes which shows an abrupt 

change in the angular momentum showing shape transition from spherical to non-

collective oblate.  From fig.4.5, it is observed that excitation energy as a function of 

angular momentum for the isotopes of Se reveals that at a certain angular momentum 

a sudden change in the angular momentum results in shape transition of the nuclei 

from spherical to non-collective oblate.  Moreover the excitation energy for all the 

nuclei 
68

Se, 
70

Se and 
72

Se shows that the free energy minimized excitation energy 

increases after the critical angular momentum whereas for 
74

Se it decreases. 

 Level density parameter as a function of temperature and angular momentum 

for the nuclei 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te are presented in fig. 4.6.  At 

zero angular momentum, the level density parameter  remains almost constant 

without any fluctuations.  For a given temperature, level density parameter is found to 

decrease with increasing angular momentum.  The variations in the level density 

parameter are different for different angular momentum states at low temperatures 

because shell structure plays a major role at these temperatures.  Another significant 

change in the level density parameter occurs when the temperature T > 1.0 MeV.  At 

these temperatures the occupancies ni with in the active shells near the Fermi level 

becomes comparable.  A change in T to higher values would correspond to an 

appreciable contribution from higher shells.  For temperature T > 1.0 MeV the level 

density parameter shows a linear behavior for all the angular momentum considered. 
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Fig. 4.6: The level density parameter a (MeV
-1

) as a function of angular momentum 

M (ħ) with various temperatures T (MeV) for Te nuclei.   
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Fig. 4.7: Level density parameter a (MeV
-1

) as a function of angular momentum M(ħ) 

for various  temperatures T (MeV) for Se nuclei. 

The level density parameter as a function of angular momenta for various 

temperatures are shown in fig.4.7 for the nuclei 
70

Se and 
74

Se. These curves for 

different temperatures exhibit a sharp decrease at  specific angular momenta 

indicating shape transition shape transition from spherical (ε = 0.0) to   non-collective 

oblate (ε = 0.1, g = -180
o
).  Table 4.1 clearly indicates shape transition occurring in 

terms of behavior of level density parameter sharply decreasing at specific angular 

momenta values at both the temperatures. 
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Fig. 4.8: Spin cut-off factor (σ
2
) as a function of angular momentum M (ħ) at various 

temperatures T(MeV) for 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te nuclei. 



 

61 

 

 

Fig. 4.9: Spin cut-off parameter (σ
2
) as a function of angular momentum M(ħ) for 

various  temperatures T (MeV) for Se nuclei. 

 

In fig. 4.7 results of the level density parameter as a function of angular 

momentum for various temperatures are shown.  These curves for various 

temperatures show minima at specific angular momentum values indicating a 

rearrangement of particle distribution near the Fermi level at the excitation energy 

considered.  These minimum are associated with shape transition of the nucleus.  The 

appearance of prominent minima for an angular momentum M = 12ħ are interpreted 

as the signature for a shape transition from spherical to oblate non-collective.  The 
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variations in the value of  indicate a greater stability of the system at high spin states 

on the basis of shell corrections.  

Figure 4.8 illustrates the spin cut-off parameter as a function of temperature T 

and angular momentum M for the system 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te.  It 

is observed that the parameter values increase with rise in temperature.  It is also 

obvious that the spin cut-off parameter values vary smoothly with angular momentum 

but a sudden change in parameter value is observed at particular angular momentum 

values.  This change occurs at M = 15ħ for 
116

Te, 
122

Te, 
124

Te and 
130

Te, M = 12ħ for 

110
Te and 

114
Te due to shape transition.  The shape of the nuclei 

110
Te, 

114
Te, 

116
Te, 

122
Te, 

124
Te and 

130
Te change from spherical to oblate non-collective.  The spin cut off 

parameter for 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te isotopes for temperature 1.0 

and 3.0 MeV has been tabulated in Table.4.2. 

The spin cut-off parameter as a function of angular momenta for various 

temperatures is shown in fig.4.9 for the nuclei 
70

Se and 
74

Se.  From this figure, the 

spin cut-off parameter  values are found to increase sharply at 6ħ and 8ħ respectively 

for 
70

Se and 
74

Se which shows the shape transition from spherical (ε = 0.0) to non-

collective oblate (ε = 0.1, g = -180
o
).   
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Fig. 4.10: Rotational energy Erot (MeV) as a function of angular momentum M (ħ) for 

110
Te, 

114
Te, 

116
Te, 

122
Te, 

124
Te and 

130
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Fig.4.11: Angular momentum M(ħ) as a function of rotational frequency (ωħ/MeV) 

for (a) 
120

Te at T = 1.0 MeV and (b) 
124

Te at T = 2.5 MeV.  The open circles represent 

the experimental value [Hossain 2015]. 

ωrot(ωħ/MeV) 

(a) 

ωrot(ωħ/MeV) 

(b) 
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In fig.4.10, the rotational energies are shown as a function of angular 

momentum for 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te.  The rotational energy is 

lowered by the shape transitions and the angular momentum states beyond these 

transition points correspond to the different shapes brought about by the minimization 

of energy.  It is referred to as the band crossing.  For 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te 

and 
130

Te a single band crossing, around M ≈ 12ħ is observed.  Significant deviation 

of rotational levels at a particular angular momentum is a case of both the single 

particle alignment and collective rotation contributing to the structural change.  The 

rotational energy Erot of the residual nucleus is used in the calculation of neutron 

emission probability. 

In fig.4.11 (a and b) the angular momentum as a function of rotational 

frequency is plotted for 
120

Te & 
124

Te and the results are compared with available 

experimental values [Hossain 2015]. The rotational frequency calculated from 

STHRN method gives very good comparison with the experimental data.  As 

discussed earlier in the introduction part, the Interacting Boson Model (IBM-1) has 

been applied for the study of rotational behavior in Te isotopes [Hossain 2015].  

Although this model was able to reproduce the energy levels for higher angular 

momenta comparable with the experimental data but the moment of inertia plot seems 

to increase linearly with increasing angular momentum which shows a deviation from 

the experimental value.  This discrepancy has been overcome in STHRN method 

since the values calculated via STHRN method was able to show very good 

comparison with the numerical and follows almost the same pattern as that of the 

experimental data.   This similar behavior has been observed in the moment of inertia 

plot shown in fig.4.12. The deviation in rotational frequency for certain angular 

momentum states correspond to the different shapes brought about by the 
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minimization of free energy.  It is referred to as the band crossing.  For 
120

Te and 

124
Te a single band crossing, around M ≈ 10ħ and 12ħ is observed respectively.  

Significant deviation of rotational levels at a particular angular momentum is a case of 

both the single particle alignment and collective rotation contributing to the structural 

change.   

In fig.4.12, the kinematic moment of inertia as a function of angular 

momentum is shown for 
120

Te and 
124

Te.  In figure, the open circles correspond to the 

experimental values while the solid symbols correspond to the MOI calculated from 

STHRN method.  At low and high angular momentum, the calculated moment of 

inertia is compared with the experimental values.  The kinematical moment of inertia 

changes sharply at M = 10ħ for 
120

Te and at M = 14ħ for 
124

Te.  It corresponds to 

shape changes due to band crossing and these are compared with experimental data.   

