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Abstract

Quantum field theory (QFT) is our central theoretical framework to de-

scribe the microscopic world, arising from the union of quantum mechanics

and special relativity. Since QFTs play such a central role in our under-

standing of Nature, a deeper study of their physical properties is one of the

most exciting directions of research in theoretical physics. This has led to

the discovery of many important theoretical concepts, such as supersym-

metry and string theory. One of the most prominent physical observable

in any QFT is the scattering amplitude, which describes scattering pro-

cesses of elementary particles. Theoretical progress in understanding and

computing scattering amplitudes has accelerated in last few years with

the discovery of amazing new mathematical structures in a close cousin

of QCD, known as N=4 Super-Yang-Mills theory (SYM).

In the first chapter we study integrands of loop amplitudes in planar

N = 4 SYM and show their astonishing simplicity when written in terms

of special set of chiral integrals. In chapter two we show how to recon-

struct the multi-loop integrand recursively starting from tree-level ampli-

tudes. This approach makes the long-hidden Yangian symmetry of the

theory completely manifest and provides a Lagrangian-independent ap-

proach for determining the integrand at any loop order. In chapter three

we demonstrate that the problem of calculating of scattering amplitudes

in planar N = 4 SYM can be completely reformulated in a new framework

in terms of on-shell diagrams and integrals over the positive Grassman-

nian G+(k, n). Remarkably, the building blocks for amplitudes play a

fundamental role in an active area of research in mathematics spanning

algebraic geometry to combinatorics. In chapter four we sketch the ar-

gument that the amplitude itself is represented by a single geometrical

object defined purely using a new striking property – positivity – and all

physical concepts like unitarity and locality emerge as derived concepts,

each having a sharp geometric interpretation.
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Introduction

The traditional formulation of quantum field theory—encoded in its very name—

is built on the two pillars of locality and unitarity [1]. The standard apparatus of

Lagrangians and path integrals allows us to make these two fundamental principles

manifest. This approach, however, requires the introduction of a large amount of

unphysical redundancy in our description of physical processes. Even for the simplest

case of scalar field theories, there is the freedom to perform field-redefinitions. Starting

with massless particles of spin-one or higher, we are forced to introduce even larger,

gauge redundancies, [1].

Over the past few decades, there has been a growing realization that these re-

dundancies hide amazing physical and mathematical structures lurking within the

heart of quantum field theory. This has been seen dramatically at strong coupling

in gauge/gauge (see, e.g., [2–4]) and gauge/gravity dualities, [5]. The past decade

has uncovered further remarkable new structures in field theory even at weak cou-

pling, seen in the properties of scattering amplitudes in gauge theories and gravity

(for reviews, see [6–11]). The study of scattering amplitudes is fundamental to our

understanding of field theory, and fueled its early development in the hands of Feyn-

man, Dyson and Schwinger among others. It is therefore surprising to see that even

here, by committing so strongly to particular, gauge-redundant descriptions of the

physics, the usual formalism is completely blind to astonishingly simple and beautiful

properties of the gauge-invariant physical observables of the theory.

Recent Progress in Scattering Amplitudes

The dawn of the new era of scattering amplitudes goes back to 1985 when Park and

Taylor found a surprisingly simple formula for the tree-level scattering process of

six gluons. Although the original Feynman diagram expression spanned six pages

of algebra the final result was written on a single line. Soon afterwards they found
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a generalization for n gluons (MHV Park-Taylor amplitude) which showed the same

remarkable simplicity, totally hidden in the standard calculation, which first appeared

at six points.

This motivated many people to develop new alternative methods for calculations

both tree-level and loop amplitudes. In this context, the scattering amplitude is

not taken as a sum of Feynman diagrams but rather a function of physical data

characterizing asymptotic scattering states which must satisfy a lot of non-trivial

properties like correct factorization. These constraints are extremely strong and in

most cases determine the amplitude completely. Bern, Dixon and Kosower, among

others, developed unitarity-based methods in early 1990’s, e.g. [12] which lead to

many new theoretical predictions for QCD processes that were impossible to obtain

using the standard Feynman diagrams approach. When searching for new physics at

LHC it is crucial to have accurate SM predictions (usually called background). The

potential new discoveries will have just mild effect, therefore it is crucial to know the

higher order corrections to the background such that it can be distinguished from

new physics. The unitarity methods, recursion relations and others provide a very

powerful computational tool which is a part of the main computer codes for LHC

calculations (e.g. Sherpa, BlackHat).

In 2003 Witten discovered that scattering amplitudes in Yang-Mills theory have re-

markable geometrical properties when formulated in terms of twistor variables rather

than momenta [13]. Two year later Britto, Cachazo, Feng and Witten (BCFW)

found new on-shell recursion relations for tree-level amplitudes of gluons [14]. They

are based on a remarkably simple idea combining the properties of analytic functions

and contour integrations together with the physical concept of unitarity. Later these

relations were applied to gravity and for the large class of other theories that satisfy

certain analytic properties.

Many of the recent developments have been driven by an intensive exploration of

N = 4 supersymmetric Yang-Mills (SYM) in the planar limit, [11, 15]. Recently, it

was made a connection to remarkable new structures in algebraic geometry, associated

with contour integrals over the Grassmannian G(k, n), [16–19]. This makes both the

conformal and long-hidden dual conformal invariance of the theory (which together

close into the infinite-dimensional Yangian symmetry) completely manifest, [20]. It is
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remarkable that a single function of external kinematical variables can be interpreted

as a scattering amplitude in one space-time, and as a Wilson-loop in another (for

a review, see [11]). Each of these descriptions makes a commitment to locality in

its own space-time, making it impossible to see the dual picture. By contrast, the

Grassmannian picture makes no mention of locality or unitarity, and does not commit

to any gauge-redundant description of the physics, allowing it to manifest all the

symmetries of the theory.

There has also been extraordinary progress in determining the amplitude itself

beyond the integrand, using the technology of symbols of transcendental functions

to powerfully constrain and control the polylogarithms occurring in the final results,

[21, 22]. While a global picture is still missing, a huge amount of data has been

generated. The symbol for all 2-loop MHV amplitudes has been determined, [23] (see

also [24]), and a handful of 2-loop NMHV and 3-loop MHV symbols have been found,

[25–27]. Remarkable strategies have also been presented to bootstrap amplitudes to

very high loop-orders, [28–32]. Many of these ideas have a strong resonance with the

explosion of progress in the last decade using integrability to find exact results in

planar N =4 SYM, starting with the spectacular solution of the spectral problem for

anomalous dimensions, [15, 33].

Despite the fact that planar N = 4 SYM is not directly realized in Nature, it

is and has been a fruitful laboratory for testing new ideas in field theory. On one

hand we can think about it as a toy model for gauge theories because of enormous

amount of symmetry, in particular infinite dimensional Yangian symmetry and its

connection to integrability. On the other hand it is a highly nontrivial theory at all

and it contains many of the salient features of generic quantum field theories, that

are relevant to our world, especially QCD. The ultimate goal of our program is to

reformulate the quantum field theory completely in a way that makes all symmetries

and properties of physical observables manifest. This very ambitious program. Nec-

essarily, the first step is to provide such a reformulation for the simplest case: planar

N = 4 SYM theory. As we will see in this thesis, specifically in chapters 3 and 4,

this new formulation does not rely on the space-time physics at all. Scattering am-

plitudes naturally want to live in the Grassmannian (and its generalization) rather

than space-time. Unlike the case for space-time descriptions, the Grassmannian make
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all the symmetries manifest. Further, as we will explore, the fundamental principle

in the Grassmmannian formulation of S-matrix is positivity, rather than locality and

unitarity known from the local quantum field theory.

There are many open problems even within our toy model: exploring this new

space from point of view of algebraic geometry, as well as using there new insights

to explicitly solve for particular amplitudes. But conceptually the problem of the

reformulation of planar N = 4 SYM is solved and chapter 4 provides a short report on

it. The big question is how to generalize these ideas for other cases. There are several

parallel directions: going beyond planar limit, turning on masses for particles or

considering no supersymmetry. There is an interesting question if these discoveries are

limited just to on-shell scattering amplitudes or the same structure can be expected

to appear in other observables like correlation functions and form-factors. All these

big questions are left for future work.

Overview of the thesis

The thesis contains four parts which show the essential progress we have made in last

three years in understanding scattering amplitudes in planar N = 4 SYM, together

with some extensions to other planar theories. See also other papers on this topic by

the author of this thesis [19, 34–37] that are not included here, and presentations at

various conferences.1

The first chapter is based on the paper,

N. Arkani-Hamed, J. Bourjaily, F. Cachazo, J. Trnka, Local Integrals for Planar

Scattering Amplitudes, JHEP 1206, 125 (2012)

In it, we provide a method how to reconstruct the integrand of multi-loop scat-

tering amplitudes using integrals with special properties – chiral integrals with unit

leading singularities. The method of writing the integrand in terms of scalar and

tensor integrals rather than a sum of Feynman diagrams has been studied over the

1Exact Results in Gauge/Gravity dualities, Perimeter Institute, Canada, 09/2011; Amplitudes

2011, Michigan, 11/2011; Amplitudes 2012, Hamburg, 03/2012; Scattering Amplitude, Trento,

07/2012; Geometry of Scattering Amplitudes, Banff, 08/2012; Amplitudes and Periods, Paris,

12/2012; Amplitudes 2013, Munich, 04/2013
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past two decades in the context of both planar N = 4 SYM and pure QCD. We

show that the method of leading singularities provides a powerful tool to find the

integral building blocks that are most suitable for scattering amplitudes. As a result,

we are able to determine the integrand for certain 2-loop and 3-loop amplitudes for

any number of external legs which would not be accessible using any other method.

The second chapter is devoted to the discovery of loop recursion relations in,

N. Arkani-Hamed, J. Bourjaily, F. Cachazo, S. Caron-Huot, J. Trnka, The All-

Loop Integrand For Scattering Amplitudes in Planar N=4 SYM, JHEP 1101, 041

(2011).

Here, we generalize BCFW recursion relations [14], originally found in the context

of tree-level amplitudes to the integrand of loop amplitudes in planar N = 4 SYM.

The construction is done in momentum twistor space, a space which naturally encodes

momentum conservation adn the cyclic symmetry of planar amplitudes. Higher-loop

amplitudes are then systematically and efficiently built-up, recursively from lower-

loop amplitudes. There is a huge conceptual difference between the construction

of amplitudes in chapter 1 and chapter 2. While in chapter 1 we expanded the

integrand in terms of a very special set of local tensor integrals, the pieces in loop

recursion relations have non-local poles. This is a feature familiar from the tree-

level recursion relations where the non-local poles were also present. On the other

hand this formulation makes all symmetries of the amplitude manifest term-by-term,

including the infinite dimensional Yangian symmetry which is invisible in the standard

formulation.

The first two chapters serve as an entree to the main result of the thesis which is a

content of chapter 3 where present a completely new formalism for on-shell scattering

amplitudes. This work was done in a joint collaboration with two mathematicians,

N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov J. Trnka,

Scattering Amplitudes and Positive Grassmannian, arXiv:1212.5605 [hep-th], to ap-

pear in Cambridge University Press

The main result is the detailed description of the connection between on-shell

scattering amplitudes on one side and the fundamental object in algebraic geometry

- the Grassmannian G(k, n), on the other. We will derive this connection starting
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physically from first principles. This will lead us into direct contact with several

beautiful and active areas of current research in mathematics [38–46]. The past few

decades have seen vigorous interactions between physics and mathematics in a wide

variety of areas, but what is going on here involves new areas of mathematics that

have only very recently played any role in physics, involving simple but deep ideas

ranging from combinatorics to algebraic geometry. It is both startling and exciting

that such elementary mathematical notions are found at the heart of the physics of

scattering amplitudes. This new way of thinking about scattering amplitudes involves

many novel physical and mathematical ideas.

The crucial role in the story is played by on-shell three point amplitudes. We glue

them together and build on-shell diagrams which are physical gauge invariant objects

and serve as building blocks for on-shell scattering amplitudes. The particular recipe

that determines which diagrams to consider when calculating particular amplitude

is provided by recursion relations which have a very natural interpretation in this

language. Surprisingly, the same diagrams (called plabic graphs) play a crucial role

in recent studies of positive Grassmannians and permutations. In this approach all

symmetries are completely manifest. Furthermore, there is one more conceptional

point: for the first time on-shell scattering amplitudes are written in terms of fully

on-shell objects. Unlike in the representation of Feynman diagrams or tensor integral

expansion which are intrinsically off-shell, on-shell diagrams have all internal lines

on-shell and there is no need to access off-shell physics.

In chapter 3 we mostly work in planar N = 4 SYM but the concept of on-shell

diagrams and their connection to positive Grassmannian is completely universal for

any planar theory. The advantage of N = 4 SYM is the simplicity of the form that

comes with each on-shell diagram and our ability to explicitly construct the amplitude

using recursion relations. However, the framework can be used for any other theory

including QCD and gravity.

The last chapter is a brief invitation to the work in progress,

N. Arkani-Hamed, J. Trnka, Locality and Unitarity from Positivity, to appear

In the new framework described in chapter 3, amplitudes are represented by sums

of on-shell diagrams given by recursion relations. Some time ago we conjectured [37]
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that amplitudes can be intrinsically defined as special geometrical objects and any

representation (recursion relations, local integrals) can be understood as a triangu-

lation. We developed this idea for the simple examples of NMHV tree amplitudes

where the full amplitude was a volume of a polytope (known as cyclic polytope to

mathematicians) in the projective space P3 but we could not find a generalization to

other amplitudes for more than two years.

However, this conjecture indeed generally does have a concrete realization! We

sketch a solution for planar N = 4 SYM in chapter 4 of this thesis, more detailed

explanation will appear in the paper. Any tree-level amplitude corresponds to the

positive region in the Grassmannian G(k, k+4) and any expansion in terms of on-shell

diagrams provides a triangulation of this space in terms of elementary regions which

are cells in G+(k, n). This positive space is defined as a union of two positive worlds:

internal positive Grassmannian and external positive kinematical data. We show that

this remarkable object has exactly the same properties as the tree-level amplitude in

N = 4 SYM. We also present a generalization to the integrand of any loop ampli-

tude, which corresponds to the positive region of a generalized Grassmannian (such

structure is currently unknown to mathematicians).

This definition of scattering amplitudes relies only on the positive structure of the

internal Grassmannian and external kinematical data. All symmetries and physical

properties (like locality and unitarity) are derived concepts. This finishes (at least

conceptually) the first goal of the program: the complete reformulation of planar

N = 4 SYM where the space-time description is replaced by a new mathematical

structure.

Before starting our journey let us first define notation used in the field of scattering

amplitudes which might be not so familiar to other physicists.

Notation: Encoding External Kinematical Data

We are interested in the scattering amplitude for n massless particles with momenta

pa and helicities ha, for a = 1, . . . , n. Since the momenta are null, the (2×2)-matrix,

pαα̇a ≡ pµaσ
αα̇
µ =

 p0
a + p3

a p1
a − ip2

a

p1
a + ip2

a p0
a − p3

a

 , (0.1)
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has vanishing determinant; and so pαα̇ has (at most) rank 1. We can therefore write

pαα̇a = λαa λ̃
α̇
a , (0.2)

where λ, λ̃ are referred to as spinor helicity variables [47–49]. If the momentum is

real, we have λ̃a = ±λ∗a; but in general, we will allow the momenta to be complex

and consider λ, λ̃ as independent, complex variables.

The rescaling λa 7→ taλa, λ̃a 7→ t−1
a λ̃a leaves the momentum pa invariant and repre-

sents the action of the little group (for more details see e.g. [1,50]). All the information

about the helicities ha of particles involved in a scattering amplitude An is encoded

by its weights under such rescaling:

An(taλa, t
−1
a λ̃a;ha) = t−2ha

a An(λa, λ̃a;ha). (0.3)

Theories with maximal supersymmetry have the wonderful feature that particles

of all helicities can be unified into a single super-multiplet, [13, 50–53]. For N = 4

SYM, we can group all the helicity states into a single Grassmann coherent state

labeled by Grassmann (anti-commuting) parameters η̃I for I = 1, . . . , 4:

|η̃〉 ≡ |+1〉+η̃I
∣∣+1

2

〉
I
+

1

2!
η̃I η̃J |0〉IJ+

1

3!
εIJKLη̃

I η̃J η̃K
∣∣−1

2

〉L
+

1

4!
εIJKLη̃

I η̃J η̃K η̃L |−1〉 .

The complete amplitude, denoted An(λa, λ̃a, η̃a), is then a polynomial in the η̃’s. It

is convenient to expand this according to,

An(λa, λ̃a, η̃a) =
∑
k

A(k)
n (λa, λ̃a, η̃a) , (0.4)

whereA(k)
n is a polynomial of degree 4k in the η̃’s. Under the little group, η̃ transforms

like λ̃, so η̃a 7→ t−1
a η̃a; with this, the “super-amplitude” A(k)

n transforms uniformly

according to:

A(k)
n (taλa, t

−1
a λ̃a, t

−1
a η̃a) = t−2

a A(k)
n (λa, λ̃a, η̃a). (0.5)

The A(k)
n super-amplitude contains among its components those amplitudes which

involve k ‘negative helicity’ (ha= 1) and (n k) ‘positive-helicity’ (ha= +1) gluons—

particles for which ha=±1. A(k)
n is often referred to as an “N(k−2)MHV amplitude”,

where ‘MHV’ stands for ‘maximal helicity violating’ and ‘N’ denotes ‘next-to’—A(k=2)
n

are considered ‘MHV’ because A(k<2)
n have vanishing kinematical support.
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Chapter 1 Local Integrals for
Planar Scattering Amplitudes

1.1 Invitation to Local Loop Integrals and Inte-

grands

In this chapter we report on a remarkable simplicity of the loop integrands when

expressed in a manifestly local way. This is surprising, since the enormous complex-

ity of Feynman diagrams is inexorably tied to locality, while by contrast, the great

simplicity of BCFW recursion (discussed in the next chapter) is inexorably tied to

the presence of non-local poles. What we are finding is a new local form of the

integrand—certainly not following from Feynman diagrams!—which is even simpler

than the forms obtained from BCFW recursion.

This great simplicity is apparent only when the integrand is written in momentum-

twistor space, using a special set of objects that are almost completely chiral, and

have unit leading singularities. For instance, all 2-loop MHV amplitudes are given as

a sum over a single type of object,

A2−loop
MHV =

1

2

∑
i<j<k<l<i

k

li

j

(1.1.1)

We will describe these objects in much more detail in the body of this Chapter;

here, it suffices to say that these are simple double-pentagon integrals with a special

tensor-numerator structure which is indicated by the wavy lines, and that the notation

‘i<j< · · ·<k<i’ in the summand should be understood as the sum of all cyclically-

ordered sets of labels i, j, . . . , k for each i ∈ {1, . . . , n}.
All 2-loop NMHV amplitudes are also associated with similar integrands; indeed,

the n-point NMHV scattering amplitude’s integrand is simply given by,
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A2−loop
NMHV =

∑
i<j<l<m≤k<i
i<j<k<l<m≤i
i≤l<m≤j<k<i

l

m
k

i

j

AB

× [i, j, j + 1, k, k + 1]

+
1

2

∑
i<j<k<l<i

k

li

j

×


Atree

NMHV(j, . . . , k; l, . . . , i)

+Atree
NMHV(i, . . . , j)

+Atree
NMHV(k, . . . , l)


(1.1.2)

Here, [i j k l m] denotes the familiar dual-superconformal invariant of five particles,

[i j k l m] ≡ δ0|4 (〈j k l m〉ηi + 〈k l m i〉ηj + 〈l m i j〉ηk + 〈mi j k〉ηl + 〈i j k l〉ηm)

〈i j k l〉〈j k l m〉〈k l m i〉〈l m i j〉〈mi j k〉
.

(1.1.3)

Finally, all 3-loop MHV amplitude integrands are given by a sum over the same

types of objects,

A3−loop
MHV =

1

3

∑
i1≤i2<j1≤
≤j2<k1≤k2<i1

j1

j2

k1k2

i1

i2

CDAB

EF

+
1

2

∑
i1≤j1<k1<

<k2≤j2<i2<i1

k1

k2j2
i2

i1
j1

AB

As we will see, these extremely simple expressions are very closely related to the

leading singularity structure of the theory. The reason for the dramatic simplicity of

these results is that there, each integrand was straightforwardly expanded in terms of a

fixed basis of chiral integrals with unit leading singularities, while here we are tailoring

the objects that appear directly to the amplitude. The structures are motivated by

matching a particularly simple set of leading singularities of the theory; this is made

possible only by using chiral integrands with unit leading singularities, which is why

these objects play such a crucial role in the story. What is remarkable is that matching

only a small subset of leading singularities in this way suffices to determine the full

result. Of course, we confirm this not by laboriously matching all leading singularities,
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but rather by directly checking the conjectured local forms against what we obtain

from the all-loop recursion relation.

We do not yet have a satisfactory understanding for the origin of this amazing

simplicity. Certainly, these expressions differ from the BCFW form (discussed in the

next chapter) in that they are not term-by-term Yangian invariant. This suggests the

existence of a deeper theory for the integrand that will directly produce these new

local forms, allowing a more direct understanding of the emergence of local spacetime

physics. We strongly suspect that it is this formulation that will also help explain

the amazing simplicity [37] seen in the integrals yielding the physical amplitudes, and

also form the point of contact with the remarkable integrable structures of N = 4

SYM—Y-systems and Yang-Yang equations—seen at strong coupling and also in some

collinear limits [54–56].

We close this invitation with an outline for the rest of the chapter. We begin with

a pedagogical introduction to some of the foundations of the subject in section 1.2

starting with a review of momentum-twistors and some of the associated projective

geometry in CP3. We also discuss how planar loop integrals are written in momentum-

twistor space; while our focus in this Chapter is on N = 4 SYM, we expect that the

momentum-twistor representation of loop amplitudes will be extremely useful for any

planar theory. We discuss the way that momentum-twistors make integral reduction

trivial, and illustrate this by showing how the 1-loop integrand can be reduced to

a sum over pentagon integrals. Finally we discuss leading singularities at 1-loop

and beyond in momentum-twistor language. The standard exercise of determining

quadruple-cuts in momentum space is mapped in momentum-twistor language to a

simple, beautiful and classic problem in enumerative geometry first posed by Schubert

in the 1870’s, and we discuss the solution of these “Schubert problems” in detail.

In section 1.3 we introduce chiral integrals with unit leading singularities which

play a central role in our story. We illustrate how they work starting with the simplest

case of 1-loop MHV amplitudes.

In section 1.4, we discuss another feature of chiral integrals with unit leading

singularities—generic integrals of this form are manifestly infrared finite, and can

be used to express finite objects related to scattering amplitudes, such as the ratio

function [57].
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In section 1.5, we discuss multi-loop amplitudes. We describe our heuristic strat-

egy for using leading singularities to tailor momentum-twistor integrals to the am-

plitude, and show how this works for the 1-loop MHV amplitude, reproducing one

of the local forms first derived using the polytope picture []. We also discuss the

1-loop NMHV amplitudes in the same way. We then extend these methods to two

loops and beyond, and show how to “glue” the 1-loop expressions together to produce

natural conjectures for all 2- and 3-loop MHV amplitudes, as well all 2-loop NMHV

amplitudes. These conjectures are verified by comparing with the integrand derived

from the all-loop recursion relation.

1.2 Foundations

In theories with massless particles, a well-known and convenient way of trivializing

the constraint p2
a = 0 for each particle is to introduce a pair of spinors λ(a) and λ̃(a),

replacing pµa 7→ (pa)α α̇ ≡ pµa(σµ)αα̇ ≡ λ
(a)
α λ̃

(a)
α̇ . Of course, this map is not invertible,

as any rescaling {λ, λ̃} → {tλ, t−1λ̃} leaves p invariant. This reflects that these

variables come with a new source of redundancy; in the case of particles with spin, this

redundancy is quite welcomed as it allows the construction of functions that transform

with fixed projective weights as S-matrix elements under Lorentz transformations.

This is all well-known under the name of the spinor-helicity formalism [?, 47–49,58].

Amplitudes are supported on momenta that satisfy momentum conservation.

Clearly, it would be convenient to find variables where this constraint,
∑

a pa = 0, is

trivial. In planar theories, where color ordering is available, there is a natural way to

achieve this, by choosing instead to express the external momenta in terms of what

are known as dual-space coordinates, writing pa ≡ xa − xa−1, [59].

To see the role played by planarity, consider the standard decomposition of scat-

tering amplitudes according to the overall color structure, keeping only the leading

color part:

An = Tr(T a1T a2 . . . T an)An(1, 2, . . . , n) + permutations; (1.2.4)

here, each partial amplitude An(1, 2, . . . , n) can be expanded in perturbation theory,

and we denote the L-loop contribution by AL−loop
n . Partial amplitudes are computed

by summing over Feynman diagrams with a given color-ordering structure.
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In this chapter we only consider the planar sector of the theory, and therefore

AL−loop
n will always refer to the leading-color, partial amplitude in the planar limit.

Restricted to a particular partial amplitude, say, An(1, 2, . . . , n), each momenta

can be expressed as the difference of two “spacetime” points. More precisely, we make

the identification pa ≡ xa − xa−1, with p1 = x1−xn. It is clear that momenta obtained

in this way automatically satisfy
∑

a pa = 0—and the redundancy introduced in this

case is a translation xa → xa + y by any fixed vector y.

Now, the only poles that can occur in An(1, 2, . . . , n) are of the form
∑b

m=a pm,

i.e., only the sum over consecutive momenta can appear. In the dual variables these

become
∑b

m=a+1 pm = xa − xb. The same kind of simplifications happen in planar

Feynman diagrams to all orders in perturbation theory as we will describe.

Now we have the variables {λ, λ̃} which make the null condition trivial while

ignoring momentum conservation, while the dual-space variables do the opposite. It is

perfectly natural to wonder if there exists any way to combine these two constructions

which makes both the null-condition and momentum conservation trivial. It turns

out that such a set of variables does exist: they are known as momentum-twistors

and were introduced by Hodges in [60].

The standard twistor construction developed in the 1960’s [61] starts by making

a connection between points in an auxiliary space—twistor-space—and null rays in

spacetime. Likewise, a complex line in twistor space is related to a point in spacetime.

The key formula is called the incidence relation, according to which a point x in

spacetime corresponds to set of twistors Z = (λ, µ) which satisfy

µα̇ = xα α̇λ
α. (1.2.5)

Twistors satisfying this relation form a projective line in CP3. Even though Z has

the components of a point in C4, the incidence relation cannot distinguish Z from

tZ, and therefore the space is projectivized.

In order to specify a line in twistor space—and therefore a point in spacetime—all

that is needed is a pair of twistors, say ZA and ZB, that belong to the line. Given the

twistors, the line or spacetime point is found by solving the four equations coming

from imposing the incidence relation for ZA and ZB with x. It is easy to check that
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Figure 1.1: Defining the connections between momentum-twistors, dual-coordinates,

and cyclically-ordered external four-momenta

the solution is,

xα α̇ =
λA,αµB,α̇
〈λA λB〉

+
λB,αµA,α̇
〈λB λA〉

. (1.2.6)

(Here, we have made use of the familiar Lorentz-invariant contraction of two spinors

〈λA λB〉 ≡ εαβλ
α
Aλ

β

B).

Hodges’ construction starts with any set of n twistors {Z1, . . . , Zn}. Using the

association xa ↔ (Za, Za+1), n spacetime points are defined. Quite nicely, it is trivial

that p2
a = (xa−xa−1)2 = 0 because the corresponding lines, or (CP1s), intersect. This

is illustrated in Figure 1.1.

Given the importance of this latter fact, it is worth giving it a slightly more

detailed discussion than we have so far. If two lines in twistor-space intersect, i.e.

share a twistor Zint, then the corresponding spacetime points, say x and y, associated

with the lines are null-separated. To see this, take the difference of the incidence

relations for Zint,

µint
α̇ = xα α̇λ

α
int, µint

α̇ = yα α̇λ
α
int,

to get

(x− y)α α̇λ
α
int = 0;

which means that the 2 × 2-matrix (x − y) has a non-vanishing null eigenvector,

i.e. λαint, and therefore the determinant of (x − y) vanishes. But the determinant is

proportional to (x− y)2 when x and y are taken as vectors; and therefore x and y are

null separated.

As useful background for the rest of the Chapter let us discuss the null-separation

condition, which is a conformally invariant statement, in twistor space. Consider
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again two generic spacetime points x and y and choose two representatives of the lines

associated to them in twistor space, say, (ZA, ZB) and (ZC , ZD). Treating each twistor

as a vector in C4 there is a natural SL4 (conformal) invariant that can be constructed.

This is done by contracting all four twistors with the completely antisymmetric tensor

εIJKL to produce

〈ZAZBZCZD〉 = εIJKLZ
I
AZ

J
BZ

K
C Z

L
D. (1.2.7)

Clearly, this conformally-invariant quantity must encode information about how x and

y are causally related. The Lorentz invariant separation (x− y)2 is not conformally-

invariant because it is not a cross ratio. However, the way to relate the two quantities

is simple

(x− y)2 =
〈ZAZBZCZD〉
〈λA λB〉〈λC λD〉

. (1.2.8)

This relation is consistent with our earlier finding that if the points x and y are null-

separated, then the twistors ZA, ZB, ZC and ZD, are coplanar as points in CP3. In

other words, the two complex lines intersect.

When twistors are used to produce a configuration of points in spacetime which are

pairwise null separated and then used to build momenta, the corresponding twistor

space is called momentum-twistor space [60].

This twistor construction is in fact slightly more involved when one is interested

in real slices of spacetime. In our discussion so far, we have been assuming that

momenta are complex and hence the dual spacetime is complexified. This is useful

for e.g. defining the usual unitarity cuts of loop amplitudes. In this chapter, the

complex version suffices and we refer the interested reader to [60,62].

A related construction is called dual momentum twistor space. Here ‘dual’ refers

to the usual geometric—‘Poincaré’—dual of a space. In other words, the dual space

is the space of planes in CP3. Points in the new space which is also a CP3 are

denoted by WI . The construction maps points to planes and lines to lines. In Hodges’

construction [60], there is a natural definition of dual points associated to the planes

defined by consecutive lines of the polygon in momentum twistor space.

The construction defines a dual polygon by introducing dual momentum twistors
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Wa defined by

(Wa)I =
εIJKLZ

J
a−1Z

K
a Z

L
a+1

〈λa 1 λa〉〈λa λa+1〉
. (1.2.9)

This definition is made so that Wa contains λ̃a as two of its components.

I. Loop Integrals

The focus of this chapter is loop integrands and integrals. Here too, it is well known

that in planar theories, loop integrals are very naturally expressed in terms of dual

spacetime coordinates. Consider a very simple 1-loop integral, known as a zero mass

integral,

1

23

4
L

=

∫
d4L

N

L2(L− p1)2(L− p1 − p2)2(L− p1 − p2 − p3)2
(1.2.10)

where the external momentum at each of the four vertices is null (hence the name) and

N = (p1+p2)2(p2+p3)2 is a convenient normalization factor. Momentum conservation

gives p4 = −p1 − p2 − p3; and introducing the dual-coordinates pa = xa − xa−1, it is

easy to see that the unique choice of L that makes translation invariance (in x-space)

manifest is L = x− x4. The integral becomes [59]

1

23

4

2

4

3

1 =

∫
d4x

N

(x− x1)2(x− x2)2(x− x3)2(x− x4)2
, (1.2.11)

where N = (x1 − x3)2(x2 − x4)2. Imposing translation-invariance gives rise to the

same integral in x-space regardless of the original definition of L in the loop diagram.

In other words, a different propagator could have been chosen to be L and the form

(1.2.11) would still be the same. This uniqueness plays a crucial role in the definition

of the integrand of the theory.

Integrating over all points x in spacetime is the same as integrating over all CP1’s

in CP3. As before, each line in twistor space can be represented by a pair of twistors
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x↔ (ZA, ZB). Clearly, any GL2(C) transformation on the A,B “indices” leaves the

line invariant. Therefore the integral over spacetime is the same as the integral over

the pairs (ZA, ZB) modulo GL2. This is nothing but the Grassmannian G(2, 4) which

can be parameterized by a 2× 4 matrix Z1
A Z2

A Z3
A Z4

A

Z1
B Z2

B Z3
B Z4

B

 =

 λ1
A λ2

A µ1̇
A µ2̇

A

λ1
B λ2

B µ1̇
B µ2̇

B

 . (1.2.12)

We can immediately write a measure which is GL2-invariant by integrating over all

ZA’s and ZB’s together with a combination of 2 × 2 minors of the matrix (1.2.12)

with total weight −4. It turns out that the precise measure that corresponds to a d4x

integration is ∫
d4x⇔

∫
d4ZAd

4ZB
vol(GL2)× 〈λA λB〉4

, (1.2.13)

where 〈λA λB〉 is the (1 2) minor of (1.2.12)—the determinant of the first two columns

of the 2 × 4 matrix (1.2.12). In the twistor literature this is written as 〈λA λB〉 =

〈ZAZB I∞〉 where (I∞)KL is the infinity twistor which is block diagonal with the only

nonzero diagonal element equal to εab. I∞ is called the infinity twistor because it

corresponds to a choice of the point at infinity in spacetime and therefore a line

in twistor space. Its presence therefore breaks conformal invariance. This is not

surprising as the measure d4x ‘knows about’ the metric in spacetime.

Since the integration over lines will appear in many different contexts in this

chapter we introduce a special notation for it. Let’s define∫
(AB)

⇔
∫
d4ZAd

4ZB
vol(GL2)

. (1.2.14)

The reason we have not included the factor 〈λA λB〉4 in the definition is that in this

chapter we mostly deal with N = 4 SYM and in its integrand factors with infinity

twistors cancel.

Going back to the loop integral in x-space (1.2.11), one can introduce the four

momentum twistors in Hodges’ construction {Z1, Z2, Z3, Z4} to describe the external

particles. Using the relation between the Lorentz invariant separations and momen-

tum twistor invariants in (1.2.8), the integral (1.2.11) becomes∫
(AB)

〈1234〉2

〈AB 12〉〈AB 23〉〈AB 34〉〈AB 41〉
. (1.2.15)
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where 〈ijkl〉 stands for the determinant of the 4 × 4 matrix with columns given by

four twistors Zi, Zj, Zj, Zk defined in (1.2.7).

One of the remarkable facts about (1.2.15) is that all factors involving the infinity

twistor have disappeared. This means that the integral is formally conformal invariant

under the conformal group that acts on the dual spacetime. This is why it is said to

be dual conformally invariant (DCI).

Clearly, if we had started with a triangle integral then the factor 〈Z1IZ2〉 = 〈λ1 λ2〉
would not have canceled and would have remained with power one in the denominator

as if it were a propagator. Indeed, this viewpoint trivializes the surprising connections

made in the past between the explicit form of triangle and box integrals. In other

words, one can think of a triangle integral as a box where one of the points is at

infinity.

Once again, a careful definition of the contour which should correspond to only

points in a real slice of complexified spacetime is not needed in this chapter. It suffices

to say that on the physical contour, the integrals can have infrared divergences (IR).

This is the reason why we said that the integral was ‘formally’ DCI. We postpone a

more detailed discussion of IR-divergences to section 1.4.

The purpose of this section is to show how momentum twistors are the most

natural set of variables to work with loop amplitudes in planar theories. In order to

do this we will first show how many familiar results can be translated into momentum

twistors. Not infrequently, momentum twistors will completely clarify physics points

which have been misunderstood in the literature.

Integral Reduction at 1-Loop Level

In a general theory, 1-loop integral reduction techniques allow scattering amplitudes

to be expressed as linear combinations of a basic set of scalar integrals1. The integrals

have the topology of bubbles, triangles or boxes.

Let us start this section by translating each of the integrals in the standard basis

into momentum twistor language. Their corresponding form in momentum twistor

1This is true in theories with no rational terms or in general theories for what is known as the

cut-constructible part of them. See [7] for more details. In N = 4 SYM rational terms are absent.

This is why we do not elaborate more on this point.
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space is

IBox = l 1

i i 1

j

j 1

kk 1

l

=

∫
(AB)

〈i i+1〉〈j j+1〉〈k k+1〉〈l l+1〉
〈AB i i+1〉〈AB j j+1〉〈AB k k+1〉〈AB l l+1〉

;

ITriangle =
i

i� 1 j

j� 1

kk� 1

=

∫
(AB)

1

〈AB〉
〈i i+1〉〈j j+1〉〈k k+1〉

〈AB i i+1〉〈AB j j+1〉〈AB k k+1〉
; (1.2.16)

IBubble =
i i� 1

jj� 1
=

∫
(AB)

1

〈AB〉2
〈i i+1〉〈j j+1〉

〈AB i i+1〉〈AB j j+1〉
.

Note that here we have translated the plain scalar integrals without any normalization

factors. Once again, only boxes are dual conformal invariant except for an overall

factor which only depends on the external data. This factor involving 2-brackets and

hence the infinity twistor can always be removed by a proper normalization as done

in the zero-mass example (1.2.15). Scalar boxes in momentum twistor space have also

been recently studied in [62,63].

A well known fact about N = 4 SYM is that at 1-loop level, bubbles and triangles

are absent and all one needs are scalar box integrals. However, as we will see, this

point of view is not the most natural one and actually turns out to be misleading.

In order to understand this point, one needs to review the reduction procedures

used to reach this conclusion. Before doing that let us mention some useful facts

about momentum twistors.

In loop integrals, combinations of momentum twistors of the form Z
[I
AZ

J ]
B make an

appearance in every expression (where the brackets mean that the indices are anti-

symmetrized), reflecting the fact that it is the line (AB) that is being integrated-over,

and not the individual twistors ZA and ZB.

These two-index objects are a class of more general ones called bitwistors. A

generic bitwistor is a rank-two antisymmetric tensor Y IJ . Given two bitwistors, Y

and Ỹ , the conformally-invariant inner-product is given by 〈Y Ỹ 〉 = εIJKLY
IJ Ỹ KL.

A bitwistor which can be written in terms of two twistors as Z
[I
AZ

J ]
B is called simple.
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It is easy to show that a bitwistor is simple if and only if Y 2 = 0 with the product

defined as above.

The reason for discussing bitwistors is that they provide a very natural integral

reduction procedure. The procedure can be applied to integrals at any loop order

but in this section we concentrate on only 1-loop integrals. The procedure we are

about to present is in part the momentum twistor analog of the one introduced by

van-Neerven and Vermaseren in [64].

At 1-loop one starts with general Feynman integrals of the form

Tµ1...µm

∫
d4L

Lµ1 . . . Lµm∏n
i=1(L− Pi)2

(1.2.17)

where the tensor T is made out of polarization vectors, momenta of external particles

and the spacetime metric.

By Lorentz invariance, it is clear that one can decompose integrals of this type as

linear combinations of momentum twistor tensor integrals of the form∫
(AB)

1

〈AB I∞〉4−(n−m)

〈AB Y1〉〈AB Y2〉 . . . 〈AB Ym〉
〈AB 12〉〈AB 23〉 . . . 〈AB n 1 n〉〈AB n 1〉

(1.2.18)

where Ya are generic bitwistors.

The reduction procedure relies on the fact that a generic bitwistor has six degrees

of freedom and can therefore be expanded in a basis of any six independent bitwistors.

To reduce the integrals in (1.2.18) simply choose any six of the bitwistors that appear

in the denominator, say, Z1Z2, Z2Z3, . . ., Z6Z7 and expand any of the bitwistors in

the numerator as

(Yj)
IJ = α1Z

I
1Z

J
2 + α2Z

I
2Z

J
3 + . . .+ α6Z

I
6Z

J
7 . (1.2.19)

The coefficients can be found by contracting with enough bitwistors two get six in-

dependent equations. More explicitly, one can consider equations of the form

〈Z2Z3Yj〉 = α4〈2345〉+ α5〈2356〉+ α6〈2367〉.

and solve for the α′s. Once this is done, the factor 〈AB Yj〉 becomes a linear-

combination of factors in the denominator, thus reducing the degree of the denomi-

nator and numerator by one.
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The integral in (1.2.18) is for a general quantum field theory with a planar sector.

One can continue with the integral procedure in this case but it will take us too far

away from the main line of this Chapter. Therefore we concentrate directly on N = 4

SYM. In N = 4 SYM it has been known since the 1990’s [12] that all integrals satisfy

n−m = 4. In modern language, this means that the integrals are dual conformally-

invariant as discussed in the simple example of the all massless box integral (1.2.15).

Iterating the reduction procedure, we can write the any amplitude as a sum over

pentagons and boxes. But as far as we have seen, the reduction procedure we have

described so far does not reduce the pentagons any further. Notice that the pentagons

we have described here are not scalar pentagons, but tensor pentagons—and they are

manifestly DCI. However, one is always free to choose a basis of bitwistors including

Y = I∞ to obtain scalar pentagons, but only at the cost of manifest dual conformal

invariance.

But doesn’t the reduction procedure of van-Neerven and Vermaseren, when ap-

plied toN = 4 SYM, allow for a reduction all the way down to only scalar boxes? One

might wonder why our analysis so far does not generate this familiar ‘box-expansion’.

The answer is that the reduction to box-integrals is not valid at the level of the

integrand—only the reduction to boxes and pentagons (scalar or otherwise) is valid

at the level of the integrand. In order to obtain the all-too familiar box-expansion,

it is necessary to parity-symmetrize the integrand—a step that is only justified when

integrated on a parity-invariant contour, and one which does violence to the highly

chiral loop-integrands of a quantum field theory such as N = 4 SYM.

Here, we should briefly clarify a point which has been unnecessarily confused in the

literature on N = 4. Because integrand-level reduction must terminate with boxes

and pentagons, and box-integrals are both manifestly parity-even and DCI while

scalar pentagons—which have a factor of 〈AB I∞〉 in the numerator—are not DCI,

the corrections to the box-expansion needed to match the full integrand of N = 4

were first expressed in terms of parity-odd combinations of scalar pentagons. This led

some researchers to suppose that there was some connection between DCI and parity.

There is of course no such connection: as evidenced by the extension of BCFW to

all-loop orders, the full N = 4 loop-integrand is DCI.

Especially for theories such as N = 4 which are DCI, one should strictly avoid
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parity-symmetrization at one-loop or higher. Although scalar pentagon integrals are

quite familiar, chiral pentagons are slightly novel—although they have already played

an important role in the literature (see e.g. [65,66]). The first appearance of pentagon

integrals occurs for five particles, and there are essentially two possibilities that arise:

2

3

45

1

⇐⇒
∫

(AB)

〈AB Y 〉 × 〈2 3 4 5〉〈4 5 1 2〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉

, (1.2.20)

where 〈2 3 4 5〉〈4 5 1 2〉 in the numerator is for normalization2 and the bitwistor Y is

simply Z1Z3 (this is indicated by the dashed-line in the associated figure); and,

2

3

45

1

⇐⇒
∫

(AB)

〈AB Ỹ 〉 × 〈3 4 5 1〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉

, (1.2.21)

where the factor 〈3 4 5 1〉 in the numerator is for normalization, and the bitwistor

Ỹ ≡ ‘(512)
⋂

(234)’ is the line in twistor-space which lies along the intersection of the

planes spanned by twistors (Z5, Z1, Z2) and (Z2, Z3, Z4)—which is indicated in the

figure by the ‘wavy-line’. As the first of many such examples, it is useful to write-out

Ỹ explicitly:

Ỹ ≡ (512)
⋂

(234) = Z5Z1〈2 2 3 4〉+ Z1Z2〈5 2 3 4〉+ Z2Z5〈1 2 3 4〉,

= 0 + Z1Z2〈5 2 3 4〉+ Z2Z5〈1 2 3 4〉,
(1.2.22)

where we have used the fact that 〈2 2 3 4〉 = 0. (The translation between statements

such as ‘the line along the intersection of two planes’ and explicit representative

formulae such as the above will be explained in more detail below; here, we merely

quote the result in a way from which we hope it will easy to guess the general case.)

These two integrals are examples of a very important class of integrals that we

call chiral integrals with unit leading singularities, or pure integrals. In each case, the

2We will see that this normalization follows from the requirement that the integral have unit

leading-singularities, and its sign is fixed by parity relative to the ‘wavy-line’ pentagon drawn below

it. In fact, as we will describe in section 1.3, the dashed-line in the figure dictates both the bitwistor

Y ≡ Z1Z3 and the normalization of the integral.
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bitwistor appearing in the numerator (together with the integrand’s normalization) is

completely specified by the dashed- or wavy-line in the corresponding figure. We will

explain many of the important features of these integrals together with the way their

graphical representations in more detail in section 1.3. It is worth noting in passing,

however, that the two integrals are parity conjugates of one another, and special

bitwistors Y and Ỹ represent the two lines in twistor-space which simultaneously

intersect the four lines (51), (12), (23), and (34); this means that 〈Y 51〉 = 〈Y 12〉 =

〈Y 23〉 = 〈Y 34〉 = 0, and similarly for Ỹ . Because of this, they represent the two

isolated points in (AB)-space for which these four propagators go on-shell.

Before moving-on to discuss loop integrands, we should emphasize that because

the primary focus of this chapter is the loop integrand—the sum of all the Feynman

diagrams, as a rational function—there is nothing to say about the regulation of IR-

divergent integrals such as the zero-mass box integral and the pentagons integrals

given above. The only integrals we will evaluate explicitly are all manifestly finite

(in a precise sense which will be described in section 1.4), and hence are well-defined

without any regulator. However, it is important to mention that IR-divergent inte-

grals can also easily be regulated and evaluated. In fact, the most natural way to

add a regulator is also a very physical one, given by moving out on the Coulomb

branch [67] of the theory.

II. The Loop Integrand

A simple but far-reaching consequence of writing each Feynman integral in a loop

amplitude using the dual variables is that one can meaningfully combine all integrals

appearing in a particular amplitude under the same integral sign. This leads to the

concept of the loop integrand [65]. We stress again that planarity and the use of dual

variables plays a crucial role in making this possible–for a general theory, there is no

natural origin of loop momentum space and therefore no canonical way of combining

all Feynman diagrams under a common loop integral.

It is easy to characterize the structure of the n particle 1-loop integrand for N = 4

SYM using momentum-twistor space integrals. All the terms in the integrand can be

combined defining a universal denominator containing all n physical propagators of

the form 〈AB a a+1〉. If a particular Feynman diagram has fewer propagators, then
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the numerator is chosen so as to cancel the extra propagators. The loop amplitude

is given as an an integral over a single rational function,

An =

∫
(AB)

∑
i ci〈AB Y i

1 〉〈AB Y i
2 〉 . . . 〈AB Y i

n−4〉
〈AB 12〉〈AB 23〉 . . . 〈AB n 1 n〉〈AB n 1〉

(1.2.23)

where An is the full 1-loop partial amplitude. This formula is already written using

the simplifications that arise in N = 4 SYM, in other words, it is manifestly DCI.

However, the integrand exists in any planar theory: for a theory which is not DCI,

(1.2.23) would necessarily contain also terms with powers of 〈AB I∞〉.
At higher loops, say L loops, scattering amplitudes are given as linear combination

of integrals of the form∫ L∏
i=1

d4`i

∏L
j=1N(`j)∏L
k=1 P (`k)

× 1

R(`1, . . . `L)
, (1.2.24)

where N,P, and R are products of Lorentz invariants constructed out of Feynman

propagators and which depend on the variables shown and on the external momenta.

Written in this form, there is clearly a large amount of redundancy in the definitions

of the internal loop momenta.

Since we are dealing with only planar integrals, for each Feynman diagram there

exists a dual diagram (the standard dual graph of a planar graph). Consider for

example the following four-point two-loop integral:

2

34

1

⇐⇒

3

2

1

1 24

2

34

1

(1.2.25)

Using xi to denote the dual coordinates of the external momenta and yi to denote

the internal points, one can write any planar L-loop integral in dual coordinates.

There is, however, one slight subtlety in using such a prescription to uniquely define

‘the’ integrand: while the definition of the external points xi is unique, the labeling

of the internal points is not (when L > 1). But the solution to this problem is

very simple: we are always free to completely symmetrize the integrand with respect

to all L! permutations of the internal loop-variable labels. Although we will often
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write multi-loop integrands in some particular representative choice of the labels

for internal propagators, complete-symmetrization over all permutations of indices is

always implied (including a factor of 1/L! from this symmetrization).

Consider for example the simplest two-loop integral, given above in (1.2.25). Writ-

ten in dual-coordinates, the integral would be given by∫
d4y1d

4y2

2

((x1 − x3)2)2(x2 − x4)2

(y1 − x3)2(y1 − x4)2(y1 − x1)2(y2 − x1)2(y2 − x2)2(y2 − x3)2(y1 − y2)2
+ (y1 ↔ y2),

—where the numerator was chosen in order to make the integral dual-conformally

invariant, and the factor of 1/2 in the measure reflects the complete-symmetrization.

Of course, as we will see repeatedly throughout this chapter, (multi-)loop inte-

grands are much more naturally expressed in terms of momentum-twistor variables.

To translate the integral (1.2.25) in momentum-twistor variables, we need to associate

a pair of twistors to each of the two loop variables. This we can do by making the

association

y1 ↔ (ZA, ZB) and y2 ↔ (ZC , ZD). (1.2.26)

Using this notation and the translation of propagators in terms of momentum

twistors given in (1.2.8) one finds∫
(AB,CD)

〈1234〉2〈2341〉
〈AB 41〉〈AB 12〉〈AB 23〉〈CD 23〉〈CD 34〉〈CD 41〉〈AB CD〉

,

where ‘(AB,CD)’ implies that the integration measure carries with it a factor of

1/2 from the symmetrization of (AB) ↔ (CD). We should mention here that for

3-loops, we will use (ZE, ZF ) to denote the line corresponding to y3—but of course,

a convention such as that of associating (ZAm , ZBm) with ym would be increasingly

preferable at high-loop order.

Before we leave the topic of the loop-integrand in general, we should mention

that the form of the integrand obtained via BCFW as described in Chapter 2 makes

it completely manifest that the loop-integrands in N = 4 enjoy the full Yangian

symmetry of the theory. (Of course, the choice of an integration contour which

introduces IR-divergences, such as the physical contour, breaks this symmetry.)

However, just as with the BCFW recursion relations at tree level, the formulae ob-

tained from the recursion do not enjoy manifest locality or manifest cylcic invariance.
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The restriction that we impose throughout this work, however, is that loop-integrand

be expanded in a way which makes use of only planar, local propagators. As we have

stressed a number of times, we will find amazingly simple, manifestly cyclically sym-

metric and local expressions for multi-loop amplitudes, that are significantly simpler

and more beautiful than other in the literature.

The local formulae presented in this chapter are very closely related to and influ-

enced by the concept of the leading singularities of scattering amplitudes, which we

proceed to presently describe.

III. Leading Singularities

Definition

The concept of leading singularities was introduced in the 1960’s in the context of

massive scalar theories [68]. More recently, in 2004, the same concept was modified

to accommodate massless particles and this was exploited for Yang-Mills in [69].

The original definition of ‘leading-singularity’ refers to a discontinuity of a scattering

amplitude across a singularity of the highest possible co-dimension. At 1-loop, for

example, leading singularity discontinuities are computed using a generalization of a

unitarity cut, but where four propagators are cut instead of two. Using Ai for i =

1, . . . , 4 to denote the four partial amplitudes, each with their associated momentum-

conserving δ-function, one has what can be called leading-singularity discontinuity,

(1.2.27)

=

∫ 4∏
r=1

d4η̃rd
4`rδ(`

2
r) A1({`1, η̃1}, {−`2, η̃2}, . . .)×A2({`2, η̃2}, {−`3, η̃3}, . . .)

×A3({`3, η̃3}, {−`4, η̃4}, . . .)×A4({`4, η̃4}, {−`1, η̃1}, . . .) .

Here, the integrations over the internal loop momenta are there only to remind us

that we are to sum-over all solutions to the conditions imposed by the δ-functions,
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and the integral over the Grassmann coordinate η̃i of each internal particle `i is there

to remind us that we are to sum-over the exchange of all possible internal particles—

which in the case of N = 4 means the full super-multiplet.3

This point of view of leading-singularities has been very useful and allows a com-

plete determination of 1-loop amplitudes in N = 4 and in N = 8 supergravity am-

plitudes when thought of as linear combinations of scalar box integrals with rational

coefficients. The rational coefficients can be computed using the notion of generalized

unitarity. Clearly, the notion of discontinuities is not related to the existence of an

integrand and this is the reason it works in N = 8, supergravity where an analog

of ‘the integrand’—which requires a way to combine integrals with different cyclic

orderings—has not yet been found.

As mentioned in our discussion of reduction procedures inN = 4 SYM, the expan-

sion in terms of boxes cannot give the physical integrand. The physical integrand is

defined as that which coincides with the one from Feynman diagrams, prior any to re-

duction techniques, as rational functions—and, as we will see, the Feynman diagrams

of N = 4 in a given R-charge sector are chiral.

The importance of dealing with a specific rational function is that we can inte-

grate it on any choice of contour we’d like—not just the real-contour which defines

the Feynman integral. This allows us to define a more refined notion of a leading-

singularity—the previous notion, motivated by generalized unitarity, is much coarser

version of the one we will use now. In [70], this more refined notion was introduced,

and it was used to match the full N = 4 integrand for several 1-loop and 2-loop

examples. However, in [70] the deep reason for why the idea was working, i.e., the

existence of the integrand, was not appreciated.

Whether written in ordinary momentum space, using dual-coordinates, or using

momentum-twistors, loop integrals can be thought of as complex contour integrals

on C4 with the choice of contour corresponding to R4—the real-slice. However, this

choice of contour is known to break many of the symmetries of the theory, and is

littered with IR-divergences, etc. that can be the source of confusion. From various

3Here, we are using an on-shell superspace formalism which allows us to talk about all particles

in the same super-multiplet as a single 1-particle state. We assume familiarity with this concept,

but for careful definitions, more references and applications see [50].
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viewpoints, the most natural contours would instead be those which compute the

residues of the integrand. These are always finite, are often vanishing, and make

manifest the full Yangian symmetry of the theory. We refer the reader to [71] for

a mathematical definition of residues in several complex variables; here we hope the

reader will find the definitions a natural generalization of the one-dimensional residues

with which everyone is familiar.

Let us present the definition using x variables first. Consider a contour of integra-

tions with the topology of a T 4 = (S1)4. In order to compute a particular residue one

has to choose four propagators (x−xai)2, with i = 1, . . . , 4 and integrate over the T 4,

defined by |(x − xai)| = εi where εi are small positive real numbers near one of the

solutions. The circles, S1 are parametrized by the phases and are given a particular

orientation.

The definition of a multidimensional residue is very natural if one defines variables

ui = (x− xai)2. Performing the change of variables the integral becomes∫ 4∏
i=1

dui
ui
× 1

J
× {The rest of the integrand} (1.2.28)

where now the contour becomes small circles around ui = 0. J is the Jacobian of the

change of variables. The residue is then the Jacobian times the rest of the integrand

evaluated at ui = 0. The Jacobian

J = det

(
∂(u1, u2, u3, u4)

∂(x1, x2, x3, x4)

)
, (1.2.29)

is clearly antisymmetric in the order of the columns. Different orderings can differ by

a sign and this is related to the orientation of the contour. These signs are important

Figure 1.2: A ‘quad-cut’ one-loop leading-singularity viewed as a T 4 contour-integral

which ‘encircles’ the point in C4 where four-propagators are made on-shell.
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when discussing the generalization of residue theorems to the multidimensional case,

which will play an important role momentarily.

From now on we call each individual residue a leading-singularity. As before, these

are given by the product of four on-shell tree amplitudes as shown in Figure 1.2. The

reason for the appearance of the tree amplitudes is that the residue of the poles is

computed where the four propagators vanish and therefore internal particles can be

taken on-shell.

Leading singularities at higher loop-level can also be defined as residues of a com-

plex, multidimensional integral over C4L where L is the loop order. This means that

in order to define a residue one has to define a T 4L torus as a contour of integra-

tion. Näıvely, residues can only be defined for integrals with at least 4L propagators.

However, noticing that propagators are quadratic in the loop-momentum, one can

define composite leading singularities which involve less than 4L propagators as done

in [16,70,72], using the self-intersection of curves defined by the on-shell condition to

define isolated points in C4 about which the T 4L contour should ‘encircle.’

We will not discuss composite leading singularities in detail here simply because

we will present evidence that when a special set of integrals, we call chiral integrals

with unit leading-singularities, are used, matching non-composite leading-singularities

appears to suffice to fix the entire amplitude. Moreover, we will see that only a

very small subset of non-composite leading-singularities need to be considered to

accomplish this.

Chirality of Leading Singularities

It turns out that for nonsingular external momenta, there are exactly two solutions

to the equations (x− xai)2 = 0, with i = 1, . . . , 4, and therefore two residues of each

choice of four propagators. (This has a beautiful geometric interpretation in momen-

tum twistors as we will see shortly.) This means that for an n-particle amplitude,

there are 2
(
n
4

)
(non-composite) one-loop leading-singularities.

Consider any box integral, say, an integral with two massless legs and two massive,

known as the ‘two-mass-easy’ integral:
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j � 1

i � 1

i i � 1

j � 1

j

⇔ I2me =

∫
d4x

N

(x− xi−1)2(x− xi)2(x− xj−1)2(x− xj)2
,(1.2.30)

where N is just some normalization that need not concern us presently. The equations

(x− xi−1)2 = (x− xi)2 = (x− xj−1)2 = (x− xj)2 = 0

have two solutions, and therefore a residue can be computed for each such point

separately. We’ll soon see that these two solutions are easily found and differentiated

when written with momentum-twistor variables; but for now, let us suppose the two

solutions have been found, and denote the corresponding contours T 4
1 and T 4

2 .

A very important tool that will make an appearance many times is multidimen-

sional analogue of Cauchy’s theorem, called the Global Residue Theorem (GRT). The

GRT states that—given a suitable condition at infinity—the sum over all the residues

of a given rational function vanishes (see chapter 6 of [71]). This means, in the present

case, that

resT 4
1
(I2me) + resT 4

2
(I2me) = 0 (1.2.31)

Moreover, we can choose the normalization N is such that, say resT 4
1
(I2me) = 1. Such

a choice is possible for all box integrals, following from the simple fact that all box-

integrals—having only four propagators—must have residues which are proportional

equal and opposite. We refer to this fact by saying that scalar box integrals are not

chiral. The use of the word chiral is justified by the fact that the locations of the

leading singularities, as points in C4, are mapped into each other by parity—which is

just complex conjugation. And so the corresponding contours are mapped into each

other up to orientation by parity. If use (T 4
1 )∗ to denote the parity conjugate contour

of T 4
1 , then res(T 4

1 )∗ = −resT 4
2

and the GRT implies that

resT 4
1
(I2me) = res(T 4

1 )∗(I2me). (1.2.32)

Let us now consider the leading-singularities of the one-loop integrands of N = 4

Yang-Mills. We’ll see that, as scattering amplitudes of N = 4 in a given R-charge
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sector are chiral, so are the one-loop leading-singularities of field theory! In other

words, the two residues associated with the two solutions of cutting four-propagators

are not the same. Let us see this in an example. The simplest possible example is

the five-particle MHV amplitude4. Let us consider taking the leading singularities of

the field-theory integrand which encircles the point in C4 where the following four

propagators go on-shell:

5

1 2

34

⇐⇒ (x− x1)2 = (x− x2)2 = (x− x3)2 = (x− x4)2 = 0. (1.2.33)

It was noticed already in [69] that on one solution N = 4 SYM gives the tree ampli-

tude, Atree
5 , while it vanishes on the second.

