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Abstract. In this paper, we address multiplicity fluctuations of the ideal hadron-resonance gas
in different ensembles: grand-canonical, canonical and microcanonical. Two different calculation
methods are used: asymptotic expansions and full Monte Carlo simulations. The method based
on asymptotic expansion allows a quick numerical calculation of dispersions in the hadron
gas with three conserved charges at primary hadron level, while the Monte-Carlo simulation is
suitable to study the effect of resonance decays. Even though mean multiplicities converge to the
same values, major differences in fluctuations for these ensembles persist in the thermodynamic
limit, as pointed out in recent studies. This difference is ultimately related to the non-additivity
of the variances in the ensembles with exact conservation of extensive quantities.

1. Introduction
The statistical hadronization model has proven to be a very effective tool in describing average
particle multiplicities in high energy heavy ion reactions as well as in elementary particle
reactions. On the other hand, in this model it would be possible to calculate also fluctuations of
particle multiplicities once the status of the hadronizing sources (clusters or fireballs) in terms of
volume, mass, momentum and charges were known. Multiplicity and charge fluctuations have
been indeed proposed to be a good discriminating tool between quark-gluon plasma and hadron
gas [1, 2] provided that they survive the phase transition and the hadronic system freezes out
in a non-equilibrium situation. However, in order to properly assess the discriminating power
of such observables, one should firstly calculate fluctuations in a hadron gas by including all
“trivial” effects, such as conservation laws, quantum statistics, resonance decays, kinematical
cuts etc. The effects of conservation laws on fluctuations in thermal ensembles have been firstly
addressed, in the perspective of heavy ion collisions, in ref. [3]. More recently, it has been pointed
out [4, 5] that in the canonical ensemble (CE) with exact conservation of charges, scaled second
moment (scaled variance) of the multiplicity distribution of any particle does not converge to
the corresponding GC value even in the thermodynamic limit, unlike the mean [6, 7]. This was
fairly understood among experts in statistical mechanics [8], but probably it has been shown
explicitely for the canonical relativistic gas for the first time in refs. [4, 5]. Further deviations
from the GC limit were found in the case of exact energy and energy-momentum conservation
in the microcanonical ensemble (MCE) [9, 10]. Since in a heavy ion collision conservation of
charges must be fulfilled, the difference between CE and GCE might have some impact on the
estimated size of fluctuations in a statistical model.

The calculations performed in these recent studies [4, 5, 10, 11] were mainly concerned with

Institute of Physics Publishing Journal of Physics: Conference Series 27 (2005) 164–173
doi:10.1088/1742-6596/27/1/018 Correlations and Fluctuations in Relativistic Nuclear Collisions

164© 2005 IOP Publishing Ltd



simplified cases, such as pion gas and pion-nucleon gas. In this work, we address the fluctuations
in the general multi-species hadron gas including all resonances up to 1.8 GeV mass and carrying
three additive charges, that is baryon number B, strangeness S and electric charge Q, in the
CE. A similar study has been performed for the MCE, which will not be reported here; this can
be found, along with a more complete and detailed description of our work, in ref. [12]. Here, we
also discuss the problem of the inequivalence between GCE and CE in the thermodynamic limit
for scaled variance and we show that the ultimate reason thereof is the conceptual difference
between additivity and extensivity [13]: while particle multiplicities are additive and extensive
in both GCE and CE, variances are extensive (i.e. proportional to the volume) but they are
non additive in the CE, so that the scaled variance turns out to be a pseudo-intensive quantity
(according to the definition proposed in ref. [13]).

2. Asymptotic fluctuations in the canonical ensemble
Following refs. [4, 5], we describe fluctuations by means of the scaled variance of a multiplicity
distribution:

ω =
〈N2〉 − 〈N〉2

〈N〉 . (1)

where N is meant to be the multiplicity of any hadron species, primary or final (i.e. after
resonance decays) or the sum of an arbitrary number of hadron species (e.g. all negatively
chraged). This is a finite quantity in the infinite volume limit because the difference between
〈N2〉 and 〈N〉2 depends linearly on the volume for large volumes. It is worth reminding that, if
quantum statistics is neglected, the multiplicity distribution of any primary hadron is a Poisson,
thus ω = 1.