The rotational frequency and kinematic moment of inertia as a function of 

angular momentum has been calculated by STHRN method for 
120

Te, 
122

Te  and 
124

Te 

and compared with the experimental and other theoretical model such as IBM-1 

[Hossain 2015] are tabulated in Table.4.4 and Table.4.5 respectively.  The results 

show very good agreement with the available experimental data and STHRN method 

follows the same pattern as that of experimental value instead of a linear pattern 

obtained in IBM – 1 model.  It is also seen that the values of rotational frequency and 

kinematic moment of inertia show very good agreement with the available 

experimental data. 
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Fig. 4.12: Moment of inertia (ħ
2
/MeV) as a function of angular momentum M (ħ) for   

(a) 
120

Te and (b) 
124

Te with same description as in fig.5. 



 

71 

 

T
a

b
le

 4
.5

. 
C

o
m

p
ar

is
o

n
 o

f 
m

o
m

en
t 

o
f 

in
er

ti
a 

as
 a

 f
u

n
ct

io
n

 o
f 

an
g

u
la

r 
m

o
m

en
tu

m
 a

n
d

 t
em

p
er

at
u

re
s 

ca
lc

u
la

te
d

 f
ro

m
 S

T
H

R
N

 m
et

h
o

d
 

w
it

h
 t

h
e 

av
ai

la
b

le
 I

B
M

 –
 1

 m
o

d
el

 a
n

d
 e

x
p

er
im

en
ta

l 
d

at
a 

[H
o

ss
ai

n
 2

0
1

5
] 

fo
r 

th
e 

is
o

to
p

es
 1

2
0
T

e,
 1

2
2
T

e 
an

d
 1

2
4
T

e.
 

M
o

m
en

t 
o

f 
in

er
ti

a 
(ħ

2
/M

eV
) 

1
2
4
T

e 

IB
M

-I
 

9
.9

5
6

 

2
2

.6
9

8
 

3
4

.8
7

1
 

4
6

.5
2

9
 

5
7

.6
5

4
 

6
8

.3
4

1
 

E
X

P
 

9
.5

3
8

 

2
1

.3
6

 

3
7

.0
8

 

4
3

.3
7

 

8
7

.7
6

 

- 

S
T

H
R

N
 

2
1

.3
8

9
0

 

2
5

.8
0

1
5

 

2
7

.7
5

3
8

 

2
8

.6
8

0
9

 

2
9

.5
3

1
3

 

8
1

.1
0

8
9

 

1
2
2
T

e 

IB
M

 –
 1

 

1
0

.7
1

3
 

2
2

.7
6

0
 

3
3

.4
2

4
 

4
2

.5
4

1
 

5
0

.5
1

8
 

5
7

.5
2

2
 

E
X

P
 

1
0

.6
3

9
 

2
2

.6
9

0
 

3
8

.5
9

6
 

4
1

.3
9

4
 

6
1

.1
9

1
 

6
5

.2
4

8
 

S
T

H
R

N
 

2
1

.1
4

0
6

 

2
5

.1
6

7
4

 

2
6

.9
3

2
6

 

2
7

.9
2

3
3

 

2
8

.7
5

3
9

 

6
2

.9
7

5
0

 

1
2
0
T

e 

IB
M

-I
 

1
0

.7
0

7
 

2
2

.7
0

1
 

3
2

.6
9

9
 

4
1

.1
4

7
 

4
8

.3
9

2
 

5
4

.6
5

8
 

E
X

P
 

9
.0

4
 

2
0

.4
 

3
0

.5
 

2
8

.9
 

3
6

.4
 

4
2

.5
 

S
T

H
R

N
 

2
2

.5
0

5
5

 

2
8

.0
3

0
8

 

2
9

.6
9

9
0

 

3
1

.3
1

1
9

 

6
4

.1
8

2
3

 

6
3

.3
4

0
2

 

M
 (

ħ
) 

2
 

4
 

6
 

8
 

1
0

 

1
2

 

 



 

72 

 

 

 

Fig. 4.13: The neutron separation energy (MeV) as a function of angular momentum 

M (ħ) with various temperatures (MeV).   
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Fig. 4.14: The proton separation energy Sp (MeV) as a function of angular momentum 

M (ħ) with various temperatures T (MeV).   
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Fig. 4.15: Neutron emission spectrum for various angular momenta M (ħ) as a 

function of neutron kinetic energy (MeV) for 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te 

nuclei. 
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The single neutron and proton separation energy as a function of angular 

momentum for various temperatures are shown in figs. 4.13 and 4.14 for the nuclei.  

From these figures, the separation energy values are observed to decrease sharply for 

the angular momentum M = 10ħ and this sudden drop corresponds to a shape 

transition from spherical to oblate non-collective for all the systems.  It is found that 

in a rotating prolate system the Coriolis and centrifugal forces favor the alignment of 

the individual nucleons with the rotation axis. With increasing angular momentum, 

the aligning nucleons polarize the nuclear potential resulting in axial symmetry about 

the rotational axis. The result is that the nucleus undergoes a shape transition from 

spherical to oblate non-collective.  It is also observed that single neutron separation 

energy values SN increase rapidly with angular momentum at very low temperatures. 

This behavior is due to the presence of shell effects at low temperatures.  Beyond 12ħ 

the variations in the separation energy values disappear since the shell effects get 

washed out for T = 2, 2.5 and 3 MeV. 

In figs. 4.16 and 4.17, the variation of nucleon separation energy as a function 

of temperature is presented for various angular momentum.  The effects of rotation 

affect the separation energy values at low temperatures where shell effects play a very 

important role.  At higher temperatures for T > 0.8 MeV, these fluctuations disappear 

and the energy values become almost constant due to the absence of shell effects  

(M > 2ħ). 

In fig. 4.15 neutron emission spectra for various angular momentum is shown 

for the nuclei 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te.  The curves are all normalized 

to 2000.  There is a general tendency that the neutron emission probability decreases 

with increasing neutron energy, but the emission probability for large En values are 

slightly higher compared to the emission probability of the spinless system. 
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Fig. 4.16: The neutron separation energy (MeV) as a function of temperature                      

T (MeV) with various angular momenta M (ħ) for
 110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 

130
Te nuclei. 
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Fig. 4.17: The proton separation energy (MeV) as a function of temperature T(MeV) 

with various angular momenta M (ħ) for
 110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te 

nuclei. 

  



 

80 

 

4.4 Conclusion 

Depending upon the thermodynamic parameters such as excitation energy, 

separation energy for protons and neutrons, rotational frequency, kinematic moment 

of inertia and spin-cut off parameter shape transition behavior has been studied for 

Tellurium isotopes. The equilibrium shape at non-zero temperature is found by 

minimizing free energy function rather than the energy function.  From the 

thermodynamical parameters, it is observed that, the nucleus 
110

Te is found to be 

spherical for ε = 0.0 at the angular momentum range M = 0 – 9ħ and finally reaches 

the highly deformed non-collective oblate shape for ε = 0.1 and γ = −180
o
 at                      

M = 10 – 25ħ.  And the nucleus 
130

Te remains at spherical shape with  ε = 0.0 for the 

angular momentum range M = 0 – 14ħ and becomes oblate shape with ε = 0.1 and              

γ = −180
o
 at M = 15 – 25ħ.  A similar behavior is exhibited for four other nuclei 

116
Te, 

120
Te,

 122
Te, 

124
Te, 

126
Te and 

130
Te around M = 12ħ.  The observed deformation at                   

ε = 0.1 is found to be comparable with the experimentally obtained deformation                         

ε = 0.15   which is found to be more accurate. 