The vanishing of leading singularities can be understood from pure supersym-

metry. Consider an amplitude in the R-charge sector m. Recall the Nm−2MHV

classification of amplitudes in N = 4: under a rescaling of all η̃a variables by tη̃a, an

Nm−2MHV amplitude picks up a factor of t4m. From the definition of leading sin-

gularities as the product of tree amplitudes connected by internal on-shell states we

see that every internal line contributes (−1) to the R-charge counting coming from

the integration over η̃ variables. At 1-loop, we have four tree-amplitudes and four

propagators. If the R-charge of each tree-amplitude is mi (see Figure 1.2), then the

R-charge of the leading singularity is m1 +m2 +m3 +m4 − 4.

Returning to the five-particle example, because we are interested in a one-loop

MHV amplitude, all its leading-singularities must have m = 2. The four-particle

vertex (in the upper-left of the figure above) can only have m1 = 2 and therefore the

three-particle vertices have to satisfy m2 + m3 + m4 = 4. Since the possible values

for m for a three-particle amplitude are 1 and 2, two vertices must have m = 1 and

one must have m = 2. This leaves only the possibilities shown below:

4The only DCI object for four-particles is the zero-mass box integral. This is why both leading

singularities are equal to the tree amplitude.
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Of these three possible leading-singularities of field theory, it turns out that the first

one is equal to the five-point MHV tree-amplitude, and the latter two vanish for

generic external momenta. In fact, whenever one is considering a leading singularity

which involves 3-particle vertices, some very simple and powerful rules prove very

useful: 1. any leading singularity involving adjacent three-particle vertices with the

same R-charge will vanish for generic external momenta (momentum conservation

in this case, requires that the external particles attached to these vertices must be

collinear); and 2. leading singularities involving three-particle amplitudes are almost

always chiral—the only exception being the four-particle amplitude.

In the case of the five particle example under consideration, we see that the residue

from the contour encircling one of the two solutions to the quad-cut equations in

(1.2.33) is equal to Atree
5,MHV, while the conjugate contour integral vanishes. We will

explore this in more detail once we introduce the geometric point of view.

Dual Formulation of Leading Singularities

In the rest of the Chapter, we will make much use of the fact that leading-singularities

satisfy many relations. These relations can be seen as resulting from residue theo-

rems of the integrals which compute them. As a final comment before exploring

the connection between leading singularities and the classic enumerative problems

in the projective geometry of momentum twistor space let us briefly introduce the

Grassmannian formulation.

In [16], leading singularities were proposed as completely IR-finite quantities that

were likely to contain all the information needed to compute the S-Matrix of N = 4

SYM. Moreover, it was conjectured that all leading singularities of the theory, which

can be obtained to arbitrarily higher loop order, are computed by a contour integral

over a Grassmannian manifold5 G(m,n) called Lm,n. Here m determines the R-charge

sector of the theory under consideration.

5The Grassmannian G(m,n), a natural generalization of ordinary projective space, is the space of
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The integral was first presented in twistor space

Lm,n(Wa) =

∫
dnmCαa

vol(GLm)

∏m
α=1 δ

4|4 (
∑n

a=1CαaWa)

(1 2 · · · m)(2 3 · · · m+1) · · · (n 1 · · · m 1)
. (1.2.34)

In this presentation, residues of this integral are manifestly superconformal invariant

(that is, superconformally-invariant in ordinary spacetime). Here we have introduced

the concept of dual super twistor space W = (λ̃, µ, η̃). This particular space will not

play a significant role in this work, so we refer the interested reader to [16, 73] for

more details.

This formula can be transformed to momentum-space and then to momentum-

twistor space. Very remarkably, the formula in momentum-twistor space also turns

out to be an integral over a Grassmannian, with the MHV-tree-amplitude arising as

the Jacobian from the change of variables. Specifically,

Lm,n|momentum−space(λ, λ̃, η̃) = L2,n ×Rk,n, (1.2.35)

where k = m− 2 and

Rk,n(Za) =

∫
dnkDαa

vol(GLk)

∏k
α=1 δ

4|4 (
∑n

a=1 DαaZa)
(1 2 · · · k)(2 3 · · · k+1) · · · (n 1 · · · k 1)

. (1.2.36)

This representation in momentum twistor space makes dual superconformal invariance

manifest [17, 18]. With some more effort one can prove that residues of this formula

are also invariant under level one generators of the Yangian of the dual superconformal

algebra and hence invariant under the whole Yangian [74]. The level one generators

are nothing but the superconformal generators when passed through L2,n.

It has now been proven that all leading singularities are Yangian invariant and

that all Yangian invariants are residues of the integral (1.2.36). From the physical

point of view the problem has been solved. It might also be interesting to go further

and prove that all residues of (1.2.36) correspond to some leading singularity but we

will not discuss this issue any further.

Momentum Twistors and Schubert Problems

Statements like the number of solutions to setting four propagators to zero is two are

non-obvious from the dual space x point of view. In terms of momentum twistors,

m-dimensional planes in n-dimensions. Each point in G(m,n) can be represented by the m n-vectors

which span the plane, modulo a GLm redundancy.
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this statement turns out be a simple, classic problem of the enumerative geometry of

CP3, solved by Schubert in the 1870’s [75, 76].

Recall that an n-particle 1-loop amplitude can be written as

An =

∫
(AB)

∑
i ci〈AB Y i

1 〉〈AB Y i
2 〉 · · · 〈AB Y i

n−4〉
〈AB 12〉〈AB 23〉 · · · 〈AB n 1 n〉〈AB n 1〉

. (1.2.37)

Each one-loop leading-singularity is associated with a point in the space of loop-

momenta for which some choice of four propagators simultaneously become on-shell,

l 1

i i 1

j

j 1

kk 1

l
⇐⇒ 〈AB i i+1〉 = 〈AB j j+1〉 = 〈AB k k+1〉 = 〈AB l l+1〉 = 0;

Because the loop momentum is represented in momentum-twistors as the line (AB),

the solution to these four equations should correspond to a particular configuration

for the line (AB). We will see that for all leading-singularities which involve a three-

particle vertex (a ‘massless leg’), the two solutions to four equations above are cleanly

distinguished geometrically, allowing for a richly-chiral description of the integrand.

Before describing the full problem of putting four propagators on-shell, let us

briefly consider the geometric significance of having a single factor, say 〈AB i i+1〉,
vanish. Recall that the four-bracket 〈· · · ·〉 is nothing but the determinant of the 4×4

matrix of components of its four momentum-twistor arguments (viewed as elements

of C4). As such, 〈AB i i+1〉 = 0 if and only if the vectors ZA, ZB, Zi, Zi+1 are not

linearly independent, implying the existence of some linear relation among the four

twistors of the form αAZA + αBZB + αiZi + αi+1Zi+1 = 0. Trivially rearranging we

see that

αAZA + αBZB = −(αiZi + αi+1Zi+1), (1.2.38)

which we may read as saying there is a point on the line spanned by ZA, ZB—namely

(αAZA + αBZB)—which lies along the line spanned by Zi, Zi+1. Which is to say, the

lines (AB) and (ZiZi+1) intersect; and because two intersecting lines describe a plane,

we say that the four points ZA, ZB, Zi, Zi+1 are coplanar.

Therefore, the problem of finding the particular lines (AB) for which four prop-

agators simultaneously vanish is equivalent to finding the set of lines in CP3 which

34



simultaneously intersect four given lines (which are presumed fixed by the external

data). The number of solutions to this problem is one of the classic examples of the

enumerative geometry developed by Schubert in the 1870’s. For this reason we call

these problems Schubert problems.

The answer to the number of lines which intersect a given four turns out to be

remarkably robust: provided the four lines are sufficiently generic, there are always

2 solutions, and an infinite number otherwise.6 (An example of a non-generic con-

figuration would be one for which three or more of the lines were coplanar; these are

never found for generic external momenta.)

Schubert derived the number of such solutions with an argument that is decep-

tively simple. The idea is to consider a particular configuration where it is easy to

count the number of solutions. Schubert intuited that the answers to such enumer-

ative questions should be topological in nature, and therefore should not depend on

the particular configuration in question. Therefore, one can analyze the most conve-

nient possible configuration (for which the number of solutions is not infinite) and the

answer found for that case, should be the answer in general. Said another way, the

number of solutions to a given Schubert problem should not change when a particular

special configuration is smoothly moved into a more general position.

Perhaps the easiest configuration for which we can count the number of solutions

to the Schubert problem of finding the lines (AB) that intersect four given lines in

CP3 is the zero-mass configuration; it is so-called because it is the configuration which

corresponds to the box integral with zero of its four corners massive,

2 3

41

⇐⇒
∫

(AB)

〈1234〉〈2341〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 41〉

,

which is an integral we have seen before. Explicitly, we would like to find all the

lines (AB) which intersect all the four lines (12), (23), (34), and (41). This problem

6To be precise, we must count solutions with multiplicity; however, for a generic set of lines in

the problem, the 2 solutions will always be distinct.
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is indeed easy to solve, and the two solutions are drawn below.

2 3

41

⇔

(AB) = (24)

⇔

2 3

41

(AB) = (13)

Clearly, because (12)
⋂

(23) ⊃ Z2 and (34)
⋂

(41) ⊃ Z4, the line (AB) = (24) inter-

sects all four lines, as desired; this is drawn in red above. The same argument also

applies to the second solution, the line (AB) = (13), drawn in blue above. Also in

this figure, we have indicated which leading-singularities have non-vanishing support

on the corresponding (complex) point in the space of loop-momenta which corre-

sponds to the particular line (AB). As explained above, each three-particle MHV

(m = 2)—colored blue in the figure above—or MHV (m = 1)—colored white—vertex

of a leading singularity vanishes for every leading-singularity, and so which of the

2 three-particle amplitudes is non-vanishing for this value of the loop-momentum

determines the chirality of the contour.

As a convenient way to gain some intuition about momentum-twistor geometry

that will prove useful in the rest of this chapter and to establish some of the notation

that will be ubiquitous throughout, we will study each of the 1-loop Schubert prob-

lems in turn.

One-Mass Schubert Problem:

A ‘one-mass’ 1-loop leading singularity is one for which three of the four legs are

massless, and is associated with the following archetypical box-integral:

2 3

4
5

1

⇐⇒
∫

(AB)

〈12 34〉〈23 45〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉

. (1.2.39)

In momentum-twistor space, the leading-singularities of this integral are associated

with the lines (AB) which intersect the four lines (12), (23), (34), and (45). Consid-

ering the configuration of lines, it is not hard to find the two configurations which
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solve this Schubert problem:

2 3

45

1

⇔

(AB) = (24)

⇔

2 3

45

1

(AB) = (123)
⋂

(345)

As before, because (12)
⋂

(23) ⊃ Z2 and (34)
⋂

(45) ⊃ Z4, the line (AB) = (24)

intersects all four lines. The second solution, however, is new. This solution is drawn

in blue in the figure above, and represents the line of the intersection of the planes

spanned by (Z1, Z2, Z3) ≡ (123) and (Z3, Z4, Z5) ≡ (345). Although geometrically

clear, it is worthwhile to recall that any generic line in the plane (123) will intersect

the lines (12), (23), and (31), and any generic line in the plane (345) will intersect the

lines (34), (45), and (53). Therefore, the line (AB) = (123)
⋂

(345) will intersect all

four lines, as required.

Similar to the case discussed in the context of the pentagon with a ‘wavy-line’

numerator (1.2.21), the line (123)
⋂

(345) can easily be expanded in terms of ordinary

bitwistors as: (23)〈1 345〉+ (31)〈2 345〉. This follows from a more general rule which

review presently.

On the Intersection of Planes in Twistor-Space

In general, the intersection of the planes (abc)
⋂

(def) is can be canonically ex-

panded in either of the following ways:

(abc)
⋂

(def) = ZaZb〈c d e f〉+ ZbZc〈a d e f〉+ ZcZa〈b d e f〉;

= 〈a b c d〉ZeZf + 〈a b c f〉ZdZe + 〈a b c e〉ZfZd.
(1.2.40)

Alternatively, when expanding a four-bracket of the form 〈xy (abc)
⋂

(def)〉, the man-

ifest dependence on the two planes can be preserved at the cost of breaking the

manifest dependence on the line (xy), as follows:

〈xy (abc)
⋂

(def)〉 = 〈x abc〉〈y def〉 − 〈y abc〉〈x def〉. (1.2.41)

Two-Mass-Easy Schubert Problem
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The two-mass-easy Schubert problem is associated with the following one-loop

archetypical box-integral,

2
3

4

5
6

1

⇐⇒
∫

(AB)

〈123 5〉〈2 345〉
〈AB 12〉〈AB 23〉〈AB 45〉〈AB 56〉

, (1.2.42)

which has leading singularities supported on the configuration (AB) which intersect

all four of the lines (12), (23), (45), and (56). The two solutions are essentially the

same as for the one-mass Schubert problem, and are illustrated in the Figure below:

2 3

4

56

1

⇔

(AB) = (25)

⇔

2 3

4

56

1

(AB) = (123)
⋂

(456)

Once again, there is a very easy solution, in this case the line (AB) = (25) which

obviously intersects the four lines. And using the same reasoning as int the one-mass

Schubert problem, it is easy to see that the second solution is simply the intersection

of the planes (123)
⋂

(456).

Two-Mass-Hard Schubert Problem

The two-mass-hard Schubert problem differs from the two-mass easy problem in

that the two massless corners are adjacent—making the Schubert problem slightly less

‘easy’ (which at least partially justifies the name). It is associated with the following

archetypical one-loop integral,

6

1
2

3
4

5

⇐⇒
∫

(AB)

〈12 34〉〈23 56〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 56〉

, (1.2.43)

and has leading singularities supported where the line (AB) intersects the four lines
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(12), (23), (34), and (56). The two solutions are shown in the Figure below:

6

1 2

34

5

⇔

(AB) = (123)
⋂

(356)

⇔

6

1 2

34

5

(AB) = (562)
⋂

(234)

Let us briefly discuss the first of the two solutions. Here, the line (AB) = (123)
⋂

(356)

intersects the lines (23), (34) trivially because Z3 ⊂ (123)
⋂

(356), and it intersects

the lines (12) and (56) because any generic line in the plane (123) intersects (12), and

any generic line in the plane (356) intersects (56).

Three-Mass Schubert Problem

The last Schubert problem that involves a massless corner is known as the ‘three-

mass’ problem, and is associated with the following archetypical one-loop integral:

7

1
2

3

45

6

⇐⇒
∫

(AB)

〈1 (245)
⋂

(672) 3〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉

. (1.2.44)

This integral is the most general one which involves a massless corner, and supports

leadings singularities where the line (AB) intersects the four lines (12), (23), (45), and

(67). The two solutions are indicated in the Figure below.

7

1 2

3

45

6

⇔

(AB) =
(

(123)
⋂

(45), (67)
⋂

(123)
)

⇔

7

1 2

3

45

6

(AB) = (245)
⋂

(672)

Here, the notation ‘(ab)
⋂

(cde)’ has been used to indicate the point in twistor-space

where the line (ab) intersects the plane (cde). We will discuss the expansion of such
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geometrically-defined objects more generally at the end of this subsection; for now,

let us merely quote the result:

(ab)
⋂

(cde) ≡ Za〈b c d e〉+ Zb〈c d e a〉 = −
(
Zc〈d e a b〉+ Zd〈e a b c〉+ Ze〈a b c d〉

)
;

and similarly,

(cde)
⋂

(ab) ≡ Zc〈d e a b〉+ Zd〈e a b c〉+ Ze〈a b c d〉 = −
(
Za〈b c d e〉+ Zb〈c d e a〉

)
;

so that (ab)
⋂

(cde) = −(cde)
⋂

(ab).

On Schouten-Identities and Projective Geometry

Perhaps the single most useful identity for momentum-twistor geometry is known

as ‘the five-term identity:’ any arbitrary set of five twistors {Za, Zb, Zc, Zd, Ze} will

satisfy the following identity,

Za〈b c d e〉+ Zb〈c d e a〉+ Zc〈d e a b〉+ Zd〈e a b c〉+ Ze〈a b c d〉 = 0. (1.2.45)

This identity merely reflects the general solution to a homogeneous, linear system of

equations in four-variables, and as such, has analogues in any number of dimensions.

For example, in two dimensions, we have that for any {λa, λb, λc} ⊂ C2, there is an

identity

λa〈b c〉+ λb〈c a〉+ λc〈a b〉 = 0, (1.2.46)

where we have naturally extended the definition of ‘〈· ·〉’ to be the determinant of the

components of the corresponding two-vectors. This two-dimensional identity repre-

sents the general solution to a homogeneous, linear system of equations in 2 unknowns,

and by contracting it with a fourth two-vector λd, we obtain the familiar ‘Schouten

identity:’

〈d a〉〈b c〉+ 〈d b〉〈c a〉+ 〈d c〉〈a b〉 = 0. (1.2.47)

This familiar identity of course has an analogue descending from equation (1.2.45).

By contracting equation (1.2.45) with any arbitrary plane (f g h), we find the following

5-term identity which we will therefore call ‘a Schouten identity:’

〈f g h a〉〈b c d e〉+〈f g h b〉〈c d e a〉+〈f g h c〉〈d e a b〉+〈f g h d〉〈e a b c〉+〈f g h e〉〈a b c d〉 = 0.
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In addition to being quite useful for simplifying formulae, equation (1.2.45) can

be trivially re-arranged to yield the solutions to some of the most often-encountered

problems in momentum-twistor geometry:

1. the expansion of any arbitrary twistor Za into a basis composed of any four

linearly-independent twistors {Zb, Zc, Zd, Ze}:

Za〈b c d e〉 = −
(
Zb〈c d e a〉+ Zc〈d e a b〉+ Zd〈e a b c〉+ Ze〈a b c d〉

)
;

2. the point along the line (ab) which intersects the plane (cde):

(ab)
⋂

(cde) ≡ Za〈b c d e〉+Zb〈c d e a〉 = −
(
Zc〈d e a b〉+Zd〈e a b c〉+Ze〈a b c d〉

)
;

3. the point on the plane (abc) which intersects the line (de):

(abc)
⋂

(de) ≡ Za〈b c d e〉+Zb〈c d e a〉+Zc〈d e a b〉 = −
(
Zd〈e a b c〉+Ze〈a b c d〉

)
;

and so-on.

Matching All Leading Singularities

We close this introductory section to momentum twistor integrals and leading singu-

larities with a physical point. We have seen that the leading singularities of N = 4

SYM are chiral while those of scalar boxes are non-chiral. This means that if we

want to construct the integrand of the theory it is impossible to do it using scalar

boxes. Momentum twistors already give the solution to this problem. Since leading

singularities are Yangian invariant and in particular dual conformal invariant (DCI),

one should use the reduction procedure to go down to tensor pentagons and boxes

and not any further. Even going down to scalar pentagons would be doing something

brutal to the manifestly DCI structure of the amplitudes.

In the rest of the Chapter, we will find that by using a special class of integrals

known as chiral unit leading singularity integrals, the full integrand of scattering

amplitudes can be reproduced yielding to stunningly simple forms.
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1.3 Chiral Integrals with Unit Leading Singularities

In the previous section we showed that the usual constructions of, say, one-loop

amplitudes in N = 4 SYM as a linear combination of scalar boxes cannot possibly

be the physical integrand. Of course, the answer obtained from scalar boxes gives

the same integrals as the one originally defined from Feynman diagrams. However,

as we will see, insisting in obtaining the physical integral leads to stunningly simple

formulas for one and higher loop amplitudes. These new formulas are possible thanks

to the use of a new suit of integrals with very special properties. These are chiral

integrals with unit leading singularities.

I. Integrals with Unit Leading Singularities, or Pure Integrals

Let us start by given a definition of integrals with unit leading singularities. As we

will see, it is appropriate to call these pure integrals.

Consider a particular DCI L-loop integral and compute all possible residues. If all

non-vanishing residues are the same up to a sign then the integral can be normalized

so that all residues are ±1 or 0. When this is done, the integral is said to have unit

leading singularities or to be a pure integral.

We already encountered examples of pure integrals in the previous section. The

zero mass box (1.2.15), the general scalar box (1.2.16) (properly normalized), and the

pentagon integrals in (1.2.20) and (1.2.21).

Using the global residue theorem, we proved in section 2 that boxes are pure

integrals. However, it is not obvious that the pentagons in (1.2.20) and (1.2.21)

satisfy the requirement.

Consider first pentagons of the first class∫
(AB)

〈AB 13〉N
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉

(1.3.48)

where N = 〈12 45〉〈23 45〉.

In order to see that all non-vanishing leading singularities are equal up to a sign

let us use a global residue theorem. In section 2 we gave a very imprecise definition of

the global residue theorem (GRT) which was enough for the purposes of that section.
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Here we have to be more precise. The GRT states that given a choice of a map

f : C4 → C4 made from polynomial factors in the denominator, the sum over all the

residues associated with the zeroes of the map vanishes.

In the present case, consider the map given by f = (f1, f2, f3, f4) where

f1 = 〈AB 12〉, f2 = 〈AB 23〉, f3 = 〈AB 34〉, f4 = 〈AB 45〉〈AB 51〉.

It is easy to see that the map f has four zeroes (see section 2 for more details). The

GRT assures that the sum over the four residues vanishes. How can we prove that

residues are equal if the GRT only gives relations among four residues?

The answer has to do with our choice of numerator. Consider the value of 〈AB 13〉
on the four zeroes. Each zero is a line which is the solution to some Schubert problem7.

The four solutions are the lines (24), (123)
⋂

(345), (13) and (512)
⋂

(234) (see the

end of the section or section 2 for the notation). It is a simple exercise to show

that 〈AB 13〉 vanishes on the second and third solutions and it is non zero on the

first and fourth. This means that the GRT implies that two leading singularities

are equal and opposite in sign. The first is one of the two solutions to 〈AB 12〉 =

〈AB 23〉 = 〈AB 34〉 = 〈AB 45〉 = 0 while the fourth is one of the two solutions to

〈AB 12〉 = 〈AB 23〉 = 〈AB 34〉 = 〈AB 51〉 = 0. Let us denote these non-vanishing

residues by r(12),(23),(34),(45) and r(12),(23),(34),(51) respectively. Therefore the GRT states

that

(0 + r(12),(23),(34),(45)) + (r(12),(23),(34),(51) + 0) = 0

which implies the equality of the residues up a sign.

The pentagon integral as 10 leading singularities. This means that more work is

needed to show that it has unit leading singularity. Consider a GRT associated to

the map

f1 = 〈AB 12〉〈AB 51〉, f2 = 〈AB 23〉, f3 = 〈AB 34〉, f4 = 〈AB 45〉.

Once again, there are four zeroes of this map. Two of them are shared with the map

we constructed before, i.e., (24) and (123)
⋂

(345). The two new solutions are (35)

7A Schubert problem was defined in section 2 as the projective geometry problem of finding lines

that intersect four given lines which can be in special configurations called one-mass, two-mass-easy,

two-mass-hard, and three-mass, as well as in generic positions which we call four-mass configurations.
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and (234)
⋂

(451). As before, the numerator vanishes on (123)
⋂

(345). Very nicely,

it also vanishes on (35). We can denote by r(12),(23),(34),(45) and r(51),(23),(34),(45) the

corresponding non-zero residues. Therefore the GRT gives

(0 + r(12),(23),(34),(45)) + (r(51),(23),(34),(45) + 0) = 0

This means that the GRT sets equal the non vanishing leading singularity in 〈AB 51〉 =

〈AB 23〉 = 〈AB 34〉 = 〈AB 45〉 = 0 with the ones we found before.

This procedure can be continued three more times by shifting the labels in the

map by one. We leave it as an exercise for the reader to verify that in every case, the

numerator vanishes on one solution implying that the GRT sets all non-zero leading

singularities to be the same.

In order to compute the normalization and also to show how the GRT makes

obvious statements that require computations to be verified, even in this trivial case,

let us compute explicitly the two residues in the first GRT discussed above.

Consider the ones in the first step. In other words, let’s evaluate the residue on

the solution (24) to the system 〈AB 12〉 = 〈AB 23〉 = 〈AB 34〉 = 〈AB 45〉 = 0. The

residue is given by

N
〈2413〉

〈2451〉(〈1234〉〈2345〉)
(1.3.49)

Here the terms in parenthesis are the Jacobian in the residue computation. A geomet-

ric way to see that the Jacobian has to contain the factors 〈1234〉 and 〈2345〉 is that on

the special configurations where either one of them vanishes, the number of solutions

to the Schubert problem becomes infinite. For example, consider the configuration

where 〈1234〉 = 0. In this case, any line on the plane (123) which passes through

Z4 solves the Schubert problem. Using the scaling of each momentum twistor, the

Jacobian must be what we found.

In order to have a properly normalized integral we require (1.3.49) to be equal to

one. This means that N = 〈5124〉〈2345〉 which is the factor first given in section 2 in

(1.2.20).

Consider now the residue coming the second Schubert problem, 〈AB 12〉 = 〈AB 23〉 =

〈AB 34〉 = 〈AB 51〉 = 0. The non-zero residue is associated with the solution

(512)
⋂

(234). This is a one-mass Schubert problem and one explicit form of ZA

44



and ZB was given in section 2. Let us use ZA = Z2 and ZB = −〈1234〉Z5 + 〈5234〉Z1

and compute the residue. The Jacobian is the same as before but with labels shifted

back by one. The residue is then

N
〈1234〉〈2513〉

〈2345〉〈5124〉(〈1234〉〈2513〉)
. (1.3.50)

Using the normalization derived above this quantity equals one as expected.

In section 2 we also presented a second pentagon integral which differs from the

first one only in the choice of numerator. We leave it as an exercise for the reader to

repeat the analysis done here and show that with the new numerator this is a pure

integral8. Let us rewrite the integral here with the numerator given in geometric form∫
(AB)

Ñ
〈AB (512)

⋂
(234)〉

〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉
. (1.3.51)

Now it should be obvious that the comment made in section 2 is true. The special

numerators are made from lines, (13) and (512)
⋂

(234), which are the two solutions

to a Schubert problem.

In section 4 we study a less trivial example; a hexagon integral where the special

choice of numerator also allows the use of the GRT to show that all non-vanishing

residues are equal. In the hexagon case, checking the statement that all residues are

equal algebraically requires many applications of 4-bracket Schouten identities.

Basic Diagrammatic Notation

We find it convenient to introduce a diagrammatic representation for numerators.

Note that with our definition of dual variables pa = xa − xa−1 and of momentum

twistors xa ↔ (Za, Za+1), there is a natural diagrammatic relation between loop inte-

grals and momentum twistor configurations. Consider a general one-loop amplitude

as a polygon with n-sides. Attached to each vertex there is some momentum pa. In

momentum twistor space, we also have an n-sided polygon and attached to each ver-

tex there is a momentum twisor Za. Following the intuitive correspondence between

the two diagrams we are led to denote denominators (propagators) as lines connecting

8Of course, one could simply translate the whole problem into dual momentum twistor space

to find exactly the same integral as before. However, it is still an instructive exercise to do it in

momentum twistor space.
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points depending on their geometric configuration. These are denoted by solid lines.

In order to distinguish numerators, we also introduce dashed and wavy lines.

Dashed lines: Numerators which correspond to factors of the form 〈AB e f〉, where

(ef) represents a line in momentum twistor space specified by two momentum twistors

Ze and Zf is represented by a dashed line connecting points e and f as in

2

3

45

1

=

∫
(AB)

〈AB 13〉〈1245〉〈2345〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉

(1.3.52)

Wavy lines: We also allow points to represent dual twistors. In this case the second

class of numerators constructed as intersection of planes can also be represented by a

line connecting two points. In order to distinguish this from the previous case we use

wavy lines. In the example where the numerator corresponds to the line (512)
⋂

(234)

or in dual twistors terminology to the point (13)W , one has

2

3

45

1

=

∫
(AB)

〈AB (512)
⋂

(234)〉〈1345〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉

(1.3.53)

II. Chiral Integrals

From the discussion of the pentagons, it is clear that there is a striking difference

between a pentagon with a special numerator and plain scalar box integrals. Even

though both kind of objects can be made pure integrals, each Schubert problem in

the case of the pentagon has a single non-vanishing residue while in the boxes both

solutions give rise to a residue.

When an integral has the property that the residues associated to at least one of

its Schubert problems are not the same, we say that the integral is chiral. The reason

for the terminology comes from the fact that the two contours associated to a given
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Schubert problem are exchanged under parity (see section 2 for more details). This

means that one can have chiral, pure, or chiral and pure integrals.

At one-loop, one can have an even more especial class of integrals. When an

integral has a numerator where at most one of the solutions to each Schubert problem

gives a non-zero residue then we say that the integral is completely chiral.

Let us give two more examples in this section. The first is the most general class

of chiral pure pentagon integrals. This is an integral where only two of the five legs

needs to be massless. Moreover, it is clear that in order to write a special numerator

the two massless legs cannot be adjacent. The claim is that the following family of

integrals is (completely) chiral and pure.

i + 1 j - 1

j

j + 1

kk + 1

i - 1

i

=

∫
(AB)

〈AB (i 1 i i+1)
⋂

(j 1 j j+1)〉〈i j k k+1〉
〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈AB k k+1〉

(1.3.54)

In this case, the GRT can also be applied to show that all residues are the same. In

order to show that the normalization gives unit leading singularities, identities of the

form discussed at the end of this section are needed.

Next, let us give a six-point two-loop example. Consider the following integral

k

li

j

=


〈AB (i 1 i i+1)

⋂
(j 1 j j+1)〉〈i j k l〉

〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈AB CD〉
× 〈CD (k 1 k k+1)

⋂
(l 1 l l+1)〉

〈CD k 1k〉〈CD k k+1〉〈CD l 1 l〉〈CD l l+1〉


This integral has the structure of two of the general pentagon integrals joined by

the all massive edge. Consider a residue of the full integral over C8 which computes

a residue of the pentagon on the left. The contour integral in ZA and ZB is the

same as before except that the normalization is different and therefore the residue

is not equal to one. The residue must then be the ration of the two normalizations,

i.e., 〈i j k l〉/〈i j CD〉. Plugging this in the integral over ZC and ZD we now find a

properly normalized integral and therefore the remaining part of residue computation

gives one.
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One might be tempted at this point to think that all completely chiral integrals

are pure. In section 4, we describe in detail the example of a hexagon with a wavy

line and a dashed line in the numerator. This integral is in fact completely chiral but

it is not pure.

III. Evaluation of Pure Integrals

Evaluating integrals explicitly can be very hard and many techniques have been devel-

oped for this purpose. At one-loop, all integrals appearing in the standard reduction

techniques are known analytically. At higher loops, very few examples have been

evaluated analytically. Many of our chiral pure integrals turn out to be completely

IR finite and therefore their evaluation can be made directly four dimensions without

any regulators.

Consider the family of pentagon integrals discussed above. The evaluation of the

integrals for generic j and k gives

I5(i, j, k) =

∫
(AB)

〈AB (i 1 i i+1)
⋂

(j 1 j j+1)〉〈i j k k+1〉
〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈AB k k+1〉

, (1.3.55)

= log (uj,k,i−1,j−1) log (uk,i−1,i,j) + Li2 (1− uj,k,i−1,j−1) + Li2 (1− uk,,i−1,i,j)

− Li2 (1− uj,k,i,j−1)− Li2 (1− ui,j−1,k,i−1) + Li2 (1− ui,j−1,j,i−1)

where

ui,j,k,l ≡
〈i i+1 j j+1〉〈k k+1 l l+1〉
〈l l+1 j j+1〉〈k k+1 i i+1〉

(1.3.56)

For special values of j and k the integral becomes IR-divergent and a regulator is

needed. We postpone this discussion to section 4.

The reason for presenting the explicit form of the pentagon integrals is to note a

general fact about pure integrals: The explicit evaluation of the integrals must be a

linear combination of functions known as iterated integrals, such as polylogarithms,

all with coefficient one.

It is striking that the coefficients do not depend on kinematic invariants but this

is a consequence of having unit leading singularities. This is the motivation for

the terminology: pure integrals. Roughly speaking, the coefficients of the different

polylogarithms are the leading singularities of the integrals. Having a pure integral

ensures that no coefficient can depend on kinematical invariants.
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Once again, the hexagon with a wavy and a dashed line in the numerator given in

section 4 will be an example of a completely chiral and IR finite integral which is not

pure and its evaluation gives products of logarithms with different coefficients that

depend on kinematic invariants.

IV. Example: 1-Loop MHV Amplitudes

Up until know we have been studying integrals individually. This is a good point to

actually use them to determine the full physical integral of the simplest set of ampli-

tudes. These are one-loop MHV amplitudes. Historically, one-loop MHV amplitudes

were the very first set of amplitudes to be computed for all n as a linear combination

of scalar box integrals [12]. It was found that the answer is very simple; an overall

prefactor, proportional to the tree-level amplitude, and a sum over all one-mass and

two-mass-easy box integrals with coefficient one, when properly normalized. In our

modern terminology, the normalization was such that only pure integrals appear. It

was realized that this form of the amplitude was not equivalent to the Feynman di-

agram amplitude as an expansion in the dimensional regularization parameter but

it differs from it only at O(ε). In our language this is nothing but the fact that an

expansion in terms of box integrals cannot possible reproduce the physical integrand

of the theory as stressed a number of times already.

Now that we have a set of chiral pure integrals, the natural question is how much

more complicated the amplitude will look like if written in a form that matches the

physical integrand. It turns out that the full integrand is stunningly simple

A1−loop
MHV =

∑
i<j

j

n1

i

(1.3.57)

where the propagator 〈AB n 1〉 is present in all terms. Note that not all integrals in

the sum are chiral pure integrals. There are boundary terms which are box integrals.

Consider for example j = i + 1. In this case the numerator cancels one of the

propagators leaving us with the box. We give no derivation for this formula here and
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postpone a more detailed discussion to section 6. A final comment, even though the

line (n1) seems especial, the amplitude is cyclic as it should be!

1.4 Finite Integrals

We have seen that the chiral integrals with unit leading singularities, naturally written

in momentum-twistor space, provide a natural basis of objects to express the loop

integrand. In this section we will see that they have another beautiful property—most

such integrals are manifestly infrared finite.

Let us begin by illustrating with a simple example. Consider a general 1-loop

integral for 6 particles, which we can write as∫
(AB)

〈ABX〉〈AB Y 〉
〈AB 12〉〈AB 23〉 · · · 〈AB 61〉

. (1.4.58)

Here X, Y are generic bitwistors. Of course, like almost all generic integrals with

massless external legs, this integral is infrared divergent. Recall that the infrared

divergences arise when the loop momentum l become collinear to a massless external

momentum pa, i.e. when l · pa → 0. The extra soft logarithmic divergence can be

thought of as an even more special case of this situation, where the loop momentum

becomes collinear to two consecutive momenta so that l · pa, l · pa+1 → 0. In the dual

co-ordinate space, the collinear divergence arises when the loop integration point x

approaches one of the edges of the Wilson loop, connecting xa with xa+1, and of

course the extra soft divergence occurs when x gets close to both the lines (xa−1 xa)

as well as (xa xa+1), that is when it is close to the point xa itself. But again the IR-

divergence is fundamentally a collinear one, with the soft divergence being thought

of as “double-collinear”.

We can finally describe these IR-divergent regions in momentum-twistor language.

The collinear divergence associated with l ·pa → 0 corresponds to the region where the

line (AB) in momentum twistor space, associated to the loop integration point, passes

through Za while lying the in the plane (Za−1ZaZa+1). Note that this region is quite

nicely parity invariant. Recall that in momentum-twistor variables, parity is just the

poincare duality, and exchanges the point ZI
a with the plane WaI = (Za−1ZaZa+1)I
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naturally paired with Za. Thus, the condition is that the line (AB)IJ passes through

ZI
a , and also that the dual line (AB)IJ passes through WaI .

While a generic integral will indeed be IR-divergent, we see a simple way of getting

completely IR finite integrals. If the bitwistors X, Y are chosen to have a zero in all

the dangerous IR-divergent configurations, then the integrals will be finite. This is

very simple to achieve. For instance, let us choose X = (13) and Y = (46); we can

write out the integral again as,

1

2

34

5

6

=

∫
(AB)

〈AB 13〉〈AB 46〉〈5 6 1 2〉〈2 3 4 5〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 56〉〈AB 61〉

(1.4.59)

Let us check that the numerator has a zero in all the IR-divergent regions. Consider

first collinearity with p3. We need to see what the numerator does when (AB) passes

through Z3 while lying in the plane (234). However, the numerator factor 〈AB 13〉
vanishes simply if (AB) passes through 1 or 3, regardless of whether or not it also

happens to lie in the plane (234). In this way, we can see that the collinear divergences

with 1, 3, 4, 6 are all killed by the numerator. Next, consider what happens when (AB)

passes through 2, lying in the plane (123). Since (AB) lies in (123), it necessarily

intersects the line (13), and therefore, 〈AB 13〉 = 0, regardless of whether or not

(AB) also happens to pass through 2. A completely analogous argument holds for

the collinear divergence associated with particle 5.

Thus we see that with this numerator, all the regions with collinear divergences

are killed by the numerator factors, and the integral is completely IR-finite! There are

other choices for X, Y that will do the same job; our argument above also holds if one

or both of the numerator factors (13), (46) were replaced by their parity-conjugates,

(612)
⋂

(234) and (345)
⋂

(561), respectively—changing one or more of the dashed-

lines in (1.4.59) to wavy-lines.

Now, these finite integrals are clearly chiral. And when the two numerators are of

the same kind, they have, quite nicely and non-trivially, unit leading singularities. As

usual, verifying by direct computation requires manipulating non-trivial sequences of

4-bracket Schouten identities, but the result follows much more transparently from
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an application of the global residue theorem to this integral. Consider for instance

the GRT following from choosing f1 = 〈AB 34〉, f2 = 〈AB 45〉, f3 = 〈AB 56〉 and

f4 = 〈AB 61〉〈AB 12〉〈AB 23〉. We have three different Schubert problems to con-

sider, with the lines (34), (45), (56) combined with (61), (12), (23). Consider first the

Schubert problem with the four lines (34), (45), (56), (61). This is a one-mass config-

uration, and it is easy to see that the numerator kills the solution where (AB) is the

line (46), only leaving the solution passing through 5. Let us call this non-vanishing

residue r(34),(45),(56),(61). Similarly, for the Schubert problem with lines (34), (45), (56)

and (12), the numerator kills the solution passing through 4 while leaving the one

passing through 5; we can call this single non-vanishing residue r(34),(45),(56),(12). Fi-

nally, for the Schubert problem with lines (34), (45), (56), (23), we can see that both

solutions—the line 35 as well the line passing through 4—are killed by the numerator,

so both of these residues vanish. The GRT then tells us that

(
0 + r(34),(45),(56),(61)

)
+
(
0 + r(34),(45),(56),(12)

)
+ (0 + 0) = 0

→ r(34),(45),(56),(61) = −r(34),(45),(56),(12)

(1.4.60)

It is possible to repeat this argument for other GRT’s, finding a sequence of 2-term

identities relating all the non-vanishing residues, showing that the integral is not only

chiral but has unit leading singularities. Thus, we see in this instance something that

can be checked also to be true for all other residues: the integral is completely chiral;

at most one of the two solutions to each Schubert problem are non-vanishing, and

sometimes both vanish.

Given that this integral has unit leading singularities, it is instructive to expand

it in terms of boxes, which will then also have unit coefficients. This simple, finite
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momentum-twistor integral in fact expands into the sum of nine boxes:

1

2

34

5

6

=



6
1

2

3

45

+
4

5
6

1

23

+

5
6

1

2
3

4

+

6
1

2

3
4

5

+

5

6
1

2

3
4

−
5

6
1

2
3

4

−
4

5 6

1

23

−

5
6

1

2

3
4

−

6
1

2

3

4
5

The seemingly complicated combinations of a large number of boxes have been en-

countered before in the computation of finite 1-loop objects, such as the NMHV

ratio function [53,57,77,78] —the ratio function for the full superamplitude is simply

defined to be

R1−loop
n,k = A1−loop

n,k −Atree
n,k · A

1−loop
n,k=2 . (1.4.61)

Note that in the box expansion, every integral is individually IR-divergent, the IR-

divergences only canceling in the sum. Moreover, the boxes themselves are not dual

conformal invariant—again, only become dual conformal invariant in the sum. But

since the hexagon in which we are interested is manifestly finite and dual conformal

invariant9, we can evaluate it directly—for example, using Feynman parameterization

9In the literature on ratio functions, some authors have found what were claimed to be “finite”

combinations of boxes that did not end up being dual-conformal invariant. In every case, the

combinations of boxes in question were not honestly IR-finite: the divergences from different regions

of the integration contour canceling between each-other. Such a cancellation is is highly regulator-

dependent, and is not very meaningful.
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directly without any regularization. A straightforward computation shows,

1

2

34

5

6

= Li2(1−u1)+Li2(1−u2)+Li2(1−u3)+log(u3)log(u1)−π
2

3
, (1.4.62)

where the ui are the familiar six-point cross-ratios:

u1 ≡
〈12 34〉〈45 61〉
〈12 45〉〈34 61〉

, u2 ≡
〈23 45〉〈56 12〉
〈23 56〉〈45 12〉

, and u3 ≡
〈34 56〉〈61 23〉
〈34 61〉〈56 23〉

. (1.4.63)

It is easy to find examples of integrals which are finite and chiral, but which do not

have unit leading singularities. For example, changing one the ‘dashed-line’ numerator

factor 〈AB 13〉 in the integral above to a ‘wavy-line’ 〈AB (612)
⋂

(234)〉 will leave the

integral finite and chiral, but spoil the equality of its leading singularities. Indeed, as

it is also finite and dual-conformally invariant, the ‘mixed’ hexagon integral can also

be evaluated without any regularization, and one finds that,

1

2

34

5

6

=

∫
(AB)

〈AB (612)
⋂

(234)〉〈AB 46〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 56〉〈AB 61〉

=

(
〈1234〉

〈1345〉〈1235〉

)
log(u1) log(u2) +

(
〈6134〉

〈1345〉〈5613〉

)
log(u3) log(u1)

+

(
〈6123〉

〈1235〉〈3561〉

)
log(u2) log(u3).

In order for GRTs to yield the two-term identities necessary to guarantee that all

the leading singularities are equal up-to a sign, the numerator must force vanishing

residues for all but two Schubert problems. In the case of the ‘mixed-numerator’

hexagon integral, for example, GRTs can only be used to show that the coefficients

of the logarithms sum to zero:(
〈1234〉

〈1345〉〈1235〉

)
+

(
〈6134〉

〈1345〉〈5613〉

)
+

(
〈6123〉

〈1235〉〈3561〉

)
= 0. (1.4.64)

It is clear that these chiral momentum-twistor integrals with unit leading singular-

ities give us the simplest and most transparent way of talking about finite integrals.
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Just as a trivial example, the 6-point NMHV ratio function, which is typically

written in terms of all 15 six-point box-integrals, with many R-invariants as coeffi-

cients, is given simply by

R1−loop
NMHV =

post−
integration

(
1 + g + g2

)


1

2

34

5

6

× ([2 3 4 5 6]− [3 4 5 6 1] + [4 5 6 1 2])


, (1.4.65)

where g : i 7→ i + 1 acts on both the integrand and its coefficient. Also recall the

definition of the R-invariants given in section 1,

[a b c d e] =
δ0|4(ηa〈b c d e〉+ ηb〈c d e a〉+ ηc〈d e a b〉+ ηd〈e a b c〉+ ηe〈a b c d〉)

〈a b c d〉〈b c d e〉〈c d e a〉〈d e a b〉〈e a b c〉
. (1.4.66)

1.5 Multiloop Amplitudes

In this section, we introduce a new strategy for finding local representations of loop

integrands. The idea is closely related to the leading singularity method, but the

philosophy differs in some important ways. In particular we will not be guided by

systematically trying to match all the leading singularities of the integrand. Instead,

we will look at a simple subset of leading singularities defined for generic, large enough

number of particles—no “composite” leading singularities will be considered. We will

then find a natural set of pure integrals designed to match this subset of leading

singularities. We will find that boldly summing over all such objects miraculously

suffices to match the full integrand! In particular, while the pure integrals are mo-

tivated for a large-enough generic number of external particles, their degenerations

nicely produce all the needed lower-point objects as well.

This method is heuristic—we do not yet have a deep understanding for why the

miracles happen. However we have used this strategy successfully to find stunningly

simple expressions for the integrands of all 2- and 3-loop MHV amplitudes as well

as all 2-loop NMHV amplitudes, and have checked that the results are correct by

comparing with the form obtained from the all-loop BCFW recursion discussed in

the next chapter.
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We will begin by illustrating this strategy by going back to 1-loop integrands,

which will motivate structures for 1-loop integrands different from the ones we en-

countered in section 3. For the MHV integrand, this new form coincides with one of

“polytope representations” discussed in [37]. We will then use this discussion as a

springboard to our treatment of 2- and 3-loop integrands.

I. A New Form for the MHV 1-Loop Integrand

Let’s begin by going back to the MHV 1-loop integrand, and motivate a new form

for it inspired by straightforwardly matching its leading singularities, associated with

the familiar two-mass-easy colored diagrams

i

j

i

j

corresponding to cutting the propagators

〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉 (1.5.67)

The amplitude has unit leading singularity for the first solution of the Schubert

problem (AB) = (ij), and vanishing leading singularity for the second solution

where(AB) = (i 1 i i+1)
⋂

(j 1 j j+1). We would like to build the integrand out of

objects that have exactly this property. To beat a dead horse yet again—it is obvious

that the two-mass-easy box does not do this job because it is not chiral. The easiest

way to do this is to simply insert a factor in the numerator, 〈AB (i 1ii+1)
⋂

(j 1jj+1)〉,
that kills the “wrong” leading singularity. For correct little-group weights, we add a

factor 〈ABX〉 in the denominator, where X is an arbitrary bitwistor, and look at an

object of the form

Ii,j =
〈AB (i 1 i i+1)

⋂
(j 1 j j+1)〉〈X i j〉

〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈ABX〉
(1.5.68)

which is just the pentagon already familiar from section 2, where the local propagator

〈AB n 1〉 has been replaced by 〈ABX〉. We denote this graphically as
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ij

X

(1.5.69)

Note that there is in general no significance to the presence of the legs adjacent to X

in this picture. We draw it in this way because in the special case where X = (k k+1),

the legs adjacent to X are identified with k,k+1.

Now consider the Schubert problems associated with cutting four physical propa-

gators. By construction this object has vanishing leading singularities on the “wrong”

solution, and can easily be seen to have unit leading singularity on the “right” one.

Summing over all the indices i < j—with |i− j| ≥ 2 corresponding to the two-mass

easy colored graphs—produces an object matching all the physical leading singulari-

ties of the amplitude. Näıvely this should give us the integrand, but there is a catch:

each term also has “spurious cuts” where 〈ABX〉 is one on the cut propogators.

Indeed, the sum we just described does not match the integrand.

However some wonderful magic happens: the sum over all indices i < j, including

a “boundary term ”with j = i+1, which is not included in the sum over colored

graphs,does reproduce the amplitude! We have

A1−loop
MHV =

∑
i<j

〈AB (i 1ii+1)
⋂

(j 1jj+1)〉〈X i j〉
〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉

(1.5.70)

or written pictorially

A1−loop
MHV =

∑
i<j<i


ij

X

. (1.5.71)

This form is manifestly cyclic but has spurious 〈ABX〉 poles term-by-term. The sum

is however independent of X. If we choose X to correspond to one of the external

point X = (k k+ 1), all the poles are manifestly physical but the formula is not

manifestly cyclic invariant.

As mentioned above, this expression follows from a simple “polytope” interpre-

tation described in [37]. The local formula given in [65] is obtained by choosing
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X = k k+1, summing over all k and dividing by 1/n. The similar expression in [79]

corresponds to setting X = I∞ where I∞ is infinity twistor.

Let us look at the “boundary term” where j = i+ 1 in more detail—using

〈i 1 i i+1 i+2〉〈AB i i+1〉 = 〈AB (i 1ii+1)
⋂

(i i+1i+2)〉, we can see that it is just

a (spurious) box
〈i 1 i i+1 i+2〉〈X i i+1〉

〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB i+1 i+2〉
(1.5.72)

It is instructive to explicitly understand the purpose of this boundary term in this

simple example, since the same phenomenon will occur in all the rest of our examples

in this section. Let us return to our most näıve ansatz, summing only over the

pentagons associated with the colored graphs. Each of the spurious cuts involving

〈ABX〉, such as

〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB j 1 j〉 (1.5.73)

is shared by two pentagons e.g. Ii,j−1 and Ii,j. For generic terms in the sum, these

cuts cancel against each other in pairs. However, in the limiting cases when j = i+2

(or j = i 2) the quad-cut is shared by Ii,i+2 and Ii−1,i+1 but there is no cancelation

between them because the non-vanishing leading singularities occur for two different

solutions of the Schubert problems. The spurious box of (1.5.72) precisely has non-

vanishing leading singularities for these two Schubert problems and completes the

cancelation of all 〈ABX〉 poles, ensuring the full sum is independent of X. It is quite

remarkable that the “new” object needed to fix the leading singularities and match

the amplitude is simply a degeneration of the pentagon itself.

In our remaining examples, we will not delve into understanding the details of how

all leading singularities match. We will instead take a class of leading singularities

as a guide for the local integrals to consider, and sum over all the relevant objects,

including boundary terms that do not directly correspond to any of the leading sin-

gularity pictures that motivated the construction of the objects to begin with. These

formulae are then verified by comparing with the integrand as computed by BCFW

recursion.

Let us finally note a very pretty property of equation (1.5.70): for generic X, all

the pentagons in the double sum are manifestly manifestly IR finite. This ceases to

be true if we make the special choice like X = (12), since the diagrams with i = 2 or

j = n have an additional massless corner which is not controlled by the numerator.
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4 i - 1

i
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12
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(1.5.74)

II. The 1-Loop NMHV Integrand, Revisited

We proceed to use the same strategy to determine a local expression for the NMHV

1-loop integrand, which will yield a quite different form than we obtained in section

3. We again start with the colored graphs for leading singularities. There are two of

them for NMHV amplitudes:

i

j

3 1

21

and

k + 1

i

jj + 1

k

2 1

22

(1.5.75)

Unlike the MHV case where the non-vanishing leading singularities were “1”,

here the non-vanishing leading singularities are the R-invariants. The goal is to find

objects with non-vanishing support on the same Schubert problems as the amplitude,

and decorate these with the appropriate R-invariants to get a nice ansatz for the

integrand.

The first colored graph correspond to 2-mass easy Schubert problems and have

the same structure as the MHV case. The leading singularity is just the tree-level

amplitude appearing in the upper-left corner of the figure, Atree
NMHV(j, j+1, . . . i 1, i).

Thus we expect to have objects in the integrand of the form

∑
i<j< i

 ×Atree
NMHV(j, j+1, . . . , i 1, i)

ij

X

(1.5.76)

Finding an object matching the physical leading singularities of the second class
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of colored diagrams is a more interesting exercise. The cut propogators are

〈AB i 1 i〉〈ABi i+1〉〈ABj j+1〉〈AB k k+1〉 (1.5.77)

The leading singularities vanish for the solution

(AB) = (i 1 i i+1)
⋂

(j j+1)(i 1 i i+1)
⋂

(k k+1), while for (AB) = (i j j+1)
⋂

(i k k+1)

the leading singularity is [i, j, j+1, k, k+1].

Let us consider objects of the form

Ii,j,k ≡

i

j
k X

=

∫
(AB)

N(i, j, k)

〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB j j+1〉〈AB k k+1〉

We are searching for a numerator supported on the same leading singularities as

the amplitude. In addition it should also have unit leading singularity on all other

spurious quad-cuts. The reason is that the spurious cuts must cancel in a sum over

terms; since the integrals are multiplied by different R-invariants, the only way this

can happen is through residue theorem 6-term identities between the R-invariants.

For instance the spurious quad-cut

〈ABX〉〈AB i i+1〉〈AB j j+1〉〈AB k k+1〉 (1.5.78)

is shared by six different integrals Ii;j,k, Ii+1;j,k, Ij;i,k, Ij+1;i,k, Ik;i,j and Ik+1;i,j that

are multiplied by six different residues. There is a 6-term identity relating them

[i, j, j+1, k, k+1] + [i+1, j, j+1, k, k+1] + [j, i, i+1, k, k+1]

+ [j+1, i, i+1, k, k+1] + [k, i, i+1, j, j+1] + [k+1, i, i+1, j, j+1] = 0

which can only possibly be of help in canceling spurious cuts if the integrands they

multiply have support on the same Schubert problems, with unit leading singularities.

There is one final guiding principle for determining the structure of the numerator

N(i, j, k). The topologies occurring in (1.5.76) are the same as for the MHV ampli-

tude, while the second class of integrals is “purely” NMHV-like. Since IR-divergences

are universal, it would be nice if the IR-divergences could be completely isolated in

the MHV-like topology. We should then try to choose the numerator N(i, j, k) to be
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strictly finite. It would be nice if these integrals could be chosen to be manifestly

finite. The only divergence in (1.5.78) can come from the Zi-corner, i.e. the region

when (AB) crosses point Zi and lies in the plane (i 1 i i+1). In order to control

this region the numerator should be of the form N = 〈AB (i 1 i i+1)
⋂

(. . . )〉. Com-

bined with the unit leading singularity constraint, the form of the numerator is fixed

completely:

N(i, j, k) ≡ 〈AB (i 1 i i+1)
⋂

Σi,j,k〉 (1.5.79)

with Σi,j,k a special plane defined according to

Σi,j,k ≡
1

2

[
(j j+1 (i k k+1)

⋂
X)− (k k+1 (i j j+1)

⋂
X)
]

(1.5.80)

This is in fact the only choice we could have made consistent with little group weights

and the desire to treat the j, k indices symmetrically. We will denote this by,

i

j
k X

=

∫
(AB)

〈AB (i 1 i i+1)
⋂

Σi,j,k〉
〈ABX〉〈AB i 1 i〉〈AB i i+1〉〈AB j j+1〉〈AB k k+1〉

With these objects in hand, we once again brazenly sum over all ranges of indices,

including “boundary” terms with j = i±1 not directly associated with colored graphs

for leading singularities. The same magic happens as we saw in the MHV case—this

sum agrees with the 1-loop NMHV amplitude as computed by BCFW recursion, and

we find,

A1−loop
NMHV =

∑
i<j<k< i

 × [i, j, j + 1, k, k + 1]


i

j
k X

+

∑
i<j< i

 ×Atree
NMHV(j, j+1, . . . , i 1, i)

 .
ij

X

(1.5.81)

Note also that as in the MHV case, the only IR-divergent integrals are in the

boundary terms. The (generically) finite integrals for Ii,j,k are given by
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Ii,j,k = −Li2 (1− u1)− Li2 (1− u2) + Li2 (1− u3) + log (u4) log (u5)

where the cross ratios are defined as:

u1 ≡
〈i i+1 j j+1〉〈Xi 1 i〉
〈i i+1X〉〈j j+1 i 1 i〉

, u2 ≡
〈i i+1X〉〈k k+1 i 1 i〉
〈i i+1 k k+1〉〈X i 1 i〉

, u3 ≡
〈i i+1 j j+1〉〈k k+1 i 1 i〉
〈i i+1 k k+1〉〈j j+1 i 1 i〉

,

u4 ≡
〈X k k+1〉〈i 1 i j j+1〉
〈X i 1 i〉〈k k+1 j j+1〉

, u5 ≡
〈j j+1X〉〈k k+1 i i+1〉
〈j j+1 k k+1〉〈X i i+1〉

,

Finally, let us examine the 1-loop NMHV ratio function

R1−loop
NMHV = A1−loop

NMHV −A
1−loop
MHV · Atree

NMHV (1.5.82)

Comparing the expressions (1.5.70) and (1.5.81) we can see that the ratio func-

tion has the same form as NMHV amplitude, except that in the first sum we have

Atree
NMHV(i, i+1, . . . j 1, j)−Atree

NMHV instead of just Atree
NMHV(i, i+1, . . . j 1, j). The man-

ifest finiteness is obvious. The only divergent integrals are in the boundary term

j = i−1, but their coefficient is given byAtree
NMHV(i, i+1, . . . j 1, j)−Atree

NMHV(1, . . . , n) =

Atree
NMHV(i, i+1, . . . i 2, i 1) −Atree

NMHV(1, . . . , n) = 0. Therefore, the ratio function can

be written only using manifestly finite integrals.

III. The 2-Loop MHV Amplitude and Its Logarithm

Now we turn to the 2-loop case. First we reproduce the MHV amplitude presented

already in [65] and in addition we will write an expression for the log of the amplitude

given in an interesting form in terms of non-planar diagrams.

We again start with the possible colored graphs,

1

2

11

2

1

2

1

2

1
12

1 2 2

121

2 1

(1.5.83)
There are more types of graphs in comparison to 1-loop where we had only boxes.

In addition to two glued boxes (also referred to as “kissing boxes”) we have other
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topologies—pentaboxes and double-boxes. They represent cutting the internal 〈AB CD〉
propagator once and twice respectively, the latter case corresponding to “composite”

leading singularities.