For sake of simplicity, we will first keep our discussion at the level of the classical Maxwell-
Boltzmann (MB) statistics. Indeed, none of our arguments is affected by this approximation,
and at the end we will give the proper generalization to quantum statistics and discuss the
corrections. In this framework, using the one-particle partition function:

zj(1) = (2Jj + 1)
V

(2π)3

∫
d3p exp

[
−

√
p2 + m2

j

]
(2)

and the fugacity λj for each particle species j, the grand-canonical partition function can be
written as:

ZGC({λj}) =
∏
j

∞∑
Nj=0

1
Nj !

(
zj(1)λj

)Nj . (3)

and, consequently, multiplicities of different species are uncorrelated and Poissonianly
distributed:

PGC(Nj) =
1

Nj !
〈Nj〉Nje−〈Nj〉. (4)

Since the sum of random Poisson variables is still Poisson, this also holds for any given subset
of particles, e.g. negative hadrons or baryons.

In the canonical ensemble, the partition function does not factorize into one-species
expressions because of the constraint of fixed charges. Let us consider a hadron gas with three
abelian charges, i.e. baryon number B, strangeness S and electric charge Q. In the following,
we will denote by �Q = (Q1, Q2, Q3) = (B, S, Q) a vector with components these charges and by
�qj = (q1,j , q2,j , q3,j) = (bj , sj , qj) the vector of charges of the jth hadron species 1. The canonical

1 For sake of clarity, it is worth stressing the difference between qi,j , which is the i th charge of the hadron species
j and qj , which stands for its electric charge. Likewise, whilst Qi stands for the net i th charge of the system, Q
is its net electric charge throughout the paper
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partition function with charges �Q can be written as:

Z �Q =

[
3∏

i=1

1
2π

∫ 2π

0
dφi e−iQiφi

]
ZGC({λj}), (5)

where Wick-rotated fugacities λj = exp[i
∑

i qi,jφi] are introduced in the grand-canonical
partition function ZGC . By setting wi = exp[iφi], we may write Eq. (5) as a triple integral
over the unitary circle in the complex w plane:

Z �Q =
1

(2πi)3

∮
dwB

∮
dwS

∮
dwQ w−B−1

B w−S−1
S w−Q−1

Q exp

⎡
⎣∑

j

zj(1)w
bj

B w
sj

S w
qj

Q

⎤
⎦ . (6)

The first and second moments of multiplicity distributions of a set h of hadron species can be
calculated by inserting a suitable fictitious fugacity in the function ZGC , i.e. replacing λj with
λhλj in Eq. (5) if j ∈ h and taking the derivatives with respect to λh [14]:

〈Nh〉 =
1

Z �Q

∂Z �Q

∂λh

∣∣∣∣∣
λh=1

=
∑
j∈h

zj(1)

Z �Q−�qj

Z �Q

(7)

〈N2
h〉 =

1
Z �Q

[
∂

∂λh

(
λh

∂Z �Q

∂λh

)]
λh=1

=
∑
j∈h

zj(1)

Z �Q−�qj

Z �Q

+
∑
j,k∈h

zj(1)zk(1)

Z �Q−�qj−�qk

Z �Q

(8)

Using these, the scaled variance can be written as the sum of a Poissonian term, i.e. 1, and a
canonical correction term:

ωh = 1 +

∑
j∈h〈Nj〉

∑
k∈h zk(1)

(
Z �Q−�qk−�qj

Z �Q−�qj

−
Z �Q−�qk

Z �Q

)
∑

j∈h〈Nj〉
(9)

Therefore, in the canonical ensemble, the quantities appearing in the expressions of the moments
of the multiplicity distributions are the canonical partition functions calculated for the difference
between total charges and charges of hadrons, like Z �Q−�qj

and Z �Q−�qj−�qk
. The quantity within

brackets in the equation above vanishes in the thermodynamic limit V → ∞ [12]. However,
the factor 〈Nj〉zk(1) is proportional to V 2 and, if the difference between brackets has terms
proportional to 1/V , they could give a finite contribution to ωh in the thermodynamic limit.
In fact, after a lenghty derivation based on asymptotic expansion of the canonical partition
function (6), it can be proved that [12]:

