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Stellingen n 

behorendee bij het proefschrift 

AA conformal field theory description 
of f 

fractionall  quantum Hall states 

1.. De 'K-matrices' die de topologische eigenschappen van quantum Hall systemen be-
schrijvenn kunnen tevens worden opgevat als de matrices die de exclusie statistiek pa-
rameterss van de excitaties aan de rand van deze systemen bevatten. 
HoofdstukHoofdstuk 4 en 5 van dit proefschrift. 

2.. Clustering van electronen in fractionele quantum Hall systemen geeft aanleiding tot 
niet-abelsee statistiek van de fundamentele excitaties van deze systemen. 
HoofdstukHoofdstuk 3 van dit proefschrift. 

3.. In theorie behoren quantum Hall toestanden waarbij een scheiding van de lading en 
spinn van de fundamentele excitaties optreedt tot de mogelijkheden. 
HoofdstukHoofdstuk 3 van dit proefschrift. 

4.. De ontaarding van de laagste energie toestanden van excitaties over een geclusterde 
quantumm Hall toestand kan berekend worden met behulp van de statistiek eigenschap-
penn van zogenaamde 'parafermion velden'. 
HoofdstukHoofdstuk 6 van dit proefschrift. 

5.5. De Fibonacci getallen 1,1,2,3,5,8, . . ., of 7{n) = F{n - 1) + T{n - 2), met 
T(Q)T(Q) = 1 en JF(1) = 1, kunnen in termen van binomiaal coëfficiënten geschreven 
wordenn als 

,, /n i+ fe\ /Tl2 + Q\ 

«« = E ( l ) ( l
a,b a,b 

waarbijj  de som over a en & zodanig is dat de getallen in de binomiaal coëfficiënten 
geheell  zijn. 
HoofdstukHoofdstuk 6 van dit proefschrift. 

6.. De verklaring van het 'piek effect' in de supergeleider CeRu2 moet niet gezocht wor-
denn in de vorming van een gegeneraliseerde 'Fulde-Ferrell-Larkin-Ovchinnikov' toe-
stand,, zoals is gesuggereerd in de literatuur, maar in veranderingen in de elasticiteits-
eigenschappenn van het vortex rooster. 
D.D. Groten, E. Ardonne, S. Ramakrishnan, G.J. Nieuwenhuys, andJ.A. Mydosh, Influ-
encee of the spin susceptibility on the peak effect in La-doped CeRu2, Physica C 306, 
271271 (1998). 



7.. Voor een goede beschrijving van de gevoelstemperatuur dient naast de temperatuur niet 
alleenn de windsnelheid meegenomen te worden (zoals in de 'wind chili factor'), maar 
tevenss de luchtvochtigheid. 

8.. Het doen van een experimentele stage is voor studenten theoretische natuurkunde een 
verrijkingg van de opleiding. 

9.. Het grootste mysterie van het heelal is het bestaan ervan. 

10.. Het veiliger maken van auto's en wegen leidt tot onveiliger rijgedrag. 

11.. Met een parachute uit een vliegtuig springen is niet onnatuurlijker dan het vliegen zelf. 

Eddyy Ardonne, 24 april 2002 
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Introductio n n 

Moree than one hundred years after the discovery of the electron, there is still no complete 
understandingg of the states of matter that can be formed in a system of electrons. In this 
thesiss we consider electron systems under so-called 'quantum Hall conditions'. We propose 
andd study a number of novel states of matter that can be formed by electrons under these 
conditions.. Before we describe our work, we briefly discuss the discovery of the electron 
andd on the various quantum states that electrons can form. 

InIn the last decade of the nineteenth century, the experiments of Joseph Thomson on 
cathodee ray tubes led to the discovery of the electron1. He introduced the electron with the 
followingg words: "Electrification essentially involves the splitting up of the atom, a part of 
thee mass of the atom getting free and becoming detached from the original atom". Also, 
thee experiments of Pieter Zeeman on the effect of a magnetic field on spectral lines and the 
subsequentt explanation of Hendrik Lorentz corroborated the discovery of Thomson. The 
(anomalous)) Zeeman effect played a crucial role in the determination of the properties of 
thee electron. This splitting of spectral lines under the influence of a magnetic field could 
eventuallyy be described by Wolfgang Pauli by making the assumption that there was an 
additionall  quantum number in the problem. However, he did not clearly state to what this 
quantumm number relates. Independently, Ralph Kronig and George Uhlenbeck and Samuel 
Goudsmitt proposed that this additional quantum number is intrinsic to the electron; they 
discoveredd the property of the electron which is nowadays called spin. One more ingredient 
iss needed to be able to explain the spectra of atoms in a magnetic field, namely the famous 
Paulii  exclusion principle, which states that no two electrons can be in the same quantum 
state.. The spin of the electron and the Pauli exclusion principle are crucial ingredients in 
theoriess of condensed matter systems. 

Att the Cavendish Laboratory (where Thomson performed his experiments) annual din-
nerr a toast used to be offered on the discovery of the electron: "The electron: may it never 
bee of use to anybody." Nevertheless, the electron changed society in a profound way, as the 
operationn of all electronic equipment is based on electrons. 

Thee state of the electrons in a normal metal is understood in terms of the Fermi liquid, 
whosee properties are largely similar to those of a free electron gas. But, in roughly the 
samee way as ordinary water molecules can form different phases (namely the solid, liquid 
andd gas phases), a system of electrons can exist in states that are entirely different from the 
freee electron gas. In 1911, Heike Kamerlingh Onnes discovered the superconducting state 
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inn mercury by cooling it down to just 4 Kelvin above the absolute minimum. In this state 
off  matter, pairs of electrons can move frictionless through the metal. It took theoretical 
physicistss up to 1957 to explain this type of superconductivity. More states of matter have 
beenn discovered. Here, I would like to mention a special class of superconductors, namely 
thee 'high-temperature' superconductors, discovered in 1986. These ceramic materials be-
comee superconducting at much higher temperatures than the original ones discovered by 
Kamerlinghh Onnes. The state of matter formed by the electrons in these systems is poorly 
understoodd at present. 

Inn this thesis, we will concentrate on yet another class of electron states, the so called 
quantumquantum Hall fluids. In 1980, Klaus von Klitzing, Gerhard Dorda and Michael Pepper 
madee a remarkable discovery. On performing Hall measurements on a system in which the 
electronss are confined to a plane, they discovered that, at certain values of the magnetic 
field,, the longitudinal resistance of the system vanished and the Hall resistance showed 
plateaux.. The value of the conductance on these plateaux was equal to an integer times 

2 2 

thee fundamental conductance quantum, given by ^-. While this result came more or less 
unexpected,, this effect can (naively) be understood in terms of a theory of non-interacting 
electronss in the presence of disorder. 

InIn 1982, another type of quantum Hall states was discovered. By investigating very 
cleann hetero-junctions, Daniel Tsui, Horst Störmer and Arthur Gossard discovered quan-
tizedd Hall plateaux with a quantized Hall conductance equal to a fractional value (namely 
| )) of the conductance quantum. The first big step of explaining this effect was made by 
Robertt Laughlin. He came up with an approximate (though very good) trial wave function 
forr the full, interacting many body problem. One of the most interesting consequences of 
thiss theory is the existence of particles which carry | of the charge of the electron. In 1995, 
thiss fractional charge was observed in shot-noise experiments. 

Promptedd by observations first made in 1987, Gregory Moore and Nicholas Read pro-
posedd new states of two-dimensional electron systems which combine pairing of electrons 
withh the properties of the fractional quantum Hall fluids proposed by Laughlin. It is these 
typess of quantum Hall fluids which we will consider in this thesis. 

'Thee references for this section are: E.N. da C. Andrade, [2]; J. Bardeen, L.N. Cooper and J.R. Schrieffer, [11]; 
J.G.. Bednorz and K.A. Muller [12]; H. Kamerlingh Onnes, [61]; K. von Klitzing, G. Dorda and M. Pepper, [64]; 
R.B.. Laughlin, [67]; G. Moore and N. Read,[71]; W. Pauli, [77,78,79]; R. de Picciotto et. ai, [80]; L. Saminadayar 
ex.ex. al, [89]; J.J. Thomson, [97, 98]; D.C. Tsui, H.L. Störmer and A.C. Gossard, [99]; G.E. Uhlenbeck and 
S.. Goudsmit, [100]; B.L. van der Waerden, [101]; P. Zeeman, [117]. 



Chapterr  1 

Thee quantum Hall effect 

Inn 1980, K. Von Klitzing, G. Dorda and M. Pepper made a remarkable discovery [64]. In 
doingg Hall measurements on a silicon MOSFET (metal-oxide-semiconductor field effect 
transistor),, they found that the Hall resistance, which is given by ife = ^ (see the left 
panell  of figure 1.1 for a sample setup) did not follow the classical behaviour, which would be 
linearr in the applied magnetic field. Instead, they found that at certain values of the magnetic 
field,field, plateaux were formed. At these plateaux, the Hall conductance was quantized very 
preciselyy (precision nowadays is better than 10-8) to an integer times the fundamental units 

2 2 

off  conductance, ^-. At the values of the magnetic field where the plateaux in the Hall 
conductancee are observed, the longitudinal voltage goes to zero. This effect is called the 
integerinteger quantum Hall effect. 

Thoughh this observation was completely unexpected, it can, naively, be explained in 
termss of non-interacting electrons confined in a two-dimensional system, with a strong mag-
neticc field perpendicular to the two-dimensional plane in which the electrons live. In these 
systems,, the electronic states organize themselves in Landau levels, which are highly de-
generate,, while the states are extended. The Landau levels are separated by large gaps hwc 

(u(ucc is the cyclotron energy), in comparison to the other energy scales in the problem, which 
aree the Zeeman and interaction energy. 

Withh p (an integer) Landau levels completely filled, the Hall conductance is quantized to 
anan — y- = PY- TO explain the plateau behaviour, the effects of disorder have to be taken 
intoo account. The effect of the disorder is to localize some of the extended states, while 
theyy are also shifted a bit in energy. By changing the magnetic field, one changes the filling 
fractionn and thus the Fermi-level. If the Fermi-level is in a region where only localized 
states,, which do not contribute to the conductance, are present, changing the magnetic field 
doess not change the conductance, and hence we observe a plateau. The regions where 
thee Hall conductance changes from one plateau to another correspond to magnetic fields 
wheree the Fermi-level lies in the region of the extended states, which do contribute to the 
conductance.. To explain that, also in the presence of disorder, the Hall conductance is 
quantizedd to an integer times the fundamental conductance quantum, one can use a gauge 
argumentt [66, 54]. Due to gauge invariance, adiabatically changing the flux by one flux 
quantumm will result in the transfer of charge from one edge to another. If, say, n electrons 
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Figuree 1.1: Left: schematic setup. Right: resistance measurements; figure taken from [28]. 

aree transferred, this leads to a Hall conductance <TH = U p also in the presence of disorder. 
Thee quantization of the Hall conductance can be so precise as found in the experiments 
becausee it is based only on gauge invariance and the presence of a mobility gap. 

Remarkablee as the integer quantum Hall effect is, nature showed its beauty by pro-
vidingg an even more astonishing state of matter. In extremely clean GaAs/AlxGai_xAs 
heterostructures,, D.C. Tsui, H.L. Störmer and A.C. Gossard observed a quantum Hall effect 
att values of the magnetic field which correspond to a partially filled Landau level [99]. The 
valuee of the Hall conductance at these plateaux was a simple fraction of the fundamental 
conductancee quantum an = £ X ' w n e re V-, Q are small integers, while q is odd. This ef-
fectt is called the fractional (or anomalous) quantum Hall effect. See figure 1.1 for typical 
resistancee measurements on clean samples. This fractional quantum Hall effect can not be 
explainedd using the 'simple' picture which was used above to explain the integer quantum 
Halll  effect, because in that picture, no gap can arise within a Landau level. The presence of a 
plateauu in the Hall conductance and the vanishing longitudinal voltage drop imply the pres-
encee of a (mobility) gap. The interactions between the electrons are crucial in the formation 
off  such a gap. 

Thee first step in explaining the fractional quantum Hall effect was made by R. Laugh-
linn [67], who proposed a set of quantum Hall states, in the form of trial wave functions, 
whichh were shown to capture the basic features of the fractional quantum Hall states. The 
Laughlinn wave functions are variational wave functions for the problem of two dimensional 
interactingg electrons in the presence of a magnetic field. The hamiltonian for this system is 
ass follows 

i i 

Thee first term describes the kinetic energy of the electrons (with me the (effective) mass of 
thee electrons and AEM the vector potential for the magnetic field), while the second term 
representss the Coulomb interaction (p(x) is the electron density in the two-dimensional 
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system).. In this description it is assumed that all the electrons are polarized by the strong 
magneticc field. The Laughlin wave functions are obtained from this hamiltonian by doing 
aa variational calculation. There are certain constraints on the wave functions, namely, they 
havee to be antisymmetric under the exchange of any two electrons and they need to be eigen-
statess of the total angular momentum operator. In addition, we assume that the interactions 
aree taken into account via a Jastrow factor, which is a two-body correlation, keeping the 
electronss apart. This factor has the general form f] \{zi — Zj). Taking these constraints into 
accountt leads to the following form of the variational wave functions (using the symmetric 
gaugee in describing the magnetic field which is perpendicular to the plane of the electrons) 

*L({zi})*L({zi}) =n^=n  ̂ - ^ )M e"E< ^ , (i.2) 
i<j i<j 

wheree we used complex coordinates zi to represent the position of the electrons, while the 

magneticc length, / = yl jg is the basic length scale. The quantum Hall systems these 
wavee functions describe have fillin g fraction v — ^ . They are not the exact ground state 
wavee functions for the Coulomb interaction, but they were shown to have very good overlap 
withh the numerically obtained ground state wave functions for a large class of repulsive 
interactions.. So studying these wave functions is a good starting point to study properties 
off  the quantum Hall systems at v — jj. On should keep in mind however, that many 
properties,, such as the behaviour of the transition from one quantum Hall state to another, 
cann not be addressed in this way. What can be learned in this approach are properties of the 
excitationss over these qH systems, and they turn out to be very interesting. 

Beforee we go on to discuss the properties of the excitations over the quantum Hall 
systems,, we will first briefly discuss the other fractional quantum Hall systems, at fillin g 
fractionss v — |, with p > 1. From the experimental plot in figure 1.1, it can be seen that 
alll  the fractions have an odd denominator. The Laughlin states only describe a systems 
off  fermions when M is odd. To explain the other quantum Hall systems, Jain proposed 
aa scheme in which composite fermions play a crucial role [60]. In this approach, an even 
numberr of flux quanta is bound to the electrons, to form the composite fermions. These 
compositee fermions effectively feel a reduced magnetic field, and can form a integer quan-
tumm Hall system. The fillin g fraction of the original electrons becomes v = 2  Almost 
alll  the fractions observed can be obtained in this way. Note that the fillin g fractions in the 
compositee fermion scheme all have an odd denominator, related to the fact that the quantum 
Halll  systems are built from electrons. 

1.11 Excitations in quantum Hall systems 

Quasiholess in quantum Hall systems can be 'made' by locally increasing the magnetic flux 
throughh the sample in an adiabatic manner. These quasiholes can be shown to have a frac-
tionaltional charge, and also the statistics is fractional, in the sense that it interpolates between 
fermii  and bose statistics. 

Butt before we come to the point of the statistics, we will first show how the fractional 
chargee of the quasiholes arise, in the case of the Laughlin states. So we are in a situation 
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wheree the conductance of the system is completely off-diagonal, and quantized, <TH = JJ X' 
<TLL = 0. If we now locally increase the magnetic flux through the sample by one flux 
quantumm $0 = 7 (in a adiabatic fashion), this has the effect of expelling some charge form 
thiss region. The amount of charge expelled is calculated to be gqh = jj, in units where 
thee charge of the electron is gei = — 1. The prediction of the existence of quasiparticles 
withh fractional charge has been confirmed for the v = | Laughlin state by means of shot 
noisee experiments [80, 89]. Later on, also quasiholes with charge | have been observed in 
aa v — I quantum Hall state [87]. 

Lett us now turn to the statistics of these quasihole excitations. As said above, the ex-
changee statistics of the quasiholes is fractional. It is only in two-dimensional systems that 
particless which satisfy (braid) statistics other than the familiar fermi of bose statistics can 
occur.. In three dimensions (or more), different exchange paths of two identical particles 
cann be continuously deformed into each other. Thus, after two successive exchanges, we 
comee back to the original system, described by the same wave function. The phase factor 
correspondingg to the exchange of two particles has to be . In two dimensions, the sit-
uationn is different, because the exchange paths can not be deformed into each other. The 
reasonn is that one would have to pull the path through the position of one of the particles, 
whichh is not allowed. Mathematically, this is explained in termss of the fundamental group 
off  the configuration space, which is euclidian space with iV punctures at the positions of the 
particles.. For a 2-dimensional system, this fundamental group is the braid group, while in 
33 or more dimensions, it is the permutation group. 

Thee Laughlin quasiholes transform according to a 1-dimensional representation of the 
braidd group BN- The phase factor the wave function picks up when two quasiholes are 
exchangedd can be calculated from the Aharonov-Bohm effect [1]. Due to the Aharonov-
Bohmm effect, particles can interact via the gauge potentials (of for instance the magnetic 
field),, while the electro-magnetic fields themselves may vanish at the position of the other 
particle.. For the Laughlin quasiholes, the phase factor etirö corresponding to the exchange 
iss calculated to be 9 = j ^ . The fractionally charged quasiholes of the Laughlin state in-
deedd satisfy fractional statistics. However, the statistics of these quasiholes has not been 
measuredd directly, in contrast with the fractional charge. 

Anotherr interesting consequence of the fact that particles in two dimensions have to 
formm a representation of the braid group ramer than the permutation group is that higher 
dimensionall  representations can be possible (see, for instance, [44]). In this thesis, we will 
seee many examples of quantum Hall systems, where this is indeed me case. The study of 
suchh quantum Hall systems was prompted by the observation of a quantum Hall effect at a 
fillingfilling  fraction with an even denominator, which will bee discussed in the next section. 

1.22 The v = § quantum Hall effect 
Alll  the quantum Hall states discussed so far had a filling  fraction with an odd denominator, 
whichh was explained via the hierarchy schemes starting with the Laughlin states. In 1987, 
aa first experimental indication was found of a quantum Hall effect at a filling  fraction with 
ann even denominator, namely u = |. In 1999, the corresponding Hall plateau was observed 
[76],, proving beyond any doubt that there is indeed a quantum Hall effect at filling  v — §, 
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Figuree 1.2: The v = | plateau, figure taken from [76]. 

seee figure 1.2. More recently, similar results were obtained for filling  fraction v = | , see 
[27]. . 

Thee composite fermion and hierarchy schemes can not explain these quantum Hall sys-
tems,, as they only cover states with an odd denominator filling.  So it was clear immediately 
thatt this quantum Hall system was different from all the others observed before. Many quan-
tumm Hall states with peculiar properties were proposed to account for this effect. Among 
thesee is the paired quantum Hall state of Moore and Read [71]. In this quantum Hall state, 
thee electrons are spin-polarized, and form pairs, similar to the Cooper pairs of BCS super-
conductivity.. Though it was first believed that the quantum Hall state at v = § was not 
spin-polarized,, nowadays, the experiments point out that this quantum Hall state is indeed 
spin-polarizedd [75]. Also, at the same filling  fraction, but at high(er) temperatures, where 
thee quantum Hall system has disappeared, Fermi-surface effects have been observed. This 
indicatess that there might be a Cooper instability, which cases the electrons to pair. Subse-
quently,, these pairs might condense to form the paired state of Moore and Read. For more 
onn this, we refer to section 3.2. The experiments outlined above, together with numerous 
numericall  evidence, has led to the consensus that the quantum Hall systems at v = | can 
bee described by the paired quantum Hall state of Moore and Read, which will be dealt with 
inn great detail in section 3.2. 

Onee of the interesting properties of the Moore-Read state is that the quasihole excitations 
overr this state have interesting statistics properties. Due to the clustering of electrons, the 
systemm in which quasiholes are present can be formed in more than one way. For instance, 
iff  four quasiholes are present, the system can be in two different states (why this is so is 
explainedd in section 3.3). These states form a two-dimensional representation of the braid 
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Figuree 1.3: The v = \ plateau; solid curve, T fa 15mK; dashed curve, T = 50mK. Figure 
takenn from [27]. 

group.. Exchanging the particles gives rise to phase matrices, and it can be shown that these 
matricess do not commute [71,74,95]. This form of statistics is therefore called non-abelian 
statistics. . 

Thee second Landau level is special in the sense that quantum Hall effects occurs at a 
fillingfilling  fractions with an even denominator. Moreover, in [27], it was found that around 
thiss plateau other interesting states occur, which are shown in figure 1.3. In a sense, there 
iss a reentrant integer quantum Hall state, disjunct from the ordinary integer quantum Hall 
plateaux.. The nature of these states, which are also observed around filling  fraction v = § 
iss unclear at this point. 

Inn other half filled Landau levels, also very interesting physics is found. Let us first 
takee a short look at the lowest half filled Landau level. This system can be described as 
aa fluid of composite fermions, which live in the absence of magnetic field. They form a 
compressiblee Fermi liquid, in which no quantized Hall effect is observed, no plateau or 
vanishingg longitudinal resistance. 

Inn the higher Landau levels, another state is observed. This state shows a very aniso-
tropicc behaviour in the longitudinal resistance and is called a striped phase, see [111] for a 
studyy of the situation at v = | (and references therein). This phase is observed at filling 
fractionss v = § , . .. y , and also at v = §, |, when an additional in-plane magnetic field 
iss applied, but keeping the filling  fraction, which is set by the component of the magnetic 
fieldfield perpendicular to sample, the same. So many electronic states are observed at half filled 
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Landauu levels. Which state actually forms depends on the details of the energetics. We will 
nott address this interesting problem, but instead focus on the quantum Hall states similar to 
thee state which is now believed to form at fillin g v = |. 

Thee observation of a quantum Hall effect at an even denominator fillin g fraction and the 
subsequentt description by a system which exhibits non-abelian statistics has led to a great 
interestt in quantum Hall systems with non-abelian statistics. In this thesis, we will describe 
variouss of these quantum Hall states, which can also be characterized by a clustering of the 
electrons. . 

Beforee we start with that discussion, we would like to point out another context in which 
thee clustered states were shown to be relevant. This is the arena of the rotating Bose-Einstein 
condensates. . 

1.33 Rotating Bose-Einstein condensates 

Thiss section is the only section of this thesis in which the underlying particles are bosons 
insteadd of fermions. Recently, it has become clear that some of the clustered states de-
scribedd in this thesis can be relevant in the description of rotating Bose-Einstein condensates 
(BECs). . 

Thee hamiltonian describing N weakly interacting atoms (bosons) in a rotating trap (with 
angularr velocity wz and trap frequency u;0) is given by (see, for instance [24]) 

nn = ̂  j(PJ-̂ xr) ^  + „  ((ug _ ̂  + y2) + UQZ2) J 

++ 0 £ * ( r « -p i ) - (1.3) 

Here,, the coupling g = 4irh2a/m, giving rise to the correct s-wave scattering length a. In 
thee limit of a; ~ u>o, this hamiltonian describes a two dimensional system of particles with 
chargee q in a magnetic field B - (2mu;/q)z (see also [110]). In these systems, a fillin g 
fractionn can be defined as the ratio of the number of bosons N (which occupy an area A) 
andd the average number of vortices Nv = 2mu)A/h, thus v — -ff-. 

Thee vortices which are formed in the rotating BEC systems form a vortex lattice when 
thee angular velocity is not to high. However, in the limit of u -»> WQ, this vortex lattice 
melts,, and the system becomes equivalent to the quantum Hall liquids. 

Thee energy gap for a system with 6 vortices was studied in [24]. At various fillin g 
fractions,, incompressible states have been found via cusps in the (numerically obtained) 
energyy gaps. Among the fractions at which an incompressible state has been observed is 
vv = |, which was interpreted as a (bosonic) Laughlin state [109]. However, incompressible 
systemss at fillin g v = 1, | ,2 , | ,3, f ,4, §,5,6 also have been found [24]. These states 
cann not be described by simple Laughlin states, but based on overlap studies on the sphere, 
thesee states were interpreted as bosonic versions of the Read-Rezayi states [85], which 
aree clustered analogs of the Moore-Read state [71]. Thus, the arena of the rotating Bose-
Einsteinn condensates may also be a good place to look for bosonic quantum states with very 
peculiarr properties, analogous to the quantum Hall states which will be studied in this thesis. 



18 8 Chapterr 1. The quantum Hall effect 

1.44 This thesis 
Inn this thesis, we will concentrate on the description of quantum Hall states, using a con-
formall  field theory approach. This will limit the questions we can ask, because we will not 
bee able to address questions like in which way, and at what filling  fractions do quantum 
Halll  states form. What we can do is given a quantum Hall effect at a certain filling  fraction, 
askk ourselves what are the possible states at this filling  fraction? It turns out that quantum 
Halll  states with very peculiar properties might form. There is now consensus on the nature 
off  the v = | state, which is believed to be a quantum state with a pairing structure. The 
excitationss over this state are expected to show peculiar statistics properties, which go under 
thee name of non-abelian statistics. This prompted the study of new classes of quantum Hall 
states,, with similar properties. It is these quantum Hall states which will be the subject of 
thiss thesis. 

Too set the scene, we will have to introduce some conformal field theory methods, and 
pointt out the relation with quantum Hall systems, which will be done in chapter 2. No-
tably,, we will explain the relation between conformal field theory, and Chern-Simons theory, 
whichh is used to describe quantum Hall systems. 

Usingg the conformal field theory connection, new quantum Hall states can be defined, 
withh similar pairing, or, in general, clustering properties as the quantum state which is re-
latedd to the quantum Hall effect at v = §. One of the surprises was that there are spin 
fulll  versions of the spin-polarized state at v = §, which are not only spin-singlets, but 
showw a separation of the spin and charge degrees of freedom of the fundamental excitations 
overr these states. This is on top of the non-abelian statistics, which the quasiholes also sat-
isfy.. The simplest of these states occurs at filling  v = §, see section 3.6. The reason that 
thee quasiholes of the clustered states can satisfy non-abelian statistics will be explained in 
sectionn 3.3. 

Onee of the main themes in this thesis is the study of the quasihole excitations in the 
clusteredd quantum Hall systems. In chapter 4, we will introduce the concept of exclusion 
statistics,statistics, which is used in the description of the excitations. Very important in this respect 
iss the connection between the composites present in the electron sector, and the so-called 
pseudoparticles,pseudoparticles, which lie at the heart of the non-abelian statistics of the quasiholes. In 
fact,, this connection comes back throughout this thesis. Another very important connection 
iss the one between the exclusion statistics and the K-matrices which describe the topological 
propertiess of the particles in the quantum Hall states. It turns out that the exclusion statistics 
matrices,, which are obtained in chapter 5 for the states under consideration in this thesis, 
alsoo can be viewed as the K-matrices of the quantum Hall states. 

Onee very nice application of the concepts introduced here, is the state counting of chap-
terr 6. The quantum Hall states in this thesis can be viewed as (zero energy) eigenstates of 
idealizedd hamiltonians. These hamiltonians are constructed in such a way that the eigen-
statess have a clustering property, which is also present in the quantum Hall states. The 
hamiltonianss obtained in that way can be diagonalized in a spherical geometry, in the pres-
encee of a magnetic field. The degeneracies obtained via this diagonalization study for the 
quantumm Hall states in the presence of quasihole excitations can be explained in terms of 
thee exclusion statistics properties of the parafermion fields present in the CFT description 
off  the quantum Hall states. In a sense, the hamiltonians with the clustering property have 
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'knowledge'' of the statistics properties of the parafermion fields! 
Withh that result, we have come full circle. The clustering properties of the quantum Hall 

statess are incorporated at the level of the underlying CFTs by the presence of parafermion 
fields.. As a consequence, the quasihole excitations can have the so called non-abelian statis-
ticss (see section 3.3). This causes the states with quasiholes present to be degenerate, and, 
ass discussed in chapter 6, these degeneracies can be understood in terms of the statistics 
propertiess of the parafermions. 
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Chapterr  2 

Thee quantum Hall - conformal 
fieldfield  theory connection 

Twoo dimensional systems are special in many respects, compared to higher dimensional 
systems.. One example, which will come back frequently in this thesis, are the possible 
statisticss properties. The group of local conformal transformations is infinite dimensional 
onlyonly in two dimensions, making conformal field theory a very powerful tool in the study of 
thee critical behaviour of two dimensional systems, sometimes allowing for an exact solution 
off  the 2-dimensional model under consideration. 

Alsoo in the study of the fractional quantum Hall effect, the use of conformal field theory 
(CFT)) wil l be useful in determining, for instance, the statistics properties of the particles. 
However,, it is very important to keep in mind that the systems we are describing in this thesis 
aree not critical. There is thus a need to motivate the use of CFTs to describe quantum Hall 
systems.. Also, one should keep in mind that the important problem of transitions between 
variouss quantum Hall states is not addressed in this thesis. We will assume throughout this 
thesiss that a quantum Hall effect is observed at a certain filling  fraction. We ask ourselves 
thee question what kind of quantum Hall states can be formed and what are the properties of 
thesee states. Using conformal field theory, one can hope to provide a partial answer to this 
kindd of questions. 

Thee link between quantum Hall states and CFT can be made, in short, as follows. The 
effectivee field theories describing quantum Hall states are so called 2+1-dimensional Chern-
SimonsSimons theories (see, for instance,! 119,69]). A link between these topological field theories 
inn 2 + 1 dimensions and conformal field theory in 2 (or 1 + 1) dimensions was made by 
E.. Witten in [112]. G. Moore and N. Read [71] proposed to use CFTs to describe and 
investigatee the properties of quantum Hall systems. This gives us a powerful tool to study 
quantumm Hall systems. 

Inn this chapter, we will follow the line of reasoning as outlined above. We start with a 
shortt introduction to the topological field theories describing fractional quantum Hall states 
inn section 2.1. These theories all have a common feature, the Chern-Simons (CS) term. In 
thiss context, the so-called K-matrices appear for the first time. These K-matrices play vari-
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ouss different roles throughout this thesis. The connection between the topological theories 
andd conformal field theory will be given in section 2.2. In section 2.3, we will describe in 
whichh way these conformal field theories can be used to describe quantum Hall states and 
explainn the construction using the Laughlin and Halperin states as examples. The conditions 
too be satisfied by the CFTs, in order to describe quantum Hall systems are given in appendix 
2.A. . 

2.11 Topological theories 

Thee connection between fractional quantum Hall states and conformal field theory is made 
viaa the presence of a topological effective field theory, the Chern-Simons theory. Therefore, 
wee will first explain why the Chern-Simons term describes the low-energy limit of a quan-
tumm Hall system. In this section, we restrict the discussion to the ordinary, abelian case. 
Thee non-abelian case will be discussed in the following chapters. 

Thee presence of a Chern-Simons term in the low energy effective field theory for quan-
tumm Hall states follows from the following, very general considerations (see, for instance, 
[107]) ) 

1.. The system we are describing is (2 + 1)-dimensional system of electrons. 

2.. The electromagnetic current J*m is conserved: 9M JJm = 0. 

3.. Parity and time reversal symmetry are broken by the magnetic field. 

4.. We want to describe the low energy part of the system with in a field theoretical setup. 

Inn three dimensions, the conservation law d» J£m = 0 implies that JJm can be written 
ass a curl: J*m = •^eliV\dvax. In turn, making the change av -* a" + d"A leaves the 
currentt J*m unchanged, implying that av is a gauge potential. Invoking the assumption 
thatt we want an effective field theory for the long-distance, low frequency behaviour of the 
system,, we will write down the most relevant term of gauge fields which is possible in 2 +1 
dimensionss which is also gauge invariant (see, for more details on gauge invariance, section 
2.2).. This turns out to be the Chern-Simons term (see [39] for more details) 

£css = ^e^xaPP**  (2-D 

Thuss if the coupling k is non-zero, this term will dominate the low energy behaviour. It 
turnss out that this term indeed gives the correct physics. An important property of the 
Chern-Simonss term is that it is a topological term: it does not depend on the metric. As a 
consequence,, the corresponding hamiltonian is zero, and all eigenstates have zero energy. 
Naively,, one might think that the problem has become trivial, or uninteresting. However, 
thee topological properties and the degeneracy of the ground state make this problem very 
interestingg indeed. 

Abovee we showed that the low energy physics of an (2 + 1) dimensional system is 
governedd by the Chern-Simons term (2.1). Below, we consider a more general form, by 
allowingg several gauge fields, which are coupled by a matrix, known in the literature as the 
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'K-matrix'.. In addition, the gauge fields will be coupled to other fields, which for instance 
describee external fields. These terms also have the Chern-Simons form. 

Inn the following, we will use the notation of Wen [105] in describing the quantum Hall 
data.data. This data characterizes the quantum Hall system; it consists of the K-matrix, a charge 
andd spin vector, t and s, respectively. These vectors have the charge and spin quantum 
numberss of the particles as there entries. In addition, there is an angular momentum vector 
j .. A few remarks with respect to the notation of spin vectors need to be made at this point. 
Inn [108, 107], the concept of a 'spin vector' was introduced. This 'spin vector' is in fact 
relatedd to the angular momentum of the electrons on (for instance) the sphere and is needed 
too calculate the so-called shift (see equations (2.5) and (2.6) below). In our case we need 
too distinguish between this angular momentum vector and the vector containing the real 
SU(2)SU(2) spin of the particles. Therefore, we have denoted the angular momentum vector by 
j ,, and the vector containing the spin quantum numbers by s. Note that the spin quantum 
nuberss are given in units of h/2 in the spin vectors throughout this thesis. 

Ass stated above, the K-matrices play several roles in the description of the quantum 
Halll  states which are discussed in this thesis. The entries of these matrices do not only 
servee as the couplings between the various gauge fields, they also can be interpreted as the 
(exclusion)) statistics parameters of the particles, as is described in chapter 4. To be able to 
makee contact with the 'statistics interpretation', we distinguish between the K-matrix for 
thee 'electron part' and the quasihole part of the theory. These matrices are denoted by Ke 
andd K<f,, respectively. The corresponding charge, spin and angular momentum vectors are 
te,, t^, se, S0, j e , and j ^ in an obvious notation. In all the cases we considered, it is possible 
too formulate the theory in such a way that the K-matrices for the quasihole and electron 
sectorss are just each others inverse. This form of 'duality' will be encountered frequently in 
thiss thesis (see, in particular, [6] and [7]). 