Let us concentrate on the first graph. It looks like a “squaring” of the 1-loop

cuts with appropriate ranges for indices. And in fact, the (AB) part and (CD)

part of the integral are independent, ie. in order to realize the octa-cut of the first

colored graph, we need to set (AB) = (i j) or (AB) = (i 1 i i+1)
⋂

(j 1 j j+1) and

(CD) = (k `) or (CD) = (k 1 k k+1)
⋂

(`− 1 ` `+1). Together we have four possible

combinations. The amplitude (as we see from the colored graph) has support just

on one of them (AB) = (i j) and (CD) = (k `) while for all other it vanishes. It

means that the numerator must vanish whenever (AB) = (i 1 i i+1)
⋂

(j 1 j j+1) or

(CD) = (k 1 k k+1)
⋂

(`−1 ` `+1). This motivates us to start with an integral of the

form

ji

AB

X

×

lk

CD

Y

=


〈AB (i 1 i i+1)

⋂
(j 1 j j+1)〉〈X i j〉

〈ABX〉〈AB i 1〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉
× 〈CD (k 1 k k+1)

⋂
(l 1 l l+1)〉〈Y k l〉

〈CDY 〉〈CD k 1k〉〈CD k k+1〉〈CD l 1 l〉〈CD l l+1〉


which has exactly this property. However, there is a better candidate. Instead of

adding 〈ABX〉 and 〈CDY 〉 in the denominator, we can add directly the internal

propagator 〈AB CD〉. That allows us to write two numerator factors exactly as we

need. Therefore, we consider,

k

li

j

=


〈AB (i 1 i i+1)

⋂
(j 1 j j+1)〉〈i j k l〉

〈AB i 1〉〈AB i i+1〉〈AB j 1 j〉〈AB j j+1〉〈AB CD〉
× 〈CD (k 1 k k+1)

⋂
(l 1 l l+1)〉

〈CD k 1k〉〈CD k k+1〉〈CD l 1 l〉〈CD l l+1〉



Of course, this integral has also many other cuts—both composite and non-composite—

that involve the propagator 〈AB CD〉 , and we have to match other colored graphs

in (1.5.83) as well. However, just as in our 1-loop examples, simply summing over all

indices with a planar ordering reproduces the full amplitude as a cyclic sum over just

one integral topology:
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A2−loop
MHV =

1

2

∑
i<j<k<l<i

k

li

j

(1.5.84)

The “boundary terms” in this case occur for for j = i+1 and/or l = k+1. In these

cases the numerator exactly cancels one of the propagators, leaving us with:10

2

121

2 1

(1.5.85)

Log of the Amplitude

Finally, we give an interesting new expression for the logarithm of the amplitude, using

a non-planar sum of the same set of objects. At 2-loops, the log of the amplitude is

[logA]2−loop
MHV =

[
A2−loop

MHV − 1

2

(
A1−loop

MHV

)2
]

(1.5.86)

A beautiful expression for the log of the amplitude is made possible by the exis-

tence of a simple relation between the sum of 1-loop square and 2-loop diagrams:∑
i < j

ji

AB

X

×

∑
k < l

lk

CD

Y

=

∑
i < j

k < l

k

li

j

(1.5.87)

The left-hand side is just (A1−loop
MHV )2 while the right-hand side contains not only

the planar diagrams present in A2−loop
MHV but also non-planar graphs when for example

i < k < j < l. In fact, all planar graphs are equal to 2A2−loop
MHV while all non-planar

graphs give us the log of the amplitude in the form

10This simplification was missed in Chapter [65], and the 2-loop MHV integrand was presented as

a sum over three terms. We would like to thank Johannes Henn for pointing the simplification out

to us.
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[logA]2−loop
MHV = −

∑
i<k<j<l<i

k

li

j

(1.5.88)

The formula found in [66] is the 4pt version of this expression.

Note that näıvely, all these integrals are IR finite because each individual 1-loop

sub-integral is just a finite pentagon(which can not shrink to a box due to the re-

striction j 6= i+ 1 and l 6= k+ 1). However, the criteria for finiteness we described in

section 4 applies to planar integrals, while the log contains non-planar terms which

can be IR-divergent.

Let us focus on the piece of the integrand of the form

〈ABX〉
〈AB i 1i〉〈AB i i+1〉

· 1

〈AB CD〉
· 〈CDY 〉
〈CD j 1j〉〈CD j j+1〉

(1.5.89)

Here X controls the IR-divergence of the region where the line (AB) intersects point

Zi and lies in the plane (Zi 1ZiZi+1), just as Y does for (CD) sector. However, if

i = j then (AB) and (CD) intersect in the point i and the propagator 〈AB CD〉
vanishes. Therefore, finiteness of the 1-loop sub-integrals is not enough. We need an

extra condition that regulates this joint divergence. It is not hard to see that unless

〈XY 〉 = 0, a (mild) IR-divergence remains.

As a result, we can find that almost all integrals in (1.5.88) are finite except for

the class of diagrams:
i

ji - 1

i

i + 1

(1.5.90)

In this case X = (i 2 i 1 i)
⋂

(i i+1 i+2) and Y = (i 1 i i+1)
⋂

(j 1 j j+1), so

〈XY 〉 6= 0. However the divergence is mild, as observed in the 4-point result of [66].
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IV. All 2-Loop NMHV Amplitudes

We move on to present the integrand for all 2-loop NMHV amplitudes. Instead of

a brute-force expansion into a basis of integrals, we follow the same strategy out-

lined above, obtaining results vastly simpler than those presented to date, which also

generalize to all n.

Let us first start by drawing the colored-graphs that contribute for general 2-loop

NMHV amplitude that do not cut the internal propagator 〈(AB CD)〉.

k

li

j

1

2

11

3

1

2

Atree
NMHV(i, . . . , j)

k

li

j

1

2

11

2

1

3

Atree
NMHV(j, . . . , k; l, . . . , i)

k

li

j

1

3

11

2

1

2

Atree
NMHV(k, . . . , l)

l

m

j

k

i

1

2

12

2

1

2

[i j j+1 k k+1]

l

m

k

i

j

1

2

12

1

2

2

[i j j+1 k k+1]

l

mi

j

k

1

2

11

2

2

2

[i j j+1 k k+1]

Below each colored graph, we have indicated the leading singularity below each. No-

tice that the coefficient Atree
NMHV(j, . . . , k; l, . . . i) is the same function as an ordinary

tree amplitude with particles labelled (j, . . . , k; l, . . . i) where k, l and i, j are both

treated as if they were adjacently-labelled.

The idea is again to find a set of integrals that each individually have the same

leading singularities as the amplitude on a given set of octa-cuts. The first step is

to realize that the octa-cuts on the first line of (1.5.91) respectively looks like the

product of NMHV 1-loop quad-cut × MHV 1-loop quad-cut and MHV 1-loop quad-

cuts × MHV 1-loop quad-cuts. Therefore, one might think that the right integrals

to start with look like the product of pentagons that appear in MHV and NMHV 1-

loop amplitudes. This strategy worked perfectly in the MHV 2-loop case, where the
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amplitude was literary made from double-pentagons whose origin was in the product

of two MHV-like pentagons. So the natural objects to consider here are the same

double-pentagons as in MHV 2-loop case and also other double-pentagons that look

like NMHV 1-loop × MHV 1-loop:

The numerators of the first three graphs have the same structure as the ones

that appear in the NMHV 1-loop integrand. We provide the complete expressions in

appendix A.

Note that first three diagrams are really represented just by single diagram with

permuted indices. For instance, the second one can be obtained from the first one

if we require k > i. So, it is non-planar version of the first graph in the same sense

as we saw in the last subsection in the case of the log of MHV amplitude. We see

that these four graphs are in one-to-one correspondence with the first four colored

graphs in 1.5.91. If we cut all propagators except 〈AB CD〉 we get not only the same

cuts as are in these colored graphs, but also the support on the correct Schubert

problems. These integrals are definitely the right ones to start with. In order to get

the correct field theory answer we have to multiply them by the leading singularities

of corresponding octa-cuts which are

Now summing over all allowed indices we get,

∑
all allowed
i,j,k,l,m

l

m
k

i

j

AB

× [i, j, j + 1, k, k + 1]

+
1

2

∑
i<j<k<l<i

k

li

j

×


Atree

NMHV(j, . . . , k; l, . . . , i)

+Atree
NMHV(i, . . . , j)

+Atree
NMHV(k, . . . , l)


(1.5.91)
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where the first diagram really represents three as we mentioned earlier, namely, the

complete set of cyclically ordered figures

l

m
jk

i

AB

l

m
k

i

j

AB

l

mi

j

k

AB

The rest of the story proceeds in the by now familiar way. Simply carrying out

the sum over the range of indices corresponding to the colored graphs does not give

the right answer, however, a judicious choice for the range of summation adds the

correct “boundary terms” to give exactly the right answer, and we finally obtain:

A2−loop
NMHV =

∑
i<j<l<m≤k<i
i<j<k<l<m≤i
i≤l<m≤j<k<i

l

m
k

i

j

AB

× [i, j, j + 1, k, k + 1]

+
1

2

∑
i<j<k<l<i

k

li

j

×


Atree

NMHV(j, . . . , k; l, . . . , i)

+Atree
NMHV(i, . . . , j)

+Atree
NMHV(k, . . . , l)


(1.5.92)

These two terms represent the general 2-loop NMHV amplitude for any number of

external particles. The explicit forms of the integrals in term of momentum-twistors

are presented in appendix 1.

V. All 3-Loop MHV Amplitudes

Finally, we present the integrand for all 3-loop MHV amplitudes. These amplitudes

were studied in the past, the 4pt formula for the integrand was given in [80] and

the 5pt in [81]. However once again our new strategy will both yield vastly simpler

expressions for these integrands and also generalize to all n.

We begin as always by drawing the colored graphs that contribute to general 3-

loop amplitude. While there are a large number of them, our experience with the

2-loop NMHV calculation tells us that for the purpose of “translating” the graphs into
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the integrals, one needs to focus on the colored graphs without internal propagators.

There are just two of these:
2

1

1

2
11

2

1 2

1 1

2

11

2

1

2

1

2

1

2 (1.5.93)

The colored graphs suggest that the correct 3-loop integral must correspond to “glu-

ing” together three 1-loop MHV integrals. But these can not be just pentagons

because of number of internal propagators, we would also need hexagons. Fortu-

nately, in the “polytope picture” of [37], the most natural form of MHV amplitude is

written using hexagons. We leave the detailed exploration of this gluing procedure to

future work. It suffices to say that we can indeed find objects which have support on

the correct leading dodecacuts (1.5.93). Having identified them, the magic happens

again: to get the full 3-loop amplitude, we need only to identify the correct ranges

for the summations involved. As a result, we can write the general 3-loop MHV

amplitude for any number of external particles as a sum of two structures,

A3−loop
MHV =

1

3

∑
i1≤i2<j1≤
≤j2<k1≤k2<i1

j1

j2

k1k2

i1

i2

CDAB

EF

+
1

2

∑
i1≤j1<k1<

<k2≤j2<i2<i1

k1

k2j2
i2

i1
j1

AB

The explicit formulas for these graphs with all numerator factors are given in the

appendix B.
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Chapter 2 Recursion Relations
for the Loop Integrand

2.1 The Loop Integrand for N = 4 SYM Amplitudes

The BCFW recursion relations [14,50,82,83] presented extremely compact expressions

for tree amplitudes using building blocks with both local and non-local poles. In a

parallel development, an amazing hidden symmetry of planar N = 4 SYM—dual

conformal invariance—was noticed first in multi-loop perturbative calculations [59]

and then at strong coupling [84], leading to a remarkable connection between null-

polygonal Wilson loops and scattering amplitudes [57,84–92]. It was quickly realized

that the BCFW form of the tree amplitudes manifested both full superconformal

and dual superconformal invariance, which together close into an infinite-dimensional

Yangian symmetry algebra [93]. Understanding the role of this remarkable integrable

structure in the full quantum theory, however, was clouded by the IR-divergences

that appear to almost completely destroy the symmetry at loop-level, leaving only

the anomalous action of the (Bosonic) dual conformal invariance [77,78,94,95].

I. Grassmannian Duality for Leading Singularities

In [16], a strategy for making progress on these questions was suggested. The idea was

to find objects closely associated with scattering amplitudes which are completely free

of IR-divergences; the action of the symmetries would be expected to be manifest on

such objects, and they would provide “data” that might be the output of a putative

dual theory of the S-Matrix.

The leading singularities of scattering amplitudes are precisely objects of this sort.

Thinking of loop amplitudes as multi-dimensional complex integrals, leading singu-

larities arise from performing the integration not on the usual non-compact ‘contours’
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over all real loop-momenta, but on compact contours ‘encircling’ isolated (and gener-

ally complex) poles in momentum space. As such, they are free of IR-divergences and

well-defined at any loop order, yielding algebraic functions of the external momenta.

Leading singularities were known to have strange inter-relationships and satisfy mys-

terious identities not evident in their field-theoretic definition. Morally they are also

expected to be Yangian-invariant, although even this is not completely manifest1.

Thus leading singularities seem to be prime candidates for objects to be understood

and computed by a dual theory.

Such a duality was proposed in [16], connecting leading singularities of color-

stripped, n-particle NkMHV scattering amplitudes in N = 4 SYM to a simple contour

integral over the Grassmannian G(k, n):

Yn,k(Z) =
1

vol(GLk)

∫
d k×nCαa

(1 · · · k)(2 · · · k+1) · · · (n · · · k 1)

k∏
α=1

δ4|4(CαaZa). (2.1.1)

Here a = 1, · · · , n labels the external particles, and Za are variables in CP3|4. The

original formulation of this object worked with twistor variables Wa = (Wa|η̃a), and

was given as Ln,k+2(W) = Yn,k+2(W). This was quickly realized [18] to be completely

equivalent to a second form in momentum twistor space [17], with Ln,k+2(λ, λ̃, η̃) =

M tree
MHV × Yn,k(Z). Here the variables Za = (Za|ηa) are the “momentum-twistors” in-

troduced by Hodges [60], which are the most natural variables with which to discuss

dual superconformal invariance. Furthermore, these momentum twistors are simple

algebraic functions of the external momenta, upon which scattering amplitudes con-

ventionally depend2.

Since the Grassmannian integral is invariant under both ordinary and dual su-

perconformal transformations, it enjoys the full Yangian symmetry of the theory, as

1Indeed we will give a proof of this basic fact in the next section.
2 To quickly establish notation and conventions, the momentum of particle a is given by

pµa = xµa+1−xµa , and the point xµa in the dual co-ordinate space is associated with the line (Za−1 Za)

in the corresponding momentum-twistor space. This designation ensures that the lines (Za−1 Za)

and (Za Za+1) intersect, so that correspondingly, xµa+1 − xµa = pa is null. (Bosonic) dual-conformal

invariants are made with 4-brackets 〈a b c d〉 = εIJKLZ
I
aZ

J
b Z

K
c Z

L
d . An important special case is

〈i 1 i j 1 j〉 = 〈i 1 i〉〈j 1 j〉(xj − xi)2; 2-brackets 〈ij〉 are computed using the upper-two compo-

nents of Zi, Zj and cancel out in dual-conformal expressions. For more detail see [17,18,60].
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has been proven more directly in [96]. In fact, it has been argued that these contour

integrals in G(k, n) generates all Yangian invariants.3 [74, 99].

Leading singularities are associated with residues of the Grassmannian integral.

Residue theorems [71] imply many non-trivial and otherwise mysterious linear rela-

tions between leading singularities. These relations are associated with important

physical properties such as locality and unitarity [16].

Further investigations [35] identified a new principle, the Grassmannian “parti-

cle interpretation”, which determines the correct contour of integration yielding the

BCFW form of tree amplitudes [100]. Quite remarkably, a deformation of the inte-

grand connects this formulation to twistor string theory [19, 35, 101]. Furthermore,

another contour deformation produces the CSW expansion of tree amplitudes [34],

making the emergence of local space-time a derived consequence from the more prim-

itive Grassmannian starting point.

The Grassmannian integral and Yangian-invariance go hand-in-hand and are es-

sentially synonymous; indeed, the Grassmannian integral is the most concrete way of

thinking about Yangian invariants, since not only the symmetries but also the non-

trivial relationship between different invariants are made manifest; even connections

to non-manifestly Yangian-invariant but important physical objects (such as CSW

terms) are made transparent.

Given these developments, we are encouraged to ask again: is there an analogous

structure underlying not just the leading singularities but the full loop amplitudes?

Does Yangian-invariance play a role? And if so, how can we see this through the

thicket of IR-divergences that appear to remove almost all traces of these remarkable

symmetries in the final amplitudes?

II. The Planar Integrand

Clearly, we need to focus again on finding well-defined objects associated with loop

amplitudes. Fortunately, in planar theories, there is an extremely natural candidate:

the loop integrand itself!

3The residues of G(k, n) are Yangian-invariant for generic momenta away from collinear limits.

See [97, 98] for important discussions of the fate of Yangian invariance in the presence of collinear

singularities.
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Now, in a general theory, the loop integrand is not obviously a well-defined ob-

ject. Consider the case of 1-loop diagrams. Most trivially, in summing over Feynman

diagrams, there is no canonical way of combining different 1-loop diagrams under

the same integral sign, since there is no natural origin for the loop-momentum space.

The situation is different in planar theories, however, and this ambiguity is absent.

This is easy to see in the dual x-space co-ordinates [59]. The ambiguity in shifting

the origin of loop momenta is nothing other than translations in x-space; but fixing

the x1, . . . , xn of the external particles allows us to canonically combine all the dia-

grams. Alternatively, in a planar theory it is possible to unambiguously define the

loop momentum common to all diagrams to be the one which flows from particle “1”

to particle “2”.

At two-loops and above, we have a number of loop integration variables in the

dual space x, y, . . . , z, and the well-defined loop integrand is completely symmetrized

in these variables.

So the loop integrand is well-defined in the planar limit, and any dual theory

should be able to compute it. All the symmetries of the theory should be manifest at

the level of the integrand, only broken by IR-divergences in actually carrying out the

integration—the symmetries of the theory are broken only by the choice of integration

contour.

III. Recursion Relations for All Loop Amplitudes

Given that the integrand is a well-defined, rational function of the loop variables

and the external momenta, we should be able to determine it using BCFW recursion

relations in the familiar way4. At loop-level the poles have residues with different

physical meaning. The first kind is the analog of tree-level poles and correspond to

factorization channels. The second kind has no tree-level analog; these are single

cuts whose residues are forward limits of lower-loop amplitudes. Forward limits are

näıvely ill-defined operations but quite nicely they exist in any supersymmetric gauge

theory, as was shown to one-loop level in [103]. There it was also argued that forward

limits are well-defined to higher orders in perturbation theory in N = 4 SYM. In

4We note that [102] have conjectured that the loop amplitudes can be determined by CSW rules,

manifesting the superconformal invariance of the theory.
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principle, this is all we need for computing the loop integrand in N = 4 SYM to all

orders in perturbation theory. However, our goal requires more than that. We would

like to show that the integrand of the theory can be written in a form which makes all

symmetries—the full Yangian—manifest. The Yangian-invariance of BCFW terms at

tree-level becomes obvious once they are identified with residues of the Grassmannian

integral, we would like to achieve the same at loop-level.

This is exactly what we will do in this chapter. We will give an explicit recursive

construction of the all-loop integrand, in exact analogy to the BCFW recursion rela-

tions for tree amplitudes, making the full Yangian symmetry of the theory manifest.

The formulation also provides a new physical understanding of the meaning of

loops, associated with simple operations for “removing” particles in a Yangian-invariant

way. Loop amplitudes are associated with removing pairs of particles in an “entan-

gled” way. We describe all these operations in momentum-twistor space, since this

directly corresponds to familiar momentum-space loop integrals; presumably an or-

dinary twistor space description should also be possible.

As is familiar from the BCFW recursion relations at tree-level, the integrand is

expressed as a sum over non-local terms, in a form very different than the familiar

“rational function × scalar integral” presentation that is common in the literature.

Nonetheless, the Yangian-invariance guarantees that every term in the loop amplitude

has Grassmannian residues as its leading singularities.

The integrands can of course be expressed in a manifestly-local form if desired, and

are most naturally written in momentum-twistor space [62, 63]. As we will see, the

most natural basis of local integrands in which to express the answer is not composed

of the familiar scalar loop-integrals, but is instead made up of chiral tensor integrals

with unit leading-singularities, which makes the physics and underlying structure

much more transparent.

Of course the integrand is a well-defined rational function which is computed in

four-dimensions without any regulators. The regularization needed to carry out the

integrations is a very physical one, given by moving out on the Coulomb branch [67] of

the theory. This can be beautifully implemented, both conceptually and in practice,

with the momentum-twistor space representation of the integrand [62,63].

Quite apart from the conceptual advantages of this way of thinking about loops,
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our new formulation is also completely systematic and practical, taking the “art”

out of the computation of multi-loop amplitudes in N = 4 SYM. The result in this

method served as a great source of data for the verification of the expressions for

2-loop and 3-loop amplitudes obtained in last chapter.

The structure of this chapter is following. In section 2.2, we describe a number

of canonical operations on Yangian invariants—adding and removing particles, fusing

invariants—that generate a variety of important physical objects in our story. In

section 2.3 we describe the origin of Yangian-invariant loop integrals as arising from

the “hidden entanglement” of pairs of removed particles. In section 2.4 we describe

the main result of this Chapter: a generalization of the BCFW recursion relation to

all loop amplitudes in the theory, and discuss some of its salient features through

simple 1-loop examples.

2.2 Canonical Operations on Yangian Invariants

As a first step towards the construction of the all-loop integrand for N = 4 SYM

in manifestly Yangian form, we study simple operations that can map Yangian in-

variants Yn,k(Z1, · · · ,Zn) to other Yangian invariants. In this discussion it will not

matter whether the Z’s represent variables in twistor-space or momentum-twistor

space; we will simply be describing mathematical operations that mapping between

invariants. Combining these operations in various ways yields many objects of phys-

ical significance. The same physical object will arise from different combinations

of these operations in twistor-space vs. momentum-twistor space; we will content

ourselves here by presenting mostly the momentum-twistor space representations.

As mentioned in the introduction, understanding these operations is not strictly

necessary if we simply aim to find a formula for the integrand. The reason is that the

BCFW recursion relations we introduce in section 2.4 can be developed independently

for theories with less supersymmetry, which do not enjoy a Yangian symmetry. Our

insistence in keeping the Yangian manifest however will pay off in two ways. The

first is conceptual: the Yangian-invariant formulation will introduce a new physical

picture for meaning of loops. The second is computational: the Yangian-invariant
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formulation gives a powerful way to compute the novel “forward-limit” terms in the

BCFW recursions in momentum-twistor space, using the Grassmannian language.

We will begin by discussing how to add and remove particles in a Yangian-invariant

way. One motivation is an unusual feature of the Grassmannian integral–the space of

integration depends on the number n of particles. It is natural to try and connect dif-

ferent n’s by choosing a contour of integration that allows a “particle interpretation”,

by which we mean simply that the variety defining the contour for the scattering

amplitudes of (n + 1) particles differs from the one for n particles only by specify-

ing the extra constraints associated with the new particle [35]. Following this “add

one particle at a time”-guideline completely specifies the contour for all tree ampli-

tudes [19, 35], along the way exposing a remarkable connection with twistor string

theory [?, 13, 101, 104, 105]. As we will see in this chapter, loops are associated with

interesting “entangled” ways of removing particles from higher-point amplitudes. We

will then move on to discuss how to “fuse” two invariants together. Using these oper-

ations we demonstrate the Yangian invariance of all leading singularities, and discuss

the important special case of the “BCFW bridge” in some detail.

I. Adding Particles

Let us start with a general Yangian-invariant object

Yn,k(Z1, . . . ,Zn). (2.2.2)

We will first describe operations that will add a particle to lower-point invariants

to get higher-point invariants known as applying “inverse soft factors”, which are so

named because taking the usual soft limit of the resulting object returns the original

object. This can be done preserving k or increasing k 7→ k+ 1. We can discuss these

in both twistor- and momentum-twistor space; for the purposes of this chapter we

will describe these inverse-soft factor operations in momentum-twistor space.

The idea is that there are residues in G(k, n) which are trivially related to residues

in G(k, n− 1) or G(k − 1, n− 1). The k-preserving operation Yn−1,k 7→ Yn,k is par-

ticularly simple, being simply the identification

Y ′n,k(Z1, . . . ,Zn−1,Zn) = Yn−1,k(Z1, . . . ,Zn−1); (2.2.3)
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that is, where we have simply added particle n as a label (but have not altered

the functional form of Y in any way); thanks to the momentum-twistor variables,

momentum conservation is automatically preserved. The k-increasing inverse soft

factor is slightly more interesting. There is always a residue of G(k, n) which has a

C-matrix of the form
∗ ∗ 0 · · · 0 ∗ ∗ 1

∗ · · · · · · · · · · · · · · · ∗ 0
...

. . .
. . .

. . .
. . .

. . . ∗
...

 . (2.2.4)

Here, the non-zero elements in the top row, ∗ ∗ ∗ ∗ 1 correspond to particles

1, 2, (n− 2), (n− 1), n, and we have generic non-zero entries in the lower (k − 1) ×
(n− 1) matrix. The corresponding residue is easily seen to be associated with

Y ′n,k(. . . ,Zn−1,Zn,Z1, . . .) = [n 2 n 1 n 1 2]× Yn−1,k−1(. . . , Ẑn−1, Ẑ1, . . .) (2.2.5)

where

[a b c d e] =
δ0|4(ηa〈b c d e〉+ ηb〈c d e a〉+ ηc〈d e a b〉+ ηd〈e a b c〉+ ηe〈a b c d〉)

〈a b c d〉〈b c d e〉〈c d e a〉〈d e a b〉〈e a b c〉
(2.2.6)

is the basic ‘NMHV’-like R-invariant5 and the Ẑn−1,1 are deformed momentum twistor

variables. The Bosonic components of the deformed twistors have a very nice inter-

pretation: Ẑ1 is simply the intersection of the line (1 2) with the plane (n 2 n 1 n),

which we indicate by writing Ẑ1 ≡ (n 2 n 1 n)
⋂

(1 2); and Ẑn−1 is the intersection

of the line (n 2 n 1) with the plane (1 2n), written Ẑn−1 ≡ (n 2 n 1)
⋂

(n 1 2). Fully

supersymmetrically, we have

Ẑ1 ≡ (n 2 n 1 n)
⋂

(1 2) = Z1〈2 n 2 n 1 n〉+ Z2〈n 2 n 1 n 1〉;

Ẑn−1 ≡ (n 2 n 1)
⋂

(n 1 2) = Zn−2〈n 1 n 1 2〉+ Zn−1〈n 1 2 n 2〉.
(2.2.7)

II. Removing Particles

We can also remove particles to get lower-point Yangian invariants from higher-point

ones. This turns out to be more interesting than the inverse-soft factor operation,

5When two sets of the twistors are consecutive, these “R-invariants” are sometimes written

Rr;s,t ≡ [r s 1 s t 1 t]. These invariants were first introduced in [57] in dual super-coordinate space.
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though physically one might think it is even more straightforward. After all, we can

remove a particle simply by taking its soft limit. However, while this is a well-defined

operation on e.g. the full tree amplitude, it is not a well-defined operation on the

individual residues (BCFW terms) in the tree amplitude. The reason is the presence

of spurious poles: each term does not individually have the correct behavior in the

soft limit.

Nonetheless, there are completely canonical and simple operations for removing

particles in a Yangian-invariant way. One reduces k 7→ k − 1, the other preserves

k. The k-reducing operation removes particle n by integrating over its twistor co-

ordinate

Y ′n−1,k−1(Z1, . . .Zn−1) =

∫
d3|4Zn Yn,k(Z1, . . . ,Zn−1,Zn). (2.2.8)

This gives a Yangian-invariant for any closed contour of integration—meaning that

under the Yangian generators for particles 1, . . . , n − 1, this object transforms into

a total derivative with respect to Zn. This statement can be trivially verified by

directly examining the action of the level-zero and level-one Yangian generators on

the integral. It is also very easy to verify directly from the Grassmannian integral.

Note that depending on the contour that is chosen, a given higher-point invariant can

in general map to several lower-point invariants.

The k-preserving operation “merges” particle n with one of its neighbors, n − 1

or 1. For example,

Y ′n−1,k(Z1, . . .Zn−1) = Yn,k(Z1, . . . ,Zn−1,Zn 7→ Zn−1). (2.2.9)

The Yangian-invariance of this operation is slightly less obvious to see by simply

manipulating Yangian generators, but it can be verified easily from the Grassmannian

formula.

We stress again that these operations are perfectly well-defined on any Yangian-

invariant object, regardless of whether the standard soft-limits are well defined. Of

course, they coincide with the soft limit when acting on e.g. the tree amplitude.

III. Fusing Invariants

Finally, we mention a completely trivial way of combining two Yangian invariants to

produce a new invariant. Start with two invariants which are functions of a disjoint
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set of particles, which we can label Y1(Z1, . . . ,Zm) and Y2(Zm+1, . . . ,Zn). Then, it

is easy to see that the simple product

Y ′(Z1, . . . ,Zn) = Y1(Z1, . . . ,Zm)× Y2(Zm+1, . . . ,Zn) (2.2.10)

is also Yangian-invariant. Only the vanishing under the level-one generators requires

a small comment. Note that the cross terms vanish because the corresponding level-

zero generators commute and therefore the level-one generators cleanly splits into the

smaller level-one generators.

IV. Leading Singularities are Yangian Invariant

Combining these operations builds new Yangian invariants from old ones; all of which

have nice physical interpretations. An immediate consequence is a simple proof that

all leading singularities are Yangian invariant. For this subsection only, we work in

ordinary twistor space. Then we take any four Yangian invariants for disjoint sets of

particles and we make a new invariant by taking the product of all of them,

Y1(W1, . . . ,Wm)Y2(Wm+1, . . . ,Wl)Y3(Wl+1, . . . ,Wp)Y4(Wp+1, . . . ,Wq).

We then “merge” m and m+1, l and l+1, p and p+1, and q with 1. We then integrate

over m, l, p, q. This precisely yields the twistor-space expression for a “1-loop” leading

singularity topology [106,107].

In the figure, a thick black line denotes the merging of the two particles at the ends of

the line, and integrating over the remaining variable. The generalization to all leading

singularities is obvious; for instance, starting with the “1-loop” leading singularity we

have already built, we can use the same merge and integrate operations to build
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“2-loop” leading singularity topologies such as that shown below.

We conclude that all leading singularities are Yangian invariant. Given that all Yan-

gian invariants are Grassmannian residues, this proves (in passing) the original con-

jecture in [16] that all leading singularities can be identified as residues of the Grass-

mannian integral.

V. The BCFW Bridge

A particularly important way of putting together two Yangian invariants to make

a third is the “BCFW bridge” [73, 83, 108], associated with the familiar “two-mass

hard” leading singularities drawn below in twistor space [73,108–110]:

Here, the open and dark circles respectively denote MHV and MHV three-particle

amplitudes, respectively. We remark in passing that the inverse-soft factor operations

mentioned above are special cases of the BCFW bridge where a given Yangian in-

variant is bridged with an MHV three-point vertex (for the k-preserving case) or an

MHV three-point vertex (for the k-increasing case).

We will find it useful to also see the bridge expressed as a composition of our basic

operations in momentum-twistor space, as
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=

This is a pretty object since it uses all of our basic operations in an interesting way.

In the figure, the solid arrows pointing inward indicate that particle-“1” is added as

an k-increasing inverse soft factor on YL, and j+1 is added as a k-increasing inverse

soft factor on YR. We are also using the merge operation to identify the repeated

“1” and “j+1” labels across the bridge. The internal line, which we label as ZI , is

integrated over. The contour of integration is chosen to encircle the 〈n 1 n 1 I〉-pole

from the [n 1 n 1 I j+1]-piece of the inverse-soft factor on YL, and the 〈1 I j+1 j〉-
and 〈I j+1 j j 1〉-poles from the [1 I j+1 j j 1]-piece of the inverse soft factor on

YR. The deformation on Zn induced by the inverse-soft factor adding particle-1 on

YL is of the form

Zn 7→ Ẑn = Zn + zZn−1, where 〈ẐnZ1ZjZj+1〉 = 0. (2.2.11)

This is the momentum-twistor space version of the BCFW deformation, which cor-

responds to deforming λn, λ̃1 in momentum-space. We remind ourselves of this de-

formation by placing the little arrow pointing from n 7→ n − 1 in the figure for the

bridge. The momentum-twistor space geometry associated with this object is

which precisely corresponds to the expected BCFW deformation and the correspond-

ing factorization channel.

We leave a detailed derivation of this picture to [?], but in fact the momentum-

twistor structure of the BCFW bridge can be easily understood. Note that YL, YR
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have k-charge kL, kR, while YL ⊗ YR has k-charge kL + kR + 1; given that the ZI
decreases the k-charge by 1, we must start with YL and YR and get objects with

k-charge (kL + 1) and (kR + 1) on the left and right. This can be canonically done

by acting with k-increasing inverse soft factors; the added particle on YL must be

adjacent to n in order to affect a deformation on Zn. Finally, the data associated

with the “extra” particles introduced by the inverse soft factor must be removed in

the only way possible, by using the merge operation. Explicitly, the final result for

YL ⊗
BCFW

YR is

(
YL ⊗

BCFW
YR

)
(1, . . . , n) = [n 1 n 1 j j+1]× YR

(
1, . . . , j, I

)
× YL

(
I, j + 1, . . . , n 1, n̂

)
(2.2.12)

with
n̂ = (n 1 n)

⋂
(j j+1 1), and I = (j j+1)

⋂
(n 1 n 1). (2.2.13)

Starting with the tree amplitude Mn,k,tree
6, the BCFW deformation Zn 7→ Zn +

zZn−1 can be used to recursively construct tree amplitudes in the familiar way: by

writing,

Mn,k,tree =

∮
dz

z
M̂n,k,tree(z), (2.2.14)

it is clear that the desired amplitude M̂n,k,tree(z) is obtained by summing-over all the

residues of the RHS except the pole at origin z = 0. Notice that there is a non-zero

pole at infinity in this deformation: as z → ∞, Zn → Zn−1 projectively, and so the

tree amplitude gets a contribution from Mn(Z1, . . . ,Zn−1,Zn)→Mn−1(Z1, . . . ,Zn−1)

7. The pole at z → ∞ corresponds to the term in the usual momentum-space

BCFW formula using an MHV three-point vertex bridged with Mn−1, which sim-

ply acts as a k-preserving inverse-soft factor The remaining physical poles are of

6We remind the reader that we are working in momentum-twistor space, so that what we are call-

ing Mtree here is obtained after stripping off the MHV tree-amplitude factor from the full amplitude

in momentum space.
7Note that z →∞ here does not correspond to going to infinity in the familiar momentum-space

version of BCFW. The pole at infinity in ordinary momentum space here corresponds to a pole

involving the infinity twistor 〈Zn(z) I Z1〉 = 0. Of course we do not expect such a pole to arise in

a dual-conformal invariant theory, not only at tree-level, but at all-loop order, as will be relevant

to our subsequent discussion. A direct proof of this fact, not assuming dual conformal invariance,

should follow from the “enhanced spin-lorentz symmetry” arguments of [108].
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the form 〈i i+1 j j+1〉. Under Zn 7→ Zn + zZn−1, we only access the poles where

〈Zn(z)Z1ZjZj+1〉 → 0, and the corresponding residues are computed by the BCFW

bridge indicated above, with YL, YR being the lower-point tree amplitudes.

2.3 Loops From Hidden Entanglement

Let’s imagine starting with some scattering amplitude or Grassmannian residue, and

begin removing particles. The operation that decreases k in particular demands a

choice for the contour of integration. If we remove particle ZA by integrating over it

as
∫
d3|4ZA, it is natural to choose a T 3-contour of integration for the Bosonic d3ZA

integral and compute a simple residue8.

We can then proceed to remove a subsequent particle either by merging, or per-

forming further integrals
∫
d3|4ZB and so on. In this way we will simply proceed

from higher-point Grassmannian residues to lower-point ones. In particular, if these

operations are performed on a higher-point tree amplitude, we arrive at lower-point

tree amplitudes, and don’t encounter any new objects.

But we can imagine a more interesting way of removing not just one but a pair

of particles. Consider removing particle A and subsequently removing the adjacent

particle B. Instead of first integrating-out A and then B on separate T 3’s, let’s

consider an “entangled” contour of integration, which we will discover to yield, instead

of lower-point Grassmannian residue, a loop integral.

Consider as a simple example removing two particles from the 6-particle N2MHV

= MHV tree amplitude, M6,4,`=0(1234AB). Performing the d0|4ηA, d
0|4ηB integrals is

trivial, and this gives∫
d3zAd

3zB
〈1234〉3

〈234zA〉〈34zAzB〉〈4zAzB1〉〈zAzB12〉〈zB123〉
(2.3.15)

where we have chosen to label the Bosonic momentum twistors with lower-case z’s for

later convenience. As we have claimed, on any closed contour, these integrals should

8Residues of rational functions in m complex variables are computed by choosing m polynomial

factors fi’s from the denominator and integrating along a particular Tm-contour, i.e. the product of

m circles given as the solutions of |fi| = ε with ε� 1 and near a common zero of the fi’s. See [71]

for more details.
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give a Yangian-invariant answer. Indeed, computing the zB integral by residue on

any contour leaves us with∫
d3zA

〈1234〉3

〈zA123〉〈zA234〉〈zA341〉〈zA412〉
(2.3.16)

and computing any of the simple residues of this remaining zA integral gives 1, which

is of course the only Yangian invariant for MHV amplitudes.

We will now see that starting with exactly the same integrand but choosing a

different contour of integration yields, instead of “1”, the 4-particle 1-loop amplitude.

Geometrically, the points zA, zB determine a line in momentum-twistor space, which

is interpreted as a point in the dual x-space, or equivalently, a loop-integral’s four-

momentum. We will first integrate over the positions of zA, zB on the line (AB), and

then integrate over all lines (AB).

This contour can be described explicitly by parametrizing zA,B as

zA =

 λA

xλA

 , zB =

 λB

xλB

 (2.3.17)

where x will be the loop momentum. The measure is

d3zAd
3zB = 〈λAdλA〉〈λBdλB〉〈λAλB〉2d4x. (2.3.18)

The λA, λB integrals will be treated as contour integrals on CP1 × CP1, while the

x-integral will be over real points in the (dual) Minkowksi space.

Using that 〈zAzB j 1 j〉 = 〈λAλB〉〈j 1 j〉(x−xj)2 our integral becomes∫
d4x

x2
13x

2
24

(x−x1)2(x−x2)2(x−x4)2

∫
〈1234〉〈23〉〈λAdλA〉〈λBdλB〉
〈zA123〉〈234zB〉〈λAλB〉

. (2.3.19)

The factor 〈zA234〉 is linear in the projective variable λA while the factor 〈123zB〉
is linear in λB. This implies that there is a unique way to perform the λA and λB

integrals by contour integration, which gives us∫
d4x

x2
13x

2
24

(x− x1)2(x− x2)2(x− x3)2(x− x4)2
. (2.3.20)

This is precisely the 1-loop MHV amplitude!

We have thus seen that, removing a pair of particles with this “entangled” contour

of integration, where we first integrate over the position of two points along the line
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joining them and then integrate over all lines, naturally produces objects that look

like loop integrals.

There is a nicer way of characterizing this “entangled” contour that is also more

convenient for doing calculations, let us describe it in detail. Given zA, zB, a general

GL2-transformation on the 2-vector (zA, zB) moves A,B along the line (AB). Thus,

in integrating over d3zAd
3zB, we’d like to “do the GL2-part of the integral first” to

leave us with an integral that only depends on the line (AB):

We can do this explicitly by writing zA

zB

 =

 c
(A)
A c

(B)
A

c
(A)
B c

(B)
B

 ZA

ZB

 ; (2.3.21)

then

d3zAd
3zB = 〈cAdcA〉〈cBdcB〉〈cAcB〉2

[
d4ZAd

4ZB
vol(GL2)

]
, (2.3.22)

and our integral becomes—this time writing it out fully:∫ [
d4ZAd

4ZB
vol(GL2)

]
〈1234〉3

〈AB 12〉〈AB 34〉〈AB 41〉

∫
〈cAdcA〉〈cBdcB〉

〈cAcB〉〈cAψA〉〈cBψB〉
, (2.3.23)

where

ψA =

 〈A234〉
〈B234〉

 , ψB =

 〈A123〉
〈B123〉

 . (2.3.24)

The cA, cB integral is naturally performed on a contour ‘encircling’ cA = ψA, cB = ψB,

yielding 1
〈ψAψB〉

= 1
〈AB 23〉〈1234〉 . More generally, if “234” and “123” in the definitions of

ψA, ψB were to be replaced by arbitrary “abc” and “xyz”, 〈ψAψB〉 = 〈Axyz〉〈Babc〉−
〈Aabc〉〈Bxyz〉 ≡ 〈AB (abc)

⋂
(xyz)〉 where (abc)

⋂
(xyz) is the line corresponding to

the intersection of the planes (abc) and (xyz). We are then left with∫ [
d4ZAd

4ZB
vol(GL2)

]
〈1234〉2

〈AB 12〉〈AB 23〉〈AB 34〉〈AB 41〉
, (2.3.25)
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where the integration region is such that the line (AB) corresponds to a real point

in the (dual) Minkowski space-time. We recognize this object as the 1-loop MHV

amplitude, exactly as above.

We can clearly perform this operation starting with any Yangian invariant object

Y [ZA,ZB,Z1, . . .], which we will graphically denote as:

and write as ∫
GL2

Y [. . . ,Zn,ZA,ZB,Z1, . . .] (2.3.26)

This object is formally Yangian-invariant, in the precise sense that the integrand will

transform into a total derivative under the action of the Yangian generators for the

external particles. Of course, such integrals may have IR-divergences along some

contours of integration, which is how Yangian-invariance is broken in practice.

The usual way of writing the loop amplitudes as “leading singularity × scalar integral”

ensures that the leading singularities of the individual terms are Yangian-invariant,

but the factorized form seems very un-natural, and there is no obvious action of

the symmetry generators on the integrand. By contrast, the loop integrals we have

defined, as we will see, will not take the artificial “residue × integral” form, but of

course their leading singularities are automatically Grassmannian residues. The rea-

son is that a leading singularity of the (AB)-integral can be computed as a simple

residue of the underlying d3|4zAd
3|4zB integral, which is free of IR-divergences and

guaranteed to be Yangian-invariant.

2.4 Recursion Relations For All Loop Amplitudes

Having familiarized ourselves with the basic operations on Yangian invariants, we

are ready to discuss the recursion relations for loops in the most transparent way.
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The loop integrand is a rational function of both the loop integration variables and

the external kinematical variables. Just as the BCFW recursion relations allow us

to compute a rational function from its poles under a simple deformation, the loop

integrand can be determined in the same way. Consider the l-loop integrand Mn,k,`,

and consider again the (supersymmetric) momentum-twistor deformation

Zn 7→ Zn + zZn−1. (2.4.27)

Then

Mn,k,` =

∮
dz

z
M̂n,k,`(z) (2.4.28)

and we sum over all the residues of the RHS away from the origin, all of which can be

determined from lower-point/lower-loop amplitudes. This recursion relation can be

derived in a large class of theories and is not directly tied to N = 4 SYM or Yangian-

invariance. However our experience with building Yangian-invariant objects will help

us to understand (and compute) the terms in the recursion relations in a transparent

way, and also easily recognize them as manifestly Yangian-invariant objects.

As in our discussion of the BCFW bridge at tree-level, the pole at infinity is

simply the lower-point integrand with particle n removed. All the rest of the poles

in z also have a simple interpretation: in general, all the poles arise either from

〈Zn(z)Z1 Zj Zj+1〉 → 0 or 〈(AB)q Zn(z)Z1〉 → 0, where (AB)q denotes the line in

momentum twistor space associated with the qth loop-variable. The first type of

pole simply corresponds to factorization channels, and the corresponding residue is

computed by the BCFW bridges between lower-loop/lower-point amplitudes:

where nL +nR = n+ 2, kL + kR = k− 1, `L + `R = `. Note that we treat all the poles

(including the pole at infinity) on an equal footing by declaring the term with j = 2

to be given by the k-preserving inverse soft-factor acting on lower-point amplitude.
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This is the most obvious generalization of the BCFW recursion relation from trees

to loops, but it clearly can’t be the whole story, since it would allow us to recursively

reduce loop amplitudes to the 3-particle loop amplitude, which vanishes! Obviously,

at loop-level, a “source” term is needed for the recursive formula.

I. Single-Cuts and the Forward-Limit

This source term is clearly provided by the second set of poles, arising from

〈(AB)q Zn(z) Z1〉 → 0. For simplicity of discussion let’s first consider the 1-loop

amplitude. This pole corresponds to cutting the loop momentum running between

n and 1, and is therefore given by a tree-amplitude with two additional particles

sandwiched-between n, 1, with momenta q,−q, summing-over the multiplet of states

running around the loop. These single-cuts associated with “forward-limits” of lower-

loop integrands are precisely the objects that make an appearance in the context of

the Feynman tree theorem [103]. The geometry of the forward limit is shown below

for both in the dual x-space and momentum-twistor space:

Here, between particles 5 and 1, we have particles 6, 7 with momenta qµ,−qµ, where

qµ = xµ1 − x
µ
7 is a null vector. In momentum-twistor space, the null condition means

that the line (76) intersects (15), while in the forward limit both Z6 and Z7 approach

the intersection point (76)
⋂

(15).

In a generic gauge theory, the forward limits of tree amplitudes suffer from collinear

divergences and are not obviously well-defined. However remarkably, as pointed out

in [103], in supersymmetric theories the sum over the full multiplet makes these

objects completely well-defined and equal to single-cuts!

Indeed, we can go further and express this single-cut “forward limit” term in a

manifestly Yangian-invariant way. It turns out to to be a beautiful object, combining
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the entangled removal of two particles with the “merge” operation:

Here a particle (n+ 1) is added adjacent to A,B as a k-increasing inverse soft factor,

then A,B are removed by entangled integration. The GL2-contour is chosen to en-

circle points where both points A,B on the line (AB) are located at the intersection

of the line (AB) with the plane (n 1 n 1). Note that there is no actual integral to be

done here; the GL2-integral is done on residues and is computed purely algebraically.

Finally, the added particle (n+ 1) is merged with 1.

As in our discussion of the BCFW bridge, this form can be easily understood by

looking at the deformations induced by the “1” inverse soft factors; the associated

momentum-twistor geometry turns out to be

exactly as needed. The picture is the same for taking the single cut of any Yangian-

invariant object.

Note that we were able to identify the BCFW terms in a straightforward way

since the residues of the poles of the integrand have obvious “factorization” and “cut”

interpretations. This is another significant advantage of working with the integrand,

since as is well known, the full loop amplitudes (after integration) have more com-

plicated factorization properties [111]. This is due to the IR-divergences which occur

when the loop momenta becomes collinear to external particles, when the integration

is performed.
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II. BCFW For All Loop Amplitudes

Putting the pieces together, we can give the recursive definition for all loop integrands

in planar N = 4 SYM as

= +

To be fully explicit, the recursion relation is

Mn,k,`(1, . . . , n) = Mn−1,k,`(1, . . . , n− 1)

+
∑

nL,kL,`L;j

[j j+1 n−1 n 1] MR
nR,kR,`R

(1, . . . , j, Ij)M
L
nL,kL,`L

(Ij, j+1, . . . , n̂j)

+

∫
GL2

[AB n 1n 1]×Mn+2,k+1,`−1(1, . . . , n̂(AB), Â, B). (2.4.29)

where nL + nR = n + 2, kL + kR = k − 1, `L + `R = ` and the shifted momentum

(super-)twistors that enter are

n̂j = (n 1 n)
⋂

(j j+1 1), Ij = (j j+1)
⋂

(n 1 n 1);

n̂(AB) = (n 1 n)
⋂

(AB 1), Â = (AB)
⋂

(n 1 n 1).
(2.4.30)

Beyond 1-loop, it is understood that this expression is to be fully-symmetrized with

equal weight in all the loop-integration variables (AB)`; it is easy to see that this

correctly captures the recursive combinatorics. ecall again that GL2-integral is done

on simple residues and is thus computed purely algebraically; the contour is chosen so

that the points A,B are sent to (AB)
⋂

(n 1 n 1). Recursively using the BCFW form

for the lower-loop amplitudes appearing in the forward limit allows us to carry out

the GL2-integral completely explicitly, but the form we have given here will suffice

for this chapter.

III. Simple Examples

In [?], we will describe the loop-level BCFW computations in detail; here we will just

highlight some of the results for some simple cases, to illustrate some of the important
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properties of the recursion and the amplitudes that result. We start by giving the

BCFW formula for all one-loop MHV amplitudes.

In this case the second line in the above formula vanishes, and the recursion

relation trivially reduces to a single sum. To compute the NMHV tree amplitudes

which enters through the third line, it is convenient to use the tree BCFW deformation

Z̃B = ZB + zẐA which leads to

M1−loop
MHV =

∫
(AB)

∫
GL2

∑
j

[AB j j+1 1]×

(∑
i<j

[ÂB 1 i i+1] + . . .

)
, (2.4.31)

where we have defined ∫
(AB)

≡
∫ [

d4|4ZAd4|4ZB
vol(GL2)

]
, (2.4.32)

and where the omitted terms are independent of ZB and vanish upon Fermionic-

integration. The GL2- and Fermion-integrals are readily evaluated, as explained

above, reducing this to

M1−loop
MHV =

∫
(AB)

∑
i<j

〈AB (1 i i+1)
⋂

(1 j j+1)〉2

〈AB 1 i〉〈AB i i+1〉〈AB i+1 1〉〈AB 1 j〉〈AB j j+1〉〈AB j+1 1〉
. (2.4.33)

This is the full one-loop integrand for MHV amplitudes.

As expected on general grounds from Yangian-invariance, and also as familiar from

BCFW recursion at tree-level, the individual terms in this formula contain both local

and non-local poles. We will graphically denote a factor 〈AB xy〉 in the denominator

by drawing a line (xy); the numerators of tensor integrals (required by dual conformal

invariance) will be denoted by wavy- and dashed-lines—the precise meaning of which

will be explained shortly. In this notation, this result is

=

Notice that all the terms have 6 factors in the denominator, and hence by dual

conformal invariance we must have two factors containing (AB) in the numerators.
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These are denoted by the wavy lines: the numerator is 〈AB(1 i i+1)
⋂

(1 j j+1)〉2 ≡
(〈A 1 i i+1〉〈B 1 j j+1〉 − 〈B 1 i i+1〉〈A 1 j j+1〉)2, where the power of 2 has been

indicated by the line’s multiplicity.

Notice that when i + 1 = j, the numerator cancels the two factors 〈AB 1 j〉2 in

the denominator: by a simple use of the Schouten identity it is easy to see that

[〈A 1 j 1 j〉〈B 1 j j+1〉 − 〈A 1 j j+1〉〈B 1 j 1 j〉]2 = [〈AB 1 j〉〈1 j 1 j j+1〉]2 .
(2.4.34)

In general, all of these terms contain both physical as well as spurious poles. Physical

poles are denominator factors of the form 〈AB i i+1〉 and 〈i i+1 j j+1〉 while spurious

poles are all other denominator factors. We often refer to physical poles as local

poles and to spurious poles as non-local. A small explanation for the “non-local”

terminology is in order. Consider the 5-particle amplitude as an example, where

there are three terms in the integrand. These three terms are

〈1234〉2

〈AB 12〉〈AB 23〉〈AB 34〉〈AB 14〉
+

〈AB (123)
⋂

(145)〉2

〈AB 12〉〈AB 23〉〈AB 31〉〈AB 14〉〈AB 45〉〈AB 51〉
〈3451〉2

〈AB 34〉〈AB 45〉〈AB 51〉〈AB 31〉
. (2.4.35)

The spurious poles are 〈AB 14〉 and 〈AB 13〉. The line defined by Z1 and Z3 corre-

sponds to a complex point, but what makes 〈AB 13〉 non-local? The reason is that in

field theory 1/〈AB 13〉 could only come from a loop integration, e.g. it is generated

by a local one-loop integral of the form∫ [
d4ZCd

4ZD
vol(GL2)

]
〈CD (512)

⋂
(234)〉

〈CDAB〉〈CD 51〉〈CD 12〉〈CD 23〉〈CD 34〉
. (2.4.36)

(This is also the secret origin of the non-local poles in BCFW at tree-level.)

Back to the 5-particle example, 〈AB 14〉 and 〈AB 31〉 occur each in two of the

three terms and they cancel in pairs. Indeed upon collecting denominators we find,

after repeated uses of the Schouten identity, the result for the sum

−〈AB 12〉〈2345〉〈1345〉+ 〈AB 23〉〈1345〉〈1245〉+ 〈AB 13〉〈1245〉〈3245〉+ 〈AB 45〉〈1234〉〈1235〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 45〉〈AB 51〉

.

(2.4.37)

This is furthermore cyclically-invariant, albeit in a nontrivial way involving Schouten

identities.

92



Let us also briefly discuss the 6-particle NMHV amplitude at 1-loop. The full

integrand has 16 terms which differs even more sharply from familiar local forms of

writing the amplitude. As we will review in the next section, the usual box decompo-

sition of 1-loop amplitudes does not match the full integrand (only the “parity-even”

part of the integrand); even so, there is a natural generalization of the basis of in-

tegrals that can be used to match the full integrand in a manifestly dual conformal

invariant form. Any such representation, however, will have the familiar form “lead-

ing singularity/Grassmannian residue × loop integral”. However, this is not the form

we encounter with loop-level BCFW. Instead, the supersymmetric η-variables are en-

tangled with the loop integration variables in an interesting way. For instance, one

of the terms from the forward limit contribution to the 6-particle NMHV amplitude

integrand is the following,

δ0|4

 η1〈AB 1(23)
⋂

(456)〉 + η2〈4561〉〈AB 31〉 + η3〈4561〉〈AB 12〉
+ η4〈AB (123)

⋂
(561)〉 + η5〈AB 1(46)

⋂
(123)〉 + η6〈AB 1(123)

⋂
(45)〉


〈4561〉〈AB 45〉〈AB 61〉〈AB 12〉〈AB 23〉〈AB 13〉〈AB 41〉〈AB (123)

⋂
(456)〉〈AB (123)

⋂
(561)〉

Note the presence of the explicit (AB)-dependence in the argument of the Fermionic δ-

function. Seemingly miraculously, when the residues of this integral are computed on

its leading singularities, the η-dependence precisely reproduces the standard NMHV

R-invariants. Of course this miracle is guaranteed by our general arguments about

the Yangian-invariance of these objects.

IV. Unitarity as a Residue Theorem

The BCFW construction of tree-level amplitudes make Yangian-invariance manifest,

but are not manifestly cyclic-invariant. The statement of cyclic-invariance is then a

remarkable identity between rational functions. Of course one could say that the field

theory derivation of the recursion relation gives a proof of these identities, but this is

quite a circuitous argument. One of the initial striking features of the Grassmannian

picture for tree amplitudes was that these identities were instead a direct consequence

of the global residue theorem applied to the Grassmannian integral. This observation

ultimately led to the “particle interpretation” picture for the tree contour, giving a

completely autonomous and deeper understanding of tree amplitudes, removed from

the crutch of their field theory origin.
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In complete analogy with BCFW at tree-level, the BCFW construction of the loop

integrand is not manifestly cyclically-invariant. Again cyclic-invariance is a remark-

able identity between rational functions, and again this identity can be thought of as

a consequence of the field theory derivation of the recursion relation. But of course

we strongly suspect that there is an extension of the “particle interpretation” picture

that gives a completely autonomous and deeper understanding of loop amplitudes,

independent of any field theoretic derivation.

Just as at tree-level, a first step in this direction is to find a new understanding of

the cyclic-invariance identities. To whit, we have understood how the cyclic-identity

for the 1-loop MHV amplitude can be understood as a residue theorem. The idea

is to identify the terms appearing in the MHV 1-loop formulas as the residues of a

new Grassmannian integral. All the terms in the MHV 1-loop formula can actually

be thought of as arising from
∫
d3|4ZAd3|4ZBYn+2,k=2(ZA,ZB, . . .), where Yn+2,k=2 is

computed from the G(2, n + 2) Grassmannian integral. Note that ZA,ZB appear in

the δ-functions of the integral in the combination CβAZA+CβBZB, so the GL2-action

on (ZA,ZB) also acts on (CβA, CβB). Performing the ηA,B and GL2-integrals leaves

us with a new Grassmannian integral:

∫
d2×(n+2)Cβa

δ4(CβiZi + CβAZA + CβBZB)(AB)2

(12)(23) · · · (n1)
. (2.4.38)

By construction, this integral has a GL2-invariance acting on columns (A,B) and

(ZA, ZB), and hence all of is residues are only a function of the line (ZAZB). In

particular all terms appearing in the MHV 1-loop formula, after GL2 integration, are

particular residues of this Grassmannian integral.

The equality of cyclically-related BCFW expressions of the 1-loop amplitude fol-

lows from a residue theorem applied to this integral. In fact, it can be shown that

the only combination of these residues that is free of spurious poles is the physical

1-loop amplitude.

At tree level, the cyclic-identity applied to e.g. NMHV amplitudes ensures the

absence of spurious poles. The same is true at 1-loop level. Since the BCFW formula

manifestly guarantees that one of the single cuts is correctly reproduced, cyclicity

guarantees that all the single cuts are correct. Having all correct single cuts, auto-
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matically ensures that all higher cuts—and in particular unitarity cuts—are correctly

reproduced. Unitarity then finds a deeper origin in this residue theorem.

2.5 Final remarks

I. Origin of Loops

A few years ago, the tree-level BCFW recursion relations sat at an interesting cross-

roads between the usual formulation of field theory, where space-time locality is man-

ifest, and a hoped for dual description, where space-time should be emergent. On

the one hand, the recursion relations were directly derived from field theory—without

the field-theoretic motivation, it was hard to imagine the motivation for gluing lower-

point objects together in the prescribed way. On the other hand, the presentation of

the amplitude was very different from anything normally seen in field theory. The

amplitudes could be presented in many different forms, with remarkable identities

guaranteeing their equivalence. The simplicity of the answers resulted directly from

the presence of non-local poles. These properties, together with the dual super-

conformal invariance of all terms in the BCFW expansions, strongly motivated the

search for a dual theory which would make these features obvious, and which would

furthermore give an intrinsic definition of the tree amplitudes on its own turf.

The Grassmannian duality for leading singularities provides this dual understand-

ing of tree amplitudes in a satisfying way. The Yangian symmetry is manifest (for all

leading singularities and not just tree amplitudes). The amplitude can be presented

in many forms since it is a contour integral, with many representatives for a given

homology class. The remarkable identities guaranteeing cyclic-invariance (together

with important physical properties at loop-level) indeed find a new interpretation as

higher-dimensional residue theorems. And finally, giving the contour integral over

the Grassmannian a “particle interpretation” poses a natural question, intrinsic to

the Grassmannian picture, whose answer yields the tree amplitude, along the way

exposing a (still quite mysterious) connection with twistor string theory. We strongly

suspect that a generalization of this picture exists that extends the duality to only to
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incorporate loop amplitudes but also explain why loops must be computed to begin

with.