 

A sudden change arises in the spin-cut off parameter and separation energy of 

neutron and proton at the angular momentum M = 12ħ for the Tellurium isotopes 

which confirms the shape transition behavior indicates an effect in all the 

thermodynamical parameters.  The excitation energy or the energy level diagram 

compared with shell model and experimental data in fig.1 reveals that STHRN 

method was strong enough to generate energy levels at high angular momentum 

particularly at 14
+ 

and 16
+
.  The moment of inertia and rotational frequency describes 

the spin distribution of nuclear levels.  The calculated results are in very good 

agreement with the experimental data and it overcomes the linear pattern obtained by 

IBM-1 model.  Thus, using cranked Nilsson shell model the shape transition for the 
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eight isotopes of Te is discussed.  From the results obtained, STHRN method is found 

to be the most suitable method to study the even – even isotopes of Tellurium nucleus 

at high spin states compared to Shell model and IBM – 1 model.  However, the 

deviations in excitation energy observed at low spin can be overthrown by the 

inclusion of pairing interactions in STHRN method. 
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CHAPTER V 

PHASE TRANSITION IN HOT ROTATING NUCLEI 

 

5.1 Introduction 

In thermodynamis, a phase transition is the transformation of a 

thermodynamic system from one phase to another.  At phase transition point, physical 

properties may undergo abrupt change for instance, volume of the two phases may be 

vastly different.  Paul Ehrenfest came up with a classification scheme for phase 

transitions, based on the thermodynamic properties of substances but it is an 

inaccurate method of classifying phase transitions, for it does not take into account the 

case where a derivative of free energy diverges.   

In the modern classification scheme, phase transitions are divided into tow 

broad categories, named similarly to the Ehrenfest classes.  The first-order phase 

transition are those that involve a latent heat.  During such a transition, a system either 

absorbs or releaes a fixed amount of energy and many important phase transiitons fall 

in this category, including the solid/ liquid/gas transitions.  The second class of phase 

transitions are the continuous phase transitions, also called second – order phase 

transitions.  Examples superfluid transition.  Lev Landau [Alhassid 1994] gave a 

phenomenological theory of second order phase transiitons and can be applied to 

nuclear systems.   

Examples of nuclear phase transitions are given below: 

(i) The emergence of superfluidity in nuclei when temperature or angular 

momentum reaches a critical value. 

(ii) The breaking of axial symmetries in the ground state as regards the 

deformed to spherical transition. 
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Recently [Kargar 2013, Dhivya 2016, Sofia 2017 and Danilo 2013] a lot of 

effort has been made to describe the behavior of paired small systems such as atomic 

nuclei.  The investigation on specific heat is important since it plays a 

significant role within the determination of the phase transition in finite nuclei.  

Several authors [Algin 2008, Alhassid 2000, Dukelsky 1991, Rossingoli 1998, Ngyen 

1990 and Bhaduri 1988] have investigated the existence of phase transition in finite 

nuclei.  The change in the nuclear shape induced by thermal excitation is related to 

this phase transition.  Danilo [Danilo 2013] have discussed the pairing phase 

transition from specific heat capacity (CV) in hot nuclei by finite – temperature 

variation after projection BCS approach (FT – VAP).  The pairing correlations 

existing in nuclei are counteracted by interactions induced in nuclear rotation.  Indeed 

a short range monopole pairing force i.e., an attractive two body nucleon – nucleon 

force tends to couple nucleons in pairs resulting in zero angular momentum.  On the 

other hand the Coriolis force exhibits an immediate tendecy to align the angular 

momentum of the nucleons with rotation axis.  It has been expected that with 

increasing angular momentum the pairing correlations will gradually collapse.  This 

has been explained by Bardeen – Cooper – Schrieffer (BCS) formalism to investigate 

the theory of superconductors and modified to finite nuclear system by Bohr, 

Mottelson and Pines.  The overall pairing collapse takes place in nuclei at high spins 

due to the breaking of individual pairs by Coriolis force and by high temperature.  In 

BCS theory, this results in the prediction of some unreal singularities within the heat 

capacity by ignoring the impact of fluctuations.  The gradual decreasing of gap 

parameter with respect to temperature, followed by a sudden decrease is interpretated 

as a rapid breaking of nucleon Cooper pairs and also the suppression of pairing 

correlation.  This is often related with the S shape heat capacity.   
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The heat capacity exhibiting S shape as a function of temperature is 

interpretated as a fingerprint of a phase transition from a strongly correlated to an 

uncorrelated phase system.  The existence of the bump in the specific heat is better 

explained by the finite size of the configuration space.  The low temperature bump in 

the specific heat is just a remnant of the two level like structure, which is adding 

gradually more states to the partition function [Civitarese 1989].  The theoretical 

investigations extended to 
93 - 98

Mo [Kargar 2011] determined a S – shape heat 

capacity curve around the critical temperature which is correlated with the 

suppression of pairing correlations and corresponds to the transition from superfluid 

to normal phase.  Recent study on heat capacities of Fe isotopes within interacting 

shell model [Liu 2001] reveals that pairing leads to an odd – even staggering effect 

within the mass dependence where the heat capacity of an odd – mass nucleus is 

significantly lower than that of the adjacent even – mass nuclei.  Microscopic 

calculations on quantum phase transition have been carried out for Nd, Sm and Gd 

isotopes [Li 2009] employing cranked Nilsson hamiltonian for high spin states.    

Moretto [Moretto 1974, 1973 and 1972] has given an expression for the 

thermodynamical potential of rotating nuclei at a finite temperature.  The angular 

momentum is generated by the lagrangian multiplier which conserves the total 

angular momentum of the system.  In this work we tend to extend the analysis of 

phase transitions from heat capacity plot in 
141 , 142

Ce, 
145 , 146

Nd and 
150 , 151

Sm.  The 

results obtained from our calculations show the presence of bump at T of the order 0.5 

to 1.0 MeV for all the heavy nuclei.  The occurrence of a bump in the specific heat 

might be due to a nuclear structure effect leading to a phase transition rather than 

finite size effect.  Therefore, it is found that pairing has significant effects on the 

specific heat.  Since within the superfluid state, the nucleon occupation probability 
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near the Fermi surface is seared out as a result of pairing correlations even at T = 0, 

Cv is significantly increased.  And the difference in Cv between even and odd neutron 

system as a function of temperature for varying angular momentum is plotted and the 

results are discussed.  In this work we assume neutrons and protons as two distinct 

non – interacting thermodynamic systems.  Statistical description of finite nuclear 

systems is generally based on grand canonical ensemble averages.   

The statistical theory with single particle level structure as the input can be 

used to extract information about the complex phenomena such as phase transitions 

and shape transitions.  The energy levels and the intrinsic spin for proton and neutron 

systems were generated by diagonalising the axially symmetric Nilsson Hamiltonian 

[Nilsson 2005] for the deformation parameter (ԑ) -0.6 to 0.6 insteps of 0.1.  The 

specific heat is recognized as a quantity which indicates the occurrence of phase 

transition.  The nuclear specific heat can be estimated from a fused compound system 

formed in heavy ion collision if the excited states spectrum is well – known.  The 

behavior of nuclear specific heat at high temperature directly yields the information 

about the relevant degrees of freedom in the spectrum of Dulong and Petti’s law.  The 

motivating feature of specific heat is the peak structure which endorses the existence 

of phase transition.  The appearance of peaks in the specific heat at temperatures  

T = 1.7 MeV and 3.1 MeV for the nuclei 
24

Mg corresponding to average change in 

shape of the nucleus from ellipsoidal to axially symmetric and from axially symmetric 

to spherically symmetric shapes, emerges as a signal for phase transitions [Miller 

1989].  
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5.2 Significance of phase transition 

Since the pioneering work of Newton and his coworkers much efforts have 

gone into the investigation of phase transitions in hot rotating nuclei. Of late, 

investigations on phase transition in finite nuclei have created new attention among 

physicists, but many questions remain still open.  One of the pertinent questions 

which arise in the finite temperature description of the nuclei is whether phase 

trnasiiton really occurs.  Till date, there are many unresorlved problems converning 

the meanng of phases and phase transitions in finite nuclei.  