Thee Chern-Simons part of the lagrangian for a system on a surface of genus g has the 
followingg from 

£css = -^e*"*  (Kgafaai + 2tiAfidva\ + 2&u(idt,ai + 2s%dua\) , (2.2) 

wheree the fields a are the Chern-Simons gauge fields. The Greek indices run over {0,1,2}, 
andd the Roman indices over the number of channels. The first term is the Chern-Simons 
term,, which has the effect of changing the statisticss of the matter-fields, which are coupled 
too the Chern-Simons (CS) gauge fields in a full theory [118]. The electromagnetic field is 
describedd by the gauge field Ap and the coupling to the CS gauge fields involve the charge 
vectorr te. This vector specifies the charge of the electronic degrees of freedom. The other 
termss of the lagrangian have the following interpretation, w^ is the 'spin connection' and 
givess rise to the curvature of the space on which the quantum Hall system is defined. The 
lastt term is the (SU(2)) spin equivalent of the second term, and describes the spin Hall 
conductance.. By analogy with the (electronic) filling  fraction v, one can define the spin 
fillin gg fraction, <r, and the spin Hall conductance. 

Inn general, one would define the spin conductance in the same way as the charge con-
ductance,, namely as a response to a certain field. In the case of a quantum Hall system, the 
rolee of the electric field is taken over by a gradient in the Zeeman energy. The gauge field 
describingg this is denoted by (3^ in eq. (2.2). The spin Hall conductance is related to the 
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'spinn current' induced perpendicular to the direction of the gradient of the Zeeman energy. 
Lett us now briefly recall the results obtained from this formulation for the filling  factors 

andd the shift corresponding to a surface of genus g. The filling  factors can be calculated by 
meanss of simple inner products1 

vv = te  K'1 •te = t<f,'K^  t0 , 

aa = s€  K71  se = s*  K^1  s*  . (2.3) 

Thee relation between the charge (and spin) vectors of the electron and quasihole parts are 
givenn by 

t00 = -K71  te , s0 = -K-1 • se . (2.4) 

Thee last important property we will discuss is the so called 'shift' in the flux on surfaces of 
generall  genus g. The relation between the number of electrons Ne and the corresponding 
numberr of flux quanta N$ is given by 

jV## = i j V e - 5 , (2.5) 
v v 

wheree the shift S is given by 

55 = H Ö ^ ( t e . K ^ 1 - j e ) . (2-6) 

Althoughh j e plays a somewhat different role than te and se, we define j ^ by analogy to (2.4) 

j ^ - K ^ - j e .. (2-7) 

Thee equations (2.3)-(2.7) were derived in the context of abelian quantum Hall states [105]. 
Inn section 4.2.2, we will see that these relations also hold, under certain conditions, in the 
non-abeliann cases as well. 

Wee end this section by noting that the description in terms of the quantum Hall data is 
byy no means unique. The lagrangian eq. (2.2) is invariant under SL(n, Z) transformations 
onn the K-matrix (denoted by the matrix W) (for more details, see for instance [105]) 

Kee = W-Ke-WT , K^ = (W-1)T -K q h-W-1 , 

vee = W-ve, v^ = (W-1)T -v^, (2.8) 

wheree v is one of the vectors containing the quantum numbers of the system. It is easily 
checkedd that this leaves all the physical properties of the system, such as the filling  fraction, 
invariant.. We will refer to the transformation (2.8) as a 'W-transformation*. 

'Throughoutt this thesis, the transpose on the vectors in equations like (2.3) is implicitly understood in order to 
simplifyy the notation. 
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2.22 Topological field theory and CFT 
Inn this section, the relation between topological field theories, the Chern-Simons theories of 
thee previous section, and conformal field theory is described. 

Lett us start with the gauge invariance of the Chern-Simons action (2.1). Making the 
transformationn a? M- a**  + d* A leaves the action invariant, up to a surface term 

6£6£ = eti„xd(i(audxA). (2.9) 

Off  course, on a physical sample with an edge, this surface term is important, and it is 
cancelledd by the gauge transformation of the so called edge currents. Already in 1982, 
B.I.. Halperin realized the importance of the current-carrying edge states [54], They occur 
becausee the confining potential lifts the energy of the Landau levels. At the edge of the 
sample,, they cross the Fermi surface, and this leads to gapless edge excitations. The trans-
formationn properties of these edge-currents makes the complete system gauge invariant, as 
itt of course should be. 

Thee dynamics on the edge is described by a chiral Luttinger liquid (x^O [103,102,104], 
describedd by the lagrangian 

££xxiiii = •— J dtdu((dt<p)2 - v2{du<p)2) , (2.10) 

andd the chirality constraint dtp = vdu<p; u is the space coordinate along the edge. In fact, 
thee lagrangian describes a massless scalar field, and is a conformal field theory. See [94] 
forr a discussion of the chiral Luttinger liquid in the context of a unified field theory for 
fractionall  quantum Hall systems. 

Thee xll of eq. (2.10) has a conserved current, which is given by 

^d gee = ^ V , (2-lD 

wheree E^V is the anti-symmetric symbol, and we work in units where v = 1. 
Usingg canonical quantization, it can be shown that the Fourier modes of the edge cur-

rentss J^ ge satisfy die algebra 

\jmjn]\jmjn] = <Wn,O07f , (2.12) 

whichh is a u(l) Kac-Moody algebra. Thus, the edge degrees of freedom can be described by 
aa conformal field theory, which is related to the topological field tiieory, as was pointed out 
above.. Thus, at least for the quantum Hall states at simple filling  fractions, it has become 
clearr that the dynamics of the edge excitations are described by a simple conformal field 
theory.. The situation for systems in which counter-flowing edge modes occur is much more 
complicated,, and still under debate. However, for systems in which all the edge modes flow 
inn one direction, this description is undisputed. In this thesis, we will consider this situation, 
butt consider more complicated situations than the one described above. 

Soo we pointed out the connection between the topological field theory in 2 + 1 dimen-
sions,, and the conformal field theory (a chiral Luttinger liquid) on the 1 + 1 dimensional 
edgee of a quantum Hall sample. There is also a correspondence between the topological 

file:///jmjn
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fieldfield theory and a conformal field theory describing the bulk properties (such a the braid 
statisticss of the excitations). This connection is due to Witten [112]. It states that the physi-
call  Hilbert space of a three dimensional topological Chern-Simons theory can be interpreted 
ass the space of conformal blocks of the corresponding Wess-Zumino-Witten model in two 
dimensions.. So the particles (sources) in the Chern-Simons theory can be interpreted as the 
fieldsfields in the conformal correlators. In [37], this connection is worked out in detail, giving 
consistencyy conditions for the (chiral) conformal field theory. These will be quoted in ap-
pendixx 2.A. But before we come to that point, we first explain in which way CFT is used to 
studyy quantum Hall systems, concentrating on some simple examples. 

2.33 Quantum Hall systems and conformal field theory 

Withh the connection between topological Chern-Simons field theory and (chiral) correlators 
(orr conformal blocks) at hand, G. Moore and N. Read proposed to use conformal field theory 
ass a method to describe quantum Hall states. More specifically, they used the conformal 
blockss of chiral CFTs to obtain (representative) wave functions for known quantum Hall 
systems.. Pushing the connection further, they proposed to other CFTs in a similar way, 
too define new states, which can be interpreted (under certain conditions) as quantum Hall 
states.. Using this setting, the possible excitations of these new quantum Hall systems and 
theirr properties can be studied. We refer to [34] for a details on conformal field theories. 

Throughoutt this thesis, we will assume that a quantum Hall system is observed at a 
certainn filling  fraction. Using CFT, one can try to construct a quantum state and study its 
properties.. However, we wil l not be able to say which of the various possible states will 
actuallyy occur, as the answer to this question depends on the details of the energetics. 

Interpretingg chiral correlators as wave functions for actual quantum systems also should 
bee done with care. The details of the wave functions of quantum systems depend on the 
detailss of the interaction. However, as long as the real interaction between the electrons 
liess in the same universality class as the interaction for which the wave function is an exact 
groundd state, the topological properties of the particles are the same in both cases. Here, 
wee made an implicit assumption, namely that there is a, possibly idealized, interaction for 
whichh the wave function under investigation is exact. The existence of such an interaction 
iss very important. As we will see in chapter 6, the idealized interaction can be used to 
studyy the properties of the quasihole excitations in the quantum Hall systems via numerical 
diagonalizationn studies. These results will be compared to analytic results, obtained by 
usingg the underlying conformal field theory for these systems. Knowledge about the ground 
statee wave functions is not necessary in these studies. In fact, in many cases, the actual form 
off  the ground state wave functions in the presence of quasiholes is not known. 

InIn this thesis, we will mainly concentrate on states in the lowest Landau level. As the 
gapp to the higher Landau Levels is of order HUJC, which is much larger than all the other 
energyy scales (the Zeeman and electron interaction energy) in the system, we can neglect 
excitationss in which higher Landau levels are involved, as long as we restrict ourselves to 
fillingfilling  fractions v < 2 (note that a Landau level completely filled with spin up and down 
electronss gives v = 2). As all the electrons are in the lowest Landau level, the kinetic energy 
iss just a constant. Thus, the wave functions for quantum Hall states in the lowest Landau 
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levell  can be viewed as eigenstates of an interaction hamiltonian. 
Wavee functions for quantum Hall systems in the lowest Landau level can be written in 

thee form 

*({**} )) = * ( {2 i } )e~ E i J^ , (2.13) 

wheree the z% are the complex electron coordinates and I = d jg is the magnetic length. 

*({^j} )) is a polynomial in the electron coordinates and is called the 'reduced wave func-
tion*.tion*. The important point is that this polynomial only depends on zi and not on the complex 
conjugatess Z{. Note that ^{{zi}) is not normalized. In this thesis, we concentrate on the 
reducedd wave functions, but simply speak of 'wave functions' (we keep the tilde, however, 
too remind the reader of this). 

Wee will now describe the way in which conformal correlators can be used to define 
quantumm Hall systems. This will be done using two examples, namely the Laughlin and 
Halperinn states. In the next chapter, we will define the clustered quantum Hall states and 
investigatee their properties in subsequent chapters. 

2.3.11 Example: the Laughlin wave function 
Followingg the reasoning of Moore and Read, the wave functions for quantum Hall systems 
cann be written as correlators in a chiral conformal field theory. We explain how this can be 
donee using the Laughlin wave functions as an example, as they are the simplest fractional 
quantumm Hall states. In the next subsection, we will treat the (somewhat) more complicated 
Halperinn states [55]. 

Thee Laughlin wave functions, 

cann be reproduced as a correlator of vertex operators of a free boson (p, compactified on a 
radiuss R2 = M. This vertexx operator has the form 

VVeei(zi(zii)=:e)=:eii^(z^(zii):): . (2.15) 

Thee correlator which gives the Laughlin factor is 

$({zi}) == lim z£N*(VA,1VtM-V9l,N:e-iSSN''(z00):). (2.16) 
Zoo—Zoo—•OO •OO 

Thee background charge is inserted in the correlator to satisfy charge neutrality. The factor 
z™z™NN is inserted to obtain a non-zero result in the limit where the background charge is 
sentt to infinity. This procedure of dealing with the background charge is different compared 
too [71], where a homogeneous background charge was used. Using a homogeneous back-
groundd charge is more involved, but has the advantage of also reproducing the exponential 
factorss (with the magnetic length set to / = 1) of the full wave function [71]. 

Thatt the correlator in eq. (2.16) indeed reduces to the Laughlin wave function eq. (2.14), 
cann be seen from the operator product expansion (OPE) for the vertex operators 

:: ete*(*i ) :: é^{z2) : = {zx- z2)
a0 : e^a+^(z2) : , (2.17) 
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andd the use of Wick's theorem. One of the most important gains of using CFT to describe 
quantumm Hall systems is the fact that also the quasiholes can be represented in this setup. 
Oncee this has been established, on can use the powerful methods of CFT to study the prop-
ertiess of the quasiholes. Some of the properties which can be addressed in this way are 
thee statistics and the degeneracy of quantum Hall systems in the presence of quasiholes. 
Thiss can be done, even though sometimes the correlators containing the quasiholes are not 
knownn explicitly. 

Thiss brings us to the subject of the quasihole states. As assumed in the above, these 
statess can also be written as a correlator in the conformal field theory, by inserting quasihole 
operatorss in the chiral correlators. In the case of Laughlin quasiholes, the operators which 
createe the quasiholes are also vertex operators 

V&(w)=:eV&(w)=:eii''VMvVMv{w):{w): - (2.18) 

InIn the following, we denote the electron and quasihole coordinates by Zi and Wj, respec-
tively.. Inserting n quasihole operators and an adjusted background charge in the correlator, 
togetherr with the electron operators gives an expression for the wave function of a Laughlin 
systemm with quasiholes 

*Lqh({*<.«>i}) == U m ^(N+^\VehlVeli2---Vel,N 

xx ^q h, iV qM  Vqh,n : e-i(^»+n/SM)«(Zoo) : ) . (2.19) 

Evaluatingg this correlator gives the wave function for the Laughlin state in the presence of 
quasiholes s 

* L V ( K ™ ; } )) = J[(wi ~ «;,-)*  IR * - «>;) I R *  "  z^  ' (220) 

i<3i<3 i-,3 i<3 

Thiss form corresponds to the form proposed by Laughlin in [67]. 
Thee wave functions of quantum Hall states with quasiparticles are more difficult to write 

downn than there quasihole counterparts. This is caused by the fact that the quasiparticle 
wavee functions involve non-analytic functions. At present, the corresponding CFT quasi-
particlee operators are not known. We will therefore concentrate on the quasihole excitations. 

Ass can be seen from the wave function (2.20), the electrons are expelled from the from 
thee positions of the quasiholes. The strength of this repulsion however, is weaker than the 
strengthh with which the electrons repel each other. This is directly related to the fact that 
thee charge of the quasiholes is fractionalized; As explained in chapter 1, the charge of the 
Laughlinn quasiholes is <?qh = jf, in units where the electron charge is qe = - 1 . Because 
thee electrons are expelled from the regions Wi, there is in fact a charge deficit, and the 
quasiholess have opposite charge in comparison to the electrons. For quantum Hall states 
withh spin, a similar 'inversion' of quantum numbers for the quasiholes occurs. 

Itt is important to keep in mind that specifying a conformal field theory (in this case the 
cc = 1 chiral boson compactified on a radius R2 = M) is not enough to define a quantum 
Halll  state. In addition, the form of the electron operator(s) is also needed to define the 
quantumm Hall state. 
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2.3.22 The Halperin states 
Ass an example of a series of states in which the spin degree of freedom is not neglected, we 
discusss the simplest case, namely the Halperin states. In general, these states are written in 
termss of two types of coordinates, which can also stand for two layers. For now, we keep 
thee discussion general and the Halperin wave functions take the form [55] 

$ir ,ro' ,B)(K^}} )) = p >? - zVm n>i - 4 r '  n<z? - 4)n . <2-2l> 
*<j*<j  i<j i,j 

Thiss state describes a double layer (or spin) system, in which the two layers (or particles with 
oppositee spins) are coupled by via the third factor. The fillin g fraction can be determined by 
meanss of the K-matrix formalism. For (simple) abelian quantum Hall states, the K-matrices 
cann easily be obtained from the braid behaviour of the electrons, as encoded in the wave 
functions.. For the Halperin states, the K-matrix and charge vector read 

*•*• = ( n m ') ' ( 2 ' 2 2) 

tee = - ( l , l ) . (2.23) 

Thee corresponding fillin g fraction becomes u = ™£™ j f f i . Restricting to the case m - 1 = 
m'm' — 1 = n the Halperin states are spin-singlets (if the coordinates are interpreted as the 
coordinatess of spin up and down electrons). This gives rise to a series of singlet states with 
fillin gg fraction v = 2m+i- F°r m even, this state is describing a fermionic spin-singlet state. 
Thee condition for the total state, including the spin part of the wave function, to be a spin-
singlett translates into the Fock cyclic conditions of the positional part of the wave function 
[56].. These conditions on the orbital part of the wave function read (see also Girvin, in [81]) 

**  = 0, (2.24) 
i i 

wheree the + (—) sign applies for a bosonic (fermionic) state respectively. The operator 
e(zj,e(zj, zj) exchanges the coordinates z\ and zj in the function on which it acts. It is easily 
shownn that the Halperin wave functions (2.21), with parameters (m + 1, m + 1, m) satisfy 
thee conditions (2.24) and thus are spin-singlet states. More physically, the case m = 0 
correspondss to a completely filled Landau level (with spin up and down electrons), which is 
aa spin-singlet. Changing m will only result in the multiplication of the wave function with 
aa completely symmetric factor, with the only effect of changing the properties of the state 
whichh correspond to the charge degrees of freedom. 

Lett us now turn to the description of these states in terms of conformal field theory. In 
thiss description, two chiral boson fields are needed: <pc and (p8, which describe the charge 
andd spin degrees of freedom, respectively. The electron operators for the spin up and spin 
downn electrons are 

vvtt = . c^{v^+ï^+^) (zt) . ( (2.25) 

VVii = . ^ ( v ^ S i + I ^ - * . ) ^ . ( 2 2 6) 
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Thee quasihole operators can also be written in terms of y?c and <p9. 

vvtthh = . ê (vfèTT^+^)(u;t) . ; (2.27) 

V̂hh = : e^T^^-^iw1) : . (2.28) 

Thee scaling dimensions are given by Ae = ^ ^ and Aqh = ££+2  ^ n e correlator which 
givess the Halperin (m + 1, m + 1, m) spin-singlet states can now be written as 

*H,qhh — 2
U 50 0

2 ; o o \K e l ,l *el,JVt
 Ve\,l Ve\,Nl

Vqh,l "qh.nt Vqh,l  Vqh,iu 

== I N - z))m I N - 4)m I N - *j) m_1 

i,ji,j i,j 

xx 1 1 ^ ~ w } ) ^ T[(wi - wj)^^ Y[(wJ - wj)^rr . (2.29) 
i<ji<j i<j i,j 

Thee total numbers of electrons and quasiholes are denoted by N = iV-f 4-  and n = 
n-j-- + n ,̂ respectively. In eq. (2.29), we inserted the most general background charge. But 
ass we are interested in spin-singlet states, we need to impose the constraint that the 'back 
groundd charge' only consists of the charge boson ipc. This leads to N^ + n^ =  + n^., a 
necessaryy condition for the state to be a spin-singlet. Using this constraint, the parameter a 
iss calculated to be a = 2"H~1 (jy _|_ 2 " x ) 2 . We used the same methods as in the previous 
sectionn to work out the correlator. This state is the spin-singlet state at fillin g fraction 
vv = 2m+ï mentioned above. 

Thee construction of the last two subsections can be generalized to obtain the so-called 
clusteredclustered states. This will be the subject of the next chapter. But before we come to that, 
wee first give conditions which need to be satisfied by the conformal field theory and the 
operatorss in order to describe a quantum Hall system. 

2.AA Constraints on the CFTs for  quantum Hall systems 

InIn this subsection, we will point out the consistency conditions, which need to be satisfied 
byy a chiral CFT and the electron operators, in order to (possibly) describe a quantum Hall 
state.. We will follow the discussion given in [37]. 

Firstt of all, we have to specify the conformal field theory itself; this is done by specifying 
thee chiral algebra A, and the set of unitary irreducible representations A. The chiral algebra 
determiness the symmetry of the conformal field theory. For the quantum Hall states, the 
symmetryy is associated to simple Lie algebras. A must at least contain a unique vacuum, 
u,u, which has scaling dimension A^ = 0. The electrical current is described by a chiral 
u(l)) current algebra. Thus the chiral algebra must at least contain one u(l) current algebra. 
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Moreover,, we will assume the chiral algebra has the form (see [37] for states based on 
minimall  models) 

44 = 7>®u(l)r - 1®u(l) c, (2.A1) 

wheree r > 1 and V <g> u(l)r _1 is an electrically neutral chiral algebra. u(l)c denotes the 
u(l)) current algebra associated to the charge degree of freedom. In the cases discussed in 
thiss thesis, V has a parafermionic symmetry. In those cases, «4 is a affine lie algebra. Note 
thatt we will also allow a deformation of the affine Lie algebra symmetry by a modification 
off  the 'charge direction' . This deformation can be described by a so called shift map, see 
[105,, 38, 7]. The set of unitary irreducible representations of V has to be finite and closed 
underr fusion. 

Thee conditions to be satisfied by the conformal field theory and the operators corre-
spondingg to the electrons and quasiholes can now be stated. They all are motivated by 
generall  physical considerations. 

1.. The presence of the electron. 
Ass we are describing quantum Hall states, we must at least have one representation Ag 
whichh corresponds to the electron. This (set of) representation(s) can be used to define 
thee set of multi-electron representations Am, which are obtained by fusions of the 
electrons.. These can be thought of the electron clusters, which will play an important 
rolee in the K-matrix formulation of the non-abelian states discussed in chapter 5. 

2.. Physically realized representations. 
Thee particles (electrons and excitations) of the qH system are labeled by the unitary 
representationss of the chiral algebra, and because A has the special form (2.A1), the 
unitaryy representations can be decomposed as 

A C A p x R r .. (2.A2) 

Thuss the labels of the excitations take the form (Ap,r), where Ap e Ap and r is a 
pointt in Er. 

3.. Charge and statistics of electron-like particles 
Thee statistics related to a particle with label A can be related to the scaling dimension 
A^.. Upon a rotation of 2TT, a phase factor e2wiAx is picked up. Thus if A\ e N, 
thee excitation is a boson, if A\ € N + §, the particle obeys fermionic statistics, and 
finally,finally, if Ax ^ 0 (mod | ), the excitation obeys fractional statistics. 

Itt is natural to assume that the multi-electron particles obey bose statistics if they are 
obtainedd by the fusion of an even number of electrons, and fermi statistics if they 
resultedd from the fusion of an odd number of electrons. Thus we impose a constraint 
onn the multi-electron particles, namely a charge - statistics relation 

(te)mm = 0 (mod 2) =!  Am = 0 (modi), 

(te)mm = l (mod2)=^Am = i (modi), (2.A3) 

wheree m runs over all the electron-like particles. 
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4.. Condition on the quasiparticles 
Thee wave functions for the quantum Hall states are analytic in the coordinates of the 
electronn like particles. This lays constraints on the possible quasihole excitations, 
whichh have to be relatively local with the electron like particles. This condition reads 

AAA + A m - A v = 0 (modi), (2.A4) 

wheree A' is in the fusion product of A and m. 

5.. Charge and spin 
Justt as the charge of the multi electron particles is determined by the electrons, this 
alsoo holds for the spin, if it is a good quantum number in the system under consider-
ation.. The following connection between charge and spin can by found 

(te)mm = 0 (mod 2) =^ sm = 0 (modi), 

(te)mm = l (mod 2) =^ sm = - (modi), (2.A5) 

wheree sm is the su(2) spin of the multi electron particle m. 

Lett us end this chapter by saying that the conformal field theories and particle operators 
usedd in the next chapter, do indeed satisfy the conditions stated in this section. This guaran-
teess that the quantum Hall systems described in the next section do have the right physical 
properties. . 
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Clusteredd quantum Hall states 

Inn this chapter, we will define sets of clustered quantum Hall states, and study some of their 
properties.. G. Moore and N. Read (MR) were among the first to propose a quantum Hall 
statee with a clustering, or better, pairing structure [71]. It was motivated by the observation 
off  a quantum Hall effect at even denominator filling  fraction v = |. Subsequently, this state 
wass generalized to a series of clustered quantum Hall states by N. Read and E. Rezayi (RR) 
[85]. . 

Thee states mentioned above are all considered to be spin-polarized states; the electron 
spinn is absent in the construction of these states. In [10], spin was included in a natural 
way,, and spin-singlet analogs of the states in [85] were constructed. In this chapter, we will 
describee in which way these clustered quantum Hall states can be constructed, and some of 
thee properties are discussed. This chapter will mainly be concerned with the construction of 
thee states by defining the electron and quasihole operators. We will provide explicit forms 
off  the wave functions for states without quasiholes. The properties of these quasiholes will 
bee studied in great detail in the following chapters. 

Thee last set of states we will treat in this chapter are the spin-singlet states of [8]. These 
statess have a clustering which is somewhat different with respect to the other states discussed 
inn this chapter. Interestingly, the excitations over these states show a separation of their 
Sf/(2)-spinn and charge degrees of freedom. 

Thee outline of this chapter is as follows. We start in section 3.1 by defining a clustering 
propertyy for qH states. In the subsequent sections, various clustered quantum Hall states will 
bee described, on the level of the underlying CFT. Some of their properties will be addressed. 
Notee that the description in terms of K-matrices will be given in chapter 5. 

Thee paired state proposed by Moore and Read [71] will serve to explain the construction 
inn general, as it is the simplest example of a clustered state (section 3.2). In section 3.3, we 
willl  explain why the states discussed in this chapter are called non-abelian quantum Hall 
states.. The key point here is the structure of the quasiholes, which in turn is closely related 
too thee clustering property of the electrons. 

Thee clustered generalizations of the Moore-Read state are treated in section 3.4. The 
spin-singlett analogs of these states are discussed in section 3.5, while the states which show 
aa separation of the spin and charge degrees of freedom can be found in section 3.6. An 
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overvieww of the properties of the clustered states, including the properties of the underly-
ingg conformal field theories, will be given in section 3.7. The details of the underlying 
parafermionn CFTs can be found in appendix 3.A. 

3.11 The cluster  property 

Quantumm Hall states are said to be clustered (at order k), if the wave function satisfies the 
followingg property. 

*du»ter(*i)) = $bos(zi) T[{Zi ~ Zj)M , (3.1) 
i<j i<j 

wheree the fully symmetric factor $bos has the property 

$bo8(2ii  - '•- = Zi)^0 i<k ~ 2) 

$bos(<zii  = ••• = Zi)=0 i> k . 

Thus,, as up to any k particles are brought at the same position, the factor $bos remains 
non-zero.. However, if k + 1 or more particles are brought together, this factor will become 
zero.. This implies that states of the form (3.1) with M = 0, are zero energy ground state of 
thee hamiltonian 

HH = V J2 ^ "  ̂ ( ^  "  **. )  • ̂  - z^+i) ' (3-3) 

t i<t2 '"<ifc+i i 

wheree 62(zi - Zj) is the 2-dimensional delta-function. Note that for k = 2, we speak of a 
pairingg property, for obvious reasons. 

Thee states described in this chapter all have the above mentioned clustering property, 
exceptt for the spin-charge separated states of section 3.6. These states have a clustering 
amongg the spin up and spin down electrons separately. That this clustering property is 
differentt is closely related to the fact that the underlying affine Lie algebra is different. 
Forr the RR states and the non-abelian spin-singlet (NASS) states, the underlying affine Lie 
algebrass are the simply laced algebras su(2) and su(3) respectively, while for the spin-
chargee separated state, this algebra is BO(5), a non-simply laced Lie algebra. In effect, the 
consequencee is that the states already have a pairing structure at level k = 1. 

3.22 The Moore-Read quantum Hall state 

Thee way in which the clustered quantum Hall states are constructed will be explained by 
usingg the MR quantum Hall state as an example, as this is the simplest paired stated. Nev-
ertheless,, it has most of the features of the general clustered states. 

Thee construction of the MR state goes along the same lines as the construction of the 
Laughlinn state based on conformal field theory, see section 2.3.1. The difference lies in 
thee conformal field theory used. In the case of the MR quantum Hall state, this is a theory 
withh su(2)2 symmetry and can be described in terms of a free chiral boson and a Majorana 
fermion. . 
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Thee pairing structure is build into the wave function via the electron operator, which 
containss the Majorana fermion tjj (of the Ising model) in addition to a free chiral boson. 
Thiss already points to the fact that the CFT describing the MR state is a c = § theory. The 
electronn operator now reads 

K? rr  = ^ : eiv/S7+T* c : . (3.4) 

Thee MR quantum Hall state is, like the Laughlin state, constructed as a correlator of elec-
tronn operators and a suitable background charge. This correlator can easily be calculated, 
becausee the Majorana fermion is also a free field. Thus by using (the fermionic form of) 
Wick'ss theorem and the correlator of two Majorana fermions 

1 1 
<V(2i)^2)>> = , (3.5) 

Z\Z\ - z2 

onee finds the wave function 

*&(* )) = J*.4f+1)" 2(VZ • • • VS> : e-'^+ï""^)  :) 

"«(jrh^Ift*-*)""-- 0.6) 

Thee second line is obtained by working out the correlator of the vertex operators of the chiral 
bosons.. Pi(M) is the pfaffian of an anti-symmetric matrix M is the anti-symmetrized 
product t 

Pt(Mij)Pt(Mij) = A(MijM3t4...). (3.7) 

Inn fact, the pfaffian of an anti-symmetric matrix can also be thought of as the square root of 
itss determinant, Pf (Mitj) = VdetM. Because of the presence of the pfaffian factor, the 
statee corresponding to the wave function (3.6) is also called the pfaffian quantum Hall state. 
Notee that the number of electrons N need to be even, in order to get a non-zero correlator. 
Below,, when the quasihole wave functions are introduced, it will become clear that wave 
functionss with an odd number of electrons are possible when quasiholes are present. The 
Moore-Readd state (3.6) describes a quantum Hall system at filling  fraction v = j ^ , as can 
bee inferred from the form of the form of the vertex operator of <pc in the electron operator. 
Equivalently,, the fillin g fraction is determined by the Laughlin factor in the wave function. 
Notee that for fermionic states, M has to be odd, as will be the case throughout this thesis. 
Thee conformal dimensions of the electron operators are easily calculated. The conformal 
dimensionn of the Majorana fermion is A^ = \. In general, the conformal dimension of the 
vertexx operator ei& '* is given by A vo. = ^ . Details on dimensions of fields and CFT in 
generall  can be found in the book [34]. Put together, the dimension of the electron operator 
iss given by Aei =

 Mf2-. In fact, the electron operators are constructed in such a way that 
forr M = 0 they are currents of the underlying Lie algebra CFT. For M odd, the electron 
operatorr should have half integer dimension, in order to represent a fermionic object. For all 
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thee states discussed in the thesis, the electron operators indeed have conformal dimension 

Beforee we go on with the discussion on the quasiholes over the MR state, we first will 
commentt on the relevance of this state. At the time this state was proposed as a quantum 
Halll  state at filling  v = |, it was believed that the quantum Hall effect observed at filling 
vv = | was due to an unpolarized quantum Hall state. Experiments which led to this con-
clusionn were tilted field experiments, in which the total magnetic field is increased, while 
thee component perpendicular to the sample is kept the same. As the filling  fraction is only 
determinedd by this perpendicular component and the spin couples to the total magnetic field, 
thesee experiments can shed light on the spin of the quantum Hall state under investigation. 
Inn these tilted field experiments at v = §, it was observed that upon increasing the total 
magneticc field, the quantum Hall state disappeared [29]. 

Thee interpretation of these experiments was that the state at v = § is unpolarized, 
andd can be destroyed by increasing the in-plane magnetic field. Nevertheless, M. Greiter, 
X.-G.. Wen and F. Wilczek proposed that the observed quantum Hall effect at v = § could 
bee related to the spin-polarized MR state. The electrons in the second Landau level, which 
iss half filled, are thought to form a MR state, while the first Landau level is completely filled 
withh spin up and down electrons. The presence of this completely filled Landau level will 
alterr the details of the interactions between the electrons in the second Landau level. Of 
course,, in real systems, the states wil l always have a certain extension in the perpendicu-
larr direction; this wil l in general lead to a coupling to the in-plane magnetic field, which 
eventuallyy could destroy the quantum Hall state. Over the years, evidence built up that the 
quantumm Hall effect at filling § is indeed related to the MR quantum Hall state. First of all, 
theree are extensive numerical studies which point in this direction [72, 86]. Experimentally, 
itt has been established that the state is indeed spin-polarized [75]. Also, at 'high' temper-
atures,, at which the quantum Hall state has disappeared, Fermi surface effects have been 
observed.. This indicates that a Cooper instability can occur, providing a mechanism for the 
pairingg of electrons. Applying an in-plane magnetic field will results in the formation of a 
stripedd phases, with anisotropic behaviour of the resistances. This explains the disappearing 
off  the quantum Hall state at v = § upon applying an in-plane magnetic field. 

Wee wil l now continue with the description of the quasiholes excitations. As indicated in 
appendixx 2.A, the quasihole operators are restricted to be relatively local with respect to the 
electronn operators. This leads to the following, smallest charge quasihole operator 

V XX = <T : e * v ^ V c :, (3.8) 

wheree a is the spin field of the Ising model. It has conformal dimension A a - je- This 
givess A qh = letS+i) f o r m e conformal dimension of the quasiholes. The MR wave func-
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tionn in the presence of quasiholes can now be written in term of a CFT correlator 

^MR,<ih\^MR,<ih\ zzt^t^ wwj)j)  ~ l l m 2oo 
Z<x>—ïOO Z<x>—ïOO 

xx TO  VgnVZ • • • V$fr : e - f v ^ ^ ^ ^ r r ) ^ ^ ) :) 

== (a(wi) • • • <r(wn)ip(zi)ip(zN)} 

xx Y[(wi - Wj)^hï) Y[(Zi - Wj)\ Y[{zi - zj)M+1 . (3.9) 

Thiss wave function is analytic in the electron coordinates, as it should be. Note that the 
l l 

factorss (z{ — Wj)2 are canceled by similar factors present in the correlator of Majorana 
andd spin fields. This is guaranteed by the structure of the electron and quasihole operators. 
Too use the correlator eq. (3.9) to obtain explicit forms of the wave functions is a difficult 
task.. The spin field are not free fields, and therefore, the correlators containing quasihole 
operatorss can not be obtained by applying Wick's theorem. An explicit form of the MR 
wavee function with quasiholes present can be found in [84]. In fact, this is the only case in 
whichh these explicit wave functions are known. However useful, the explicit form of these 
quasiholee wave functions is not necessary to obtain properties of the quasiholes. 

Likee in the case of BCS superconductors, the flux quantum is halved due to the pairing 
off  the electrons. This means that if the flux quantum is increased by one, two quasiholes 
aree created. The charge of these quasiholes is given by q^ = 2(M+\\  Compared to the 
Laughlinn quasiholes, there is an additional fractionalization of die charge. Note that this 
structuree is also embodied in the K-matrix description of the MR state, which is discussed 
inn chapter 5. 

Onee of the properties which caused great interest in these paired quantum Hall states is 
thee statistics of the quasihole excitations. It is said that these quasiholes satisfy non-abelian 
(braid)) statistics. As this is a very important prediction, which will also come back in the 
otherr clustered quantum Hall states, we will describe the situation for the quasiholes over 
thee Moore-Read state in some detail in the next section. 

3.33 Non-abelian statistics 

Inn this section, we will explain that the quasiholes of the MR quantum Hall states, and the 
clusteredd states in general, satisfy what is called non-abelian statistics. 

Thee key point is the presence of the spin field in the quasihole operator. In turn, this was 
possiblee because of the presence of the Majorana fermion in the electron operators, which 
causee the wave function to be paired. So in effect, the pairing (or clustering in general, as 
wee will see in the following sections), is intimately related to the non-abelian statistics of 
thee quasiholes. This relationship will again be found in die K-matrix structure, which is 
explainedd in chapter 5. 