Our extension of BCFW to all loop orders puts loop amplitudes in the same posi-

tion at the cross-roads between field theory and a sought-after dual description that

tree amplitudes occupied a few years ago. This should set the stage for fully exposing

the dual picture, and we have already made some inroads to uncovering its structure.

For instance we saw that the remarkable identities guaranteeing cyclic-invariance of

the MHV 1-loop amplitude indeed have an origin as a residue theorem in a new

Grassmannian integral closely associated to the “master” integral computing leading

singularities/Yangian-invariants. The nature of the “seed” for loops, arising from

removing particles, is also clearly intimately related to the particle interpretation,

which has already played a central role in the emergence of locality at tree-level.

Along these lines, here we give another presentation of the 1-loop MHV ampli-

tudes, which differs from the form we obtained using the recursion relation. Consider

the tree-level N2MHV amplitude Mn,k=2(Z1, . . . ,Zn,ZA,ZB). The 1-loop MHV am-

plitude arises directly from the entangled removal of A and B:

=

Here it is easy to see, using the BCFW form of the tree amplitude, that there is a

unique GL2-contour of integration associated with each term. This formula differs

term-by-term from the BCFW form of this amplitude. We can however recognize

all the terms as residues of the same auxiliary Grassmannian integral in equation

(2.4.38), and we have shown that the equivalence to the BCFW form follows from a

residue theorem. While this formula does not directly generalize for other amplitudes,

its form is certainly suggestive.

Progress on all these questions would likely be accelerated by finding an explicit

solution to the recursion relation for all (n, k, `), generalizing the explicit solution

already known for tree-amplitudes [100].
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As a final comment, our analysis of loops in this chapter has been greatly aided

by working in momentum-twistor space; these variables allow us to recognize loop

integrals in their familiar momentum-space setting. However, given that all the ele-

ments in the recursion relation were described in manifestly Yangian-invariant ways,

it must be possible to translate these results into ordinary twistor space. It is likely

that the twistor-space formulation will be most fundamental, amongst other things

it could offer a natural understanding of non-planar loop amplitudes as well.

The results of this chapter also give a renewed hope for extracting loop-information

from twistor-string theory. As we have seen, loop amplitudes can easily hide in plain

sight in subtle ways, masquerading as a formal way of representing “1” in terms of IR-

divergent integrals in (3, 1)-signature! It is likely that a deeper understanding of the

contours associated with the “Hodges diagrams” [73, 112], already for twistor-space

tree-amplitudes in (3, 1)-signature, will be important to make progress here.

II. Simplicity of Integrals and IR-Anomalies

Putting aside these highbrow issues, we are confronted with a much more urgent

question: does our understanding of the integrand help us to carry out the integrations

to obtain the physical amplitudes? Are the symmetries of the integrand of any use?

In fact the manifestly Yangian-invariant way of presenting the integrand does

strongly suggests that the integrals themselves will be “simple”. The “super” part of

super-dual conformal invariance is already an extremely powerful constraint. Consider

MHV amplitudes for simplicity. The statement of super-dual conformal invariance is∑
a

ηKa
∂

∂ZJ
a

MMHV = 0→ ∂

∂ZJ
a

MMHV = 0 for all a, (2.5.39)

where we use the fact that the MHV amplitude has no ηa dependence. Thus, the only

super-dual conformally invariant amplitude is forced to be a constant! This reflects

the well-known fact that the only Yangian invariant with k = 0 is the MHV tree am-

plitude (=1 in momentum-twistor space). Now, we have expressed the integrand for

the MHV amplitude in a manifestly super-dual conformal (indeed Yangian)-invariant

way. Consider for instance the 1-loop amplitude, which has the form

MMHV =

∫
d3|4ZAd3|4ZB F (ZA,ZB;Za), (2.5.40)
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with an entangled contour of integration for ZA,B; we suppress the explicit expression

for F . The statement of super-dual conformal invariance is perfectly well-defined at

the level of the integrand, which turns into a total derivative:∑
a

ηKa
∂

∂ZJ
a

MMHV =

∫
d3|4ZAd3|4ZB

(
ηKA

∂

∂ZJ
A

+ ηKB
∂

∂ZJ
B

)
F. (2.5.41)

After doing the ηA,B and GL2-integrals, we have

∂

∂ZJ
a

MMHV =

∫
d4ZAd

4ZB
vol(GL2)

(
∂

∂ZJ
A

Ga
A +

∂

∂ZJ
B

Ga
B

)
, (2.5.42)

where we suppress the explicit forms of Ga
A,B. We see that super-dual conformal-

invariance continues to be manifest at the level of the Bosonic loop integrand in the

dual co-ordinate space, also at all loop orders.

This symmetry therefore guarantees that no matter how complicated the integrand

looks, on any contour of integration where the integral is completely well-defined, it

can only integrate to a constant, “1”! The integral is not “1” only because we choose a

contour of integration over lines (AB) corresponding to real (3, 1)-signature points in

dual spacetime, and this integral is IR-divergent. We see that IR-divergences are not

an annoying side-feature of loop amplitudes, they are the sole reason these amplitudes

are non-trivial; in this Yangian-invariant form, the loop amplitudes are telling us “I

diverge, therefore I am”9. This is a powerful statement that should be turned into an

engine to simplify the computation of the loop integrals. Due to the IR-divergences,

the Yangian generators will not quite annihilate the loop amplitude, but they should

localize the integral to the IR-divergent regions of loop momentum-space collinear to

the external particles. In the dual co-ordinate space, this is the region localized to

the edges of the null-polygonal Wilson loop. It seems likely that these IR-anomalies

fully control the structure of the amplitude. Amongst other things, they must lie

behind the astonishing simplicity recently uncovered in the structure of the remainder

function for the 2-loop, 6-particle MHV amplitude [22]. In the same line of thought,

it is conceivable that there is a very direct link between the Yangian structure we

uncovered and the very beautiful connections made at strong coupling with integrable

systems, Y-systems, TBA equations and the Yang-Yang functional [54,113]. Already

these developments have allowed a bridge to weak coupling by computing sub-leading

corrections to collinear limits [55,114,115].

9We thank Peter Goddard for this remark.
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Having said all of this, there is a very important issue that must be addressed

to make progress in directly computing these Yangian-“invariant” but non-local in-

tegrals. The question is of course how to handle IR-regularization for these objects.

Dimensional regularization has long been the preferred method for regulating IR-

divergences in gauge theories, but it does particularly violent damage to the structure

of the integrand, and is not useful for our purposes. Fortunately, there is a better

regulator, both conceptually and computationally. Physically, the IR-divergences are

removed by moving out on the Coulomb branch [67]. This gives a beautifully sim-

ple way to regulate the integrals in momentum-twistor space which is also useful for

practical computations [116,117]. With the loop integrand written in local form, one

simply deforms the local propagators as 〈AB j 1 j〉 7→ 〈AB j 1 j〉+m2〈AB〉〈j 1 j〉.
The physics is always four dimensional. The ambiguities in this regulator occur at an

irrelevant level O(m2)(log(m2))p. In particular there are no issues with the notorious

“µ-terms” in dimensional regularization, and we don’t encounter the ubiquitous ε/ε

effects either. This is clearly the physically correct regularization for our set-up.

How should we use this regularization to compute the non-local integrals of inter-

est? One can glibly regulate all 4-brackets 〈AB xy〉 7→ 〈AB xy〉 + m2〈AB〉〈xy〉, but

this is not physically correct: the regularization of the local propagators is reflecting

the (local!) masses induced by Higgsing; and so it is not clear how the non-local

propagators should be regularized. Indeed, we have checked that for the 1-loop MHV

amplitudes, this very näıve regularization of the integrals does not produce the stan-

dard result. Of course, since the Yangian invariant form of the full amplitude can be

expanded in terms of local integrals, we can in principle work backwards to see how

the correct local regulator affects the non-local integrand; the question is whether

there is a sensible way of computing these non-local integrals directly. We intend to

return to these questions in near future.

We have emphasized that the Yangian-invariant presentation of the loop integrand

strongly suggests that the integrals should be simple. But as we have seen in a num-

ber of examples, even the local forms of the integrand, when written in terms of the

natural chiral basis of momentum-twistor space integrals with unit leading singulari-

ties, look surprisingly elegant. In fact, these integrals with unit leading singularities

should also be “simple”. The reason is precisely that their leading singularities are
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“1” or “0”; these are the only possible values of the integrals on any closed contour

of integration, independent of the kinematic variables. This means that e.g. ∂/∂ZI
a

acting on these integrals should also be a total derivative with respect to the loop

variables, and that they too should be localized to regions with collinear singulari-

ties. Since these are local integrals their regularization is well defined. Indeed, as

we pointed out in our multi-loop examples, the näıvely “hardest” integrals are even

IR-finite. The integrals for our form of the two-loop 6-point MHV amplitude have

been computed analytically passing all non-trivial checks. The simplicity of these par-

tial results strongly supports the idea that the full amplitude computed with these

integrals are also simple.

III. Other Planar Theories

We end by stressing that many of the ideas in this chapter are likely to generalize

beyond the very special case of N = 4 SYM. Since the integrand is well-defined

in any planar theory, one can try to determine it with recursion relations just as

we have done for N = 4 SYM. In [103], it was argued that the single-cuts of

the 1-loop amplitude are well-defined for any theory with at least N = 1 SUSY

(or N = 2 in the presence of massive particles), so the BCFW recursion determines

amplitudes at least up to 1-loop in these theories too, with or without maximal SUSY

and Yangian-invariance. In non-supersymmetric theories, further progress on these

questions will require a better understanding of single-cuts. One difficulty is that the

näıve forward limit of tree amplitudes is ill-defined. It is plausible that this is closely

related to presence of rational terms in 1-loop amplitudes, which have a beautiful and

fascinating structure which is strongly suggestive of a deeper origin.

100



Chapter 3 Scattering Amplitudes and
Positive Grassmannian

3.1 Overview of the chapter

All the developments in the field of scattering amplitudes have made completely clear

that there are powerful new mathematical structures underlying the extraordinary

properties of scattering amplitudes in gauge theories. If history is any guide, formu-

lating and understanding the physics in a way that makes the symmetries manifest

should play a central role in the story. The Grassmannian picture does this, but up to

this point there has been little understanding for why this formulation exists, exactly

how it works, or where it comes from physically. Our primary goal in this chapter is

to resolve this unsatisfactory state of affairs.

This new way of thinking about scattering amplitudes involves many novel phys-

ical and mathematical ideas. Our presentation will be systematic, and we have en-

deavored to make it self contained and completely accessible to physicists. While we

will discuss a number of mathematical results—some of them new—we will usually be

content with the physicist’s level of rigor. While the essential ideas here are all very

simple, they are tightly interlocking, and range over a wide variety of areas—most of

which are unfamiliar to most physicists. Thus, before jumping into the detailed expo-

sition, as a guide to the reader we end this introductory section by giving a roadmap

of the logical structure and content of the chapter.

In section 3.2, we introduce the central physical idea motivating our work, which

is to focus on on-shell diagrams, obtained by gluing together fundamental 3-particle

amplitudes and integrating over the on-shell phase space of internal particles. These

objects are of central importance to the understanding scattering amplitudes. We

will see that scattering amplitudes in planar N =4 SYM—to all loop orders—can be

represented directly in terms of on-shell processes. In this picture, “virtual particles”
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make no appearance at all. We should emphasize that we are not merely using on-shell

information to determine scattering amplitudes, but rather seeing that the amplitudes

can be directly computed in terms of fully on-shell processes. The off-shell, virtual

particles familiar from Feynman diagrams are replaced by internal, on-shell particles

(with generally complex momenta).

In our study of on-shell diagrams, we will see that different diagrams related by cer-

tain elementary moves can be physically equivalent, leading to the natural question of

how to invariantly characterize their physical content Remarkably, the invariant con-

tent of on-shell diagrams turns out to be characterized by permutations. We discuss

this in detail in section 3.3 where we show how a long-known and beautiful connec-

tion between permutations and scattering amplitudes in integrable (1+1)-dimensional

theories generalizes to more realistic theories in (3+1) dimensions.

In section 3.4 we turn to actually calculating on-shell diagrams and find that the

most natural way of carrying out the computations is to associate each diagram with

a certain differential form on an auxiliary Grassmannian. In sections 3.5 and 3.6 we

show how the invariant, combinatorial content of an on-shell diagram is reflected

in the Grassmannian directly. This is described in terms of a surprisingly simple

stratification of the configurations of k-dimensional vectors endowed with a cyclic

ordering, classified by the linear dependencies among consecutive chains of vectors.

For the real Grassmannian, this stratification can be equivalently described in an

amazingly simple and beautiful way as nested ‘boundaries’ of the positive part of the

Grassmannian, [43], which is motivated by the theory of totally positive matrices, [38,

118,119]. Each on-shell diagram can then be associated with a particular configuration

or “stratum” among the boundaries of the positive Grassmannian.

In section 3.7 we make contact with the Grassmannian contour integral of refer-

ence [16], which is now seen as a compact way of representing the natural, invariant

top-form on the positive Grassmannian. This form of the measure allows us to easily

identify the conformal and dual conformal symmetries of the theory which are related

by a simple mapping of permutations described in section 3.8. In section 3.9, we show

that the invariance of scattering amplitudes under the action of the level-one gener-

ators of the Yangian has a transparent interpretation: these generators correspond

to the leading, non-trivial diffeomorphisms that preserve all the cells of the positive
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Grassmannian.

In section 3.10 we begin a systematic classification of Yangian invariants and their

relations by first describing a combinatorial test to determine whether an on-shell

diagram has non-vanishing kinematical support (and if so, how many points of support

exist). In section 3.11 a geometric basis is given for all the myriad, highly non-trivial

identities satisfied among Yangian-invariants. This completes the classification of all

Yangian Invariants together with all their relations.

In section 3.12 we show that the story for scattering amplitudes in integrable

(1+1)-dimensional theories—in particular, the Yang-Baxter relation—can be under-

stood as a special case of our general results regarding on-shell diagrams. We further

show that scattering amplitudes for the ABJM theory in (2+1) dimensions, [120], can

also be computed in terms of a natural specialization of on-shell diagrams: those asso-

ciated with the null orthogonal Grassmannian. And we initiate the study of on-shell

diagrams in theories with less (or no) supersymmetry in section 3.13.

In section 3.14 we move beyond the discussion of individual on-shell diagrams

and describe the particular combinations which represent scattering amplitudes. We

present a self-contained direct proof—using on-shell diagrams alone—that the BCFW

construction of the all-loop integrand generates an object with precisely those sin-

gularities dictated by quantum field theory. We then show that the Grassmannian

representation of loop-integrands are always given in a remarkable, “dlog” form, which

we illustrate using examples of simple, one- and two-loop amplitudes. We discuss the

implications of this representation for the transcendental functions that arise after

the loop integrands are integrated.

We conclude our story in section 3.15 with a discussion of a number of the out-

standing, open directions for further research.
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3.2 On-Shell Diagrams

Theoretical explorations in field theory have been greatly advanced by focusing on

interesting classes of observables—from local correlation functions and scattering am-

plitudes, to Wilson and ’t Hooft loops, surface operators and line defects, to partition

functions on various manifolds (see e.g. [121, 122]). The central physical idea of our

work is to study on-shell scattering processes as a new set of objects of fundamental

interest.

I. On-Shell Building Blocks: the Three-Particle Amplitudes

The fundamental building blocks for all on-shell scattering processes are the three-

particle amplitudes, which are completely determined (up to an overall coupling con-

stant) by Poincaré invariance. This is a consequence of the unique simplicity of

three-particle kinematics. It is very easy to show that momentum conservation can

only be satisfied if either: (A) all the λ’s are proportional to each other, or (B) all

the λ̃’s are proportional:

λ1λ̃1 + λ2λ̃2 + λ3λ̃3 = 0 ⇔
(A) : λ1 ∝ λ2 ∝ λ3

(B) : λ̃1 ∝ λ̃2 ∝ λ̃3

 . (3.2.1)

Because of this, in the kinematic configuration where all the λ’s are proportional, the

amplitude can only depend non-trivially on the λ̃’s, and vice-versa. The dependence

on λ (λ̃) is fully determined by the weights, together with the requirement that the

amplitude is non-singular in the limit where the momenta are taken real (see equation

(3.2.5)).

We will denote the three-particle amplitude associated with the configuration

where all the λ’s (λ̃’s) are parallel with a white (black) three-point vertex. In a

non-supersymmetric theories, i.e. with only gluons, these are associated with helicity

configurations involving one (two) negative-helicity gluons:

and (3.2.2)
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The corresponding helicity amplitudes are given by,

A
(1)
3 (−,+,+) =

[2 3]3

[1 2][3 1]
δ2×2

(
λ1λ̃1 + λ2λ̃2 + λ3λ̃3

)
;

A
(2)
3 (+,−,−) =

〈2 3〉3

〈1 2〉〈3 1〉
δ2×2

(
λ1λ̃1 + λ2λ̃2 + λ3λ̃3

)
.

(3.2.3)

Here, we have made use of the Lorentz-invariants constructed out of the spinors,

〈a b〉 ≡ det{λa, λb} and [a b] ≡ det{λ̃a, λ̃b}. (3.2.4)

These amplitudes are of course what we get from the two-derivative Yang-Mills

Lagrangian. Amplitudes involving all-plus or all-minus helicities are also fixed by

Poincaré invariance in the same way, but arise only in theories with higher-dimension

operators like F 3 or R3. In general, Poincaré invariance fixes the kinematical de-

pendence of the three-particle amplitude involving massless particles with arbitrary

helicities to be, [123]:

A3(h1, h2, h3) ∝

 [12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2
∑
ha > 0;

〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1
∑
ha < 0.

(3.2.5)

As mentioned above, in maximally supersymmetric theories all helicity states are

unified in a single super-multiplet, and so there is no need to distinguish among

the particular helicities of particles involved; and so, we may consider the simpler,

cyclically-invariant amplitudes:

and (3.2.6)

The first includes among its components the (−,+,+) amplitude of (3.2.2), while the

latter includes the (+,−,−) amplitude. These super-amplitudes are given by,

A(1)
3 =

δ1×4
(
[2 3]η̃1 + [3 1]η̃2 + [1 2]η̃3

)
[1 2][2 3][3 1]

δ2×2
(
λ1λ̃1 + λ2λ̃2 + λ3λ̃3

)
;

A(2)
3 =

δ2×4
(
λ1η̃1 + λ2η̃2 + λ3η̃3

)
〈1 2〉〈2 3〉〈3 1〉

δ2×2
(
λ1λ̃1 + λ2λ̃2 + λ3λ̃3

)
.

(3.2.7)

(Although not essential for our present considerations, it may be of some interest

that these objects can be made fully permutation invariant by including also a pref-

actor fa1,a2,a3 depending on the ‘colors’ ai of the particles involved (where ‘color’ is
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simply a label denoting the possible distinguishable states in the theory). General

considerations of quantum mechanics and locality (see e.g. [123]) require that any

such prefactor must be fully antisymmetric and satisfy a Jacobi identity—implying

that color labels combine to form the adjoint representation of a Lie algebra. The

most physically interesting case is when this is the algebra of U(N); in this case, N

can be viewed as a parameter of the theory, and scattering amplitudes can be ex-

panded in powers of 1/N to all orders of perturbation theory, [124]. In this chapter,

we will mostly concern ourselves with the leading-terms in 1/N—the planar sector of

the theory.)

II. Gluing Three-Particle Amplitudes Into On-Shell Diagrams

It is remarkable that three-particle amplitudes are totally fixed by Poincaré symme-

try; they carry all the essential information about the particle content and obvious

symmetries of the physical theory. It is natural to “glue” these elementary building

blocks together to generate more complicated objects we will call on-shell diagrams.

Such objects will be our primary interest in this chapter; examples of these include:

and (3.2.8)

We draw both planar and non-planar examples here to stress that on-shell diagrams

have nothing to do with planarity. In this chapter, however, we will focus on the case

of planar N = 4; we leave a systematic exploration of non-planar on-shell diagrams

to future work.

Note that on-shell diagrams such as those of (3.2.8) are not Feynman diagrams!

There are no “virtual” or “off-shell” internal particles involved: all the lines in these

pictures are on-shell (meaning that their momenta are null). Each internal line rep-

resents a sum over all possible particles which can be exchanged in the theory, with
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(often complex) momenta constrained by momentum conservation at each vertex—

integrating over the on-shell phase space of each. If I denotes an internal particle

with momentum pI = λI λ̃I and helicity hI , then pI flows into one vertex with helicity

hI , and ( pI) flows into the other with helicity ( hI). In pure (non-supersymmetric)

Yang-Mills we would have, [51], ∑
hI=±

∫
d2λId

2λ̃I
vol(GL(1))

, (3.2.9)

for each internal line; in a theory with maximal supersymmetry we would have,∫
d2λId

2λ̃I
vol(GL(1))

d4η̃ . (3.2.10)

Here, the on-shell phase-space integral is clearly over λ, λ̃, modulo theGL(1)-redundancy

of the little group—rescaling λI 7→ tIλI and λ̃I 7→ t−1
I λ̃I .

In general, we have some number of integration variables corresponding to the (on-

shell) internal momenta, and δ-functions enforcing momentum-conservation at each

vertex. We may have just enough δ-functions to fully localize all the internal momenta;

in this case the on-shell diagram becomes an ordinary function of the external data,

which has historically been called a “leading singularity” in the literature [11, 68]. If

there are more δ-functions than necessary to fix the internal momenta, the left-over

constraints will impose conditions on the external momenta; such an object is said

to be a singularity or to have “singular support”. If there are fewer δ-functions than

necessary to fix the internal momenta, there will be some degrees of freedom left over;

the on-shell diagram then leaves us with some differential form on these extra degrees

of freedom which we are free to integrate over any contour we please. But there is

no fundamental distinction between these cases; and so we will generally think of an

on-shell diagram as providing us with an “on-shell form”—a differential form defined

on the space of external and internal on-shell momenta. If we define the (super) phase

space factor of the on-shell particle denoted a by,

Ωa =
d2λad

2λ̃a
vol(GL(1))

d4η̃a , (3.2.11)

then we can think of the 3-particle amplitude involving particles a, b, c also as a form:

A3 Ωa Ωb Ωc . (3.2.12)

Putting all the 3-particle amplitudes in an on-shell diagram together gives rise to

a (typically high-dimensional) differential form on the space of external and internal
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momenta. The on-shell form associated with a diagram is then obtained by taking

residues of this high-dimensional form on the support of all the δ-function constraints

(thought of holomorphically—as representing poles which enforce their arguments

to vanish); this produces a lower-dimensional form defined on the support of any

remaining δ-functions.

Individual Feynman diagrams are not gauge invariant and thus don’t have any

physical meaning. By contrast, each on-shell diagram is physically meaningful and

corresponds to some particular on-shell scattering process. Note that although on-

shell diagrams almost always involve ‘loops’ of internal particles, these internal par-

ticles often have momenta fixed by the constraints (or are otherwise free). On-shell

forms are simply the products of on-shell 3-particle amplitudes; as such, they are al-

ways well-defined, finite objects—free from either infrared or ultraviolet divergences.

This makes them ideal for exposing symmetries of a theory which are often obscured

by such divergences.

III. The BCFW “Bridge”

One particularly simple way of building-up more complicated on-shell diagrams from

simpler ones will play an important role in our story. Starting from any on-shell

diagram, we can pick two external lines, and attach a “BCFW-bridge” to make a new

diagram as follows:

Note that the momentum λI λ̃I flowing through the bridge, as indicated by the arrow,

is very special: the white vertex on the left forces λI ∝ λa, and the black vertex on

the right forces λ̃I ∝ λ̃b; thus, λI λ̃I = αλaλ̃b for some α. The momenta entering the

rest of the graph through legs (a b) are deformed according to:{
λa 7→λâ = λa

λ̃a 7→ λ̃â = λ̃a αλ̃b

}
and

{
λb 7→λb̂ = λb+αλa

λ̃b 7→ λ̃b̂ = λ̃b

}
. (3.2.13)

For theories with supersymmetry, there is also a deformation of η̃a according to η̃a 7→
η̃a − α η̃b. (It is useful to remember that η̃ always transforms as λ̃ does.)
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Thus, attaching a BCFW-bridge adds one new variable, α, to an on-shell form f0,

and gives rise to a new on-shell form f given by,

f(. . . ;λa, λ̃a, η̃a;λb, λ̃b, η̃b; . . .) =
dα

α
f0(. . . ;λâ, λ̃â, η̃â;λb̂, λ̃b̂, η̃b̂; . . .);

=
dα

α
f0(. . . ;λa, λ̃a α λ̃b, η̃a α η̃b;λb+αλa, λ̃b, η̃b; . . .).

(3.2.14)

Notice that very complex on-shell diagrams (both planar and non-planar alike) can

be generated by successively attaching BCFW-bridges to a small set of ‘simple’ dia-

grams. As we will soon understand, it turns out that all (physically-relevant) on-shell

diagrams can be constructed in this way.

IV. On-Shell Recursion for All-Loop Amplitudes

While on-shell diagrams are interesting in their own right, for planar N =4 SYM, we

will see that they are of much more than purely formal interest. Scattering amplitudes

at all-loop order can be directly represented and computed as on-shell scattering

processes. This is quite remarkable, considering the ubiquity of “off-shell” data in

the more familiar Feynman expansion.

Of course by now we have become accustomed to the idea that amplitudes can be

‘determined’ using on-shell data—as evidenced, for instance, by the BCFW recursion

relations at tree-, [14,82], and loop levels, [65] (see also [125–128]). But our statement

goes beyond this: the claim is not just that an off-shell object such as “the loop

integrand” can be determined using only on-shell information, but rather that they

can be directly represented by fully on-shell objects.

Before discussing loops, let us look at some examples of “tree-level” amplitudes.

Recall from [129] that the four-particle tree-amplitude A(2)
4 can be represented by a

single on-shell diagram—its “BCFW representation”:

(3.2.15)

This is very far from what would be obtained using Feynman diagrams which would

have represented (3.2.15) as the sum of three terms,
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(3.2.16)

the first two of which involve off-shell gluon exchange. (The terms “tree-amplitude”

and “loop-amplitude” are artifacts of such Feynman-diagrammatic expansions.) An-

other striking difference is that, despite the fact that we’re discussing a tree-amplitude,

the on-shell diagram (3.2.15) looks like a loop! To emphasize this distinction, consider

a (possibly more familiar) “tree-like” on-shell graph such as:

(3.2.17)

Since the internal line in this graph must be on-shell, the diagram imposes a δ-function

constraint δ((p1 +p2)2) on the external momenta; and so, (3.2.17) corresponds to

a singularity—a factorization channel. The extra leg in (3.2.15) that makes the

“loop” allows for a non-vanishing result for generic (on-shell, momentum-conserving)

external momenta. It is interesting to note that we can interpret (3.2.15) as having

been obtained by attaching a “BCFW-bridge” to any of the factorization channels

of the four-particle amplitude—such as that of (3.2.17). This makes it possible for

the single diagram (3.2.15) to simultaneously exhibit all the physical factorization

channels.

This simple example illustrates the fundamental physical idea behind the BCFW

description of an amplitude—not just at tree-level, but at all loop orders: any am-

plitude can be fully reconstructed from the knowledge of its singularities; and the

singularities of an amplitude are determined by entirely by on-shell data. At tree-

level, the singularities are simply the familiar factorization channels,

(3.2.18)

where the left- and right-hand sides are both fully on-shell scattering amplitudes. At

loop-level, all the singularities of the integrand can be understood as factorizations
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like that of (3.2.18), or those for which an internal particle is put on-shell; at least

for N = 4 SYM in the planar limit, these singularities are given by the “forward-

limit” [103] of an on-shell amplitude with one fewer loop and two extra particles,

where any two adjacent particles have equal and opposite momenta, denoted:

(3.2.19)

Combining these two terms, the singularities of the full amplitude are, [65]:

(3.2.20)

Here we have suggestively used the symbol “∂” to signify “singularity of”. Of course,

the symbol ∂ is often used to denote “boundary” or “derivative”; we will soon see

that all of these senses are appropriate.

Equation (3.2.20) can be understood as defining a “differential equation” for scat-

tering amplitudes; and it turns out to be possible to ‘integrate’ it directly. This is

precisely what is accomplished by the BCFW recursion relations. For planar N = 4

SYM, the all-loop BCFW recursion relations, when represented in terms of on-shell

diagrams are simply:

(3.2.21)

The structure of this solution will be discussed in much greater detail in section 3.14.

For instance, notice that this presentation only makes some of the factorization chan-

nels and forward-limits manifest, and seems to break the cyclic symmetry of the am-

plitude by singling-out legs (1n). In other words, working intrinsically with on-shell

diagrams, it is not obvious that the sum (3.2.21) includes all the required singulari-

ties of an amplitude. Of course Feynman diagrams do make it manifest that such an
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object exists; but it would be nice to understand this more directly, without recourse

to the usual formalism of field theory. We will show how this works in subsection I.,

demonstrating that (3.2.21) has all the necessary singularities purely from within the

framework of on-shell diagrams.

The seed of loop integrands in the recursion relation are the “forward-limit” terms

as the three-point amplitudes are fixed by Poincaré invariance to all loop-orders.

Each loop is accompanied by four integration variables: three of these are given by

the phase space of the forward-limit momentum λABλ̃AB (from merging legs ‘A’ and

‘B’), and the BCFW deformation parameter α is the fourth. Of course, all the objects

appearing in these expressions are completely on-shell, and so do not seem to contain

anything that looks like the conventional“
∫
d4`” with which we are accustomed (where

` is the momentum of a generally off-shell, virtual particle). However, it is easy to

convert the parameters of the on-shell forward-limit to the more familiar one via the

identification:

` ≡ λABλ̃AB + αλ1λ̃n with d4` =
d2λABd

2λ̃AB
vol(GL(1))

dα 〈1λAB〉[n λ̃AB] . (3.2.22)

At L loops, the all-loop recursion relation produces a 4L-form, and we can identify the

4L integration variables with loop momenta at each order via (3.2.22). Integrating

these on-shell forms over a contour which restricts each loop-momentum to be real

(i.e. in R3,1) generates the final, physical amplitude.

Thus, as advertised, on-shell diagrams are of much more than mere academic

interest: they fully determine the amplitude in planar N =4 SYM to all loop-orders.

V. Physical Equivalences Among On-Shell Diagrams

We have seen that on-shell diagrams are objects of fundamental importance to the

physics of scattering amplitudes. It is therefore natural to try and compute the

forms associated with on-shell diagrams more explicitly, and better understand their

structure. At first sight, the class of on-shell diagrams may look as complicated as

Feynman diagrams. For instance, even for a fixed number of external particles, there

are obviously an infinite number of such diagrams (by continuously adding BCFW

bridges, for example). As we will see however, at least for N =4 SYM in the planar

limit, this complexity is entirely illusory. The reason is that apparently very different
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graphs actually give rise to exactly the same differential form—differing only by a

change of variables.

The first instance of this phenomenon is extremely simple and trivial. Consider

an analog of the “factorization channel” diagram (3.2.17), but connecting two black

vertices. Because these vertices require that all the λ̃’s be parallel, it makes no

physical difference how they are connected. And so, on-shell diagrams related by,

(3.2.23)

represent the same on-shell form. Thus, we can collapse and re-expand any chain

of connected black vertices in anyway we like; the same is obviously true for white

vertices. Because of this, for some purposes it may be useful to define composite black

and white vertices with any number of legs. By grouping black and white vertices

together in this way, on-shell diagrams can always be made bipartite—with (inter-

nal) edges only connecting white to black vertices. We will, however, preferentially

draw trivalent diagrams because of the fundamental role played by the three-particle

amplitudes.

There is also a more interesting equivalence between on-shell diagrams that will

play an important role in our story. We can see this already in the BCFW representa-

tion of the four-particle amplitude given above, (3.2.15). The picture is obviously not

cyclically invariant—as a rotation would exchange its black and white vertices. But

the four-particle amplitude of course is cyclically invariant; and so there is another

generator of equivalences among on-shell diagrams, the “square move”, [112]:

(3.2.24)

The merger and square moves can be used to show the physical equivalence of

many seemingly different on-shell diagrams. For instance, the following two diagrams

generate physically equivalent on-shell forms:
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(3.2.25)

We can see this by explicitly constructing the chain of moves which brings one graph

into the other:

Here, each step down involves one or more square-moves, and each step up involves

one or more mergers.

To give another example, the on-shell diagram representing the one-loop four-

particle amplitude—as obtained directly from BCFW recursion—is given by:

(3.2.26)

Using a series of mergers and square moves, it can be brought to the beautifully

symmetric, bipartite form:

(3.2.27)
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These forms are completely equivalent, but suggest very different physical interpreta-

tions. The first, (3.2.26), clearly exposes its origin as a forward-limit—arising through

the gluing of two of the external particles of the six-particle tree-amplitude. The sec-

ond form, (3.2.27), does not look like this at all; instead, it appears to represent four

BCFW-bridges attached to an internal square—which is of course the four-particle

tree-amplitude. Thus, in this picture, we can think of the one-loop amplitude as an

integral over a four-parameter deformation of the tree-amplitude!

This is more than mere amusement. It immediately tells us that with an appro-

priate choice of variables representing the BCFW-shifts, the one-loop amplitude can

be represented in a remarkably simple form:

A`=1
4 ∝ A`=0

4 ×
∫
dα1

α1

dα2

α2

dα3

α3

dα4

α4

. (3.2.28)

Of course, this does not look anything like the more familiar expression, [130],

A`=1
4 ∝ A`=0

4 × = A`=0
4 ×

∫
d4` (p1 + p2)2(p1 + p3)2

`2(`+ p1)2(`+ p1 + p2)2(`− p4)2
. (3.2.29)

In this form, it is not at all obvious that there is any change of variables that reduces

the integrand to the “dlog”-form of (3.2.28). However, following the rule for identify-

ing off-shell loop momenta in terms of on-shell data, (3.2.22), we may easily identify

the map which takes us from the ` of (3.2.29) to the αi of (3.2.28):

d4` (p1 + p2)2(p1 + p3)2

`2(`+ p1)2(`+ p1 + p2)2(`− p4)2
(3.2.30)

=dlog

(
`2

(`− `∗)2

)
dlog

(
(`+ p1)2

(`− `∗)2

)
dlog

(
(`+ p1 + p2)2

(`− `∗)2

)
dlog

(
(`− p4)2

(`− `∗)2

)
,

where `∗ is either of the two points null separated from all four external momenta.

This expression will be derived in detail in subsection III..

As we will see, the existence of this “dlog” representation for loop integrands is a

completely general feature of all amplitudes at all loop-orders. But the possibility of

such a form even existing was never anticipated from the more traditional formulations

of field theory. Indeed, even for the simple example of the four-particle one-loop

amplitude, the existence of a change of variables converting d4` to four dlog’s went
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unnoticed for decades. We will see that these “dlog”-forms follow directly from the on-

shell diagram description of scattering amplitudes generated by the BCFW recursion

relations, (3.2.21). Beyond their elegance, these dlog-forms suggest a completely

new way of carrying out loop integrations, and more directly expose an underlying,

“motivic” structure of the final results which will be a theme pursued in a later, more

extensive work.

The equivalence of on-shell diagrams related by mergers and square-moves clearly

represents a major simplification in the structure on-shell diagrams; but these alone

cannot reduce the seemingly infinite complexities of graphs with arbitrary numbers

of ‘loops’ (faces) as neither of these operations affect the number of faces of a graph.

However, using mergers and square-moves, it may be possible to represent an on-shell

diagram in a way that exposes a “bubble” on an internal line. As one might expect,

there is a sense in which such diagrams can be reduced by eliminating bubbles:

(3.2.31)

Of course this can’t literally be true: there is one more integration variable in the

diagram with the bubble than the one without. What “reduction” actually means

is that there is a concrete and simple change of variables for which this extra degree

of freedom, say α, factors-out of the on-shell form cleanly as dlogα—which, upon

taking the residue on a contour around α = 0, yields the reduced diagram and the

associated on-shell form.

Before completing our discussion, it is worth mentioning that there are other—

somewhat trivial—operations on diagrams which leave the corresponding on-shell

form invariant; these include, adding or deleting a bivalent vertex (of either color)

along a line, or exchanging the colors involved in a bubble such as that in (3.2.31).

It turns out that using mergers, square-moves and bubble-deletion, all planar

on-shell diagrams involving n external particles can be reduced to a finite number of

diagrams. This shows that the essential content of on-shell diagrams are encapsulated

by the finite list of reduced objects. And as we will see, the extra, “irrelevant” variables
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associated with bubble-deletion also have a purpose in life: they represent the loop

integration variables.

Reduced diagrams are still not unique of course: they can still be transmuted

into each other using mergers and square-moves. Given that the same on-shell form

can be represented by many different on-shell diagrams, it is natural to ask for some

invariant way to characterize them. For instance, if we are given two complicated

on-shell diagrams such as those of (3.2.25), how can we decide whether they can

be morphed into each other using the merge and square-moves? The answer to this

question ends up being simple and striking: the invariant data associated with reduced

on-shell diagram is encoded by a permutation of the particle labels! We will describe

this connection in detail in the next section.

It is amazing that a connection between scattering amplitudes in (3+1) dimensions

and combinatorics exists at all, let alone that it will play a central role in the story.

This is the tip of an iceberg of remarkable connections between on-shell diagrams and

rich mathematical structures only recently explored in the literature. We will spend

much of the rest of this chapter outlining these connections in greater detail. But

we will start by recalling that this is not the first time scattering theory has been

related to permutations in an important way: a classic example of such a connection

is for integrable theories in (1+1) dimensions. In addition to providing us with some

historical context, revisiting this story will give us an interesting perspective on recent

developments.
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3.3 Permutations and Scattering Amplitudes

I. Combinatorial Descriptions of Scattering Processes

To a physicist, scattering is perhaps the most fundamental physical process; but

scattering amplitudes are rather sophisticated functions of the helicities and momenta

of the external particles. If we strip-away all of this data, all that would be left would

be the arbitrary labels identifying the particles involved, which we will denote simply

by (1, . . . , n). The simplest kind of “interaction” that could be associated with just

this data would be a permutation; because of the central role played by permutations

in combinatorics, we might fancifully say that a permutation is the combinatorial

analog of the physicists’ S-matrix.

At first sight, it certainly seems as if a “combinatorial S-matrix” would be far

too simple an object to capture anything remotely resembling the richness of physical

scattering amplitudes. However, we will see that this is not the case: in a specific

sense, our study of on-shell diagrams will be fully determined by a novel way of

thinking about permutations.

Indeed something very much like this happens for integrable theories in (1+1)

dimensions, [131,132]. Consider for instance the permutation given by(1 2 3 4 5 6

↓ ↓ ↓ ↓ ↓ ↓
5 3 2 6 1 4

)
. (3.3.32)

Its relationship to physics can be seen by representing it graphically as:

(3.3.33)

This can be thought of as a space-time picture for a scattering process in (1+1)

dimensions, where time flows upwards. First, particles 4 and 5 scatter, then 1 and

2, then 2 and 3, and so on. The time-ordering of these scatterings corresponds to

one way of representing the permutation as a product of adjacent transpositions. Of

course, this decomposition is not unique: there are many ways of drawing the same
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picture with different time-orderings for the various 2→ 2 processes. In a general

theory with only 4-point interactions, the amplitude for different orderings would

be different, and therefore the amplitude for the scattering process would not be

completely determined by the permutation alone. For the amplitude to depend only

on the permutation and nothing else, the 2→ 2 amplitudes must satisfy the famous

Yang-Baxter relation, [131,132]:

(3.3.34)

It is natural to ask whether such a picture can be generalized to more realistic

theories in higher dimensions. This seems impossible at first sight, since the pictures

drawn above only make physical sense in (1+1) dimensions (not only because they

are drawn on a plane). The fact that particles can only move in one spatial dimen-

sion is what makes it possible to describe all interactions as a sequence of local 2→2

scattering processes. Also important is the absence of any particle creation or de-

struction, allowing us to label the final-states by the same labels as the initial-states.

Neither of these features hold for the higher-dimensional theories in which we are

primarily interested: for planar N = 4 SYM, particle creation and destruction plays

a fundamental role; and the most primitive processes are not 2→2 amplitudes, but

rather the 3-particle amplitudes discussed above, (3.2.6).

An important starting-point for describing higher-dimensional scattering processes

is to forgo the traditional meaning of the “S-matrix”—an operator which maps initial

states to final states. Rather, we find it much more convenient to treat all the external

particles on equal footing, using crossing symmetry to formulate the S-matrix as a

process for which all the external particles are taken to be incoming.

One lesson we can take from (1+1) dimensions is that any connection between

scattering and permutations must involve on-shell processes. In (3+1) dimensions,

this leads us to trivalent, on-shell diagrams with black and white vertices discussed

in the previous section. And so we are led to try and associate a permutation with

these diagrams. As it turns out, just such a connection exists between two-colored,
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planar graphs and permutations, and has recently been studied in the mathematical

literature, [43] (see also [46]).

Let’s jump-in and describe how it works. The way to read-off a permutation from

an on-shell graph is as follows. For each external leg a (with clockwise ordering),

follow the graph inward from a, turning left at each white vertex, and turning right

at each black vertex; this “left-right path” will terminate at some external leg, denoted

σ(a). For example, the three-particle building blocks of N =4, (3.2.6), are associated

with permutations in the following way:

⇔
(1 2 3

↓ ↓ ↓
2 3 1

)
and ⇔

(1 2 3

↓ ↓ ↓
3 1 2

)

(3.3.35)

Of course, this works equally-well for more complex on-shell graphs; for example,

the graph which gives the four-particle tree-amplitude, (3.2.15), is associated with

the following permutation:

{3, 4, 1, 2}

⇔
(1 2 3 4

↓ ↓ ↓ ↓
3 4 1 2

)
(3.3.36)

It is very easy to see that such “left-right paths” allow us to define a permutation

for any planar graph constructed with black and white vertices (not only those which

are trivalent). Starting from any external leg of such a graph, this path will always

lead back out to the boundary; and because any path can be trivially reversed (by

exchanging the roles of black and white), it is clear that every external leg is the ter-

minus of some such path. And so, the left-right paths do indeed define a permutation

of the external legs.

Actually, left-right paths associate each graph with a slight generalization of an

ordinary permutation known as a decorated permutation—a generalization which al-
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lows for two types of fixed-points. By convention, we always consider a left-right

path to permute each label ‘to its right’—in other words, we think of the paths as

being associated with a map σ : {1, . . . , n} 7→ {1, . . . , 2n} such that a ≤ σ(a) ≤ a+n

and taking σ(a) modn would be an ordinary permutation. The two types of fixed

points correspond to the cases of σ(a) = a or σ(a) = a+n. For the sake of simplicity,

for the rest of this chapter we will refer to these decorated permutations simply as

‘permutations’ and denote them by “{σ(1), . . . , σ(n)}”.

This allows us to differentiate between 2n possible ‘decorations’ of the trivial

permutation. Such ‘decorations’ arise for graphs such as,

(3.3.37)

which would be labeled by a ‘permutation’ {1, 7, 3, 9, 5}. Although such empty graphs

are themselves of little direct relevance to physics, they will play an important role

in the general toolbox—as we will see in the following subsection.

Associated with any permutation is a number, k, which is the number of a ∈
{1, . . . , n} which are mapped ‘beyond n’ by σ—that is, for which σ(a) > n. This

number is also given by the mean value of σ(a) − a: k ≡ 1
n

∑
a(σ(a) − a). To see

this, notice that while the mean of any ordinary permutation always vanishes, our

requirement that a ≤ σ(a) ≤ a + n means that σ must be shifted by n relative to

an ordinary permutation for some k elements. For example, both the 4-point graph,

(3.3.36), and the 5-particle graph, (3.3.37), have k = 2.

The reason why the permutations associated with on-shell graphs are so impor-

tant is that in many cases they invariantly encode the physical information about the

graph and the on-shell form associated with it. Recall that graphs related by merg-

ers, (3.4.105), or square-moves, (3.2.24), represent the same physical form. These

operations also leave permutations invariant:

121



(3.3.38)

Bubble-deletion, however, does change the permutation associated with an on-shell

diagram; it also changes the number of faces. But by deleting bubbles, any graph can

be ‘reduced’—and any two reduced graphs labeled by the same permutation always

represent the same physical form. More explicitly, all physical information in reduced

graphs is captured by the corresponding permutation. To see a simple example of

this, recall the pair of inequivalent graphs given in (3.2.25) which were related by

a rather long sequence of mergers and square-moves; it is much easier to test the

equivalence of the permutations which label them:

{5, 4, 6, 7, 8, 9}

(3.3.39)

We should note in passing that there is something very special about N =4 SYM

and integrability which allows us to fully characterize on-shell diagrams in this way.

Just as the Yang-Baxter relation (3.3.34) was the prerequisite for (1+1)-dimensional

theories to be ‘combinatorial’ in nature, it is the square-move (3.2.24) which does this

for N = 4: recall that in a non-supersymmetric theory, all 3-particle vertices would

need to be dressed by the helicities of the particles involved—such as in (3.2.2); this

dressing represents extra data which must be supplied in order to specify the physical

process, and this data is not left invariant under square-moves. That being said,
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however, the purely combinatorial story of N = 4 will play a central role even for

non-supersymmetric theories. This will be described more completely in section 3.13.

II. The BCFW-Bridge Construction of Representative Graphs

We have seen that every on-shell graph is associated with a permutation; quite beau-

tifully, the converse is also true: all permutations can be represented by an on-shell

graph. A constructive procedure for building a representative graph for any permuta-

tion was described in [43] (and in somewhat different terms by D. Thurston in [46]).

Here, we will describe a different method—motivated by simple physical and com-

binatorial considerations and by analogy with physics in (1+1) dimensions—where

graphs are constructed out of simple, adjacent transpositions. Of course, in (3+1)

dimensions, there is no space-time evolution analogue of successive 2→ 2 scatter-

ing; and so we must find some way to ‘build-up’ on-shell objects directly from the

“vacuum” (a trivial permutation).

The key is understanding what an adjacent transposition means in terms of on-

shell graphs. The answer is extremely simple: an adjacent transposition is nothing

but the addition of the BCFW-bridge:

(3.3.40)

Notice that any number of ‘hanging legs’—those which map to themselves under

σ—can be inserted between a and “a+1” without consequence; and so, we will con-

sider any transposition (a c) to be “adjacent” so long as for all b between a and

c, σ(b) = b modn. (Although the bridge drawn in (3.3.40) will be sufficient for

most applications, the oppositely-colored bridge—where black and white vertices are

exchanged—could also be used; the principle difference being that such a bridge would

transpose the pre-images of a and a+1 under σ instead of the images).

Because adjacent transpositions simply correspond to adding BCFW-bridges, any

decomposition of a permutation σ into a sequence of such transpositions acting on a

trivial permutation can be read as instructions for building-up a representative on-
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shell graph for σ by successively adding BCFW-bridges to an empty graph like that

of (3.3.37).

Of course, adding a BCFW bridge may potentially give us a reducible on-shell

diagram. However, it turns out that when adding a bridge to a reduced graph, so

long as σ(a+1) < σ(a)—that is, the are paths arranged as drawn in (3.3.40)—then

the resulting graph is guaranteed to be reduced. We will not prove this statement

now, but its proof will become trivial after the discussions in section 3.5.

And so, when breaking-down a permutation into adjacent transpositions, we

want to find pairs (a c) with a < c (separated only by external legs b self-identified

under σ) such that σ(a) < σ(c); then when we decompose σ as (a c) ◦ σ′ with

{σ(a), σ(c)} = {σ′(c), σ′(a)}, adding a BCFW-bridge to a reduced on-shell diagram

labeled by σ′ will result in a reduced on-shell diagram labeled by σ. Of course, there

are many ways of decomposing a permutation σ into such a chain of adjacent trans-

positions, and any such decomposition will result in a representative, reduced graph

whose left-right permutation is σ. But for the sake of concreteness, let us describe

one very specific, canonical procedure to decompose any permutation—one which will

turn out to have rather special properties discussed in subsection IV..

BCFW-Bridge Decomposition: Starting with any permutation σ, if σ is not a

decoration of the identity, then decompose σ as (a c) ◦ σ′ where 1 ≤ a < c ≤ n is the

lexicographically-first pair separated only by legs b which are self-identified under σ

and for which σ(a) < σ(c); repeat until σ is the identity.

To illustrate this procedure, let’s see how it generates a representative, reduced

on-shell diagram which is labeled by the permutation {4, 6, 5, 7, 8, 9}:
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1 2 3 4 5 6

τ ↓ ↓ ↓ ↓ ↓ ↓

(1 2)
4 6 5 7 8 9

(2 3)
6 4 5 7 8 9

(3 4)
6 5 4 7 8 9

(2 3)
6 5 7 4 8 9

(1 2)
6 7 5 4 8 9

(3 5)
7 6 5 4 8 9

(2 3)
7 6 8 4 5 9

(3 6)
7 8 6 4 5 9

7 8 9 4 5 6

{4, 6, 5, 7, 8, 9}

(12) α8

{6,7, 5, 4, 8, 9}

(23)
←−→
α5

{6,5,7, 4, 8, 9}

(34)
←−→
α6

{6, 5,4,7, 8, 9}

(23)
←−→
α7

{6,4,5, 7, 8, 9}
(12)lα4

{7, 6,5, 4,8, 9}

(35)
←−→
α3

{7,6,8, 4, 5, 9}

(23)
←−→
α2

{7, 8,6, 4, 5,9}

(36)
←−→
α1

{7, 8, 9, 4, 5, 6}

In the sequence of figures drawn above, we often made use of the fact that any

bivalent or (non-boundary) monovalent vertex can be deleted without changing the

permutation. So, for example, adding the BCFW bridge ‘(23)’ to the second graph

(from the bottom-right) results in the succeeding graph drawn via the sequence of

(essentially trivial) moves:
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{7, 8, 6, 4, 5, 9}

(23)←→

{7,6,8, 4, 5, 9}

This procedure provides us with a combinatorial test of a graph’s reducibility: be-

cause the BCFW-bridge construction always produces a reduced representative graph

for any permutation, and each step in the construction adds one face to the graph as

it is built, a graph is reduced if and only if the number of its faces minus one is equal

to the number of steps in the BCFW-bridge decomposition of the permutation which

labels it. If not, then the graph is reducible, and has some number of faces which can

be deleted by bubble reduction:

(3.3.41)

A more intrinsic way to identify a reducible graph is if any pair of left-right paths

a→σ(a) and b→σ(b) cross each other along more than one edge in the graph in the

manner known as a “bad double crossing”, or if there is any purely-internal path.

or (3.3.42)

A bad double-crossing is distinguished from those double-crossings of the form:

(3.3.43)

Double-crossings such as that above do not indicate that a graph is reducible.
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We thus have a complete dictionary between (reduced) on-shell graphs and per-

mutations. As we will discuss in section 3.12, this new picture actually contains the

(1+1)-dimensional story as a special case. Another closely related special case is rel-

evant for describing on-shell diagrams (and all-loop amplitudes) of the ABJM theory

in (2+1) dimensions!

But let us now move beyond the purely combinatorial aspects of the story, and

turn towards actually computing on-shell diagrams. This will lead us to uncover

beautiful structures in algebraic geometry also described by decorated permutations,

ultimately connecting on-shell graphs to the “positive” Grassmannian of our title.
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3.4 From On-Shell Diagrams to the Grassmannian

In this section we will show that the computation of on-shell diagrams is most effi-

ciently and transparently carried out by associating each diagram with an auxiliary

structure: a matrix C representing an element of the Grassmannian G(k, n). But let

us begin by reviewing some elementary properties about Grassmannian manifolds in

general, and describe the first appearance of these spaces in the story of scattering

amplitudes, as they arise in the description of external kinematical data.

I. The Grassmannian of k-Planes in n Dimensions, G(k, n)

The Grassmannian G(k, n) is the space of k-dimensional planes passing through the

origin in an n-dimensional space (see e.g. [71]). We can specify a k-plane in n dimen-

sions by giving k vectors Cα ∈Cn, whose span defines the plane. We can assemble

these vectors into a (k×n)-matrix C, whose components are cαa for α=1, . . . , k and

a = 1, . . . , n.

Under GL(k)-transformations, C 7→Λ·C—with Λ∈GL(k)—the row vectors will

change, but the plane spanned by them is obviously unchanged. Thus, the Grass-

mannian G(k, n) can be thought of as the space of (k×n)-matrices modulo this

GL(k) “gauge” redundancy. From this, we see that the dimension of G(k, n) is

k×n k2 =k(n k). In practice, we can “gauge-fix” the GL(k) redundancy by choos-

ing any k of the columns of the matrix to form the (k×k) identity matrix. For instance,

we can represent a generic point in G(2, 5) in the following gauge-fixed form:

C =

 1 0 c1 3 c1 4 c1 5

0 1 c2 3 c2 4 c2 5

 . (3.4.44)

This coordinate chart does not cover the entire Grassmannian—though of course the

collection of all
(
n
k

)
such charts would obviously suffice.

The GL(k)-invariant information associated with C is easily specified. First, no-

tice that the only SL(k)-invariants of C ∈G(k, n) are the minors constructed out of

the columns of C,
(a1 · · · ak) ≡ det{ca1 , . . . , cak} . (3.4.45)

GL(k)-invariants are then simply ratios of these:
(a1 · · · ak)
(b1 · · · bk)

. (3.4.46)
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While the (ratios of) minors are GL(k)-invariant, the number of these,
(
n
k

)
, is much

greater than the dimensionality of the Grassmannian, dim(G(k, n)) = k(n k), and

so the minors represent a highly-redundant set of data to describe C. The identities

among minors arise from the simple fact that any k-vector can be expanded in a

basis of any k linearly-independent k-vectors—a statement that is equivalent to the

identity known as Cramer’s rule:

ca1(a2 · · · ak+1)− ca2(a1 a3 · · · ak+1) + · · ·+ (−1)k−1cak+1
(a1 · · · ak) = 0, (3.4.47)

for any ca∈Ck. Contracting each of the vectors in (3.4.47) with another set of vectors

cb1 , . . . , cbk−1
generates the identities known as the Plücker relations,

(b1 · · · bk−1 a1)(a2 · · · ak+1) + · · ·+ (−1)k−1(b1 · · · bk−1 ak+1)(a1 · · · ak) = 0. (3.4.48)

Associated with any k-plane C is a natural (n k)-plane denoted C⊥, the “orthog-

onal complement” of C, which is defined by,

C⊥· C = 0. (3.4.49)

Therefore, there is a natural isomorphism between G(k, n) and G(n k, n), which is

reflected in the invariance of dim(G(k, n)) = k(n k) under the exchange k ↔ (n k).

The minors of C⊥ are fully determined by the minors of C in the obvious way: for

any complementary sets {a1, . . . , ak} and {b1, . . . , bn−k} (whose union is {1, . . . , n}),
we have

(a1 · · · ak)|C = ±(b1 · · · bn−k)|C⊥ . (3.4.50)

To be completely explicit, suppose we represent C in a gauge where columns cA

with A ≡ {a1, . . . , ak} are taken as the identity; then the n k columns of C in the

complementary set B ≡ Ac, cb for b∈B—whose components we write as ca b—encode

the k(n k) degrees of freedom of C; then the matrix C⊥ has components,

c⊥a b = −cb a. (3.4.51)

For example, the plane C⊥∈G(3, 5) orthogonal to C∈G(2, 5) given in (3.4.44) is:

C⊥ =


c1 3 c2 3 1 0 0

c1 4 c2 4 0 1 0

c1 5 c2 5 0 0 1

 (3.4.52)

Finally, we will eventually be talking about a certain top-dimensional differen-

tial form on the Grassmannian, so it is useful to discuss what general forms on the
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Grassmannian look like in the coordinates ca b. Consider first the familiar example

of a form on the projective space G(1, 2). We can think of this as a (1×2) matrix

C = (c1 c2), modulo the GL(1)-action of C→ tC. Any top-form can be written as

Ω =
d2C

vol(GL(1))

1

f(C)
, (3.4.53)

where f(C) must have homogeneity (+2) under rescaling C; that is, f(tC) = t2f(C).

In practice, modding-out by the GL(1)-action is trivial: one can simply gauge-fix the

GL(1) so that, say, C 7→C∗ = (1 c2); and then Ω = dc2/f(C∗). We can also say this

more invariantly, by writing,
Ω = 〈CdC〉 1

f(C)
. (3.4.54)

The generalization of this simple case to an arbitrary Grassmannian is straightfor-

ward. We can write,

Ω =
dk×nC

vol(GL(k))

1

f(C)
, (3.4.55)

where GL(k)-invariance implies, in particular, that f(C) must be a function of the

minors of C with homogeneity under rescaling

f(tC) = tk×nf(C). (3.4.56)

In the coordinate chart where we gauge-fix k of the columns to the identity as above,

then Ω = dk×(n−k)ca,b/f(C). Said more invariantly, we have

Ω = 〈C1 · · ·Ck(dC1)(n−k)〉 · · · 〈C1 · · ·Ck(dCk)(n−k)〉 1

f(C)
, (3.4.57)

where Cα is a row-vector of C and, e.g.,

〈C1 · · ·Ck(dC1)(n−k)〉 ≡ εa1a2...anc1,a1 · · · ck,akdc1,ak+1
∧ · · · ∧ dc1,an . (3.4.58)

II. Grassmannian Description of Kinematical Data: the 2-

Planes λ and λ̃

In a moment, we will establish a very direct connection between on-shell diagrams

and the Grassmannian; but let us first pause to point out an even more basic way in

which the Grassmannian makes an appearance in scattering amplitudes: in the very

way we encode external kinematical data. We normally think of this data as simply

being specified by n 2-component spinors λαa and λ̃α̇a ; but of course we may also think

of this data as given by a pair of (2×n)-matrices—which we denote collectively by λ

and λ̃. For example, the λ’s are naturally associated with the (2×n)-matrix,
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λ ≡

λ1
1 λ1

2 · · · λ1
n

λ2
1 λ2

2 · · · λ2
n

⇔(
λ1 λ2 · · · λn

)
. (3.4.59)

Instead of focusing on the columns of the matrix λ, let us think about it as two

row-vectors. Each of these is a vector in an n-dimensional space. Under Lorentz

transformations, these two vectors change, but since Lorentz transformations act on

the λ’s by SL(2)-transformations on their α indices, the two new vectors will simply

be a linear combination of the original ones. Therefore, while the vectors themselves

change, the plane that is spanned by them is invariant under Lorentz transformations.

Quite beautifully then, the Lorentz-invariant information encoded by the λ’s is really

just this 2-plane in n dimensions—an element of G(2, n) as realized in [16]. The same

is obviously true for the λ̃’s. Of course, the Lorentz group is only the SL(2) part of

GL(2) and on-shell forms do transform under “global” little group transformations

which correspond to the GL(1) subgroup of GL(2).