 At the outset, Thouless proposed to differentiate the types of phase transiiton.  

Later, the Landau theory has forecasted a sharp first order liquid – gas phase 

transition in nuclei for temperatures below the critical temperature (Tc).  A phase 

transition from the superfluid to normal fluid has also been ivestigated based on the 

finite temperature (Ft) mean field theories such as Bardeen – Cooper – Schrieffer 

(BCS), Hartree – Fock (HF) and Hartree – Fock – Bogoliubov (HFB).  For instance, 

the FTHFB theory predicts the occurrence of sharp second order phase transition from 

superfluid nucleus to the normal nuclear matter. 

 The accomplishment of mean field theories is based to certain degree, on the 

breaking of symmetries which permits  a considerable enlargement of the variational 

Hilbert space so as to include the appropriate correlations.  The breaking of particle 

number symmetry in the BCS theory and of the rotational invariant in deformed 

nuclei are two renowned examples.  The symmetry breaking is usually related to 

phase transiitons, superfluid to normal fluid in the particle number case and spherical 

to deformed shape in the angular momentum one.  In view of enormous number of 

conFigurations involved, a statistical description becomes necessary.  However, 

microscopic statistical descriptions of highly excited nuclei are ususally based on 
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conventional signle particle treatments such as the Fermi gas model or the more 

microscopic finite temperature self consistent mean field approximations such as the 

thermal HF and HFB. 

 Heating can have a dramatic effect upon nuclear deformations, producing a 

variety of shape transitions.  Rotation also has a signigicant effect upon nuclear 

deformation.  For example, increasing the temperature of a nonrotating nucleus can 

change a prolate shape into a spherical and oblate shape and heating can also change a 

spherical shape to a prolate shape.  When a nucleus is simultaneously heated and 

rotated, the variety of shape transiitons will surely proliferate.  The finite temperature 

Hartree – Fock – Bogoliubov (FTHFB) formalism has dermined the impact of 

temperature on the shapes of nonrotating nuclei.  Later, the finite temperature Hartree 

– Fock – Bogoliubov cranking (FTHFBC) theory provides a fully self consistent 

microscopic treatment of single – particle, shape, pairing, rotational and thermal 

degrees of freedom. 

 FTHFBC formalism when applied to hot rotating nuclei, properties such as 

pair gaps and deofrmation have been determined as a funciton of temperature and 

angular momentum.  Besides this it also envisages that rotation can induce a sharp 

first order transition from superfluid to normal fluid for temperatures below Tc.  

Concerning the shapes of hot non-rotating nuclei, the FTHFB approach and Landau 

theory describes a transition from deformed to spherical shape, when temperature 

reaches Tc at zero angular momentum.  As regards the shapes of hot rotating nuclei, 

the FTHFBC model elucidates a transiiton from prolate – collective to oblate – 

noncollective shape as temperature increases at fixed angular momentum.  Hence a 

precise classification of phase transitions is necessary. 
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 Normally, all these types of phase transitions fall into two categories (i) 

pairing – phase transitions (superfluid to normal fluid) and (ii) shape – phase 

transitions (deformed to spherical shapes for example).  There are many theoretical 

and experimental supports for the appearance of these phase transitions in finite 

nuclei.  Evidences include the vanishing of gap parameter in superconducting nuclei 

for pairing – phase transition and the quadrupole moment in deformed nuclei for 

shape – phase transition.  

The phase transition from superfluid to normal nuclear matter has been 

elaborately investigated in the determination of single particle level density parameter 

as a function of angular momentum and temperature [Rajasekaran 2008].  In the 

present study, we have extended our investigation of nuclear phase transitions in light 

nuclei, with particular focus to its geometrical forms. The nuclear specific heat is also 

one among them to study the existence of phase transition. 

 One important parameter to study the phase transition is the specific heat. The 

specific heat is a quantity which indicates the occurrence of phase transition in nuclei. 

The nuclear specific heat of a fused compound system formed in heavy ion collision 

can be estimated if the excited states spectrum is known.   Elementary examples of 

this are stated by Pathria [Pathria 1972], including the free particle, the harmonic 

oscillator and rigid rotor. The behavior of nuclear specific heat at high temperature 

directly yields the formation about the relevant degrees of freedom in the spectrum of 

Dulong and Petit’s law. Tanabe [Tanabe 1980], Goodman [Goodman 1984], Cole 

[Cole 1989], Miller [Miller 1989] and others [Bhaduri 1988, Dukelsky 1991 and 

Civitarese 1994] have emphasized the role of nuclear specific heat in the 

determination of important properties of the nuclei. One motivating feature is the peak 

structure in specific heat which endorses the existence of phase transition.  



 

89 

 

 Several authors have extensively investigated [Tanabe 1982, Goodman 1984, 

Bhaduri 1988 and Cole 1989] the existence of phase transition in finite nuclei.                 

Miller et al. [Miller 1989] have investigated the occurrence of phase transition using 

finite temperature Hartree – Fock approximation and in the exact canonical ensemble. 

Rossignoli et al. [Rossignoli 1999] have studied the correlation between thermal 

effects and two of the crucial ingredients of the many body problems, via super 

conductivity and deformation due to a long- range residual force. Their finite 

temperature method exhibits important shortcomings such as the prediction of sharp 

phase transition [Rossignoli 1999]. 

Various cranking Hartree – Fock – Bogliubov (CHFB), provide a reliable 

analysis for medium and heavy systems.  Self-consistent mean field calculations 

combined with the random phase approximation (RPA) analysis are beneficial to 

detect quantum phase transitions.  In contrary, analogous investigations have shown 

that the proposed phase transition does not occur for some nuclei belonging to the                 

2s-1d shell [Dukelsky 1991]. 

 The appearance of peaks in the specific heat at temperatures T = 1.7 MeV and 

3.1 MeV for the nuclei 
24

Mg corresponding to average change in shape of the nucleus 

from ellipsoidal to axially symmetric  and from axially symmetric, spherically 

symmetric shapes, emerge as a signal for phase transitions [Miller 1989].                

Hasagawa et al. [Hasagawa 2007] have reported shape phase transition in  

nuclei along the N = Z line. This occurrence of phase transition to deformed nuclei 

due to the strong proton-neutron correlations in these nuclei. Civitarese et al. 