Too explain the non-abelian statistics, we have to take a look at the fusion properties of 
thee parafermion and spin fields, present in the electron and quasihole operators. The fusion 
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Figuree 3.1: The Bratteli diagram for the Moore-Read state. 

ruless of the parafermion fields ip is trivial 

ipxrpipxrp = l . (3.10) 

Forr the spin fields a, the fusion rule is more complicated 

axcraxcr = l + ip. (3.11) 
Thee consequence is that upon calculating a correlator which contains a certain number of 
spinn field, on in general has a choice of many different fusion paths which fuse the (spin) 
fieldsfields to the identity. In the end, after fusing all the fields, one has to end with the identity, 
inn order to obtain a non-zero correlator. The number of ways in which this can be done can 
bee obtained from a so called Bratteli diagram. In such a diagram, the fusion of fields is 
encodedd in arrows, see figure 3.1. Each arrow stands for fusing with a certain field (in this 
case,, the spin field a). The field which is fused with the field corresponding to the arrow 
iss at the starting point of the arrow, while the arrow points at a position corresponding to a 
fieldfield in the fusion. Taking the fusion a x ip = a into account, one finds the diagram 3.1. 

Fromm the diagram in figure 3.1, one easily determines that the number of spin fields in 
thee correlator has to be even. Only after the fusion of an even number of spin fields, one can 
endd up in either the 1 or the ^-sector. In the first case, the number of electrons need to be 
evenn as well, to end up in the 'identity sector'. In the second case the number of Majorana 
fermions,, and accordingly, the number of electrons, has to be odd. In both cases, the number 

————l l off  fusion paths which lead to the identity is determined to be 2 2 
Thee fact that there is more than one fusion channel makes the conformal correlator in 

(3.9)) stand for a set of wave functions, or better, a wave vector. If one now takes a MR 
quantumm Hall state, in which four quasiholes are present, and one braids these quasiholes, 
thiss will result in a phase, which depends on a phase matrix, instead of a simple phase 
factor.. These phase matrices have been calculated [71, 74, 95], and it was found that they 
doo not commute. Thus the ordering of the braiding is essential, explaining the nomenclature 
non-abeliannon-abelian statistics. 

Att this point, it is useful to spend a few words on the underlying Lie algebra struc-
ture.. That is, the electron operator for the MR state can be viewed as an su(2) current 
whenn M = 0. The Majorana fermion is viewed as the simplest parafermion related to the 
su(2)2/u(l)) parafermion theory, which is in fact just the Ising model. In the other clustered 
quantumm Hall states, which we will address in the following sections, parafermion fields will 
bee present in the electron operators. Again, as a consequence, the quasiholes with smallest 
possiblee charge will contain spin fields. These spin fields also have non-trivial fusion rules, 
whichh are generalizations of eq. (3.11). Thus one can again argue, that the quasiholes over 
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thesee states satisfy non-abelian statistics. Or in other words, these states have an intrinsic 
degeneracyy in the presence of quasiholes. 

Onee of the main themes in this thesis will be the study of the statistics of these quasi-
holes.. In particular, the intrinsic degeneracies described in this section will come back in 
chapterr 6, where the degeneracy of clustered quantum Hall states will be studied in a spher-
icall  geometry. There, we will compare numerical results to analytical studies, in which the 
intrinsicc degeneracies play a crucial role. However, there is another source of degeneracies, 
duee to the spherical geometry. Combining those two types of degeneracies will turn out to 
bee non-trivial, and is in fact the crucial point. 

All  this is very nice, but a natural question immediately rises itself: is non-abelian statis-
ticss possible in physical systems? And if so, what are the consequences of the non-abelian 
statistics?? Before we go into this, we first want to remark that in general, it is very hard 
too measure the statistics of particles in condensed matter systems. Though the fractional 
chargee of the Laughlin quasiholes has been confirmed via shot-noise experiments, the frac
tionaltional statistics which these particles are believed to satisfy, still manages to keep out of 
thee hands of experimentalists. But apart from that, one might wonder whether or not non-
abeliann statistics can be observed in principle. 

Onee of the problems is the fact that for realistic potentials, the quasihole states which 
aree degenerate for the ultra local tree body interaction might not be degenerate anymore. 
However,, the topological statistics properties obtained from the idealized hamiltonian are 
expectedd to carry over to other hamiltonians which lie in the same universality class. Of 
course,, it is essential that the braiding of quasiholes is done adiabatically slow. 

Anotherr worry is of course the presence of disorder in the physical systems. Also here, 
thee fact that the properties of the quasiholes are topological, protects them against breaking 
down,, if the exchange is done slow enough. For more details on the effect on disorder can 
bee found in [83]. 

Alll  the above have led people to propose the MR quantum Hall state as the building 
blockk for a quantum computer, see, for instance, [35]. In such a quantum computer, the 
quasiholess would form the q-bits. Though this is a very interesting proposal, making a 
quantumm computer based on a quantum Hall system is very far from being realized. This 
topicc will not be addressed in this thesis. 

3.44 The Read-Rezayi states 

Thee construction of quantum Hall states in terms of correlators in CFTs makes generaliza-
tionss of the MR state possible. In [85], Read and Rezayi introduced clustered analogs of 
thee Moore-Read states. In fact, they proposed to use the Z*  parafermions in the electron 
operator,, in the same way as the Majorana fermion is used. The states they obtained have 
fillin gg fraction 

"'•"" = kihï  (312) 

Thee Zfc (or su(2)fc/u(l)) conformal field theory contains the parafermion primary fields ifat 

II = 0 ,1 , . . ., k-1, where if)0 = 1. In addition, mere are spin fields <TJ, with I = 1,. . ., k-1. 
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Thee fusion rules for the parafermion fields fa read 

fafa x fa, = fa+i> , (3.13) 

wheree all the labels are modulo k. The (spin-polarized) clustered states are defined in terms 
off  the electron operator 

V£V£ = fa : c^fV*M+2 Ve . _ ( 3 1 4) 

Notee that in this definition, the most 'basic' parafermion in the Z*  theory is used. This 
reflectss that the electron has the smallest charge of all 'electronic particles'. 

Fromm (3.13) it follows that the number of electrons N needs to be a multiple of k (in the 
absencee of quasiholes). The wave function is easily written in terms of a correlator 

Z.k,MtZ.k,Mt \ v (M +l ) A r 2 / i / r r T/rr . „=k^kM+2NiPc(, \ A 
*RRR \zi) = z h™^ 2oo <V7U  VeltN : e v^ Uoo) ) 

== (fa(zi)'--fa(zN))l[(zi-zj)
M+t. (3.15) 

Too actually calculate the parafermion correlator is much harder compared to the MR case, 
becausee the parafermions fa are not free fields. In [85], a form (to be given below) was 
conjectured,, which was inspired by the structure of the zeroes implied by the operator prod-
uctt expansion of the parafermion fields. In [47], this form was proven to be equal to the 
correlator.. A different way of characterizing the wave function can be found in [23]. 

Wee wil l now describe the explicit form of the Read-Rezayi wave function, in the case 
off  M = 0. The wave functions for M > 0 are obtained by multiplying with the Laughlin 
factorr f ] i<j {zi - 2 j )M  To obtain the wave functions of the RR-states for N = pk electrons, 
(pp is a positive integer) first, the particles have to be divided into groups of k particles. Let 
uss consider the simplest way of doing this 

(2!!  , 22,  , Zk), (Zk+1,  , Z2k),  -  , {Z(p-l)k+l,  » Zpk) - (3.16) 

Too each pair of two clusters (say the ath and &th cluster), the following factor is associated 

Xa,bXa,b = (Z{a-l)k+l ~ Z(b-l)k+l)(Z(a-l)k+l ~ 2(6-l)fc+2) 

XX (2(a-l)*+2 - Z(b-i)k+2)(Z(a-l)k+2 ~ 2(b-l)*+3) 

XX . .. X {Zak ~ Zbk)(zak - Z(fe_i)jfc+i) . (3.17) 

Too obtain the wave function, one has to multiply the factors (3.17) for each pair of clusters, 
andd sum over all the possible ways of forming the p clusters of k particles. The last step is 
equivalentt (up to a normalization factor) to symmetrize the product of x factors in all the 
electronn coordinates. The wave function thus becomes 

*RRR = S[IIX«.»] . (3>18) 

Itt has been shown in [85] that this wave function indeed satisfies the cluster property eq. 
(3.2).. That the wave functions should satisfy this property follows from the fusion rules of 
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thee parafermion fields ipi, given in eq. (3.13). It was proven in [47] that this wave function 
iss in fact equal to the state defined in eq. (3.15) (for M = 0). 

Anotherr way of obtaining an (equivalent) explicit form of the wave function was de-
scribedd (and proven) in [23]. The idea is to divide the electrons in k groups, and giving 
themm different 'colours' (denoted by o, 6,...) so that they become discernible. The wave 
functionn for the system consists of Laughlin factors. To obtain the clustered wave function, 
onn has to symmetrize all the different electrons 

*RRR = S[l[(z^ - zff II(4 6> - zf>)* ...]. (3.19) 

Thee fillin g fraction of the Read-Rezayi states can be read off from the electron operators, 
andd is given by v = kl^+2- Another way of determining the fillin g fraction is via the 
maximall  degree of the wave function with respect to one of the coordinates, say z\ (any 
electronn coordinate can be used). The degree of the wave function is equal the to the number 
off  flux quanta needed to tune to a particular state on the sphere. One has the following 
relation n 

jV**  = -ATe - S . (3.20) 
v v 

Thee shift is due to the fact that we are in fact using a spherical geometry in this determina-
tion.. Using the explicit form (3.18), on indeed finds that v = kl^+2- In addition, the shift 
onn the sphere is found to be S = M + 2. 

Thee quasiholes over these states are also defined in complete analogy with the MR case. 
Thus,, the operator creating the most basic quasihole (i.e. the one with the smallest charge) 
wil ll  contain a spin field, namely <T\. The quasihole operator is, like the MR case, written in 
termss of a spin field and a vertex operator of the charge boson 

V£V£ = (7i : e^STBTÔ  : . (3.21) 

Thee vertex part of these operators is determined by the condition that they have to be rela-
tivelyy local with respect to the electron operator (3.14). The charge of the quasiholes can be 
determinedd from the operators (3.21) to be <7qh = feJJ+2-

Thee fusion rules imply a condition on the number of quasiholes which can be placed 
inn the correlator. This condition is that after fusing the spin fields <r\ and the parafermions 
ipiipi of the electron operators, one has to end up with the identity operator 1. For instance, 
iff  the number of electrons is a multiple of k, the fusion rules imply that a multiple of k 
quasiholess need to be placed in the correlator. Though we don't have explicit forms for 
thee wave functions in the presence of quasiholes, formally, they can be written as a CFT 
correlator r 

*Mi!qh(*«>> w i ) = tofai)  <7iKJ^i(zi)  -MZN)) 

XX  Y[(Wi - Wj) W+2T JJ(Z i _ Wj)i JJ(Z i _ Zj)M+t . (3.22) 
i<ji<j  i,j i<3 

Inn general, the correlator of n <j\ fields (n is the number of quasiholes) and N ^i fields is 
hardd to calculate. Moreover, because of the non-trivial fusion rules of the spin fields, the 
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correlatorr in eq. (3.22) stands for more than one wave function. Like in the MR case, the 
quasiholess over the RR states satisfy non-abelian statistics. 

Notee that in [23], a rather explicit form of the quasihole wave functions was given. 
However,, it is in fact an over complete set of wave functions; it can't be used for the state 
countingg as described in chapter 6, because one has to reduce this set of states. This is in 
generall  a very difficult task, as can be seen from the MR case, were such a reduction was in 
factt performed [74]. 

3.55 Non-abelian spin-singlet states 

Inn this section, we will describe a set of spin-singlet states, which have the same clustering 
propertyy as the RR-states. These states can be viewed as spin-singlet analogs of the RR-
states,, in the same manner as the Halperin states (m + 1, m + 1, m) are spin-singlet analogs 
off  the spin-polarized Laughlin states. Alternatively, they can be viewed as clustered analogs 
off  the Halperin states, in the same way as the RR-states are clustered analogs of the Laughlin 
states.. We will follow the discussion of the defining paper [10] and the work presented in 
[9].. The electron and spin fillin g fractions for these states are given by 

VV"-"-MM = 2 Ü 7 T 3' "kM = 2 k • (3-23) 

Thee underlying structure of these states is a CFT with the symmetry of the affine Lie algebra 
su(3)fc.. The states are defined in terms of the parafermions $u(3)*/u(l)2 and two chiral 
bosons,, for charge and spin: <pc and (pa. The parafermion fields are associated to the roots 
off  su(S). In the root diagram, a charge and a spin direction are chosen in such a way that a 
spinn doublet is present. In this way, the spin up and spin down electrons can be identified. 
Notee that only the case M = 0 has an affine au(3)fc symmetry. For M > 0, the charge axis 
iss deformed. As a consequence, the charged part of the vertex operator of the bosons (pc, <p8 

dependss on M. 
Inn figure 3.2, we indicate the correspondence between the particle operators and the root 

diagramm of su(3). As can be seen form figure 3.2, the quasihole operators correspond to 
(fundamental)) weights of su(3). These operators consist of a spin field corresponding to 
thee weight, and a vertex operator, which is also related to the su(Z) diagram. The spin part 
off  the vertex operators are defined in such a way that the z component of the spin of the 
electrons,, which can be measured with Sz — -4= § ^id(f8i is | . The charge is normalized 
inn such a way that the electrons have charge 1. For M ^ O this implies that the charge axis 
off  the root diagram is 'stretched', and the full symmetry is now su(3)fc,M» where the second 
labell  indicates the stretching of the charge axis. The electron and quasihole operators can 
bee written as 

^ J »» = tft = ^ : eW^AM+s^+v,.)) . ^ ( 3 > 2 4) 

VSTVST = ̂  = ̂ 2 : e(7k^2* M+3^-^)> : , (3.25) 

KSTtt = <P = CTt : e{^{^èm ^+ »̂ : , (3.26) 
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Figuree 3.2: The roots ) and weights (o) of su(3). 

wheree we have written ipai = tpx, %p_a2 = ip2 , crWl = fff  and <T-W2 =  for simplicity 
(detailss on the notation can be found in the appendix 3.A). 

Thee most basic spin fields cr-j-̂  transform as a doublet of the su(2) subalgebra we iden-
tifyy with the spin of the particles. Note that for M = 0, the electron operators are currents 
off  the affine Lie algebra theory. 

Thee wave function for the NASS state can be written as a correlator of the electron 
operatorss in eqs. (3.24) and (3.25). By evaluating the vertex operators of the chiral bosons, 
wee arrive at the following form 

ma»(*hma»(*h zj) = (M4) • •  ̂ (4/2)^(4)  <M4/2)> 
\zj;zj)]\zj;zj)]1/k1/k^(zj;zj).^(zj;zj). (3.28) [*!? ? 

Notee that the explicit form of the Laughlin and Halperin wave functions can be found in 
sectionss 2.3.1 and 2.3.2 respectively. As was the case for the Read-Rezayi states, the wave 
functionn (3.28) is non-singular, and in fact a polynomial in the electron coordinates. In 
describingg the explicit form of the wave functions for the NASS states in absence of quasi-
holes,, we closely follow the results presented in [9]. 

Becausee the structure of the parafermions of both the types xp[ai and ip~ia2 closely 
resembless that of the Z^ parafermions if>%, we expect the structure of the trial wave functions 
(thatt is, of the chiral correlators (3.28)) of the NASS states to be similar to that of the RR 
states,, and also to generalize the Halperin (2,2,1) state. The RR wave functions were 
constructedd by dividing the particles into clusters of k, writing down a product of factors 
forr each pair of clusters, and finally symmetrizing over all ways of dividing the particles 
intoo clusters. Hence in the case with spin, we guess that we should divide the up particles 
intoo groups of k, the downs into groups of k and then multiply together factors that connect 
upp with up, down with down, or up with down clusters, and finally ensure that the function 
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iss of the correct permutational symmetry type to yield a spin-singlet state (in particular, it 
shouldd be symmetric in the coordinates of the up particles, and also in those of the downs). 
Wee expect that the up-up and down-down parts of this should closely resemble the RR wave 
functions,, before the symmetrization; it was shown in ref. [85] that the functions found there 
vanishh when k + 1 particles come to the same point, even inside the sum over permutations 
thatt symmetrizes the final function. These considerations guided the following construction. 

Duee to the spin-singlet nature of the state, the wave function will be non-zero only if 
thee number of spin up and spin down particles is the same. Furthermore, there must be an 
integerr number of clusters, so the total number of particles N must be divisible by 2k, and 
wil ll  be written as N = 2kp, where p 6 N. One example was already given in [10], namely 
thee wave function for the case k = 2, M = 0 with the number of particles equal to 4 (i.e., 

*NISSM=0(4>> 4; zt 4) = (4 - 4)(4 - 4) + (4 - 4)(4 - 4) • (3.29) 

Thiss is part of the two-dimensional irreducible representation of the permutation group on 4 
objects,, 54, as can easily be seen. This is the correct symmetry type to obtain a spin-singlet 
state,, as we discuss further below. 

Wee wil l now describe the different factors that enter the NASS wave functions. Because 
thee only effect of M being non-zero is to give an overall Laughlin factor, we wil l assume at 
firstfirst that M = 0. First we give the factors that involve particles of the same spin, say spin 
up.. They are the same as in RR [85]. We will divide the particles into clusters of k in the 
simplestt way, 

((zzn--n-- • ^zk)->\zk+i->-  '02fe)i 2:(P-i)fc+i '  iZpk> ' (3.30) 

andd the same for the ^ ' s. (In a more precise treatment, we would say that the first N/2 
particless are spin up, the remainder spin down.) We write down factors that connect the ath 

withh the 6th cluster: 

Xl,bXl,b = \z(a-l)k+l ~ z(&-l)*+lA*(a-l)*+ l ~ Z{b-l)k+2' 

XX (*(o-l)ft+ 2 ~ Z(b-l)k+2Ï(Z(a-l)k+2 ~ Z(b-l)k+3> 

XX  X (4k ~ 4k)(4k ~ Zlb-l)k+l)  <3-31> 

Forr k — 1, we would write xlb = (zl~ 4)2- ^ e factors m at connect up with down spins 
aree simpler: 

X*a/X*a/ ~ (2(a-l)fc+l ~ Z(b-l)k+l)(Z(a-l)k+2 ~ Z(b-l)k+2) '  (Zak ~ zbk) ' 0-^) 

Forr k = 1, the factor would be \zab^ = (zl - zj;). We multiply all these factors for all 
pairss of clusters, up-up, down-down, or up-down: 

ÏÏ.XÏ*ÏÏ.XÏ*  f[xl/  f[x?, 0.33) 
a<ba<b c,d e<f 
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Noticee that for k = 1, we do obtain the Halperin (2,2,1) wave function. 
Too obtain a spin-singlet state when the spatial function is combined with the spin state 

(whichh lies in the tensor product of N spins 1/2), some symmetry properties must be sat-
isfied.. For the M = 0 case, the particles are bosons, hence the full wave function must 
bee invariant under permutations of spins and coordinates of any two particles. This can be 
usedd to obtain the correct form of the function from that component in which, say the first 
N/2N/2 are spin up, the rest spin down, as above, so knowledge of that component is sufficient. 
Thee requirement that the full wave function be a spin-singlet can be shown to reduce to 
thee Fock conditions: the component just defined must be symmetric under permutations of 
thee coordinates of the up particles, and also of the down particles, and must also obey the 
Fockk cyclic condition, as given in ref. [56] (modified in an obvious way for the boson case). 
Thesee three conditions can be shown to imply that the spatial wave function is of a definite 
permutationall  symmetry type (belongs to a certain irreducible representation of the permu-
tationn group), that corresponds to the Young diagram with two rows of N/2 boxes each. In 
general,, given a function of arbitrary symmetry, a Young operator can be constructed that 
projectss it onto a member of the correct representation (though the result may vanish); this 
constructionn generalizes the familiar symmetrization and anti-symmetrization operations. 
Forr the present case, the Young operator is the following operation, equivalent to summing 
overr the function with various permutations of its arguments, and some sign changes: First, 
anti-symmetrizee in zlt zN/2+1; then in z2, zN/2+2; •••, zN/2, ZN', then symmetrize in z\, 

, zN/2; then finally symmetrize in zjv/2+1» ..., ZN. This clearly satisfies the first two 
requirementss of Fock, and can be proved to satisfy also the cyclic condition. It remains to 
checkk that it is nonzero, we believe it is. Incidentally, the application of the Young operator 
iss the analog of symmetrizing over the down spins in the spatial wave function of the perma-
nentt state (see e.g. ref. [84]), to which it reducess for the case of BCS paired wave functions 
off  spin 1/2 bosons (there are similar statements in the more familiar case of spin-singlet 
pairingg of spin 1/2 fermions). However, based on the example of the Halperin (k = 1) case, 
wee also considered the function defined as in eq. (3.33), and then simply symmetrized over 
alll  the ups and over all the downs. For the Halperin function [which in fact is already sym-
metricc in eq. (3.33)], this satisfies the cyclic condition, as can be seen using the fact that the 
(1,1,0)) state is a Landau level filled with both spins, plus the Pauli exclusion principle for 
fermions.. For k = 2, 3, we verified the cyclic condition numerically for several moderate 
sizes.. Hence, we expect that this simpler form actually works for all k (as well as for all N 
divisiblee by k). Apparently, this procedure and the application of the Young operator give 
thee same function in the end (up to a normalization). 

Forr M — 0, our wave function is then: 

*N'ASS=symm n xi„  n xf/ n xt,. w> 
a<ba<b c,d e<f 

wheree Sym stands for the symmetrization over the ups and also over the downs. This 
functionn is nonzero, as may be seen by letting the up coordinates coincide in clusters of k 
each,, and also the downs, all clusters at different locations, and making use of the result in 
RRR [85] that only one term in the symmetrization is nonzero in the limit. This term is the 
Halperinn (2k, 2k, k) function for 2p particles. To obtain the wave function for general M, 
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wee multiply by an overall Laughlin factor, Èjf. 
Wee can give a simple proof that our wave function (for M = 0) vanishes if any k + 1 

particles,, each of either spin, come to the same point. This works also for the RR wave 
functions,, and is simpler, though less informative, than the proof in RR [85], It works 
termm by term, inside the sum over permutations in the symmetrizer. Thus, without loss of 
generality,, we may use the simple clustering considered above. We note that on the clock 
facee formed by the labels 1 , . . ., k within each cluster, there is always a factor connecting 
anyy two particles at the same position, regardless of their spin. This factor vanishes when 
thee particles coincide. Since there are only k distinct positions, when k + 1 particles come 
too the same point, the clock positions must coincide in at least two cases, so that the wave 
functionn vanishes, which completes the proof. 

Wee do not have a direct general proof of the equality of these explicit wave functions and 
thee formal expressions eq. (3.28), but we have performed a number of consistency checks. 
First,, the wave functions are polynomials of the correct degree. From eq. (3.28)), we can 
inferr what the total degree should be. The parafermions of the correlator contribute with (see 
[43])) - 1  2kp- (1 - £). The factors of the 2,2,1 part are 2  f  \kp{kp-1) and 1  \ • (kp)2. 
Addingg these gives, for M = 0, pk(3p - 2). We need to check whether eq. (3.33) gives 
thee same degree. For the ith up particle, the degree of z\ in the product of up-up factors is 
2(pp - 1), and in the up-down factors is p. Thus the net degree in z\ is N$ = 3p - 2 = 
SN/2kSN/2k - 2, or for general M, N<t, = Zp + M(N - 1) - 2 = (M + 3/2k)N -2-M. This 
givess the filling  factor v = 2k/(2kM+3) [10], which reduces to that for the Halperin states 
forr k = 1, and also the shift, defined as N<p = Nfv - S, which here is S = M + 2 on the 
spheree (for more on the shift, see ref. [105]). Finally, the total degree is N/2 times that in 
z\,z\, namely kp(3p - 2) for M = 0, the same as for the correlator. Also, the numerical work 
describedd in section 6.1 below confirms that the ground state of the appropriate Hamiltonian 
onn the sphere for k — 2, M = 1 at the given number of flux does have a unique spin zero 
groundd state at zero energy, so that the correlator and the wave function constructed above 
mustt coincide. This also implies that the wave functions above must be spin singlet. As was 
thee case for the Read-Rezayi states, an alternative expression for the wave function of the 
NASSS states is possible; this form is discussed in [92]. 

Thoughh we do not have an explicit form of the wave functions with quasiholes, it can be 
characterizedd by the correlator of quasihole and electron operators. Working out the chiral 
bosonn part results in the form 

i<3i<3 i<3 

xx Y[(wJ - wj)^rs^+M) . (3.35) 
i,3 i,3 
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Ass in the previous cases where spin fields were present in the correlator, the expression 
(3.35)) stands for a set of wave functions. The number can be deduced from the spin fields 
off  the su(3)fc/u(l)2 CFT. We will come back in detail on the subject of state counting in 
chapterr 6. 

3.66 The spin-charge separated states 

Thee construction of the previous section, namely constructing spin-singlet analogs of the 
MRR quantum Hall state by using su(3)A /u(l)2 parafermions, can be generalized, by making 
usee of other rank 2 affine Lie algebras. There are only two other rank two Lie algebras, 
namelyy so(5) and G2. We will concentrate on the so(5) case, as the quasiholes over those 
statess have an interesting property on top of the non-abelian statistics, namely, a separation 
off  the spin and charge degrees of freedom. This section is based on the article [8], which 
dealss with the case k = 1. Here, we will be more general, and in most cases present results 
forr general k, with the exception of the explicit wave functions. Note that one can also use 
Liee algebras with rank r > 2, as long as one can assign a proper (S£/(2))-spin direction 
inn the root diagram; the electrons should transform as a doublet under spin rotation. In this 
section,, we will concentrate on the so(5) case. 

Thee underlying structure of the spin-charge separated states is the affine Lie algebra 
so(5)fc.. The roots and weights, and the operators assigned to them are shown in figure 3.3. 

Figuree 3.3: The roots ) and weights (o) of so(5). 

Att level k = 1, the only parafermion field in the parafermionic coset so(5)i/u(l)2 is 
thee Majorana fermion, because this coset is the Ising model. It is thus expected that the 
structuree of the wave function at k = 1 closely resembles the Moore-Read state. This is 
indeedd the case as can be seen from the explicit wave function (the electron operators are 
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givenn in eq. (3.37)) 

*S£P<*«W)) = Pf ( -^ : ) * r i , M + 1 ' M ) (4 ;4) • (3-36) 

wheree Xi can be either a spin up or a spin down electron. The pairing property is somewhat 
differentt from the previous spin-singlet states. We will discuss the pairing property using 
thee fe = 1, M = 0 wave function in equation (3.36). Note that for M = 0, this wave 
functionn has poles when a spin up electron is at the same position as a spin down electron 
(thiss problem does not occur for the physical situation M = 1). 

Inn the case k = 1, up to two particles of the same spin can be brought to the same 
locationn while the wave function is still non-zero. So even for two spin up and two spin 
downn particles at the same location, the wave function doesn't vanish (in fact, has a pole). 
Thus,, the clustering holds for the spin up and spin down particles separately, while for the 
spin-singlett clustered states (3.34), putting any k + 1 electrons at the same position make 
thee wave function vanish. 

Inn general, the electron operators for the so(5)fc states are given by 

V£V£tt = & = t/,t : e&«*™+WP') : , (3.37) 

Vg^Vg^ = & = $x: ^W^M+I^-^) . ^ ( 3 3 g ) 

wheree now the parafermion fields are in fact the fields ^ = ^ai+a2 ^ ^i — ̂ <*i-
Here,, a.\ is a short root, and a2 a long root. Note that in the case k = 1, they are just a 
Majoranaa fermion V't = ̂ i — i> (because of a field identification in the parafermion CFT, 
seee appendix 3.A). 

Thee operators A indicated in figure 3.3 are characterized as 

A cc = : eiV^W^ : , (3.39) 

AfAf = : ^ V 7 ! ^ : , (3.40) 

wheree A =tt\ H refers to the spin eigenvalues sz =
Thee operators creating the quasiholes in this quantum Hall state are given by 

V*lV*lcc = <pc= <7roi : e^^^TT^ : , (3.41) 

VS.™™ = « = ( — ») : e^*' '•  ( 1 4 2) 

wiwi and w2 are fundamental weights of the Lie algebra so(5). Again, one has to bear in mind 
thatt for k = 1, both the spin fields appearing in the quasihole operators are equal to the spin 
fieldd of the Ising model. Apart from the non-abelian statistics, the quasihole excitations over 
thesee quantum Hall states show a separation of their spin and charge degrees of freedom. 
Thee charge of the holon is given by gqh = 2jfcji+i ' w h i l e i l n as no sPirL T he sV^on Just 

havee spin up or spin down (namely sz =  \) and no charge. This structure of spin-charge 
separationn comes back in the K-matrix description of these states (discussed for level k - 1 
inn [8]; results for general k are presented in section 5.4 of this thesis). A more general 
accountt on K-matrices for conformal field theories can be found in [7]. 
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Alsoo for this case, one can study the ground state degeneracy of states with quasiholes 
present.. For k = 1, the results will be similar as those for the MR state. However, we didn't 
studyy this case yet. It will be more involved than the cases discussed in chapter 6, because 
thee Lie algebra so(5) is non-simply laced, which complicates matters quite a bit. 

3.77 Overview of properties 

Inn this section, we give an overview of the properties of the clustered quantum Hall states 
discussedd in this chapter. We will concentrate on the properties of the states without quasi-
holee excitations, because the properties of these excitations will be studied in the next chap-
ters. . 

Forr now, let us start by recalling the filling  fractions of the various quantum Hall states. 
Thee (electronic) filling  fraction is determined by the coefficients of the charged chiral bosons 
inn the electron operators. We refer to table 3.1 for the values of the filling  fractions, or 
thee various sections in this chapter. For the spin-singlet states, one can define a spin Hall 
conductance,, similar to the (electronic) Hall conductance (see section 2.1). For both types 
off  spin-singlet quantum Hall states of sections 3.5 and 3.6, the spin Hall filling  is given by 
CTHCTH = 2fc, independent of M (which only affects the 'charge' properties of the quantum 
Halll  states, see also section 4.2.3). 

Fromm the definitions of the electron and quasihole operators, the scaling dimension can 
bee obtained by the standard CFT techniques (see, for instance, [34]). The details of the 
underlyingg parafermion CFTs will be discussed in appendix 3.A. These scaling dimensions 
(alsoo tabulated in table 3.1) are important in the description of the various tunneling exper-
imentss one can, in principle, do. However, these experiments are very delicate, and at this 
pointt doing such experiments on samples which show the famous plateau at § filling  is still 
outt of reach. Nevertheless, the tunneling characteristics of the clustered states might pro-
videe an experimental check which can discern the various quantum Hall states at the same 
fillingfilling  fraction. 

Too illustrate this, we will take a closer look at the spin-charge separated state at filling 
fractionn v = § (i.e. k = 1, M = 1). At this filling  fraction, another spin-singlet quantum 
Halll  state has been proposed. This is a state of the so called Jain-series [60], with anti-
parallell  flux attachment [113]. In short, the idea behind the construction of Jain is that an 
evenn number of flux quanta gets bound to the electrons. In effect, the composite particles, 
whichh are fermions again, feel a reduced magnetic field. If these composite fermions fill  an 
integerr number of (effective) Landau levels, a quantum Hall effect can occur. The filling  of 
thee electrons is a fraction, so this construction gives rise to fractional quantum Hall states. 
Thee (electron) filling  fraction in the case of n filled Landau levels of composite fermions 
withh 2p units of flux attached, is given by u =  The + (-) sign applies in the case 
wheree the attached flux has the same (opposite) direction as the applied magnetic field. 

Soo at certain filling  fractions, there may be various proposals for quantum Hall states. 
Whichh state is formed depends heavily on the details of the energetics, which is very hard 
too calculate analytically. Numerical analysis might indicate which state is the most relevant 
one,, as was done in the case of the v = § qH state (see, for instance, [72]). On the exper-
imentall  side, one can look for properties which differ for the various proposals. Often, the 
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tunnelingg characteristics of the quantum Hall states indeed differ among the different pro-
posals.. As indicated above, doing these tunneling experiments might be hard; however, we 
thinkk they provide an interesting check to see which states occur under various conditions. 

Thee relevant electron and quasihole operators needed to calculate the tunneling charac-
teristicss of the Jain states were identified in [70]. For the spin-charge separated states, they 
cann be found in table 3.1. 

Here,, in describing the tunneling behaviour, we will follow the discussion presented in 
[70].. We will concentrate on the process of tunneling electrons from a Fermi liquid into the 
edgee of the quantum Hall system. Moreover, we will only address the scaling behaviour, 
ratherr than the amplitudes. The tunneling current I has the scaling behaviour I oc Va. The 
exponentt a is determined by the scaling dimension of the tunneling operator, which in turn 
iss determined by the electron and quasihole operators. So because in general the scaling 
dimensionss of the electron operators differ between the various quantum Hall states, also 
thee I-V characteristics is different. For the composite fermion state at filling  v = |, the 
scalingg dimensions of the electron and quasiholes are calculated in [70] to be ge = 2 and 
QqhQqh = § respectively. The I-V characteristics for tunneling electrons into the edge is given 
byy I ~ V9c, so the composite fermion state gives rise to a quadratic I — V. For the spin-
chargee separated states, the scaling dimensions are given by ge = M + 2, #hoi = ?£M~+8 ^ 
ggspsp = | for the electron, holon and spinon, respectively (see also [8]). Thus, for the spin-
chargee separated state at filling  v = |, we predict a cubic I-V. Though experimentally 
measuringg the scaling behaviour of the I - V of the tunneling processes might be very 
hard,, it is a probe which distinguishes (some of) the various quantum Hall states which are 
proposedd at the various filling  fractions. 

Wee end this section by providing a summary in the form of table 3.1 of the properties 
off  the various clustered quantum Hall states discussed in this section. The main properties 
off  the quantum Hall states are indicated, as well as some of the properties of the underlying 
CFTs. . 

3,AA General parafermion CFTs 

Followingg the work of Gepner [43] throughout this appendix, we will state how the general 
parafermionn fields can be described and indicate which fields are used in the construction of 
thee clustered quantum Hall states. Here, we only give the minimal information necessary, 
forr details we refer to [43]. 

Thee fields of the 0*/u(l) r parafermion CFT (where gk is a simple affine Lie algebra) 
aree written as $ J. Both A and A are weights of the simple Lie algebra g. A is considered to 
bee a charge and is defined modulo ICML, where ML is the long root lattice of g. The action 
off  the (proper) external automorphisms the affine Lie algebra (unfortunately also denoted 
byy a) imposes field identifications among the fields 

*i*i  = <%) • < 3 A 1> 
Detailss on the external automorphisms a can be found in [34]. Another constraint on the 
labelss of the fields $ is that the weight A needs to be 'accessible' from A by the subtraction 
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off  roots (including Q0) . The minimal number of times the root a0 needs to be subtracted 
wil ll  be denoted by n£. Thus if A e A (now at the level of the simple Lie algebra g), then 

Thee conformal dimensions of the fields are given by 

AA A-(A + 2p) _ A ^ nA  ( 3 A 2 ) 
AA 2{k + g) 2k x 

InIn this equation, the inner products are defined with respect to the quadratic form matrix. 
2p2p is the sum of all the positive roots of the corresponding Lie algebra. 

