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The USINE cosmic-ray propagation code and recent results from an MCMC analysis

A. PUTZE1, L. DEROME2, F. DONATO3, D. MAURIN2

1 The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-10691
Stockholm, Sweden
2 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut
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Abstract: We implemented a Markov Chain Monte Carlo technique to estimate the probability-density functions of the
cosmic-ray transport and source parameters in a diffusion model. From the measurement of the B/C ratio and radioactive
cosmic-ray clocks, we calculate their probability density functions, with a special emphasis on the halo size L of the
Galaxy and the local underdense bubble of size rh. We also derive the mean, best-fit model parameters and 68% confi-
dence level for the various parameters, and the envelopes of other quantities. Finally, we check the compatibility of the
primary fluxes with the transport parameters derived from the B/C analysis and then derive the source parameters (slope,
abundance, and low-energy shape). We conclude that the size of the diffusive halo depends on the presence/absence of
the local underdensity damping effect on radioactive nuclei. Models based on fitting B/C are compatible with primary
fluxes. The different spectral indices for the propagated primary fluxes up to a few TeV/n can be naturally ascribed to
transport effects only, implying universality of elemental source spectra. The analysis relies on the USINE propagation
package.

Keywords: cosmic-ray propagation and acceleration, Galactic halo size, local bubble, Markov Chain Monte Carlo

1 Introduction

The transport equation of Galactic Cosmic-Rays is de-
scribed in standard textbook. It generally contains a source
term (standard or exotic source/production), a diffusion
term, and possibly convection, energy gain and losses, and
catastrophic losses (fragmentation and decay). A full nu-
merical treatment is generally required to solve the trans-
port equation. However, analytical (or semi-analytical) so-
lutions may be derived assuming a simplified description
of the spatial dependence of the ingredients (e.g. the gas
distribution) and some transport parameters. Such a semi-
analytical solution has been implemented in the USINE
propagation code1 used below.
In the first paper [1] of a series [1, 2, 3, 4], we imple-
mented a Markov Chain Monte Carlo (MCMC) to esti-
mate the probability density function (PDF) of the trans-
port and source parameters. This allowed us to constrain
these parameters with a sound statistical method, to assess
the goodness of fit of the models, and as a by-product, to
provide 68% and 95% confidence level (CL) envelopes for
any quantity we are interested in (e.g., B/C ratio, primary
cosmic-ray fluxes). The analysis was initially performed
for the simple Leaky Box Model (LBM) to validate the ap-
proach. We then extended the analysis for the more realistic

diffusion model, by considering constraints set by radioac-
tive (on the halo size of the Galaxy) and primary nuclei (on
the CR source parameters).
We summarise below the results we obtained in the diffu-
sion model (normalisation K0 and slope δ of the diffusion
coefficient), with a halo sizeL, with minimal reacceleration
(Alfvénic speed Va), a constant Galactic wind perpendicu-
lar to the disc plane Vc [5], and a possible central under-
density of gas (of a few hundreds of pc) around the solar
neighbourhood rh [6].

2 Transport parameters

The secondary-to-primary B/C ratio is a tracer of the trans-
port in the Galaxy. For the parameter estimation of the
above described transport equation (K0, δ, Vc and Va), the
usage in the past has been based mostly on a manual or
semi-automated (hence partial) coverage of the parameter
space (e.g. [5]). More complete scans were performed,
e.g., in [7], based on a grid analysis. The Markov Chain
Monte Carlo is a step further to optimise the exploration of
the parameter space.

1. http://lpsc.in2p3.fr/usine
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Figure 1: Best-fit of the B/C ratio for the propagation
Model II (thick red) and III (thick black). Solid and thin
dashed lines are for two different cross-section sets (W03
and GAL09). A more detailed description of this figure can
be found in [8].
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Figure 2: PDF of the transport parameters (for the reference
inputs) as obtained in [2], along with the best-fit values for
different production cross-section sets.

Figure 1 illustrates the best-fit B/C ratio found from a χ2

analysis, for different propagation models and different
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Figure 3: Marginalised posterior PDFs of L for Model II
with rh = 0 (top panel) and L and rh for Model III (bottom
panels). The four curves result from the combined analysis
of B/C plus separate or combined isotopic ratios of radioac-
tive species.

sets of fragmentation cross-sections. Below, we will focus
on the reacceleration model (Model II with Vc = 0) and
the full convection/reacceleration configuration (Model III
with Vc �= 0). Figure 2 illustrates the power of the MCMC
technique, which allows to retrieve the PDF of the param-
eters (here for the halo size fixed to L = 4 kpc). The sym-
bols correspond to the best-fit values obtained from dif-
ferent parameterisations of the production cross-sections.
Their spread illustrates the fact that systematic uncertain-
ties in the calculation are already of the same order or larger
than the statistical ones (i.e. the width of the PDFs). See [8]
for more details. This will be an issue with the forthcoming
high-precision measurements of AMS-02 on the ISS.