[Civitarese 1990] have witnessed the occurrence of a bump in the specific heat of 

some of the light nuclei belonging to the 2s-1d shell using nuclear SU3 model, may be 

due to finite size effect rather to a phase transition. 
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 It is really interesting and open question whether or not phase transitions do 

occur in finite nuclear system at finite temperatures and signatures of these phase 

transitions remain despite of fluctuations. The finite temperature mean field theories 

such Bardeen – Cooper – Schrieffer (BCS) [Bardeen 1957], Hartree – Fock (HF) [31], 

and Hartree – Fock – Bogoliubov [HFB] [Goodman 1983] have been addressed the 

phase transition from super fluid to normal fluid nuclear matter. Danilo et al. [Danilo 

2013] have studied the influence  of number and number parity projections on heat 

capacities of nuclear systems 
161

Dy and 
161

Dy using finite temperature BCS theory 

and found S-Shaped heat capacity at temperature T less than the critical temperature 

Tc , that corresponds to the super fluid to normal phase transition. The quantal and 

statistical fluctuations are necessary in identifying phase transitions in light nuclear 

systems. Within the framework of static path approximation (SPA) plus random phase 

approximation (RPA) treatment, Rossignoli et al. [Rossignoli 1998] have investigated 

thermal ad quantal fluctuations and even-odd effects in nuclear systems 
164

Er and 

165
Er at finite temperature.  Liu and Alhassid [Liu 2001] have developed a new 

method for calculating the heat capacity using the shell model Monte Carlo (SMMC) 

approach, for iron isotopes 
52-62

Fe, and identified a signature of phase transition in the 

heat capacities despite the large fluctuations. Strictly speaking, quantal and statistical 

fluctuations are of essential importance since they smooth out the singularities allied 

with phase transitions [Kanthimathi 2011].  In the statistical theory, the equilibrium 

shape of the nucleus at given angular momentum and temperature has been obtained 

by minimizing the free energy as a function of deformation. 
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The specific heat CV as a function of angular momentum M and temperature T 

is given as,  

                       (5.1) 

                                                         Or 

       (5.2) 

where S(M,T) is the entropy of the finite nuclear system and E(M,T) is the total 

energy of the system. 

 

5.3. Results and discussion 

In this section, the discussions on CV as a function of T, obtained from the 

statistical theory of hot rotating nucleus by incorporating the degrees of freedom such 

as deformation and collective rotation of the system are presented.  The calculations 

were performed for rare earth nuclei such as 
141

Ce, 
142

Ce,
 141

Ba, 
142

Ba,
 141

Xe, 
142

Xe, 

145
Nd, 

146
Nd, 

150
Sm and 

151
Sm.  The results obtained from our calculations are similar 

to those reported in [Danilo 2013] and show the presence of bump at T = 0.5 to 1.0 

MeV for all heavy nuclei.  The theoretical discussions, reveals that the occurrence of 

bump in the specific heat might be due to a nuclear structure effect leading to a phase 

transition.    
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Fig. 5.1: The S-shape nuclear specific heat capacity (CV) as a function of temperature 

T (MeV) and angular momentum M (ħ) for  
141

Ce. 

 

Fig.5.2: The S - shape nuclear specific heat capacity (CV) as a function of temperature 

T(MeV) and angular momentum M (ħ) for 
142

Ce. 
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Figures 5.1 and 5.2 shows S - shape specific heat capacity as a function of 

temperature for varying angular momentum for 
141

Ce and 
142

Ce.  The effects of 

pairing correlation on the specific heat for this system is pronounced in the CV plot as 

a S – shape curve.  Below T ≈ 0.5 MeV, the Cv is strongly suppressed by pairing 

correlations.  Above T ≈ 0.5 MeV, the Cv becomes larger than the results for 

noninteracting particles and then it becomes smaller.  This dependence of the specific 

heat on termperature is commonly refered to as “S – shape” behavior.   

 

Fig.5.3: The difference in specific heat capacity ( ΔCV ) as a function of temperature 

T (MeV) and angular momentum M (ħ) for 
141

Ce and 
142

Ce isotopes.  

[ even odd

v v v
C C C

even odd

v v v
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From fig.5.3 it is observed that for even enumber of neutrons or protons there 

is a large difference between the noninteracting and interacting system.  However, the 

difference in Cv for 
142

Ce and 
141

Ce is almost zero for M = 0ħ.  As M increases, the 

change in CV is exhibited in ΔCV plot as a hump in low temperature range.  For M = 

15ħ, the ΔCV value is found to be maximum and it is considered to be a signature of 

phase transiton from superfluid to normal system.  
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Fig.5.4: The S - shape nuclear specific heat capacity (CV) as a function of temperature 

T (MeV) and angular momentum M (ħ) for (a) 
141

Ba and (b)
 142

Ba nuclei. 
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Fig.5.5: The S - shape nuclear specific heat capacity (CV) as a function of temperature 

T (MeV) and angular momentum M (ħ) for (a) 
141

Xe and (b)
 142

Xe nuclei. 
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Fig.5.6: The difference in specific heat capacity ( ΔCV ) as a function of temperature 

T (MeV) and angular momentum M (ħ) for 
141

Ba and 
142

Ba isotopes. 
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] 

 

Fig.5.7: The difference in specific heat capacity ( ΔCV ) as a function of temperature 

T (MeV) and angular momentum M (ħ) for 
141

Xe and 
142

Xe isotopes. 
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 Fig.5.8: The nuclear specific heat capacity (CV) as a function of temperature T (MeV) 

and angular momentum M (ħ) for 
145

Nd.  

 

 Fig.5.9: The nuclear specific heat capacity (CV) as a function of temperature T (MeV) 

and angular momentum M (ħ) for 
146

Nd. 
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 Fig.5.10: The difference in specific heat capacity ( ΔCV ) as a function of temperature 

T(MeV) and angular momentum M (ħ) for 
145

Nd and 
146

Nd isotopes.  

[ even odd

v v v
C C C

even odd

v v v
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even odn od

v v vv v v
] 

 

As expected at large temperatures, the pairing correlations are found to be 

ineffective and the difference between even – even and odd – even system is 

becoming very small.  It is thus shown that the pairing correlations have a significant 

influence on the specific heat, especially for temperatures below T = 1 MeV.  The 

calculated ΔCv between the two isotopes of Ce shows clearly that the pairing 

correlations contribute to the S – shaped behavior of the specific heat. 

 

As discussed in fig.5.1, 5.2 and fig.5.3 a similar behavior is observed in                   

141 , 142
Ba which is shown in fig.5.4 and fig.5.6 and in 

141 , 142
Xe in fig.5.5 and fig.5.7 

and also for difference mass number in 
145 , 146

Nd from fig.5.8 to fig.5.10.  The 

appearance of hump in the specific heat capacity at low temperature is also influenced 
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by the low – lying collective states.  There is a general tendency for all the nuclei to 

exhibit a abrupt change in the specific heat beyond temperature T = 1 MeV.  These 

specific heat fluctuations occur at different temperatures for different nuclei.  From 

the ΔCV plot for  
145 , 146

Nd, the maximum value occurs for M = 5ħ. 

 

 

Fig.5.11: The nuclear specific heat capacity (CV) as a function of temperature                 

T(MeV) and angular momentum M (ħ) for 
150

Sm. 
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Fig.5.12: The nuclear specific heat capacity (CV) as a function of temperature                      

T (MeV) and angular momentum M (ħ) for 
151

Sm. 

 

Fig.5.13: The difference in specific heat capacity ( ΔCV ) as a function of temperature 

T (MeV) and angular momentum M (ħ) for 
150

Sm and 
151

Sm isotopes.  
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Similar discussions have been carried out for 
150

Sm and for 
151

Sm, with an 

increase in neutron number.  Figures 5.11 and 5.12 represents the CV for the isotopes 

150
Sm and 

151
Sm with an increasing M.  It is also noted that the occurrence of the peak 

in the specific heat at low temperature is a contribution of the ground state rotational 

band which is associated with a superfluid to normal phase transition.  The effect of 

angular momentum on specific heat is very much pronounced at low temperatures 

which is also observed in fig.5.13 with an increasing value of ΔCV  at M = 0ħ.    