In terms of spinor helicity variables, momentum conservation is simply,∑
a

λαa λ̃
α̇
a = 0, (3.4.60)

which has the geometric interpretation that the plane λ is orthogonal to the plane

λ̃, [16]:

(3.4.61)

This geometric understanding of momentum-conservation also nicely explains the

unique nature of its application to the case of three-particles: two 2-planes in 3

dimensions cannot be orthogonal in general. The only solution, therefore, is for one

of the planes to actually be a 1-plane in disguise. For example, suppose that we have

three generic λ̃’s. Momentum conservation requires that λ ⊂ λ̃⊥, but λ̃⊥ is a 1-plane!

A GL(1)-representative of λ̃⊥ is given by

λ̃⊥ ≡
(

[2 3] [3 1] [1 2]
)
, (3.4.62)

for which λ̃⊥·λ̃ = 0 follows as a trivial instance of Cramer’s rule, (3.4.47):

λ̃⊥·λ̃ = [2 3]λ̃1 + [3 1]λ̃2 + [1 2]λ̃3 = 0. (3.4.63)
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Because this is the unique plane orthogonal to λ̃, momentum conservation requires

that the λ-plane be spanned by it. In particular, this means that all the λ’s must be

proportional: in a Lorentz frame where λ1 =

[2 3]

0

, we have

λ ≡
(
λ1 λ2 λ3

)
=

[2 3] [3 1] [1 2]

0 0 0

 . (3.4.64)

III. Grassmannian Representation of On-Shell Diagrams

Let us begin to more explicitly calculate the differential form associated with a given

on-shell diagram. We use the momentum-conserving δ-functions at the vertices to

localize as many of the internal momenta as we can. This looks highly non-trivial

because momentum conservation is a quadratic constraint on the λ, λ̃ in general. But

a moment’s reflection suggests that the situation may be easier to understand. We

know that for 3-particle amplitudes, momentum conservation implies a very simple

geometric situation—where either the λ’s or the λ̃’s are forced to be parallel to each

other. However, our representation of the three-particle amplitude, simple and elegant

though it is, does not make this simple fact manifest. This motivates us to try to

express the 3-particle amplitude in a slightly different form—one which makes the

geometry of the λ’s and λ̃’s in each case as transparent as possible.

Let’s start with the A(1)
3 vertex:

⇔ A(1)
3 =

δ1×4([2 3]η̃1 + [3 1]η̃2 + [1 2]η̃3)

[1 2][2 3][3 1]
δ2×2

(
λ·λ̃
)
. (3.4.65)

Notice that the coefficients of the η̃’s are the same as the factors that appear in the

denominator of A(1)
3 , and coincide with the 1-plane λ̃⊥ orthogonal to λ̃. We can make

this geometry manifest by introducing an auxiliary 1-plane W ∈G(1, 3), and demand

that it be orthogonal to λ̃ and that it contains the plane λ. This latter constraint is

equivalent to the somewhat less concise condition that the orthogonal complement of

W⊥ is orthogonal to λ. Thus, we can represent,

A(1)
3 =

∫
d1×3W

vol(GL(1))

δ1×4
(
W ·η̃

)
(1)(2)(3)

δ1×2
(
W ·λ̃

)
δ2×2

(
λ·W⊥), (3.4.66)
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where W ∈G(1, 3) is given by the (1×3)-matrix

W ≡
(
w1 w2 w3

)
, (3.4.67)

(a) ≡ det{wa} is a (1×1)-‘minor’ of the matrix W and η̃ ≡ (η̃1 η̃2 η̃3). The δ-function

δ1×2
(
W ·λ̃

)
fixes W 7→ W ∗ = λ̃⊥ (written above, in (3.4.62)). On the support of the

point W ∗∈G(1, 3), the remaining δ-functions in (3.4.66),

δ1×4
(
W ∗·η̃

)
δ2×2

(
λ·(W ∗)⊥

)
, (3.4.68)

simply become ordinary super-momentum conservation.

A comment is in order here. To make the invariance of the integrand under GL(1)

manifest one has to find a GL(1) invariant way of writing δ2×2
(
λ ·W⊥). As usual,

this is achieved by introducing auxiliary variables as explained in detail (and more

generality) in section II..

We can of course make the same generalization for the A(2)
3 vertex:

⇔ A(2)
3 =

δ2×4(λ1η̃1 + λ2η̃2 + λ3η̃3)

〈1 2〉〈2 3〉〈3 1〉
δ2×2

(
λ·λ̃
)
. (3.4.69)

We can think of this as an integral over an auxiliary 2-plane B∈G(2, 3) according to:

A(2)
3 =

∫
d2×3B

vol(GL(2))

δ2×4
(
B ·η̃

)
(12)(23)(31)

δ2×2
(
B ·λ̃

)
δ2×1

(
λ·B⊥

)
. (3.4.70)

In this case, we can use the constraint δ2×1
(
λ ·B⊥

)
to localize the integral over B,

(somewhat trivially) fixing B 7→ B∗ = λ, and the minors in the measure trivially be-

come (1 2)(2 3)(3 1) 7→〈1 2〉〈2 3〉〈3 1〉. As before, the remaining δ-functions in (3.4.70),

δ2×4
(
B∗·η̃

)
δ2×2

(
B∗·λ̃

)
, (3.4.71)

encode super-momentum conservation.

The crucial feature of these Grassmannian representations of the three-particle

amplitudes is that the constraints on the kinematical data λ and λ̃ are now decou-

pled, and occur linearly in the δ-function constraints. This makes it essentially trivial

to perform the phase space integral over the internal lines, making any on-shell graph

simply a collection of auxiliary 1-planes W ∈G(1, 3) and 2-planes B∈G(2, 3) associ-

ated with the white and black vertices—each carrying with it all the constraints to

impose momentum-conservation.
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To summarize, for each white vertex involving the (possibly internal) legs (a, b, c)

we introduce a 1-plane W ∈G(1, 3),

⇔ W ≡
(
wa wb wc

)
, (3.4.72)

carrying with it an integration measure,

dΩw ≡
d1×3W

vol(GL(1))

1

(a)(b)(c)
, (3.4.73)

and corresponding constraints; similarly, for each black vertex involving legs (a, b, c)

we have a plane B∈G(2, 3),

⇔ B ≡
(
ba bb bc

)
, (3.4.74)

together with its associated integration measure,

dΩb ≡
d2×3B

vol(GL(2))

1

(a b)(b c)(c a)
, (3.4.75)

and corresponding constraints. Each white vertex imposes one relation among λ̃’s:

W ·λ̃ = waλ̃a + wbλ̃b + wcλ̃c = 0; (3.4.76)

and each black vertex imposes two relations (as the columns ba of B are two-vectors):

B ·λ̃ = baλ̃a + bbλ̃b + bcλ̃c = 0. (3.4.77)

Thus, for a graph with nb black vertices, nw white vertices, and nI internal edges,

we have a total of 2nb + nw constraints; from these, one constraint is needed to fix

(and eliminate) each internal λ̃I—leaving us with a total of:

k ≡ 2nb + nw − nI (3.4.78)

linear constraints relating the external λ̃’s for any given graph. We may write this

collection of constraints as C ·λ̃ = 0 for some (k×n)-matrix C, where

n = 3nV − 2nI , (3.4.79)

with nV = nb + nw. Because these are linear constraints among the λ̃’s, the matrix

C is of course only well-defined up to an arbitrary re-shuffling of its k equations (a
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GL(k)-transformation of C); and so, C actually represents a point in G(k, n)! Of

course, integrating-out the internal η̃’s follows identically to the λ̃, giving us the same

final constraints among the external η̃’s as for the λ̃’s.

Thus, eliminating the internal λ̃I and η̃I combines all the “little Grassmannians”

W ∈G(1, 3) and B∈G(2, 3) associated with the vertices, and gives us finally a point in

the Grassmannian G(k, n) represented by some matrix C which encodes the relations

satisfied among the λ̃’s and η̃’s via the δ-functions,

δk×4
(
C ·η̃

)
δk×2

(
C ·λ̃

)
. (3.4.80)

Following the same logic, but exchanging each plane B and W for their orthogonal

complements, gives us the complementary set of relations involving the λ’s. Not

surprisingly, these are simply given by the δ-functions,

δ2×(n−k)
(
λ·C⊥

)
. (3.4.81)

Geometrically, the ordinary δ-functions constrain the matrix C to be orthogonal to λ̃

and to contain λ:

(3.4.82)

Putting everything together, each on-shell diagram is associated with a differential-

form obtained by integration over,∏
internal
edges e

( 1

vol(GL(1)e)

)∏
w

dΩw

∏
b

dΩb δ
k×4
(
C ·η̃

)
δk×2

(
C ·λ̃

)
δ2×(n−k)

(
λ·C⊥

)
. (3.4.83)

Notice that while freely using the δ-functions to fix each internal λI and λ̃I , we have

not modded-out by the GL(1)-redundancies acting on these momenta (which explains

the appearance of the 1/vol(GL(1)) factors in (3.4.83)). It is natural to refer to the net

number of auxiliary variables—after modding-out by all these GL(1)-redundancies—

as the dimension of the space of configurations C ∈G(k, n). As each vertex carries

two auxiliary degrees of freedom, and each GL(1) from the internal lines can be used

to remove one of them, the ‘dimension’ associated with an on-shell graph is simply:

dim(C) = 2nV − nI . (3.4.84)

We should mention that this can be counted in a more direct way from the graph

as follows. Because each on-shell graph is trivalent, we have 3nV = 2nI+n so that
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dim(C) = 2nV nI = nI nV +n; and restricting our attention to planar graphs, Eu-

ler’s formula tells us that (nF n) nI+nV = 1 (where nF is the number of faces of

the graph including the n faces of the boundary). Putting these two facts together

shows that:

dim(C) = nF − 1. (3.4.85)

We will soon see that this is not an accident: there is a natural way in which the

degrees of freedom associated with a graph are encoded by its faces.

So far, we’ve described in general terms how to compute the differential-form

associated with a given on-shell graph. In the next subsection, we will describe how

this can be done systematically using only two very simple, elementary operations;

and in section V., we’ll show how these two operations can be efficiently automated

to construct an explicit representative of the plane C expressed in terms of variables

associated with either a graph’s edges or faces.

IV. Amalgamation of On-Shell Graphs

General on-shell graphs can be built-up in steps from more elementary ones using two

simple operations: direct-products and projections. Collectively, we refer to this step-

wise construction of more complicated graphs from simpler ones as amalgamation

(see [42] for a mathematical construction and [17, 107] for some early steps in the

physical setup). In this subsection, we describe both operations in turn, and show how

they completely determine the k-plane C associated with any on-shell graph. Since

all the GL(k)-invariant information about C is given by the ratios of its minors,

(a1 · · · ak)/(b1 · · · bk), it suffices for us to simply describe how these two primitive

operations act on the minors of C.

The first operation is rather trivial: starting with any two graphs, we can take

their direct-product:

(3.4.86)
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If the left-graph is associated with the plane CL ∈ G(kL, nL), and the right-graph

is associated with the plane CR ∈ G(kR, nR), the direct-product produces a plane

CL ⊗ CR 7→ C∈G(kL+kR, nL+nR) according to:

( )⊗ ⇒


0

0

(3.4.87)

The non-vanishing minors of C are easily expressed in terms of those of CL and CR:

(a1 · · · akL b1 · · · bkR)|C = (a1 · · · akL)|CL× (b1 · · · bkR)|CR . (3.4.88)

The second operation, projection, is more interesting. It corresponds to the iden-

tification of two (external) legs—say A and B—of a graph:

(3.4.89)

We call this operation “projection” because it takes a plane C ∈G(k+1, n+2), and

produces a plane Ĉ ∈G(k, n), which is the projection of C onto the quotient of the

column space of C modulo (cA cB). This follows directly from how the plane C

associated with an on-shell graph is interpreted geometrically as constraints imposed

on the external momenta.

For convenience, let us suppose that the n+2 particles of the configuration before

projection are ordered (A,B, 1, . . . , n). Then the minors of the projection’s image

Ĉ∈G(k, n) will be given in terms of the minors of C∈G(k+1, n+2) according to:

(a1 · · · ak)|Ĉ = (Aa1 · · · ak)|C + (B a1 · · · ak)|C . (3.4.90)

Let us consider a simple case where these two operations are used to construct an

on-shell graph. For example, consider the sequence,
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which builds-up the 4-particle factorization graph by first taking the direct-product

of W ∈G(1, 3) and B∈G(2, 3) to produce a graph associated with a plane Ĉ∈G(3, 6),

then merge legsA andB to produce the final graph associated with a plane C∈G(2, 4).

As we have described, minors of the final plane C∈G(2, 4) are fully specified by those

of its constituents; e.g.,

(13)|C = (A13)|Ĉ + (B13)|Ĉ = 0 + (B1)|B× (3)|W ;

and (24)|C = (A24)|Ĉ + (B24)|Ĉ = 0 + (B2)|B× (4)|W .
(3.4.91)

Let us look at one more interesting example: the amalgamation of graphs gener-

ating the 4-particle tree-amplitude:

(3.4.92)

Following the amalgamation rules described above, we find, for example that

(24)

(13)
=

(
(F4)(H)

(GF )(1)

)(
(B2)(D)

(CB)(3)

)
+

(
(C2)(A)

(BC)(1)

)(
(G4)(E)

(GF )(3)

)
. (3.4.93)

Notice that the amalgamation picture makes it clear that C will only depend on

special combinations of the minors of the matrices associated with its constituent

vertices. This ultimately stems from the fact that the only GL(k)-invariant data

associated with the vertices themselves are the ratios of minors. These appear, for

example, as the face variables of the three-particle graphs:

and (3.4.94)

Here, we have used arrows to show how the ratios transform under the little group.

Now, a very simple but important observation is that the final point in G(k, n)

obtained from amalgamation must obviously be completely invariant under the little

group rescaling of any internal line. This means that only combinations of minors

that are invariant under these scaling are ultimately relevant to our description of C.
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Graphically, it is clear that these are given by products of such ratios, as following

along the boundary of a face we form a closed path. A face variable, then, can be

built as the product of these variables along its boundary. To illustrate the point,

consider the following graph—associated with a generic plane in G(2, 5):

(3.4.95)

Thus, while the variables describing the matrix C can be constructed from the

variables of the planes B and W attached to each vertex, we may alternatively view C

as being described by variables fi associated with its faces. Note that the product of

the face variables for each G(1, 3) G(2, 3) vertex is manifestly equal to 1 (see (3.4.94));

and so, it is easy to see that there are only two independent degrees of freedom per

vertex—matching our calculation that dim(C) = nF 1. This clearly persists to

larger graphs, ensuring that
∏

i fi = 1, which always accounts for the “minus 1” in

the formula for the dimension of C. And so, the degrees of freedom are all but one of

the face variables, say f∗. Rescaling fi 7→ f̂i ≡ fi/f∗, the integration measure (3.4.83)

for the auxiliary parameters in C becomes simply,∏
internal
edges e

( 1

vol(GL(1)e)

)∏
w

dΩw

∏
b

dΩb =
∏

rescaled
faces f̂i

df̂i

f̂i
. (3.4.96)

V. “Boundary Measurements” and Canonical Coordinates

Let us now turn to the problem of explicitly determining a matrix representative C

associated with a given on-shell graph. We will first do this in a very efficient—but

somewhat overly redundant—way by attaching variables αe to all the edges of a graph;

and then, we will see how this procedure can be translated (with less redundancy) in

terms of variables attached to a graph’s faces.

One strategy for explicitly constructing the k-plane C encoding the system of

constraints (3.4.82) associated with an on-shell graph is to put the degrees of freedom

associated with each vertex in a way which allows us to eliminate all internal momenta
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as efficiently as possible. Of course, each vertex carries with it only two degrees of

freedom. But it turns out to be useful to introduce an additional GL(1)-redundancy

at each vertex, so that every leg attached to a given vertex carries its own degree

of freedom (making it easier to pair-up the degrees of freedom attached to internal

lines between vertices). To further simplify the elimination of internal momenta from

the ultimate system of equations relating the λ̃, it will be helpful also to provide

an orientation to each edge, so that each white (black) has one (two) edges directed

inward. With these decorations, each white vertex corresponds to:

⇔ W ≡
( a b c

α−1
a αb αc

) ⇒ λ̃a=αa(αbλ̃b + αcλ̃c);

(3.4.97)
and each black-vertex corresponds to:

⇔ B ≡
( a b c

α−1
a 0 αc

0 α−1
b αc

)
⇒

 λ̃a=αaαcλ̃c

λ̃b=αbαcλ̃c

 . (3.4.98)

Decorating a graph in this way is called giving it a perfect orientation; and it is a

general fact that all two-colored, trivalent graphs relevant to physics can be given a

perfect orientation.

(The only graphs which cannot be given a perfect orientation are those which

contain a sub-graph with k ≤ 0 or k ≥ ν (where ν denotes the number of legs of the

sub-graph). This obstruction is closely tied to an inability to eliminate some internal

line’s λI or λ̃I from the complete system of equations. But this subtlety plays no role

in our story, as the differential-form associated with such a graph always vanishes

due to the η̃I integration. And so, these ‘pathological’ graphs never contribute to

physically-relevant processes.)

Once we have given a perfect orientation, the system of equations C ·λ̃ becomes

trivial to construct: each vertex can be viewed as giving an equation which expands

the λ̃’s of the vertex’s sources in terms of those of its sinks. Combining all such equa-

tions then gives us an expansion of the external sources’ λ̃’s in terms of those of the
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external sinks. Notice that when identifying two legs, (Iin, Iout) during amalgamation

the degree of freedom lost in the process is accounted for via the replacement of the

pair (αIin , αIout) with the single variable αI ≡ αIinαIout .

If we denote the external sources of a graph by {a1, . . . , ak} ≡ A, then the final

linear relations imposed on the λ̃’s can easily be seen to be given by,

λ̃A + cAaλ̃a = 0, (3.4.99)

with

cAa = −
∑

Γ∈{A a}

∏
e∈Γ

αe , (3.4.100)

and where Γ ∈ {A a} is any (directed) path from A to a in the graph. (If there is

a closed, directed loop, then the geometric series should be summed—we will see an

example of this in (3.4.107).) The entries of the matrix cAa are called the “boundary

measurements” of the on-shell graph. The on-shell form on C(α)∈G(k, n) can then

be written in terms of the variables cAa according to:( ∏
vertices v

1

vol(GL(1)v)

)( ∏
edges e

dαe
αe

)
δk×4(C ·η̃)δk×2(C ·λ̃)δ2×(n−k)(λ·C⊥) . (3.4.101)

Let us consider a simple example to see how this works. Consider the following

perfectly oriented graph:

(3.4.102)

Using the equations for each directed 3-particle vertex, we can easily expand the λ̃ of

each source—legs 1 and 2—in terms of those of the sinks—legs 3 and 4; e.g.,

λ̃2 = α2α6(α3λ̃3 + α7(α4λ̃4)). (3.4.103)

Such expansions obviously result in (3.4.100): the coefficient cAa of λ̃a in the ex-

pansion of λ̃A is simply (minus) the product of all edge-variables αe along any path

Γ ∈ {A a}. Doing this for all the cAa of our example above, we find,
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c1 3 = α1 α5 α6 α3 c1 4 = α1 α5 α6 α7 α4

+ α1 α8 α4

c2 3 = α2 α6 α3 c2 4 = α2 α6 α7 α4

Thus, the final relations involving the λ̃’s is encoded by the matrix C ≡

1 0 c1 3 c1 4

0 1 c2 3 c2 4

.

Notice that only certain combinations of edge-weights appear in the equations.

This happens for a very simple—and by now familiar—reason. Think of the GL(1)-

redundancy of each vertex as a gauge-group, with the variable of a directed edge

charged as a “bi-fundamental” of the GL(1)×GL(1) of the vertices it connects.

Since the configuration C must be invariant under these “gauge groups”, only gauge-

invariant combinations of the edge variables can appear. And just as we saw in the

previous subsection, these combinations are those familiar from lattice gauge theory

and can be viewed as encoding the flux though each closed loop in the graph—that is,

each of its faces. Fixing the orientation of each face to be clockwise, the flux through

it is given by the product of αe (α−1
e ) for each aligned (anti-aligned) edge along its

boundary. For future convenience, we define the face variables fi to be minus this

product.

Applying this to the example above, we find:

⇔ with

f1 =

α−1
1 α−1

5 α2

f4 =

α4 α8 α1

f0 =

α5 α6 α7 α
−1
8

f2 =

α−1
2 α−1

6 α−1
3

f3 =

α3 α
−1
7 α−1

4

The boundary-measurements cAa can then be expressed in terms of the faces by

cAa = −
∑

Γ∈{A a}

∏
f∈Γ̂

(−f) , (3.4.104)
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where Γ̂ is the ‘clockwise’ closure of Γ. (If there are any closed, directed loops, the

geometric series of faces enclosed should be summed.) The faces of course over-count

the degrees of freedom by one, and this is reflected by the fact that
∏

i(−fi) = 1.

c1 3 = f0 f3 f4 c1 4 = f0 f4

− f4

c2 3 = f0 f1 f3 f4 c2 4 = f0 f1 f4

VI. Coordinate Transformations Induced by Moves and Re-

duction

Let us now examine how the identification of graphs via merge-operations, square-

moves, and bubble-deletion is reflected in the coordinates—the edge- or face-variables

—used to parameterize cells C ∈ G(k, n). As usual, the simplest of these is the

merge/un-merge operation which trivially leaves any set of coordinates unchanged.

For example, in terms of the face variables, it is easy to see that

(3.4.105)

The square-move is more interesting. It is obvious that squares with opposite coloring

both give us a generic configuration in G(2, 4), but (as we will soon see), the square-

move acts rather non-trivially on coordinates used to parameterize a cell,

(3.4.106)
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Let us start by determining the precise way the face-variables fi and f ′i of square-

move related graphs are related to one another. To do this, we will provide perfect

orientations (decorated with edge variables) for both graphs, allowing us to compare

the resulting boundary-measurement matrices in each case. Because these two bound-

ary measurement matrices must represent the same point in G(2, 4), we will be able

to explicitly determine how all the various coordinate charts are related—including

the relationship between the variables fi and f ′i . Our work will be considerably

simplified if we remove the GL(1)-redundancies from each vertex, leaving us with a

non-redundant set of edge-variables. Of course, any choice of perfect orientations for

the graphs, and any fixing of the GL(1)-redundancies would suffice for our purposes;

but for the sake of concreteness, let us consider the following:

1 α1 0 α4

0 α2 1 α3

 1 β2β3β4∆ 0 β4∆

0 β2∆ 1 β1β2β4∆



(3.4.107)

Here, we have written the matrices C(α) and C(β) obtained as boundary-measurements

as discussed in section V.. The factor ∆ in C(β) is given by,

∆ ≡ 1

1− β1β2β3β4

, (3.4.108)

and arises from summing the infinite geometric series of paths which circle-around

the internal loop of the perfectly-oriented graph. The edge-variables in (3.4.107) used

as coordinates in G(2, 4) are closely-related to the face-variables in (3.4.106).

It is not hard to express the face variables in terms of the edge variables for the

two orientations in (3.4.106). It is easy to see that,

f0 = α1 α
−1
2 α3 α

−1
4 , f1 = α−1

1 , f2 = α2, f3 = α−1
3 , f4 = α−1

4 ;

f ′0 = (β1β2β3β4)−1, f ′1 = β1 , f ′2 = β2 , f ′3 = β3 , f ′4 = β4 .

(3.4.109)
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Because the boundary-measurements must represent the same point in the Grass-

mannian regardless of whether we use α or β coordinates, we see that:
α1 = β2β3β4∆

α2 = β2∆

α3 = β1β2β4∆

α4 = β4∆


⇒



β1 = f ′1 = α−1
2 α3 α

−1
4 ∆ = f1f0∆

β2 = f ′2 = α2∆−1 = f2∆−1

β3 = f ′3 = α1 α
−1
2 α−1

4 ∆ = f3f0∆

β4 = f ′4 = α4∆−1 = f4∆−1

∴ f ′0 = α−1
1 α2 α

−1
3 α4 = f−1

0


.

(3.4.110)
Observing that ∆ = (1 + f ′−1

0 )−1 = (1 + f0)−1, we therefore conclude that a square-

move alters face-variables according to:

(3.4.111)

This transformation of the face variables is an example of a more general operation

related to cluster transformations. Note that, crucially, our form is invariant under

this transformation: ∏
f

df

f
= −

∏
f ′

df ′

f ′
(3.4.112)

The invariance of the measure (modulo an overall sign) guarantees that the on-shell

forms associated with diagrams related by square moves are the same—differing only

by a change of coordinates used.

Let us now turn to bubble-deletion. It is easy to see that the following oriented

subgraphs always lead to exactly the same boundary-measurements:

(3.4.113)
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Following the same logic used to analyze the square-move, we find that the face-

variables of these two graphs are related by:

(3.4.114)

Note again the crucial fact that the measure is invariant under this transformation:

df0

f0

∧ df1

f1

∧ df2

f2

= −df
′
0

f ′0
∧ df

′
1

f ′1
∧ df

′
2

f ′2
, (3.4.115)

where f ′0 = f−1
0 . The change of variables from f→f ′ eliminates all dependence on f0

associated with the bubble from the final point in the Grassmannian. Of course, the

variable f0 remains in the measure, but it cleanly factors out as an overall prefactor

of dlog(f0). As we will see later on, MHV amplitude integrands—to all loop-orders—

are always the tree-amplitude, dressed with many additional dlog-factors arising from

bubble-deletion. These “irrelevant” factors in the measure encode the internal degrees

of freedom of the loop-momenta.

If instead of the integrand for scattering amplitudes, we were interested in the

residues of the on-shell differential form—to compute, e.g. “leading singularities”—

then these “irrelevant” dlog-factors really are irrelevant: any residue involving them

will give either one or zero.

Due to reduction, then, the number of interesting residues of general (non-reduced)

on-shell diagrams turns is in fact finite despite the seemingly-infinite number of possi-

ble diagrams. Notice that in our way of thinking about ‘leading singularities’ and on-

shell diagrams, we’ve made no distinction whatsoever between what have historically

been called “ordinary” versus “composite” objects, [72, 133]. Historically, reducible

on-shell diagrams were those with “irrelevant” additional degrees of freedom which

could be systematically trivialized-away.

One example of such an on-shell form is the ‘double-box’ involving four-particles;

this on-shell diagram has been known to include one unfixed degree-of-freedom which

factorizes-out of diagram trivially upon bubble-deletion:
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⇒ ⇒ ⇒ ⇒

As discussed in generality above, the variable “lost” during bubble-deletion is in

reality just a bare dlog(α) in the measure.

VII. Relation to Composite Leading Singularities

When all the auxiliary degrees of freedom of an on-shell form can be localized by

kinematical constraints, we can think of it as having been obtained by starting with

the (nF n)-loop integrand for the scattering amplitude, and successively putting (off-

shell) Feynman propagators on-shell (‘cutting them’) until the on-shell diagram is ob-

tained. Such on-shell diagrams are referred to as “leading singularities”. Thought of

in this way, they are secondary—derived—quantities obtained from the ‘primary’ ob-

ject, the loop integrand. An important physical point of our present work (discussed

more thoroughly in section 3.14) is that it is much more fruitful to take the opposite

viewpoint: that ‘loop-integrands’ are in fact ‘derived’ from on-shell diagrams. How-

ever, since the concept of a “leading singularity” will likely be more familiar to most

readers, in this subsection we will briefly review how leading singularities have been

used to inform us about scattering amplitudes, and discuss in particular the subtle

issue of composite leading singularities—which is closely related to reducibility. (This

discussion is meant only to make contact with this point in previous literature, and

isn’t especially germane to the rest of our chapter.)

The reduction procedure is related to what was called the “computation of com-

posite leading singularities” in the physics literature, [70, 72, 133, 134] (see [135–137]

for recent developments). In order to make the connection between the modern and

the old procedures transparent let us explain what a composite leading singularity

means for the four-point example already examined above. Starting with the diagram

with two faces one realizes that any of the two squares actually represents a full four-

particle amplitude. Choose the left one for example and draw the equivalent figure,
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(3.4.116)

At this point the attentive reader can recognize this as a BCFW bridge on a physical

scattering amplitude and it is given by the differential form

=
dα

α
A(2)

4 (α), (3.4.117)

where the α-dependence of A(2)
4 results from that of the shifted momenta 2̂ and 3̂.

This on-shell form has only two poles in α: a trivial pole at α = 0, and another where

the A(2)
4 factorizes. Of course, as there are only two poles in the α-plane, their residues

sum to zero, and hence differ only by a sign; as the α = 0 residue is manifestly the

undeformed tree-amplitude A(2)
4 (α = 0), so is the other (up to a sign).

The composite leading singularity technique was based on the observation that

the pole at (p1 + p2̂)2 = 0 is guaranteed to be there simply as a pole of the physical

A(2)
4 (α) tree amplitude. Therefore the pole at (p1 + p2̂)2 = 0 , in combination with

the other three on-shell conditions on the loop momenta already in the figure, can be

used to determine a residue. This gives rise to,

(3.4.118)

which is nothing but the on-shell diagram for a four-point amplitude A(2)
4 .

We note in passing that this gives yet another ideal use of bubbles. Suppose

that one is given an on-shell diagram corresponding to a leading singularity, i.e.,

an on-shell diagram which evaluates to an algebraic function of external momenta

(conditions for this to happen are discussed in section 3.11). Next, apply a BCFW

148



bridge to the diagram and ask what its possible poles and corresponding residues are

as a function of the BCFW variable α. Let again return to discussing to the same

four-particle example. We can ask how could we have known that there was a pole

in the ‘s12(α)→ 0 channel’ and not it any other channel, by only manipulating the

graph. The answer is already in figure at the end of the previous subsection: find a

bubble and the channel of the bubble becomes the pole required by unitarity!

Composite leading singularities were first developed in order to compute two-loop

amplitudes following a technique that was very successful at one loop [69]. While

Feynman diagrams are even hard to write down explicitly for loop amplitudes, it is

known that loop integrals can be reduced to a linear combination of basic standard

integrals [64]. The idea is then to start with the most general linear combination

of such basic integrals and find ways of computing the coefficients. This is known

as the “unitarity-based method”, [12, 80, 138–140] (for recent applications of these

techniques, see e.g. [137, 141]). In more modern language, the key idea is to use

contour integrals to compute the coefficients. At one loop, N = 4 super Yang-Mills

only requires integrals with four propagators. Thus, the four dimensional contour for

computing a given coefficient is then obviously defined by the four propagators of the

given integral.

At two loops and four particles the basis of integrals must include one such as,

. (3.4.119)

Now there are eight integration variables but only seven propagators. Naively it seems

that this integral does not have any non-vanishing residues. The key observation is

that the propagators are non-linear functions of the integration variables and therefore

computing the `1 integral using the T 4 contour defined by the left box gives rise to

1/s12(`2)s41, which is `2-dependent. This can then be used together with the three-

propagators already present on the right to define a second T 4 contour and hence

a non-vanishing residue. The `2 depend pole, 1/s12(`2), generated in this form is

precisely what is needed for the new computation to be that of a single scalar box

on-shell diagram.
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In this way of thinking about things, the existence of composite residues is unex-

pected, and are made possible from “hidden” poles that are produced by Jacobian

factors which appear as residues are taken. In our new picture, all the singularities

are manifestly exposed in our “dlog” measure for edge or face variables. There is no

distinction between “composite” and “ordinary” singularities, and they are all treated

together in a systematic and unified way.

150



3.5 Configurations of Vectors and the Positive Grass-

mannian

We have seen that every on-shell graph is associated with a (k×n)-matrix C, where

a reduced graph with nF faces gives us an (nF 1)-dimensional sub-manifold of the

Grassmannian G(k, n). We have also seen that the invariant content of an on-shell

diagram is given by the permutation which labels it. We will now link these two ob-

servations by showing that the sub-manifold in the Grassmannian associated with an

on-shell graph is also characterized—for geometric reasons—by the same permutation

which labels the graph.

Our discussion will be most transparent if we think of the Grassmannian in a

complementary way to our presentation so far: instead of viewing the k×n matrix C

horizontally, as a k-plane spanned by its rows, we want to now view C vertically—as

a collection of n, k-dimensional columns. The GL(k)-invariant data to describe any

configuration are ratios of minors:
(a1 · · · ak)
(b1 · · · bk)

, (3.5.120)

Intuitively, a generic plane C would be one for which none of its minors vanish. Such

a configuration would have k(n k) degrees of freedom. The vanishing of any minor

of C implies some linear-dependence among its columns. Allowing for all possible

linear-dependencies among the columns of C leads to the “matroid stratification”

[142] of configurations, which is known to be arbitrarily complicated. Indeed, it was

proven in [143] that all algebraic varieties are part of this matroid stratification, so

understanding this amounts to completely taming the entire category of algebraic

varieties! However, if we impose one small restriction on the set of admissible linear-

dependencies, we will find a that rich, simple, and very beautiful structure emerges.

I. The Geometry and Combinatorics of the Positroid Strat-

ification

Notice that any configuration C associated with an on-shell, planar graph is endowed

with a cyclic-ordering for the columns {c1, . . . , cn}. It is therefore natural to consider

a stratification of G(k, n) that involves only linear-dependencies among (cyclically)
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consecutive chains of columns. This is known as the positroid stratification, [43, 44]

(see also [38,144]), and will turn out to be precisely what is relevant to the physics of

on-shell diagrams. In order to understand the connection most clearly, we will first

discuss the stratification in some detail on its own, and show how these configurations

are characterized by permutations. We will then see how the geometrically-defined

permutation which characterizes C is precisely the one which would label the graph.

Before describing the stratification generally, it may help to consider some sim-

ple examples. Since the kinematical data describing the external particles enjoys a

rescaling symmetry, we often find it useful to transfer this symmetry to the columns

of C, identifying ca ∼ taca, so that (non-vanishing) columns ca can be thought of

as elements in P(k−1) (vanishing columns simply being absent from the space). This

makes it a little easier to visualize configurations—at least for small k. Consider

a generic configuration C ∈G(3, 6), whose 6 columns—viewed as points in P2—are

arranged according to:

(3.5.121)

As no three of the columns are linearly-dependent, this indeed represents a generic

configuration in G(3, 6), and has 3(6 3) = 9 degrees of freedom.

The simplest consecutive constraint we could impose on (3.5.121) would be to force

any 3 consecutive columns to become linearly-dependent—projectively, collinear. For

example, we could require that the minor (123) vanish:

(3.5.122)

From this configuration, seven possible further restrictions are possible, including:
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For k ≤ 3, it is easy to describe such configurations geometrically—being eas-

ily visualizable. But such geometric descriptions rapidly become cumbersome as k

increases: even for k = 4—which is still possible to visualize in three-dimensional

space—configurations obtainable using only consecutive constraints can become im-

pressively complex. Consider for example the following configuration in G(4, 8):

consec. chains of columns span

(1) (2) (3) (4) (5) (6) (7) (8) P0

(123) (34) (45) (56) (678) (81) P1

(56781) (81234) (3456) P2

(3.5.123)

A more systematic way to describe any configuration in this stratification would be

to list the ranks of spaces spanned by all consecutive chains of columns. Labeling

columns mod n, let us define,

r[a; b] ≡ rank{ca, ca+1, . . . , cb}; (3.5.124)

then knowing r[a; b] for all n2 pairs of columns a ≤ b would suffice to reconstruct

any particular configuration. This data is obviously highly redundant: for example,

r[a; a+n 1] = k for all a. We can discover how this data can be encoded more effi-

ciently if by first organizing it in a clever way (we thank Pierre Deligne for suggesting

this to us):
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r[ ;n 2n 1 ] . . . 2n 1

r[ ;n 1 2n 2 ]
... . . . 2n 2

. . .
...

... . . .
...

r[ ;2 n+1 ] · · · r[ ;n 1 n+1 ] r[ ;n n+1 ] . . . n+1

r[ ;1 n ]
... · · · r[ ;n 1 n ] r[ ;n n ] n

...
... · · · r[ ;n 1 n 1 ] n 1

r[ ;1 3 ] r[ ;2 3 ] . . .
...

r[ ;1 2 ] r[ ;2 2 ] 2

r[ ;1 1 ] 1

1 2 · · · n 1 n · · ·

(3.5.125)

The advantages of arranging the ranks in this way will become clear momentarily.

Notice that for each pair of adjacent columns (a a+1) there is some b sufficiently large

such that r[a; b] = r[a+1; b], as r[a; b] is bounded above by k and strictly increases

with b (moving vertically in (3.5.125)). Moreover, it is easy to see that if r[a; b] =

r[a+1; b] for some b, then r[a; c] = r[a+1; c] for all c ≥ b, as we would have ca ∈
span{ca+1, . . . , cb}, and so span{ca, . . . , cb} ⊂ span{ca, . . . , cc} for all c ≥ b. The same

argument shows that, moving from right to left along each pair of consecutive rows

in (3.5.125), for any c there exists a b such that r[b; c] = r[b; c+1], and that for all

a < b, r[a; c] = r[a; c+1].

Because r[a; b] ≥ r[a+1; b] in general, for each a there must be a nearest column,

which we will denote (suggestively) as ‘σ(a)’≥ a such that r[a;σ(a)] = r[a+1;σ(a)].

Notice that this implies that r[a;σ(a)] = r[a;σ(a) 1] > r[a+1;σ(a) 1], as otherwise

σ(a) would not be the nearest. Similarly, we see that a must be the maximal column

a ≤ σ(a) such that r[a;σ(a)] = r[a;σ(a) 1]. Thus, there is a unique point vertically

along each pair of consecutive columns and a unique point horizontally along each

pair of consecutive rows where the table locally looks like:
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r[ ;a σ(a) ] r[ ;a+1 σ(a) ]

r[ ;a σ(a) 1 ] r[ ;a+1 σ(a) 1 ]

⇔
` `

` `− 1

.

(3.5.126)
These “hooks” show that σ is in fact a permutation among the labels {1, . . . , n} of the

column-vectors. Actually, because this definition of σ differentiates between σ(a) = a

(which occurs whenever r[a; a] = 0) and σ(a) = a+n, σ is automatically a decorated

permutation as defined in section I..

We can see how the permutation encoded by these hooks can be read-off from

the table of ranks, (3.5.125), by considering the example configuration given above,

(3.5.123):

⇒

(This picture of the permutation σ is similar to the “juggling patterns” illustrated

in [44].) And so this configuration is associated with the permutation,

σ ≡

1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
3 7 6 10 9 8 13 12

 . (3.5.127)

The definition of σ can be restated in an equivalent, but more transparently geo-

metric form:

Definition: For each a ∈ {1, . . . , n}, the permutation σ(a)≥a labels the first column

cσ(a) such that ca ∈ span
{
ca+1, . . . , cσ(a)

}
.

(Notice that if ca = ~0, then σ(a) = a, as~0 is spanned by the empty chain ‘{ca+1, . . . , ca}’.)
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This definition is useful in practice. For example, it makes it easy to understand

how the dimensionality of a configuration is encoded by its permutation. Notice that

because ca ∈ span{ca+1, . . . , cσ(a)}, we may expand ca into the r[a;σ(a)]-dimensional

space spanned by {ca+1, . . . , cσ(a)}; therefore, specifying ca requires r[a;σ(a)] degrees

of freedom. And so, remembering to subtract the k2 degrees of freedom absorbed by

the overall GL(k)-redundancy, we find that:

dim(Cσ) =
n∑
a=1

r[a;σ(a)]− k2 . (3.5.128)

Notice that r[a;σ(a)] is nothing but the number of other hooks which intersect the

vertical (or horizontal) part of any particular hook a 7→ σ(a). Thus, for our example in

G(4, 8) given above, the ranks r[a, σ(a)] can be read-off as the number of intersections

(marked in green) along each vertical (or horizontal) line:

(3.5.129)

which shows that this configuration has 25− 42 = 9 degrees of freedom.

It is not hard to see how the permutation encodes all the ranks r[a; b], thereby

demonstrating that σ fully characterizes any configuration in the positroid strati-

fication. If we let q[a; b] denote the number of c ∈ {b n, . . . , a} such that σ(c) ∈
{b, . . . , a+n}, then r[a; b] = k q[a; b]. Graphically, q[a; b] is the number of hooks

whose corners are above and to the left of r[a; b] in the table (3.5.125).

The permutation is the most compact, most invariant way of describing the con-

secutive linear dependencies of a configuration of vectors. A more redundant, but

sometimes useful alternative characterization of a configuration is known as the Grass-

mannian necklace, [43]: a list of n, k-tuples A(a) ≡ (A
(a)
1 , . . . , A

(a)
k ) denoting the
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lexicographically-minimal non-vanishing minors starting from each of the n columns.

Geometrically, A(a) encodes the labels of the first k column-vectors beyond (or possi-

bly including) ca, for which rank{c
A

(a)
1
, . . . , c

A
(a)
k
} = k. In terms of the hooks described

above, A(a) simply lists the k horizontal lines which pass above the ath column (which

often do not cross the hook going from a 7→ σ(a)). In the G(4, 8) example above,

(3.5.123), the Grassmannian necklace can be read-off as follows:

A(8) = (8 9 10 13)

A(7) = (7 8 9 10)

A(6) = (6 7 9 10)

A(5) = (5 6 7 10)

A(4) = (4 5 6 7)

A(3) = (3 4 5 7)

A(2) = (2 3 4 5)

A(1) = (1 2 4 5)

(3.5.130)
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II. Canonical Coordinates and the Equivalence of Permuta-

tion Labels

In section 3.4, we saw that every on-shell graph is associated with both a permutation

(via left-right paths) and also a k-plane in n dimensions C ∈ G(k, n) encoding the

linear-relations involving the external data. And we have just seen that any such

plane C, viewed as a configuration of column-vectors, can also be labeled by a per-

mutation. We will now demonstrate that these permutation labels match—that the

configuration C∈G(k, n) associated with an on-shell graph labeled by the left-right-

path permutation σ, is labeled geometrically by the same permutation σ.

The proof of the equivalence of these permutation labels is both simple and con-

structive. Recall from subsection II. that a representative, reduced on-shell graph can

be constructed for any permutation σ by decomposing it into a sequence of ‘adjacent’

transpositions acting on a trivial permutation, where each successive transposition in

the decomposition adds a BCFW-bridge to the graph according to:

(3.5.131)

(As before, recall that two columns are to be considered ‘adjacent’ if separated

only by columns which are self-identified under σ.) Now, just as we can build-up a

representative on-shell graph in this way for any permutation, we can also build-up

a representative matrix Cσ ∈G(k, n), which we will find to be labeled geometrically

by the same permutation. As a bonus, this construction will provide us with explicit

coordinates for any cell of the positroid, and these coordinates will have many nice

properties.

What action on the columns of C corresponds to adding a BCFW bridge, (3.5.131)?

In terms of the matrices associated with on-shell graphs, adding a bridge shifts,

ca+1 7→ câ+1 ≡ ca+1 + α ca; (3.5.132)
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recall also this shift changes the measure on the Grassmannian by adding a factor of

dlog(α).

Notice that if we take a residue about α = 0, we restore the original configuration;

thus, α 7→0 can viewed as deleting the new edge from the graph in (3.5.131). Of course,

in terms of the left-right path permutations, the BCFW bridge transposes the images

of a and a+1 under σ. What we need to show, therefore, is that the shift (3.5.132)

has this same effect on the geometric permutation defined by the columns of C:

(3.5.133)

Let us now show that this is indeed the change induced by (3.5.132). Clearly, the

transformation (3.5.132) can at most affect the ranks of chains which include ca+1

and not ca. After the shift, câ+1 is no longer spanned by {ca+2 . . . , cσ(a+1)}, because

ca is not; but câ+1 is spanned by {ca+2, . . . , cσ(a)}; and so, σ(a+1) 7→ σ′(a+1) =

σ(a). Similarly, after the shift ca is trivially in the span of {câ+1, . . . , cσ(a+1)} as

span{câ+1, . . . , cσ(a+1)} = span{ca, ca+1, . . . , cσ(a+1)}; and so, σ(a) 7→ σ′(a) = σ(a+1).

And we are done.

Therefore, just as successive BCFW-bridges, (3.5.131), can be used to construct

a representative, reduced on-shell graph for any permutation, they also provide us

with a representative matrix for the configuration—and the BCFW-shift parameters,

denoted αi, provide us with coordinates.

We can see how this works explicitly by revisiting the example given in section II.

where we used successive BCFW-bridges to construct a representative on-shell graph

for the permutation {4, 6, 5, 7, 8, 9}. Repeating the same construction as before, but

now decorating each BCFW-bridge with its corresponding shift-parameter αi gives

rise to the following:
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1 2 3 4 5 6

τ ↓ ↓ ↓ ↓ ↓ ↓ BCFW shift

(1 2)
4 6 5 7 8 9

c2 7→ c2 + α8c1

(2 3)
6 4 5 7 8 9

c3 7→ c3 + α7c2

(3 4)
6 5 4 7 8 9

c4 7→ c4 + α6c3

(2 3)
6 5 7 4 8 9

c3 7→ c3 + α5c2

(1 2)
6 7 5 4 8 9

c2 7→ c2 + α4c1

(3 5)
7 6 5 4 8 9

c5 7→ c5 + α3c3

(2 3)
7 6 8 4 5 9

c3 7→ c3 + α2c2

(3 6)
7 8 6 4 5 9

c6 7→ c6 + α1c3
7 8 9 4 5 6

Starting with the zero-dimensional configuration labeled by {7, 8, 9, 4, 5, 6} and per-

forming each successive BCFW-shift generates the following representation of C:

C(~α) ≡


1 (α4+α8) α4 (α5+α7) α4α5α6 0 0

0 1 (α2+α5+α7) (α2+α5)α6 α2α3 0

0 0 1 α6 α3 α1

 . (3.5.134)
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For the sake of illustration and completeness, below we give the complete sequence of
coordinatized cells generated along the chain of BCFW-shifts which build-up C(α):


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


{7, 8,9, 4, 5,6}

(36)
−−−−→
α1


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 α1


{7,8,6, 4, 5, 9}

(23)
−−−−→
α2


1 0 0 0 0 0

0 1 α2 0 0 0

0 0 1 0 0 α1


{7, 6,8, 4,5, 9}

(35)
−−−−→
α3


1 0 0 0 0 0

0 1 α2 0 α2α3 0

0 0 1 0 α3 α1


{7,6, 5, 4, 8, 9}

(12)

←
−−
−−α4

1 α4 α4 α5 α4α5α6 0 0

0 1 (α2+α5) (α2+α5)α6 α2α3 0

0 0 1 α6 α3 α1


{6,5,4, 7, 8, 9}

(34)
←−−−−
α6


1 α4 α4 α5 0 0 0

0 1 (α2+α5) 0 α2α3 0

0 0 1 0 α3 α1


{6, 5,7,4, 8, 9}

(23)
←−−−−
α5


1 α4 0 0 0 0

0 1 α2 0 α2α3 0

0 0 1 0 α3 α1


{6,7,5, 4, 8, 9}

(23)

←
−−
−−α7

1 α4 α4 (α5+α7) α4α5α6 0 0

0 1 (α2+α5+α7) (α2+α5)α6 α2α3 0

0 0 1 α6 α3 α1


{6,4, 5, 7, 8, 9}

(12)
−−−−→
α8


1 (α4+α8) α4 (α5+α7) α4α5α6 0 0

0 1 (α2+α5+α7) (α2+α5)α6 α2α3 0

0 0 1 α6 α3 α1


{4, 6, 5, 7, 8, 9}

Coordinates generated in this way enjoy many nice properties. For example, the

physically-relevant measure on the Grassmannian (integration over which generates

the on-shell differential forms of interest) is maximally simple in these coordinates:

because each BCFW-shift simply adds a factor of dlog(α) to the measure, the final

measure is simply,

dα1

α1

∧ · · · ∧ dαd
αd

= dlog(α1) ∧ · · · ∧ dlog(αd) . (3.5.135)

Another important property—to be described more fully in section IV.—is that these

coordinates make it possible to access each of the lower-dimensional boundaries of C

as the zero-loci of some of the αi (using an atlas of at most n coordinate charts).

III. Positroid Cells and the Positive Part of the Grassman-

nian

So far in of our discussion of configurations of vectors we have only discussed ba-

sic, linear dependencies. Let us now consider the case where these vectors are real.

This will expose a natural and beautiful object, known as the positive Grassman-

nian, denoted G+(k, n). As in the previous subsection, let us first jump ahead and
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describe this object intrinsically, and then return to on-shell diagrams and show how

the amalgamation picture described in section IV. makes it obvious that on-shell

diagrams—whether reduced or not—are always associated with points in G+(k, n),

and demonstrate how this works explicitly for the reduced graphs obtained via the

BCFW-bridge decomposition described in the previous section.

Perhaps the best way to motivate the positive Grassmannian is by starting with

the simplest case, GR(1, n) ' RPn−1. Here, the column ‘vectors’ ca of a 1-plane

C ≡ (c1, . . . , cn) are simply homogeneous coordinates on RPn−1, and the ‘positive

part’ of RPn−1 is simply the part of projective space where all the homogeneous

coordinates are positive, which is nothing but a simplex. Consider for example RP2

corresponding to the 1-plane C = (c1, c2, c3):

(3.5.136)

The ‘positive part’ of RP2 is defined by the region where all the homogeneous coor-

dinates ca are positive—corresponding to the (open) region labeled “I” above. Of

course, because we often allow ourselves to rescale each ca ∼ taca, any relative signs

among the homogeneous coordinates will describe an open-region of RP2 essentially

equivalent to region I, dividing RP2 into four “positive parts” as indicated in (3.5.136).

Continuing this logic to higher n, it is clear that the “positive part” of RPn−1 should

be defined as the (open) simplex for which all homogeneous coordinates are positive.

For higher k, the“positive part” of G(k, n) is a natural generalization of the notion

of a simplex in G(1, n). Thinking of the homogeneous coordinates ca as (1×1)-‘minors’

of C ∈ G(1, n), it is natural to define the positive part of G(k, n) to be the region

for which all ordered minors (a1 · · · ak), with a1 < · · · < ak, are positive. (Notice

that without a fixed ordering of the columns, it would be meaningless to discuss the

positivity of minors as they are antisymmetric with respect to ordering.)

Although this definition of the positive part of G(k, n) requires an ordering of

the columns, no reference was made to any cyclic structure. But cyclicity emerges
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automatically. Näıvely, it would seem that there could be a distinct positive part

for each of the n! orderings of the columns, but some of these are actually the same.

Suppose that C ∈G+(k, n) for columns ordered according to {c1, . . . , cn}. Then the

change

c1→c2, c2→c3, · · · , cn→(−1)k+1c1, (3.5.137)

gives a positive configuration in the rotated ordering. This is referred to as a “twisted”

cyclic symmetry.

Notice that the definition of G+(k, n) has so far made no reference to consecutivity

of the constraints involved in its boundary configurations (where some minors are

allowed to vanish). The reason why consecutivity plays a role is that not all minors

are independent—recall from section I. that they satisfy Plücker relations following

from Cramer’s rule, (3.4.47). The relevance of this will become clear in a simple

example. Consider the case of G(2, 4), where we have

(1 3)(2 4) = (1 2)(3 4) + (1 4)(2 3). (3.5.138)

Notice the presence of the plus sign on the right-hand side. It implies that if we start

with a configuration in G+(2, 4), the minor (1 3) can only vanish if at least two other

ordered minors also vanish.

We can see how consecutivity matters more generally for G(2, n) by thinking of

the column-vectors projectively as points in RP1. If we rescale the columns to be of

the form ca ∼
(

βa
1

)
, then (a b) = (βa βb), and so a positive configuration is simply

one for which βa > βb for all a < b. That is, the positive part of G(2, n) is nothing

but configurations of ordered points on a circle:

(3.5.139)

As such, it is clear that co-dimension one boundaries should correspond to the van-

ishing of only consecutive minors—the collision of adjacent points in RP1. In G(2, 4),

for example, the following sequence of boundaries connect a generic configuration to

one without any degrees of freedom:
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{3, 4, 5, 6}

⇒

{2, 4, 5,7}

⇒

{2,5,4, 7}

⇒

{2, 5,3,8}

⇒

{1,6, 3, 8}
(3.5.140)

In order to see that this phenomenon is not peculiar to G(2, n), and to get a better

picture for what is going on, let us look again at G(3, n). We may use the rescaling

symmetry to write each column as ca ∼
(

ĉa
1

)
, where each ĉa is in R2. It is then

easy to check that the requirement of positivity for all ordered minors translates into

the geometric statement that the points ĉa form the vertices of a convex polygon in

the plane.

Because of convexity, it is easy to see that going to boundaries can only involve

linear relations between consecutive chains of columns. For instance, below we draw

a projective representation of a generic configuration G(3, 6), and some of the bound-

aries obtainable while preserving convexity:

{4, 5, 6, 7, 8, 9}

⇒

{3, 5, 6, 7, 8,10}

⇒

{3,6,5, 7, 8, 10}

(3.5.141)

From the generic configuration, it is possible to make any consecutive minor vanish

such as (1 2 3) shown above. Projectively, a minor will vanish whenever three points

become collinear. However, note that for instance the non-consecutive minor (1 3 5)

cannot be made to vanish without either: 1. destroying convexity, or 2. forcing ad-

ditional minors to vanish along the way. And so, we find the same stratification of

successive boundaries as those obtained by consecutive constraints.

These examples suffice to motivate a remarkable connection, which we will shortly

understand in a simple and general way. In the first part of this section, we discussed

a stratification of the complex Grassmannian, in terms of specified linear dependencies

between consecutive column vectors. We now see that this structure is beautifully

characterized by the structure of the real Grassmannian: the cell decomposition of
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the positive Grassmannian is precisely specified by giving linear dependencies between

consecutive vectors.

But first, let us step back and understand the simple and direct connection be-

tween on-shell diagrams and the positive Grassmannian. Recall that we can construct

the configuration C∈G(k, n) for any on-shell diagram by simply “amalgamating” the

1- and 2-planes associated with the white, and black vertices, respectively. We saw in

section IV. that only two operations were needed to construct the plane C ∈G(k, n)

for any on-shell graph: combining graphs via direct-products, and gluing legs together

by projecting-out on-shell pairs of particles. Let us briefly recall how these two op-

erations act on the minors of the planes involved, and verify the wonderful fact that

amalgamation preserves positivity.

The proof is simple. First, observe that we can always use rescaling symmetry to

make any configuration in G(1, 3) or G(2, 3) positive (see, e.g. (3.5.136)). Therefore,

an on-shell graph can always be constructed by attaching these positive cells to each

vertex, and then proceeding with amalgamation as described in section IV.. Recall

that the simplest of the two operations, taking direct-products, acts trivially on mi-

nors: suppose that the columns of CL∈G(kL, nL) are ordered {c1, . . . , cnL}, and that

those of CR ∈G(kR, nR) are ordered {cnL+1, . . . , cnL+nR}, then all the non-vanishing

minors CL
⊗

CR 7→ C∈G(kL+kR, nL+nR) will be given by,

(a1 · · · akL b1 · · · bkR)|C = (a1 · · · akL)|CL× (b1 · · · bkR)|CR ; (3.5.142)

and so, if CL and CR are both positive, then C will be as well.

The second fundamental operation, projection, takes a configuration C∈G(k+1, n+2)

and produces a configuration Ĉ∈G(k, n), obtained by projecting C into the orthogonal-

complement of (cA − cB), for two adjacent legs (AB). In terms of minors, this oper-

ation acts according to:

(a1 · · · ak)|Ĉ = (Aa1 · · · ak)|C + (B a1 · · · ak)|C . (3.5.143)

If (AB) are the first two labels for the columns of C∈G+(k+1, n+2), then both terms

on the right hand side are trivially positive; if (AB) are not the first two columns,

then they can always be brought to this position at the trivial cost of rescaling some

columns by (−1) as described during our discussion of the twisted cyclic structure of

G+(k, n) in section III..
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IV. Canonically Positive Coordinates for Positroids

We have seen many ways to describe the configuration C∈G(k, n) associated with an

on-shell diagram, including procedures which explicitly generate a matrix represen-

tative of C parameterized by variables attached to the faces or the edges of a graph

(see section V.). And in section II., we saw that “canonical” coordinates for any cell

C∈G(k, n) in the positroid stratification can be systematically generated (along with

a representative, reduced graph) by applying successive BCFW-shifts. In this subsec-

tion, we demonstrate that a slight-modification of these BCFW-bridge coordinates

(see equation (3.5.149)) have the remarkable property that when the coordinates αi

are themselves positive, then C(αi)∈G+(k, n)! We will refer to any such coordinates

which have this property as “positive”.

Before we describe how the BCFW-bridge coordinates make positivity manifest in

this way, let us first describe a more intuitive way to parameterize generic configura-

tions in G(k, n) with coordinates which share this property. It will turn out that this

geometrically-motivated parameterization of G(k, n) will be essentially identical to

that which is generated by the BCFW-bridge construction, and so this slight detour

will prove itself quite useful later (see section 3.7).

Observe that any homogeneous coordinates for G(1, n) ' Pn−1 are trivially posi-

tive:
C(1,n) ≡

(
β1,1 β1,2 · · · β1,n−1 β1,n

)
, (3.5.144)

because C(k,n)(β)∈G+(1, n) whenever all the variables β1,a > 0.

The first non-trivial case is for G(2, n). Recall from our discussion above that if

we rescale all the column vectors of C∈G(2, n) to be of the form ca ∼
(

ĉa
1

)
, then

(a b) = ĉa − ĉb; and so any set of ordered numbers ĉ1 > · · · > ĉn will parameterize

a point in G+(2, n). One natural way to create such an ordered list of positive

numbers would be to have ĉa = ĉa+1 + β1,a+1 for arbitrary, positive β1,a+1—where

we have intentionally named these ‘arbitrary’ positive parameters according to our

parameterization of G+(1, n) in (3.5.144). Restoring the degrees of freedom which

rescale each column vector, we obtain the following:

C(2,n) ≡

 β2,1(β1,2 + · · ·+ β1,n) β2,2(β1,3 + · · ·+ β1,n) · · · β2,n−1(β1,n) 0

β2,1 β2,2 · · · β2,n−1 β2,n

.
(3.5.145)
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It is easy to verify that if βα,a > 0, then C(2,n)(β)∈G+(2, n).

This construction naturally continues recursively, generating positive coordinates

for any (generic) configuration in G(k, n) as follows:

C(k,n) ≡

 βk,1ĉ
(k,n)
1 · · · βk,n−1ĉ

(k,n)
n−1 0

βk,1 · · · βk,n−1 βk,n

 with ĉ (k,n)
a ≡

n∑
j=(a+1)

c
(k−1,n)
j .