Z �Q−�qj−�qk

Z �Q−�qj

−
Z �Q−�qk

Z �Q

= −
λbk

B λsk
S λqk

Q

V

[
bkbj

λ2
B

M11 +
sksj

λ2
S

M22 +
qkqj

λ2
Q

M33

+
bksj + skbj

λBλS
M12 +

bkqj + qkbj

λBλQ
M13 +

skqj + qksj

λSλQ
M23

]
+ O(V −2)

≡ λk

V
Cjk + O(V −2). (10)

where λQ, λB, λS are fugacities related to the net charges of the system by:∑
j

qi,jzj(1)λ
qj

B λ
sj

S λ
qj

Q = Qi . (11)
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The matrix M in Eq. (10) is defined by:

Mln =
3∑

i=1

AilAin

hi
(12)

where hi are the eigenvalues of the hessian matrix H of the function f :

f(�w) = −ρB ln wB − ρS lnwS − ρQ lnwQ +
∑

k

zk(1)

V
wBk

B wSk
S wQk

Q (13)

(ρB = B/V , ρS = S/V , ρQ = Q/V being the baryon, strangeness and electric charge densities
respectively), and A is the orthogonal matrix diagonalizing the hessian:

H′ = diag(h1, h2, h3) = AHAT (14)

On the other hand, on the basis of the same asymptotic expansion, it can be shown that:

lim
V →∞

Z �Q−�qj

Z �Q

= λ
bj

B λ
sj

S λ
qj

Q ≡ λj , (15)

so that the usual grand-canonical expression is recovered for the average multiplicity in the large
volume limit:

lim
V →∞

zj(1)

Z �Q−�qj

Z �Q

= zj(1)λ
bj

B λ
sj

S λ
qj

Q = 〈Nj〉GC (16)

It is not difficult to realize, from their definition, that the matrix M and the Cjk factors do
not depend on the volume, i.e. they stay finite and non-vanishing in the thermodynamic limit.
Therefore, we can recast Eq. (9) as:

ωh = 1 +

∑
j∈h〈Nj〉GC

∑
k∈h〈Nk〉GCCjk

V
∑

j∈h〈Nj〉GC
+ O(V −1). (17)

where the second term on the right hand side of the above equation is finite in the limit V → ∞,
thus giving rise to non trivial values of the scaled variance ω.

3. Numerical calculations in the canonical ensemble
We have calculated the scaled variances of several sets of hadrons in some cases of interest for
ultra-relativistic heavy ion collisions. In our calculation, all light-flavoured hadron species up to
a mass � 1.8 GeV quoted in the 2002 issue of Particle Data Book [15] are included. The needed
intensive input parameters for these calculations are the temperature T and the charge densities.
The baryon density ρB is varied between 0 and 0.3 fm−3, while the strangeness density ρS is set
to zero and the electric charge density is set to ρQ = 0.4ρB, corresponding to the ratio Z/A of
Pb-Pb and Au-Au collisions. The chemical potentials and fugacities are determined accordingly.

The scaled variances determined by means of analytical calculations have been compared
with those obtained through Monte-Carlo simulations. The basic idea of this method is to
extract randomly K-uples {Nj} of multiplicities Nj for each hadron species j according to the
multi-species multiplicity distribution of the canonical ensemble and averaging therafter. This
method allows to determine numerically, with a finite statistical error, not only scaled variances
but also higher order moments and, in general, to visualize the shape of the distributions.
Furthermore, this method makes it possible to make calculations at final hadron level, taking
into account resonance decays and thereby allowing a comparison of theoretical calculations with
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actual measurements. The multi-species multiplicity distribution in the canonical ensemble has
been determined in the form of a cluster decomposition in ref. [9]:

P ({Nj}) =
1

Z �Q

⎡
⎣∏

j

∑
{hnj }

Nj∏
nj=1

z
hnj

j(nj)

n
hnj

j hnj !