 

5.4 Conclusion 

The interplay between pairing phase transition has been studied using the 

statistical theory with the idea of gaining some insight into the behavior of nuclear 

specific heat as a function of temperature and angular momentum.  The occurrence of 

phase transition is predicted in three rare nuclei along with their isotopes such as                

141 , 142
Ce, 

145 , 146
Nd and 

150 , 151
Sm.  The results of our calculations on specific heat  

capacity shows a predominant appearance of a hump in the low temperature region 

which is considered as  the suppression of pairing correlation and it is an indication of 

phase transition.  It is also noted that the occurrence of the peak in the specific heat at 

low temperature is a contribution of the ground state rotational band.  From the ΔCV 

plot, it is observed that the maximum difference in CV occurs at M = 15ħ for 
141 , 142

Ce 

and M = 5ħ for 
145 , 146

Nd followed by M = 0ħ for 
150 , 151

Sm.  At large temperatures, as 

expected the pairing correlations are found to be ineffective and the difference in CV 

becomes negligebly small.   
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CHAPTER VI 

A COMPARATIVE STUDY OF NUCLEAR STRUCTURE 

PROPERTIES WITH AND WITHOUT PAIRING CORRELATIONS 

 
6.1 Introduction 

   Pairing correlations play an essential role in many fermion systems 

[Guttormsen 2000] and have a strong influence on nuclear thermal quantities. 

Bardeen–Cooper–Schrieffer (BCS) theory of Superconductivity [Bardeen 1957] for 

infinite Fermi system of electrons play the vital role in explaining the sharp phase 

transitions which is connected to the breakdown of pairing correlations. The pairing 

correlation in the BCS theory vanishes suddenly at critical temperature and is 

observed as a discontinuity in the heat capacity. The S shape of the heat capacity has 

been found experimentally by the Oslo group [Melby 1999 and Schiller 2001] and in 

recent theoretical approaches such as the shell-model Monte Carlo (SMMC) 

calculations [Liu 2001, Rombouts 1998 and Alhassid 2003], the static-path plus 

random-phase approximation (SPA+RPA) [Rossignoli 1998] and the number 

projected SPA (NPSPA) [Kaneko 2007].  The Fermi – Dirac statistics was able to 

reproduce the thermal quantities at high nuclear temperature [Langanke 1996 and 

Mocelj 2007].  

Nuclear properties at the low energy region show strong dependence to the 

pairing correlations between nucleons.  It is important to take into account the paring 

effects in theoretical nuclear structure studies.  The BCS model, is used in describing 

many characteristics of the finite system of the paired nucleons inside nucleus.  The 

sudden decrease in the pairing gap parameter at the critical temperature is an 

indication of second – order phase transition in the BCS model.  This sharp phase 
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transition leads to a discontinuity in the heat capacity. The extracted semi-empirical 

thermal quantities by the use of the experimental data on the nuclear level densities 

for some nuclei show a smooth behavior for the excitation energy and entropy and a 

smooth S-shaped curve for the heat capacity around the critical temperature 

[Rahmatinejad 2015]. 

Pairing phase transition in nuclei, the S - shaped heat capacity and the relation 

between the pairing gap parameter at zero temperature and the critical temperature 

have been discussed within various approaches in recent studies [Liu 2015, Li 2015 

and Niu 2013].  The SPA method which is based on the path integral representation of 

partition function, is a microscopic framework to deal with large amplitude static 

fluctuations around the mean field [Rossingoli 1999].  The extracted pairing gap 

parameter in the SPA method for heavy nuclei is a non-vanishing function of 

temperature and leads to a smooth S-shaped heat capacity.  In the case of light nuclei, 

the pairing gap parameter decreases very gradually resulting in the S-shape of the heat 

capacity approximately disappears [Ginzburg 1950].  In the MPBCS method, the 

pairing gap parameter is assumed to be a Fermi function of temperature at the vicinity 

of the critical point.  This method improves the extracted results for thermal quantities 

within the BCS model.  The Ginzburg–Landau model is a phenomenological method 

to describe the first and second-order phase transitions near the critical temperature 

[Ginzburg 1950 and Rahmatinejad 2016]. 

In the last decade there has been a renewed interest for studying the 

fingerprints of pairing correlations in the thermodynamic properties of excited nuclei.  

This interest was triggered by the new accurate measurements of level density at low 

excitation energies.  The possible thermal signatures of pairing correlations in these 

rare-earth isotopes have been studied either with schematic models or employing 
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various approximations which go beyond the standard BCS approach.  The finite 

temperature (FT-VAP) approach will be applied here to investigate the effect of 

pairing on the thermal properties of the Dy and Yb isotopes.  Schiller [Schiller 2001] 

argued that the S-shaped form of the specific heat in Dy and Yb isotopes is generated 

by the transition from the superfluid to the normal phase.  The competition between 

temperature and pairing correlations in nuclei at low excitation energies has been 

studied for several decades and it was predicted that the critical temperature Tc for pair 

correlation quenching could be expressed.  In addition, pairing correlations are 

expected to play an important role in the decay of compound nuclei formed in heavy-

ion collisions.  The BCS and HFB methods have been extended to self-consistent 

mean-field models to improve the description of the pairing transition in spherical 

nuclei as well as in deformed nuclei where shape transitions have been predicted.   

At zero temperature i.e., the ground states of most nuclei are superfluid states, 

but in warm nuclei [Guttormsen 2000] the super-fluidity tends to vanish when the 

temperature increases. Such a transition from superfluid to normal has attracted wide 

attentions in the past decades.  From these investigations, the S-shaped curve of heat 

capacity has been found as a function of temperature. This was regarded as a 

fingerprint of the superfluid to normal (pairing) phase transition. Based on this 

picture, the critical temperature has been estimated from the experimental data as                      

Tc  0.5 MeV for 
161,162

Dy, 
171,172

Yb [Dean 2003] and 
166,167

Er [Bardeen 1957].   

Clear signatures of pairing phase transition is provided by the mean-field 

calculations including finite temperature BCS (FT-BCS), finite-temperature HFB 

(FT-HFB) with a pairing – plus – quadrupole Hamiltionian, as well as the self-

consistent mean-field models in both non-relativistic and relativistic form. With a 

variety of quantum fluctuations, it has been found that the critical temperatures for the 
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pairing phase transition given by most mean-field models locate in the interval of    

0.5–0.6Δ(0), where Δ(0) is the pairing energy gap at zero temperature.  For the pairing 

phase transition, the particle number conservation is violated in the superfluid phase 

while preserved in the normal-fluid phase. Due to the restoration of particle number 

conservation, the calculated heat capacity varies smoothly with the temperature, 

indicating a gradual transition from the superfluid to the normal phase.  Therefore, it 

is imperative to investigate the pairing transition in hot nuclei and the nature of the S-

shaped heat capacity curve by the shell model like approach. In this approach, the 

particle number is strictly conserved and the blocking effects are also treated exactly.   

 

6.2 Pairing phase transition 

To have a complete and comprehensive picture of pairing – phase transition 

and other intrinsic properties of nuclei, effects of pairing correlations are needed.  

Pairing correlations at finite temperature have been the subject of peculiar interest 

since the early 1960s.  The theory of nuclear superfluid pairing correlations was 

developed about 50 years ago by Belyaev [Belyaev 1965].  The first studies were 

carried on within the framework of FT-BCS theory.  It was clearly recognized then 

that the pairing field is an important component of the nuclear mean-field potential 

and the interplay between deformation driving forces and the pairing field determines 

most of the properties of a nuclear system. 