(3.5.146)
Surprisingly, after using GL(k)-redundancy to remove the excess degrees of free-

dom in the parameterization of C(k,n)(β), it turns out that these are (essentially)

identical to the coordinates produced by the BCFW-bridge construction described in

section II.. Indeed, the only distinction is a relabeling of bridge-variables αi according

to:

β1,k+1 β1,k+2 · · · β1,n−1 β1,n
β2,k+1 β2,k+2 · · · β2,n−1 β2,n
...

...
. . .

...
...

βk,k+1 βk,k+2 · · · βk,n−1 βk,n

⇔
αd αd−2 · · · · · · · · · · · · α` · · · · · · αk(k−1)/2+1

αd−1 . . . . . . . . . . . . α`+1 . . . . . . . . .
...... . . . . . . . . . . . . . . . . . . . . . . . . α2

αd−k(k−1)/2 · · · · · · α`+k−1 · · · · · · · · · · · · α3 α1

Let us now show that positivity is a manifest property of the BCFW-bridge coor-

dinates for all positroid cells. This will also complete the connection between on-shell

graphs, the stratification of configurations of vectors given by prescribing linear de-

pendencies between consecutive vectors, and the cell decomposition of the positive

Grassmannian.

We begin by observing that the minors of C transform nicely under BCFW-shifts:

(· · · a+1 · · · ) 7→ (· · · â+1 · · · ) = (· · · a+1 · · · ) + α (· · · a · · · ). (3.5.147)

And so, if we start with a configuration C in the positive Grassmannian, and if a and

a+1 are strictly adjacent—with no columns between them self-identified under σ—

then the BCFW-shift preserves positivity, because whenever (· · · a+1 · · · ) is ordered,

so is (· · · a · · · ).
However, we must remember that the decomposition of a permutation into ‘ad-

jacent’ transpositions allows for a and “a+1” to be separated by any number of

columns which map to themselves (modn) under σ. Because σ(b) = b (as opposed to

σ(b) = b+n) implies that cb = 0, all minors involving b vanish; and so, skipping-over

these columns will not affect any non-vanishing minors. However, σ(b) = b+n if

and only if cb /∈ span{cb+1, . . . , cb+n−1}, implying that cb is not spanned by the rest

of the columns of C; as such, σ(b) = b+n implies that b must be involved in any
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non-vanishing (k×k)-minor of C. And so, when this happens, the shift in (3.5.147)

may not preserve ordering for both of the terms.

To illustrate this minor subtlety, consider the very simplest case in which it

arises: the one-dimensional configuration C ∈ G(2, 3) labeled by the permutation

σ ≡ {3, 5, 4}. The decomposition of σ into ‘adjacent’ transpositions involves only

one step: (1 3) —an ‘adjacent’ transposition which skips-over column c2 because

σ(2) = 2+3. Explicitly, the BCFW-coordinates of Cσ would be generated as fol-

lows:

1 2 3

τ ↓ ↓ ↓ BCFW shift

(1 3)
3 5 4

c3 7→ c3 + α1c1
4 5 3

1 0 0

0 1 0


{4, 5,3}

(13)
−−−→
α1

1 0 α1

0 1 0


{3, 5, 4}

(3.5.148)

Notice that the minor (23), which vanishes before the shift, becomes (23) 7→ (23̂) =

(23)+α1(21) = α1(12) after the shift. And so, if we wish to make the final configu-

ration C positive, we must take α1 to be negative; alternatively, we could redefine the

rule for BCFW-shifts so that the transposition (13) actually corresponds to a shift

c3 7→ c3 α1c1. Of the two alternatives, we prefer the latter as then positivity of the

BCFW-shift coordinates would directly imply that a configuration were positive.

It is easy to see how this simple example generalizes: in order to preserve the

positivity of minors and the coordinates, we should redefine the BCFW-shift so that

the transposition of a and “a+1” changes the columns of C according to

ca+1 7→ ca+1 + (−1)qα ca, (3.5.149)

where q is the number of columns b between a and “a+1” such that σ(b) = b+n.

In this modified form, the BCFW-shift is guaranteed to preserve positivity. And so,

restricting all the coordinates αi to be positive will always result in a configuration

C(~α) in the positive Grassmannian G+(k, n).

To see how these signed BCFW-shifts make positivity manifest—and as one fur-

ther example of the BCFW-bridge construction described in section II.—consider the

following coordinates constructed for the configuration in G(4, 8) given in (3.5.123):
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1 2 3 4 5 6 7 8

τ q ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ BCFW shift

(1 2) 0
3 7 6 10 9 8 13 12

c2 7→ c2 + α9c1

(2 3) 0
7 3 6 10 9 8 13 12

c3 7→ c3 + α8c2

(2 4) 0
7 6 3 10 9 8 13 12

c4 7→ c4 + α7c2

(4 5) 0
7 10 3 6 9 8 13 12

c5 7→ c5 + α6c4

(1 4) 1
7 10 3 9 6 8 13 12

c4 7→ c4−α5c1

(5 6) 0
9 10 3 7 6 8 13 12

c6 7→ c6 + α4c5

(4 5) 0
9 10 3 7 8 6 13 12

c5 7→ c5 + α3c4

(5 7) 0
9 10 3 8 7 6 13 12

c7 7→ c7 + α2c5

(4 8) 1
9 10 3 8 13 6 7 12

c8 7→ c8−α1c4
9 10 3 12 13 6 7 8


1 α9 0 α5 α5α6 0 0 0

0 1 α8 α7 0 0 0 0

0 0 0 1 α3+α6 α3α4 0 α1

0 0 0 0 1 α4 α2 0


It is easy to verify that all the non-vanishing minors of C(α) ∈G(4, 8) are positive

when αi ∈ R+. For example, consider the minor,

(2 4 5 7) = α2 α3 α5 + α2 α3 α7 α9 + α2 α6 α7 α9, (3.5.150)

the positivity of which requires, for example, the signed BCFW-shift c4 7→ c4 α5c1.

3.6 Boundary Configurations, Graphs, and Per-

mutations

I. Physical Singularities and Positroid Boundaries

Recall that an on-shell diagram labeled by the permutation σ corresponds to a differ-

ential form fσ obtained via integration over the configuration Cσ(α)∈G(k, n) subject

to the constraints that Cσ be orthogonal to λ̃ and contain λ:

fσ =

∫
Cσ

dα1

α1

∧ · · · ∧ dαd
αd

δk×4
(
Cσ ·η̃

)
δk×2

(
Cσ ·λ̃

)
δ2×(n−k)

(
λ·C⊥σ

)
, (3.6.151)

where αi are canonical (e.g. BCFW-bridge) coordinates for the configuration Cσ.

Because the δ-functions encode (2n 4) constraints in general (together with the 4

constraints of momentum-conservation), cells with (2n 4) degrees of freedom can be

fully-localized, while those of lower dimension leave-behind further δ-functions which

impose constraints on the external kinematical data.

On-shell differential forms which impose constraints on the external data (beyond

momentum conservation) represent physical singularities: places in the space of kine-
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matical data where higher-degree forms develop poles. As we saw in section IV., such

singularities are of primary physical interest: for example, knowing the singularity-

structure of scattering amplitudes suffices to fix them completely to all loop-orders

via the BCFW recursion relations, (3.2.21).

The physical singularities of on-shell differential forms, therefore, correspond to

the boundaries of the corresponding configurations in the Grassmannian. Suppose we

consider a reduced graph with nF faces; then, because such a graph is associated with

an (nF 1)-dimensional configuration C, it is easy to see that its boundaries are those

graphs obtained by deleting edges (reducing the number of faces by one). However,

sometimes a graph obtained in this way is no longer reduced, and actually corresponds

to a configuration in the Grassmannian whose dimension has been lowered by more

than one. This raises the question: which edges in a graph can be removed while

keeping a graph reduced? Such edges will be called removable. It turns out that this

question is easiest to answer not in terms of on-shell graphs directly, but in terms

of the geometry of their corresponding configurations in the Grassmannian and the

combinatorics of their permutations.

II. Boundary Configuration Combinatorics in the Positroid

Stratification

The boundaries of a configuration C, denoted ∂(C), in the positroid stratification are

those configurations obtained by imposing any one additional constraint involving

consecutive chains of columns. Before describing the combinatorial rule for finding

boundary configurations, let us first build some intuition through simple examples.

Recall from section I. the configuration in G+(3, 6) whose boundaries included:

∂

{3, 5, 6, 7, 8, 10}

=


{3,4, 6, 7, 8,11}

,

{5,3, 6, 7, 8, 10}

,

{3,6,5, 7, 8, 10}

,

{3, 5,7,6, 8, 10}

,. . .



where we have highlighted how the permutation changes for each boundary-

170



element.

And so—if it weren’t sufficiently obvious already—this example makes it clear

that boundary elements of a configuration labeled by σ are those labeled by σ′ which

are related to σ by a transposition of its images. However, not all transpositions lower

the dimension of the configuration, and some transpositions lower the dimensionality

by more than one. The way to identify the transpositions which lower the dimension

by precisely one is easily understood from the way dimensionality is encoded by

a configuration’s permutation: if we view the permutation as given by the ‘hooks’

described in section I., then the dimension of a configuration is counted by the number

of intersections of its hooks (minus k2). Therefore, boundaries are those transpositions

which eliminate any one such intersection:

(3.6.152)

Here, it is important that a < b ≤ σ(a) < σ(b) ≤ (a+n), and that there are no hooks

from c∈I to σ(c)∈II as otherwise the dimensionality would be lowered by more than

one:

(3.6.153)

Restated in terms of on-shell graphs decorated by left-right paths, this rule iden-

tifies removable edges as those along which two paths cross, a→ σ(a) and b→ σ(b)

with a < b ≤ σ(b) < σ(a) ≤ (a+n), provided that there is no path c→σ(c) with c∈I
and σ(c)∈II:
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(3.6.154)

These two definitions of the boundary elements of a configuration are of course equiv-

alent; but without the combinatorial rule for counting dimensions, it would have been

considerably more difficult to see that these—and only these—edges are removable.

III. (Combinatorial) Polytopes in the Grassmannian

The boundary operator ∂ given above defines the positroid stratification of G(k, n);

and this stratification is a very special one, with many nice features. For one thing,

it allows us to view every positroid configuration in G+(k, n) is something like a

‘polytope’ in G(k, n). By this we mean that the inclusions induced by ∂ (viewed as

a strong Bruhat covering relation) define an Eulerian poset—the key combinatorial

property of the poset of faces of an ordinary polytope.

We will not prove that ∂ defines an Eulerian poset (this was proven in [145]), but

let us at least demonstrate that ∂2 = 0 (mod 2)—which is of course a prerequisite for ∂

to actually have the meaning of a homological ‘boundary’ operator. It turns out that

every configuration in ∂2(C) is found as the boundary of precisely two configurations

in ∂(C) (a fact which follows trivially from the more complete statement that ∂ defines

an Eulerian poset). This is not hard to prove, and it trivially implies that ∂2 = 0

(mod 2). To see this, notice that each configuration in ∂[Cσ] is labeled by σ′ related

to σ by a transposition. It is easy to see that the pair of transpositions must involve

at least three distinct labels. If the pair involved four labels, say (a b) and (c d), then

obviously the two transpositions can be taken in either order. When the pair involves

three labels, say {a b c}, then there are only four possible scenarios to check:

(a b)◦(a c) ' (b c)◦(a b) (a b)◦(b c) ' (b c)◦(a c)
(a b)◦(b c) ' (a c)◦(a b) (a c)◦(b c) ' (b c)◦(a b)

; (3.6.155)
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the first of these, for example, can be understood graphically in terms of hooks as,

A more immediate, but somewhat indirect proof of this fact follows from the

association of each permutation σ with a reduced, on-shell graph. Recall that the

graphs in the boundary of an on-shell graph labeled by σ are those for which one

edge has been removed. Because each pair of left-right paths a→σ(a) and b→σ(b)

cross on at most one edge of any reduced graph (if the edge is removable), it is clear

that graphs in ∂2 are those obtained by removing a pair of edges. As such, the pair of

edges can be removed in any order, proving that there are two paths from any graph

to each graph in ∂2.

(We should mention briefly that it remains an open and important problem to

refine the definition of ∂ so that elements in ∂(C) are decorated with signs ±1 such

that ∂2 = 0 directly—not merely modulo 2.)

As mentioned above, an amazing feature of the positroid stratification is that the

combinatorial structure of the inclusions induced by ∂ have the property that every

positroid configuration defines an Eulerian poset—a combinatorial polytope. Because

of this, we can loosely view each positroid configuration as a region of G(k, n) with

essentially the topology of an open ball—even though such a picture is only strictly

known to be valid for relatively simple cases such as G(2, n).

In the case of the positroid G+(2, 4), the polytope is relatively easy to visualize.

The four-dimensional top-cell has four, three-dimensional boundary configurations;

and the boundaries of these cells collectively involve ten two-dimensional configura-

tions, etc. Starting with the generic configuration in G+(2, 4), we find the boundaries

defined by ∂ given as follows [146]:
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Although it is hard to draw the complete four-dimensional polytope, its four

three-dimensional faces each define square-pyramidal regions of G(2, 4). For example,

the polytope corresponding to the configuration (1)(2 3)(4)
• • •

of G(2, 4) labeled by the

permutation {4, 3, 5, 6} is arranged as follows:

IV. Approaching Boundaries in Canonical Coordinates

Recall that the singularities of an on-shell differential form associated with an on-

shell diagram are simply the residues of its poles. When written in terms of canonical

coordinates on the Grassmannian as described above (see equation (3.6.151)), it is

tempting to identify the manifestly-logarithmic singularities in the measure with con-

figurations in the ‘boundary’. But there are two important points which make such

a correspondence a bit more delicate than it may appear at first-glance:

1. the coordinate chart ~α used to cover Cσ may degenerate when some αi→0

—such a degeneration would be signaled by the appearance of additional sin-

gularities in the Jacobian arising from the δ-functions in (3.6.151);
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2. no single coordinate chart ~α covers all of the boundaries of Cσ.

We can illustrate both points by considering a simple example. Recall from equa-

tion (3.5.134) the BCFW-bridge coordinates generated for the graph labeled by

{4, 6, 5, 7, 8, 9}:

(3.6.156)

Because the BCFW coordinates ~α correspond to edge-variables, sending any αi→ 0

will have the effect of deleting the corresponding edge from the graph. The first

subtlety mentioned above is reflected in the fact that some edge-variables—here,

{α1, α2, α3, α6}—are attached to irremovable edges; the second subtlety is reflected in

the fact that three of the seven removable edges—colored orange in the figure—are not

dressed with edge-variables. Of course, if we introduce additional GL(1)-redundancies

at each vertex as we did in section V., every removable edge could be dressed by a

variable whose vanishing would give the corresponding boundary; this would make

all the boundaries accessible, but at the cost of introducing vast redundancy.

A surprising fact—not very difficult to prove—is that all the boundaries of any

cell C ∈ G+(k, n) can be found at the zero-locus of single-coordinates in at least

one chart from an atlas composed only of those charts generated by the BCFW-

bridge construction (see section II.) in all its n cyclic manifestations (taking each of

the n labels as the cyclic ‘starting-point’ for the decomposition). To be clear, this

claim only applies for the specific scheme described in section II. used to decompose

a permutation into adjacent transpositions—no other scheme is known to have this

remarkable property.
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3.7 The Invariant Top-Form and the Positroid Strat-

ification

We have seen that, associated with any d-dimensional cell of the positive Grassman-

nian, there is a natural associated form. In any of our natural coordinate charts, this

d-form is just the “dlog” measure,

dα1

α1

∧ · · · ∧ dαd
αd

, (3.7.157)

which is a special case of a more general cluster volume. This form makes it obvious

that boundary configurations are associated with residues for some αi = 0. It is also

clear that we can view all cells C∈G+(k, n) as iterated residues of the top-form Ωtop

on a generic configuration C∈G+(k, n).

A natural question is whether this top-form Ωtop can be written directly in terms

of the ‘matrix-coordinates’ cαa of C. In terms of matrix-coordinates C ≡ cαa, the

desired measure G(k, n) would have the form,

Ω =
dk×nC

vol(GL(k))

1

f(C)
, (3.7.158)

where f(C) must be a function of the minors of C, and must scale uniformly as

f(tC) = tk×nf(C). Moreover, because the top-cell G+(k, n) always has precisely n

co-dimension one boundaries—corresponding to any k consecutive columns becoming

linearly-dependent—it is clear that f(C) must have at least the n cyclic-minors as

factors:
f(C) = (1 · · · k) · · · (n · · · k 1)f ′(C). (3.7.159)

Because the product of the cyclic minors scale as f(C) must, f ′(C) must be scale-

invariant: f ′(tC) = f ′(C). And so, f ′(C) can at most involve ratios of minors.

However, any non-consecutive minors appearing as factors in f ′(C) would generate

new, unwanted singularities for the top-cell–poles corresponding to co-dimension one

boundaries not in the positroid stratification—and any consecutive minors in f ′(C)

would make a double-pole, spoiling the logarithmic singularities corresponding to one

of the necessary boundary configurations. Therefore, we are forced to conclude that

the only choice is to take f ′(C)→ 1. This means that the only viable ansatz for a

measure on G(k, n) with the desired properties is:

Ω =
dk×nC

vol(GL(k))

1

(1 · · · k) · · · (n · · · k 1)
. (3.7.160)
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This strikingly-simple form was first encountered in connection with “leading sin-

gularities” in reference [16].

It is not hard to see the plausibility of a guess that Ω = Ωtop. We have just

established that the poles of Ω and Ωtop are the same, and furthermore Ω does not

have any zeroes on the Grassmannian. Thus Ωtop/Ω is a function of the Grassmannian

with no poles, and any such function must be a constant. So, we have
dk×nC

vol(GL(k))

1

(1 · · · k) · · · (n · · · k 1)
=
dα1

α1

∧ · · · ∧
dαk(n−k)

αk(n−k)

. (3.7.161)

This representation of the top form will be crucial for most transparently seeing the

dual conformal symmetry and Yangian invariance of the theory.

We will momentarily prove that Ω = Ωtop by direct computation as well, but let

us first step-back and observe some remarkable properties of Ω. It is rather surprising

that a form as simple as (3.7.160)—which has only n poles!—should be able to capture

all of the intricate and beautiful structure of the positive Grassmannian in its iterated

singularities. The reason why this isn’t obviously impossible is that each of these n

factors are generally kth-degree polynomials in the variables cαa, and whenever one

such minor vanishes, other minors typically factorize, exposing further singularities

and more structure below.

Let us consider an example which illustrates how the iterated factorizations of the

consecutive minors exposes all the cells in the positroid stratification. Consider the

top-cell of G(3, 6),

⇔ d3×6C

vol(GL(3))

1

(123)(234)(345)(456)(561)(612)
. (3.7.162)

Upon restricting this form to the residue where (234)→0, the configuration becomes:

(3.7.163)

Now, as described in section 3.5, this configuration contains 7 boundary configura-

tions. How are we to see seven logarithmic singularities arising from the five remain-
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ing cyclic minors of (3.7.162)? The answer is simple: let us parameterize the pole

(234)→0 by sending c3→β3 2c2 +β3 4c4, under which the minors (123) and (345) each

factorize:

1

(123)(234)(345)(456)(561)(612)

(234)→0−−−−−−−−−→via
c3=β3 2c2+β3 4c4

1

β3 4(124)︸ ︷︷ ︸
(123)

β3 2(245)︸ ︷︷ ︸
(345)

(456)(561)(612)
,

exposing all seven of the boundary configurations! To further illustrate this point, let

us now take a residue of this measure about the configuration setting (561)→ 0, by

setting c6 7→ β6 5c5 + β6 1c1; as before, this leads to the factorization of minors (456)

and (612), leaving us with,

1

β3 4(124)β3 2(245)(456)(561)(612)

(561)→0−−−−−−−−−→via
c6=β6 5c5+β6 1c1

1

β3 4(124)β3 2(245) β6 1(461)︸ ︷︷ ︸
(456)

β6 5(512)︸ ︷︷ ︸
(612)

,

which shows that this configuration has eight further boundary configurations. Pro-

ceeding in this way we can reconstruct all the cells of G+(3, 6).

I. Proving Equivalence with the Canonical Positroid Mea-

sure

In section IV. we showed that we can construct canonical coordinates for the top-cell

of G+(k, n) recursively by first introducing coordinates

C(1,n) ≡
(
β1,1 β1,2 · · · β1,n−1 β1,n

)
, (3.7.164)

for G(1, n), and then building-up coordinates for any G(k, n) recursively via:

C(k,n) ≡

 βk,1ĉ
(k,n)
1 · · · βk,n−1ĉ

(k,n)
n−1 0

βk,1 · · · βk,n−1 βk,n

 with ĉ (k,n)
a ≡

n∑
j=(a+1)

c
(k−1,n)
j .

(3.7.165)
Recall that these coordinates match those obtained by the BCFW bridge construction

upon the trivial relabeling:

αd αd−2 · · · · · · · · · · · · α` · · · · · · αk(k−1)/2+1

αd−1 . . . . . . . . . . . . α`+1 . . . . . . . . .
...... . . . . . . . . . . . . . . . . . . . . . . . . α2

αd−k(k−1)/2 · · · · · · α`+k−1 · · · · · · · · · · · · α3 α1

⇔
β1,k+1 β1,k+2 · · · β1,n−1 β1,n
β2,k+1 β2,k+2 · · · β2,n−1 β2,n
...

...
. . .

...
...

βk,k+1 βk,k+2 · · · βk,n−1 βk,n

and the gauge-choice of setting the first k column-vectors to the identity matrix. The

motivation for relabeling the coordinates in this way is that the BCFW-coordinates

give rise a gauge-fixed parameterization of C(βα,a) of the form,
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1

2
...

k


1 2 · · · k k+1 · · · · · · n

1 0 · · · 0 (β1,k+1· · · βk,k+1)+· · · (β1,k+2· · · βk,k+2)+· · · · · · (β1,n· · · βk,n)+· · ·
0 1

. . .
... (β2,k+1· · · βk,k+1)+· · · (β2,k+2· · · βk,k+2)+· · · · · · (β2,n· · · βk,n)+· · ·

...
. . .
. . . 0

...
...

. . .
...

0 · · · 0 1 βk,k+1 βk,k+2 · · · βk,n


(3.7.166)

Here, we have used color to highlight the fact that cα,a ∝ βα,a(βα+1,a · · · βk,a)+ . . .,

and that only this factor contributes to the Jacobian in going from coordinates cα,a

to coordinates βα,a. In particular, it is easy to see that the entire Jacobian from this

change of variables is simply,

J ≡
∣∣∣∣ dcα,adβα,a

∣∣∣∣ =
∏
α,a

(
βα,a

)α−1
. (3.7.167)

Somewhat less obviously, the cyclic minors are all simply expressed in these coordi-

nates: each is the product of all the highlighted βα,a in the lower-right triangle of the

corresponding sub-matrix of (3.7.166):

(` · · · `+k 1) =
k∏

α=1

(
α∏
a=1

βα,(k+`−a)

)
⇔

∣∣∣∣∣∣∣∣∣∣∣

β1,` · · · · · · β1,`+k−1
... . . . β2,`+k−2 β2,`+k−1
... . . .

...
...

βk,` · · · βk,`+k−2 βk,`+k−1

∣∣∣∣∣∣∣∣∣∣∣
,

(3.7.168)

where the product of β’s only ranges over relevant columns: k+1 ≤ (k+ ` a) ≤ n.

And so, the product of all the consecutive minors is simply,

(1 · · · k)(2 · · · k+1) · · · (n · · · k 1) =
∏
α,a

(
βα,a

)α
. (3.7.169)

Therefore, combining the product of all the cyclic minors with the necessary Ja-

cobian given in (3.7.167) we have:

dk×ncα,a
vol(GL(k))

1

(1 · · · k) · · · (n · · · k 1)
=

(∏
α,a

dβα,a

)
J∏

α,a

(
βα,a

)α =
∏
α,a

dβα,a
βα,a

(3.7.170)
as desired.

Let us briefly consider one concrete example of this equivalence. Consider the top-

cell of G(3, 6), where the BCFW-bridge construction gives the matrix-representative,

C(α) =


1 0 0 α9α8α6 α7α5α3+α3α9(α5+α8) α4α2α1+α1 (α7(α2+α5)+α9(α2+α5+α8))

0 1 0 α8α6 α5α3 α3α8 α2α1 α1 (α5 + α8)

0 0 1 α6 α3 α1

 ,

179



which, upon relabeling the variables according to,

α9 α7 α4

α8 α5 α2

α6 α3 α1

⇒
β1,4 β1,5 β1,6

β2,4 β2,5 β2,6

β3,4 β3,5 β3,6

, (3.7.171)

becomes,

C(β) =


1 0 0 β1,4β2,4β3,4 β1,5β2,5β3,5+ . . . β1,6β2,6β3,6+ . . .

0 1 0 β2,4β3,4 β2,5β3,5 . . . β2,6β3,6 . . .

0 0 1 β3,4 β3,5 β3,6

 . (3.7.172)

It is easy to see that the cyclic minors are given by,

(1 2 3) = 1 (4 5 6)=β1,6 β2,5 β2,6 β3,4 β3,5 β3,6

(2 3 4) = β1,4 β2,4 β3,4 (5 6 1)= β2,6 β3,5 β3,6

(3 4 5) =β1,5 β2,4 β2,5 β3,4 β3,5 (6 1 2)= β3,6

(3.7.173)

so that their product gives,

(1 2 3) · · · (6 1 2) =
(
β1,4 β1,5 β1,6

)1 (
β2,4 β2,5 β2,6

)2 (
β3,4 β3,5 β3,6

)3
; (3.7.174)

and the Jacobian of going from cα,a to βα,a is easily seen to be,

J ≡
∣∣∣∣ dcα,adβα,a

∣∣∣∣ =
(
β1,4 β1,5 β1,6

)0 (
β2,4 β2,5 β2,6

)1 (
β3,4 β3,5 β3,6

)2
, (3.7.175)

so that

d3×6C

vol(GL(3))

1

(1 2 3)(2 3 4)(3 4 5)(4 5 6)(5 6 1)(6 1 2)
=
∏
α,a

dβα,a
βα,a

. (3.7.176)

3.8 (Super) Conformal and Dual Conformal Invariance

In this section, we will describe how the Grassmannian formulation of on-shell dia-

grams makes all the symmetries of the theory—both the super-conformal and dual

super-conformal symmetries—completely manifest. Along the way, we will find it use-

ful to recast the on-shell differential form’s dependence on external kinematical data

in a way which more transparently reflects the geometry of momentum-conservation;

doing so, we will discover a correspondence between (some) cells C ∈ G(k, n) with

cells Ĉ∈G(k 2, n).
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I. The Grassmannian Geometry of Momentum Conservation

Consider an arbitrary on-shell graph associated with the cell Γσ∈G(k, n) labeled by

the permutation σ associated with an on-shell differential form f
(k)
σ (1, . . . , n). Using

any of the canonical coordinates for the cell C(α1, . . . , αd) ⊂ Γσ ∈G(k, n), this form

is given by:

f (k)
σ =

∫
dα1

α1

∧ · · · ∧ dαd
αd

δk×4
(
C ·η̃

)
δk×2

(
C ·λ̃

)
δ2×(n−k)

(
λ·C⊥

)
. (3.8.177)

As we saw in section 3.7, this can also be written as a residue of the top-form,

f (k)
σ =

∮
C⊂Γσ

dk×nC

vol(GL(k))

δk×4
(
C ·η̃

)
(1 · · · k) · · · (n · · · k 1)

δk×2
(
C ·λ̃

)
δ2×(n−k)

(
λ·C⊥

)
. (3.8.178)

Recall from section 3.4, the (ordinary) δ-functions in (3.8.178) have the geometric

interpretation of constraining the k-plane C to be orthogonal to the 2-plane λ̃ and to

contain the 2-plane λ, [16]:

(3.8.179)

Because λ̃ ⊂ λ⊥, 4 of the 2n(= 2(n k)+2k) constraints always represent momentum-

conservation, leaving (2n 4) constraints imposed on C in general. Therefore, cells of

G(k, n) with precisely (2n 4) degrees of freedom can be fully-localized by these con-

straints, and become ordinary super-functions of the external momenta; cells of lower

dimension become functions with δ-function support, and cells of higher dimension

represent integration measures on auxiliary, internal degrees of freedom (which may

represent, for example, the degrees of freedom of internal loop-momenta).

The simplest example illustrating this localization is for k = 2. Here the 2-plane

C is just identified with the λ-plane, and equation (3.8.178) directly becomes the

familiar Parke-Taylor formula for tree-level MHV super-amplitudes, [51, 147]:

A(2)
n =

∫
d2×nC

vol(GL(2))

δ2×4
(
C ·η̃

)
(12)(23) · · · (n1)

δ2×2
(
C ·λ̃

)
δ2×(n−2)

(
λ·C⊥

)
,

=
δ2×4

(
λ·η̃
)

〈1 2〉〈2 3〉 · · · 〈n 1〉
δ2×2

(
λ·λ̃
)
.

(3.8.180)
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Let us look at a less trivial example of how this localization works for k > 2. One

of the on-shell diagrams contributing to the 6-particle k = 3 tree-amplitude is (see

section 3.14),

, (3.8.181)

which is labeled by the permutation {3, 5, 6, 7, 8, 10}. It is easy to see that (a GL(3)-

representative of) the point C∗ in this positroid cell which satisfies the kinematical

constraints is:

C∗ =


λ1

1 λ1
2 λ1

3 λ1
4 λ1

5 λ1
6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 0 [5 6] [6 4] [4 5]

 , (3.8.182)

where [a b] ≡ det{λ̃a, λ̃b} is a minor of the matrix λ̃. (Notice that C∗·λ̃ = 0 because

λ·λ̃ = 0, and the third-row dotted-into λ̃ gives an instance of (3.4.47).) Supported at

this point, (3.8.178) generates the on-shell super-function,

f
(3)
{3,5,6,7,8,10}=

δ3×4(C∗· η̃) δ2×2
(
λ·λ̃
)

〈2 3〉[5 6]︸ ︷︷ ︸
(234)|C∗

(〈3 4〉[6 4]+〈5 3〉[5 6])︸ ︷︷ ︸
(345)|C∗

s4 5 6︸ ︷︷ ︸
(456)|C∗

(〈6 1〉[6 4]+〈1 5〉[4 5])︸ ︷︷ ︸
(561)|C∗

〈1 2〉[4 5]︸ ︷︷ ︸
(612)|C∗

, (3.8.183)

where

s456 ≡ (p4 + p5 + p6)2 = 〈4 5〉[4 5] + 〈4 6〉[4 6] + 〈5 6〉[5 6].

The particular GL(3)-representative of C∗ given in (3.8.182) was chosen so that the

Jacobian from all the δ-functions is 1, making the residue of (3.8.178) about the pole

(123) = 0 easy to read-off from C∗. Let us briefly mention that (3.8.183) makes

super momentum-conservation manifest: in addition to the obvious δ2×2
(
λ · λ̃

)
in

(3.8.183), the (fermionic) δ-functions δ3×4
(
C∗· η̃

)
includes the factor δ2×4

(
λ · η̃

)
—the

supersymmetric-extension of ordinary momentum conservation.

II. Twistor Space and the Super-Conformal Invariance of

On-Shell Forms

In order to see the conformal symmetry of any theory, it is often wise to use twistor

variables, [61, 148–151]. Not surprisingly then, it is twistor space—not momentum-
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space—which gives us the simplest basis in which to describe scattering amplitudes

conformally. Formally, we go to twistor space by assuming that λ, λ̃ are independent,

real variables, and then Fourier-transform with respect to either the λ or λ̃ variables,

[13]. It is not hard to see how this Fourier transform makes the action of conformal

transformations particularly transparent. Working with spinor-helicity variables, the

generators of translations, Pαβ̇, Lorentz transformations, Jαβ and J α̇β̇, dilatations D,

and special conformal transformations, Kαβ̇, all look very different:

Pαβ̇ = λαλ̃β̇, Jαβ =
i

2

(
λα

∂

∂λβ
+ λβ

∂

∂λα

)
, and Kαβ̇ =

∂2

∂λα∂λ̃β̇
. (3.8.184)

(J is defined analogously to J .) However, if we Fourier-transforms with respect to each

of the λ’s, say, using
∫
d2×nλ eiλ·µ̃, denoting the (2×n)-matrix of conjugate variables

by µ̃, the generators (3.8.184) become, (see [13] for a detailed discussion):

Pα̇β̇ = iλ̃α̇
∂

∂µ̃β̇
, Jα̇β̇ =

i

2

(
µ̃α̇

∂

∂µ̃β̇
+ µ̃β̇

∂

∂µ̃α̇

)
, and Kα̇β̇ = iµ̃α̇

∂

∂λ̃β̇
.

(3.8.185)
These are easy to recognize as the generators of SL(4)-transformations on twistor

variables, denoted wa, which combine λ̃ and µ̃ according to:

wa ≡

µ̃a
λ̃a

 . (3.8.186)

Very nicely, under the action of the little group, the µ̃’s transform oppositely to

the λ’s so that the twistors transform uniformly like the λ̃’s: wa ∼ t−1
a wa. Thus, we

should view each wa projectively as a point in P3. Furthermore, we can combine these

ordinary variables wa with the anti-commuting η̃’s to form super-twistors Wa, [152],

Wa ≡

wa
η̃a

 , (3.8.187)

for which the generators of the super-conformal group are simply those of SL(4|4)

—acting in the obvious way as super-linear transformations on the W ’s.

Now, given any of our on-shell forms, the Fourier-transform with respect to the λ

variables is straightforward as the only dependence on λ is in the term δ2×(n−k)
(
λ·C⊥

)
.

It will be useful to re-write this to more directly reflect its geometric origin: the

requirement that the plane C contains λ. This means that there should exist a linear

combination of the k row-vectors of C which exactly match λ. In other words, if we

parameterize such a linear combination by a (2×k)-matrix ρ, we should be able to
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find a ρ for which ρ · C = λ. Re-written in terms of this auxiliary matrix ρ, the

constraint that C contains λ becomes,

δ2×(n−k)
(
λ·C⊥

)
=

∫
d2×kρ δ2×n(ρ·C − λ), (3.8.188)

which makes it trivial to Fourier-transform to twistor space:∫
d2×nλ eiλ·µ̃

∫
d2×kρ δ2×n(ρ·C − λ) =

∫
d2×kρ ei(ρ·C)·µ̃ = δk×2

(
C ·µ̃

)
. (3.8.189)

Therefore, in twistor space the constraints δk×2
(
C · λ̃) and δ2×(n−k)

(
λ ·C⊥

)
together

with the fermionic δk×4
(
C · η̃

)
combine into the extremely elegant,

δk×4
(
C ·η̃

)
δk×2

(
C ·λ̃

)
δk×2

(
C ·µ̃

)
⇒ δ4k|4k(C ·W), (3.8.190)

which makes the SL(4|4)-invariance of on-shell forms completely manifest. And so,

in twistor space, the general on-shell form, (3.8.178), is simply,

f (k)
σ =

∮
C⊂Γσ

dk×nC

vol(GL(k))

δ4k|4k(C ·W)
(1 · · · k) · · · (n · · · k 1)

. (3.8.191)

Note that our brief passage to twistor space was done mostly for formal rea-

sons: in order to make the super-conformal symmetry of on-shell forms manifest.

One disadvantage of this formalism, however, is that—at first glance—it appears

that the integral over C ∈Γσ could be localized by all 4k (ordinary) δ-function con-

straints, while we know that on-shell forms associated with non-vanishing functions for

generic (momentum-conserving) kinematical data correspond to (2n 4)-dimensional

cells Γσ ∈ G(k, n). The mismatch is due to the fact that Fourier-transforming to

twistor space does not produce functions which are non-vanishing for a generic set of

twistors. Instead, we get distributions on twistor space, imposing constraints on the

twistor variables. Indeed, only (2n 4) of the 4k δ-functions in (3.8.191) can be used

to localize the Grassmannian integral while the remaining impose constraints on the

configuration of external twistors.

III. Momentum-Twistors and Dual Super-Conformal Invari-

ance

In this subsection, we will review the arguments presented in [18] in order to dis-

cover that on-shell forms are quite surprisingly also invariant under an additional
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super-conformal symmetry. This new symmetry, called dual super-conformal in-

variance, combines with ordinary super-conformal symmetry to generate an infinite-

dimensional symmetry algebra of on-shell forms known as the Yangian, [74,93,96,97].

(Dual super-conformal invariance was first noticed in multi-loop perturbative calcu-

lations, [59], and then at strong coupling, [84]; this led to a remarkable connection

between null-polygonal Wilson loops and scattering amplitudes—see e.g. [84–92].)

Let us start by reconsidering the condition that the plane C contains the plane

λ. Because this constraint is ubiquitous for on-shell forms, it is natural to sharpen

our focus to the (k 2) ≡ k̂-plane—denoted Ĉ—which is the projection of C onto the

orthogonal-complement of λ. To be a bit more precise, suppose we have an operator

Q :Cn→Cn with ker(Q) = λ so that,

Q·λ = 0. (3.8.192)

With such an operator, we may define Ĉ ≡ C ·Q so that Ĉ ·λ = 0 trivially.

Now, super momentum-conservation is of course the statement that the planes λ̃

and η̃ are both in λ⊥—which is the image of Q. And so we may use Q to express λ̃

and η̃ in terms of some new, generic variables µ and η according to:

λ̃ ≡ µ·Q and η̃ ≡ η ·Q . (3.8.193)

Defined in this way, any unconstrained planes µ and η will automatically define super

momentum-conserving planes λ̃ and η̃.

Let us now consider the constraint that C be orthogonal to the plane λ̃. If Q were

symmetric, then C ·λ̃ = Ĉ ·µ; and similarly, C ·η̃ = Ĉ ·η. Putting all this together, the

constraints imposed on the image k̂-plane Ĉ would become simply,

δk×2
(
Ĉ ·λ

)
δk×2

(
Ĉ ·µ

)
δk×4

(
Ĉ ·η

)
⇒ δ4k|4k(Ĉ ·Z), (3.8.194)

where we have introduced the super momentum-twistors Z, [60], according to:

Za ≡

za
ηa

 with za ≡

λa
µa

 . (3.8.195)

Geometrically, the δ-functions δk×4
(
Ĉ ·Z

)
enforce that the plane Ĉ be orthogonal

to the 4-plane Z:

(3.8.196)
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Notice that these δ-functions are invariant under a new SL(4|4) symmetry, and thus

it appears that we have uncovered a new super-conformal symmetry—one acting on

the super-twistor variables Za. However there is one small catch: the measure of

integration over the k-plane C does not necessarily descend to anything simple over

the k̂-plane Ĉ. Indeed, depending on the choice of the projection operator Q, this

resulting measure may have a complicated λ-dependence arising from the Jacobian

of the change of variables from (λ̃, η̃) to (µ, η), and this dependence on λ may break

the SL(4) conformal symmetry.

But it turns out that for what is perhaps the most natural choice of a projection

operator Q, everything works like magic. To better understand the scope of choices we

could make in specifying Q, observe that such a projector can always be constructed

via the Cramer’s rule identities—the unique (up to rescaling) (k+1)-term identity

satisfied by generic k-vectors. For a 2-plane λ, Cramer’s rule encodes the identities:

λa〈b c〉+ λb〈c a〉+ λc〈a b〉 = 0, (3.8.197)

or equivalently, (if we prefer the identity to transform under the little group like λ̃b),

λa
1

〈a b〉
+ λb

〈c a〉
〈a b〉〈b c〉

+ λc
1

〈b c〉
= 0. (3.8.198)

If we combine any such n cyclically-related identities, we will obtain a rank-(n 2)-

matrix Q which projects onto λ⊥. In order for Q to be symmetric as a matrix (which

was necessary for C ·λ̃ to be identified with Ĉ ·µ), we must have λa and λc equally-

spaced about λb in (3.8.198). Of course, the most obvious and natural choice (and the

only one which generates the magic we seek) would be to use the consecutive 3-term

identities:

Qab ≡
δa−1 b〈a a+1〉+ δa b〈a+1 a 1〉+ δa+1 b〈a 1 a〉

〈a 1 a〉〈a a+1〉
. (3.8.199)

For this choice of Q, it turns out that for any plane C containing λ, the plane

Ĉ ≡ C·Q will have the property that for any consecutive chain of columns {ca, . . . , cb},
span{ĉa, . . . , ĉb} ⊂ (span{ca−1, . . . , cb+1}). That is, Q maps consecutive chains of

columns onto consecutive chains of columns! An immediate consequence of this fact

is that consecutive minors of C and Ĉ are proportional to one another:

(1 2 · · · k 1 k)|C = 〈1 2〉〈2 3〉 · · · 〈k 1 k〉 (2 3 · · · k 2 k 1)|Ĉ . (3.8.200)

Thus, for this choice of Q—up to an overall λ-dependent factor (which combines with

the Jacobian arising from changing variables (λ̃, η̃) to (µ, η))—the top-form measure
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on C∈G(k, n) given as the product of its consecutive minors, is mapped to the top-

form on Ĉ ∈G(k̂, n) of precisely the same form. And so, Q maps positroid cells in

G(k, n) (which contain a generic 2-plane λ) to positroid cells in G(k̂, n)!

Conveniently, it turns out that the image of any cell C∈G(k, n) in G(k̂, n) is very

easy to identify by its permutation label. Because span{ĉa, . . . , ĉb} ⊂ (span{ca−1, . . . , cb+1}),
we have that r̂[a; b] = r[a 1; b+1] 2; and so, the entire table of ranks, (3.5.125), is pre-

served in going from C to Ĉ—merely shifted downward and to the right:

r[ ;a σ(a) ] r[ ;a+1 σ(a) ]

r[ ;a σ(a) 1 ] r[ ;a+1 σ(a) 1 ]

 
r̂[ ;a+1 σ(a) 1 ] 2 r̂[ ;a+2 σ(a) 1 ] 2

r̂[ ;a+1 σ(a) 2 ] 2 r̂[ ;a+2 σ(a) 2 ] 2

And so, a configuration Cσ∈G(k, n) labeled by the permutation σ will be mapped to

a configuration Ĉσ̂∈G(k̂, n) labeled by the permutation,

σ̂(a) ≡ σ(a− 1)− 1. (3.8.201)

One last remarkable aspect of this change of variables is that the combination of

all the λ-dependent factors arising from (3.8.200) when mapping the cyclic minors of

G(k, n) to cyclic minors of G(k̂, n) with the Jacobian of the change of variables from

(λ̃, η̃) to (µ, η) turns out to be nothing but the Parke-Taylor (MHV) tree-amplitude,

(3.8.180)! And so,

f (k)
σ (λ, λ̃, η̃) =

δ2×4
(
λ·η̃
)
δ2×2

(
λ·λ̃
)

〈1 2〉〈2 3〉 · · · 〈n 1〉
× f (k̂)

σ̂ (Z) , (3.8.202)

where,

f
(k̂)
σ̂ (Z) =

∮
Ĉ⊂Γσ̂

dk̂×nĈ

vol(GL(k̂))

δ4k̂|4k̂(Ĉ ·Z)
(1 · · · k̂) · · · (n · · · k̂ 1)

. (3.8.203)

This should not be too surprising, as the Parke-Taylor amplitude can be thought of

as the most concise differential form consistent with super momentum conservation—

and we know that any generic set of super-momentum-twistors Z give rise to data

(λ̃, η̃) which manifestly conserve super-momentum (This Grassmannian formula in

terms of momentum twistor was introduced in [17]).

Let us briefly see how the dimensionality of cells Cσ ∈G(k, n) and their images

Ĉσ̂∈G(k̂, n) are related. Because the rank of each chain r̂[a+1; σ̂(a+1)] is lowered by 2

relative to r[a;σ(a)], recalling the way dimensionality is encoded by the permutation,
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(3.5.128) we see that:

dim(Ĉσ̂) = dim(Cσ)− 2n+ k2 − (k − 2)2,

= dim(Cσ)− (2n− 4) + 4k̂;

∴ dim(Ĉσ̂)− 4k̂ = dim(Cσ)− (2n− 4).

(3.8.204)

This is precisely as it should be: generic super momentum-twistors Z give rise to

generic super-momentum conserving spinor-helicity data λ, λ̃, η̃. Thus, the degree of

the form fσ̂ should be dim(Ĉσ̂) minus the 4k̂ ordinary δ-functions which enforce that

Ĉ be orthogonal to the generic 4-plane Z.

We should make one small point regarding the (existence of the) map between

G(k, n) → G(k̂, n): it is only well-defined for cells Cσ which contain a generic 2-

plane λ (a point which is completely obvious from the geometry involved in the

map’s construction). In terms of the permutation σ which labels C ∈ G(k, n), the

criterion that C can contain a generic 2-plane λ translates into the statement that

σ(a) a ≥ 2 for all a. This guarantees that the permutation σ̂ is well-defined as an

affine permutation, that is, that σ̂(a) ≥ a. Suppose that instead we had σ(a) = a+1,

then ca ∈ span{ca+1}, and so λ⊂C would require that 〈a a+1〉 = 0. This all makes

perfect sense, of course, because 〈a a+1〉→0 precisely corresponds to a singularity of

the Parke-Taylor amplitude; and the Parke-Taylor amplitude being the Jacobian of

the transformation to momentum-twistor space, any such singularity indicates that

the change of variables is singular.

Let us conclude our discussion by illustrating the map to the ‘momentum-twistor

Grassmannian’ for the example discussed above, (3.8.183), of the on-shell form asso-

ciated with the cell in G(3, 6) labeled by the permutation {3, 5, 6, 7, 8, 10}, (3.8.181).

The image of this cell in the momentum-twistor Grassmannian G(1, 6) is labeled by

σ̂ = {3, 2, 4, 5, 6, 7}. Since σ̂(2) = 2, we have that ĉ2 = 0. A GL(1)-representative of

the point Ĉ∗ which is orthogonal to the Z-plane in this cell is,

Ĉ∗ ≡
(
〈3 4 5 6〉 0 〈4 5 6 1〉 〈5 6 1 3〉 〈6 1 3 4〉 〈1 3 4 5〉

)
, (3.8.205)

where 〈a b c d〉 ≡ det{za, zb, zc, zd} is a minor of the matrix Z, and Ĉ∗·Z = 0 because

of the 4-vector manifestation of Cramer’s rule, (3.4.47). Supported on this point,

(3.8.203) generates the momentum-twistor super-function,
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f
(1)
{3,2,4,5,6,7} =

δ1×4
(
Ĉ∗·η

)
〈3 4 5 6〉︸ ︷︷ ︸

(1)|
Ĉ∗

〈4 5 6 1〉︸ ︷︷ ︸
(3)|

Ĉ∗

〈5 6 1 3〉︸ ︷︷ ︸
(4)|

Ĉ∗

〈6 1 3 4〉︸ ︷︷ ︸
(5)|

Ĉ∗

〈1 3 4 5〉︸ ︷︷ ︸
(6)|

Ĉ∗

. (3.8.206)

And so, including the Parke-Taylor Jacobian, (3.8.202), we have:

f
(3)
{3,5,6,7,8,10}=

δ2×4
(
λ·η̃
)
δ2×2

(
λ·λ̃
)

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 6〉〈6 1〉
δ1×4

(
Ĉ∗·η

)
〈3 4 5 6〉〈4 5 6 1〉〈5 6 1 3〉〈6 1 3 4〉〈1 3 4 5〉

.

(3.8.207)
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3.9 Positive Diffeomorphisms and Yangian Invari-

ance

We have seen that the map from twistor space to momentum-twistor space has

a natural origin, providing an obvious geometric basis for dual conformal invari-

ance. Let us now consider another obvious symmetry of the positive Grassmannian—

namely, diffeomorphisms of Grassmannian coordinates which preserve the structure

of the positroid stratification (equivalently, diffeomorphisms which leave measure on

G+(k, n) invariant). Preserving the positive structure of the Grassmannian, we call

this subset of diffeomorphisms positive diffeomorphisms. In this section, we illustrate

the remarkable fact that the leading generators of infinitesimal positive diffeomor-

phisms directly match the level-one generators of the Yangian as described in [74]

(see also [93,96,97,99]).

Let us begin by broadly characterizing the infinitesimal diffeomorphisms in which

we are interested. Consider any infinitesimal variation δC of C ∈G+(k, n) which we

may expand as a power-series,

δC ∼ C + CC + CCC + · · · . (3.9.208)

We view a general infinitesimal diffeomorphism of C in terms of the variations δcαa

for each matrix component of C. Because positive diffeomorphisms must preserve all

positroid configurations, δcαa must vanish whenever ca does; this restricts the class

of diffeomorphisms to those of the form,

δcαa =
(
Ωa[C]

)β
α
cβ a (no summation on a), (3.9.209)

where each Ωa[C] is itself expanded as a power-series in the components of C. Con-

sidering Ωa[C] as a (k×k)-matrix, we may simplify our notation by writing:

δca =
(
Ωa[C]

)
·ca. (3.9.210)

Note that any variation where Ω is proportional to the identity matrix is just

an un-interesting (C-dependent) little group transformation. Note also that this

variation takes the form of a different GL(k) transformation on each column. We can

always use the global GL(k)-symmetry to bring the variation of any one column, say

c1, to zero:
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δc1 = 0. (3.9.211)

(And without loss of generality, we can always take c1 to be a non-vanishing column.)

Let us now determine what conditions must be imposed on Ωa[C] in order to ensure

that the variations δca preserve all positroid configurations. We will now demonstrate

that there are no non-trivial variations to leading order in C, and that the first non-

trivial positive diffeomorphisms—those quadratic in C—precisely correspond to the

level-one generators of the Yangian as described in reference [74].

To leading order, each Ωa is a C-independent (k×k)-matrix. Consider any con-

figuration for which c1∝ c2, and let us use the GL(k)-symmetry to fix the variation

of c1 to zero. It is not hard to see that the only variation of c2 which preserves the

configuration in question would be the rescaling δc2 = t c2. This variation can be fully

compensated by a little group rescaling, allowing us to conclude that no non-trivial

variation of c2 is positive. Repeating this argument by starting with c2 instead of c1,

and so on, we therefore see that the only positive leading-order diffeomorphisms are

overall GL(k)-transformations and little group rescalings.

Non-trivial positive diffeomorphisms first arise at quadratic-order—when Ωa[C]

is linear in the components of C. Let us again consider any configuration for which

c1∝c2, and use the GL(k)-symmetry to fix the variation of c1 to zero. Because pos-

itive diffeomorphisms must preserve r[a; b] ≡ rank{ca, . . . , cb} generally—and r[1; 2]

in particular—it is clear that the only allowed variations would be of the form,

δc2 = (c1ω
β
1 )cβ 2 ≡ c1(ω1 ·c2). (3.9.212)

We ignore any variation quadratic in c2 as it represents a little group rescaling. Here,

ωβ1 is an arbitrary k-vector parameterizing the variation. Notice that (3.9.212) is just

a simple GL(k)-transformation of column c2 by the matrix Mβ
α ≡ (cα 1ω

β
1 ). Applying

the inverse of this transformation to all columns would of course trivialize δc2 → 0,

allowing us to repeat the same logic to fix the most general form of δc3, and so on.

Continuing in this manner and then undoing each step’s GL(k)-transformation so that

we restore δc1 = 0, the most general quadratic, positive diffeomorphism consistent

with positivity would be of the form:
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δc1 = 0;

δc2 = c1(ω1 ·c2);

δc3 = c1(ω1 ·c3) + c2(ω2 ·c3);
...

δcn = c1(ω1 · cn) + · · ·+ cn−1(ωn−1 ·cn);

(3.9.213)

which we may summarize:

δca =
∑
b<a

cb(ω
β
b cβ a). (3.9.214)

We fixed the form of this transformation by demanding that the cells where c1 ∝ c2

are left invariant, but quite nicely, we can see that this transformation leaves all

cells invariant! Note that r[1; a] ≡ rank{c1, . . . , ca} is unchanged for all a, as the

variations in (3.9.213) transform each ca by factors proportional to columns which

are always (trivially) spanned by the un-deformed chains. And so, (3.9.214) preserves

all r[1; b]—the entire first column of the table (3.5.125).

In order for the diffeomorphisms (3.9.214) to be positive, however, they must pre-

serve the ranks r[a; b] for all chains of columns; and so, we must find the subset which

are independent of our choice to single-out δc1. These can be found by continuing

the sequence of successive variations in (3.9.213) back to δc1, and requiring that this

be consistent with our choice to fix δc1 = 0:

δc1 = c1(ω1 · c1) + · · ·+ cn(ωn ·c1) =
( n∑
b=1

cbω
β
b

)
cβ 1 = 0. (3.9.215)

Because this must be satisfied for all configurations in G+(k, n), this must be inde-

pendent of cβ 1. And so, the condition that ensures that (3.9.214) is positive is that,

n∑
b=1

cbω
β
b = 0. (3.9.216)

This is simply the geometric statement that ωβa ⊂C⊥ (for each index β separately).

We have therefore constructed the most general set of infinitesimal, quadratic diffeo-

morphisms which preserve all cells in the positroid stratification of G(k, n).

Recall that kinematical data—specified, say, in terms of super-twistor variables

W—is communicated to the Grassmannian via the constraint δ4k|4k(C ·W). This

means that any symmetry-transformation acting on theW ’s can be recast as a trans-

formation on the configuration C. In reference [74], it was shown that the level-one
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generators of the Yangian can be translated in this way to become symmetry gener-

ators acting on the matrix C by the operator:

Q ≡
n∑
a=1

Qa with Qa ≡
(∑
b<a

cα bWI
b (ξβI cβ a)

) ∂

∂cαa
, (3.9.217)

which is easily seen to generate diffeomorphisms of the form,

δca =
∑
b<a

cbw
I
b (ξ

β
I cβ a), (3.9.218)

which we immediately recognize as nothing but the leading positive diffeomorphisms

(3.9.214), where wβb has been re-written as

wβb ≡ wIbξ
β
I , (3.9.219)

for some (arbitrary) (4×k)-matrix ξβI . Moreover, the condition on admissible varia-

tions, (3.9.216), is immediately seen to be precisely what is enforced by the constraint

δ4k|4k(C ·W)—which is imposed for all on-shell differential forms.
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3.10 Combinatorics of Kinematical Support for On-

Shell Forms

On-shell graphs with the right number of degrees of freedom to be completely lo-

calized for generic, (super-)momentum conserving kinematical data are obviously of

particular interest. In momentum space, this requires that a configuration C asso-

ciated with an on-shell graph admits solutions to both the constraint that it con-

tains a generic 2-plane λ∈G(2, n), and is contained within the geometric-dual of

another 2-plane λ̃∈G(2, n) satisfying λ · λ̃ = 0. In terms of the permutation σ as-

sociated with an on-shell graph, these constraints minimally require that for any a,

(a+2) ≤ σ(a) ≤ (a+n 2). (Recall that the condition that σ(a) ≥ (a+2) is necessary

for a configuration in G(k+2, n) to even have a momentum-twistor dual in G(k, n).)

However, not all configurations which meet these conditions admit solutions to the

combined constraints.

In this section, we will describe a purely-combinatorial solution to the question of

whether or not an on-shell graph vanishes for generic kinematical data; and if so, how

many solutions to the kinematical constraints exist. This turns out to be much simpler

to do for the momentum-twistor Grassmannian rather than for configurations directly

associated with on-shell graphs. This is partly because the kinematical constraints

are much simpler for momentum-twistors than for the λ’s and λ̃’s.

Recall that when kinematical data is specified by momentum-twistors, Z∈G(4, n),

the configuration Cσ∈G(k+2, n) directly associated with an NkMHV on-shell graph

is mapped to its momentum-twistor image Cσ 7→ Cσ ∈G(k, n), and the kinematical

constraints become the simpler condition that C ·Z = 0. This imposes 4k constraints

in general, and so we are most interested in 4k-dimensional cells of G(k, n), as these

can be completely isolated by generic kinematical data. In terms of the orthogonal

complement Z⊥ of the twistors Z, the number of solutions to C ·Z = 0 is counted by

the number of isolated points in C
⋂
Z⊥.

As with any intersection-number problem in algebraic geometry, the solution can

be found by decomposing both C and Z⊥ into a homological basis for which the

intersection numbers are known, such as Schubert cycles whose intersection numbers
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are given by the Littlewood-Richardson rule (see [71]). The decomposition of (the

closure of) an arbitrary positroid cell into Schubert cycles was recently presented in

ref. [44], and this provides us with a purely-combinatorial answer to the ‘number

of intersections’ question in which we are interested. And it turns out that for the

special case of generic kinematical data, the machinery of [44] simplifies considerably.

(We are thankful to Thomas Lam and David Speyer for helpful discussions regarding

this specialization of the general case.)

A complete discussion of this story would require more space than warranted here;

but let us briefly describe the ultimate, combinatorial solution to the question of kine-

matical support. The first step is to generalize our discussion slightly, and consider

kinematical data specified for any number of dimensions:

Definition: For any (m×k)-dimensional cell C ∈ G+(k, n), let Γm(C) denote the

number of isolated points in C
⋂
Z⊥ for a generic m-plane Z∈G(m,n).

The basic strategy is to define a distinguished subset [∂k](C) of kth-degree bound-

ary elements of C which contain non-overlapping subsets of the intersection points as

projected to these boundaries, such that each element C ′ ∈ [∂k](C) contains precisely

Γm−1(C ′) points. If this can be done, then Γm(C) will be determined recursively by,

Γm(C) =
∑

C′∈[∂k](C )

Γm−1(C ′) with Γ0(C) ≡ 1. (3.10.220)

The magic, then, is entirely in the definition of the distinguished boundary elements

[∂k](C). Before we describe these in general, however, it may be helpful to build some

intuition with two (very) simple cases for which (3.10.220) is easy to understand.

I. Kinematical Support of NMHV Yangian-Invariants

Although perhaps a bit trivial, it is worth noting that Γm(C) = 1 for allm-dimensional

configurations in G(1, n)—those relevant to NMHV amplitudes: given any generic

m-plane Z, there is a unique configuration C∗ ∈C
⋂
Z⊥ supplied by Cramer’s rule,

(3.4.47)—the unique (m+1)-term identity satisfied by generic m-vectors. This is

of course obvious; but let us see what it suggests about how we may define the

distinguished boundary elements [∂1](C) which we seek to understand.
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Just as Γm(C) = 1 for any m-dimensional configuration in G(1, n), Γm−1(C) = 1

for any (m 1)-dimensional configuration. Therefore, in order for the recursive for-

mula (3.10.220) to give us the right answer, we need only define [∂1](C) to system-

atically choose any one element of the boundary of C. One natural choice would be

the configuration in ∂C which deletes the first non-vanishing column of C—that is,

the boundary for which the maximum image of the configuration’s permutation is

‘raised.’