Thee central charge of the parafermionic CFT is given by Cpf = caLa - r, where caLa is 
thee central charge of the CFT with affine Lie algebra symmetry gk and r is the rank of the 
Liee algebra g. The central charge of the CFT with affine Lie algebra symmetry is given by 
CQTT _ -4<L where d is the dimension of the Lie algebra and g the dual Coxeter number 
(noo confusion should arise in using the same symbol for the Lie algebra and its dual Coxeter 
number). . 

Thee remainder of this section is devoted to the (parafermion) field we used in the de-
scriptionn of the paired quantum Hall states discussed in this chapter. Some of the properties 
off  the various fields used are given in table 3.1. 

Thee parafermion fields ipa, used in the definition of the electron operators, are in fact 
thee fields $ J. In this notation, 1 denotes the vacuum representation 1 = (0 , . . ., 0) and a is 
aa root. The operator product expansion (OPE) of the parafermion fields have the following 
form m 

4>«MM*,)4>«MM*,) = & ~ * j ) A t t + ' ~A a ' A / , ^+ / j ( * i )  <3-A3) 

Thee scaling dimensions of the parafermion fields </>a can be obtained using eq. (3.A2). In 
thee case of the parafermions used in the electron operator, *pa = $ i , where a is in the 
adjointt representation, one finds that nj = 1, implying A^ = 1 - ^ , where b = 1 in the 
casee of simply-laced Lie algebra, b = 3 for the Lie algebra G2 and b = 2 for all the other 
nonn simply-laced Lie algebras. 

Thee form $1 for the parafermion fields ij)a implies that the fusion of two parafermion 
fieldsfields is always trivial 

i>ai>a X # = </>«+/? , (3-A 4) 

wheree the labels are modulo k times the long root lattice ML- Together with r boson 
fields,fields, these parafermions can be used to make the currents Ja of the corresponding affine 
Liee algebra CFT. In general, the spin fields aw are the fields $ £„  where w' lies in the 
fundamentall  representation w. 

Too obtain the operators for creating the electrons and quasiholes, the parafermion and 
spinn fields must be combined with vertex operators of chiral boson fields. For M = 0, this 
iss done in such a way that the electron operators become currents of the underlying affine 
algebra.. For the rank 2 Lie algebras, we choose a spin and charge axis in the root diagram 
consistentt with the spin of the electron. The conformal dimension of a vertex operator eta'v 

iss given by A v 0, = ^-. Thus the form of the vertex operator part of the electron operator 
iss fixed. Together with the assignment of charge and spin to the root diagram, this also fixes 
thee form of the quasihole operators. This procedure automatically takes care of the fact 
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thatt the quasiholes have to be local with respect to the electron operators. The results for 
thee various states are given in the preceding sections; they are also collected in table 3.1 in 
sectionn 3.7. 

Ann important property of quantum Hall states, at least from a theoretical point of view, 
iss the degeneracy of the state on a torus. This degeneracy can also be characterized by 
thee number of fields in the chiral algebra of the CFT for the quantum Hall state (see, for 
instance,, [71]). In the case of the abelian quantum Hall states, this torus degeneracy can be 
calculatedd from the K-matrix of the electron sector, as was shown by Wen (see, for instance, 
[105]).. The result is simply the determinant of the K-matrix for the electron sector. For 
thee non-abelian quantum Hall states, this result does not hold anymore, because of the 
parafermionicc CFTs (for the abelian qH states, only chiral boson fields are present). Of 
course,, one would like to have a way of obtaining the torus degeneracy directly from the 
K-matricess for the non-abelian quantum Hall states, as described in chapter 5. At this point, 
wee do not have such a formula. However, we can calculate the number of primary fields in 
thee parafermion theories, and combine this result to the degeneracy 'caused' by the chiral 
bosonn fields present in the electron operator. 

Usingg the constraints of the beginning of this appendix, we find the following num-
berss of (parafermion) primary fields for the su(2) and su(3) states, namely |fc(fc -I-1) and 
§P(fcc + l)(fc + 2), respectively. For the so(5) parafermions we find \k2{k + l)(k + 2) 
primaryy fields. 

Thesee numbers need to be combined with the degeneracy caused by the chiral boson 
fieldsfields in the electron operators. For the RR, NASS and SCsep states, these are given by 
MM + f, !£%& and 2*J*ti respectively. 

Combined,, the degeneracies of the various quantum Hall states on the torus are given 
byy \(k + \){kM + 2) and §(fc + 1)(A; + 2)(2kM + 3) for the su(2) and su(3) states, while 
thee so(5) states have degeneracy |(fc 4- l)(k + 2)(2kM + 1). 
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Chapterr  4 

Statisticss properties 

Inn this chapter, we will introduce the concepts needed to discuss the statistics properties 
off  the electrons and quasiholes of the paired quantum Hall states. The language we use is 
thatt of the so called exclusion statistics principle introduced by Haldane in the early 90-ties 
[51].. The idea behind this principle is to generalize the Pauli exclusion principle, which 
statess that no two electrons (or fermions in general) can occupy the same quantum state. 
Thuss the presence of an electron diminishes the allowed states for the other electrons by 
one.. Haldane introduced the concept of fractional exclusion statistics. This concept will be 
veryy useful in the state counting, which is discussed in chapter 6. It turns out that the matrix 
containingg the statistics parameters of the particles of the quantum Hall states has an direct 
relationn with the K-matrix description of the quantum Hall states. These K-matrices of the 
clusteredd quantum Hall states will bee discussed in the following chapter. This chapter deals 
withh the formalism of describing non-abelian (exclusion) statistics which is needed in the 
nextt chapter. This chapter is based on the sections 4 and 5 of [7], 

4.11 Abelian exclusion statistics 

Too explain the concept of exclusion statistics, we will follow the way in which Haldane 
originallyy defined this concept, but focus on the concepts needed in this thesis (such as the 
statee counting). As an example, we will take the spinons which form in the Haldane-Shastry 
spinn chain [50, 93]. This spin chain is a S = § Heisenberg chain with inverse-square 
exchange. . 

Thee idea behind exclusion statistics [51] is that, in finite systems, the number of states 
whichh are available for a particle, depends on the number of particles already present. More 
precisely,, the addition of a particle diminishes the number of available states for particles 
whichh are added afterwards. For fermionic particles, the number of available states would 
diminishh by one if a particle is added to the system. In the other familiar case, namely 
bosons,, the number of states would stay the same. Haldane proposed the following interpo-
lationn between fermions and bosons. Let di be the number of available states for species i. 
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Byy adding a particle of species j (i.e. ANj = 1), the number d{ changes according 

&d&dii = -Y,9iANj. (4.1) 
j j 

Thee elements g^ are called the statistical interaction parameters. For bosons, we have 
9ij9ij = 0, while fermions obey gtj = % which is the Pauli exclusion principle. The idea of 
Haldanee is to consider more general forms of statistics, such as fractional statistics. The gtj 

havee to be rational, in order to have a well denned thermodynamic limit. Crucial for this 
definitionn to work is the assumption that we want to describe finite systems, and that the 
particless are added while the boundary conditions are fixed. That systems with fractional 
exclusionn parameters can occur will be demonstrated for spinons systems, see below. 

Thee exclusion statistics can also be denned via the consequences it has for the state 
counting.. The number of states for iV identical bosons or fermions in G orbitals is well 
known,, and given by 

Thee state counting for particles obeying general exclusion statistics is given by [114] 

irr  Ti(f3i + N'~1~l: 'avlIf '~ i,i))l  (43) 
LLj-j- W)!(Gi - 1 - E,- <*i W " *«))' ' 

Usingg these multiplicities and the grand canonical partition function for a system of particles 
obeyingg fractional statistics, the equations (4.4) (see below) are obtained. From these equa-
tions,, which describe the 1-particle partition functions, the other thermodynamic properties 
cann be derived. 

Inn this thesis, we wil l use the concept of fractional exclusion statistics mainly to describe 
thee fractional quantum Hall states. We find an interesting relation between the exclusion 
statisticss matrices and the K-matrices describing the topological properties of the quantum 
Halll  states. In chapter 6, we will use the exclusion statistics of the parafermions to obtain 
thee ground state degeneracies of the clustered quantum Hall states on the sphere, in the 
presencee of quasihole excitations. Before we come to that point, we will first take a closer 
lookk at a system, which is best described as an 'ideal gas of fractional statistics particles'. 

Ann important consequence of the concept of an 'ideal gas of fractional statistics parti-
cles'' is the notion of 1-particle distribution functions which generalize the familiar Fermi-
Diracc and Bose-Einstein distributions. These distributions can be derived from '1-particle 
grandd canonical partition functions'. These quantities, which we denote by A*, satisfy 
thee following set of equations, which were independently derived by Isakov, Dasnières de 
Veigy-Ouvryy and Wu (IOW) [59, 26, 114] 

A j - 1 1 
Af f n A ^ ' = * ''  (4-4) 

wheree A*  = A*(zi,... , zn), with z{ = e ^ i _ e ) , is the generalized fugacity of species i. 
Notee that the energy e may also include contributions from the coupling of the charge and 
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spinn of the quasiparticles to external electric and magnetic fields. Hence the information 
aboutt charge and spin of the quasiparticles is also encoded in these generalized fugacities. 
Thee fugacities of the particles will be important for the distinction between abelian and 
non-abeliann statistics, as we will point out later. The matrix K8*  is the so-called 'statistics 
matrix'' and describes, at least in the original situation in which Haldane introduced his new 
notionn of statistics, the statistical interaction of particles of different species. 

Fromm the solutions A*  of the IOW-equations (4.4) the one-particle distribution functions 
Hi(c)) are obtained as 

aa a 

Ui{e)Ui{e) = ^aT^n^l^e""-. ) = E ^ l 0 & A ' U = e ^ - < > '  ( 4 ' 5 ) 

**  3 3 3 \ 

wheree we have assumed that the matrix IP*  is symmetric. 
Beforee we go on to describe the in which way the statistics matrices are used in a quan-

tumm Hall situation, we will first consider a basic example of the application of exclusion 
statistics,, namely the of the spinons related to su{2)\. 

4.1.11 Spinons 

Inn this section, we will use spinons to explain the concept of exclusion statistics. In general 
(includingg arbitrary dimension) spinon excitations can occur in the background of a anti-
ferromagneticc resonating valance bond (RVB) state; they are unpaired spins. Consider a 
systemm of N spins, and N8p spinon excitations, leaving an integer (N — ATsp)/2 unbroken 
bonds.. Because of the non-orthogonality of the states, the dimension of the Hilbert space is 
givenn by 1 + JV~2

JV'P, independent of the spinon type [52, 51]. To clarify this statement, we 
takee a look at a three site system. Assume that the spins on two of the sites form a bond, 
whilee the third site contains a spinon (of either spin). Moving the spinon to one of the sites 
off  the bond only leads to one other independent state; thus, for each bond, there is only one 
extraa spinon state. Of course, summing over all possible states of a system of N sites leads 
too a total number of states of 2^, as expected. 

Thus,, we come to the conclusion that adding 2n spinons to the system reduces the 
dimensionn of the Hilbert space for the next added spinon by n: the spinons obey a semionic 
exclusionn statistics, interpolating between the fermion and boson statistics. The statistics 
parameterss are given by 

K.P=f ïï f )  (4-6) 

Onee place where these spinons occur is the Haldane-Shastry spin chain. In [52], Haldane 
derivedd the exact spectrum and the thermodynamics of this system. In this analysis, the 
spinonss played a crucial role. Without going into all the details of the system, we give the 
hamiltoniann for the model on a ring, with periodic boundary conditions 

## = j ] T ( d ( n - n ' ) )2 Sn - Sn , , (4.7) 
n<n' n<n' 
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wheree d(n) = % s i n (z^ ) is the chord distance. Thus the model (4.7) is an example of a 
1-dimensionall  system in which particles with fractional (exclusion) statistics are present. 

Onn the level of conformal field theory, the properties of the spinons were derived in [90]. 
Thee 1-particle distribution functions obtained there exactly correspond to the distributions 
obtainedd form the exclusion statistics matrix (4.6). The method used in [90] is that of 
'truncatedd chiral partition functions'. This method will be used (and explained) in this 
thesiss in chapter 6. 

4.1.22 Abelian quantum Hall fluids 

Thee relation between, on the one hand, the K-matrix of an abelian quantum Hall fluid and, 
onn the other hand, the exclusion statistics of its charged edge excitations, can be described 
ass follows. The charged edge excitations are described by a specific conformal field theory, 
alsoo known as a chiral Luttinger liquid. Following a procedure first proposed in [90], one 
mayy associate a notion of fractional exclusion statistics to a set of fundamental excitations in 
thiss CFT. Selecting a particular set of negatively charged 'electron type' excitations together 
withh a 'dual' set of positively charged quasihole excitations, one precisely finds fractional 
exclusionn statistics in the sense of Haldane, with statistics matrix K8*  given by 

Kstt = Ke e K^ , (4.8) 

withh Ke and K^ the K-matrices for the abelian quantum Hall state. For the principal Laugh-
linn series at fillin g fraction v = 1/M, this result was obtained in [30], in its general form it 
firstfirst appeared in [6]. The relation of the identification (4.8) with character identities involv-
ingg so called universal chiral partition functions will be discussed in section 4.3 

Inn [40], a slightly different identification between the K-matrix and a statistics matrix, 
amountingg to K = Kg, was proposed. The two proposals can be reconciled by realizing 
thatt we, in our analysis of edge excitations, restrict ourselves to quanta of positive energy 
only.. From the duality relations that we discuss below, one learns that, in a precise sense, 
quasiholee quanta of positive energy can be traded for holes in a 'Fermi sea' of electron-type 
quantaquanta at negative energy, and in this way one arrives at a complete description in terms of 
thee matrix Ke alone. 

Inn chapter 5, we will identify the statistics matrices for excitations over non-abelian 
quantumm Hall states, following [6]. Extending the identification (4.8) to the non-abelian 
case,, we shall propose K-matrices for the non-abelian quantum Hall states. We would 
likee to stress that, although many of the formulas from the well known abelian K-matrix 
descriptionn still hold for the generalized K-matrices we find here, the description for the 
non-abeliann states is on an entirely different footing. The abelian K-matrices were intro-
ducedd to describe quantum Hall states in the 'most general' way, i.e. by trying to implement 
thee hierarchical schemes in a general way. In the non-abelian case, we need the K-matrix 
structuree to keep track of the non-abelian statistics. So although we use a matrix structure, 
wee are not describing a hierarchical situation. 

Wee continue this section with a discussion of the fundamental 'particle-hole' duality 
betweenn the electron and the quasihole sectors of the theory. To show how this duality 
works,, we assume that we have n quasiholes <f> and n electron-like particles ^ described 
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byy the matrices K$ and Kg, respectively. We assume that (i) K^ ~ K'1, and (ii) there is 
noo mutual exclusion statistics between the two sectors (meaning that the statistics matrix 
iss given by the direct sum (4.8)). These two conditions in fact constitute what we mean 
byy duality in this context. In the context of low-energy effective actions for abelian fqH 
systems,, a similar notion of duality has been considered (see, e.g. [107] and references 
therein). . 

Withh the matrices K$ and Ke, two independent systems of IOW-equations can be written 
down,, and these systems are related by the duality (for clarity, we will denote the single level 
partitionn function for the quasiholes and electron-like particles by A*  and /**  respectively; 
thee corresponding fugacities will be denoted by xt and yi) 

3 3 

ass can be verified easily. 
Ass an illustration of the duality, we calculate the central charge of the conformal field 

theoryy that describes the edge excitations. We focus on the abelian case. In the non-abelian 
case,, which we discuss in the next section, there will be a subtraction term due to the pres-
encee of pseudoparticles. 

Inn general, for abelian quantum Hall states, the central charge CCFT is given by 

66 f1^ , A , v 
CCFT~-ÖCCFT~-Ö — logAtotU), (4.10) 

7TT  Jo Z 

wheree Atot(^) denotes the product Jlj Aj evaluated at Zj = z for all  j . It has been shown 
(seee [22, 17] and references therein) that, upon using the IOW-equations (4.4), this can be 
rewrittenn in the following form 

i i 

wheree L(z) is Rogers' dilogarithm 

tf*(ï tf*(ï ;; * ( * « u * « ^ ' i . (tra 
Inn [63], many interesting identities involving the dilogarithm can be found. The quantities 
£i£i which appear in eq. (4.11) are solutions to the central charge equations 

Forr the abelian quantum Hall case, we have two matrices K^ and Kg and we need the 
solutionss & and rji of the equations 

& = nn f1 - ^ - ) ( K * ) i j ' * = n (* - *?i)(K-)y  <4-i4> 
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Byy virtue of the duality, these solutions are related by a simple equation: r\i = 1 - &. This 
leadss to 

^L(^+E L ^ )) = E(L ^) +L (1-^ ) = nL(1) = n i _ - (4-15) 

ii  i i 

Soo in the abelian case, we correctly find that the central charge is just given by the number 
off  species in the theory, CCFT = n. 

4.22 Non-abelian exclusion statistics 
Inn this section, we focus on K-matrices and statistics matrices for non-abelian quantum 
Halll  states. We shall first introduce new types of particles, pseudoparticles and composite 
particles,, and explain the role they play in the non-abelian case. We also extend the notion 
off  duality to the non-abelian case. After that we discuss various aspects (fillin g factors and 
shiftt map) of the quantum Hall data K, t, s and j in the non-abelian case. 

Amongg the new particles that appear in non-abelian theories are so called 'composite' 
particless in the electron sector. These wil l show up as particles which have multiple electron 
charges.. We introduce an integer label k for an order-̂  composite particle of charge {te)i = 

-U. -U. 
InIn the quasihole sector, we encounter so called pseudoparticles, which do not carry 

anyy energy, but rather act as a book-keeping device that keep track of 'internal degrees of 
freedom'' of the physical quasiholes. The notion of a 'pseudoparticle' can be traced back 
too so-called string solutions to the Bethe equations for quantum integrable systems in one 
dimension,, such as the Heisenberg XXX chain (see [96], where the contribution to the 
thermodynamicss of the string solutions for the XXX chain is computed). Pseudoparticles 
weree used (and received their name) in the TBA analysis of integrable systems with non-
diagonall  particle scattering (see, e.g. [116]). In the context of exclusion statistics they have 
beenn discussed in [40,48, 17, 6]. We assign the label k - 0 to all pseudoparticles. 

Ann important observation, first made in [6], is that the duality between the electron 
andd quasihole sectors naturally links the presence of composite particles in one sector to the 
presencee of pseudoparticles in the other. Physically, this is a link between the pairing physics 
off  the non-abelian quantum Hall states and the non-abelian statistics of their fundamental 
excitations. . 

4.2.11 Composites, pseudoparticles and null-particles 
Thee presence of pseudoparticles and composite particles calls for a slight generalization of 
thee discussion of the previous section. When focusing on the dependence of the A; on the 
energyy e, the natural specialization of the generalized fugacities zt is given by z{ = zli, with 
zz = e~0e. In the presence of U # 1, the 1-particle distribution functions take the form [note 
thatt a composite particle labeled by U carries energy he] 

««(*)) = ̂ .^UM'l^in-w  =T,l^é-j
]ogXi\^=^-^  (4'16) 
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Withh the following definition of Atot(̂ ) 

*to<(z)*to<(z) = l[[\i(zj=zli)}ii , (4.17) 
t t 

thee central charge CCFT is again given by the expression (4.10). We note that in the special-
izedd IOW equations, with Z{ = zli, the right hand side of the equations for pseudoparticles 
iss equal to 1. When focusing on quantum numbers other than energy, such as spin, we will 
considerr slightly more general versions of the quantity Atot. 

Inn all examples (abelian and non-abelian) that are explicitly discussed in this thesis, 
wee assume a choice of particle basis such that 1«, = — te. For the abelian quantum Hall 
statess we further assume that (te)i — - 1 for all i. In the quasihole sector we specify 
(l<t>)i(l<t>)i = -^(K<t>)ij(\e)j = T^-t^, where qqh is the smallest (elementary) charge in the 
quasiholee sector. [This implies that, even in the abelian case, we may treat some of the 
quasiholess as composites of the most fundamental ones, thereby generalizing the discussion 
off  the previous section.] 

Underr these assumptions, we find that under duality A tot(^) and //tot(j/) are related in 
thee following way 

\tot(x)=xttf\tot(x)=xttfotot(y),(y), y = x-P, (4.18) 

with h 

aa = p= — , 7 = 4 -- (4.19) 

AA clear sign of non-abelian statistics is found in the way the quantity A*  for physical 
particless depends on the fugacity Z{. Putting z\ = 1 for all pseudoparticles, and focusing on 
thee small z behaviour of A,, one finds 

XiXi = 1 + otiZi + o(z2) . (4.20) 

Inn the abelian case, a*  = 1, whereas in the non-abelian case oti > 1. The factors a*  lead 
too multiplicative factors in the Boltzmann tails of the one-particle distribution functions for 
physicall  particles. The quantities a*  are in fact the largest eigenvalues of the fusion matrix 
[22],, i.e., the quantum dimensions (see, for instance, [34]) of the conformal field theory 
associatedd to the quantum Hall state, and can easily be calculated for the cases we deal with 
(seee sections 5.1 and 5.2). 

Inn [6], we presented a generalized K-matrix structure for some recently proposed quan-
tumm Hall states. The proposed K-matrices were identified via their role as statistics matrices 
forr the fundamental charged edge excitations. In the quasihole sector, the non-abelian statis-
ticstics leads to a specific set of pseudoparticles and an associated statistics matrix K^ [48, 17]. 
Thee matrix K*,, related to K# by the duality K<. = K^1, refers to particles which are iden-
tifiedtified as composites of the fundamental electron-like excitation. From the point of view of 
thee wave functions for the non-abelian quantum Hall states (see chapter 3 and [71, 85,10]), 
thee presence of composite excitations is very natural. This is because the non-abelian states 
showw a clustering property, as described in section 3.1. In [46,45, 6] it was argued that the 
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wavee functions which show pairingg (at k = 2), are related (in the non-magnetic limit, i.e. in 
thee limit of v ->  oo) to BCS superconductivity. 

Compositee particles are identified as particles whose generalized fugacities are specific 
combinationss of the generalized fugacities of other particles, i.e., all quantum numbers of 
compositee particles are completely determined in terms of the quantum numbers of their 
constituents.. It has been shown in [17] that particular kinds of composite particles, so-
calledd null-particles, accounting for the null-states in the quasiparticle Fock spaces, are often 
neededd to interpret the system in terms of Haldane's exclusion statistics or, equivalently, to 
writee the partition function in UCPF form (see also section 4.3.2). 

Wee now turn to the computation of the central charge CCFT the non-abelian case. It was 
shownn in [17], that the presence of pseudoparticles leads to a simple correction term that is 
subtractedd from the abelian result CCFT = n- For the pseudoparticles, a system of equations 
likee eq. (4.13) can be written down 

6 = n ' ( i - ö ) K i j ''  (4-2i) 

3 3 

wheree the prime indicates that the product is restricted to pseudoparticles. The correction 
termm is given by a sum over the dilogarithm of the solutions of (4.21), leading to 

CCFTT = n - 4 E ' L<£)  (4-22) 

i i 

4.2.22 On fillin g factors 

Upp to now, we merely asserted that the statistics matrices IK can also serve as (generalized) 
K-matricess for non-abelian quantum Hall states. To make this statement more clear, we 
wil ll  now investigate how some of the 'K-matrix results' for abelian quantum Hall states 
generalizee to the non-abelian case. In this derivation, we make the assumption that the 
pseudoparticless do not carry charge or spin. In all cases that are explicitly considered in 
chapterr 5 this assumption holds in the simplest formulation. If pseudoparticles do carry 
spinn or charge, the formulas we obtain below need to be modified. 

Lett us start with the filling  factor corresponding to state which is described by the IOW-
equations,, for a statistics matrix Ke, charge vector te, and labels le = —te. We couple 
thee system to an electric field by taking yi = y "(*«)* . [This is when the orientation of the 
electricc field is such that the response is carried by the negatively charged excitations.] The 
largee y (i.e. low temperature) behaviour of the IOW-equations (4.4) is then given by the 
followingg set of relations 

n ^ ' - l T ^ ' ,, (4.23) 
3 3 

whichh imply, when K is symmetric (which is assumed throughout this thesis) and invertible 

Mtott  = n^r ( te ) i~?/t e' Kr l ' t e- (4-24) 
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Becausee the left hand side of Eq. (4.24) in the T -> 0 limit determines the fillin g factor u 
throughh /itot ~ yv •, we find the well-known formula 

vv = te • K'1  te . (4.25) 

Forr the opposite orientation of the electric field, a similar expression is obtained by starting 
fromm the K-matrix for the (positively charged) quasiholes 

vv = t^  K" 1  fy . (4.26) 

Thiss result could also have been obtained by using eq. (4.25) and the transformation prop-
ertiess of Ke and te under duality. We remark that the above derivations explicitly assume 
thatt only the physical particles respond to the electric field, i.e., that all pseudoparticles are 
neutral. . 

Lett us now turn to the spin Hall conductance, and the corresponding spin filling  factor. 
Thee derivation of the corresponding spin filling  factor 

aa = se  K-1  se , (4.27) 

goess along the same lines as the derivation of the electron fillin g factor. As an extra step, 
onee needs to relate the fugacities of the spin up and down particles by y-f = I/2/4, = z. This 
resultss in 

n / ^ - * - ^ 1 - ,, (4-28) 
i i 

leadingg to Eq. (4.27). It is important to note that this formula only holds in the cases where 
thee pseudoparticles in the ^-sector do not carry spin. As a check on this formula, one would 
likee to have a procedure to obtain the spin filling  factor directly from the wave functions, as 
iss possible for the electron filling  factor. To do this, one has to count the zeros of the wave 
functionn with respect to one reference particle (of a given spin, say, up). The total number 
off  zeros gives the total flux needed on the sphere as a linear function of the total number 
off  electrons Ne. By using the relation between Ne and N* given in (2.5) one obtains the 
electronn filling  factor and the shift. To obtain the spin fillin g factor, one has to keep track of 
twoo different types of zeros, namely those with respect to a particle of the same spin, and 
thee ones with respect to particles of the other spin. We wil l denote the number of these zeros 
byy Nl and N^ respectively. The electron and spin filling  factors are obtained from 

N*N* = Nl + Ni = -Ne-S, 
\\ (4.29) 

Nl-NiNl-Ni = -Ne-S. 

Wee applied this procedure to the non-abelian spin-singlet states of [10] (the explicit form 
off  the wave functions are given in section 3.5), and indeed found the same results for the 
electronn and spin filling  factor as obtained from the K-matrix formalism, eq. (3.23). Also 
thee electron filling  factor for the Read-Rezayi states is reproduced correctly, see eq. (3.12). 
Inn addition, for both types of states we found that the shift on the sphere is in agreement 
withh (2.6) for 5 = 0. 
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Summarizing,, we have presented evidence that duality relations 

K^^ = K;1 , t*  = —IPC"1  te , s0 = -K-1  sc , j *  = - K ; 1 j e . (4.30) 

aree applicable to both abelian and non-abelian quantum Hall states, and that the expressions 
(2.3)) for the filling  factors v and a apply to the non-abelian case, in a formulation where 
pseudoparticless do not carry spin or charge. 

4.2.33 Shift map 

Supposee we have a fractional quantum Hall system which is characterized by the data 
(Ke, te,se, j e) .. We can then construct a family of fractional quantum Hall systems, pa-
rameterizedd by M e Z+, by applying the 'shift map' SM introduced in [36]. In the cases 
wee consider, M odd (even) corresponds to a fermionic (bosonic) state respectively. At 
thee level of trial wave functions *&{z), SM simply acts as a multiplicative Laughlin factor 
Y\Y\{<{< (zi — Zj)M. Thus, SM increases the number of flux quanta by 

iV**  H-> N$ + M(Ne -1) = (- + M)Ne - {S + M) , (4.31) 

i.e., , 

i z - ^ ^ + M ,, a H- a, S^S + M . (4.32) 

Inn fact, SM acts on the fqH data (Ke, te, se, j e) as 

SSMM&e&e = Ke + Mtete , 

SSMMSSee = Se , (4 - 3 3) 

cc . . M 
OMjee = Je + — t e . 

Onee easily checks that (4.33), together with (4.25), leads to the shift in i/_1 as given in 
(4.32).. By duality (4.30) one obtains 

SSMM^4>^4> = K^ - 1 + vM
t<t>t<t>' 

SMtSMt** ~ TTTM * 
1 1 

(4.34) ) 
SM$4>SM$4> = s4> > 

.. . M (vS - 1 \ ^ 

AA few remarks should be made. By using the duality (4.30), one actually finds for the 
actionn of the shift map on s0: SM^ = ŝ  + ^ p J J ^V However, the shift map is only 
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supposedd to act on the charge component of the particles, thus we would like to demand that 
SMSM S0 = S0. Therefore, for consistency, we require 

t**  se = - t e  Ê  x  se = 0 , (4.35) 

leadingg to (4.34). Of course, relation (4.35) is just the statement that for spin-singlet states 
theree should be a Z2 symmetry (te, se) t-> (te, -se) . Equation (4.35) is fulfilled for all our 
exampless (if we take se = 0 for the spin-polarized states). Although, in general, j e has to be 
treatedd as an independent variable, for the states discussed in sections 3.4 to 3.6 all formulas 
aree consistent with the relation j e = se + 2,f_ ,te. 

Inn this thesis we will be mainly concerned with fractional quantum Hall systems cor-
respondingg to conformal field theories gkjM which are deformations of the conformal field 
theoryy based on the affine Lie algebra gk at level k. The a symmetry greatly simplifies the 
determinationn of the fqH data (K*, te, se Je) for gk. The fqH data for gkiM are then simply 
obtainedd by applying the shift operator SM as in (4.33). The action of the shift map can be 
visualizedd as follows. Charge is usually identified with a particular direction in the weight 
latticee of g. The degrees of freedom associated to this direction can be represented by a 
chirall  boson compactified on a circle of some radius R. The shift map <SM has the effect of 
rescalingg the radius R while keeping all other directions in the weight diagram fixed. 

4.2.44 Composites 

Thee description of a physical system in terms of a set of n quasiparticles with mutual exclu-
sionn statistics given by a matrix (Ky )i<«j<n is not unique. In particular one may extend 
thee number of quasiparticles by introducing composites as we will now explain. 

Considerr the IOW-equations (4.4) with 

ann  din 

II  z = I : | (4.36) 

Iff  we define the operation dj, corresponding to adding a composite of the quasiparticles i 
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andd j to the system, by 

/ / 

CijKCijK = 

an an «In n 

anan + 1 

auau +1 

Onl l 

\an\an + aji 

d\id\i + ü\j 

aann;; + a nj nj 

and d 

Q>inQ>in i ajn 

CijZCijZ — ( Z i , . . . , zn ; z^Zj) , 

,, (4.37) 

anan + 2aij + ajj/ 

(4.38) ) 

suchh that, in particular, 

dj^>dj^> — ( î i  tn; tj +tj) , 

Cij-ss = ( s i , . . ., sn; Si + Sj) , (4.39) 

thenn the two systems are equivalent, at least at the level of thermodynamics. The solutions 
{A JJ to the IOW-equations defined by (K, z) and {A' J defined by (K', z') = ( C i ^ C y z) 
aree simply related by 

XX{{ + Xj-1 v _ Xj + Xj-1 

XiXi ' 
A'' = *}}  = 

^ n +ll  — 

'\7 7 
AjA j j Aii  = Afc, (fc^i,j,n + l) (4.40) ) 

XiXi + Xj-1' 

Notee that, in particular, it follows A*  = AJA^+1 and Xj = AjA^ +1 such that Atot = A(ot. 
Also,, from Xi = X'iX'n+1 and Xj = Â  A^+1 one sees that the original one-particle partition 
functionss for i and j , receive contributions from the new particles i and j , respectively, as 
welll  as from the composite particle n + 1. The operation dj has the effect that states in the 
spectrumm containing both particles i and j get less dense (their mutual exclusion statistics is 
bumpedd up by 1), while the resulting 'gaps' are now filled by the new composite particle. 

AA consistency check on the equivalence of the systems described by (K, z) and (K', z') 
iss the fact that both lead to the same central charge as a consequence of the five-term identity 
forr Rogers' dilogarithm (see [17]). 

Finally,, note that the shift map SM of eq. (4.33) and composite operation dj of eqs. 
(4.37)) and (4.39) commute, i.e. 

SMSM dj — dj SM > (4.41) ) 

ass one would expect. 
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4.33 The UCPF and exclusion statistics 
Inn this section, we will comment upon the relation between the universal chiral partition 
functionfunction (UCPF) and exclusion statistics. 

4.3.11 Quasiparticle basis and truncated partitio n function 

Quasiparticless in two dimensional conformal field theories are represented by so-called chi-
rall  vertex operators 0W ( 2) that intertwine between the irreducible representations of the 
chirall  algebra. Given a set of quasiparticles <f){i){z), i = 1 , . . ., n, one has to determine a 
basiss for the Fock space created by the modes 4>^}8, i.e., a maximal, linearly independent set 
off  vectors 

tó?2...tóitóll<->,tó?2...tóitóll<->, (4.42) 
withh suitable restrictions on the mode sequences (su..., sN) (which may depend on the 
'fusionn paths' (iu... yiN)\ as well as a set of vacua \OJ) (see [22, 17] for more details). 
Thee partition function Z(z; q) is then defined by 

Z(z;g)) = T r ( ( n ^ ) 9 L o ) , (4.43) 
i i 

wheree the trace is taken over the basis (4.42) and N{ denotes the number operator for quasi-
particless of type i while L0 = £ \ s{ for a state of type (4.42). During this discussion on 
thee UCPF we use the following, in the literature standard, notation q = e- ^ 0 , where e0 is 
somee fixed energy scale, and Zi = e^**. 