⎤
⎦ δ �Q,

∑
j Nj�qj

(18)

where {hnj} are partitions of the integers Nj in the multiplicity representations, i.e. such that
Nj =

∑Nj

nj=1 njhnj ; Hj =
∑Nj

nj=1 hnj ; and zj(nj) read:

zj(nj) = (∓1)nj+1 (2Jj + 1)V
2π2nj

Tm2
jK2

(njmj

T

)
(19)

In the limit of the Boltzmann statistics, the distribution (18) reduces to a product of independent
Poisson distributions, one for each species, with the constraint of charges conservation δ �Q,

∑
j Nj�qj

.

A direct sampling of the distribution (18) is very difficult though. The most effective method is
the importance sampling technique, in which each event (namely a K-uple {Nj}) is weighted by
the ratio w of the true distribution P ({Nj}) (18) and the actually sampled distribution R({Nj}).
The latter should be a distribution quickly and efficiently sampled and, moreover, as similar as
possible to P ({Nj}) to minimize statistical errors. In our case, we have chosen R({Nj}) as the
product of unconstrained Poisson distributions, like in Eq. (4). Their mean multiplicities are
chosen to be those of the GCE, that is 〈Nj〉 = zj(1)λj , where the fugacities λj are determined
according to the Eq. (11); thereby, the mean values of the Poisson distributions in R({Nj})
coincide with the actual CE average multiplicities in the thermodynamic limit.

Unfortunately, with this method, it is not possible to calculate observables straight in the
thermodynamic limit because the simulation can be carried out only with a finite volume.
Instead, one can study the variation of some observable of interest as a function of the volume,
fixing total charges or charge densities, and estimate the thermodynamic limit by extrapolating.
It should be pointed out that a too large volume cannot be used in order not to diminish too
much the efficiency of the Monte-Carlo calculation. Fortunately, the statistical error on most
averages decreases as volume increases because of the increase in multiplicity of single events,
so that a lower efficiency at larger volumes does not spoil the accuracy.

In fig. (1) we have plotted ω for different sets of particles as a function of the baryon density
ρB. Monte-Carlo results are shown as dots with errors bars and have been obtained by drawing
105 effective samples with V = 200 fm3. This volume is large enough to ensure the effective
reaching of the thermodynamic limit, yet the efficiency of these runs is very low, in the range
(1−6) ·10−4. It can be clearly seen that Monte-Carlo and analytical calculations are in excellent
agreement.

4. Discussion
We have found that the thermodynamic limit of the scaled variance is different in different
ensembles. This effect has been understood for a long time in statistical mechanics. Though,
from the previous derivations, the reader might have had the impression that this inequivalence
between GCE, CE and MCE is a long-reaching consequence of a complicated analytical work
not driven by a clear physical insight. Recently, it has been pointed out [11] that variances are
qualitatively different from particle multiplicities in that their proportionality to the volume is
not “primordial” but arises from the difference of two quantities whose leading term is O(V 2) (see
Eq. (1)). As a consequence, the behaviour of variance in the thermodynamic limit is determined
by sub-leading terms in both 〈N2〉 and 〈N〉2 and different limits can be expected in different
ensembles. We would like to point out here that the different behaviour in the thermodynamic
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Figure 1. Scaled variances in the canonical ensemble of the full ideal hadron-resonance gas
for different sets of hadrons at T = 160 MeV, S = 0 and Q/B = 0.4 as functions of baryon
density ρB. Closed dots indicate the calculated values with Monte-Carlo simulations at primary
level, open dots at final level with V = 200 fm3. The lines depict the thermodynamic limits
indendently calculated with the asymptotic expansions formulae. Left panel: charged, positive
and negative hadrons; the arrows show the change in ω− and ωch from primary to final level.
Right panel: baryons, antibaryons, strange and antistrange hadrons.

limit can indeed be understood more simply and with more physical insight, by observing that,
unlike particle multiplicities, variances are non-additive quantities in both the CE and MCE.