3 Halo size L from radioactive nuclei

The typical distance travelled in a diffusive process in a fi-
nite time is given by lrad ∼

√
Dt. For a β-decay unstable

secondary species, it means that at low energy (plugging
the typical value of the diffusion coefficient), these nuclei
cannot travel farther than a few hundreds of parsecs: they
do not feel the halo size L and are only sensitive to the
diffusion coefficient K(E). In principle, this lifts the de-
generacy between K0 and L (seen from the analysis of the
the stable secondary-to-primary ratio). However, things are
not as simple when we have a closer look at the hundred-
of-parsec scale. It happens that there is no target to produce
these species in the solar neighbourhood: we live in a local
bubble. This lack of targets affects their flux [6].
We find (see [2]) that II is consistent with rh = 0, with
L = 5.2+0.7

−0.6 kpc, whereas III favours an underdense bub-
ble of rh = 120+20

−20 pc (consistent with direct observa-
tions of the local cavity) and L = 8+8

−7 kpc (see Fig. 3).
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Figure 4: Envelopes of 68% CL (shaded areas) and best-fit
(thick lines).

The envelopes for the isotopic ratios corresponding to the
68% CL on the parameters are shown in Fig. 4 for the stan-
dard Model II (rh = 0) and the standard (rh = 0) and
modified (rh �= 0) Model III. As seen in the bottom panel,
there is a discrepancy with the prediction from the Be/B
measurement, as confirmed by the AMS-01 analysis [9].
This may be related to the production cross-section.

2.4 2.5 2.6
0

20

40

2.4 2.5 2.6
0

20

40

αModel II

AMS 01
BESS 98
BESS-TeV
protons
helium

-0.1 0
0

10

20

-0.1 0
0

10

20

pα - 4Heα

2.3 2.4
0

20

40

2.3 2.4
0

20

40

αModel III

AMS 01
BESS 98
BESS-TeV
protons
helium

0 0.1
0

10

20

0 0.1
0

10

20

pα - 4Heα

Figure 5: Left panels: PDF of the source slope α for p (un-
filled histograms) and He (hatched histograms). Right pan-
els: PDF for αHe−αp. The colour code corresponds to the
three experimental data used: AMS-01 (solid black line),
BESS98 (dashed red lines) and BESS-TeV (dash-dotted
lines).
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Figure 6: p/He ratio as a function of the rigidity.

4 Source parameters

The primary flux data alone are unable to select any partic-
ular propagation model, as the transport and source param-
eters are degenerate [3]. We thus have to fit simultaneously
the primary fluxes and secondary-to-primary ratios. Be-
low, we adopt a different approach: we select only a few
propagation models (fitting well the B/C ratio and shown
in Fig. 1), and restrict the parameter space to the source
parameter space only.
The most important parameter is the source slope α. Fig-
ure 5 shows the PDF of this slope for the best-measured
primary species, i.e. p and He, as well the difference of
slope between these two species: αp − αHe is consistent
with 0. Actually, the shape of the p/He ratios, when plotted
as a function of the kinetic energy per nucleon, is driven by
the solar modulation effect (not shown here). But the same
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Figure 8: Ratio of various primary elements to O as a func-
tion of the kinetic energy per nucleon.

ratio plotted as a function of the rigidity minimises the ef-
fect of the solar modulation, and is well adapted to probe
the values of αp − αHe. This is illustrated in Fig. 6, where
a simple toy model was used to reproduce the experimen-
tal data. A difference of spectral index between p and He is
also not supported by the ratio, in agreement with the direct
fits to p and He fluxes.
We have also studied heavier primary nuclei spectra, whose
relevant destruction rate on the ISM increases roughly with
atomic number. The different spectral indices for the prop-
agated primary fluxes up to a few TeV/n can be ascribed
to transport effects only, implying universality of elemen-
tal source spectra. This is illustrated on Fig. 7 that shows
for a given model (symbol) similar source spectral indices
for all primaries, whereas the impact of destruction on the
propagated fluxes (having the same source index in a toy
model) is shown in Fig. 8.

5 Conclusions and perspective

We have shown that the use of an MCMC technique is very
powerful to study the source and transport parameters. The
AMS-02 experiment should provide data with an unprece-
dented accuracy, and the MCMC technique will be a key
tool to interpret them.
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