Exclusionn statistics in conformal field theory can be studied by means of recursion re-
lationss for truncated partition functions [90]. Truncated partition functions i \ ( z ;g ), for 
LL = ( L i , . . . , Ln), are defined by taking the partition function of those states (4.42) where 
alll  the modes s for quasiparticles of species i satisfy s < L*. By definition, for large L, we 
wil ll  have (see [22,17] for more details) 

PPL+eiL+ei(z;(z; q)/PL(z; q) ~ Xi(ziq
Li) , (4.44) 

wheree e» denotes the unit vector in the i-direction. In particular, if the generalized fugacities 
ZiZi are given by Zi = zl\ for some fixed z, and the quasiparticle modes are truncated by 
L{L{ = liL, then we find, using (4.17) 

PL+I(Z;PL+I(Z;  q)/PL{z; q) ~ A to{(zqL), (4.45) 

wheree Pi,{z;q) = PixL,i2L,...tinL{zi = zli\q). Thus, given a set of recursion relations 
forr the truncated partition functions PL(z;q), one derives algebraic equations for the one-
particlee partition functions A*  (2) by taking the large L limit. In particular one can find an 
equationn for Atot( )̂ from PL (z; q) by using (4.45). For all conformal field theories that have 
beenn studied this way it turns out that one finds agreement between these A-equations and 
thee IOW-equations (4.4) corresponding to a specific statistics matrix K (see, in particular, 
[22]). . 
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4.3.22 The universal chiral partitio n function 

Basedd on many examples, it has become clear that the characters of the representations of 
alll  conformal field theories can be written in the form of, what is now known as, a universal 
chirall  partition function (UCPF) (see in particular, ref. [13] and references therein) 

Z(K;Q,u|z;g)) = £ ' ( n * r ) « * m * " ^ - m I I 
( ( I - K ) - mm + u). 

nu nu 
(4.46) ) 

wheree K is a (rational) nxn matrix, I is the identity matrix, Q and u are certain n- vectors 
andd the sum over mi , . . ., mn, is over the nonnegative integers subject to some restrictions 
(which,, throughout this thesis, are taken to be such that the coefficients in the g-binomials 
aree integer). The g-binomial (Gaussian polynomial) is defined by 

{q)m{Q)M-m{q)m{Q)M-m £5 

Thee vectors Q and u as well as the restrictions on the summation variables, will in general 
dependd on the particular representation of the conformal field theory, while K is independent 
off  the representation. To write the conformal characters in the form (4.46) may require 
introducingg null-quasiparticles which account for null-states in the quasiparticle Fock space 
[17].. The null-quasiparticles are certain composites, hence their fugacities Zi in (4.46) are 
specificc combinations of the fugacities of their constituents. 

Itt has been conjectured that the UCPF (4.4) is precisely the partition function (4.43) of 
aa set of quasiparticles with exclusion statistics given by the same matrix K, where Ui = oo 
correspondss to a physical quasiparticle and u*  < oo to a pseudoparticle [48, 17]. This con-
jecturee has been verified in numerous examples (see [48,17] for references). A convincing 
piecee of evidence in support of this conjecture is the fact that the asymptotics of the charac-
terr (4.46) (in the thermodynamic limit q ->  1") is given by exactly the same formula as the 
onee for the IOW-equations [17] (see also [88, 73,63,25] for z{ = 1). In the next section we 
establishh the correspondence in a more direct way. 

Forr future convenience let us introduce the limiting form of the UCPF (4.46) when all 
mm -*• oo, i.e. the case that all quasiparticles are physical and the exclusion statistics is 
abelian n 

s-(K;Q)) = £ (IRO' nM- ' <448) 

Notee that the limiting UCPFs (4.48) are not all independent, but satisfy (see [16]) 

ZocOK;Q)) = Zoo(DC;Q + * ) + *tf èK"+QlZoo(KiQ + K  * ) , (4.49) 

ass a consequence of 

^ -- = j! L  + _ ! _ . (4.50) 
(«)mm («)m («)m-l 
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4.33 3 Relation to exclusion statistics 

Thee relation between the UCPF and exclusion statistics can be made more explicit as fol-
lows.. Suppose the truncated partition functions PL{Z; q) are given by 'unitized UCPFs* of 
thee form 

^(« i f f )=E' (n^)^ m ' K " m + Q , mnn f (L+(i_K ) , m + u )< 
.. ' 7/1* 

(4.51) ) 

forr some vectors (Q, u). Of course, the number of parameters in this expression is overde-
termined.. Usually we think of u as being fixed while the meaning of the parameters L are 
determinedd by the cut-off scale. We can of course absorb the u by shifts in L (in fact, in 
practicee we often make shifts in the definition of L to simplify the recursion relations). We 
alsoo remark that we have introduced finitization parameters L* also for the pseudoparticles 
inn (4.51) to facilitate deriving recursion relations. In making the identification with the trun-
catedd partition functions these parameters are kept at a fixed (usually 'small*  or even zero) 
value. . 

Using g 

m m 
M-1 M-1 

m m ++ q M—m M—m 'M-1 'M-1 
mm — 1 

(4.52) ) 

wee find that PL(Z; q) satisfies the system of recursion relations 

PPLL(z;q)(z;q) = PL-ei(z;<7) + z^*"+*<+"<+L<PL_K.&i(z;q) . (4.53) 

Uponn dividing by PL{Z; q), setting q = 1, taking the large L limit, and using (4.44), we 
obtain n 

ll = \;l+Zil[\-Kji , (4.54) 
i i 

whichh are equivalent to the IOW-equations (4.4) with statistics matrix K. 
Moreover,, for any polynomial i \ (z; q) satisfying the recursion relation (4.53), the poly-

nomial l 
QL(Z;<7)) = (IJ**-* 1) g*L* L+ÏQ+u)x fl tL( a;ff-

1) , (4.55) 

satisfiess the recursion relations (4.53) with dual data (&'; Q', u', z'), given by (cf. (4.9)) 

K'K' = K-1 , Q' + u' = K"1  (Q + u) , z\ = JJ zf** . (4.56) 

Thus,, under the assumption that the set of unitized UCPFs (4.51), for fixed Q + u, form 
aa complete set of solutions to (4.53), the dual polynomial QL(Z', q) of (4.55) can again be 
writtenn as a (finite) linear sum of finitized UCPFs with dual data (4.56). Moreover, by taking 
thee large L limit of (4.55), using eqs. (4.44) and (4.54), one recovers the duality relations 
(4.9)) and (4.18). 

Thee above calculation shows that, for quasiparticles whose truncated partition function 
iss given by an expression of the form (4.51), the thermodynamics of these quasiparticles 
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iss described by Haldane's exclusion statistics with statistics matrix K. Even though many 
truncatedd characters are indeed of the form (4.51) (we wil l encounter various examples in 
thee remainder of this thesis) this is not the general situation. However, in examples it turns 
outt that for all recursion relations for truncated characters there is an associated recursion 
relation,, leading to the same A-equation, which does admit a solution of the form (4.51). 
Thee true solution to this recursion relation will in general differ from (4.51) by terms of 
orderr qL. In a sense we can talk about the universality class of recursion relations as those 
recursionn relations that give rise to the same A-equations and hence the same exclusion 
statistics. . 

4.3.44 Composites, revisited 
Inn section 4.2.4 we have seen, at the level of thermodynamics (i.e. the IOW-equations), how 
too introduce composite particles into the system in such a way that the resulting system is 
equivalentt to the original system. Due to the intimate relation of exclusion statistics with the 
UCPF,, explained in section 4.3.3, one would expect that a similar construction is possible 
att the level of the UCPF. Indeed, upon substituting the following polynomial ^-identity (see 
appendixx A of [7] for a proof) 

M i i M 21 1 
rri2 rri2 

E«, r o i i —— m)(»n2—TO) 

m>0 0 

Mii  — mi 
m\—m m\—m 

MiMi - m\ 
m<im<i — m T T ++ M2 - (mi + m2) + m 

m m 
(4.57) ) 

intoo the UCPF (4.46) at the (ij)-th entry, and subsequently shifting the summation vari-
abless mt »-> mi + m, mj «-> mj+m, yields an equivalent UCPF, based on n + 1 quasipar-
ticless with data (Cij K; dj Q, dj\i) and C^z, where 

Ci i QQ = (Q i1 . . . ,Q „ ;Qi + Q i ) , 
CijU=CijU= (u i , . . . , un ;U i + Uj) , 

(4.58) ) 

whilee CijK and Cyz are defined in eqs. (4.37) and (4.38), respectively. Various limiting 
formss of (4.57), relevant to introducing a composite of two physical particles or one physical 
particlee and one pseudoparticle, are given in [7] as well. 
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K-matricess for  clustered quantum 
Halll  states 

Inn this chapter, we will determine the K-matrices for the clustered quantum Hall states 
discussedd in this thesis. We first deal with the K-matrices for the clustered spin-polarized 
statess of section 3.4, followed by the spin-singlet states of section 3.5 in sections 5.1 and 
5.22 respectively. These sections are based on the sections 6 and 7 of the paper [7]. In 
sectionn 5.3, we give an alternative construction of the K-matrices above, inspired by the 
observationn that the wave functions of the clustered quantum Hall states can be obtained 
fromm a related abelian cover state by a symmetrization procedure, described in section 3.4. 
Thiss new way of constructing K-matrices for non-abelian quantum Hall states is used to 
obtainn the K-matrices of the spin-charge separated states (see eq. (3.36) for the k = 1 
states)) in section 5.4. 

Thoughh the K-matrices for quantum Hall systems are interesting by themselves, as they 
characterizee the topological properties of the quantum Hall systems, they also appear in 
manyy other contexts. They can be viewed as the statistics matrices appearing in the universal 
chiralchiral partition function for the corresponding Wess-Zumino-Witten (WZW) models with 
thee same affine symmetry, see, in particular, [7]. 

Wee will use the K-matrices for the quantum Hall systems as a starting point to obtain the 
statisticss matrices for the parafermion CFTs in section 5.5. These statistics matrices form 
thee basis of the fermionic character formulas for the parafermion theories. While these 
characterss are known for the Zfc and su(3)*/u(l)2 parafermions, the form we propose for 
thee parafermions related to so(5)jt/u(l)2 appears to be new. 

Thee results for so(5)k described in this chapter are based on [5]. K-matrices for more 
generall  WZW models with affine Lie algebra symmetry and the related parafermions will 
alsoo be presented there. 



72 2 Chapterr 5. K-matrices for clustered quantum Hall states 

5.11 Spin-polarized clustered states: su(2)kiM 

InIn this section we discuss a family of non-abelian spin-polarized fractional quantum Hall 
systemss with underlying conformal field theory su(2)fc;M and filling  factor 

"*•"" = W+2  (5-° 
Forr k - 2 we are describing the Moore-Read states, which were introduced in [71] while 
thee generalizations to k > 2 were introduced in [85]. The system contains a single quasihole 
<f>,<f>, with charge l/(kM + 2) and an electron operator * with charge - 1 . At the su(2)fc-point 
(i.e.. M = 0) the quasihole operator <f> has sw(2)-weight a/2, where a is the (positive) root 
off  su{2) and corresponds to one component of the chiral vertex operator transforming in 
thee spin 1/2 representation ('spinon', see [52, 15, 19, 20]), while the electron operator has 
weightt -a and corresponds to the current J_a. For general M the charge lattice has to be 
stretched. . 

Thee fqH data (Kg, te) and their duals (K^, t0) for k = 1 (corresponding to the abelian 
spin-polarizedd Laughlin states with v = 1/(M + 2) [67]) were discussed in [30] and for 
kk = 2 in [6]. Here we discuss the generalization (see also [48]) to arbitrary k, corresponding 
too the Read-Rezayi states [85]. But we will first discuss the Moore-Read states correspond-
ingg to k = 2. 

5.1.11 The Moore-Read case 
Ass indicated before, we analyze the conformal field theory su(2)fe)M by first analyzing the 
affinee Lie algebra point M = 0 and subsequently applying the shift map to obtain the result 
forr general M. Also, we wil l study the quasihole sector for the Moore-Read state first, as 
thiss is the simplest state with non-abelian statistics, while it shows all the basic features 
relatedd to non-abelian statistics. This case was first studied in [91]. As indicated above, the 
quasiholee transforms in the spinon representation of 5u(2)2 (in the case of the Moore-Read 
state).. Also, it is well known that the spinons corresponding to su(2)2 have the same fusion 
ruless as the spin field present in the quasihole operator. It is thus to be expected that the 
K-matrixx describing the quasihole sector contains the same pseudoparticles which take care 
off  the non-abelian statistics. Anticipating on the fact that we want to split the K-matrix in 
aa quasihole and electron sector, we only take the positively charged quasihole and arrive at 
thee following K-matrix and charge vector for the quasihole sector of the Moore-Read state 
withh M = 0 

K M R , M = O = ^^ - ^ ? t , = ( 0 , i ) . (5.2) 

Thee first particle, which does not carry charge, is interpreted as a pseudoparticle. It is 
thee presence of this pseudoparticle which takes care of the non-abelian statistics of the 
quasiholess over the Moore-Read state. To find the quantum Hall data for general Af, we can 
simplyy apply the shift map (4.34) to find 

(-iJb)'' ^mrr?- (13) 
11 " 4(M+1) 



5.1.. Spin-polarized clustered states: su(2)k,M 73 3 

Inn the case of the MR state, we can rather easy obtain the quantum Hall data for the elec-
tronn sector, because the parafermion field present in the electron operator is the Majorana 
fermion.. The exclusion statistics corresponding to this field is equivalent to the Pauli exclu-
sionn principle, which in the language of exclusion statistics matrices corresponds to 1. The 
pairingg structure in the Moore-Read state is taken into account in the K-matrix formalism 
byy using both the electron and the composite 'consisting of two electrons' in the electron 
sector.. The corresponding operators are given by ip : e*VS7+ïVc . ^ . et2y/M+i<pe Be_ 
causee of this structure, the K-matrix can be obtained as is the case for abelian states, with 
thee addition of 1 for the electron, due to the Majorana fermion. The corresponding quantum 
Halll  data is given thus given by 

*»» - \2M + 2 m + i) '  t e = -* 1'  2> • (5'4) 

Itt is easily verified that the data for the quasihole and electron sector satisfy the duality equa-
tionn (4.30). Also, the filling  fraction (u = jp^) is correctly reproduced by the equations 
(4.25)) and (4.26). The central charge corresponding to this system is also easily obtained 
byy the application of equation (4.22), and the fact that the pseudoparticle gives rise to a 
reductionn of the central charge of §. Thus we correctly obtain the central charge § of the 
su(2)22 affine Lie algebra CFT. 

Ass indicated before, the presence of the pairing structure in the Moore-Read state gives 
riserise to the possibility of quasiholes with non-abelian statistics. This structure is also present 
inn the K-matrix description described above, because the presence of the composite with 
chargee -2 gives rise to a neutral particle in the quasihole sector. It is this neutral particle 
whichh is interpreted as pseudoparticle, which via the coupling to the quasihole makes the 
latterr non-abelian. 

Otherr properties of the K-matrix description can be obtained from the K-matrices for 
thee Read-Rezayi states by setting k = 2 in the remainder of this section, where we treat the 
Read-Rezayii  states. 

5.1.22 The Read-Rezayi states 

Thee exclusion statistics and UCPF for the doublet of spinon operators in 5u(2)*  were stud-
iedd in [20,33,48,17]. It turns out that in this case we need k - 1 additional charge- and spin 
neutrall  pseudoparticles. As was the case for the spin field corresponding to the Majorana 
fermion,, the fusion rules of the spin fields corresponding to the Z*  parafermions are identi-
call  to those of the spinons mentioned above. Thus the quasihole in the K-matrix couples to 
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kk - 1 pseudoparticles in the same way as the spinons (see, in particular, [48, 17]) 

/ ,, _ l : \ 11 " I 
11 -J 

11 - i 
- ii  i 

V V 

td>td> — 
o o 

(5.5) ) 

4/ / 
leading,, with (4.26), to a fillin g factor ofu = k/2in accordance with (5.1). 

Thee data for arbitrary M now follow by applying the shift map SM of (4.34), i.e. 

/ / 

1&00 = SM^4> — 

\ \ 

fe-1 fe-1 

V V 

// o \ 
t¥t¥ = 

(fc-l)Af+ 22 . 
2(fcM+2)) / 

\ j fcM+2/ / 

(5.6) ) 

where,, in order to simplify the notation, we have introduced the Cartan matrix Ajt_i of 
su(k)su(k) (cf. (6.36)). One verifies that (4.26) is satisfied. The IOW-equations, determining the 
exclusionn statistics of the quasiholes, can now be written down explicitly. E.g., for the MR 
statee (Jfe = 2) the following equation for Atot easily follows from (4.4), in agreement with 
[91] ] 

11 3M+2 

(A to t - l ) (A t | t - l )) = x 2 A S ^ . (5-7) 
Thee small x behaviour of Atot for general k was obtained from the IOW-equations in 

[22],, with the result 

Atot(z)) = I + akx + o(x2) , otkotk = 2 cos 
\k\k + 2j 

(5.8) ) 

Itt was argued that the factors a can also be obtained as quantum dimension of the appropri-
atee CFT. It is easily checked that the small x behaviour of Atot in (5.7) indeed satisfies (5.8) 
forr Jfe = 2. Similar equations for Atot with k = 3,4 were given in [22]. 

Too determine the fqH data (Ke, te) in the electron sector we observe that the electron 
operatorr ty(z) is identified with J-Q(z). By acting with the negative modes of J-a{z) 
onn the lowest weight vector in the lowest energy sector of some integrable highest weight 
modulee L(A) at level fc, one obtains what is known as the principal subspace W{A) of L(A) 
(or,, rather, the reflected principal subspace). It is known that the character of the principal 
subspacee can be written in the UCPF form [31, 32, 42] (see appendix B of [6] for a brief 
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summaryy of the results for su(n)fc). For su(2)j, this requires, besides the electron operator 
**  itself, clusters of up to k electron operators. The corresponding K-matrix is given by the 
kk x k matrix Kg = 2B& where (B*)^ — min(i,j) 

»** = 

/ II  1 1 
11 2 2 
11 2 3 

1\ \ 
2 2 

(5.9) ) 

\11 2 3  * / 

whilee te = - (1 ,2 , . . ., k). Applying the shift map (4.33) thus gives 

rM rM 

(( M + 2 2M + 2 
2M2M + 2 2(2M + 2) 

\kM\kM + 2 2(kM + 2) 

kMkM + 2 \ 
2{kM2{kM + 2) 

k(kMk(kM + 2)7 

t¥t¥ = -
2 2 

w w 
(5.10) ) 

Onee easily verifies that the data (K^,t^) and (K«>,te) are indeed related by the duality 
relationss (4.30), and that equations (4.25) and (4.26) are satisfied. 

Moreover,, the resulting IOW-equations for fj^ = \iX^ in case of the MR state are given 
by y 

(5.11) ) __ „3Af+ 2 

whichh are indeed related to (5.7) by the duality relations (4.18). Explicitly, 

VOz)) = y 2//totM+1)(y)» yy  = X-3(W+D (5.12) ) 

== IKf © M M Finally,, in order to show that the quasihole-electron system based on 
givess a complete description of the fiu(2)fc,M conformal field theory, we have to show that 
thee chiral character of the latter can be written in terms of a (finite) combination of UCPF 
characterss based on K^ e K^. This is indeed possible and discussed in appendix C of [6]. 
Heree we suffice to remark that the central charge, related to the asymptotic behaviour of the 
characters,, works out correctly. Indeed, using standard dilogarithm identities one finds with 
(4.22) ) 

3k 3k 
c<t,c<t, + ce = (5.13) ) kk + 2 ' 

whichh equals the central charge of su(2)k,M
Thee above description of the Read-Rezayi states has an interesting application, namely 

thee identification of a particle which acts as a supercurrent in the non-magnetic limit. This 
identificationn was made in [6], to which we refer for a more detailed discussion. We use 
thee variable q = 1/u = M + k/2, in terms of which the non-magnetic limit corresponds to 
qq —  0. In this limit, all the statistics parameters of the largest composite (with charge — k), 
goo to zero, while the statistics parameters of the quasihole diverge. This is easily seen when 
onee writes the statistic matrices (5.10) and (5.6) in terms of q. For these quantum Hall states 
thee fundamental flux quantum is h/ke, because of the order-fc clustering. Upon piercing 
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aa quantum Hall state with this amount of flux, a quasihole with charge e/kq is formed. 
Thiss follows from the fact that the conductance is e2/qh in physical units. For q > 1/fc 
thiss is the lowest charge possible and the electron like excitations correspond to multiple 
insertionss of the flux quantum. This situation changes when we take the limit q -> 0. 
Followingg [6], we take q = l/N, with N a large integer. The largest composite is formed 
byy inserting an amount of flux -qkh/e = -kh/Ne, thus a fraction of the flux quantum. 
Thee maximal occupation with this particle (in absence of other particles) is n ^ = l/k2q = 
N/kN/k22.. Thus the maximal amount of flux that can be screened by this type of composites 
iss (-kh/Ne)(N/k2) = -h/ke, which is precisely the flux quantum. In conclusion we 
findfind that in the non-magnetic limit, the largest composite has bosonic statistics, and can 
screenn an amount of flux up to the flux quantum. This clearly resembles the behaviour of 
thee supercurrent in BCS superconductors. 

5.22 Spin-singlet clustered states: su(3)k,M 

InIn [10] a family of non-abelian spin-singlet (NASS) states Vk,M trial wave functions with 
fillin gg factors 

2k 2k 
VtVt<<MM = 2hM^3 ' °k'M = 2k'  ( 5 ' M ) 

wass constructed. The system has two quasihole excitations {<^,(j>\} w i t n o ne u n i t o f 

up/downn spin and charge l / (2kM + 3), while the electron operators {* t, #+}  have charge 
- 1 .. The underlying conformal field theory is SU(3)*,M- In terms of s«(3) weights the spin 
andd charge assignment in the M = 0 case is as follows. Denote the positive simple roots 
off  su(3) by ai, i = 1,2 and the remaining positive non-simple root by a3 = «i + a2. 
Lett ei, i = 1,2,3, denote the weights of the fundamental three dimensional irreducible 
representationn 3 of sw(3) such that e*  €j = öij - 1/3 and a>i = e*  - ei + i , i = 1,2, 
thenn {4>t,<M = W\4>'2} while {* t»*4-}  = {J-«2,J-a3} (see figure 5.1). The charge 
andd spin direction are identified in the su(3) weight diagram as indicated in the figure. For 
otherr M the analogous picture is obtained by 'stretching' the charge axis. Unfortunately, 
thee notation used in [10, 9] is different from the one used in the mathematics literature. In 
effect,, the difference between the two notations is a rotation of the root diagram of sw(3) by 
| ,, which leaves this diagram and hence all the results invariant. 

Inn the following sections we will analyze the fqH data for the conformal field theory 
Bu(3)Bu(3)kk,M-,M- We first discuss the case k = 1 (which corresponds to the abelian spin-singlet 
Halperinn state with parameters (M + 2,M + 2,M + 1) [55]) in some detail and then 
generalizee to the non-abelian case k > 1. 

5.2.11 su(3)k=hM 

Thee exclusion statistics and UCPF character for the su{3)k=i,M=o conformal field theory, in 
termss of the quasiparticles {4>ei, <f>C2, <p€3},  were worked out in [21,90,22,17]. Specializing 
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C2 2 

-a-a3 3 

charge e 

VV spin 

- 11 < 
-a-a2 2 

Figuree 5.1: The weight diagram of su(3). 

too the subset {fa, fa} = {fa1, fa2}  we have 

1 / 22 - 1 N 

K**  = 
33 V - l 

tété = S0 0 (5.15) ) 

Withh (4.26) this leads to v = 2/3 in agreement with (5.14). Applying the shift map (4.34), 
thee fqH data for su(3)k=i,M are thus given by 

rM rM 
•cj,•cj, — SM^<J> — 

MM + 2 -(M + i 
2MM + 3 \-(M + l) M + 2 

while e 

ttMM = f 2^3) 

\2M+3/ / 
sMM -

(5.16) ) 

(5.17) ) 

Thee IOW-equation for the total one-particle partition function Atot = A-fAj., resulting from 
(5.16),, is given by 

2MM  + 2 MM  + l 
Ato.. - xt

+3 - (x t + +3 - 1 = 0. (5.18) 

Thee K-matrix in the electron sector is determined as follows. First of all, the prin-
cipall  subspace of the su(3)fc=liM=o integrable highest weight modules is generated by 
{{  J-ai, 3-a-i}  and has a K-matrix given by (see appendix B of [6]) 

22 - 1 
- 11 2 

(5.19) ) 

Thee electron operators {vE^, * ; } , however, are identified with {J_a 2, J-as}- Interpreting 
J-aJ-a33 as the composite (J_ai J_Q2), we can apply the construction of section 4.2.4 and find 
ann equivalent K-matrix for the combined {  J_Ql , J_Q2, J_Q3}  system 

'2'2 0 r 
II  0 2 1 
,11 1 2, 

(5.20) ) 
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Thus,, we conclude that the electron fqH data are given by 

( !$) •• ••=-(!)< - = W (5.21) ) 

Andd thus, by applying the shift map 

?? S : ; ) . * - - ( ! )  (5'22) 
Notee again that the fqH data in the electron and quasihole sectors, given in eqs. (5.16), 
(5.17)) and (5.22), are related by the duality (4.30). 

Thee IOW-equation for ^ot = / i t^; , resulting from (5.22), is given by 

/4f+33 -1&+2 - (yt + vi)rfi+1 ~ vm = ° *  <5-23> 
andd is dual to (5.18) in the sense of (4.18). Explicitly, 

A tot(%,^)) = (vm)~Wvt.Vi )2 A '+ 3> <5-24> 

where e 

y,y, = z - ( M + V M + 1 > > »i = *ï{M+l)*liM+2) • (5-25) 

Itt remains to show that the fqH data (K^,t^,s )̂ and their duals (Ke,te,se) give a 
completee description of the chiral spectrum of the su(3)jfc=i,M conformal field theory by 
constructingg the su(3)A=itAf characters in terms of (finite) linear combinations of UCPFs 
basedd on Ke © K*. This is shown in appendix D of [6]. Here we only observe that, since 
theree are no pseudoparticles, eq. (4.15) immediately gives ce + c<j> = 2 which is the correct 
valuee of the central charge for su(3)k=i,M- Note also that c<f, and ce separately depend on 
MM and are, in general, not simple rational numbers, e.g., for M = 0 we have numerically 
ccee = 0.6887 and ĉ  = 1.3113 while for M -» oo all the central charge is concentrated in 
thee ^-sector. 

Uponn generalizing to higher levels k > 1, it turns out we need an equivalent description 
off  the system described above in terms of three quasihole operators, namely by adding a 
quasiholee operator <£_£3 of au(3) weight -e3, i.e., of charge 2/3 (for M = 0) and spinless. 
Thee K-matrix for this system can be obtained as a submatrix of the K-matrix describing 
quasiparticless in the 3©3* of su(3) [17] or, equivalently, by using that 4>~i3 is the composite 
(<f>-(<f>-£l£l<f>-<f>-e2e2)) [21] and using eq. (4.37). We find 

// 2M+3 \ 

t,M== U p J  (5-26) 
\2Af+3/ / 

Inn the electron sector we can similarly introduce the composite (J_a2 J-as) and obtain 

// M + 2 M + 2 2M + 3\ 
KKee

MM =Ci2^ =[ M + 2 M + 2 2M + 3 , t'e = - ( 1 ) (5.27) 
V2MM + 3 2M + 3 4M + 6/ 
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Noww we observe a curiosity; while obviously the fqH data (5.26) and (5.27) are dual, since 
theyy are equivalent to the dual systems given in (5.16) and (5.22), they are not related by the 
dualityy transformation (4.30) because both K^ and K« are not invertible. The equivalence 
cann also be observed at the level of the resulting IOW-equations which are now given by 

(( \ 2M+3 M+ l l 
3X7+5 5 *W) (( V - artMS"" " (*t + *l)*£?+a - 1) = 0 , 

(5.28) ) 

Becausee of the first factor the equations (5.28) do not transform into each other under (5.24). 
However,, the physical solutions, which are determined by the second factor, do! Summariz-
ing,, we conclude that it is obvious that the notion of duality should have an extension that 
incorporatess non-invertible K-matrices. We leave this for future investigation. 

5.2.22 $u(3)kM 

Ass argued in [18,17], the generalization of the results of the previous section to levels k > 1 
requiress the addition of 2{k - 1) pseudoparticles incorporating the non-abelian statistics of 
thee quasihole operators {fa, fa}. Since these pseudoparticles couple differently to {fa, fa} 
thann to the composite particle fa^ = {fafa) (i.e., different than the naive coupling given 
byy the composite construction), it appears that the first construction in Sect. 7.1 does not 
generalizee to higher levels. 

Itt is known that for 011(71)^=0 the pseudoparticles couple to the physical particles by 
meanss of the matrix A ^ ® Afc_i. Here we have used the result for the restricted Kostka 
polynomialss as given in, e.g., [14, 25, 63, 57] (see the discussion in [18] for details). Then, 
byy applying the shift map (4.34), we obtain 

/ / 

rlM rlM 

A22 1 <g> A * _ ] 

\ \ 

(4fc-l)Af+6 6 
3(2*Af+3) ) 

(4fc-l)M+6 6 
3(2*M+3) ) 

(2fc-2)M+3 3 
3(2*Af+3) ) 

(4fc-l)Af+6 6 
3(2lfeM+3) ) 

(4fc-l)M+6 6 
3(2*Af+3) ) 

(2fc-2)M+3 3 
3(2AM+3) ) 

\ \ 

(2ifc-2)M+3 3 
3(2JfcAf+3) ) 

(2ib-2)M+3 3 
3(2*M+3) ) 

(4Jb-4)M+66 . 
3(2*Af+3)) / 

wheree the components of A2 refer to the quasiholes in the 3 and 3*, respectively, and 
(5.29) ) 

t ,, = (0,0,-.. ,0| 
2(*-l ) ) 

1 1 
2kM2kM + 3' 2kM + 3' 2kM + 3 (5.30) ) 
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Forr instance, for level k = 2 we have 

rlMrlM  _ 

4 4 
3 3 
2 2 
3 3 

2 2 
3 3 

2 2 
3 3 

1 1 
3 3 

22 : 
3 3 
4 4 
3 3 

1 1 
3 3 

1 1 
3 3 

2 2 
3 3 

2 2 
3 3 

1 1 
3 3 

7M+6 6 
12M+9 9 

7M+6 6 
12M+9 9 

2M+3 3 
12M+9 9 

2 2 
3 3 

1 1 
3 3 

7M+6 6 
12M+9 9 

7M+6 6 
12M+9 9 

2M+3 3 
12M+9 9 

1 1 
3 3 
2 2 
3 3 

2M+3 3 
12M+9 9 

2M+3 3 
12M+9 9 

4M+6 6 
12M+9 9 

(5.31) ) 

V V 
Notee that the matrix K^M of (5.29) is not invertible, as was observed for fc = 1 in section 
5.2.1.. Thus, we cannot simply identify the dual sector by performing the transformation 

(4.30). . 
Too obtain the dual sector we proceed as in section 5.2.1. We start with the K-matnx 

off  the principal subspace spanned by {J_t t l , J-a2}- As discussed in appendix B of [6], 
forr 5u(3)fc, this K-matrix is given by K = A2 <g> B* and requires, besides the currents 
{{  J_a i , J-a2}  a set of 2(fc - 1) composites 

\J—\J— Cli '  J—on) 1 22 < I < k ti = 1,2 (5.32) ) 

Startingg with this matrix we introduce additional composites according to the procedure of 
sectionn 4.2.4, beginning with the electron operator #+ = (J_0 l J_t t2) (recall that * t = 
J-J-a2a2),), and continuing until all composites 

( t f t . . . t f t * i - - - *4-) ' ' n^^ + ni < k , (5.33) ) 

n t t " 4 4 

havee been introduced. Note that the set of composites (5.33), for fixed nt + n;, span a 
( n tt + n  + l)-dimensional irreducible representation of spin 517(2). The electron K-matrix 
iss then the |fe(fc + 3) x |Jfc(fe + 3) submatrix of the resulting K obtained by omitting the 
compositess which cannot be written in terms of electron operators only. Let us be illustrate 
thiss procedure the case of k = 2. Starting with the principal subspace K-matrix 

/ / -A A 
- 1 1 - 1 1 

22 - 1 

V - ll  2 

44 - 2 

- 22 4 / 

(5.34) ) 

introducee the composites ^ j , = (J-aiJ-a2), (J-a2(J-QiJ-ai))> {J-av{J-axJ-ai))-> 
andd (J-a2((J-a2{J-ai J-ai))), respectively. Then, after removing the rows and columns 
we e 
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correspondingg to J_a i, (J_ai J_ai) and (7_a2 (J_ai J_t t l )), we obtain 

(2(2 X 

11 2 

22 1 

22 2 

\11 2 

::  2 2 1̂  

::  1 2 2 

44 3 2 

33 4 3 

22 3 4/ 

11 *e — 
ffl ffl 2 2 
2 2 

W W 

Similarly,, one obtains the electron K-matrix for SU(3)*,M=O at higher levels, and the gen-
eralizationn to arbitrary M follows, as before, by applying the shift map (4.33). Unfor-
tunately,, the procedure described above is ambiguous. The resulting K-matrix depends 
onn the order in which the composites are taken as well as the precise identification of 
thee clusters (5.33) with the original clusters (5.32), e.g., should we identify ( t f ^ ) with 
(J-(J-aiai(J_(J_aiai(J_(J_a2a2J_J_a2a2)))))) or ((J-ai J-ai)(^-oa^-a2))? Ultimately, the 'correct' ma-
trixx Kg is selected by the requirement that the complete spectrum can be build out of the 
quasiholee and electron operators or, more concretely, that the characters of su(3)jfeiM can be 
writtenn as a linear combination of UCPFs based on K^ ©Kg. A nontrivial (and highly selec-
tive)) check is whether the central charge, given by (4.22), works out correctly, i.e., whether 
c<j,c<j, + ce = 8k/(k + 3), for the K-matrices (5.29) and the 'appropriate' generalization of 
(5.35)) to higher levels and arbitrary M. We have checked this numerically for low values 
off  k and M as well as exactly, for all k, in the M -» 00 limit, in which case the central 
chargee is entirely concentrated in the ̂ -sector. We refrain from giving the explicit matrices 
Kgg until we have performed an additional simplifying reduction. 

Firstt observe that, for k = 2, the matrix K£ of eq. (5.35) is invertible, in contrast to 
thee matrix KJf of (5.31). One could therefore simply have started with K£ and have ob-
tainedd the dual sector by the duality transformations (4.30). This would result in a ̂ -sector, 
differentt from the one discussed above, with two physical quasiholes and three pseudoparti-
cles.. Unfortunately, this procedure breaks down, in general, for higher A; as the matrices Kg, 
constructedd according to the procedure outlined above, are no longer invertible. However, 
notee that the matrix (5.35) can be reduced to an equivalent 4 x4 matrix by inverting the 
compositee procedure - in this case by removing (* t*4.) i n the fourth column, since this 
columnn can be created by applying C12. This procedure works for general k > 1 and leads 
too a 2k x 2k electron K-matrix, for the composites (5.32) with either n^ = 0 or nt = 0 (i.e. 