Many attempts have been made to describe and understand the response of the 

nuclear pairing in the superfluid system.  The finite temperature mean field 

description of heavy nuclei has provided the theoretical support for the study of 

nuclear properties at high excitation energy and angular momentum.  The pairing 

correlations existing in nuclei are counteracted by interactions induced in nuclear 

rotation.  Indeed a short range monopole pairing force, i.e., an attractive two body 
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nucleon – nucleon force tends to couple nucleons in pairs resulting in zero angular 

momentum.  On the other hand, the Coriolis force exhibits a direct tendency to align 

the angular momentum of the nucleons with rotation axis.  It has been expected that 

with increasing angular momentum the pairing correlations will gradually collapse.  

This has been explained by BCS formalism introduced to investigate the theory of 

superconductors and modified to finite nuclear system by Bohr [Bohr 1958].  The 

overall pairing collapse takes place in nuclei at high spins due to the breaking of 

individual pairs by Coriolis force and by high temperature.  

 Tanabe [Tanabe 1982] have extracted the average properties of the deformed 

nuclei in excited system, employing temperature dependent HFB equations where the 

effects of pairing are important and have predicted a possible first order phase 

transition.  Agarwal et al. [Agarwal 2000] have made a detailed study of the 

temperature dependence of pairing gap using relativistic Hartree-BCS theory.  Further 

Skyrme’s interaction is used in deformed HF calculations that includes pairing 

correlation in a self-consistent way be considering energy functional depending on 

occupational probabilities.  Recently density functional theory of nuclear structure 

provides a many particle wave function which is very useful to study the static 

properties.  However, the study of quantum phase transitions in rotating nuclei 

involves the interplay between static and dynamic properties.  This interplay 

determines the type of shape – phase transitions in rotating nuclei.  It also elucidates 

the behavior of low – lying excitations specifically related to the shape transitions at 

high spins.  We have also analyzed the shapes of hot rotating nuclei and the intention 

is to find out how the deformation varies with temperature and angular momentum. 

In this work, thus special attention is paid to the influence of pairing on the 

low-temperature behavior of the specific heat, nuclear level density parameter, 
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excitation energy, entropy and pairing gap for 
161,162

Dy and 
171 ,172

Yb nuclei within the 

superconducting BCS model. 

 

6.3 Formalism 

The physical quantity of heat capacity is calculated by using the following relation 

.                    (6.1) 

In order to study the clearest picture of phase transition, the partition function is also 

calculated without incorporating pairing correlation and heat capacity is defined by, 

                                                      C = T dS/dT.        (6.2) 

Further, the influence of pairing on level density parameter ( ) with pairing 

correlation is defined with the following equations: 

 ,                 (6.3) 

where,  is entropy and  is the excitation energy of the system. The entropy 

and excitation energy are calculated using the statistical formalism with pairing 

correlation given in chapter II.  

 

6.4 Results and discussion 

The influence of pairing in the atomic nucleus is studied by employing 

statistical theory of hot rotating nuclei under extreme temperature for the isotopes              

161, 162
Dy and 

171 ,172
Yb.  Due to the particle number fluctuation and quasiparticle 

parity mixing, the BCS theory is not well suited to describe pairing effects in hot 

nuclei.  An alternative method to overcome these drawbacks is to use the particle 

number projected BCS approximation extended to finite temperature.  The statistical 

properties of pairing interaction are investigated in the framework of FT-BCS 

approximation.  The variation of the pairing correlations with the temperature is 

characterized by the pairing gap.   The pairing gap as a function of temperature shows 
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that at a critical temperature Tc the pairgap vanishes and the fermion system predicts 

a sharp second – order transition from superfluid to normal fluid.   The sharp 

transition predicted by FT-BCS is connected to the breaking of particle number 

conservation. 

In principle the effect of pairing correlations can be studied with any energy as 

to preserve the amount of pairing correlations, however this cannot be applied for too 

large energy windows because the number of excited states which can be built on 

from the single particle levels becomes too large to be handled in calculation.  The 

thermal quantities such as level density parameter, excitation energy, entropy and heat 

capacity has been calculated for the above mentioned isotopes and it is compared with 

the thermal parameters calculated without the inclusion of pairing correlations.  The 

results show a considerable effect of pairing phenomenon in the thermal quantities.  

The S – shape heat capacity as a function of temperature is considered as an 

indication of phase transition in the nucleus.  The results are compared with the 

available experimental data and other available theoretical data.   

Figure 6.1 illustrates the pairing gap (Δ) as a function of temperature (T) for 

161
Dy and 

162
Dy.  It is observed that the pairing gap vanishes at a critical temperature 

Tc ≈ 0.6 MeV for 
161

Dy and 
162

Dy.  As mentioned earlier the critical temperature at 

which the pairgap vanishes is the occurrence of phase transition of the nuclear system 

from superfluid to normal phase.   
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Fig. 6.1: Pairing gap Δ (MeV) as a function of temperature T (MeV) for (a) 
161

Dy and 

(b) 
162

Dy isotopes. 
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Fig. 6.2: Pairing gap Δ (MeV) as a function of temperature T (MeV) for (a) 
171

Yb and 

(b) 
172

Yb isotopes. 
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The pairing gap is almost constant below T ≈ 0.2 MeV and above T ≈ 0.2 

MeV, the neutron and proton pairing gap calculated decreases smoothly with the 

temperature, while it does not vanish up to 0.6 MeV.  This indicates a gradual pairing 

transition from the superfluid state to the normal state in the hot nucleus.  The drop of 

the pairing gap results in an increasing number of the Cooper-pair-broken excited 

states, and thus a rapid increase of the heat capacity.  In this way, the S shape of heat 

capacity curves shown in fig.6.9 and fig.6.10 is provided by the competition between 

the effects from temperature and pairing correlations. 

 

The thermodynamic properties of hot nuclei are convenient to study in terms 

of excitation energies.  The excitation energies   defined in Eq. (2.24) for                    

161,
 
162

Dy and 
171,

 
172

Yb  calculated with (dashed line) and without (solid line) pairing 

correlations as functions of the temperature are shown in fig.6.3 and fig.6.4, which 

exhibits directly the correspondence between the temperature and the excitation 

energy.  From the fig.6.2 and 6.4 it is observed that the excitation energy with the 

inclusion of pairing correlation shows a higher value compared to the excitation 

energy calculated without incorporating pairing phenomenon. 

   

The sensitivity of thermodynamic quantities such as entropy level density 

parameter  and specific heat   with and without pairing correlations are studied for 

161, 162
Dy

 
and 

171, 172
Yb.  The quantities such as entropy and specific heat are the first 

and second derivatives of the free energy  with respect to the temperature, and thus 

sensitive to thermal changes of the ground state.   
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Fig.6.3: Excitation energy E
*
(MeV) as a function of temperature with inclusion of 

pairing and without pairing for (a) 
161

Dy and (b) 
162

Dy isotopes. 
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Fig.6.4: Excitation energy E
*
(MeV) as a function of temperature with inclusion of 

pairing and without pairing for (a) 
171

Yb and (b) 
172

Yb isotopes. 
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In fig.6.5 and fig.6.6 are shown the entropy as functions of the temperature 

calculated by the finite temperature BCS formalism.  The entropy calculated with the 

pairing correlations is compared with the entropy calculated without the inclusion of 

pairing correlations.  At low temperature, if the pairing effects are ignored it leads to 

larger single particle level spacing on the average, presents smaller entropy (dashed 

black line).  At low temperature, without pairing correlations, the entropy is largely 

determined by the few states around the Fermi energy, and the number of the involved 

states is essentially determined by the detailed single particle spectrum therefore 

leading to increase in entropy as shown in fig.6.5 and fig.6.6 (solid black line).  Both 

temperature and pairing correlations can disperse the particle over the states beyond 

the Fermi level.  