The conceptual difference between extensivity and additivity has been recently discussed in
ref. [13]. An additive quantity X is such that, if we split a general system in N subsystem:

X =
N∑

i=1

Xi (20)

On the other hand, an extensive quantity is such that the limit:

lim
N→∞

X

N
= x (21)

has a non-vanishing and finite value. If a quantity is additive is also extensive except for some
exceptional case [13]. Conversely, extensivity does not imply additivity. Quantities which are
extensive and not additive are defined as pseudo-extensive and their corresponding limit x in
Eq. (21) pseudo-intensive [13]. It can be shown quite easily that additive quantities have the
same thermodynamic limit in all ensembles. In fact, if we split a CE or MCE with a very large
volume into a large number of N parts with volume V/N , each part is, by definition, a GCE
with the rest of the system acting as a reservoir; this is just the way the GCE is introduced in
most statistical mechanics textbooks. Consequently, any Xi, where i labels a subsystem in the
CE or MCE, has the same value as in the GCE with volume V/N in the limit V, N → ∞. In
other words, for any i:

lim
V,N→∞

Xi = lim
V,N→∞

XGCE(V )
N

(22)
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If X is additive, then:

lim
V,N→∞

N∑
i=1

Xi = lim
V →∞

XCE,MCE(V ) (23)

On the other hand, the left hand side of the previous expression also yields, according to (22)

lim
V,N→∞

N∑
i=1

XGCE(V )
N

= lim
V →∞

XGCE(V ) (24)

The comparison between (23) and (24) proves the equivalence between GCE and CE, MCE.
Simplest examples of additive quantities are the energy and entropy for weakly interacting
systems and particle mean multiplicities.

The previous argument does not apply to the variance σ2 of particle multiplicity distribution.
In fact, if we split a CE or MCE into N subsystems, the variance of any particle multiplicity
distribution is not additive, as conservation laws involve non-vanishing correlations between
different subsystems even for very large N . So:

σ2 	=
N∑

i=1

σ2
i (25)

The equal sign would apply only if the subsystems were completely independent of each other,
which is the case only in the GCE. Thus, if variances are not additive, their GCE and CE
thermodynamic limits may and, in general, will differ. Yet, the variance itself is extensive
because the limit (21) yields a finite value in both CE and MCE, as the leading behaviour is
O(V ).

In conclusion, being non additive, the variance is a pseudo-extensive quantity and the scaled
variance is thus pseudo-intensive. For such quantities, the thermodynamic limit in the CE and
MCE does not need to coincide with that in the GCE.

5. Fluctuations of charged particles
Fluctuations of charged particle ratios on an event-by-event basis in heavy ion collisions have
been suggested as probes of the prehadronic phase [1, 2] and relevant measurements have been
performed both at RHIC [16] and SPS [17]. To start with, it is very important to stress that
the mere variance of a ratio of extensive quantities is an ill-defined observable in statistical
mechanics because it is not a (pseudo-)intensive quantity and vanishes in the thermodynamic
limit simply because it is proportional to 1/V . Considering for instance the ratio Nj/Nk of
particle multiplicities of two different species j and k we have:〈

δ

(
Nj

Nk

)2
〉

� 1
〈Nk〉2

(
〈δN2

j 〉 +
〈Nj〉2
〈Nk〉2

〈δN2
k 〉 − 2 cov(Nj , Nk)

)
(26)

Since |cov(Nj , Nk)| ≤
√
〈δN2

j 〉〈δN2
k 〉 and 〈δN2

k 〉 ∝ V , one is left with an expression which
decreases at least proportionally to 1/V . Thus, in order to give a sensible fluctuation measure
which does not vanish simply because the system gets larger, one should form some truly (pseudo-
)intensive variable.