- 1 1 
2 2 
0 0 

V-27 7 

(5.35) ) 
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wee lose the SU(2) multiplet structure), given by 

Kee = 

(2(2 0 2 0
00 2 0 2
22 0 4 0 
00 2 0 4 

22 0 4 1 
00 2 1 4 
22 1 4 2

\ 11 2 2 4

2 2 
0 0 
4 4 
1 1 

2(Jfc-l) ) 
fc-2 fc-2 

2 ( fc - l ) ) 
j fc- l l 

0 0 
2 2 
1 1 
4 4 

2(Jfe--

2 ( f c --

2 2 

1) ) 
1 1 
1) ) 

2 2 
1 1 
4 4 
2 2 

2( fc- l ) ) 
fc-1 fc-1 

2k 2k 
k k 

11 \ 
2 2 
2 2 
4 4 

fc-1 fc-1 
2( fc - l ) ) 

Jfc c 
2k2k ) 

(5.36) ) 

and d 

tee — — (1,1; 2,2;...;«;, fe) , 

see = ( l , - l ; 2 , - 2 ; . . . ; * , - * ) . (5.37) ) 

Thee generalization K f to arbitrary M follows by applying the shift map, in this case by 
addingg the matrix M(h ® P) where JJ2 is the 2 x 2 matrix with all entries equal to 1, and 
(f)ij(f)ij = ij (1 <i,j < k) (see [6] for an explicit expression in the case k = 2). This matrix 
iss invertible, so we simply define Kf = (DCf ) _ 1. A convenient permutation of rows and 
columnss of K™ leads to the following matrix 

/ / 

( K M ) Permm = 

0 0 

—— 3 

A2 11 ® A fc_i 

00 0  0 

- ff  o ... 0 

2 2 
3 3 

0 0 

1 1 
3 3 

0 0 

0 0 

0 0 

0 0 

0 0 

2 2 
3 3 
1 1 
3 3 

(4* - l )M+ 6 6 
3(2JfcM+3) ) 

—M M 
3(2kM+3) 3(2kM+3) 

3 3 

2 2 
3 3 

0 0 

0 0 

0 0 

0 0 

-M -M 
3(2fcM+3) ) 

(4*-l)Af+ 6 6 
3(2fcM+3)) / 

(5.38) ) 
containingg two physical particles and 2(k - 1) pseudoparticles. Also, 

11 1 
t 00 - (0 ,0 , . .. ,0; 2kM + 3 , 2kM + 3 

s00 = (O ,O, . . . ,O ; - l , l ), 

) , , 

(5.39) ) 
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ass one would expect. For k = 2, the couplings between the pseudoparticles and the real 
particless is not precisely of the form as given in eq. (5.38), so we give this matrix explicitly 
(thee first 2 particles are pseudoparticles) 

rk=2,M rk=2,M 

// i I _ 2 _ 1 v 
ƒƒ 3 3 3 3 \ 

22 4 _ 1 _ 2 
33 3 3 3 
22 _ ! . 7M+6 - M 
33 3 12M+9 12M+9 

V _ ll  _ 2 - M 7M+6 ƒ 
vv 3 3 12M+9 12M+9/ 

(5.40) ) 

Wee have checked that the total central charge ce + c<j> for eqs. (5.36) and (5.38) works out 
correctly,, namely ce + C(f) = Sk/(k + 3). Moreover, we have checked for low values of k 
thatt the equation for Atot, resulting from the IOW equations based on (5.38), are identical to 
thosee based on (5.29). Furthermore, in all formulations, the equations (4.25) and (4.26) are 
consistentt with (5.14). 

Forr k = 2,3, we checked the small x behaviour for Atot, eq. (4.20). We again expect the 
constantss a to be the quantum dimensions of the associated conformal field theory. Using 
somee results in [34], these quantum dimensions are given by 

a**  = l + 2 c o s ( J Ĵ  (5.41) 

Forr k = 2, the equation for Atot reads (upon taking  x) 

II  „  8M+5 6Af+4 2M+1 

(XI(XI - l ) 2 = x2X^ + x A ™ - * A ™ , (5.42) 

whichh leads to the following small x behaviour 

Atott = l + U + o(x2) , (5.43) 

inn agreement with a2 = (1 + >/5)/2 from (5.41); the extra factor 2 comes from the sum 
overr the two physical particles, see eq. (4.20). For k = 3 we find 

11 8M+3 x , 

(A t|tt - 1) = xXST^ (A& + 1) * (Atlt + 1 )1, (5.44) 

whichh gives a3 ~ 2, consistent with (5.41). Note that for the abelian case k - 1, we find 
forr the small art4-behaviour, using (5.18), 

Atott = 1 + (xt + «4.) + o{x2) , (5.45) 

inn agreement with (5.41) and the fact that for k = 1 1 we have an abelian state. 
Ass was the case for the spin-polarized states of section 5.1, also for the non-abelian spin-

singlett states a particle behaving as a supercurrent can be identified in the non-magnetic 
limit .. The situation here is slightly more complicated than in the case of the spin-polarized 
statess discussed in section 5.1. This is because in the formulation above, there is no candi-
datee particle with the property mat all the statistics parameters go to zero in the limit q -  0 
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(withh q = 1/u = M + 3/2fc). However, if one acts with C2k-i,2k on SM^e, with Ke 
givenn by eq. (5.36), one introduces a composite with charge -2k and spin 0, which has the 
desiredd properties. In the (/.-sector, the particle content is changed to one quasihole and 2k 
pseudoparticles,, of which a few carry spin. 

Thee possibility to introduce a composite with the right properties enables one to repeat 
thee discussion of section 5.1, with the only difference that the flux quantum in this case 
equalsequals h/2ke. So, also in this case, we can identify a supercurrent in the non-magnetic 
limit . . 

5.33 Alternativ e construction 
Inn this section, we will show an alternative way of obtaining the K-matrices for the non-
abeliann quantum Hall states which were discussed in sections 5.1 and 5.2. The wave func-
tionss of these non-abelian states could be obtained from abelian cover states, via a projec-
tion.. The idea is to implement this projection on the level of the K-matrices. The K-matrices 
forr the abelian cover states are easily obtained. They just are the direct sum of k copies of the 
kk = 1, M = 0 K-matrices. We will take M = 0 in this construction, and use the shift map 
eq.. (4.33) in the end. Applying the shift map directly on the direct sum of k = 1, M = 0 
K-matricess leads to the same result. 

Thee property that discerns the non-abelian K-matrices form the abelian ones is the pres-
encee of composites in the electron sector. These composites are accompanied by pseudopar-
ticless in the 0-sector. To obtain the non-abelian K-matrices from the abelian cover states, 
onee has to introduce composites. One can use the composite construction from section 
4.2.4.. However, this construction is based on a character identity, eq. (4.57), and will lead 
too an equivalent description. In this description, the electron sector is augmented with a 
composite,, while in the ^-sector, a real quasiparticle is exchanged for two pseudoparticles. 
Actually,, this action of the composite construction on the ^-sector is also related to a char-
acterr identity, as will be described in the paper [5]. Applying this character identity on the 
^-sectorss of the UCPF, one finds another UCPF, based on the transformed K-matrix VijK^. 
Thiss matrix can be obtained from the composite construction (4.37) 

VVijijK={CK={CijijK-K-11yyll , (5-46) 

where,, in addition, the particles i,j in the transformed formulation are pseudoparticles. 
Performingg both composite constructions yields an equivalent description, as these con-
structionss are based on character identities. 

AA description of the non-abelian system can be obtained by performing a projection 
onn the K-matrices of the abelian states. This projection is done by 'deleting' a particle in 
bothh the electron and 0-sector. In the end, this description can be obtained from the abelian 
coverr by simply applying a W-transformation on the electron sector (and the equivalent W-
transformm on the 0-sector). In addition, some of the particles in the ^-sector have to be 
interpretedd as pseudoparticles, in accordance with the construction outlined above. In all 
thee cases described in this thesis, we will 'add' particles in the electron sector which have 
thee same quantum numbers. In the 0-sector, this will result in particles with all quantum 
numberss trivial. These particles are interpreted as pseudoparticles. 
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Thee W-transformations which are equivalent to the composite construction followed by 
thee reduction of the number of particles all have a similar form. In effect, they 'add' one 
particlee to another, see eq. (5.48). Loosely speaking, they correspond to identity matrices, 
inn which some of the off-diagonal elements have been changed from 0 to 1. 

Lett us clarify the construction by doing a simple example, that is, obtaining thee K-matrix 
descriptionn for the Moore-Read state. The abelian cover state has a simple K-matrix for the 
electronn sector 

ff22 + M M rcover r == (2 + M M \ 
\\ M 2 + MJ ' (5.47) ) 

Thee W-transformation (see eq. 
characterizedd by 

(2.8))) needed to obtain the K-matrix for the MR state is 

J) ) (5.48) ) 

- ( . . 

Itss effect is to make the second particle a composite of the two original particles; the corre-
spondingg matrix is 

22 + M 2 + 2M\ 
KK22 + 2M 4 + 4M/ ' (5-49) 

Thiss is indeed the K-matrix for the MR state (compare eq. (5.10) with k = 2). In the <fh 
sector,, one has one pseudoparticle, in accordance with eq. (5.5). Note that this construction 
doess not change the filling  fraction. 

Thee construction outlined above also works for the general clustered states of sections 
3.44 and 3.5. For the spin-polarized states, the K-matrix of the abelian cover state is simply 
givenn by (see also [23]) 

/M/M + 2 M M M \ \ 
M M 

\\ M 

MM + 2 

M M 
M M 

MM + 2/ 

(5.50) ) 

whichh is a k x k dimensional matrix. All the particles have charge t, = -1 and the filling 
fractionn corresponding to this state indeed is v = JJ^. To obtain the correct K-matrices 
forr the non-abelian states, we have to introduce composites which have 'sizes' ranging from 
11 up to A;. This is achieved by the W-transformation 

(5.51) ) 

Itt is easily verified that this transformation indeed reproduced the K-matrix (5.10). Also the 
0-sectorr is obtained correctly, if one interprets the pseudoparticles correctly. 

Thee K-matrices for the spin-singlet analogs can be obtained in a similar way, however, 
thee construction is somewhat more complicated, because the k = 1 description already has 

/ ll  0 

11 1 

[i[i

•••• o \ 

"••• 0 

11 1/ 
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twoo components. This gives more possibilities for the W-transformation, of which only 
onee gives the correct central charge corresponding to the underlying CFT. The other W-
transformationss correspond to other projections. Whether or not these give rise to quan-
tumm Hall states is not clear at the moment. Also, to which CFTs the resulting K-matrices 
correspondd is not clear (if they correspond to a CFT at all). For now, we will use the W-
transformationss which lead to K-matrices with rational central charge; it turns out to be the 
casee that only one W-transformation leads to a rational central charge, which also corre-
spondss to the central charge of the underlying CFT. 

Thee K-matrix for the abelian cover state (see also [92]), is given by 

/ MM + 2 
MM + 1 

M M 

M M 

M M 
\\ M 

MM + 1 
MM + 2 

M M 

M M 

M M 
M M 

M M 
M M 

MM + 2 

MM + 1 

M M 
M M 

MM + 1 

MM + 2 

M M 
M M 

M M 
M M 

M M 
M M 

M M 

M M 
MM + 2 
MM + 1 

MM \ 
M M 

M M 

M M 
MM + 1 
MM + 2/ 

(5.52) ) 

Thee W-transformation which is needed in the projection, is given by 

/ I I 
0 0 

1 1 

0 0 

1 1 
Vo o 

0 0 
1 1 

0 0 

0 0 

0 0 
0 0 

0 0 
0 0 

1 1 

0 0 

0 0 
1 1 

0 0 

1 1 

1 1 
0 0 

0 0 
0 0 

0 0 
0 0 

0 0 

0 0 
1 1 
0 0 

1 1 

0 0 

1 1 
0 0 
V V 

(5.53) ) 

Applyingg this W-transformation on the matrix (5.52), indeed gives the matrix Ke for the 
spin-singlett paired states (5.36) for general M (note, that a suitable permutation on the 
orderr of the particles is necessary). Also, in the 0-sector, there are 2(fc - 1) pseudoparticles. 

Above,, we showed that the K-matrices for the non-abelian quantum Hall states could be 
obtainedd from a suitably chosen, abelian cover matrix. Though we do not have a proof for 
this,, we will assume that such a construction is also possible for the spin-charge separated 
states.. In the next section, we wil l obtain a set of matrices, which we believe, are the correct 
matricess to describe the so(5)fc affine Lie algebra theory. We will provide a few non-trivial 
checkss on these matrices to show that they are indeed the correct ones. More on K-matrices 
off  general affine Lie algebra CFTs can be found in the forthcoming article [5]. 
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5.44 Spin-charge separated states: so(5)k,M 

Inn this section, we will report some results on the K-matrix structure of the spin-charge 
separatedd states. The results for k = 1 are also described in [8]. For the spin-charge 
separatedd states, the underlying structure is the so (5)*  affine Lie algebra. This is a non 
simply-lacedsimply-laced algebra, meaning that the roots come in two different lengths. This makes the 
analysiss of this algebra much harder than the simply-laced algebra's. Indeed, we can not 
relyy so much on results in the mathematical literature. However, we will attempt to obtain a 
K-matrixx description, without having the intention to be mathematically rigorous. We will 
usee the observation from the previous section that the K-matrices for the non-abelian states 
cann be obtained from abelian cover states. We wil l merely assume that the results will carry 
overr to the 50(5)*  case, and justify the procedure afterwards by doing consistency checks. 

Forr both the spin-polarized and spin-singlet states of sections 3.4 and 3.5, the k = 1 
casee corresponds to unpaired, abelian states. For these, the K-matrices were known for a 
longg time. However, so(5) is non simply-laced, and this implies that the state at level k = 1 
hass non-abelian statistics. Thus one expects pseudoparticles in the K-matrix description. 
Thiss result was indeed obtained in [8]. We will first discuss this situation. 

5.4.11 5o(5)^i,M 

Itt is well-known that the spin-polarized MR state is closely related to an abelian states at 
fillingfilling  v - j^pj- : the two-layer (M + 2, M + 2, M) Halperin state. The transition between 
thesee states have been discussed in the literature (see e.g. [58, 74, 82, 106, 23]). The 
connectionn on the level of K-matrices was described in the previous section. 

Too obtain the K-matrix description for the spin-charge separated states (3.36), we would 
likee to have an abelian cover state like in the case of the Moore-Read state. This state was 
identifiedd in [8], and has filling  fraction v = ^M+ï' equal to the level k = 1 spin-charge 
separatedd states. The wave function for this two-layer state reads [8] 

*2M-.ayer({^ ff  , * r>* f»=n> r - 4 ^ M + 2 n ^ f - ^ ) M + 2 
i<3i<3 i<j 

I N 66 - #)M+ 2 I N 6 - 'f)M+ï I N * - 4 >M+i I N 6 - ^Y+I 
*<JJ *<3 i,j i,j 

IN '' - *JV IN ' - "f)" IN ' - z?)"-1 IN ' - 'f)"" 1 . (5-54) 
*>j*>j  {>3 i,j i,j 

wheree the indices t, b refer to the top and bottom layers. This wave function arises as 
aa correlator of two-layer spin full electron operators which, in the case M = 0, are the 
currentss of the so (6)1 affine Kac-Moody algebra 

V(tt)) = : e^ :: e^v' :: e^"/SSmv' : , (5.55) 

fff(U)fff(U)  =  e*+'  e'Js*' : : e^ I ^ r a > < : , ( 5.5 6) 

<Ktfc)) = : e-*' •• • <&*' :: c^V5W+TV e . ^ ( 5 5 ?) 

iKU)iKU) = : e-** :: e~Jsv'  : : eJ* y/SM+I*<  : , (5.58) 
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wheree ipi is a chiral boson, corresponding to the 'layer' degree of freedom. We expect that 
thee relation between the paired spin-charge separated state (3.36) and the state (5.54) is on 
thee same footing as the relation between the (paired) Moore-Read state and the correspond-
ingg 2-layer state. The MR state (with M - 0), is obtained from the Halperin (2,2,0) state 
eq.. (2.21) by symmetrizing over all the electron coordinates. In this procedure, the layer 
structuree is lost, as one would like. 

Too obtain the spin-charge separated state from the 2-layer state (5.54), one has to take 
intoo account that we are dealing with spin full electrons, and we want to make a spin-
singlett state. To obtain a spin-singlet, one has to do perform the following symmetrization 
proceduree (see, for instance, [56]). First, anti-symmetrize over {z\,z\), then over ( 4 ,4 ) , 
etc.. After this, the result has to be symmetrized over all the spin up particles, and finally 
overr all the spin down particles. This indeed gives a spin-singlet state, which for 4 particles 
iss indeed the spin-charge separated state. For more particles, this construction does not 
seemm to work. However, we feel that a construction similar to the construction to obtain the 
clusteredd states of sections 3.4 and 3.5 should be possible. 

Comingg back to the K-matrix description of the 2-layer state related to $o(6), naively, 
onee would write down the ansatz 

(2(2 + M 1 + M M - 1 + M \ 
11 + M 2 + M - 1 + M M 

MM  - 1 + M 2 + M 1 + M 
\-l\-l  + M M 1 + M 2 + M J 

(5.59) ) 

basedd on the wave function (5.54). However, this matrix is not invertible. To find an 'in-
vertible'' description, we apply the operator CM , which adds a composite of the 'first' and 
'last'' particle. We proceed by removing the spin down particles to find 

(2(2 + M 

K=[K=[ M 

\1\1 + 2M 

t ii  = - ( 1 , 1 , 2 ), 

s'ee = (1,1,0), 

i;;  = ( + , - , ' ) , 

M M 
22 + M 
11 + 2M 

11 + 2M 
11 + 2M 
22 + 4M 

s ;;  = ( - 1 , - 1 , 1 ), 

i;; = (^f  (5-60) 

wheree we used the standard duality equations to find the quantum Hall data for the ^-sector. 
Thee vector 1 denotes the 'layer' degree of freedom, and is only used as a bookkeeping 
device.. The fact that the K-matrix in eq. (5.59) is not invertible, is caused by the fact that 
wee were trying to describe the rank 3 algebra so(6) by four degrees of freedom. The method 
too 'cure' this resembles the method used in section 5.2.2. 

Too obtain the quantum Hall data for the so(5)fc=i,M states, we need to do a projection, 
ass was the case for the wave functions, which could be obtained form the abelian states by 
projectingg the two layers onto each other (compare with the 'Ho reduction' for the MR state 
[58]). . 
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Onn the level of K-matrices, this reduction take the form of introducing a composite in 
thee electron sector, and the introduction of a pseudoparticle in the quasihole sector. To do 
thiss projection, we apply the W-transformation 

(5.61) ) 

onn the quantum Hall data (5.60). This results in the following quantum Hall data 

/2/2 + M 2 + 2M 1 + 2M\ 
K e = 22 + 2M 4 + 4M 2 + 4 M , K<p--

\l\l + 2M 2 + 4M 2 + 4MJ 

tee = - ( 1 , 2 , 2 ), t , = (0,0, 
11 + 2M-

see = (1,2,0), ŝ  = (0 , -1 ,1 ). (5.62) 

InIn this description, the first quasihole is neutral and spinless, and is interpreted as a pseudo-
particle.. This results in a reduction of the central charge by |, because of the fermionic 
statistics.. So the central charge corresponding to the data (5.62) becomes c = §, which 
iss indeed the central charge of the so(5)i theory. We will make one further change to the 
dataa (5.62), which will make the spin-charge separation of the fundamental quasiholes man-
ifest.. This can be done by applying another W-transformation (which leads to an equivalent 
description) ) 

/ ll  0 0 \ 
WW = 0 1 - 1 . (5.63) 

\ o oo  1 / 
Finally,, we obtain the following formulation, which can also be found in [8] 

t«« =-d,0,2), ^ ( " ' S M + I 

see = (1,2,0), s<j> = ( 0 , -1 ,0 ). (5.64) 

Alsoo in this formulation, the first particle in the 0-sector is interpreted as a pseudoparticle. 
Thiss pseudoparticle is similar to the pseudoparticle for the MR state (eq. (5.6) with k = 2), 
whichh was of course to be expected from the structure of the spin-charge separated state at 
kk ~ 1. The central charge associated to the data (5.64) is also given by §. Of course, to 
provee that this description is correct, one should be able to reproduce the affine characters 
off  so(5)i in the UCPF form with the K-matrices. At this point, this check has not been 
completed.. However, we were able to reproduce the restricted Kostka polynomials for 
so(5)i,, which is also a highly non-trivial check [5]. 
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5.4.22 so(5)fc,M 

Inn this section, we will present the K-matrix description for the spin-charge separated states 
att general level k. Again, the results were not derived as rigorous as was the case for the 
BU(2)) and su(3) related states. However, the fact that those matrices could be constructed 
quitee naturally by taking the k = 1 formulations and taking composites, leads to the believe 
thatt a similar construction is possible in this situation. We now take this point of view, and 
presentt the results. On these results, we will perform some non-trivial checks, to show that 
theyy are indeed correct. More details will be provided in the paper [5]. 

Too construct the K-matrices corresponding to the so(5)fc,M state, we take k copies of 
thee M = 0 formulation for so(5)jfe=i,M=o, eq- (5.64) and make the direct sum, resulting in 
aa (3/fc, 3fc) matrix. Making the composites, needed in the level A; formulation, is done via 
thee following W-transformation 

1 1 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

\o \o 

0 0 

1 1 

0 0 

0 0 

1 1 

0 0 

0 0 

1 1 

0 0 

0 0 

0 0 

1 1 

0 0 

0 0 

1 1 

0 0 

0 0 

1 1 

1 1 

0 0 

0 0 

1 1 

0 0 

0 0 

:: 0 

:: 0 

:: 0 

0 0 

0 0 

0 0 

0 0 

1 1 

0 0 

0 0 

1 1 

0 0 

0 0 

00

0 0 

0 0 

0 0 

1 1 

0 0 

00

1 1 

1 1 

 0 

0 0 

1 1 

0 0 

0 0 

1 1 

 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 1 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

V V 

(5.65) ) 

Too display the resulting matrix, we first define the matrix ©3 (a, b) in the following way 

a b b ' ' 
D3(a,6)) = | b a 0 

bb 0 a, 
(5.66) ) 

Notee that B3(2, -1) is the Cartan matrix of so(6). After a suitable permutation of the 
particles,, the K-matrix for the electron sector, obtained from the W-transform, takes the 
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followingg form 

1*3(2,0)) 10)3(2,0) 
©3(2,0)) ©3(4,0) 

©3(2,0)) ©3(4,1) 
Ve3(2,i)) 103(4,2) 

B>3(2,0) ) 
©33 (4,1) 

©3(2,1)) \ 
©3(4,2) ) 

fc(2(*-l)fc(2(*-l) tt*-2)*-2)  ©3(2(fc- l ) , (*- l ) ) 
I>3(2(Arr — l),Ar- 1) ©3(2fc,fc) / / 

(5.67) ) 
Notee that the structure of this K-matrix is very similar to the matrix Ke for the electron 
sectorr of the su(3)jt states. The corresponding spin and charge vectors are given by 

tee = - ( l ,2,0;2,4,0;-- ;fc - l,2(fc-l),0;fc,2*,0) , 
see = (l,0,2;2,0,4;--- ;fc - l,0,2(ft - 1); Jfc,0,2Jb) . (5.68) ) 

Usingg the charge vector, and the shift map (4.33), on easily constructs the K-matrix for 
generall  M. The matrix for the « -̂sector is just the inverse of Ke. To bring it in a nice form, 
wee again perform a suitable permutation on the order of the particles 

perm m 

(6fc-4)Af+3 3 
8*Af+ 44 / 

(5.69) ) 
wheree ©3

 1 denotes the inverse Cartan matrix of so(6). The charge and spin vectors are 
givenn by 

1 1 
***  = ( 0 ' " - ' 0 ï 0 ' 2 M # + l 
s00 = (O,--,O;- l ,O). 

) , , 

(5.70) ) 

Itt is important to realize that in this formulation, the first 3fc — 2 particles in the ̂ -sector are 
too be interpreted as pseudoparticles. It is this interpretation that causes the reduction from 
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thee cover system to the (non-abelian) so{b)k,M states. It is easily checked that the filling 
factorss obtained from the quantum Hall data is 

2k2k a = 2k. (5.71) 
2kM2kM + 1 ' 

Notee that in calculating the filling  factors, we should keep in mind that the matrices (5.67) 
andd (5.69) are each inverses only after a permutation on the order of the particles. 

Thee first check that the quantum Hall data above are correct concerns the central charge. 
Thiss is most easily done by computing, numerically, the central charge reduction due to 
thee presence of pseudoparticles. For some moderate sizes (up to k = 5), we found that 
thee pseudoparticles reduce the central charge by ( 3 { ^ f e . Using the formula (4.22), we 
indeedd find the correct central charge for the SO(5)*,M affine Lie algebra ccft = j^$. More-
over,, for A; = 1,2, the pseudoparticle matrices are shown to occur in the restricted Kostka 
polynomialss for so(5). These results will be presented in [5]. 

Thee non-abelian statistics of the quasihole excitations over the spin-charge separated 
statess at level k = 1 manifests itself at the level of the partition function Atot = AcAfl 

(Ac,, A*  denote the partition functions of the holons and spinons, respectively). We derived 
ann equation for Atot (at k = 1) from the IOW equations (4.4) using the statistics matrix K^ 
off  equation (5.64) (with M = 0) 

(Atott - l ) 2 = (Atot + l)(A t i + l)x.x, + (A„  + A&Xx J + x2,) , (5.72) 

wheree xc and xs are the fugacities for the holons and spinons respectively. The small x 
behaviourr can easily be derived, and is given by 

Atott = 1 + V2{xc + xs) + o{x2) . (5.73) 

Thee factor \/2 signals the non-abelian statistics (see section 4.2) and it is the same as for 
thee Moore-Read state (see eq. (5.8) with k = 2). Indeed, the Moore-Read state is defined 
inn terms of the same parafermion and spin fields as the spin-charge separated states at level 
fcfc = l . 

Also,, the factor \/2 follows from the quantum dimensions of the 4-dimensional repre-
sentationn of so(5), which is calculated to be 

o tt = 2 ( c o s ( ^ ) + c o s ( ^ ) ) . (5.74, 

Forr k = 2, this equation gives a2 = V$, a result which also can be derived from the Bratteli 
diagramm for the spin fields of the related parafermion theory at level k = 2. 

Inn the next section, we will relate the K-matrices for the electron sector to the para-
fermionicc CFTs, and write the corresponding characters in the form of a UCPF. As these 
characterss are related to the so-called string Junctions of the affine Lie algebra theories, we 
cann check the consistency of the results of this chapter with respect to these string functions. 
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5.55 The relation with parafermions 

Ass an application of the K-matrices which were obtained for the various quantum Hall 
states,, we will consider the relation with the K-matrices for the parafermion theories. In the 
nextt chapter, these will be extremely useful in determining the ground state degeneracy of 
thee non-abelian quantum Hall systems in the presence of quasiholes. The K-matrices for 
thee parafermions associated to simply-laced affine algebras are known already. However, 
forr the non simply-laced cases, the results appear to be new. 

Too explain the relation between the K-matrices for the quantum Hall systems and the 
statisticss of parafermions (which is encoded in the K-matrices), we will use the Z*  parafer-
mionss of the spin-polarized clustered quantum Hall states as an example. For convenience, 
wee will repeat the matrix K̂  and charge vector (eq. (5.10)) for this state 

rM rM 

(( M + 2 2M + 2 
2M2M + 2 2(2M + 2) 

kMkM + 2 \ 
2{kM2{kM + 2) 

t ""  = -
2 2 

w w 
(5.75) ) 

\fcMM + 2 2(fcM + 2) ... k(kM + 2)J 

Thee operators which can be associated to the particles described by this K-matrix are 

VrVr = ̂ i:e^Vnm^:, (5.76) 

forr I = 1,. . ., k and the operator with / = 1 is just the electron operator eq. (3.14). Note that 
thee parafermion field ipk = V>o = 1, which means that V£T is just a chiral vertex operator. 

Thee statistics properties which are due to the vertex operators are easily calculated, by 
takingg products of the coefficients of the chiral boson fields 

ff 1 1 

LL = 
kMkM + 2 22 4 

\k\k 2k 

k\ k\ 
2k 2k 

w w 
(5.77) ) 

Notee that this matrix L is not a K-matrix or statistics matrix of a quantum Hall systems; 
itt is the contribution of the chiral boson fields to the (mutual) statistics of the particles. 
Too obtain the full statistics properties, the statistics due to the parafermion fields must be 
included.. This leads to the conjecture that the K-matrix for the parafermions can be obtained 
byy taking the difference of the matrices (5.75) and (5.77) and consider only the first k - 1 
particles.. Doing this, we find the following matrix 

ff )y = (Ke - L) y = 2(min(i, j ) - %  , ijij = ! , . . . , £ -1 . (5.78) ) 

Thiss is precisely twice the inverse of the Cartan matrix of su(k), which is indeed the K-
matrixx corresponding to the Z*  parafermion theory, see eq. (6.35) and [68, 65, 41]. In 
particular,, this matrix is used in the fermionic character formula for the Z*  parafermions. 
Inn this UCPF, all the particles are real particles. 
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Thee method described to obtain the K-matrices for the parafermion theories can be cast 
inn a form which is more easy to handle. Thee 'decoupling' of the bosonic degrees of freedom 
fromm the parafermions can be achieved by applying a SL(n, Q) transformation. For the case 
att hand, we have 

/ I I 
_ 2 2 

k k 

11 fe-1 
11 k 

KeKe = TT _ 

11 / 
00 \ 

£ l l (5.79) ) 

\00  0 k(kM + 2)J 

Thuss the 'X-transformation' has the effect of decoupling the parafermion fields from the 
chirall  vertex operators. In the ^-sector, the pseudoparticles are decoupled from the quasi-
holee excitations, as can be verified easily 

/ / 
** - i i 

V> > 

00 \ 

0 0 

k(kM+2)/ k(kM+2)/ 

(5.80) ) 

Wee immediately find that the K-matrix for the parafermion theory is just the inverse of the 
K-matrixx for the pseudoparticles of the quasihole sector, where all particles are considered 
too be real particles, as was the case for the all the particles of the electron sector. This result 
iss also true for the parafermions of su(3)fc/u(l)2 (see, for instance, [41]). We now make 
thee conjecture that the K-matrix for the parafermions associated to the coset so(5)fc/u(l)2 

iss also given by the inverse of the pseudoparticle matrix of the so(5)fe affine Lie algebra 
theory.. This matrix is easily obtained from eq. (5.69) 

/ / 

So{5)h)) -

_11 _I _1 o 
11 2 2 u 

A A 

- 1 1 

__ l 
2 2 

__ 1 
2 2 

VV o 

ï1 1 
* * - l l 

(5.81) ) 
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Usingg the result for the central charge of the K-matrix description of the so(5)*  affine Lie 
algebraa theory, it is easily checked that the central charge corresponding to this matrix is 
indeedd given by Cpf = ^ | - 2, which is the central charge of the parafermions related 
too so (5)*. The central charge associated to the K-matrices of the parafermions and the 
pseudoparticless add up to 3k - 2, because these matrices are each others inverse and have 
dimensionn 3A; - 2 (see eq. (4.15)). Also, the central charge associated to the pseudopar-
ticless is such that 3k is reduced to the central charge of the affine Lie algebra, c = ^ | . 
Combiningg these results, we indeed find Cnf = (3fc - 2) - (3k - -èrl) = ^ - 2. 

. . .. i _ i f \ / \ K+6 > fc+3 

Anotherr important check which we performed is exploiting the relation between the 
parafermionn character formulas and the string functions associated to the affine Lie theories. 
Thiss relation, which follows from the definition of the parafermionic CFTs [43], in general 
takess the following form 

(5.82) ) <fXX = (vM , 
wheree r) = q24 H™=1(1 ~ qk) = <?24 {q)oo and n is the rank of the affine Lie algebra. 
Thee quantities cj are the string functions of the Lie algebra. These are the generating 
functionss for the multiplicities of the (affine) weight A in the highest weight representation 
AA [34]. The parafermion fields correspond to <&J, so the form of the parafermion matrices 
wee conjectured are expected to be related to the character Z£f

=1 = èA(r/)ncJ, where the 
summ over A is such that all the string functions of the form c\ are included in the sum. 

Too show how this works, we will use the so(5)2 parafermions as an example. Explicitly 
thee corresponding K-matrix is (conjectured to be) 

(5.83) ) Kpff = 

(2(2 1 

11 1 
oo -i 

V>> - 1 
Thee UCPF based on this K-matrix, namely 

i__ v 9 

00 o\ 
ii  i 
22 2 

11 0 00 l) 

rmKP ''  m 

ILfo)m,, ' 
(5.84) ) 

wheree the m» (i = 1,.. ., 4) run over the non-negative integers, can indeed be written as 
thee sum over string-functions 

zïrzïr11 = 5>)M (5.85) ) 

Thee sum over A can also be characterized by saying that all the independent parafermion 
fieldsfields $\ must be 'present*. This correspondence has been checked on the computer, by 
comparingg the result from eq. (5.84) to the string functions tabulated in [62], using the 
relationn eq. (5.85) 

Thee various string-functions c j j ' ^ j are obtained by restricting the sum in eq. (5.84). 
Explicitly,, we have 

,(o,o)) _ q~*> v^ q?mKpt m 

c\c\ ' = 
res{A) ) (*)2o.f^^  II«(«)m« 

(5.86) ) 
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wheree res(A) denotes the following restriction on the summation 

'2mii  +  m 2 +  2m 3 

m33 +J7i 4 

2mii  +  m 2 +  2m 3 

,. ..  m 3 + m4 res(A ))  =  < 
2mii  +  m 2 +  2m 3 

m33 +  m 4 

2mii  +  m 2 +  2m 3 

m33 +  m4 

Again,, we found that these forms correspond, up to the order checked, with the string func-
tionss obtained from [62]. Though we haven't got a proof, we believe that the explicit forms 
off  the string functions (5.86) are indeed correct. To our best knowledge, these expressions 
aree the first explicit expressions for some of the string functions of «0(5)2- In the forthcom-
ingg paper [5], we will give conjectures for the K-matrices corresponding to arbitrary affine 
Liee algebras, and the corresponding K-matrices for the related parafermion CFTs (which 
aree again related to the string functions of the form c\). 

5.66 K-matrices: an outlook 

Inn the previous sections, we identified K-matrices for the various clustered quantum Hall 
states.. The main result is that the K-matrices can be written in the form K e ® %. w i t n 

K4K4 = K~l. For the states with clustering (at level k > 1), composites are present at the 
'electronn sector'. These composites are accompanied by 'pseudoparticles' in the ^-sector. 
Forr the non-simply laced cases, composites and pseudoparticles are also present at level 
Jfcc = 1. This 'duality' is present at every level of description of the clustered quantum Hall 
states.. It was present at the level of electron and quasihole operators (see chapter 3). It 
wil ll  also be present in the next chapter, were the excitations over the states are studied by 
meanss of numerical diagonalization of model hamiltonians, and by means of the exclusion 
statisticss properties of the parafermion fields. 