 

As the temperature increases, and as the pairing correlations are enhanced, 

more single particle states will get involved to contribute to the entropy.  As expected, 

the effect of the pairing correlations is clearly visible below the critical temperature 

(TC ≈ 0 6 MeV), inducing a strong reduction of the entropy calculated without the 

inclusion of pairing correlation.  Figure 6.5 and 6.6 gives a comparison of entropy (S) 

as a function of temperature including and excluding the pairing phenomenon.  From 

the fig.6.5 it is observed that the entropy of an unpaired fermion system shows a 

linear increase with temperature whereas the paired system shows an abrupt increase 

in entropy.  The level density parameter (a) as a function of temperature in fig. 6.4 

also indicates the impact of pairing at a low temperature region.   
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Fig.6.5: Entropy (S) as a function of temperature T (MeV) with inclusion of pairing 

and without pairing for (a) 
161

Dy and (b) 
162

Dy isotopes. 
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Fig.6.6: Entropy (S) as a function of temperature with inclusion of pairing and 

without pairing for (a) 
171

Yb  and (b) 
172

Yb isotopes. 
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Fig.6.7: Level density parameter a (MeV
-1

) as a function of temperature T (MeV) 

with inclusion of pairing and without pairing for (a) 
161

Dy and (b) 
162

Dy isotopes. 
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Fig.6.8: Level density parameter a (MeV
-1

) as a function of temperature T (MeV) 

with inclusion of pairing and without pairing for (a) 
171

Yb and (b) 
172

Yb isotopes. 
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Figure 6.9 indicates the specific heat capacity (CV) as a function of 

temperature for 
161

Dy and 
162

Dy.  The observed S – shape heat capacity curve is found 

to be an indication of the occurrence of phase transition from superfluid to 

normalfluid system.  The observed S-shape heat capacity CV is found to be a 

remarkable signature of phase transition and it is found to occur around the critical 

temperature TC = 0.6 MeV.  The heat capacity without the inclusion of pairing 

correlation is found to have a linear increase as a function of temperature.  In the 

absence of pairing, there is no notable change or peak in the specific heat which 

means it exhibits a very gradual spherical to deformed transition.   

 

The nonlinearity of the specific heat around TC might be related to shell 

effects.  The results thus clearly show that the pairing correlations contribute to the   

S-shaped behavior of the specific heat in thermally excited nuclei. A realistic 

description of the smooth S-shaped behavior in finite nuclei requires a more 

elaborated model including particle number projection.  It is shown that the smooth  

S-shaped behavior may be even washed out in some rare-earth nuclei [Danilo 2013].  

The predictions for the critical temperature, associated to the discontinuity in the 

specific heat of fig.6.9 and fig.6.10, vary among the models to a much larger extent 

since this phenomenon is strongly related to the position of resonance states in the 

continuum, we expect to observe deviations among models predicting different 

positions of these states.   
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Fig.6.9: S-shape heat capacity (CV) as a function of temperature T (MeV) with 

inclusion of pairing and without pairing for (a) 
161

Dy and (b) 
162

Dy isotopes. 

  



 

122 

 

   

 

 

 

Fig.6.10: S-shape heat capacity (CV) as a function of temperature T (MeV) with 

inclusion of pairing and without pairing for (a) 
171

Yb and (b) 
172

Yb isotopes. 
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 Figure 6.10 indicates the specific heat capacity (CV) as a function of 

temperature for 
171

Yb and 
172

Yb.  The observed S – shape heat capacity curve is found 

to be an indication of the occurrence of phase transition from superfluid to 

normalfluid system.  The observed S- shape heat capacity CV is found to be a 

remarkable signature of phase transition and it is found to occur around the critical 

temperature TC = 0.7 MeV.  The heat capacity without the inclusion of pairing 

correlation is found to have a linear increase as a function of temperature.  In the 

absence of pairing, there is no notable change or peak in the specific heat which 

means it exhibits a very gradual spherical to deformed transition.  

 

6.5 Conclusion 

The calculations performed using STHRN method was able to predict the 

pairing phase transition from superfluid to normal and the pairing gap vanishes 

around a critical temperature (Tc) = 0.6 MeV for angular momentum M = 0ħ.  Role of 

pairing has significant effects on the evaluated thermodynamical parameters at a low 

temperature region.  The thermodynamical parameter that are evaluated without 

incorporating pairing correlation shows a linear response for increasing temperature 

while from pairing correlation they show a pronounceable change due to the presence 

of pairing.  The impact of pairing correlation is observed only in low temperature 

region i.e., for T < 1 MeV. 
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CHAPTER VII 

SUMMARY AND CONCLUSION 

 The shape-phase transition and shape evolution in hot rotating nuclei are 

studied using the statistical model incorporating deformation, collective and non-

collective rotational degrees of freedom and shell effects. 

 Nuclei in the region 110  have been investigated which involve 

shape changes associated with temperature and angular momentum. The nuclear 

properties that are studied in detail are nuclear level density, level density parameter, 

spin cut-off parameter, kinematic and dynamic moments of inertia, single neutron and 

single proton separation energies, excitation energy and so on. Excitation energies 

calculated for Te were compared with experimental values and shell model values. 

Excitation energy calculated from statistical model agreed with the experimental 

values at higher angular momenta. The same behavior was also shown by 
74

Se nuclei 

whose excitation energy calculated matched closely with the available experimental 

data .The shape of the nuclei 
110

Te, 
114

Te, 
116

Te, 
122

Te, 
124

Te and 
130

Te are found to 

change from spherical to oblate non-collective. The spin cut-off parameter values are 

found to increase sharply at 6ħ and 8ħ respectively for 
70

Se and 
74

Se which shows the 

shape transition from spherical to non-collective oblate. 

The calculations were performed for rare earth nuclei such as 
141

Ce, 
142

Ce,
 

141
Ba, 

142
Ba,

 141
Xe, 

142
Xe, 

145
Nd, 

146
Nd, 

150
Sm and 

151
Sm.  The theoretical discussions, 

reveals that the occurrence of bump in the specific heat might be due to a nuclear 

structure effect leading to a phase transition.  As expected at large temperatures, the 

pairing correlations are found to be ineffective and the difference between even – 

even and odd – even system is becoming very small.  It is thus shown that the pairing 

correlations have a significant influence on the specific heat, especially for 
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temperatures below T = 1 MeV. The appearance of hump in the specific heat capacity 

at low temperature is also influenced by the low – lying collective states.  There is a 

general tendency for all the nuclei to exhibit a abrupt change in the specific heat 

beyond temperature T = 1 MeV.  These specific heat fluctuations occur at different 

temperatures for different nuclei.  It is also noted that the occurrence of the peak in 

the specific heat at low temperature is a contribution of the ground state rotational 

band which is associated with a superfluid to normal phase transition.  The occurrence 

of phase transition is predicted in three rare nuclei along with their isotopes such as                 

141 , 142
Ce, 

145 , 146
Nd and 

150 , 151
Sm.  The results of our calculations on specific heat  

capacity shows a predominant appearance of a hump in the low temperature region 

which is considered as  the suppression of pairing correlation and it is an indication of 

phase transition.  It is also noted that the occurrence of the peak in the specific heat at 

low temperature is a contribution of the ground state rotational band. 
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