II. Kinematical Support for One-Dimensional Kinematics

Let us now consider the slightly less trivial case of one-dimensional kinematics, where

Z ∈G(1, n) and we are interested in finding Γ1(C) for k-dimensional configurations

in G(k, n). Unlike the situation for k = 1, it is no longer the case that every k-

dimensional configuration admits solutions to C ·Z = 0. The simplest example of

a configuration for which Γ1(C) = 0 occurs for the 2-dimensional configuration in

G(2, 4) labeled by the permutation {2, 3, 5, 8}:

C(α) =

1 α1 α2 0

0 0 0 1

 . (3.10.221)

Notice that C·Z = 0 implies that z4 = 0, which is obviously not satisfied by a generic

set of (1-dimensional) momentum-twistors. In contrast, consider the configuration

labeled by the permutation {2, 5, 4, 7} represented by,

C(α) =

1 α1 0 0

0 0 1 α2

 , for which C∗ ≡

z2 z1 0 0

0 0 z4 z3

 (3.10.222)

is the unique solution to C ·Z = 0.

We can understand that a solution exists in the second case because each row

of the matrix-representative of C has one degree of freedom—reducing each row to

the simple case of k = 1 described above. In the first example, however, no solution

exists because its second row has no degrees of freedom—which can itself be viewed

as a zero-dimensional configuration in G(1, n). Heuristically, then, in order for any

solutions to C·Z = 0 to exist, there must exist at least one degree of freedom in every

row of any matrix-representative of C.

In terms of the permutation, the existence of a row without any degrees of freedom

is indicated by any column a such that σ(a) = a+n. And so, a k-dimensional cell
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C ∈ G(k, n) admits solutions to C ·Z = 0 for a generic 1-plane Z if and only if

σ(a) 6= a+n for all a.

III. General Combinatorial Test of Kinematical Support

Combining the lessons learned from the two simple cases above, it is clear that solu-

tions to C · Z = 0 exist only if there are in some sense m degrees of freedom in each

row of any matrix-representative of C. A systematic way to test this combinatorially

would be to find boundary elements of C which successively remove one degree of

freedom from each row of C. Let us now describe how such boundary configurations

can be found.

Recall that the lexicographically-first non-vanishing minor A(σ) ≡ (a1, . . . , ak) of

any configuration Cσ is given simply by the images of σ which extend beyond n (see

section I.). Because of this, we can always give a matrix-representative of C in the

following, gauge-fixed form:

1

2
...

k


· · · · · · a1 · · · · · · a2 · · · · · · ak · · · · · ·

0 · · · 0 1 ∗ · · · ∗ · · · · · · · · · · · · · · · ∗
0 · · · · · · · · · · · · 0 1 ∗ · · · · · · · · · · · · ∗
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 · · · · · · · · · · · · · · · · · · · · · 0 1 ∗ · · · ∗

 . (3.10.223)

A boundary-element which removes one degree of freedom from the kth-row of C, for

example, would be any which ‘raises’ ak—that is, if σ(ck) = ak, then a boundary for

which σ′(ck) = a′k > ak. After this, a degree of freedom can be removed from the

(k 1)th row, and so on. Notice, however, that at each stage, A(σ) must be raised: if

A(σ) remained unchanged, then it would not indicate that a degree of freedom from

any particular row had been removed, as we desire.

With this picture serving as motivation, we define the distinguished, kth-degree

boundary-elements of C, [∂k](C), as follows. Let σ be the permutation labeling the

configuration C, and let us define A(σ) ≡ (a1, . . . , ak)—with a1 < a2 < · · · < ak—to

be the images of σ which extend beyond n (the necklace A(1)(σ)). Then [∂k](C) is the

set of all kth-degree boundaries of C obtained by a sequence of boundaries labeled by

permutations σ
∂−→ σ(1) ∂−→ σ(2) ∂−→ · · · ∂−→ σ(k) such that, lexicographically,

A(σ) < A(σ(1)) < A(σ(2)) < · · · < A(σ(k)). (3.10.224)

197



That is, if the configuration labeled by σ(`−1) with A(σ(`−1)) = (a1, . . . , ak−`, . . . , ak)

is found at the `th successive boundary, we take all σ(`) in its boundary for which

A(σ(`)) = (a1, . . . , a
′
k−`, . . . , ak) with ak−` < a′k−`.

In general, there can be many such elements of [∂k](C), and each can contribute

to Γm(C). Putting all these contributions together, we find the recursive formula

given above:

Γm(C) =
∑

C′∈[∂k](C )

Γm−1(C ′) with Γ0(C) ≡ 1. (3.10.225)

The utility of this combinatorial test is hard to overstate, as the number of 4k-

dimensional cells in G(k, n) with non-vanishing support become increasingly rare

with large k and n. Cells with Γ4(C) = 0—for which C
⋂
Z⊥ = {}—represent

generally-vanishing functions which do not contribute to identities, for example.

Many of these fail the simple test of (a+2) ≤ σ(a) ≤ (n+a+2), but with increas-

ing frequency, configurations fail to have kinematical support for much more subtle

reasons—demonstrating the value of having a more robust yet simple combinatorial

test available. For example, neither of the following on-shell graphs—in G(4, 8) and

G(5, 10), respectively—have kinematical support:

Γ4(C) = 0

{6,4,9,7,8,10,11,13}

and

Γ4(C) = 0

{8,9,6,7,11,10,14,15,12,13}

Configurations for which Γ4(C) = 1 correspond to manifestly rational functions

of the kinematical data. More generally, however, when Γ4(C) > 1 the isolation of

internal degrees of freedom via δk×4
(
C ·Z

)
results in a (generally) algebraic function

of the external twistors for each isolated solution C∗ ∈ C
⋂
Z⊥—each point giving

us a Yangian-invariant which is individually of some physical interest. However, a

highly non-trivial but general result is that the function obtained by summing-over all

isolated solutions to C ·Z = 0 is always rational. Throughout the rest of this chapter,

whenever we speak of ‘the’ function associated with a graph for which Γ4 > 1—for
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example, when appearing in a identity (see section 3.11)—we always implicitly mean

the rational function obtained by summing-over all particular solutions to C ·Z = 0.

On-shell graphs which admit multiple solutions to the kinematical constraints are

comparatively rare. The first on-shell graph for which more than one solution exists

occurs for G(4, 8) and is well-known to physicists as the ‘four-mass-box’:

(3.10.226)

The image of this configuration in the momentum-twistor Grassmannian is labeled

by {2, 5, 4, 7, 6, 9, 8, 11}, for which we can calculate Γ4(C) = 2.

Configurations admitting more than two solutions to C ·Z = 0 are even rarer—and

their rarity increases dramatically with increasing Γ4. Indeed, almost no examples of

Yangian-invariant functions for which Γ4(C) > 2 were even known before the advent of

the tools described in this section. But having the combinatorial test available allows

us to systematically find and classify them. Three striking examples of on-shell graphs

which admit many solutions to the kinematical constraints—for G(6, 12), G(8, 16),

and G(10, 20), respectively—are:

Γ4(C) = 4

{10,8,12,7,11,9,16,14,18,13,17,15}

Γ4(C) = 4

{11, 5 ,16,10,15, 9 ,20,14,

19,13,24,18,23,17,28,22}

Γ4(C) = 34

{15,14, 8 , 7 ,21,20,19,13,12,26,

25,24,18,17,31,30,29,23,22,36}
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3.11 The Geometric Origin of Identities Among

Yangian-Invariants

In this section, we will focus primarily on on-shell differential forms for which the

integral over auxiliary Grassmannian degrees of freedom is fully localized by the

δ-function constraints, without imposing any conditions on the external kinematical

data other than momentum conservation. These are on-shell diagrams with (2n 4)

degrees of freedom or their momentum-twistor images with 4k degrees of freedom,

and for which Γ4(C) > 0; we will refer to such on-shell forms as Yangian-invariants,

and frequently refer to them (improperly) as ‘functions’ of the kinematical variables.

One of the most remarkable and important properties about Yangian-invariants

is that they satisfy many, intricate functional identities. Examples of such identities

have long been known, and are crucial for our understanding of many important

physical properties of scattering amplitudes. Perhaps the simplest and most familiar

examples of such identities come from equating the various implementations of the

BCFW recursion relations, (3.2.21); for example, for the 6-particle NMHV tree-level

scattering amplitude, the BCFW recursion can alternatively lead to two distinct

formulae depending on which pair of adjacent legs are singled-out by the recursion:

=

{4, 5, 6, 8, 7, 9}

+

{3, 5, 6, 7, 8, 10}

+

{4, 6, 5, 7, 8, 9}

=

{4, 5, 7, 6, 8, 9}

+

{4, 5, 6, 7, 9, 8}

+

{5, 4, 6, 7, 8, 9}

This identity is not easy to prove directly if each term is viewed as a multivariate,

rational ‘function’ of the kinematical data. However, its veracity is crucial to our

understanding of many important properties of the complete amplitude. For example,
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although the BCFW-recursion breaks cyclicity by the choice of legs to deform, the

entire amplitude—being cyclically-invariant—must be independent of this choice.

A wide variety of such identities can be generated simply by equating all the myr-

iad BCFW ‘formulae’ obtained by recursing the left- and right-amplitudes appearing

across the BCFW-bridge in all possible ways (at each stage of the recursion). For ex-

ample, for the 8-particle N2MHV tree amplitude, there are many hundreds of ways to

follow the recursion all the way down to a sum of 20 trivalent, on-shell diagrams; this

multitude of BCFW ‘formulae’ involves a total of 176 distinct Yangian-invariants in

G(4, 8), and equating every pair leads to 74 linearly-independent, 40-term identities

satisfied among them.

Other than the equality of different BCFW formulae, however, few identities

among Yangian-invariants were known until the Grassmannian formulation—the con-

tour integral “Ln,k” was discovered, [16]. But a complete understanding of the range

of possible Yangian-invariants, and a systematic understanding of the relations they

satisfy remained to be understood. In the remainder of this section, we will describe

how all such identities arise homologically in the Grassmannian, and can be under-

stood in purely geometric (even combinatorial) terms.

I. Homological Identities in the Grassmannian

The six-term identity described above which equates the two possible representations

of the 6-particle N(k=1)MHV tree-amplitude turns out to generate all the identities

among NMHV Yangian-invariants. In order to see how this can be, let us first descend

to the somewhat simpler situation which arises in the momentum-twistor Grassman-

nian, where NMHV Yangian-invariants correspond to 4-dimensional cells of G(1, n).

All NMHV Yangian-invariants are essentially equivalent, as any 4-dimensional

configuration in C ∈ G(1, n) involves precisely 5 non-vanishing ‘columns’; and so,

such configurations differ only in which of the 5 columns are involved. In terms of

canonical coordinates, such a configuration would be represented by,

C(α) ≡
( a b c d e

· · · 0 1 0 · · · 0 α1 0 · · · 0 α2 0 · · · 0 α3 0 · · · 0 α4 0 · · ·
)
,

and would be labeled by a permutation,
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σ ≡

a b c d e
↓ ↓ ↓ ↓ ↓
b c d e a

 , (3.11.227)

with σ(j) = j for all other columns. Instead of labeling the configuration by its

permutation, it is tempting to label it instead by its 5 non-vanishing columns—as a

5-bracket, ‘[a b c d e]’. Given any generic momentum-twistors Z ∈G(4, n), there is a

unique point C∗∈C
⋂
Z⊥, which can be represented by the matrix,

C∗ ≡
( a b c d e

0 〈b c d e〉 0 〈c d e a〉 0 〈d e a b〉 0 〈e a b c〉 0 〈a b c d〉 0
)
,

for which it is easy to see that C∗·Z = 0 as an instance of Cramer’s rule, (3.4.47).

This leads to the general form of the essentially-unique NMHV Yangian-invariant,

[a b c d e]

{b,c,d,e,a}
⇔ δ1×4

(
ηa〈b c d e〉+ ηb〈c d e a〉+ ηc〈d e a b〉+ ηd〈e a b c〉+ ηe〈a b c d〉

)
〈b c d e〉〈c d e a〉〈d e a b〉〈e a b c〉〈a b c d〉

.

(3.11.228)
(Notice that the 5-bracket [a b c d e] as we have defined it is antisymmetric with respect

to its arguments. This reflects the fact that the measure dlog(α1) ∧ · · · ∧ dlog(α4) is

oriented. This 5-bracket is the simplest dual super-conformal invariant and was first

found in the literature in [57] in momentum space).

If we considered instead a 5-dimensional configuration in G(1, n), then the con-

straint δ1×4
(
C ·Z

)
would fix only four of the internal degrees of freedom, leaving us

with a 1-dimensional integral over G(1, n). In this case, Cauchy’s theorem informs us

that the sum of all the residues of this one-form will vanish. As each of these residues

is itself a 4-dimensional configuration of the form above (3.11.228), this gives rise to

an identity among 5-brackets. Motivated by the notation used above, let us denote

a generic 5-dimensional configuration in G(1, n) by the 6-bracket [a b c d e f ]; then we

find,

∂[a b c d e f ]

{b,c,d,e,f,a}
= [a b c d e]

{b,c,d,e,a ,f }
− [a b c d f ]

{b,c,d,f ,e ,a}
+ [a b c e f ]

{b,c,e ,d ,f,a}
− [a b d e f ]

{b,d ,c,e,f,a}
+ [a c d e f ]

{c,b,d,e,f,a}
− [b c d e f ]

{a ,c,d,e,f,b}
= 0.

(Here, the signs are important: they reflect the fact that our formula for the 5-bracket

(3.11.228) corresponds to a particular orientation of the 4-dimensional cells; and

so, when taking the boundary of [a b c d e f ] we must re-order the coordinates for

each boundary cell accordingly—at the cost of introducing signs. Notice that the

alternating signs here precisely capture the equality between two three-term, all-plus

formulae as generated by equating BCFW formulae as described above.)
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Notice that this 6-term identity precisely reproduces the identity among 6-particle

NMHV Yangian invariants generated by equating BCFW recursion schemes. More

importantly, however, because we understand that all NMHV Yangian-invariants are

of the same basic form, the identity given above captures all the identities satisfied

among NMHV Yangian-invariants.

The essential point in the example above is that if we consider a configuration

C ∈G(k, n) whose boundary includes those associated with Yangian-invariant ‘func-

tions’, then the δ-function constraints will localize the Grassmannian integral to a

1-dimensional integral, allowing us to use Cauchy’s theorem to conclude that the sum

of all the residues in the boundary will vanish; equivalently, that the combination

of Yangian-invariants along any boundary ∂(C) add to zero. This turns out to gen-

erate all the functional identities satisfied by Yangian-invariants, including many of

impressive complexity.

Recall that the boundary of an on-shell diagram is the collection of diagrams ob-

tained by deleting its removable edges. And so we can find identities among NkMHV

on-shell differential forms by taking the boundary of any (2n 3)-dimensional cell in

G(k+2, n) for ordinary kinematical data, or any (4k+1)-dimensional cell of G(k, n)

for momentum-twistor kinematical data. One example of an identity found in this

way generates an identity among 8-particle N2MHV Yangian-invariants which is in-

dependent of all those identities found by equating various BCFW formulae, and

can be understood as a way to represent the ‘four-mass box’ (which generally in-

volves quadratic roots, as Γ4(C) = 2) as a sum of purely-rational Yangian-invariants:
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∂

{4,7,6,9,8,10,11,13}

=



{4,7,6,9,8,11,10,13}

−

{4,7,6,9,10,8,11,13}

+

{4,8,6,9,7,10,11,13}

−

{7,4,6,9,8,10,11,13}

+

{3,7,6,9,8,10,12,13}

−

{4,7,6,9,8,10,13,11}

+

{4,7,6,10,8,9,11,13}

−

{4,7,5,9,8,10,11,14}

+

{4,7,9,6,8,10,11,13}



=0.

It is worth noting that we have only included the non-vanishing contributions to this

identity—those graphs for which Γ4 > 0; in addition to the nine graphs above, the

boundary of {4,7,6,9,8,10,11,13} also includes the graphs,

{4,7,8,9,6,10,11,13}

,

{4,5,6,9,8,10,11,15}

,

{4,9,6,7,8,10,11,13}

,

{6,7,4,9,8,10,11,13}

,

which all have Γ4 = 0, and so lead to generally-vanishing functions of the external,

kinematical data and therefore do not contribute to the identity.

Another particularly impressive example of an identity generated in this way is

a 24-term identity among 15-particle N4MHV Yangian-invariants, generated by the

boundary of the 27-dimensional cell,
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{9,7,6,15,8,14,12,11,20,13,19,17,16,25,18}

which includes 8 cyclic classes of Yangian-invariants—three of which are quintic

(Γ4(C) = 5), two quartic, two quadratic, and one of which is rational:

where ‘· · · ’ indicates a sum over cyclic classes.
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3.12 The Yang-Baxter Relation and ABJM Theories

We began our discussion linking permutations and scattering amplitudes in section 3.3

by recalling the story of scattering in (1+1)-dimensional integrable theories (for a re-

view see [153]). In this section, we will see that this familiar story is actually contained

as a special case of our new picture linking permutations to on-shell diagrams. And

there is another special case which will turn out to give a theory of on-shell graphs for

the ABJM theory [120] (see also [154–157]) defined in (2+1) dimensions! Although

both these stories are physically very rich on their own, we will content ourselves here

by briefly sketching-out the main points involved, leaving more detailed exposition

and exploration to future work.

I. The On-Shell Avatar of the Yang-Baxter Relation

Recall the basic structure of the (1+1)-dimensional amplitudes from our discussion

in section 3.3, for which the fundamental interactions involved are 4-particle vertices.

In order to relate these to our story, we must find a way to recast each 4-particle

interaction (each carrying only one degree of freedom) in terms of an on-shell diagram

with only trivalent vertices. The simplest way of doing this is to ‘blow-up’ each 4-point

vertex according to:

(3.12.229)

where only edges from blown-up vertices have weight different from unity.

Notice that the left-right path permutation moving from the bottom to the top of

the graph agrees with the ‘(1+1)-permutation’, while the left-right path permutations

from top to bottom are trivial:

(3.12.230)
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Consider for example the 4-point vertex by itself,

⇔ C =

1 0 α 1

0 1 1 0

 ≡ (12×2|R12) , (3.12.231)

where we have given the point in the Grassmannian C obtained using edge variables

and the perfect-orientation indicated in the figure (see section V.), from which we

can read-off the 2→ 2 “scattering-matrix” which we have denoted R12. In general,

blowing-up each 4-particle vertex allows us to translate any (1+1)-scattering diagram

into a trivalent, on-shell diagram from which we can identify an (n×n) scattering-

matrix in the same way—identifying the point C in the Grassmannian in the gauge-

fixed form,

Cn×2n = (1n×n|Rn×n) (3.12.232)

As an example, let us look at the familiar configuration,

where on the right, we have recast the edge-variables into corresponding face-variables.

Notice that because we are only putting non-trivial edge-weights on the “bridges” in

the diagram, there are relations between the face variables.

Now, quite beautifully, we can see that the Yang-Baxter relation follows as a

consequence of the more elementary actions of the merge- and square-moves! We

can see this explicitly through the following sequence of moves, observing the effects

induced on the face variables (see section VI.):
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From this, we may conclude that,

This equivalence can be interpreted as a generalized Yang-Baxter relation for the

R-matrices:

R12(β)R13(γ)R23(α) = R23

(
αγ

α + β

)
R13(α + β)R12

(
βγ

α + β

)
. (3.12.233)

In particular, if we set α + β = γ, we recover the familiar Yang-Baxter equation:

R12(β)R13(α + β)R23(α) = R23(α)R13(α + β)R12(β). (3.12.234)

II. ABJM Theories

There is yet another natural way to associate a permutation with a scattering process.

Suppose we have an even number, 2k, of particle labels. We can divide them into

two sets, A and B, of k elements each and draw arrows between them. Such a
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permutation takes some a→ b and back via b→ a. We can then represent such a

permutation graphically, with all labels on the boundary, as in the following:

A B

1←→ 6

2←→ 5

3←→ 7

4←→ 8

(3.12.235)

We can then interpret this as an on-shell scattering process in a theory where

each interaction is fundamentally a 4-particle vertex; and we can “blow-up” each

four-particle vertex into an element of G(2, 4), preserving the symmetrical nature of

the permutation according to:

(3.12.236)

This structure was also recently considered in [45]. As in the (1+1)-dimensional

example, it is natural to try and associated each vertex with a single degree of freedom.

Unlike the (1+1)-dimensional example, however, this restriction should keep us within

the top cell of G(2, 4). A very simple way of doing this would be to impose the

restriction that the 2-plane is null; that is,

C ·C = 0. (3.12.237)

Notice that because the constraint C ·C = 0 is symmetric, it represents k(k+1)/2

constraints in general; for C∈G(2, 4), this imposes only three constraints, leaving us

with a single degree of freedom. In a canonical-gauge, we can write:

C =

1 0 is ic

0 1 ic is

 , (3.12.238)

where c ≡ cos(θ) and s ≡ sin(θ) for some angle θ.

Exactly this Grassmannian structure has been found to represent scattering am-

plitudes for the (2+1)-dimensional ABJM theory, [158–161]. As in (3+1) dimensions,

we can motivate the appearance of the Grassmannian by first looking at the geometry
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of external data. In (2+1) dimensions, the momenta are grouped into a symmetric

(2×2)-matrix according to,

pαβ =

p0+p2 p1

p1 p0 p2

 , (3.12.239)

so that null momenta are given by,

pαβa = λαaλ
β
a , (3.12.240)

without any need for conjugate λ̃’s. The Lorentz group acts as a single copy of SL(2),

so the λa are still represented by a 2-plane in n dimensions. However, momentum-

conservation, ∑
λαaλ

β
a = 0, (3.12.241)

is now the statement that the λ plane is orthogonal to itself. Thus, the external data

is given not by a general point in G(2, n), but by a point in the null Grassmannian of

2-planes in n dimensions. It is therefore not surprising to find the null Grassmannian

playing a role in ABJM theory.

ABJM theories have N = 6 supersymmetries; if we diagonalize half of the su-

percharges, then the corresponding Grassmann coherent states are labeled by ηI for

I = 1, . . . , 3. Thus, the on-shell data can be collected into,

Λa =

(
λa

ηa

)
. (3.12.242)

The ABJM amplitudes are not cyclically-invariant, but are invariant under a cyclic

shift by two. Notice that since we only have λ’s, there is not the same little group

rescaling symmetry as we had in three dimensions; rather, we have only the symmetry

of sending λa→ λa, under which on-shell differential forms transform according to

f( Λa) = ( 1)af(Λa).

Let us now return to the basic 4-point vertex, and determine the natural measure

on the space of null 2-planes in 4 dimensions. This space is easily seen to be equivalent

to G(1, 2) ' P1: the two rows of a (2×4)-matrix can be viewed as four-vectors p1, p2

which are null and mutually orthogonal; we can therefore write,

p1 = λ λ̃1, p2 = λ λ̃2, (3.12.243)

and use the GL(2)-freedom to write λ̃1 ≡ (1 0), λ̃2 ≡ (0 1), and λ ≡ (1 z). This

demonstrates the equivalence of the null Grassmannian C⊂G(2, 4) with P1, and also
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provides us with a natural measure: dlog(z). Using this identification, we can write

the null-plane C⊂G(2, 4) in terms of z according to: i iz z 1

z 1 i iz

 . (3.12.244)

Performing a GL(2)-transformation to recast this matrix-representative of C in a

canonical-gauge brings it to the form given above in (3.12.238), with the identification:

s =
2z

z2 + 1
, and c =

z2 − 1

z2 + 1
. (3.12.245)

In terms of the natural measure dlog(z) on the null subspace, the fundamental

4-point interaction in the ABJM theory can then be represented by,

A4 =

∫
dz

z
δ4|6(C(z)·Λ); (3.12.246)

equivalently, we may view this as having been obtained from a measure defined on

all of G(2, 4), but restricted to the null subspace by the constraint δ3(C ·C):

A4 =

∫
d2×4C

vol(GL(2))

1

(12)(23)
δ3(C ·C)δ4|6(C ·Λ). (3.12.247)

With this, we can define on-shell diagrams for the ABJM theory just as for N =4

by gluing together these basic 4-point vertices. Note that unlike for N = 4, n and k

are not independent for ABJM: we always have n=2k.

It is easy to see that the on-shell representation of a BCFW shift is simply,

(3.12.248)

The action on the column-vectors is simply a rotation between ca and ca+1:

ca 7→ c ca − s ca+1, ca+1 7→ s ca + c ca+1 . (3.12.249)

And the all-loop integrand can be given in terms of on-shell diagrams just as before:

(3.12.250)
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(For recent computations at one and two loops see [162–165])

The rules for amalgamation are essentially identical to the N = 4 case—the only

difference being some factors of i that must be included. In (2+1) dimensions, because

we write momenta as pa = λaλa, switching pa 7→ pa corresponds to taking λa 7→ iλ.

And so, when identifying two legs for the “projection” operation, instead of projecting

relative to (cA cB), we must project relative to (cA icB). The result is that minors

of C∈G(k, n) are related to those of the pre-image Ĉ∈G(k+1, n+2) via:

(a1 · · · ak)|C = (Aa1 · · · ak)|Ĉ +i (Ba1 · · · ak)|Ĉ . (3.12.251)

It is very easy to see that, starting with elementary 4-point vertices in the null

Grassmannian, amalgamation preserves this property; translated in terms of minors,

this is the statement that for all a,

(c1 · · · ck−1a)(d1 · · · dk−1a) = 0. (3.12.252)

This is trivial for the direct product. For projection, we easily verify that

(c1· · ·ck−1a)(d1· · ·dk−1a) = [(Ac1· · ·ck−1a)+i(Bc1· · ·ck−1a)][(Ad1 · · · dk−1a)+i(Bd1· · ·dk−1a)]

= (Ac1· · ·ck−1B)(Ad1· · ·dk−1B)−(Bc1· · ·ck−1A)(Ad1· · ·dk−1B)

= 0.

Thus, amalgamation of many little null G(2, 4)’s produces a point in the null Grass-

mannian G(k, 2k), together with the measure,∏
vertices v

dlog(zv). (3.12.253)

Notice that an important difference between this and the case of N = 4 is that the

fundamental variables are associated with the vertices of an on-shell graph, rather

than its faces.

The measure on the top-cell can be given in terms of the C matrix via [159]

dk×2kC

vol(GL(k))

δk(k+1)/2
(
C ·C

)
(1 2 · · · k) · · · (k k+1 · · · 2k 1)

. (3.12.254)

It is also straightforward to find the analog of boundary measurements by summing

over all the paths joining sources to sinks in a perfectly oriented graphs. We can orient

each vertex with two incoming and two outgoing lines. Traversing any internal line

contributes a factor of i, and at each vertex we get a is, ic or −ic according to:

(3.12.255)
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As an example, consider the following on-shell diagram involving 6 particles,

(3.12.256)

We find that this diagram is associated with a configuration C in the Grassmannian

represented by,

C = −i


i 0 0 sαsβ sαcβcγ+cαsγ cαcγ sαcβsγ

0 i 0 cαsβ sαsγ cαcβcγ sαcγ+cαcβsγ

0 0 i cβ sβcγ sβsγ

 . (3.12.257)

In general, we can write the (k×2k)-matrix representative C ∈G(k, 2k) associated

with any such graph in the form,

C = −i (i1k×k|Rk×k) , (3.12.258)

where R is an SO(k)-rotation matrix. This gives us a pretty interpretation for amalga-

mation. The basic 4-point vertex is just a rotation in two dimensions. Amalgamation

provides a way of building general rotations in higher dimensions by a composing

many rotations in two-dimensional subspaces. The example above for 6 particles cor-

responds to a canonical way of representing three-dimensional rotations using Euler

angles. The analog of the square move in ABJM looks much like the Yang-Baxter

move, and represents the equality of two different Euler-angle representations of the

same three-dimensional rotation.

Just as with N =4 SYM, the invariant content of any reduced on-shell diagram is

read-off from its associated permutation. We also have an analog of reduction, looking

at the 4-point bubble diagram connecting two 4-particle vertices with parameters α

and β:

(3.12.259)

Finally, we can take a boundary, lowering the dimension by one, by deleting a vertex,

and re-connecting the lines according to:
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(3.12.260)
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3.13 On-Shell Diagrams with N < 4 Supersymme-

tries

On-shell diagrams can be defined for any theory with fundamental trivalent vertices,

and in particular for gauge theories with any number, N , of supersymmetries. There

is obviously a rich structure to be unearthed here; in this short section we will content

ourselves with setting-up some of the basic formalism and highlighting the central new

mathematical object that makes an appearance—reflecting the physics of ultraviolet

singularities which are present in theories with less supersymmetry.

Let us begin our discussion by focusing on non-supersymmetric theories, those of

“N =0”. It is useful to represent the helicities involved in each basic 3-particle vertex

by giving each of the edges an orientation:

and (3.13.261)

We can then glue these vertices together to build-up more complex on-shell diagrams

as before—leading to, for example:

(3.13.262)

In such decorated on-shell diagrams, the arrows are useful because they automatically

encode the helicities of the internal particles involved. In general, we consider the

particles as Grassmann coherent states labeled by η̃I for I = 1, . . . ,N . In theories

with N < 4 supersymmetry, we have “+” and “−” multiplets, which include gluons

of helicity ±1 as their top components, respectively; thus, on-shell diagrams must be

labeled in exactly the same way for any N < 4.

The Grassmannian formalism is just as powerful in integrating over the phase

space of the internal particles regardless of the amount of supersymmetry. However,
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when N < 4, the diagrams really are fundamentally oriented, whereas for N =4 such

an orientation merely encodes a convenient translation of the on-shell diagram into a

particular gauge-fixed matrix-representative C ∈G(k, n). If the k incoming “source”

indices are from a set A and the (n k) outgoing “sink” indices are from a, we find

exactly the same linear relation between the external kinematical data:∏
A

δ2
(
λ̃A − cAaλ̃a

)∏
A

δN
(
η̃A − cAaη̃a

)∏
a

δ2
(
λa + cAaλA

)
, (3.13.263)

where the cAa are exactly as in equation (3.4.100), which we reproduce below:

cAa = −
∑

Γ∈{A a}

∏
e∈Γ

αe. (3.13.264)

The only difference between general N and N = 4 is the measure on the Grassman-

nian which ultimately encodes the on-shell differential form in terms of the auxiliary,

Grassmannian degrees of freedom. For N =4, we didn’t have to include any Jacobian

resulting from the elimination of internal variables, because the fermionic δ-functions

always canceled the contributions between the internal bosons and internal fermions.

However, when N < 4, these two factors do not cancel, and leave a net Jacobian

contribution to the measure which we may write as:( ∏
vertices v

1

vol(GL(1)v)

)( ∏
edges e

dαe
αe

)
× J N−4. (3.13.265)

If the vertices of the graph are labeled i, j, then we define the adjacency matrix Aij

of the graph by,

Aij = the weight of the directed edge i→j (if any); (3.13.266)

then the Jacobian J is given by

J = det(1− A). (3.13.267)

We know that the edge variables can only occur in the GL(1) gauge-invariant

“flux” combinations associated with faces, and we can give a simple formula for J in

terms of these face variables. In general, if we have a collection of closed, orientated

loops bounding faces fi, with disjoint pairs (fi, fj), disjoint triples (fi, fj, fk), and so

on, then J is given by:

J = 1 +
∑
faces

fi +
∑

disjoint
pairs i,j

fifj +
∑

disjoint
triples i,j,k

fifjfk + · · · . (3.13.268)
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For any oriented graph without any closed, oriented loops, the spectrum is trivial,

and J = 1; for any such oriented on-shell diagram, the maximally-supersymmetric

and non-supersymmetric on-shell forms are identical. This is easy to understand be-

cause when an on-shell diagram is free of such oriented loops, only gluons propagate

internally. In contrast, when there are oriented loops, the rest of the super-multiplet

can propagate internally, differentiating theories with different amounts of supersym-

metry.

When an oriented on-shell diagram has closed, oriented loops, the Jacobian is

nontrivial. The simplest example occurs for four particles, where we can have,

(3.13.269)

for which the corresponding Jacobian is,

JA = 1 + f and JB = 1 + f−1. (3.13.270)

In order to compute the full on-shell process for fixed external sources and sinks, we

have to sum-over all the possible orientations of the internal graph. And so, in this

case we would be obliged to sum-over both diagrams, giving us a final contribution

to the measure of:

J N−4
A + J N−4

B = (1 + f)N−4 + (1 + f−1)N−4. (3.13.271)

Notice that when N =3, the complete contribution is simply:

J −1
A + J −1

B = (1 + f)−1 + (1 + f−1)−1 = 1. (3.13.272)

This is good, because the “+” and “−” super-multiplets of N =3 combine to give us

a complete N =4 super-multiplet. Of course, when N < 3, the sum is not unity, and

the result differs from what we would have found for N =4.

Let us consider a somewhat more interesting example:
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(3.13.273)

Here we have three faces bounding closed orientated paths, f1, f2, f3, but two of the

faces f1, f3 are disjoint; and the complete Jacobian is:

J = 1 + (f1 + f2 + f3) + f1f3. (3.13.274)

We stress again that the point in the Grassmannian obtained from amalgamation

is the same as it is for the maximally supersymmetric theory; the only difference

between the theories is the presence of the Jacobian factor J in the measure. The

merge/un-merge moves still leaves the point in the Grassmannian and the rest of the

form invariant; but now, the square-move and bubble-reduction—while leaving the

point in the Grassmannian fixed—can change the measure.

If we consider a reduced graph with the dimension required to completely local-

ize all the auxiliary variables associated with the matrix C ∈G(k, n), then the net

effect is not particularly interesting—as theories with N < 4 differ from those with

maximal supersymmetry only by the prefactor of J in the measure, evaluated at this

particular point in G(k, n). However, the situation is considerably more interesting

when we consider on-shell graphs for which some auxiliary variables are not fixed by

the δ-function constraints, leaving us with an integration measure over these inter-

nal degrees of freedom. Such graphs occur, for instance, in the forward-limits that

generate loop integrands in the all-loop, on-shell BCFW recursion (3.2.21). In such

cases, the factor of J can lead to a qualitatively-new set of singularities where poles

are generated by J .

As a simple example of such a situation, consider a “wrong” BCFW-bridge acting

on the four-particle tree amplitude’s on-shell graph:
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(3.13.275)

The shift is “wrong” in the familiar sense of BCFW deforming the “wrong” helicities,

for which the deformed amplitudes don’t vanish at infinity. This is reflected in the

on-shell graph by the presence of a closed oriented loop (making the resulting on-

shell differential form differ for theories with different amounts of supersymmetry).

Because this graph’s measure includes the a non-trivial Jacobian J , the corresponding

function does not vanish in the deep ultraviolet—taking the shift-parameter α→∞.

This “pole at infinity” is characterized by the residue about J 7→ 0. Notice that

this allows us to fully characterize the non-trivial, ultraviolet singularities present in

theories with less than maximal supersymmetry. The presence of such poles indicate

“lower-transcendentality” contributions to scattering amplitudes. For instance, the

object above, (3.13.275) can be interpreted as the triple-cut of the one-loop four-

particle amplitude, and the residue about J = 0 computes the coefficient of the

“triangle integral” for the amplitude. The coefficients of “bubbles” can be exposed

in similar ways.

One of the most fundamental consequences of space-time locality is that the ul-

traviolet and infrared singularities are completely independent. It is fascinating to

see that this physical fact is sharply captured by the Grassmannian formalism, where

IR and UV singularities are associated with disparate contributions to the integration

measure of the auxiliary Grassmannian: the positroid’s “dlog” measure captures all

the long-distance singularities—where internal particles go on-shell—and the prefac-

tor J captures ultraviolet singularities. This ultraviolet/infrared decoupling has an

even more striking incarnation in the planar sector of the theory: it can be shown

that J is completely regular everywhere in the positive-part of G(k, n)—literally sep-

arating the ultraviolet singularities of J from infrared singularities of the positroid,

their boundaries being completely disjoint!
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3.14 On-Shell Representations of Scattering Am-

plitudes

Although we have focused on understanding individual on-shell diagrams for most of

the chapter, let us return to a study of how these can combine to entire scattering

amplitudes. As discussed in section 3.2, the defining property of the full amplitude

is that it satisfies the “differential equation”,

(3.14.276)

which specifies the two kinds of singularities it can have—corresponding to “factor-

ization channels” (red) and “forward limits” (blue), respectively. All known repre-

sentations of scattering amplitudes can be thought of as particular ways of building

objects with these—and only these—(co-dimension one) singularities.

The usual Feynman-diagrammatic expansion for scattering amplitudes makes these

singularities (together with conformal invariance) manifest, but at the cost of intro-

ducing unphysical, off-shell variables and gauge-redundancies which obscure the un-

derlying Yangian-invariance of the theory. (The same can be said for the equivalent

Wilson-loop representation—except that it is the dual conformal symmetry which is

made manifest.) By contrast, the BCFW recursion relations,

(3.14.277)

can be understood of as a direct integration of the defining equation (3.14.276), and

provides us with a representation of scattering amplitudes for which every term enjoys

the full Yangian-invariance of the theory. However, the recursion requires that two legs

be singled-out to play a special role—in (3.14.277), these are the legs (n 1). Although

this choice is arbitrary, it breaks the cyclic-symmetry of the complete amplitude, and

makes manifest only a rather small subset of the singularities required by (3.14.276).
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Of course, the BCFW recursion relations can be derived from field theory, starting

either with the “scattering amplitude” [65] or “Wilson loop” [79, 166, 167] pictures

(for the relation to light-like correlation functions, see [114, 115, 168–170]). We will

however begin by showing how they can also be proven directly by induction. That

is, we will show that the boundary of (3.14.277) includes precisely the singularities

required by (3.14.276); this proof will be entirely diagrammatic. In section II. we

will review some important features encountered in the tree-level (` = 0) version

of the recursion relations, and in section III. we will see how the structure of tree

amplitudes is reflected at loop-level, giving rise to a canonical—purely ‘dlog’—form

for all loop-integrands.

I. (Diagrammatic) Proof of the BCFW Recursion Relations

Let us take the BCFW recursion relations, (3.14.277) as an ansatz, and demonstrate

inductively that its boundary includes all the correct factorization channels and for-

ward limits, and no other singularities (for earlier work along these lines see [171,172]).

Recall that the four-point, tree-amplitude, A(2),`=0
4 , manifestly has all the correct fac-

torization channels in its boundary,

{3, 4, 5, 6} {3,5,4, 6} {4,3, 5, 6} {2, 4, 5,7} {3, 4,6,5}

We may therefore suppose that the ansatz is correct for all amplitudes A(k̂),̂̀
n̂ with

n̂ < n, k̂ ≤ k, and ̂̀≤ `; we must show that this suffices to prove that it also holds

for A(k),`
n . We may divide the argument into two parts: first, demonstrating that the

boundary includes all the correct factorization channels; and then showing that it

includes all the correct forward-limits.

Among the factorization channels, those for which particles 1 and n are on opposite

sides are trivially present:
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What we first need to check is that the BCFW recursion formula also generates all

those factorizations for which 1 and n are on the same side. Factorization channels

for which legs 1 and n are not alone on one side arise from the factorizations of the

bridged amplitudes. For example, the boundaries of the left-amplitudes include:

where we have used our induction hypothesis to identify the terms appearing on the

right-side of the factorization as a lower-point amplitude denoted R’. We also have

the analogous diagrams arising from the right-amplitudes.

The case of a two-particle factorization involving just 1 and n together, however,

arises somewhat differently. The factorization for which particles 1 and n are con-

nected via a A(1)
3 -vertex arises from the boundary,

Similarly, the case where particles 1 and n are connected via a A(2)
3 -vertex arises from,

We have therefore shown that all factorization channels are present in the bound-

ary of the BCFW ansatz. However, we must also show that these are the only such
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boundaries. Our induction hypothesis would suggest that such ‘spurious’ poles could

arise from factorizations of separating (1̂ I) on the left, or (I n̂) on the right:

Conveniently, such boundaries are always generated symmetrically from the left- and

right-amplitudes, and cancel in the sum.

Let us now demonstrate that the BCFW recursion ansatz generates all the correct

forward-limits as co-dimension one boundaries—and only these. As with the factor-

ization channels, the BCFW recursion ansatz always makes one of the forward-limits

manifest—those where the forward limit is taken between 1 and n:

When the identified legs are not between (n 1), but say (a a+1), something more

interesting happens. Some of these arise trivially from the boundary of ‘bridged’

terms in the recursion,

and

but these terms alone do not represent the complete BCFW-representation of the

lower-loop, higher-point amplitude including the identified legs: the problem is that

we are missing both the terms where the identified legs (before the forward-limit) are

separated across the BCFW-bridge, and also the terms for which they are identified in

the ‘forward-limit’ term. By our induction hypothesis, both of these terms arise from

the boundary of the forward-limit term: as factorization and forward-limit boundaries

of the forward-limit term, respectively:
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The first of these is needed by ‘forward-limit’ term in the BCFW recursion ansatz,

and the second term is needed to complete the ‘bridge’ term of the recursion ansatz; to

see this more clearly, notice that the second term can be redrawn more suggestively:

And so, we have shown that the induction hypothesis ensures that all the nec-

essary forward-limit terms are generated in the boundary of the BCFW recursion

formula. But as with the factorization-channels studied earlier, we must show that

no ‘spurious’ forward-limit terms are generated. Such spurious forward-limit terms

can be generated by the ‘bridge’ term in the recursion—when the identified legs

appear either between (1̂ I) on the left, or between (I n̂) on the right—or from the

factorization-channels of the ‘forward-limit’ term; these are always generated in pairs,

and cancel accordingly; for example,
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II. The Structure of (Tree-)Amplitudes in the Grassmannian

The BCFW recursion relations provide us with a powerful description of scattering

amplitudes to all-loop orders. Although the tree-level recursion relations have been

largely understood for nearly a decade (see e.g. [10, 14,82, 100,171]), its extension to

all-loop integrands remains relatively novel—and until now, has only been understood

in terms of momentum-twistor variables (as described in [65]). Because of this novelty,

it is worthwhile to explore some of the features of the recursion and the structures

that emerge. In this subsection, we will mostly review aspects of tree-amplitudes

that are well known to most practitioners; this will provide us with the background

necessary to discuss some of the novelties that arise loop-level in section III..

When restricted to tree-level, the recursion relations (3.14.277) become,

Here, we have separated the terms in the recursion which involve a 3-particle am-

plitude on either side of the bridge; this is because one of the 3-particle amplitudes

when bridged on either side will lead to an on-shell form with vanishing-support for

generic kinematical data—for example, bridging A(1)
3 on the left would give,

which is only non-vanishing if λ1 ∝ λ2. (Moreover, it turns out that these graphs are

always reducible, and so have less than the necessary (2n 4) independent degrees of

freedom required to solve the kinematical constraints.)

Let us begin to build intuition about the structure that arises from the recursion

by considering the simplest examples. Recall that the 4-particle amplitude is entirely

given by the single on-shell graph, (3.2.15)—the familiar ‘box’,
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A(2)
4 = A(2)

3 ⊗A
(1)
3 =

This of course follows trivially from the recursion relations. But it is not the only

amplitude which is so simple: for example, the two 5-particle amplitudes are simply,

A(2)
5 = A(2)

4 ⊗A
(1)
3 = and A(3)

5 = A(2)
3 ⊗A

(2)
4 =

This trend continues for all MHV and MHV amplitudes, A(2)
n and A(n−2)

n , respectively.

For 6-particles, these amplitudes are:

A(2)
6 = A(2)

5 ⊗A
(1)
3 = and A(4)

6 = A(2)
3 ⊗A

(3)
5 =

Thus, the BCFW-recursion directly represents all MHV (and MHV) amplitudes as sin-

gle terms—directly giving the famous formula guessed by Parke and Taylor, (3.8.180).

Although fairly trivial, notice that in obtaining these formulae, it is natural to view

the act of attaching a 3-particle amplitude across the BCFW bridge as an operation

which ‘adds a particle’. This operation is of course well-defined not just for the

amplitude, but for any on-shell graph; thus, we have a way to add a particle in a

way which ‘preserves k’, (•⊗A(1)
3 ) : G(k, n) 7→G(k, n+1), and in way which ‘increases

k’, (A(2)
3 ⊗ •) : G(k, n) 7→G(k+1, n+1). These are called ‘inverse-soft factors’. As a

reference, these operations correspond to:
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

k-preserving or holomorphic inverse-soft factor

momentum-space momentum-twistors

λn̂ = λn

λ̃n̂ = λ̃n− α(nn+1)λ̃n+1

zn̂ = zn

λ1̂ = λ1

λ̃1̂ = λ̃1− α(1n+1)λ̃n+1

z1̂ = z1

f(· · ·, n, n+1, 1, · · · )
= f0(· · ·, n̂, 1̂, · · · )×
δ2
(
λn+1 α(nn+1)λn α(1n+1)λ1

)
f(· · ·, n, n+1, 1, · · · )
= f0(· · ·, n, 1, · · · )



k-increasing or anti-holomorphic inverse-soft factor

momentum-space momentum-twistors

λn̂ = λn + α(n+1n)λn+1

λ̃n̂ = λ̃n

zn̂ = zn+α(n+1n)zn−1

λ1̂ = λ1 + α(n+1 1)λn+1

λ̃1̂ = λ̃1

z1̂ = z1+α(n+1 1)z2

f(· · ·, n, n+1, 1, · · · )
= f0(· · ·, n̂, 1̂, · · · )×
δ2
(
λ̃n+1+α(nn+1)λ̃n+α(1n+1)λ̃1

)
f(· · ·, n, n+1, 1, · · · )
= f0(· · ·, n̂, 1̂, · · · )
×[n 1nn+1 1 2]

(Here, the η̃’s transform identically to the λ̃’s.) Each of these can be seen to follow

from the action of two successive BCFW-bridges:



BCFW-bridge ‘(n 1)’

momentum-space momentum-twistors

λn̂ = λn

λ̃n̂ = λ̃n− α(n1)λ̃1

zn̂ = zn

λ1̂ = λ1 + α(n1)λn

λ̃1̂ = λ̃1

z1̂ = z1 + α(n1)z2



BCFW-bridge ‘(1n)’

momentum-space momentum-twistors

λn̂ = λn + α(1n)λ1

λ̃n̂ = λ̃n

zn̂ = zn + α(1n)zn−1

λ1̂ = λ1

λ̃1̂ = λ̃1− α(1n)λ̃n

z1̂ = z1

Notice that whenever an on-shell graph has a leg a such that σ(a 1)=a+1 or σ(a+1)=

a 1 we can view it as having been obtained by adding particle a to a lower-point graph
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using a k-preserving or k-increasing inverse soft-factor, respectively. In such cases, a

is said to be an ‘inverse-soft factor’; and any on-shell graph which can be constructed

by successively adding particles to a 3-particle amplitude using inverse-soft factors is

said to be ‘inverse-soft constructible’.

The notion of ‘inverse-soft constructibility’ proves useful because the auxiliary

variables associated with any inverse-soft factor can be completely fixed by the as-

sociated δ-function constraint, making it very easy to recursively eliminate all the

auxiliary, Grassmannian degrees of freedom. It turns out that for 13 or fewer legs,

all on-shell forms generated by the tree-level recursion relations—regardless of how

lower-point amplitudes are themselves recursed—are inverse-soft constructible. How-

ever, for 14 or more particles, some objects can be generated by the recursion relations

which are not inverse-soft constructible, such as the following possible contribution

to the 14-particle N5MHV tree-amplitude:

((
A(2)

3 ⊗
(
A(2)

4 ⊗A
(2)
4

))
⊗A(1)

3

)
⊗
(
A(2)

3 ⊗
((
A(2)

4 ⊗A
(2)
4

)
⊗A(1)

3

))

(3.14.278)

Notice that this graph was generated by always using internal edges to recurse the

objects appearing across the BCFW-bridge—(1̂ I) on the left and (I n̂) on the right.

(We should mention in passing that if one always recurses the lower-point amplitudes

according to the marked legs as follows,

(3.14.279)

then all tree-amplitudes will be given in terms of only inverse-soft constructible

graphs. This corresponds to the recursion ‘scheme’ { 2, 2, 0} of reference [173].)

As described in section 3.11, the first amplitude which is given as the combination

of several on-shell graphs is A(3)
6 , the 6-particle NMHV tree-amplitude. This is given
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by three terms, A(3)
5 ⊗A

(1)
3 , A(2)

4 ⊗A
(2)
4 , and A(2)

3 ⊗A
(2)
5 :

A(3)
6 =

{4, 5, 6, 8, 7, 9}

+

{3, 5, 6, 7, 8, 10}

+

{4, 6, 5, 7, 8, 9}

(3.14.280)

Although the on-shell graphs of each contribution appear quite different, it is easy to

see from the permutations that they are all cyclically-related to one another:

{3, 5, 6, 7, 8, 10}

=

{3, 5, 6, 7, 8, 10}

=

{3, 5, 6, 7, 8, 10}

(3.14.281)

The on-shell differential form drawn above—labeled by the permutation {3, 5, 6, 7, 8, 10}
—was given directly in terms of the kinematical variables λ, λ̃ in equation (3.8.183).

Because each term is cyclically-related, if we use ‘r’ to denote the operation that

‘rotates’ all particle labels forward by 1, we can write the entire tree-amplitude as:

A(3)
6 =(1+r2+r4)

δ3×4(C∗· η̃) δ2×2
(
λ·λ̃
)

〈23〉[56](〈34〉[64]+〈53〉[56])s456(〈61〉[64]+〈15〉[45])〈12〉[45]
,(3.14.282)

where the matrix C∗ was given in (3.8.182).

Although the precise set of on-shell graphs obtained using the BCFW recursion

relations can vary considerably depending on which legs of the lower-point amplitudes

are used for their recursion, the number of terms is of course scheme-independent. It

is a relatively simple exercise to show that,

# BCFW terms in the tree-amplitude A(k)
n :

1

n− 3

(
n 3

k 1

)(
n 3

k 2

)
. (3.14.283)
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III. Canonical Coordinates for Loop Integrands

The all-loop generalization of the BCFW recursion relations was first described in

[65] where it was formulated in terms of explicit operations acting directly on the

‘functions’ of momentum-twistor variables obtained after eliminating the auxiliary

Grassmannian degrees of freedom. This led to formulae for the ‘loop integrands’

in the form of a ‘standard’ loop-integration measure d4` weighted by some rational

function of the loop-momentum `, or equivalently a function one the space of lines AB

in momentum-twistor space with measure d4zAd
4zB/GL(2). When viewed as rational

functions in this way, much of the underlying structure is hidden. However, by viewing

each loop-momentum’s degrees of freedom as arising from canonical coordinates in

the auxiliary Grassmannian, the integration measure is automatically generated in

a much more illuminating, ‘canonical’ form: as a wedge-product of “dlog” factors.

The fact that loop amplitude integrands can be written in such a form—a fact which

is essentially obvious using canonical coordinates on the Grassmannian—is far from

obvious from any other method to compute scattering amplitudes.

We will postpone a systematic discussion of the loop amplitude integrands gen-

erated by the recursion relations (3.14.277) until a future work. Here, we merely

want to demonstrate its most important physical implications through the context

of simple examples. We first describe how one-loop integrands are generated by the

recursion, using the case of MHV for illustration. At the end of this subsection, we

will briefly describe the features observed for higher-loop amplitudes.

Let us begin with the simplest of all one-loop amplitudes, the 4-particle MHV

amplitude. As there are no 3-particle one-loop integrands to appear in the ‘bridge’

term of the recursion, the 4-particle one-loop integrand is entirely generated as the

forward-limit of the 6-particle NMHV tree-amplitude, A(3)
6 . Let us denote the two

particles identified in the forward-limit by (AB), and use these two legs as the pair

singled-out in the recursion of the 6-particle tree. Of the 3 terms appearing in the

tree-amplitude A(3)
6 , (3.14.280), only one is non-vanishing in the forward-limit (a fact

that we will demonstrate momentarily); the forward-limit of the A(2)
4 ⊗A

(2)
4 -term is,
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A(2)
4 ⊗A

(2)
4

(The last move in this sequence was made only to make subsequent transformations

more transparent.) It is easy to see that this diagram has four faces beyond that of

the simple box, and thus four extra integration variables. Using reduction, we can

of course reduce this diagram to the box, giving us the integrand. We can relate

this new form of the integrand to a more familiar form, by identifying the usual loop

momentum “`” as,

` = αλ1λ̃4 + λABλ̃AB, (3.14.284)

where λABλ̃AB is the momentum of the highlighted line in figure above. We can of

course determine λAB, λ̃AB in terms of the variables associated with the graph, and

in this way trade the four ‘extra’ variables for those which parameterize `.

While this is a straightforward exercise, it is more illuminating to carry out the

reduction in a different way. We can use moves to give the on-shell diagram a different

representation—as a sequence of BCFW bridges on a core 4-particle amplitude:

(In the last transformation, several mergers were made.) This allows us to think of

the object as the usual box, but with ‘BCFW-shifted kinematical data’, given by,
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bridge BCFW shift

(1 4)
λ4 7→ λ4 +α1λ1

λ̃1 7→ λ̃1−α1λ̃4

(1 2)
λ2 7→ λ2 +α2λ1

λ̃1 7→ λ̃1−α2λ̃2

(3 2)
λ2 7→ λ2 +α3λ3

λ̃3 7→ λ̃3−α3λ̃2

(3 4)
λ4 7→ λ4 +α4λ3

λ̃3 7→ λ̃3−α4λ̃4

⇒



1̂

{
λ1̂ = λ1

λ̃1̂ = λ̃1 − α1λ̃4 − α2λ̃2

2̂

{
λ2̂ = λ2 + α2λ1 + α3λ3

λ̃2̂ = λ̃2

3̂

{
λ3̂ = λ3

λ̃3̂ = λ̃3 − α3λ̃2 − α4λ̃4

4̂

{
λ4̂ = λ4 + α1λ1 + α4λ3

λ̃4̂ = λ̃4

Thus, the integrand is nothing but dlog(α1) ∧ · · · ∧ dlog(α4) times the shifted

four-particle amplitude,
dα1

α1

dα2

α2

dα3

α3

dα4

α4

δ2×4
(
λ·η̃

)
〈1̂ 2̂〉〈2̂ 3̂〉〈3̂ 4̂〉〈4̂ 1̂〉

. (3.14.285)

If we strip-off the (unshifted) Parke-Tyalor prefactor, the integrand for the one-loop

ratio function—the loop amplitude divided by the tree-amplitude—is simply [73],

A(2),1
4

A(2),0
4

=
dα1

α1

dα2

α2

dα3

α3

dα4

α4

〈1 2〉〈2 3〉〈3 4〉〈4 1〉
〈1̂ 2̂〉〈2̂ 3̂〉〈3̂ 4̂〉〈4̂ 1̂〉

,

=
dα1

α1

dα2

α2

dα3

α3

dα4

α4

〈12〉
〈12〉+ α3〈13〉

〈23〉
〈23〉+ α2〈13〉

〈34〉
〈34〉+ α1〈31〉

〈41〉
〈41〉+ α4〈31〉

,

= dlog

(
α1〈34〉

〈34〉+α1〈31〉

)
dlog

(
α2〈23〉

〈23〉+α2〈13〉

)
dlog

(
α3〈12〉

〈12〉+α3〈13〉

)
dlog

(
α4〈41〉

〈41〉+α4〈31〉

)
which is manifestly in a ‘dlog’-form.

Now, we can determine λAB and λ̃AB very simply in terms of the bridge variables.

For a general box, the internal momentum on the bridge can be given in terms of the

external data according to:

(3.14.286)

which allows us to identify,

λABλ̃AB =
〈1̂2̂〉
〈4̂2̂〉

λ4̂λ̃1̂. (3.14.287)

And so in summary, the relation between the BCFW-bridge variables αi and the usual

loop momentum variables is given by,
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` =
〈1̂2̂〉
〈4̂2̂〉

λ4̂λ̃1̂ + α1λ1λ̃4. (3.14.288)

Using this change of variables, it is straightforward to re-cast the integrand (3.14.286)

in the form which we gave earlier in section 3.2:

dlog

(
`2

(`− `∗)2

)
dlog

(
(`+ p1)2

(`− `∗)2

)
dlog

(
(`+ p1 + p2)2

(`− `∗)2

)
dlog

(
(`− p4)2

(`− `∗)2

)
, (3.14.289)

where `∗ = 〈12〉
〈42〉λ4λ̃1.

We can also interpret exactly the same pictures in momentum-twistor space. Re-

call that a BCFW bridge ‘(a 1 a)’—a white-to-black vertex from a 1 to a—has the

effect of shifting the momentum twistor za 7→ za + αza+1 where α is the bridge vari-

able. Generally speaking, lines in momentum-twistor space are associated with the

faces of the momentum-space on-shell graph; we will not review these ideas here, but

let us briefly summarize that the regions of a four-point box are associated with the

lines in momentum-twistor space as indicated below:

or (3.14.290)

Now, this means that if we identify the four unfixed degrees of freedom with the line

(AB) in momentum-twistor space, we see that it corresponds to the line (2̂ 4̂) in

(3.14.291)

Performing the same sequence of shifts as before, but now using momentum-

twistor variables, we find:

bridge BCFW shift

(1 4) z4 7→z4+β1z3

(1 2) z2 7→z2+β2z3

(3 2) z2 7→z2+β3z1

(3 4) z4 7→z4+β4z1

⇒

z1̂ =z1

z2̂ =z2+β2z3+β3z1

z3̂ =z3

z4̂ =z4+β1z3+β4z1


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This uniquely fixes the auxiliary, Grassmannian parameters βi in terms of the momentum-

twistor line (AB) according to:

β1 =
〈AB 4 1〉
〈AB 1 3〉

, β2 =
〈AB 1 2〉
〈AB 3 1〉

, β3 =
〈AB 2 3〉
〈AB 3 1〉

, and β4 =
〈AB 3 4〉
〈AB 1 3〉

. (3.14.292)

With this identification, we can re-write the integrand in terms of the four auxiliary

variables in momentum-twistor space as,

dlog(β1) · · · dlog(β4) = dlog

(
〈AB 41〉
〈AB 13〉

)
dlog

(
〈AB 12〉
〈AB 31〉

)
dlog

(
〈AB 23〉
〈AB 31〉

)
dlog

(
〈AB 34〉
〈AB 13〉

)
.

If we recast this expression as an integration measure on the space of lines (AB)

in momentum-twistor space, we find that

dlog

(
〈AB 41〉
〈AB 13〉

)
dlog

(
〈AB 12〉
〈AB 31〉

)
dlog

(
〈AB 23〉
〈AB 31〉

)
dlog

(
〈AB 34〉
〈AB 13〉

)
= (3.14.293)

〈d2zAAB〉〈d2zBAB〉〈1234〉〈2341〉
〈AB 12〉〈AB 23〉〈AB 34〉〈AB 41〉

,

which is precisely the familiar form of the integrand given in reference [65].