Thee matrices obtained in this chapter also correspond to the matrices appearing in the 
universall  chiral partition functions for the affine Lie algebra conformal field theories. The 
methodss used to identify the K-matrices are not restricted to the cases motivated by the 
quantumm Hall states. Thus we expect that K-matrices with a similar structure can be found 
forr the other affine Lie algebra CFTs. This indeed turns out to be the case; more details on 
thee K-matrices for the affine Lie algebra CFTs will be given in [5]. 

Inn identifying the K-matrices, we encountered some identities, based on character iden-
tities,, to relate matrices for different theories. Of course, we would like to have a general 
schemescheme to find the matrices for general (rational) conformal field theories. An important 
classs of these CFTs are the coset conformal field theories. A first step in finding a general 
schemee to obtain the K-matrices describing the coset conformal field theories will be given 
inn [5]. Some of the matrices corresponding to these cosets were identified in the literature 

00 mod 4 

0mod2 2 

00 mod 4 

l m o d2 2 

22 mod 4 

0mod2 2 

11 mod 4 

0mod2 2 

forr A = (0,0) 

forAA = (2,0) 

forAA = (0,2) 

forr A = (0,1) 

(5.87) ) 
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before,, and fit in the scheme presented in [5]. However, also new results will be given, for 
instance,, results of K-matrices for parafermionic CFTs related to non simply-laced affine 
Liee algebras. 
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Chapterr  6 

Statee counting for  clustered 
quantumm Hall states 

Thee statistics properties of the parafermion fields will be investigated in this chapter, with 
thee intention of obtaining closed form expressions for the ground state degeneracy of clus-
teredd quantum Hall states in the presence of quasihole excitations, as described in [47, 9]. 
Thiss state counting problem is interesting for the following reasons. The clustered quantum 
Halll  states can be seen as ground states of a hamiltonian with an (ultra local) interaction 
betweenn the electrons. Finding the ground state degeneracy of this hamiltonian can be done 
inn a conformal field theory (CFT) approach, relying heavily on the statistics properties of 
thee parafermionic fields. Another approach is by numerically diagonalizing the interaction 
hamiltoniann for a small number of electrons. This method can serve as a check on the 
analyticall  results of the first approach. Thus, the quasihole degeneracies of a system of 
interactingg electrons can be understood in terms of parafermionic statistics! 

Also,, the results for the state counting can be viewed as a justification of the K-matrices 
forr the quantum Hall states presented in the previous chapter, because these matrices are 
closelyy related to the K-matrices for the parafermion theories, used in the state counting. 

Inn the context of the spin-polarized states of Read and Rezayi, the Zk (or su(2)*/u(l)) 
parafermionss are the relevant parafermions. For the non-abelian spin-singlet (NASS) states 
off  [10], the relevant parafermions are the parafermions related to su(3)A/u(l)2 (see [43] for 
aa discussion on general parafermion CFTs). 

Thiss chapter is based on [9] and [4]. The plan of this chapter is as follows. In section 6.1 
wee will shortly indicate the setup of numerical diagonalization studies, because we need to 
adaptt the calculations to the setup in which these studies are done. Also, we present some 
off  the results of these numerical studies, which were done by E. Rezayi. These results can 
alsoo be found in [9]. The general structure of the counting formulas will be indicated in 
sectionn 6.2. It will become clear that the degeneracy consists of an intrinsic and an orbital 
part,, which need to be combined in the right way. The intrinsic degeneracy factors need to 
bee split to make this possible. The remainder of this chapter is devoted to this task, closely 
followingg the discussion of [4]. We will explain the procedure to obtain these expressions 
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usingg the $u(3)2/u(l)2 parafermions of the NASS state at level k = 2 as an example 
(seee also [9]). The first step is to find a basis for the (chiral) spectrum of the parafermion 
CFT.. Here, we make contact with the K-matrix description of the clustered quantum Hall 
statess from chapter 5. Using this basis, recursion relations for truncated characters will be 
derivedd (section 6.3). These recursion relations can be solved using the results of section 6.4, 
providingg expressions for the truncated characters. From the explicit truncated characters, 
thee 'split degeneracies' can be extracted. Finally the counting formula for the paired spin-
singlett states is obtained in section 6.5, filling  in some of the details of the discussion in [9]. 
Inn section 6.6, counting formulas for the RR states at general level k are obtained, while 
sectionn 6.7 deals with the counting formulas for the general k NASS states. For all the cases 
checked,, the results of the numerical diagonalization studies are exactly reproduced by the 
countingg formulas. 

6.11 The setup of the numerical studies 
Thoughh we will not describe numerical diagonalization studies in depth in this chapter, it 
iss necessary to point out briefly in which setup they are done, because we need to adapt 
ourr calculations to be able to compare results. The numerical diagonalization is most easily 
donee on the sphere. The interaction between the electrons is chosen such that the clustered 
statee under investigation is the unique ground state (in the absence of quasihole excitations). 
Notee that this interaction is an ultra local, many-body interaction, rather different from the 
longg range Coulomb interaction. To 'tune' to the right filling fraction, a specific number 
off  flux quanta needs to penetrate the sphere. States with quasiholes can be studied by 
increasingg the number of flux quanta (but keeping all the other parameters the same); this 
resultss in the creation of quasiholes, as can be seen from the Laughlin gauge argument. The 
numberr of flux quanta needed for a state on the sphere with quasiholes is given by 

N*N* = ijV-« S + AA^ , (6-1) 
v v 

wheree N is the total number of electrons, and AJV0 the number of excess flux quanta, 
neededd for the creation of the quasiholes. S is an integer constant depending on the state 
underr investigation. Also, the number of quasiholes which are created by increasing the flux 
byy one flux quantum depends on the state under investigation. For the spin-polanzed RR 
states,, this relation is given by n = fcAJV,, where n is the number of quasiholes. For the 
NASSS states of section 3.5, we have 

„„ = n t + ru = 2*AJV, . (6-2) 

Forr the clustered quantum Hall states with quasiholes present, the ground state is de-
generatee (for the ultra local interaction). The degeneracy consists of two parts. First of all, 
theree is an orbital degeneracy, which is caused by the fact that in this setup, the quasiholes 
aree non-local. This orbital degeneracy is not specific for clustered states; it is also present 
forr the (unpaired) Laughlin states. For a system in which the quasiholes are localized, this 
degeneracyy would not be present. Secondly, there is an intrinsic degeneracy, which stems 
fromm the non-trivial fusion rules of the spin fields, needed to create quasihole excitations. 
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Thiss source of degeneracy is special for the clustered states. Here, we will focus on this 
intrinsicc degeneracy and obtain analytical expressions, which allow the combination with 
thee orbital degeneracy factors. This provides us with explicit expressions for the degeneracy 
off  the ground states, in the presence of quasiholes. 

Ass spin and angular momentum are good quantum numbers, all the states obtained 
fromm the numerical diagonalization fall into spin and angular momentum multiplets. The 
structuree of the counting formulas is such that also the multiplet structure can be extracted. 

Thee numerical diagonalization studies for the spin-singlet states eq. (3.5) were per-
formedd by E. Rezayi for k = 2, M = 1 in a spherical geometry. As discussed before 
thee flux-charge relation for this state is N^ = 7N/4 - 3. The number of single-particle 
orbitalss (the lowest Landau level degeneracy) is N^ + 1. In order to make contact with 
thee results on more conventional geometries the radius R of the sphere has to be chosen 
soo that the number of flux is N$ - 2R2 (where the magnetic field strength B is fixed, 
suchh that the magnetic length is 1 in our units), so R = y/N^/2 [49]. The filling  factor is 
vv = NfN$ = 27m, where n = N/(4TTR2) is the particle number density. 

Forr numerical purposes, it is best to re-express the interaction hamiltonian in terms 
off  projection operators onto different values of the total angular momentum for different 
groupss of particles [49]. For the M = 1, k = 2 case of the NASS states, the required 
hamiltoniann can be written as 

HH = U E py * (3^ /2 -3 ,3 /2) + V'£Py(JV,,0), (6.3) 
i<j<ki<j<k  i<j 

withh U, V' > 0. Here Pijk(L, S) (Pij(L, S)) are projection operators for the three (resp., 
two)) particles specified onto the given values of total angular momentum L and spin 5 for 
thee three (resp., two) particles. Each projection is normalized to P2 ~ P. To see that this is 
thee required hamiltonian, that corresponds to the short range ̂ -function interaction for M = 
0,, and gives the same numbers of zero-energy states found above, note the following. First, 
thee maximal angular momentum for several particles corresponds to the closest approach of 
thosee particles [49]. In particular, the two-body term is a contact interaction, and V' = V0, 
thee zeroth Haldane pseudo-potential [49]. The two-body term implies that any zero-energy 
statess must have no component with total angular momentum N<f, and total spin zero, which, 
sincee we are dealing with spin 1/2 fermions, means the wave function must vanish when any 
twoo particles coincide. The wave function must therefore contain a factor $ [; multiplication 
byy this factor defines a one-one mapping of the full space of states of spin 1/2 bosons in the 
lowestt LL, with N+ reduced by N - 1, onto the subspace of states of the fermions that is 
annihilatedd by the two-body term in H. Under this mapping, the three-body hamiltonian 
forr the M = 0 case corresponds to the three-body term in H, and selects the corresponding 
statess as zero-energy states. In particular, the total spin of the three bosons when they 
coincidee (and hence of the fermions) must be 3/2. Hence the zero-energy eigenstates of 
thee present hamiltonian are given by the results derived earlier. Note also that H can be 
rewrittenn in terms of ^-functions and their derivatives. The zero-energy eigenstates of this 
hamiltoniann were found for various N and N+ values, and analyzed in terms of L and S. 

Thee results for these numerical diagonalization studies for the spin-singlet states of [10] 
cann be found in tables 6.1 and 6.2. The results are stated as a function of N and ANé, 
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whichh is related to the number of quasiholes, eq. (6.2) with k = 2. Also, we indicated the 
spinn and angular momentum multiplet structure. 

Ass an example, we also include a typical energy spectrum for the systems without quasi-
holess in figure 6.1. Indeed, in this case, the ground state is non-degenerate, as one would 
expect. . 
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Figuree 6.1: The spectrum of the NASS model ground state for N = 8 and 4/7 filling.  The 
lastt panel shows all S values combined. The insets are the low lying levels. Figure due to 
E.. Rezayi. 

6.22 Degeneracy factors and counting formulas 

Thee intrinsic degeneracy is caused by the non-trivial fusion rules of the spin fields. As an 
example,, we will use the spin fields of the su(3)2/u(l)2 parafermionic CFT. The fields and 
theirr fusion rules in this theory can be determined according to the methods of [43] and 
aree summarized in table 6.3. We use the notation introduced in [9]. The parafermion fields 
aree denoted by t/>, and all have conformal dimension A$ = \. In particular, ijji,ip2,ipi2 
correspondd to the roots au-a2 and ax +a2 of SM(3), respectively. The spin fields a^,^,^ 
andd p are related to the weights of su(3) and their conformal dimensions are given by 

Thee fusion of an arbitrary number of crt4
 fields c an b e depicted ACTT = i and Ap = 
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NN = 4 

NN = 8 

NN = 12 

NN = 4 

AN+AN+ = 1 

## = 20 
LL = 0 
LL = \ 
LL = 2 

55 = 0 
1 1 
0 0 
1 1 

## = 105 
LL = 0 
LL = l 
LL = 2 
LL = 3 
LL = 4 

55 = 0 
2 2 
0 0 
2 2 
0 0 
1 1 

## = 336 
LL = 0 
LL = l 
LL = 2 
LL = 3 
LL = 4 
LL = 5 
LL = 6 

55 = 0 
3 3 
0 0 
3 3 
1 1 
2 2 
0 0 
1 1 

1 1 
0 0 
1 1 
0 0 

1 1 
0 0 
2 2 
1 1 
1 1 
0 0 

1 1 
0 0 
3 3 
3 3 
3 3 
1 1 
1 1 
0 0 

2 2 
1 1 
0 0 
0 0 

2 2 
1 1 
0 0 
1 1 
0 0 
0 0 

2 2 
1 1 
0 0 
2 2 
0 0 
1 1 
0 0 
0 0 

AN+AN+ = 3 

## = 321 
LL = 0 
LL = l 
LL = 2 
LL = 3 
LL = 4 
LL = 5 
LL = 6 

55 = 0 
2 2 
0 0 
2 2 
1 1 
2 2 
0 0 
1 1 

1 1 
0 0 
2 2 
2 2 
3 3 
1 1 
1 1 
0 0 

2 2 
1 1 
0 0 
2 2 
0 0 
2 2 
0 0 
0 0 

AA ^^ = 2 
## = 104 
LL = 0 
LL = l 
LL = 2 
LL = 3 
LL = 4 

## = 1719 
LL = 0 
LL = l 
LL = 2 
LL = 3 
LL = 4 
LL = 5 
LL = 6 
LL = 7 
LL = 8 

55 = 0 1 2 
11 0 1 
00 2 0 
22 1 1 
00 1 0 
11 0 0 

5 = 00 1 2 3 4 
44 1 3 0 1 
1 77 2 1 0 
77 7 6 1 0 
33 9 3 1 0 
66 6 4 0 0 
22 5 1 0 0 
33 2 1 0 0 
00 1 0 0 0 
1 00 0 0 0 

ANtANt = 4 
## = 755 
LL = 0 
LL = l 
LL = 2 
LL = 3 
LL = 4 
LL = 5 
LL = 6 
LL = 7 
LL = 8 

55 = 0 1 2 
22 0 1 
00 3 0 
33 2 2 
11 4 1 
33 3 2 
11 3 0 
22 1 1 
00 1 0 
11 0 0 

Tablee 6.1: Counting results for the NASS states at k ~ 2. N is the number of electrons; 
AiV^^ is the number of excess flux quanta. The results are given as a function of the L 
(angularr momentum) and 5 (total spin) quantum numbers. The total number of states is 
alsoo indicated. 
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NN = 2 

JVV = 6 

NN = 5 

NN = Z 

AiV^^ = I 

## = 3 
LL = 0 

55 = 0 1 
00 1 

## = 10 
LL = 0 
LL = l 

55 = 0 1 
11 0 
00 1 

AAT 00 =

## = o 

AJV^^ = § 

## = 4 
L=\ L=\ 

ss = \ 
1 1 

AiV 00 = § 

## = 10 
LL = 0 
LL = \ 

## = 175 
LL = 0 
LL = l 
LL = 2 
11 = 3 
LL = 4 

55 = 0 1 
11 0 
00 1 

5 = 00 1 2 3 
00 2 0 1 
22 1 1 0 
00 3 1 0 
22 1 0 0 
00 1 0 0 

AiV 00 = | 

## = 48 

L = | | 

L ~~ 2 

CC _ 1 3 
°° — 2 2 

11 1 

11 1 

11 0 

A A T 0 = | | 

# - 2 8 8 

LL = 0 
LL = l 
LL = 2 

cc _ 1 3 
°° — 2 2 

00 0 
11 1 
11 0 

Tablee 6.2: Counting results for the NASS states at k = 2 with fractional AN^ (symbols as 
inn table 6.1). 

X X 

<T| | 

°l °l 
03 3 

P P 
V>i i 
V>2 2 
^ 1 2 2 

<Tt t 

1 + P P 
^ 1 22 + <73 

</>ll  + 0 ; 

^2+^t t 
(73 3 

P P 
°i °i 

1 +P P 
V>22 +<?"t 
</>ll  + ^ 4 

P P 
0-3 3 

cr-j--

(73 3 

11 + P 
^122 + 03 

(7t t 

04 4 

P P 

P P 

l + / > > 
^ ^ 
0"t t 
03 3 

^ 1 1 

1 1 
^ 1 2 2 

</>2 2 

^ 2 2 

1 1 
Ipl Ipl 

</>12 2 

1 1 

Tablee 6.3: Fusion rules of the parafermion and spin fields associated to the parafermion 
theoryy su(3)2/u(l)2 introduced by Gepner [43]. 

inn a Bratteli diagram (see also [9]). Each arrow in the diagram in figure 6.2 stands for 
eitherr a <rt or a; field. The arrow starts at a certain field which can only be one of the 
fieldsfields on the left of the diagram at the same height. This last field is fused with the one 
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Figuree 6.2: Bratteli diagram for the spin fields of su(3)2/u(l)2. 

correspondingg to the arrow, while the arrow points at a field present in this fusion. As an 
example,, the arrows starting at the * are encoding the fusion rules p x cr^ = $2(1) + (Tfm 
andd a3 x crt(i ) = ^1 ( 2) + aW). One checks that the diagram is in accordance with the first 
twoo columns of table 6.3. 

Fromm figure 6.2, one immediately reads off that in general there is more than one fusion 
pathh of spin fields with leads to the identity (possibly the identity is reached only after the 
fusionn with the parafermion fields ^1,2 of the electron operators). It is easily seen that the 
numberr of fusion channels starting from and terminating at 1 while n t crt and  erj, spin 
fieldsfields are fused is given by 

dndntt,,nini = F(n^ + 714, - 2), (6.4) 

wheree T{n) is the n-th Fibonacci number, defined by T(n) = T{n - 1) + T(n - 2) with 
thee initial conditions ^"(0) = 1 and T{\) = 1. Next to this intrinsic degeneracy, there is an 
orbitall  degeneracy. These orbital degeneracy factors can be found in [47, 9] for the states 
discussedd in sections 3.4 and 3.5. These factors have the general form 

n n 2 ^ + n ) ) (6.5) ) 

Thee product is over the types of quasiholes, while the numbers Ft are interpreted as the 
numberr of 'unclustered' particles in the state. In the correlators, these correspond to the 
fundamentall  parafermions */>». For each fusion path, these numbers can be different, imply-
ingg that we have to split the intrinsic degeneracy according to these numbers. We denote 
thesee 'split degeneracy factors' by {}k. Explicitly, we have { $ } k and {£ [ ^ } k for the RR 
andd NASS states, respectively. 

Usingg the notation above, the counting formula for the clustered spin-singlet quantum 
Halll  states take the following form 

(6.6) ) 
wheree the prime on the summation indicates the presence of constraints (see below eq. 
(6.50)).(6.50)). The equivalent counting formula for the Read-Rezayi states is given in eq. (6.42). 

Thee explicit split degeneracy factors for the Zk and su(3)f t /u(l)2 parafermions at level 
kk > 2 first appeared in [4] (for k = 2, these factors can be found in [84] and [9] respec-
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tively).. Previously, these factors for the %k parafermions (k > 2) could only be charac-
terizedd via recursion relations, see [47, 22]. Note that the results in this chapter are easily 
extendedd to the more general s^AO^/uU)^- 1 parafermions. 

Wee will now briefly outline in which way the split degeneracy factors are obtained. The 
startingg point is the character of the parafermionic CFT. The symbols {}k can be extracted 
fromm Unitized forms of these characters [47] (see also [90]). Recursion relations for these 
finitizedfinitized characters can be derived from an explicit basis of the parafermionic CFT. These 
recursionn relations will be written in a way that allows for an explicit solution, from which 
thee symbols {}k can be extracted. In the sections 6.3-6.5, we will demonstrate this for the 
levell  k = 2 spin-singlet states of [10]. 

6.33 A basis for  the su(3)2/u(l)2 parafermion theory 

InIn this section, we briefly describe how an explicit basis for the chiral spectrum of the 
su(3)2/u(l)22 parafermion CFT is formed. The starting point is the chiral character for the 
parafermionss in the su(3)2/u(l)2 conformal field theory. This character can be written in 
thee form of a 'universal chiral partition function' (UCPF) see, for instance, [13, 5]. For the 
casee at hand, this character reads [65] 

**  = 2) = £ q xTxT - (6-7) 

Inn this character, xt = eP** are fugacities of the particles, and q = e&£ (0 is the inverse 
temperature).. (q)a is defined by (q)a = ü L i t 1 ~ «*) f o r o > ° a nd fa)o = L 

Thee bilinear form in the exponent of q is described by the matrix 

-\\ 7) • (68) 

Thee same matrix also describes the exclusion statistics of these parafermions. As we showed 
inn section 5.5, it can also be obtained from the K-matrix of the electron sector for this 
quantumm Hall state. 

AA basis for a CFT can be thought of as a set of states spanning the chiral Hubert space. 
Thiss set of states can be written as a (set of) vacuum state(s), on which creation operators 
act.. The parafermions */>i,2(z) in the su(3)2/u(l)2 theory can be expanded in modes as 

*...«« = £ ^m^2-i • (6-9) 

mez z 

Ass usual, the modes \jjm with negative index are the creation operators while the modes with 
positivee index annihilate the vacuum 

V>m|0)) = 0 m > 0 . (6.10) 

Thee set of states 
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iss overcomplete, because of the (generalized) commutation rules of the parafermions. In 
thee following, we wil l point out which restrictions on the indices s{ wil l remove the 'over-
completeness'.. In doing so, we will follow the exclusion interpretation of the K-matrix as 
closelyy as possible and concentrate on the lowest possible 'energy' (given by LQ = £ \ s{) 
forr a certain number of applied fields first. The ordering of the modes ipl<2 is such that we 
applyy the ipl modes first. From (6.9) it follows that the simplest non-trivial state is 

^-i/ 2l° >>  (6.12) 

Interpretingg the matrix (6.8) as the exclusion statistics matrix, the minimal spacing between 
twoo tp1 modes is 1, thus the state with two ip1 's acting on the vacuum with minimal energy 
is s 

^3/2^-1/210>>  (6.13) 

Thee extension to ni tp1 modes is simple 

^-(2„ 1- l)/2--- -^-3/2^-1/210)  (6.14) 

Notee that if this were the whole story, we would describe the (free) Majorana fermion. The 
spacingg between tp2 modes is the same as for the ip1 modes. However, if one acts with ip2 

onn a state in which ip1 modes are already present, one has to take into account the mutual 
statisticss between ip1 and ip2 modes, which is - 1 / 2, according to (6.8). Thus the energies of 
thee ip2 modes have an extra shift of - n i / 2, resulting in the following states (with minimal 
energy) ) 

V )2-(2n2-l-„ 1)/22  * 1)/2V'-(i-„ 1)/2^i(2n1-l)/2 ' ' ' ̂ -3/2^Ii/2J0> . (6.15) 

Thee (dimensionless) energy associated to this state is "1+"^-"»"^ precisely the exponent 
off  q in the character (6.7). To obtain all the possible states, one has to allow states with 
higherr energies as well. As usual [22], the energies of all the modes can have integer shifts, 
underr the restriction that modes acting on a state have larger energies than the modes of the 
samee type which have been applied earlier. This results in the following set of states 

^_(2„ 2_l_n i ) /2_tn aa • • • ^2-{z~m)/2-t^2-{i~ni)/2-tx
 x 

XX ̂ -{2n1-l)/2-,„ 1 3 / 3 - f t ^ i / a- , 1 | 0) , (6.16) 

withh sni > . .. > s2 > si > 0 and tn2 > . .. > t2 > h > 0 (s{, tj € N). 
UpUp to now, we used the special ordering of applying modes to the vacuum, namely, all 

thee ij£ modes first. This is in fact enough to span the whole chiral spectrum, as can be 
seenn if we perform the trace over all basis states. More or less by construction, we obtain 
thee character (6.7). However, we also can allow a general ordering of the modes. As an 
example,, we take the following state 

^ -o^ i V 2 |0>> . (6.17) 

Thee energy of the \p2 mode is zero because it gets an extra shift of - 1 /2 due to the presence 
off  the ip1 mode. In spanning the whole chiral spectrum, we can also choose to use the state, 
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withh the order of the modes changed 

</>V>2-1/2|0>>  (6-18) 

Inn this case, the V1 mode gets an extra shift of -1/2, because of the presence of the ip2 

mode.. Thus, the L0 value is the same for both states. In general, changing the order of two 
neighbouringg ̂  and V2 modes does not change the L0 value if the extra shifts are changed 
inn the appropriate way. The extra shift of a field is given by -1/2 times the number of 
precedingg modes of the other type. In general, two states related by a reordering of modes 
aree different, but we can use either of them (but not both) to span the chiral spectrum. Note 
thatt the rules of the spacing between the various fields is in accordance with the (exclusion) 
statisticss interpretation of the matrix K. The character (6.7) is obtained by taking the trace 
overr all the states in the basis (6.16) 

ch(xch(x11,x,x22;q)=Trx;q)=Trx11{{iix?qx?qLLo.o. (6.19) 

Wee can now define the Unitized characters needed in the derivation of the symbols {}k by 
usingg the basis described above. These unitized characters are polynomials which will be 
denotedd by Y{lttny These polynomials are traces over the basis (6.16), but restricted to the 
statess in which the energy of the modes of the fa (ifa) fields are smaller or equal to I (m). 
Thoughh the total energy of a state does not depend on the ordering of the modes, the energies 
off  the individual modes do depend on the ordering, as can be seen by comparing the states 
(6.17)) and (6.18). By restricting the trace over states in which the labels of the modes are 
bounded,, we must include a state if there is at least one ordering in which all the modes 
satisfyy the bounds imposed. Note that there may be other orderings, in which these bounds 
aree not satisfied. We write the Unitized characters as 

YY{l{l,,m)m)(x(x11^^qq)=)=<<^^mm^^Q^^QLL°-°- («°> 

Thee prime on the trace denotes an important restriction on the number of modes (denoted 
byy m and n2) present in the states. These numbers must satisfy m = 2/ (mod 2) and 
nn22 = 2m (mod 2). This restriction takes into account that after fusing the spin fields, 
onee ends up in the right sector, which can be 1, rpi, fa or V12 depending on the number of 
spinn up and down electrons. This is necessary, because after fusing the spin fields and the 
parafermionn fields of the electron operators, on has to end with the identity 1, to obtain a 
non-zeroo correlator. 

Thee unitized characters y(/ im) can be written in terms of recursion relations of the fol-
lowingg form 

V((,m)) = Y(t-l,m)+^Ql~^Y(l-l,m+^)  > 

YY{ltm){ltm) = V i ) + « m 4 V i M '  (6' 21) 

Notee that the recursion relations above are stated in terms of the energy labels of the modes. 
Thee aim we have is finding the number of possible states when a certain number of extra 
fluxx is added. We therefore need to make a change to labels which depend on the additional 
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flux.flux. In fact, we wil l use the number of particles (given by n-j. and  in this case) created 
byy this flux as labels for the finitized partition functions. Explicitly, we have I = ^ and 
mm ~ ^-. In terms of the number of created quasiholes, the recursion relations become 

IW.nj.)) = ^(nr-2,nA ) + xlQ 2 y(nt-2,n^+l) 
" 4 , - 1 1 

Y(nY(nrr,,nini)) = y(nr,ni-2) + X2Q 2 ^(nt+l,nA -2) 

Thee initial conditions for these recursion relations are as follows 

*(i,o)) = ^(o,i) = 0 , 

^(0,0)) = ^(2,0) = ^(0,2) = 1 , 

*U,i )) =q*x\x2 . 

(6.22) ) 

(6.23) ) 

Thee finitized characters are completely described by (6.22) and (6.23). In the next sec-
tion,, we will solve these recursion relations and thereby provide explicit expressions for the 
finitizedfinitized characters. 

6.44 Recursion relations and solutions 

Thee recursion relations of the previous section can be solved explicitly; we will follow the 
approachh of [16]. The key observation is that the recursion relations can be matched to 
generall  recursion relations, which are solved in terms of finitizations of universal chiral 
partitionpartition functions. For convenience, we repeat the finitized partition functions eq. (4.51) 

P^z-q)P^z-q) = £(n*J»')flWK-»+Q-»TJ (LL + ( E - K ) . m + u). 

rrii rrii 
(6.24) ) 

Inn this equation, I is the identity matrix, IK the statistics matrix and [ g ] the g-deformed 
binomiall  (q'-binomial) 

ff , (<r)« 
== I {q)b(q)a-b 

11 0 

a,bea,be N; b < a 
otherwise. . 

(6.25) ) 

Notee that we defined the g-binomial to be non-zero only if both entries are integers greater 
orr equal to zero, to avoid additional constraints on the sums in the counting formulas. 

Fromm the definition of the g-binomials, the following identity is easily derived 

a - 1' ' 
b b ++ q' ,a—b ,a—b a - 1 1 

6 - 1 1 
(6.26) ) 

Replacingg the f th g-binomial factor in (6.24) by the right hand side of (6.26), one finds the 
followingg recursion relations 

PL(*;q)=PL^(*;q)PL(*;q)=PL^(*;q) + Ziq-**i+*+*+uIl-K..t(*;q) (6.27) ) 
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Thee vector e*  represents a unit vector in the i'th direction. We will use the equivalence 
betweenn (6.24) and (6.27) frequently, because the recursion relations we encounter in de-
rivingriving the counting formulas are all of type (6.27). Of course, upon deriving polynomials 
fromm recursion relations, one has to take the initial conditions into account. For the counting 
wee need to know the unitizations of the character formulas, and these can be written in the 
formm (6.24). Thus, when we solve recursion relations by polynomials of the form (6.24), 
thee proper initial conditions are automatically taken into account. 

Wee start by applying the above to the recursion relations (6.21), resulting in the follow-
ingg expressions for the truncated characters K(nTjni) 

n-f+b-n-f+b-
2 2 2 2 

b b 
(6.28) ) IW,H)(*I,* 2;Ï )) = £ « ( a+ h-ah),2<4 

a,b a,b 

Inn this sum, a and b have to be restricted such that a =  (mod 2) and b = nt (mod 2). 
Takingg the limit (%, nj.) -» (oo, oo), and summing over the four possibilities of the parity 
forr n-f-, ri|, gives back the untruncated character (6.7). 

Thee result eq. (6.28) for the truncated characters will be needed for the final counting 
formula,, which we give in the next section. 

6.55 A counting formula for  the NASS state at k = 2 

Fromm the truncated characters of the previous section, we can obtain the symbols {} 2, 
neededd in the counting formula eq. (6.6). In fact, the symbols {} 2 are obtained by tak-
ingg the limit q -> 1 of the coefficient of zf'xf2 in eq. (6.28) (see, for instance, [47, 9]) 

^.„jta.^l^Ezf'^ bb "A-  (6-29) 

InIn this limit, the ^-binomials in (6.28) become 'ordinary' binomials and we find 

ftft  sHTXT)-
Thee fact that the unitized characters indeed provide the symbols { }  is rather non-trivial. This 
connectionn was first proposed in [47]. Some (restricted) 'solid on solid' (SOS) models (see, 
forr instance [3]) can be mapped to the Bratteli diagrams of the spin fields of the quasiholes. 
Recursionn relations for the partition functions for these models (at finite size) are in general 
equivalentt to recursion relations for finitized characters in certain CFTs. In the case at hand, 
thee corresponding CFT is the parafermion CFT. This provides a link between the Bratteli 
diagramss and the parafermion theories. As a check, on can calculate the number of fusion 
pathss for the spin fields by summing over the symbols { }  and compare to the result obtained 
fromm the diagram itself. In this specific case, the equivalence follows from the structure of 
thee recursion relations (see for instance [9]), giving rise to the identity 

S ( A ) U H " ^ - 2 ) -- (6-3,) 
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Thee prime on the summation denotes the constraints Fx = ^ (mod 2) and F2 = nt 

(modd 2). At the level of the wave functions, the degeneracy is due to the presence of parti-
cless which do not belong to a cluster any more. At the level of correlators, these unclustered 
particless correspond to parafermions ip1 and tp2, which act as 'cluster breakers'. In the case 
off  the Moore-Read state, this was made explicit in [84]. 

Thee counting formula for the NASS state at k = 2 is obtained by inserting the symbol 
(6.30)) in the general counting formula (6.6) 

#(AT,AJV>,fcc = 2) = 
,, / nT + F2 \ /n.j.+J'ix /Nt-F1 . >. /JV,-F2 , \ 

wheree the prime on the sum indicates the constraints iV t + JVj. = N, rif +  4A7V^ and 
iV tt - Ni = nj, - n-f. 

Wee will now comment on the spin and angular momentum multiplet structure. As an 
example,, we will write out the polynomials F(„T,ni) in the case of two added flux quanta, 
givingg eight quasiholes 

y(8,0)) - 1 + (q2 + q3 + 2q4 + q6 + q*)x\ + q8xj + (q6 + q7 + q* + g» + q™)x\x2 , 

%, i)) = («*  + <P + é + q7*)xiX2 + (q% + 2q2 + 2q% + 2q% + q^)x\x2 

++ q2 x\x%, 

^(6,2)) = 1 + (q2 + q3 + q^x2 + (q2 + q3 + 2<?4 + q5 + qQ)x\x2 

++ (q6+q7+q8)xUh 
*W )) = (q* + 2q* + 2gi + q*)xxx2 + (q% + q% + q^)x\x2 

++ {q2 +q* +q2 + g = )x{xl , 

y(4,4)) = 1 + Q2xi + q2x\ + (q2 + 2<jr3 + 3<?4 + 2<?5 + g 6 ) * ^ + ^ j ^ ^ 
e t c-- (6.33) 

Afterr multiplying the coefficient of x(xx2
2 with (in general) q-^t^+nM/*, 0ne obtains 

aa sum of terms of the form q1*, which together form a collection of angular momentum 
multipletss with quantum numbers lz. Taking the polynomial y{5i3 ) as an example, we find 
thee following non-zero symbols 

ui} ui} 

^ = 5 , 1 = 1 ), , 

== 3 (1 = 1), 

== 4 (L = 5)  (6.34) 

Ann alternative way to obtain these results is by associating angular  momentum multiplets 
too the binomials in eq. (6.32). The binomials (J) forming the symbols { } 2 need to be 
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interpretedd as the number of ways on can put ƒ fermions in a boxes, which are labeled with 
llzz — -.i^—ll^ _ i2z li + l , . . ., i angular momentum quantum numbers. Each way of 
puttingg the ƒ fermions in a boxes has an /*ot associated with it. Together, these l\ot quantum 
numberss fall into angular momentum multiplets. In this way, angular momentum multiplets 
cann be associated with the binomials. The angular momentum multiplets of the various 
binomialss in the counting formula need to be added in the usual way. 

Thoughh the parafermion theory does not have a proper 51/(2) spin symmetry, one can 
associatee spin quantum numbers to every state by taking Sz =

 T^ l . Combining the spin 
andd angular momentum, one finds that all the states fall into spin and angular momentum 
multiplets. . 

Thee numerical diagonalization studies for the NASS state at level k = 2 are described 
inn [9]. It is very gratifying to see that the counting formula eq. (6.32) does in fact exactly 
reproducee the quasihole degeneracies, as well as the multiplet structure. 

Inn order to find the counting results for the spin-singlet states at general level-fc, we first 
takee a closer look at the counting of the Read-Rezayi states, which was in fact done in [47]. 
Thosee results however, were stated in terms of recursion relations which are difficult to 
solve.. The advantage of the recursion relations presented in the next section is that they can 
easilyy be solved in terms of (g-deformed) binomials, and thus provide explicit expressions 
forr the symbols {}* . 