Many such variables have been proposed to measure charge fluctuations in heavy ion collisions
(for a review see ref. [18]), e.g. D [1], ΦQ [19], and νdyn [18]. Their definitions read:

D = 〈Nch〉
〈

δ

(
N+

N−

)2
〉
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ΦQ =

√
〈∆Q2〉
〈Q〉 −

√
〈δq2〉 (27)

νdyn =

〈(
N+

〈N+〉
− N−

〈N−〉

)2
〉

−
(

1
〈N+〉

− 1
〈N−〉

)

where N+, N− and Nch is the number of positive, negative and charged particles respectively,
Q =

∑
j QjNj is the net charge and q is the charge of a produced particle. Note that in ΦQ

definition, in the first term the random variables are the numbers Nj of particles with a given
charge, whereas the random variable in the second term is the charge of each particle itself. These
variables are indeed related to each other [18] and to the scaled variances of charged particles.
It is not difficult to realize that the first two in Eq. (27) are pseudo-intensive whilst the latter is
not and should be multiplied by an extensive variable, e.g. 〈Nch〉 to make it such. Being pseudo-
intensive, they have different thermodynamic limits in the GCE, CE and MCE. Therefore, much
care is needed in comparing the measurements to the predictions of statistical mechanics because
the effect of conservation laws is crucial in determining their values even for very large systems.
However, this comparison is in general difficult because of additional source of fluctuations which
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Figure 2. Calculated ΦQ (see text for
definition) in the canonical and grand-
canonical ensembles of the full ideal hadron-
resonance gas at T = 160 MeV and ρB =
0.2 fm−3, in the thermodynamic limit, at
final hadron level for different random boosts
of primary particles yb as a function of the
acceptance rapidity window ∆y.
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Figure 3. Calculated D (see text for
definition) in the canonical and grand-
canonical ensembles of the full ideal hadron-
resonance gas at T = 160 MeV and ρB =
0.2 fm−3, in the thermodynamic limit, at
final hadron level for different random boosts
of primary particles yb as a function of the
acceptance rapidity window ∆y.

cannot be disregarded. Even if a statistical model framework would be essentially correct, there
could be large fluctuations of thermodynamic parameters (volume, temperature, baryon density
etc.) from event to event, which, being superimposed to the purely thermodynamic fluctuations,
could swamp the thermodynamical fluctuations. Furthermore, experimental measurements are
performed over a limited kinematical window and this introduces a further complication.
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Figure 4. Calculated 〈Nch〉νdyn (see text
for definition) in the canonical and grand-
canonical ensembles of the full ideal hadron-
resonance gas at T = 160 MeV and ρB =
0.2 fm−3, in the thermodynamic limit, at
final hadron level for different random boosts
of primary particles yb as a function of the
acceptance rapidity window ∆y.

That said, it can be interesting to study the difference between the fluctuations of charged
particles in the canonical and grand-canonical ensemble. In this respect, our Monte-Carlo
method is especially suitable as it allows to predict the numerical values of the aforementioned
variables taking into account all “trivial” effects including quantum statistics and resonance
decays. Thus, we have calculated the values of these variables in the two ensembles at final
hadron level for conditions relevant to heavy ion collisions at

√
sNN ≈ 20 GeV, i.e. T = 160

MeV, S = 0, Q/B = 0.4 and ρB = 0.2 fm−3 by using Monte-Carlo simulations. In the CE,
the volume chosen was 200 fm3, which is large enough to ensure in practice the reaching of the
thermodynamic limit. In order to show the effect of a limited kinematic acceptance, we have
also implemented a toy dynamical model, giving each primary generated particle (according to
thermal distributions) a random longitudinal boost in rapidity uniformly between −yb and yb.
Though unrealistic, this model allows to understand the possible effect of measuring variables
relevant to fluctuations over a finite rapidity window ∆y. The calculated values of ΦQ, D and
〈Nch〉νdyn are shown in figs. 2, 3, 4 respectively. It can be seen that all of them are strongly
affected by the dynamical boost yb and the acceptance window ∆y. Also, a relative strong
difference is seen between CE and GCE. Yet, we note that, at least for ΦQ and 〈Nch〉νdyn their
CE value converge to the GC one for small rapidity acceptance. This is not a trivial feature
because such a behaviour is expected if we select a subsystem in space and not in momentum
space as we have actually done. In fact, this behaviour is not seen in D (see fig. 3). Altogether,
we can conclude that the spread of these variables is considerable and making a fairly accurate
estimate of the theoretical expectation for a hadron gas in chemical equilibrium requires at least
taking into account exact charges (i.e. B, S, Q) conservation.
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