6.66 Counting formulas for  the Read-Rezayi states 

Thee derivation of the counting formulas for the RR states goes along the same lines as the 
derivationn for the NASS k=2 states as explained in the previous sections. Therefore, we do 
nott go into full detail, but concentrate on the parts which need more explanation. 

Wee start with the character of the su(2)jt/u(l) parafermionic theory (see [115]), which 
cann be obtained from [68,65,41] 

i(a-C fc_i-a) ) 

** xixi** k)k)=z-m£r*~'=z-m£r*~' (6-35) 
wheree a = (a i , . . ., ofc_i) and Cjt_i = 2 A ^ 1 , A*_i being the Cartan matrix of su(k). In 
components,, these matrices are given by 

(A(Akk..ll))iij=2öj=2öiyjiyj-Ö-Ölili__jll:jll: (6-36) 

( A ^ J uu =min( i , j ) - f , ij = 1 , . . . , *- 1  (6-37) 

Inn fact, Cjb-i is the K-matrix for the Zfc parafermions and can also be obtained from the 
matrixx K« in eq. (5.10) by the methods described in section 5.5. 

Thee parafermions in this theory are ip0, V>i,  ^fc-i (V>o is the identity 1 and the labels 
aree defined modulo Jfc). By writing xiai in the character (6.35), we take care of the fact that 
thee fugacity of species i is i times the fugacity of the first type of particle. In fact, the i'th 
speciess can be thought of as a 'composite' of i particles of species 1. This point of view is 
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supportedd by the fusion rules for these parafermions ^ x ^ p = ipp+1, with p= l , . . . , j fc - l. 
Thiss structure is also present in the K-matrix structure describing the Read-Rezayi states, 
presentedd in section 5.1 (see also [48,6,7]). 

AA basis for the chiral spectrum can be constructed in the same way as described in 
sectionn 6.3. The shifts in modes between the various fields are given by the elements of the 
matrixx K = Cfc_i. We will now proceed by directly giving the corresponding recursion 
relations s 

Yi(x;q,k)Yi(x;q,k) = y,_ei +xiqli~iihr1Yl-c^1.ei • (6.38) 

Thee factor *-&j^- is the conformal dimension of the i'th parafermion in the Zft-parafermion 
theory.. These recursion relations are solved by the following polynomials 

A - l l 

K,(x;;  q, k) = £ gè(-^-i-) JJ xic 
i=l i=l 

'(ll  + ( I * - i -C* - i ) -a ) 4 (6.39) ) 

wheree I*_i denotes the (k - 1)-dimensional unit matrix. To obtain the counting results, 
wee have to specify the truncation parameters U. As in the NASS case with k = 2, we will 
doo this in terms of the number of particles created by the extra flux, given by n = kAN^ 
forr the states under consideration. Because the chemical potential of species i is i times the 
chemicall  potential of species 1, the truncation parameter /» has to be scaled with a factor 
ii with respect to lx (see, for instance [7]), which is found to be h = f. This leads to 
thee following truncation parameters h = f, and the truncated characters needed for the 
countingg become 

A - l l 

YYnn(x;q,k)(x;q,k) =YtQ
h(&^- lA)l[ xiai 

Oj j i = l l 

ff + ( ( I * - i -C*_ 1) . a). 
Oi Oi 

(6.40) ) 

Too obtain the symbols {  £ }k which are needed for the counting, one has to take the limit 
qq -> 1 of the prefactor of xF in eq. (6.40). This results in 

(6.41) ) 

Withh this result, we arrive at the following counting formula for the Read-Rezayi states (for 
generall  k) 

^.^^{j}^.) , , (6.42) ) 

withh n = kAN^. To make the above (in particular the symbols {} *  of eq. (6.41)) more 
explicit,, we will discuss the k = 2 (i.e. the Moore-Read state) and k = 3 cases. For the MR 
statee counting, we need to know the symbol {} 2. Eq. (6.41) with k = 2 gives {  £ } 2 = (?). 
Off  course, this is just the result already found in [84]. Note that our notation is slightly 
differentt with respect to the one used in [84,47]. In our notation, we denote the number of 
createdd quasiholes by n. In [84,47], n denoted the number of extra fluxes, which is denoted 
byy ANf in our notation. 
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Althoughh the method described above seems to be unnecessarily complicated to repro-
ducee this result, it is very useful for obtaining closed expressions for k > 2. As an illus-
tration,, we will discuss the case k = 3, and compare our results with [47]. For k = 3, the 
polynomialss are given by the following expression 

y„(*;9,3 )) = 2 +^> x a+2b a+2b 

a,b a,b 

nn _
33 3 

2nn _ 2a+b 
33 3 

b b 
(6.43) ) 

Indeed,, these polynomials reduce to the ones in [47], upon setting q = 1. The symbols {} 3 

aree now easily written down 

W: : == £ 
a+2b=F a+2b=F 

/n/n a+2b\ 
rr  3 3 A 
i,, a ) 

/2n/2n 2a+b 

((33 „ 3 (6.44) ) 

Notee that only a finite number of terms contribute to the sum in eq. (6.44). In fact, this is 
truee for all the symbols (6.41) with n finite. 

Thee fusion rules for the spin field a which is part of the quasihole operator at level k = 3 
(seee [85]), can be encoded in a Bratteli diagram with the same structure as the diagram 
6.22 (note that the fields differ, of course). This is a consequence of the rank-level duality 
su(2)33 <-  su(3)2 (see §16.6 in [34]). Thus the total intrinsic degeneracy for the k = 3 
Read-Rezayii  state with n quasiholes is given by dn = T{n - 2). Indeed, by summing the 
symbolss {  £ } 3 over F, this result is reproduced. 

Thee angular momentum multiplets can be found in the same way as described in section 
6.5.. Let us note that for jfc = 1 the only degeneracy factor remaining in eq. (6.42) is ( +n) , 
whichh is precisely the orbital factor for the Laughlin states with quasiholes present. This 
wass of course to be expected, as the k = 1 Read-Rezayi states are in fact the Laughlin 
states. . 

Too conclude the discussion on the counting for the Read-Rezayi states, we would like to 
mentionn that the numerical studies as presented for k = 3 in [47] are in complete agreement 
withh the counting formulas. At this point, no numerical results are available for k > 4. 
Inn the following section we will turn our attention to the counting of the NASS states for 
generall  level. 

6.77 Counting formulas for  the NASS states 

Inn this section, we describe the counting for the NASS states at general level k. We will 
closelyy follow the procedure of the previous sections, that is, we start by writing down the 
chirall  character corresponding to the su(3)fc/u(l)2 parafermions [65,41] 

/ , i ( a Ck _ 1 a + b - Ck _ 1 b - a Ck _ 1 b )) . 

a.i,bja.i,bj ' J 

wheree we used the same notation as in eq. (6.35). This character is of the UCPF form with 
thee K-matrix equal to the K-matrix of the su(3)jt/u(l)2 parafermions, which is given by 



6.7.. Counting formulas for the NASS states 

KK - (-i 21) ® A*- i  The recursion relations corresponding to the basis of this theory 
bee written in the following way can n 

*W*1 ,S 3 ;« , * )) = ^ - „ m ) + x j ^ - 1^ F ( 1_C f c_ i . ei m + è C f ci e<) , 

Y(i,Y(i,m)m)(xux(xux22;q,k);q,k) = y(I ,m_ej) + ^ " ' " ^ V ^ . . , , „ _ < : . _t .^ . (6.46) 

Oncee again, we solve the recursion relations by matching these recursions to eq. (6.27). The 
truncatedd characters take the form 

*a,m)(Zl,Z 2;tf,fc )) = ] T ^(«Ck-ia+bQ^.b-aCk-ib ) 

"(l+CI^i-Cfc-O-a+ICfc^-b)/ / 
t=i i 

k-i k-i 

n n 
3=1 3=1 

J>>i J>>i (mm + (!*_! - Cjfc-x)  b + iCjt-x  a)
(6.47) ) 

Wee continue by specifying the parameters k and mj. We have to use the same construction 
ass in the RR case, with the difference that we now need the number of spin up and down 
particless (denoted by rct and n+) created by the excess flux. Using lt =  ̂ and m  =
resultss in 3 k 

Y(nY(ntt,r,rHH)(Xl,X2;q,k))(Xl,X2;q,k) = £ ^(••Ck-i-a+b-Q.-i-b-a-Ck^.b^ 

k—k—11 r in 

i = l l 

* - l l 

ri46' ' 

Jtt + ( ( I * - i - C t . l ) . a + i Q .1 . b ) ; 

i I tt + ( ( I f t - i -C f t _1) .b+ IC* - 1 .a ). 
(6.48) ) 

Fromm eq. (6.48) we obtain the symbols {  £ JJ }*  by taking the limit q -  1 of the coëfficiënt 

ftft s} = E n( T 1++ ( ( I * - i -€*_ ! )  a+JC*_1 . b ) i 

*—11 / j n 

3=13=1 ^ h3 ) ' 
(6.49) ) 

Wee know have specified all the ingredients of the counting formula for the NASS states 

# N A S S W A J V , , * )== V ' ft " i l f ^ + " t V ^ + M 

(6.50) ) 
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wheree the prime on the sum indicates the constraints JVt +  = N, nt +  - 2kAN<f, 
andd iVt -  =  - nt . The last constraint is a necessary condition for the state to be a 
spin-singlett (for more information on the constraints, see [9]). 

Thee case Jfc = 2 was explicitly discussed in section 6.5. For fc = 1 only the orbital 
degeneracyy factors remain, and we obtain the counting formula for a particular class of 
Halperinn states [55]. Indeed, for k = 1, the NASS states reduce to the spin-singlet Halperin 
states.. As already mentioned in section 6.5, the counting formula (6.50) with the symbols 
(6.49)) exactly reproduces the results of the diagonalization studies for A; = 2 [9]. For k > 3, 
noo numerical results are available at the moment. 
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Afterr the results of the previous chapters, this is a good point to sit back, and reflect upon 
thee issues which were discussed. Mainly, this thesis has been about using conformal field 
theoryy to give a description of (possible) quantum Hall states. Motivation came form the 
observationn of an even-denominator fractional quantum Hall state, which is believed to be 
relatedd to a trial wave function which consists of the usual Laughlin factor and a factor 
whichh is best characterized by a pairing structure. This pairing (or in general, clustering) 
openss the possibility for an extra fractionalization of the quantum numbers for the quasi-
holes,, compared to the Laughlin quasiholes. Moreover, the quasiholes of the clustered states 
satisfyy what is called non-abelian statistics. These statistics properties are a consequence of 
thee clustering properties of the electrons. 

Thiss duality between the properties of the electrons and quasiholes is present at the level 
off  the conformal field theory description as well. On this level, it was found that a basis of 
thee underlying conformal field theory (of affine Lie algebra type), can be split into two dual 
parts,, one related to the quasiholes, the other to the electron like particles. Though such a 
descriptionn of conformal field theories came about in the study of fractional quantum Hall 
states,, it can be used in a more general setting, to find similar bases for other conformal field 
theories. . 

Inn defining new quantum Hall states (see chapter 3), we used the following procedure. 
Wee assumed the existence of a quantum Hall state with certain characteristics (for instance 
aa paired spin-singlet state) and then used conformal field theory to describe such a state. 
Off  course, one can not hope to give an exhaustive list of all possible states, as this would 
requiree a full classification of conformal field theories. Also, not all conformal field theories 
aree related to quantum Hall states. However, if one finds quantum Hall states in this way, 
onee can study its properties, having quite powerful conformal field theory techniques at 
hand.. As stated above, this has led to new ways of looking at bases for conformal field 
theories. . 

Startingg from the spin-polarized Moore-Read state, we have included the electron spin 
inn a natural way. This has led to some interesting spin-singlet quantum Hall states, which 
havee a similar clustering structure as the spin-polarized variants. Also, the quasiholes obey 
non-abeliann statistics. In addition, in one type of these spin full states, the fundamental 
quasiholess show a separation of the spin and charge degrees of freedom, for the first time in 
thee context of the quantum Hall effect. 
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Too test the ideas of using conformal field theories in the description of clustered quantum 
Halll  states, one can try to find a model interaction for which the state under consideration is 
thee ground state. The degeneracy obtained by diagonalizing this interaction (for instance on 
thee sphere), for systems with quasiholes present, can be understood in terms of the under-
lyingg conformal field theories. The fact that the quasihole states are degenerate, lie at heart 
off  the non-abelian statistics satisfied by the quasiholes. For the NASS states we carried out 
thee program outlined above in full detail, see chapter 6. Important to note here is that thé 
onlyy things specified in the numerical diagonalization are the ground state properties, for the 
systemm in the absence of quasiholes. This again points to the duality between the clustering 
propertiess of the electrons and the non-abelian statistics of the quasiholes. Also here, it is to 
bee expected that this relation holds in more general situations, not only the ones related to 
quantumm Hall states. 

Ann important issue concerning the clustered quantum Hall states is an effective field 
theoryy description. This issue is not addressed in this thesis. To further study the behaviour 
off  the excitations, and calculate in more detail the tunneling behaviour, it would be nice to 
havee a full quantum field theory description for these states, as is available in the case of the 
Laughlinn states. Though some progress has been made in this respect, more research in this 
areaa is needed for a full understanding of these states. 

Onn the experimental side, there are a lot of unanswered questions. In general, it is hard 
too distinguish experimentally between the various proposed states. One of the possibilities 
iss to measure the I — V characteristics for various tunneling processes, as these are, in many 
cases,, different for the various proposals. Also the charge of the fundamental quasiparticles 
iss an option, because of the additional fractionalization of quantum numbers in comparison 
too the competing hierarchical states, which exist in the cases of odd-denominator clustered 
states.. However, measuring these properties on samples where the relevant plateaux are 
observedd is not possible at this point. 

Inn relation to the spin-singlet states studied in this thesis, it is to be expected that these 
statess are most relevant in the regime where the Zeeman energy goes to zero. This can 
bee achieved experimentally by applying pressure on the sample. This changes the band 
structuree and in effect sends the Zeeman energy to zero. This behaviour has been demon-
stratedd in experiments which showed the existence of skyrmions at the v = 1 plateau. These 
skyrmionss are topological excitations with many reversed spins, and can have lower energy 
thann ordinary spin-flips in the low Zeeman energy limit. 

AA very interesting experimental development is the observation of a fractional quantum 
Halll  effect at 2 Kelvin in organic molecular semiconductors. In the more conventional 
materials,, the fractional quantum Hall states are only observed at temperatures below 0.5 
Kelvin.. It would be interesting to cool these organic molecular semiconductors to the milli -
Kelvinn regime. One can hope that in these systems the Hall plateaux at even denominator 
fillingfilling  fraction are observed at temperatures higher compared to the conventional systems. 
Possibly,, quantum Hall states are observed at new filling  fractions as well. 

Onee has to realize that the study of the quantum Hall effect is much broader than the 
studyy of the clustered states presented in this thesis. An important aspect which I would like 
too mention here is the issue of the transitions between quantum Hall states, and the transition 
too the insulating state at high magnetic fields. In certain types of samples, there have been 
clearr observations of scaling with universal scaling exponents, pointing at quantum critical 
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behaviour. . 
Inn the single layer quantum Hall systems, a lot of different states are formed. In double 

layerr systems, there is a whole plethora of states, due to the extra degree of freedom and a 
lott of research is done in this area (both experimental and theoretical). There is much more 
interestingg physics in the quantum Hall regime, but describing it all would go beyond the 
scopee of this epilogue. 

Too conclude, the research described in this thesis covers only a small area of quantum 
Halll  physics, but is nevertheless important, as it provides systems in which (quasi)particles 
satisfyy new forms of statistics, which are special to the types of quantum Hall states dis-
cussed.. Also, the properties of these states and the corresponding quasiparticles were stud-
iedd in various ways, giving interesting results from the physical as well as the mathematical 
pointt of view. 
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Samenvatting g 

Ditt proefschrift beschrijft mogelijke toestanden gevormd door de electronen in systemen 
waarinn het fractionele quantum Hall effect optreedt. Door analogieën te maken met alle-
daagsee verschijnselen zal ik in deze samenvatting proberen duidelijk te maken wat ik tijdens 
mijnn promotie heb onderzocht. 

Laatt ik beginnen met een zeer alledaagse stof: water. Water kan voorkomen in drie 
toestandenn (fases), namelijk in vaste vorm, in vloeibare vorm en als gas. Door de temper-
atuurr (of de druk) te veranderen kunnen deze vormen in elkaar overgaan, en spreken we van 
eenn fase overgang. In dit proefschrift heb ik mij niet bezig gehouden met water, maar met 
electronen.electronen. Electronen kunnen, op dezelfde manier als water moleculen, verschillende toe-
standenn vormen, afhankelijk van de externe omstandigheden, waaronder de temperatuur. In 
ditt proefschrift heb ik een aantal van deze toestanden onderzocht; voordat ik die toestanden 
beschrijf,, wil ik eerst de belangrijkste eigenschappen van electronen duidelijk maken. 

Electronenn kunnen, net als water moleculen, opgevat worden als deeltjes. Een van de 
belangrijkee eigenschappen van electronen is dat ze geladen zijn. Omdat alle electronen 
dezelfdee lading hebben (die we op - 1 stellen; het minteken is historisch bepaald), stoten 
electronenn elkaar af, op ongeveer dezelfde manier als gelijknamige polen van magneten. 
Bovendienn worden electronen beïnvloed door magnetische velden. Hiervan wordt gebruik 
gemaaktt in beeldbuizen: electronen worden afgeschoten en daarna afgebogen door mag-
netischee velden, waardoor ze op de juiste plaats van het scherm komen. Daar produceren ze 
licht,, en zo wordt het beeld gevormd dat we zien. 

Err zijn nog twee eigenschappen van electronen die ik wii noemen. De eerste is de spin 
vann het electron. Globaal gesproken kunnen electronen in twee 'soorten' voorkomen, die 
wee spin-op en spin-neer noemen. Deze soorten kunnen in elkaar overgaan. De laatste eigen-
schapp die zeer belangrijk is, is de statistiek van electronen. Kort gezegd komt het er op neer 
datdat electronen van dezelfde soort niet op dezelfde plaats voor kunnen komen, zoals we ook 
gewendd zijn van voorwerpen in het dagelijks leven. Deze eigenschap van electronen wordt 
hett uitsluitingsprincipe genoemd. Golven, zoals bijvoorbeeld aan het oppervlak van water, 
maarr ook radiogolven, hebben een heel andere statistiek. Dat dat zo moet zijn blijkt uit het 
feitt dat deze golven ongehinderd door elkaar heen bewegen, zonder elkaar te beïnvloeden; 
golvenn kunnen zich dus wel op dezelfde plaats bevinden. 

Zoalss reeds opgemerkt is, kunnen electronen verschillende fases vormen, op dezelfde 
manierr als water moleculen. Een voorbeeld is de toestand van electronen in een stuk metaal. 



130 0 Samenvatting g 

Figuree S.l: Schematische weergave van een (quantum) Hall weerstands meting 

Inn een (naïef) beeld kunnen de electronen in metaal als koper beschreven worden als zouden 
zee zich als een gas gedragen. In deze beschrijving wordt ervan uit gegaan dat de electronen 
elkaarr niet beïnvloeden, een benadering die in sommige gevallen redelijk goed blijkt te 
werken. . 

Echter,, de interactie tussen electronen is cruciaal voor de systemen waar ik de afgelopen 
jarenn onderzoek naar heb gedaan. Dit zijn geen alledaagse systemen. Eén van de ongewone 
dingenn is dat in de systemen waar ik naar gekeken heb, namelijk het grensvlak van een 
isolatorr en een halfgeleider, de electronen zich alleen maar in een plat vlak kunnen bewegen. 
Inn normale metalen kunnen electronen zich in alle drie de dimensies bewegen, maar in deze 
systemenn is de vrijheid beperkt tot het zojuist genoemde grensvlak. 

Tevenss wordt er op deze systemen (of samples) een sterk magneetveld aangelegd en 
wordenn ze sterk afgekoeld. Het zijn dus niet de meest alledaagse omstandigheden, maar in 
eenn laboratorium kunnen ze gerealiseerd worden. Het is onder deze omstandigheden dat de 
electronenn eigenaardige toestanden vormen, die zich nog het beste laten vergelijken met een 
vloeistof,, echter wel een zeer eigenaardige vloeistof. 

Omm de vreemde eigenschappen van deze vloeistoffen duidelijk te maken, zal ik eerst 
eenn experiment beschrijven dat reeds aan het eind van de 19de eeuw werd uitgevoerd. Men 
neemtt een dunne strip metaal, bijvoorbeeld van koper. Deze strip wordt in een magneetveld 
geplaatst,, en er wordt een stroom door deze strip gestuurd (zie figuur S.l voor een schema-
tischh overzicht). Merk op dat in dit experiment de electronen in alle drie richtingen kun-
nenn bewegen. De stroom door de strip gaat gepaard met een spanningsverschil Vh in de 
richtingg van de stroom, zoals gebruikelijk is voor normale metalen. Echter, door het mag-
neetveldd onstaat er ook een spanningsverschil Vfr in de richting loodrecht op de stroom, 
dee Hall spanning, genoemd naar de ontdekker Edward H. Hall [53]. Deze Hall spanning 
wordtt veroorzaakt doordat de electronen door het magnetisch veld naar één kant van de 
stripp worden afgebogen en er dus een ladingsverschil tussen beide kanten van de strip wordt 
opgebouwd.. Als het magneetveld sterker wordt gemaakt worden de electronen sterker afge-
bogen,, en daarmee wordt ook de Hall spanning groter (en wel recht evenredig); in formule 

VVnn = cB , (S.l) ) 



131 1 

100 20 

Magneti cc  Held (T) 
30 0 

Figuree S.2: Weerstands metingen aan een quantum Hall sample 

waarbijj  c een constante is die onder meer afhangt van de dichtheid van de electronen. Dit 
effectt wordt het (klassieke) Hall effect genoemd. 

Nuu kunnen we de overstap maken naar de vloeistoffen die electronen kunnen vormen in 
sampless waarin de electronen zich daadwerkelijk in een plat vlak bewegen. Deze vloeistof-
fenn kunnen alleen ontstaan bij zeer lage temperatuur, minder dan één graad boven het abso-
lutee nulpunt. Bovendien moet het magneetveld zeer sterk zijn, zo'n miljoen maal zo sterk 
alss het magnetisch veld van de aarde. Als we onder deze omstandigheden dezelfde soort 
metingenn doen als E.H. Hall, dan vinden we iets opmerkelijks. De Hall spanning vertoont 
eenn heel ander beeld, er treden plateaus op, zoals te zien is in figuur S.2. De waarde van 
hett Hall geleidingsvermogen (gegeven door <rH = j p = ^f ) op deze plateaus is zeer 
bijzonder,, namelijk 

pepe2 2 

<7HH = 
pe" " 
qq h 

(S.2) ) 

waarbijj  p een geheel getal is en q een oneven getal, e is de electrische lading, terwijl h de 
constantee van Planck is; beide zijn natuurconstanten. Dus de waarde van de Hall geleiding is 
eenn eenvoudige breuk vermenigvuldigd met natuurconstanten. Belangrijk om op te merken 
iss dat dit gedrag voor verschillende samples, die qua details van elkaar kunnen verschillen, 
hetzelfdee is. Ook de vorm van het sample is hierbij niet van belang, in tegenstelling tot 
klassiekeklassieke systemen, waarin de geleiding sterk afhangt van de vorm van het systeem. Behalve 
dee plateaus die waargenomen worden in de Hall weerstand, gaat de longitudinale weerstand 
bijj  dezelfde waardes van het magneetveld naar nul; het is alsof de stroom ongehinderd door 
hett sample kan lopen, een effect dat lijk t op het gedrag van supergeleiders. Voor het integer 
quantumm Hall effect, ontdekt in 1980, geldt dat q = 1. In het geval dat q > 1, maar 
well  geheel, spreken we van het fractionele quantum Hall effect. Om dit effect te kunnen 
verklarenn is het van essentieel belang dat de electron interacties worden meegenomen in de 
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beschrijving.. De toestanden die de electronen vormen onder deze omstandigheden worden 
ookk wel quantumvloeistoffen genoemd. 

Dee quantumvloeistoffen die de quantum Hall systemen beschrijven met p = 1 en q 
eenn oneven geheel getal zijn bedacht en onderzocht door R.B. Laughlin en worden Laugh-
linn toestanden genoemd. Zoals bij normale vloeistoffen ook het geval is, zijn deze quan-
tumvloeistoffenn moeilijk samen te drukken. Een andere analogie die met gewone vloeistof-
fenn getrokken kan worden is het bestaan van golven aan het oppervlak van vloeistoffen. 
Voorr de quantumvloeistoffen in twee dimensies kan een soortgelijk verschijnsel optreden, 
maarr dan aan de rand van het sample. Dit soort golven noemen we excitaties van het sys-
teem. . 

Dee eigenschappen van deze excitaties zijn niet te vergelijken met de eigenschappen van 
gewonee golven. De quantumvloeistoffen zijn opgebouwd uit electronen, die geladen zijn. 
Echter,, de lading die kan worden toegekend aan de excitaties is een slechts een fractie van 
dee lading van de electronen. In het geval van de Laughlin toestanden is de lading J maal de 
ladingg van het electron. Deze fractionele lading is waargenomen in experimenten, waarbij 
dee excitaties van een kant van het sample naar de ander kant tunnelen. Hierbij veroorzaken 
dee excitaties ruis, die vergeleken kan worden met de ruis die te horen is er hagelstenen 
vallenn op een dak. De lading van de excitaties is van invloed op de ruis. Door deze ruis te 
onderzoekenn is de lading van de excitaties gemeten, en deze blijkt inderdaad een fractie te 
zijnn van de electronlading. 

OokOok binnen de quantumvloeistof kunnen geladen excitaties voorkomen; wederom kan 
dezee lading een fractie zijn van de lading van het electron. Deze excitaties, of ook wel 
quasideeltjes,, kunnen, althans in theorie, gecreëerd worden door locaal het magneetveld 
langzaamm iets te verhogen. Het gevolg is dat de electronen zich 'een beetje' van deze plaats 
vandaann bewegen, en er een gat achter blijft . De lading van dit gat hangt nauw samen met 
hett geleidingsvermogen op van het systeem, dat gegeven wordt door vergelijking (S.2). Zo 
iss bijvoorbeeld de lading van deze deeltjes voor het systeem met p/q = 1/3 gelijk aan 1/3 
maall  de lading van het electron. Dat er quasideeltjes kunnen bestaan met een lading die 
kleinerr is dan de lading van de electronen die de toestand opbouwen kan alleen doordat heel 
veell  electronen tezamen een toestand vormen, en als het ware samen werken om dit gedrag 
voorr elkaar te krijgen. 

Eenn andere, zeer belangrijke eigenschap van deze quasideeltjes is dat ze topologisch 
zijn.. Dat houdt in dat hun aanwezigheid het gehele sample op een globale manier veran-
derd,, en niet alleen in de buurt waar deze deeltjes zich bevinden. Het gevolg is dat kleine 
verstoringenn in het systeem de eigenschappen van de quasideeltjes niet kunnen veranderen. 
Bovendienn is de statistiek die we aan deze deeltjes toekennen bijzonder. Deze statistiek 
zitt als het ware in tussen de statistiek van electronen, die elkaar volledig uitsluiten, en de 
golven,, die ongehinderd op dezelfde plaats kunnen komen. 

Langee tijd is het zo geweest dat het fractionele quantum Hall effect alleen werd waar-
genomenn met plateaus waarbij het geleidingsvermogen gegeven wordt door formule (S.2), 
waarbijj  q een oneven getal is. Dit is ook duidelijk terug te zien in figuur S.2. Het feit dat q in 
all  deze gevallen oneven is, is gerelateerd aan een fundamentele eigenschap van electronen, 
namelijkk het uitsluitingsprincipe. Groot was dan ook de verbazing toen er een quantum Hall 
effectt alleen werd waargenomen bij een waarde van J = f, zie figuur 1.2 op pagina 15. 

Tegenwoordigg wordt dit begrepen door aan te nemen dat in deze toestanden de electro-
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nenn als het ware paren vormen (ondanks het feit dat electronen elkaar afstoten). Voor deze 
parenn geldt het uitsluitingsprincipe niet, en deze paren kunnen een toestand vormen die op-
treedtt bij de waargenomen waarde van het geleidingsvermogen. Deze toestand is bedacht 
doorr G. Moore en N. Read, en wordt wel de Moore-Read toestand genoemd. 

Hett is gebleken dat de quasideeltjes die in deze toestand voor kunnen komen speciale 
eigenschappenn hebben. Net zoals de quasideeltjes in de Laughlin toestanden hebben de 
quasideeltjess een lading die een fractie (namelijk 1/4) van de lading van het electron is. 
Belangrijkerr is echter een eigenschap die we ontaarding noemen. Dit houdt in dat het 
plaatsenn van identieke quasideeltjes op bepaalde posities op verschillende manieren kan 
gebeuren.. Stel we plaatsen vier quasideeltjes (op vier vaste plaatsen), dan blijkt dit op 
tweee verschillende manieren kan worden gedaan. Laten we deze twee manieren voor het 
gemakk 'rood' en 'blauw' noemen. Door nu meerdere quasideeltjes achtereenvolgens om 
elkaarr heen te draaien (om daarna weer uit te komen op de oorspronkelijke posities) kan 
hethet zo zijn dat het systeem overgegaan is van 'rood' naar 'blauw'. De volgorde waarin 
hethet de deeltjes om elkaar zijn gedraaid is van belang voor de uiteindelijke uitkomst. Dit 
zeerr opmerkelijke gedrag (dat volgt uit de theoretische beschrijving van de toestand, en 
(nog)) niet is waargenomen), komt niet voor bij de quasideeltjes die horen bij de Laughlin 
toestand.. De mogelijkheid voor dit gedrag komt, uiteindelijk, voort uit het gegeven dat de 
electronenn paren gevormd hebben. Ook het feit dat we systemen bekijken in twee dimensies 
onderr invloed van een sterk magneetveld is van essentieel belang. 

Mett deze toestand zijn we aanbeland bij het onderzoek dat ik tijdens mij promotie heb 
gedaan.. Dit gaat ook over speciale toestanden waarbij de electronen paren, of meer al-
gemeen,, clusters vormen. We hebben onderzocht welke toestanden er, in principe, mo-
gelijkk zijn. Het is gebleken dat de spin van het electron verschillende toestanden mogelijk 
maakt.. Van de toestanden die we gevonden hebben, hebben we de eigenschappen in kaart 
gebracht.. Hierbij hebben we speciaal gelet op de eigenschappen van de quasideeltjes, om-
datt deze afwijkend zijn van de 'normale' quasideeltjes in quantum Hall systemen. Eigen-
schappenn waar we speciaal naar gekeken hebben zijn de topologische eigenschappen van 
dee quasideeltjes, en ook de ontaarding, zoals die ook optreedt bij de toestand die hierboven 
iss beschreven. Een van de mooie resultaten, die in het geval van de Laughlin toestanden 
all  bekend was, is dat de topologische eigenschappen nauw verbonden zijn met de statistiek 
vann de deeltjes. Deze statistiek op zijn beurt is weer nauw verbonden met de ontaarding. 
Dezee verbanden hebben het mogelijk gemaakt om expliciete formules af te leiden die de on-
taardingg van de toestanden, waarin zich quasideeltjes bevinden, beschrijven. Het mooie is 
datdat deze ontaardingen ook uit computersimulaties gehaald kunnen worden. Het is gebleken 
datdat de resultaten van de computerberekeningen perfect overeen komen met de formules die 
gegevenn worden in hoofdstuk 6. 

Ondankss dat de meeste toestanden die in dit proefschrift beschreven zijn, (nog?) niet 
zijnn waargenomen, is het onderzoek ernaar belangwekkend, omdat deze toestanden eigen-
schappenn hebben, die nieuw zijn in quantum Hall systemen. Ook voorzien ze in mogelijke 
systemen,, waarin deeltjes voorkomen met vormen van statistiek die nog niet zijn waargeno-
men.. Dit onderzoek is dus niet zozeer van praktisch nut geweest, maar heeft wel bijgedragen 
aann het begrip van de mogelijke toestanden van materie die in de natuur voor kunnen komen. 
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Ditt proefschrift zou niet tot stand zijn gekomen zonder de hulp van een aantal mensen, die 
ikk hier graag wil bedanken. Veel dank gaat uit naar promotor, Kareljan Schoutens, die de 
idealee begeleider heel dicht heeft benaderd. Hij kwam altijd met interessante problemen en 
mett ideeën om ze op te lossen. Het onderzoek ging vaak in sneltreinvaart. Zo gebeurde 
hethet tijdens het eerste jaar van mijn promotie dat Kareljan na een mooie ingeving zei dat er 
binnenn tien dagen een artikel zou liggen. In eerste instantie wist ik niet of ik dat serieus 
moestt nemen, maar binnen de gestelde termijn was het artikel een feit. Kortom, ik heb veel 
geleerdd in de afgelopen vier jaar. Ook de 'coaching' voor de periode na dit boekje heb ik 
zeerr gewaardeerd. 

Hett werken in de groep 'Theorie van de gecondenseerde materie' van Aad Pruisken en 
Kareljann Schoutens heb ik aangenaam gevonden. In het bijzonder wil ik Ronald noemen, 
voorr de vele levendige discussies en de bijbehorende misverstanden over statistiek en alles 
watt daarmee te maken heeft. Ook de overige leden, Boris, Frank, Jasper, Mischa, Sathya en 
Stéphanee hebben bijgedragen aan interessante discussies. 

Peterr Bouwknegt heeft mij de mogelijkheid geboden om interessant onderzoek te doen 
inn Australië, waar ik veel heb geleerd en een mooie tijd heb gehad. Dichter bij huis, dat wil 
zeggen,, gewoon in Amsterdam, was de sfeer op het instituut goed. Ondanks dat Jeroen en 
ikk regelmatig 'van huis' waren, vond ik het leuk om hem als kamergenoot te hebben. Veel 
werdd besproken, op het gebied van de natuurkunde, maar ook daarbuiten. Het lijk t er helaas 
opp dat op het laatste moment asbest ons toch nog uit elkaar drijft. 

Discussiess met Joost waren zeer nuttig, omdat hij vaak met goede vragen kwam. Mark 
enn Mischa stonden altijd klaar om mijn gebrekkige kennis op het gebied van computers aan 
tee vullen. 

Buitenn het instituut om hebben vele vrienden bijgedragen aan dit proefschrift, zei het 
opp indirecte wijze. Vaak was ik te vinden op het Parachutisten Centrum Midden Nederland, 
waarr ik op prettige wijze mijn hobby heb kunnen uitoefenen. 

Tott slot bedank ik mijn ouders en mijn zus voor alle steun die ze me in de afgelopen 
jarenn hebben gegeven. 