Before moving on to the case of the n-particle MHV one-loop integrand, let us

go back and understand why only one of the three terms in the 6-particle NMHV

tree amplitude survived the forward-limit, as the reason will prove quite instructive.

Let us choose to always represent the (n+2)-point tree-amplitude appearing in the

forward limit using the BCFW recursion which deforms legs (AB). Recall that the

tree-amplitude recursion can be broken into three parts as in (3.14.278):

1. a k-preserving inverse-soft factor: A(k)
n−1⊗A

(1)
3 ;

2. a k-increasing inverse-soft factor: A(2)
3 ⊗A

(k−1)
n−1 ;

and 3. terms for which nL, nR ≥ 4.

(3.14.294)

Of these, it is not hard to see that if (AB) are the distinguished legs of the bridge,

the first two contributions listed above always vanish. More precisely, any on-shell

form for which A or B is an inverse-soft factor will vanish in the forward-limit. (We

should notice that ‘A or B being an inverse-soft factor’ is a sufficient condition for

an on-shell form to vanish in the forward limit, but not a necessary one.)

Let us now see why any contributions to the lower-loop amplitude where A or B

is an inverse-soft factor will vanish. Consider the forward-limit of a term for which A

is a k-preserving inverse-soft factor (the argument is the same in all other cases):
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(3.14.295)

Notice that the kinematical constraints associated with the middle—black—vertex

requires that λA be expandable in terms of λB and λn; but in the forward-limit,

we identify λA with λB, which implies that λAB ∝ λn. As such, the kinematical

constraints do not allow for there to be any unfixed degrees of freedom associated

with λAB (which should represent loop-integration degrees of freedom).

We are now prepared to determine the n-point MHV one-loop integrand in general.

The bridge-term always contributes a term A(2),1
n−1⊗A

(1)
3 , which is simply a k-preserving

inverse-soft factor adding n to the (n 1)-point one-loop amplitude; more interesting

are the forward-limit terms. These come from the forward-limit of A(3),0
n+2 ; among the

terms that contribute to the higher-point NMHV tree-amplitude, we have seen that

only those obtained from bridging A(2)
nL⊗A

(2)
nR with nL, nR ≥ 4 contribute.

Because k-preserving inverse soft factors act trivially in momentum-twistors, and

the left- and right-amplitudes appearing in the NMHV tree-amplitudes are trivially

chains of inverse-soft factors, it will be useful to define the notion of an “MHV region”

obtained by any number of successive k-preserving inverse-soft factors:

with

Allowing for such MHV regions in our diagrammatic expansion, we see that the

one-loop MHV integrand is given by,

We can rearrange the NMHV forward-limit contributions as we did above in order

to make manifest the sequence of BCFW-bridges which parameterize the extra degrees
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of freedom:

Proceeding as before, we can identify the shifted momentum-twistors appearing in

the box as,

(AB) = (â n̂) with

 zâ = za+β1za+1+β2z1

zn̂ = zn+β3z1+β4zn−1

 , (3.14.296)

which allows us to re-cast the BCFW-bridge variables βi in terms of the line (AB):

β1 =
〈AB 1 a〉
〈AB a+1 1〉

, β2 =
〈AB aa+1〉
〈AB a+1 1〉

, β3 =
〈AB n 1n〉
〈AB 1n 1〉

, and β4 =
〈AB n 1〉
〈AB 1n 1〉

.

Therefore, we see that the forward-limit terms are given by:

= dlog(β1)dlog(β2)dlog(β3)dlog(β4)

= dlog

(
〈AB 1a〉
〈AB 1a+1〉

)
dlog

(
〈AB aa+1〉
〈AB 1a+1〉

)
dlog

(
〈AB n 1n〉
〈AB 1n 1〉

)
dlog

(
〈AB n1〉
〈AB 1n 1〉

)
.

Quite amazingly, if we re-cast this integration measure directly in terms of the line

(AB), we see that this is equivalent to,

=
〈d2zAAB〉〈d2zB AB〉〈AB (1 a a+1)

⋂
(1n 1n)〉2

〈AB 1 a〉〈AB aa+1〉〈AB a+1 1〉〈AB 1n 1〉〈AB n 1n〉〈AB n 1〉

≡ K[a;n 1].

We have obtained this result entirely by manipulating pictures of on-shell diagrams;

of course the result precisely matches the form obtained by direct computation, using

the methods of [65], where all MHV one-loop integrands were given in the form,

A(2),1
n =

∑
1<a<b<n

K[a; b]. (3.14.297)

Before moving on to multi-loop integrands, it is worth mentioning that for one-

loop integrands, so long as the forward-limits are taken of tree-amplitudes obtained by
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BCFW deforming the identified legs (AB), it turns out that the obvious k-preserving

and k-increasing inverse-soft factors are the only terms which vanish in the forward

limit; this allows us to conclude that,

# BCFW terms in the one-loop amplitude A(k),1
n :

(
n 2

k

)(
n 2

k 2

)
.

(3.14.298)
(It turns out that this counting holds regardless of how the forward-limit terms are

recursed—even though it is generally difficult to identify beforehand which terms will

vanish if (AB) are not singled-out for the recursion. Beyond one-loop, however, the

number of non-vanishing contributions is not invariant, and depends sensitively on

how the lower-loop amplitudes are recursed.)

When expressing tree-amplitudes and their forward-limits in terms of canonical

coordinates on the auxiliary Grassmannian, it is obvious that all loop integrands

can be—and are most naturally—expressed in such a ‘dlog’-representation. Al-

though in principle we have all the tools necessary to construct such formulae for

all amplitudes—and although the BCFW recursion relations (3.14.277) is dramati-

cally more efficient that any representation obtained using ‘traditional’ methods (such

as Feynman diagrams)—even the simplest 2-loop integrands would require more space

to write completely than would be warranted for the purpose of illustration.

Let us therefore content ourselves to consider one simple example of a contribution

to the 4-particle 2-loop integrand which arises as the double forward-limit of a of the

contributions to the 8-particle N2MHV tree-amplitude, that of
(
A(2)

4 ⊗A
(2)
4

)
⊗A(2)

4 :

In the last step, we have made liberal use of square-moves and merge/un-merge

operations to bring it in the form which exposes a sequence of recognizable BCFW-

bridges which themselves encode the additional degrees of freedom.

Using the tools described in [65] to compute this contribution directly as a ‘func-

tion’ of lines (AB) and (CD) in momentum-twistor space, the following rational

237



integrand is found:

〈d2zAAB〉〈d2zB AB〉〈d2zC CD〉〈d2zD CD〉〈1234〉3〈AB(CD)
⋂

(341)1〉2

〈AB14〉〈AB1(123)
⋂

(CD)〉〈AB1(234)
⋂

(CD)〉〈AB(((CD(341)
⋂

(AB))
⋂

(12))34)
⋂

(CD)1〉〈ABCD〉〈CD34〉
.

While the expression above is of course obtained in a straight-forward way, it is

obviously rather complicated and not particularly illuminating. Moreover, as written

in the form given above—as a rational integrand—it is not at all obvious that there

exists any change of variables for which it becomes simply the wedge-product of 8

logarithmic factors. But from our present perspective, the existence of such a change

of coordinates is an obvious consequence of the Grassmannian formulation of the

initial tree-amplitude; and it will be instructive to see how this remarkable connection

is realized.

To be extremely concrete, we want to identify the lines (AB) and (CD) as pa-

rameterizing the region-momenta according to,

with
(AB) = (2̂ 3̂)

(CD) = (4̂ 1̂)
(3.14.299)

We can find the shifted momentum-twistors zâ by performing the successive BCFW-

shifts obvious from the way the double forward-limit graph is drawn:

bridge BCFW shift

(1 4) z4 7→z4+β1z3

(1 2) z2 7→z2+β2z3

(3 2) z2 7→z2+β3z1

(4 3) z3 7→z3+β4z2

(2 3) z3 7→z3+β5z4

(2 1) z1 7→z1+β6z4

(1 4) z4 7→z4+β7z3

(3 2) z2 7→z2+β8z1

⇒



z1̂ =z1+β5(z4+β1z3);

z2̂ =z2+β2z3+β3z1

+β8(z1+β5(z4+β1z3));

z3̂ =z3+β4(z2+β2z3+β3z1)

+β6(z4+β1z3);

z4̂ =z4+β1z3+β7β6(z4+β1z3)

+β7(z3+β4(z2+β2z3+β3z1));


One can readily verify that quite remarkably, with this change of variables, the com-

plicated expression given above becomes simply,

dlog(β1) ∧ · · · ∧ dlog(β8). (3.14.300)
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IV. The Transcendentality of Loop Amplitudes

The integrand obtained from the BCFW recursion relations allows us to draw some

important general conclusions about the structure of the final, integrated expressions

for the amplitude. Let us start with MHV amplitudes. As we have seen, all the

BCFW terms at L loops can be written in the form,

A(2)
n,L = A(2)

n,0 ×
4L∏
j=1

dlog(βj). (3.14.301)

The first and most obvious point to observe is that the integrand has only logarithmic

singularities! There are no “sub-leading” pieces of the integrand with less than the

maximal number of logarithmic singularities. At one-loop, this (together with dual

conformal invariance) tells us the famous fact that the loop amplitude only depends

on “box” integrals, and doesn’t involve any triangles, bubbles, or rational pieces

[174,175].

As we have stressed a number of times, the fact that the integrand has only

logarithmic singularities is not at all obvious from inspection of the actual rational

functions involved in sufficiently high loop-amplitude integrands, where there don’t

seem to be enough “obvious” singularities in cutting propagators, and so singularities

must emerge as “composites”. By contrast, the positive Grassmannian story makes

this fact completely obvious. Intuitively, this guarantees that after integration, the

L-loop MHV amplitudes can always be expressed as a sum of polylogarithms of

transcendentality 2L. The reason is roughly that discontinuities of the amplitude are

related to unitarity cuts that put pairs of particles on-shell; thereby computing partial

residues of the integrand. Taking 2L discontinuities gives the leading singularity “1”,

which has no further discontinuities. These amplitudes are thus “pure”—not polluted

by lower-transcendentality terms, which would arise from pieces of the integrand

without purely logarithmic singularities. This has long been conjectured to be true

for MHV amplitudes in connection to the maximal transcendentality principle of

[176]. We see that the property needed of the integrand to guarantee this is a trivial

consequence of the dlog form.

Beyond MHV amplitudes, we know that the integrated amplitudes can involve

more complicated functions than polylogarithms. For instance, as pointed out in

ref. [136], the two-loop, 10-point N3MHV amplitude includes a contribution from a
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function whose seven-fold discontinuity is proportional to the following on-shell form:

{7, 6, 10, 9, 8, 12, 11, 15, 14, 13}

(3.14.302)

This on-shell graph corresponds to a 17-dimensional cell in G(5, 10); the kinematical

constraints will fix this to an integral over one degree of freedom (interpreted as the

‘hepta-cut’ of the two-loop integrand). The component amplitude proportional to,(
η̃ 1

1 η̃
2
1

)(
η̃ 1

2 η̃
2
2

)(
η̃ 2

3 η̃
3
3

)(
η̃ 2

4 η̃
3
4

)(
η̃ 2

5 η̃
3
5

)(
η̃ 3

6 η̃
4
6

)(
η̃ 3

7 η̃
4
7

)(
η̃ 4

8 η̃
1
8

)(
η̃ 4

9 η̃
1
9

)(
η̃ 4

10η̃
1
10

)
, (3.14.303)

(a component which vanishes exactly at tree-level and one-loop) vanishes on all the

positroid cells in the boundary of (3.14.302). Therefore, the only contour integral

available must enclose the Jacobian resulting from the kinematical constraints; this

Jacobian generically involves the square-root of an irreducible quartic, implying that

(at least for this component) the seven-fold discontinuity of the 2-loop integrand is

an elliptic integral.

We can understand the difference between MHV and higher-k amplitudes from

the Grassmannian. Recall that cells of dimensionality (2n 4) are fully localized by

the kinematical constraints. Since for MHV amplitudes, dim(G(2, n)) = (2n 4), all

of the unfixed degrees of freedom associated with ‘loop-momenta’ are associated with

faces which can always be removed by reduction (as there no irreducible graphs with

more faces than that of the top-cell). Beyond MHV, however, the reduction of on-

shell diagrams can result in cells of higher dimensionality than (2n 4). For example,

consider the top-cell of G(3, 6):

(3.14.304)
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Here, we have chosen a representative graph which makes it clear that it can be

associated with a triple-cut of the 6-particle amplitude at 1-loop. The 9 8 = 1 degree

of freedom of the top-cell which is not fixed by the kinematical constants can always

be interpreted as the single integration variable of a triple-cut integral.

Similarly, the top-cell of G(4, 8) is 16-dimensional, while the kinematical con-

straints can be used to isolate only 2×8 4 = 12 degrees of freedom; therefore, the

top-cell on G(4, 8) can be viewed as an on-shell differential form with four unfixed

auxiliary degrees of freedom—which can in fact be interpreted as the four-degrees of

freedom of a ‘loop-integrand’ at one-loop. Indeed, we can represent the top-cell by,

(3.14.305)

Therefore beyond MHV, while the integration measures are purely dlog’s, some

free integration variables are inside the Grassmannian, and must be localized by

the kinematic constraints. This is the reason why more complicated functions can

appear after integration. However, it is clear that for fixed n and k, the functions

can’t get arbitrarily more complicated at high loop orders. The reason is that at

most dim(G(k, n)) (2n 4) of the integration variables can remain ‘entangled’ in the

Grassmannian (meaning that they cannot be pulled-off as overall dlog factors in the

measure via bubble-reduction); at arbitrarily-high loop order, all but a finite number

of these auxiliary degrees of freedom must be associated with the more trivial factors

in the measure arising from bubble-reduction.

Actually, it is easy to see that, for NMHV amplitudes, the integrations that are

“stuck” in the Grassmannian can easily be removed, preserving the dlog form, and

thus that all NMHV amplitudes are also polylogarithms. Let us illustrate with the

top cell of G(3, 6); it is convenient to work in momentum-twistor language, where

this maps to the top cell of G(1, 6). On the support of the (ordinary) δ-functions, we

have a 1-form which we can represent as,

[1 2 3 4 (5+β6)]dlog(β), (3.14.306)
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However, we can use the identity among the 5-brackets, (??), to rewrite this as

[1 2 3 4 5]dlog(β) + [2 3 4 5 6]dlog

(
β
〈2345〉
〈2346〉

)
+ [3 4 5 6 1]dlog

(
β
〈3451〉
〈3461〉

)
+[4 5 6 1 2]dlog

(
β
〈4512〉
〈4612〉

)
+ [5 6 1 2 3]dlog

(
β
〈5123〉
〈6123〉

)
(3.14.307)

In this way, we have removed the integration variable from inside the Grassmannian

and decomposed the result into a sum of terms, each of which is in canonical form. The

same thing can be done for the top cell of any NMHV amplitude, since the “internal”

variables always occur linearly. Things can start becoming non-trivial at N2MHV,

where square-roots first make an appearance, and as we’ve seen concretely above,

already for 10-particle N3MHV amplitudes, elliptic integrals do make an appearance.

The on-shell, BCFW-representation of loop-integrands delivers them manifestly

in a canonical, dlog-form; but having noted that the integrand can be put in this

form, it is natural to wonder if this is a consequence of the BCFW-representation, or

a more general result. For instance, in reference [177], extremely compact, local forms

of many integrands were found; can these also be written in terms of integrands with

only logarithmic singularities? The answer yes: the dlog form is a general property

of “pure” integrands with unit leading singularities. Let us briefly demonstrate this

fact with two examples: local forms of the MHV 1- and 2-loop integrands.

In [177], the 1-loop MHV integrand was given in the local form,

∑
a<b<a

IX [a; b], (3.14.308)

where IX [a; b] denotes the integrand,

IX [a; b] ≡ 〈ABd
2zA〉〈ABd2zB〉 〈AB (a 1 a a+1)

⋂
(b 1 b b+1)〉

〈AB a 1 a〉〈AB aa+1〉〈AB b 1 b〉〈AB b b+1〉〈ABX〉
, (3.14.309)

and where X is an arbitrary reference-line in momentum-twistor space (spanned by

any pair of twistors). Remarkably, it turns out that IX [a; b] can be expressed in

canonical form:

dlog

(
〈AB a 1a〉
〈ABX〉

)
dlog

(
〈AB aa+1〉
〈ABX〉

)
dlog

(
〈AB b 1b〉

〈AB(aX)
⋂

(b 1bb+1)〉

)
dlog

(
〈AB bb+1〉

〈AB(aX)
⋂

(b 1bb+1)〉

)
.
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(Note that while this form appears to break the symmetry between a and b, the form

is of course symmetrical.)

Similarly, it was found in [177] that 2-loop MHV integrand could be written in

the following local form:

∑
a<b<c<d<a

I [a, b; c, d] (3.14.310)

where I[a, b; c, d] denotes the integrand,

〈ABd2zA〉〈ABd2zB〉〈CDd2zC〉〈CDd2zD〉〈AB (a 1aa+1)
⋂

(b 1bb+1)〉〈AB (c 1cc+1)
⋂

(d 1dd+1)〉
〈AB a 1a〉〈AB aa+1〉〈AB b 1b〉〈AB bb+1〉〈AB c 1c〉〈AB cc+1〉〈AB d 1d〉〈AB dd+1〉

.

But it turns out that this integrand can also be written in canonical form:

dlog

(
〈AB a 1a〉
〈AB CD〉

)
dlog

(
〈AB aa+1〉
〈AB CD〉

)
dlog

(
〈AB b 1b〉

〈AB(aCD)
⋂

(b 1bb+1)〉

)
dlog

(
〈AB bb+1〉

〈AB(aCD)
⋂

(b 1bb+1)〉

)

×dlog

(
〈CD c 1c〉
〈CD ab〉

)
dlog

(
〈CD cc+1〉
〈CD ab〉

)
dlog

(
〈CD d 1d〉

〈CD(abc)
⋂

(d 1dd+1)〉

)
dlog

(
〈CD dd+1〉

〈CD(abc)
⋂

(d 1dd+1)〉

)
.
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3.15 Outlook

We have explored much of the remarkable physics and mathematics of scattering

amplitudes in planar N = 4 SYM, as seen through the lens of on-shell diagrams as

the primary objects of study. Let us conclude by making some brief comments on

further avenues of research.

One immediate extension of our work is the continued study of theories with

N < 4 SUSY, whose most basic features we sketched out in section 3.13. For N ≥ 1,

all-loop BCFW recursion holds just as for N = 4, together with its realization in

terms of on-shell diagrams. For N =0 SUSY, the forward limit of tree amplitudes are

singular, and thus don’t directly give us the single-cuts of the loop-integrand [103].

More thought is needed to establish a connection between on-shell diagrams and the

full amplitude, though it is likely that fully understanding the on-shell diagrams will

continue to play an important role in determining N =0 amplitudes as well.

The general connection between on-shell diagrams and the Grassmannian has

nothing to do with any particular theory, only with the general picture of amalga-

mating basic three-particle amplitudes, and the connection to the positive Grassman-

nian in particular holds for any planar theory. Only the form on the Grassmannian

changes from theory to theory. As briefly discussed in section 3.13, the essential

physical novelty of gauge theories with N ≤ 2 supersymmetry is the presence of

UV-divergences. The most physical, Wilsonian, way to think about UV-divergences

makes critical use of off-shell ideas, and so a major challenge is finding the correct

way of thinking about such physics in a directly on-shell language. It is fascinating

to see that the UV and IR singularities, together with UV/IR decoupling, is reflected

directly in on-shell diagrams through simple structures in the Grassmannian. A clear

goal would be to understand the physics of the renormalization group along these

lines.

Another obvious extension is to push beyond the planar limit, starting already

with N = 4 SYM; in this case, there is no longer an obvious notion of “the loop

integrand”, and thus we must learn how to establish a connection between on-shell

diagrams and the full scattering amplitude along the lines of the BCFW construction

in the planar limit. It is also very likely that on-shell ideas can be used to deter-
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mine other observables in gauge theories beyond scattering amplitudes, including

all correlation functions. These objects also have discontinuities and cuts, and the

on-shell diagrams for leading singularities of form-factors and correlation functions

are exactly the same as the (in general non-planar) on-shell diagrams we have been

considering. The structure of cuts has already proved to powerful in determining

form-factors, [178]. For scattering amplitudes, we have seen that off-shell notions

like virtual loop integration variables can be fully understood in on-shell terms. It is

tempting to try and compute completely off-shell objects like correlation functions in

the same way.

Moving further afield, the basic mathematical structures we have encountered in

scattering amplitudes have also recently made an appearance in apparently completely

different physical settings, related to conformal blocks for higher Toda theories [40,

179], wall-crossing [180,181], various versions of the AGT conjecture [182], scattering

amplitudes at strong coupling [183], and soliton solutions of the KP equation [184–

186]. The identical graphical structure has also appeared in the construction of N =1

SCFTs associated with quiver gauge theories (see e.g. [187,188]). The combinatorial

classification of on-shell diagrams and these planarN =1 SCFTs coincide perfectly. It

would be interesting to see if the rest of the structure we have been seeing–especially

the connection with the positive Grassmannian–have a natural interpretation as well.

There is a unifying theme running through the physics and mathematics we have

been discussing. We have an object—the positive Grassmannian—which is fundamen-

tally defined by global properties, either as a real space, by demanding all ordered

minors are positive, or as a complex space, by specifying linear dependencies between

consecutive vectors. However quite remarkably, the best way of building-up these ob-

jects (albeit in a highly redundant way) is through the amalgamation of elementary

building blocks.

For scattering amplitudes, amalgamation representations have a direct physical

interpretation as on-shell diagrams. For N = 1 gauge theories, they correspond to

gluing together gauge groups with bi-fundamental content to generate more compli-

cated quiver gauge theories. For scattering amplitudes, it is physically clear why

we should be interested in complicated on-shell diagrams, since they are ultimately

needed to compute the amplitude to all-loop order. But what is physically impor-
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tant about complicated quiver gauge theories? One possible answer is that precisely

these sort of quiver gauge theories, with an infinite number of sites and links, occur

in the deconstruction of the still mysterious (2, 0) and little string theories in six

dimensions, [189]. It would be fascinating to use the powerful new machinery for

studying these quivers to try and learn more about the dynamics of the underly-

ing six-dimensional theories, which would perhaps shed some light on a more direct

physical reason for the appearance of the same Grassmannian structure in seemingly

vastly different settings.

We have seen that scattering amplitudes in (1+1), (2+1) and (3+1) dimensions are

described by various interpretations of permutations and associated structures in the

Grassmannian. It is natural to ask whether other variations of these mathematical

ideas might have a physical interpretation. There is one natural further specialization

of the positive Grassmannian we have not discussed, which in fact goes back to

the historical roots of the subject: the study of totally positive matrices. Here,

one considers (n×n) square matrices M with positive determinant, and studies the

space where all its (m×m)-minors are non-negative. This classical problem was

studied by Gantmacher and Krein [118] and Schoenberg [119] in the 1930’s, where

the stratification was found to be determined by pairs of permutations σ1 and σ2.

This theory is a special case of the positive Grassmannian G(n, 2n). Consider cells

where the first n columns of the (n× 2n) C matrix are linearly independent, and also

the second n columns are linearly independent. We can then gauge-fix C to the form

C = (1n×n |Mn×n) , (3.15.311)

where M is a positive matrix. Let us label the first n columns 1, . . . , n and the second

n columns by 1′, . . . , n′. It is clear that e.g. σ(1) = a′ for some a′ in the second set of

columns, since 1 can not be in the span of {2, . . . , n}, given that the first n columns

are linearly independent. This is true for all the other columns in the first set—i.e.

σ(a) = b′. Similarly, σ(a′) = b. Thus, we see that our permutation naturally breaks

into two pieces, mapping (1, . . . , n) 7→ (1′, . . . , n′) and vice-versa. It would be nice to

find a physical interpretation for the subclass of on-shell diagrams associated with

these pairs of permutations.

We have also seen a reliable guide to the Grassmannian structure associated with
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scattering amplitudes is to find a Grassmannian interpretation of the space of external

kinematical data. In four dimensions, the λ- and λ̃-planes are represented by points

in G(2, n). In three dimensions, the λ-plane is an element of the null orthogonal

Grassmannian. What happens in higher dimensions? The description of the external

kinematical data in six dimensions is particularly simple [190]. The complexified

Lorentz group can be taken to be SO(5, 1)∼SL(4), and a null momentum vector can

be represented as an antisymmetric (4×4) tensor pIJ of vanishing determinant. The

complexified little group is SL(2)×SL(2). As such, we can express the momentum

pIJa of particle a as,

pIJa = εαβλIaαλ
J
a β(= εα̇β̇λ̃Ia α̇λ̃

J
a β̇

). (3.15.312)

Note the similarity to ordinary spinor-helicity variables—except that here, the α, α̇

indices aren’t Lorentz indices as familiar from four dimensions, but are instead indices

of the SL(2)×SL(2) little group. We can group all the λ’s for the particles a = 1, . . . , n

together into a (4×2n)-matrix,

ΛI
A =

(
λI1 1 λ

I
1 2 λ

I
2 1 λ

I
2 2 · · · λIn 1 λ

I
n 2

)
. (3.15.313)

Momentum conservation is then the statement that,

ΛI
AΛJ

BJ
AB = 0 where J ≡


0 1

1 0 . . .
0 1

1 0

 . (3.15.314)

Thus, in close parallel with (2+1) dimensions, the external data in 6 dimensions is

associated with a point in the null symplectic Grassmannian, [191]. It would be

interesting to see if this structure has any role to play in six-dimensional physics.

Let us close by returning to a number of concrete open directions of research

flowing more directly from the ideas presented here.

In this chapter, we have given a complete classification and understanding of all

reduced on-shell diagrams, whose invariant content is captured by the permutation

associated with the left-right paths. Amongst other things, all terms occurring in the

tree-level BCFW recursion relations are reduced graphs, and indeed, the recursion

can be described purely combinatorially as a simple and canonical “bridging” of

permutations. We have however also seen that non-reduced on-shell diagrams are
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also physically important, directly giving the loop integrand. Of course, the non-

reduced graphs for the loop integrand arise from merging adjacent legs of higher-point

reduced graphs, which we understand completely. Nonetheless, it would clearly be

interesting and important to try and extend the classification of the on-shell diagrams

to non-reduced graphs as well; in other words, we would like to understand all the

invariants on non-reduced graphs, that can be related by merges and square moves.

Obviously the left-right path permutations are still invariants, but there are clearly

further invariants as well. For instance, suppose we have two non-reduced graphs with

exactly the same permutation, but where the first graph has a bad double-crossing

between the two paths starting at a and b, while the second has a bad double-crossing

for a different pair of paths starting at c and d. Clearly square moves and merges can’t

connect these two diagrams. It is plausible that the complete set of invariants involves

the permutation together with other labels characterizing the pattern of intersections

of the left-right paths. Finding a complete classification will be very important, not

least because it would allow us to cast the BCFW construction of all-loop integrand

in completely combinatorial terms.

We have seen that the all-loop integrand is naturally presented in a “dlog” form.

This form begs to be integrated, indeed most näıvely of course, these forms integrate

to zero! The integrals don’t vanish because of branch cuts in the arguments of the

logarithms, on the real contour of integration. This leads to novel ways of performing

the loop integrations directly in spacetime, which will be pursued in future work.

Finally, the BCFW construction of scattering amplitudes in the Grassmannian

still leaves something to be desired. It is not entirely satisfying to give the scattering

amplitude a fundamentally recursive definition. Put another way, we have yet to see

locality and unitarity fully emerge from more primitive principles in a completely sat-

isfactory way. We would like to have a direct definition of the amplitude, linked to the

Grassmannian, making all the symmetries manifest, and discover their singularities in

the form of factorization and forward limits as an emergent property. This is bound

to be linked to the “polytope picture” studied in [37, 60]. This line of thought will

certainly be taken up again with our vastly improved understanding of the positive

Grassmannian in hand.
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Chapter 4

Locality and Unitarity from Positivity

4.1 Introduction and summary

We have taken significant steps towards a new understanding of scattering amplitudes

in N = 4 SYM. Physically, we have understood that the full amplitude, to all loop

orders, can be represented as a sum over on-shell processes; mathematically, these

on-shell processes are associated with the simple but deep structure of the positive

Grassmannian. However, we have not yet succeeded in our main goal, which is to

find an entirely new understanding of ”what the amplitudes really are”, where the

fundamental principles of locality and unitarity can be seen as emergent properties

from a more primitive starting point.

Our failure to do so so far can be seen quite vividly by the fact that the most

natural objects from our Grassmannian viewpoint are individual on-shell processes,

but to get the full amplitude we must combine together these on-shell diagrams in

certain combinations, as dictated by the all-loop recursion relations. But why do we

add these particular combinations; what is wrong with other combinations? The an-

swer is of course that only the “correct” combination is both local and unitary! Thus,

despite the fact that we are describing scattering processes in a new way without La-

grangians and path integrals, with no mention of gauge redundancy and no Feynman

diagrams, we are still firmly tethered to the usual formalism of quantum field theory.

We have not yet succeeded in seeing locality and unitarity emerge from more basic

ideas; quite the contrary, while we have found a new basic set of objects from which to

build the amplitude, we are using locality and unitarity to define what the amplitude

is. In order to realize our goal, we need to ”cut the chord” tethering us to the usual

language of QFT–concepts like ”factorization” and ”cuts” and ”recursion relations”

can not be part of the fundamental definition we are looking for. Instead we need
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to find a new question to which ”the amplitude” is the answer, and understand how

locality and unitarity emerge from this new starting point.

For some time, there has been a vague indication for what this new question should

be. The amplitude seems to be “the volume” of “some region” in “some space”, with

all the different representation of the amplitude simply corresponding to different

“triangulations” of this space. This picture was partially realized in some extremely

simple examples, for NMHV tree amplitudes and MHV 1-loop amplitudes, but the

techniques seemed to rely on special features of these cases and seemed impossible to

extend to general amplitudes.

We now finally know how to make this picture precise for all amplitudes, in so

doing we have found a first example of the complete reformulation for scattering

amplitudes we have been seeking. The relevant object is again associated with the

Grassmannian but in a new way. We will here content ourselves with motivating and

defining this simple new mathematical structure, and showing how it determines ”the

amplitude”. The way in which locality and unitarity and locality emerge, as well as

new computations of amplitudes to all loop orders, will be presented in more detailed

future work.

To begin with, let us start with the simplest familiar geometric object of all, a

triangle in two dimensions. Thinking projectively, the vertices are ZI
1 , Z

I
2 , Z

I
3 where

I = 1, · · · , 3. The interior of the triangle is a collection of points of the form

Y I = c1Z
I
1 + c2Z

I
2 + c3Z

I
3 , where ca > 0 (4.1.1)

Indeed, this was how we began our discussion of positive Grassmannian; the interior

of the triangle can be thought of as (c1, c2, c3)/GL(1), with ca > 0. One obvious

generalization of the triangle is to a simplex in a general projective space, which then

further generalizes to the positive Grassmannian as we have discussed in previous

chapters.

But there is another natural generalization we can consider. Instead of considering

a triangle, we can think of a more general polygon with n vertices ZI
1 , · · · , ZI

n. Once

again we would like to discuss the interior of this region. However in general this is not

canonically defined–if the points Za are distributed randomly, they don’t obviously
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enclose a region of which the Za are all vertices. Only if the Za form a convex polygon

do we have a canonical ”interior” to talk about.

We know that convexity for the Za is a special case of positivity in the sense of

the positive Grassmannian. In other words, the points Za form a closed polygon only

if the 3× n matrix with columns Za has all positive (ordered) minors:

〈Za1Za2Za3〉 > 0 for a1 < a2 < a3 (4.1.2)

Having arranged for this, the interior of the polygon is given by points of the form

Y I = c1Z
I
1 + c2Z

I
2 + · · · cnZI

n with ca > 0 (4.1.3)

Note that this can be thought of as an interesting pairing of two different positive

spaces. We have

(c1, · · · , cn) ⊂ G+(1, n) , (Z1, · · · , Zn) ⊂ G+(3, n) (4.1.4)

which we are jamming together to produce

Y I = caZ
I
a (4.1.5)

in G(1, 3).

This object has a natural generalization to higher projective spaces; we can con-

sider n points ZI
a in G(1, 1 +m), with I = 1, · · · , 1 +m, which are positive

〈Za1 · · ·Za1+m〉 > 0 (4.1.6)

Then, the analog of the ”inside of the polygon” are points of the form

Y I = caZ
I
a , with ca > 0 (4.1.7)

It is trivial to see that this object is only cyclically invariant if m is even; so the first

new case beyond simple polygons is m = 4. We can further generalize this structure

into the Grassmannian, by considering a region in G(k, k +m) with co-ordinates

Y I
α , α = 1, · · · k, I = 1, · · · , k +m (4.1.8)

determined by some positive external data via

Y I
α = CαaZ

I
a (4.1.9)
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where

Cαa ⊂ G+(k, n), ZI
a ⊂ G+(k +m,n) (4.1.10)

Let us call this space

Pn,k;m (4.1.11)

which carves out a part of G(k, k+m). Said in words, we are given a collection of Za

which are a positive configuration of vectors in k + m dimensions. These determine

a region inside G(k, k + m), which is the image of the top-cell of the Grassmannian

G(k, n) under the map given above.

Incredibly, for m = 4, Pn,k;m=4 (which we henceforth refer to as Pn,k for brevity)

actually completely determines all the NkMHV tree amplitudes! Locality and uni-

tarity for trees follow directly from the positive geometry. Indeed, given the rules

for determining the amplitude we will describe in a moment, approaching the sin-

gularities of the amplitude corresponds to moving to the boundaries of this region.

For m = 4, which is the case of direct relevance to amplitudes, it is easy to see

that the boundaries correspond to those k planes that pass through the 4−plane

made from ZiZi+1ZjZj+1! Not co-incidentally, if we think of the Z’s as momentum-

twistor external data, these precisely correspond to the structure of local poles where

〈ii + 1jj + 1〉 → 0. Furthermore, on this boundary, positivity forces the space to

split into “left” and “right” pieces with lower k and n, precisely reproducing the fac-

torization property that reflects unitarity. Locality and unitarity both emerge from

positivity.

Before showing how to determine the (super)amplitude from this geometry, let us

define the notion of a ”volume” associated with this space. We can do this already

going all the way back to the triangle or polygon. The usual notion of ”area” is

obviously not projectively meaningful. However there is a closely related idea that

is. For the triangle, we can consider a 2-form in Y -space, which has logarithmic

singularities on the boundaries of the triangle. Written invariantly, this 2-form is

ω123 =
〈Y dY dY 〉〈123〉2

〈Y 12〉〈Y 23〉〈Y 31〉
(4.1.12)

If we pick a particular set of positive co-ordinates e.g. if we expand Y = Z3 + c1Z1 +
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c2Z2, then

ω123 =
dc1

c1

dc2

c2

(4.1.13)

The form for the polygon P can be obtained by first triangulating the polygon in

some way, then summing the elementary two-form for each triangle, for instance as

ω =
∑

i ω1ii+1.

In general, given some space P we can try and find a form ωP with logarithmic

singularities on the boundaries of P . If such a form exists, it has all the same additive

properties as the intuitive notion of “volume”. And to prove that it exists and also

compute it, all we need to do is “triangulate” (better, “cellulate”) the space P , in other

words, find a collection of positive co-ordinates which tile the whole space, without

overlapping. For each cell, there is a form which is just given wedging together the

dlog’s of the positive co-ordinates.

We’ll now show that the tree amplitude is completely fixed by ωPn,k . But how

do we extract a super-amplitude from this completley bosonic object? Also, there is

the peculiar feature that the external data are (4 + k) dimensional, while we usually

think of the data as 4 bosonic and 4 fermionic variables per particle.

The geometry tells us the right way to think about this. Any specific point Y0 in

G(k, k + 4) breaks the GL(4 + k) symmetry of the projective space down to GL(4)

symmetry, that we identify with our familiar conformal symmetry. In other words,

suppose

Y = (1k×k|0k×4) (4.1.14)

Then it makes sense to think of the first 4 components of the Za as being our usual

bosonic momentum-twistors za acted on by the unbroken GL(4):

Za =


za

∗1

...

∗k

 (4.1.15)

but we still have to decide how to interpret the remaining k entries of Za. Clearly,

if they are normal bosonic variables, we have an infinite number of extra degrees of
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freedom. It is therefore natural to try and make the remaining components infinites-

imal, by saying that some N + 1’st power of them vanishes. This is equivalent to

saying that each entry can be written in terms of Grassmann parameters as

Za =


za

φA1 · η1A

...

φAk · ηAk

 (4.1.16)

where φ1,··· ,k and ηa are Grassmann parameters, and A = 1, · · · ,N .

Now there is a unique way to extract the amplitude. We simply localize the form

ωPn,k to Y0, and integrate over the φ’s:

Mn,k(za, ηa) =

∫
dNφ1 · · · dNφk

∫
ωPn,kδ

4k(Y ;Y0) (4.1.17)

Note that there is really no integral to perform in the second step; the delta functions

fully fix Y . Indeed, any form ω on the Grassmannian can always be written as

ωPn,k [Y ;Za] = 〈Y1 · · ·Ykd4Y1〉 · · · 〈Y1 · · ·Ykd4Yk〉fn,k(Y ;Za) (4.1.18)

and our expression just says that

Mn,k(za, ηa) =

∫
dNφ1 · · · dNφkfn,k(Y0;Za) (4.1.19)

Note that we can define this operation for an N , however, only for N = 4 does M

further have weight zero under the rescaling (za, ηa).

In order to compute ωPn,k we need to find a cell decomposition of Pn,k. In turn, this

corresponds to finding special 4k dimensional cells of G+(k, n), whose images under

the Y = C ·Z map give non-overlapping cells that cover all of Pn,k. Very beautifully,

we find that those collection of 4k dimensional cells of G+(k, n) corresponding to the

BCFW representation of tree amplitudes provide one class of cellulations of this sort!

Let us move on to loops. Again, we defer the discussion of why even thinking

about ”loops” is completely natural to future work, and here simply describe what

extended positive space determines the form corresponding to the loop integrand. We

can already start at k = 0 with the MHV loop integrand; the integration variables

are just L lines in momentum-twistor space. We can represent each line by a pair of
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points Aγ for γ = 1, 2; modulo GL(2) action. For a single loop, the only notion of

positivity we can have is obviously simply that

AIγ = CγaZ
I
a (4.1.20)

where all the (2 × 2) minors of the G(2, n) matrix Cγa are positive. For L loops we

have this condition for each loop, but we clearly need more, since the loops must

interact somehow. The only possible extension is to simply say that not only the 2

minors of all the C ′s individually, but all the 4 × 4 minors built from pairs of C ′s,

6× 6 minors built from triples and so on, are also all positive! In other words, all the

GL(2)L invariant minors obtained by of the 2L× n matrix
C(1)

C(2)

· · ·
C(L)

 (4.1.21)

are positive.

For general n, k and loop order L, the relevant space is that of a k plane Y in

(k + 4) dimensions, together with the space of L lines A(1, · · · , L)γ living in the 4

dimensional space which is in the complement of Y . Our external data ZI
a are a

positive configuration of vector in 4 + k dimensions. We then have the region

Pn,k;L (4.1.22)

defined by

Y I
α = CαaZ

I
a ; A(i)I

γ = C(i)
γ aZ

I
a (4.1.23)

where all the minors of the matrix (k + 2L)× n matrix
C

C(1)

· · ·
C(L)

 (4.1.24)

which contain C, and any number of GL(2)L invariant blocks from the C(1), · · · , C(L)

are positive.
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Once again, we must find a cell-decomposition of this space, which then yields the

form ωPn,k;L , and the integrand of the super-amplitude at any loop order is extracted

from ω in exactly the same way as described above for trees.

Once again, quite remarkably, the singularity structure of the loop integrand en-

coding both locality and unitarity is a direct consequence of this new positive struc-

ture. All-loop BCFW provides one cell-decomposition of this space. But interestingly,

while the BCFW decomposition of the tree amplitude also corresponds to quite canon-

ical triangulations, this does not appear true at loop level. Indeed, to e.g. compute

the 4 particle amplitude at 3-loops, the loop BCFW recursion forces us to go to begin

with 10 pt N3MHV tree amplitudes and take forward limits; it is peculiar that we

have to go to this very different space to get the result. By contrast in our final

formulation, the loop integrand forms are defined directly by positive conditions in

the space where they live.

For instance, consider the 4-particle integrand at all loop orders. We can parametrize

each C(i) as

C(i) =

 1 xi 0 −wi
0 yi 1 zi

 (4.1.25)

In this simple case the positivity constraints are just that all the 2 × 2 and 4 × 4

minors are positive, translating to

xi, yi, zi, wi > 0, (xi − xj)(zi − zj) + (yi − yj)(wi − wj) < 0 (4.1.26)

Finding the cell decomposition of this extremely simple-looking space, that can be

defined on a single line, would give us the 4-particle amplitude to all-loop order.

It is remarkable that the simple picture, mereley moving from “triangles” to “poly-

gons”, suitably generalized to the Grassmannian, leads us to the space Pn,kL, whose

“volume” gives us the scattering amplitudes for a non-trivial interacting quantum

field theory in four dimensions, with locality and unitarity seen as emergent conse-

quences of positivity. It is also fascinating that while in the conventional formalism

of field theory locality and unitarity are at odds, forcing the introduction of large

redundancies to be allowed to co-exist, in this new picture they emerge hand-in-hand

from the same principle.
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Pn,k,L is a large generalization of the positive Grassmannian, the role of G+(k, n)

is to provide all the different ”shapes” for the possible cell decompositions, but the

fundamental object is Pn,k,L. Interestingly, while G+(k, n) was relatively recently

studied by mathematicians, the space Pn,k,L is as of yet completely un-known in

mathematics. We expect it to continue to reveal amazing surprises for both physics

and mathematics as we initiate a more systematic exploration of its properties.

4.2 MHV amplitudes at all loop orders

In the MHV case there is no supersymmetric extension od external data and the space

is just the momentum twistor space P 3. Therefore, the positivity of external data is

just the positivity of external momentum twistors ZI
i , I = 1, . . . , 4, ie. Z ∈ G+(4, n).

The point inside the positive region is

AI = CaZ
I
a , a = 1, . . . , n, I = 1, . . . , 4 (4.2.27)

The definition (4.2.27) is not cyclically invariant therefore this is not a case of our

interest. Instead of a single point A we can consider two points A, B that form a line

Aα = (A,B).

I. One-loop amplitudes

In this case we have just a single line.

AIα = CαaZ
I
a (4.2.28)

where Cαa is a positive Grassmannian G+(2, 4). The boundaries of this region are

〈AB i i+1〉 = 0. The possible boundaries of the space are 〈AB i j〉 = 0, ie. where the

line ZAZB intersects the line ZiZj. Plugging (4.2.28) we get

〈AB i j〉 =
∑

1≤k<`≤n

(k `)〈k ` i j〉 (4.2.29)

We require 〈AB i j〉 to be positive inside the positive region and zero on the

boundary. However, the sum (4.2.29) does not have the uniform sign for general
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indices i, j, k, `. Despite all minors of the C-matrix are positive, (k `) > 0 for k < `,

not all four-brackets of external momentum twistors are positive as well, e.g. if

k < i < ` < j then 〈k ` i j〉 < 0 while for k < ` < i < j, 〈k ` i j〉 < 0. This does not

happen when j = i+1 because 〈k ` i i+1〉 > 0. As a result the boundaries of the space

are 〈AB i i+1〉 for i = 1, 2, . . . , n.

The form associated with the positive region has logarithmic singularities on the

boundaries of the region which are 〈AB i i+1〉. Therefore the general structure of the

form is

Ωn =
〈AB d2A〉〈AB d2B〉 · N (AB,Zi)

〈AB12〉〈AB23〉〈AB34〉 . . . 〈ABn1〉
(4.2.30)

where the numerator forces all singularities to be logarithmic. In fact, just de-

manding this property together with vanishing on all unphysical singularities1 fixes

the numerator N (AB,Zi) completely as we will show in []. In the four-point case the

numerator is independent on AB and we get

Ω4 =
〈AB d2A〉〈AB d2B〉〈1234〉2

〈AB12〉〈AB23〉〈AB34〉〈AB41〉
. (4.2.31)

We want to triangulate the positive space P in terms of elementary building blocks,

each of them is just the dlog of all variables. BCFW gives such a triangulation as

was showed in the chapters 2 and 3 called the kermit formula. There is also a local

expansion discussed in chapter 1 where the one-loop amplitude is written as linear

combination of pentagons and boxes. This is a very different expansion than the

kermit formula, note that term-by-term it contains only physical poles. However,

this does not correspond to the triangulation of the positive region. The reason is

that some of the lower dimensional boundaries are outside the positive region. Let us

show it explicitly on the generic pentagon. Let us calculate the residue on the triple

cut 〈AB n 1〉 = 〈AB i i+1〉 = 〈AB j j+1〉 = 0. It is easy to see that the residue is

non-zero but the codimension three boundary representing the geometry of the line

ZAZB is not allowed. Look at the double-cut 〈AB i i+1〉 = 〈AB j j+1〉 = 0, then

ZA = Zi + αZi+1, ZB = Zj + βZj+1 (4.2.32)

1We wrote the form Ωn such that only physical poles 〈AB i i+1〉 are present in (4.2.30). However,

these are only first boundaries. The numerator must vanish on all unphysical higher boundaries.
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and

C =

 0 . . . 0 1 α 0 . . . 0 0 0 0 . . . 0

0 . . . 0 0 0 0 . . . 0 1 β 0 . . . 0

 (4.2.33)

Minors of this matrix must be positive, therefore both α, β > 0. Now we calculate

the triple cut 〈ABn1〉 = 0,

〈AB 1n〉 = 〈1 i j n〉+ β〈1 i j+1n〉+ α〈1 i+1 j n〉+ αβ〈1 i+1 j+1n〉 (4.2.34)

All terms on the right hand side are positive because 〈1 i+1 j+1n〉 > 0, all four-

brackets are ordered, and there is no way how to set 〈AB1n〉 to zero. Similar argument

applies for all other terms and none of the terms in the sum (??) lies in the positive

region only.

II. Two-loop amplitudes

We generalize the picture presented for the one-loop integrands to the integrand at

any loop order. We start with the MHV case where the positive data are external

momentum twistors living in G+(4, n). All the issues with extended twistors for k > 0

are absent here. We first discuss the two-loop amplitudes and then the generalization

to all loop orders.

In the MHV one-loop case the region that defined the integrand was associated

with the single line AB in P 3 which was parametrized as

AIα = CαaZ
I
a , I = 1, . . . , 4 (4.2.35)

where Aα = (A,B), matrix Cαa is the top cell of G+(2, n) and Za are the positive

external data living in G+(4, n). There is a natural generalization to the two-loop

case. Instead of a single line we consider two lines (AB), (CD) in P 3 parametrized

using positive external data as

A(1) I
α = C(1)

αaZ
I
a (4.2.36)

A(2) I
α = C(2)

αaZ
I
a (4.2.37)
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with A(1)
α = (A,B) and A(2)

α = (C,D). Each line has its own private G+(2, n)

matrix C
(1)
αa , resp. C

(2)
αa . We can choose them to be top cells of G+(2, n) but that

would be a redundant description because we really look just for a union of all four-

dimensional cells similar to the one-loop case. Now if we do not impose any additional

constraints on matrices C(1), C(2), the region we get is just two copies of the MHV

one-loop, and therefore corresponds to the square of MHV one-loop integrand. We

have to do something more special to get the region for MHV two-loop integrand.

Let us combine C(1) and C(2) into the bigger 4 by n matrix,

C =

 C(1)

C(2)

 =


∗ ∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ ∗ . . . ∗ ∗

 (4.2.38)

This matrix has positive 2 by 2 minors made out of first two or last two rows. The

extra constraint we impose is that: All 4 by 4 minors of matrix C are positive. Then

the space of all lines (AB) and (CD) built by the collection of all eight-dimensional

matrices (4.2.38) under the map (4.2.37) specify the region P that corresponds to the

n-pt two-loop integrand.

The integrand form

As in the previous sections there exists an unique form Ω associated with the region

that has logarithmic singularities on its boundaries. There is a trivial relation between

the form Ω
(2)
n and the integrand for the MHV amplitude I

(2)
n ,

Ω(2)
n = dωAB dωCD × I(2)

n (AB,CD,Zi) (4.2.39)

where dωAB and dωCD are measures for lines (AB) and (CD),

dωAB = 〈AB d2A〉〈AB d2B〉 dωCD = 〈CD d2C〉〈CD d2D〉. (4.2.40)

The integrand I
(2)
n (AB,CD,Zi) is a rational function of two lines (AB), (CD)

and external twistors Zi. The poles of I
(2)
n are associated with the boundaries of the

positive region:
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〈ABCD〉 and 〈AB i i+1〉, 〈CD j j+1〉 for i, j = 1, . . . , n (4.2.41)

and we can write in the form

I(2)
n (AB,CD,Zi) =

N(AB,CD,Zi)

〈AB 1 2〉 . . . 〈AB n 1〉〈ABCD〉〈CD 1 2〉 . . . 〈CDn 1〉
(4.2.42)

where the numerator N(AB,CD,Zi) is a degree (n− 3) function in (AB), (CD)

and degree 4 function in Zi. Its role is to vanish on all configurations that violate

properties of the amplitude, or equivalently ensures that the corresponding region is

positive.

BCFW triangulation

The loop BCFW recursion relations gives us the four-point two-loop amplitude writ-

ten in the form,

M2−loop
4,2 = FL(M1−loop

6,1 ) (4.2.43)

where FL stands for the forward-limit. Six point NMHV 1-loop amplitude in-

cludes 16 terms. There are different ways how to perform a forward-limit, also the

number of terms is not constant. We use the most natural choice of BCFW shifts

which also allows us to do directly the double-forward-limit on eight point N2MHV

tree amplitude. As a result we get eight terms and another eight are obtained by

symmetrization AB ↔ CD. Each term is fully specified by the C matrix which

contains eight parameters β1, β2, . . . β8. The eight matrices are
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 1 + β3β8 β8 −β1β2 + β8(β4 − β1β2β3) −β2(1 + β3β8)

β3 1 β4 − β1β2β3 −β2β3
−β6β7 0 1 + β1β5 + β1β7(1 + β2β6) β5 + β7(1 + β2β6)

−β6 0 β1(1 + β2β6) 1 + β2β6


 1 + β8(β3 − β4β5β6) β8(1 + β2β6) β6β8(1 + β1β5) β5β6β8

β3 − β4β5β6 1 + β2β6 β6(1 + β1β5) β5β6

−β4(β5 + β7) β2 1 + β1(β5 + β7) β5 + β7

−β4 0 β1 1


 1 + β2β8 β8 β4β8(1 + β1β3) β3β4β8

β2 1 β4(1 + β1β3) β3β4

−β6β7 0 1 + β1(β3 + β5 + β7) β3 + β5 + β7

−β6 0 β1 1


 1− β4β5β6β8 β8 β8(β2 + β6(1 + β1β3 + β1β5)) β6β8(β3 + β5)

−β4β5β6 1 β2 + β6(1 + β1β3 + β1β5) β6(β3 + β5)

−β4(β5 + β7) 0 1 + β1(β3 + β5 + β7) β3 + β5β7

−β4 0 β1 1


 1 + β8(β2 − β4β5β6) β8 β6β8(1 + β1β3 + β1β5) β6β8(β3 + β5)

β2 − β4β5β6 1 β6(1 + β1β3 + β1β5) β6(β3 + β5)

−β4(β5 + β7) 0 1 + β1(β3 + β5 + β7) β3 + β5 + β7

−β4 0 β1 1


 1 β1 β2 0

−1 0 β3 β4

0 β1β4 β2β4 + β5 + β1β3β6 β1β4β6

−β8 −β1β4 −β2β4 + β1β3β7 + β3β8 β1β4β7 + β4β8


 1 β1 β2 0

−1 0 β3 β4

β1 + β5 β6 −β1β3 −β1β4
−β1 β7 + β1β4β8 β1β3 + β2β4β8 β1β4


 1 + β4β8 β8(1 + β3β6) −β1β2 + β8(β6 − β1β2β4) −β2(1 + β4β8)

β4 1 + β3β6 β6 − β1β2β4 −β2β4
−β5β7 β3 1 + β1β7(1 + β2β5) β7(1 + β2β5)

−β5 0 β1(1 + β2β5) 1 + β2β5


and other eight are obtained just by flipping first two and last two rows. The form

Ωi for each term is just the dlog of all eight parameters,

Ωi = dlogβ1 dlogβ2 . . . dlogβ8 (4.2.44)

Now we have to solve for βi in terms of bi-twistors AB, CD and external momen-

tum twistors Z1, Z2, Z3, Z4. Of course, the result is guaranteed to be dual conformal

invariant and therefore written in terms of four-brackets.

The form ΩP for the whole positive region is then written as

ΩP =
16∑
i=1

Ωi(AB,CD,Zi) (4.2.45)

with Ω8+i(AB,CD,Zi) = Ωi(CD,AB,Zi), therefore only eight matrices are really

independent and these we present above.

From matrix to the form

Let us show on the explicit example of the seventh matrix how to solve for βi and

rewrite (4.2.44) as Ωi(AB,CD,Zi).
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
1 β1 β2 0

−1 0 β3 β4

β1 + β5 β6 −β1β3 −β1β4

−β1 β7 + β1β4β8 β1β3 + β2β4β8 β1β4

 (4.2.46)

It is easy to solve for coefficients β1, β2, β3, β4 because these are the only param-

eters of first two rows. We know that the line AB has four degrees of freedom so the

solution must be independent on CD. The four-brackets with AB only are

〈AB12〉 = β2β4, 〈AB23〉 = β4, 〈AB34〉 = β1, 〈AB14〉 = β1β3,

〈AB31〉 = β1β4, 〈AB42〉 = β2 + β3 (4.2.47)

where we suppressed 〈1234〉 which is always present on the right hand side. We

can easily construct the ratios that are projective in AB,

β1 =
〈AB31〉
〈AB23〉

, β2 =
〈AB12〉
〈AB23〉

, β3 =
〈AB14〉
〈AB34〉

, β4 =
〈AB31〉
〈AB34〉

(4.2.48)

Solving for β5, β6, β7, β8 is a little more complicated but still the solutions are

very easy to find

β5 =
〈AB (CD2)

⋂
(341)〉〈AB13〉

〈CD12〉〈AB23〉〈AB34〉
, β6 =

〈34 (AB1)
⋂

(CD1)〉〈AB13〉
〈CD12〉〈AB23〉〈AB34〉

β7 =
〈CD (AB)

⋂
(341) (23)

⋂
(AB1)〉〈AB13〉

〈CD23〉〈AB12〉〈AB23〉〈AB34〉
, β8 =

〈AB (CD2)
⋂

(341)〉
〈AB12〉〈CD23〉

Once we have all βi, the form is trivial (4.2.44). We can also rewrite (4.2.44) in

the more standard way as

Ω7 = 〈AB d2A〉〈AB d2B〉 × I7(AB,CD,Zi) (4.2.49)

where

I7(AB,CD,Zi) = (4.2.50)

〈AB13〉2〈1234〉4

〈AB23〉〈AB34〉〈AB14〉〈CD12〉〈CD23〉〈34 (AB1)
⋂

(CD1)〉〈CD (23)
⋂

(AB1) (AB)
⋂

(341)〉
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Note that the expression contains three spurious poles. We can do this exercise

for remaining seven matrices (and get other eight just by flipping AB ↔ CD). The

sum of all sixteen terms is then equal to the sum of four double boxes.

III. Generalization to all loop orders

The picture we presented at two-loops has a natural generalization to all loop orders.

At L loops we consider L lines (AB)1, . . . (AB)L in P 3 parametrized as usual

A(1) I
α = C(1)

αaZ
I
a

A(2) I
α = C(2)

αaZ
I
a

...

A(L) I
α = C(L)

αa Z
I
a (4.2.51)

where all C(i) are top cells of G+(2, n), resp. the collection of all four-dimensional

cells of G+(2, n). Without any other constrain this would correspond to nth power of

one-loop amplitude. Let us combine all G+(2, n) matrices into the big 2L by n matric

C,

C =


C(1)

C(2)

...

C(L)

 =



∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ ∗

∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ ∗
...

...
...

...
...

...

∗ ∗ ∗ . . . ∗ ∗ ∗
∗ ∗ ∗ . . . ∗ ∗ ∗





2L (4.2.52)

To get the n-point L-loop MHV amplitude we demand the positivity of all 2` by

2` minors of the matrix C for ` = 1, 2, . . . L. The minors always include both or none

of the rows of the given block from C(i). So we never consider minors that involve

just one row of any C(i). This is an obvious assumption because the single row does

not have any meaning due to the GL(2) transformation acting on C(i).
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The integrand form

As in the previous sections there exists an unique form ΩP associated with the region

that has logarithmic singularities on its boundaries. There is a trivial relation between

the form Ω
(L)
P n and the integrand for the MHV amplitude I

(L)
n ,

Ω
(L)
P n = dω1 dω2 . . . dωL × I(L)

n (A1B1, . . . ALBL, Zi) (4.2.53)

where dωj is a measure for a line (AB)j,

dωj = 〈AjBj d
2Aj〉〈AjBj d

2Bj〉. (4.2.54)

The integrand I
(L)
n is a dual conformal invariant rational function of L bi-twistors

AjBj and n external momentum twistors Zi.

Collinear region

Let us consider n-pt `-loop MHV amplitude and calculate the residue where (AB)`

lies in the plane (Zi 1ZiZi+1) and passes the point Zi. This is an allowed cut be-

cause it does not violate the positivity condition. Furthermore, it does not impose

any constraint on the part (AB)i, i = 1, 2, . . . ` 1 therefore the residuum must be

proportional to lower loop amplitude with loop momenta (AB)1 . . . (AB)` 1 (with no

shifts). In this region we parametrize

A` = Zi B` = αZi 1 + βZi+1

where we do not fix GL(1) of α, β (i.e. we are free to fix one of them to 1). As we

will see in the next subsection if α = 0 or β = 0, the residuum is directly the lower

loop amplitude. Therefore, on this cut

CutA(`)
n (1, 2, . . . n) =

1

αβ
· A(` 1)

n (1, 2, . . . n)

This relation has a critical consequence on the integrand of the logarithm of the

amplitude. It is very easy to prove that the above expression implies that the loga-

rithm of the amplitude vanishes on this cut.
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The other consequence is that if (AB)` is already places in this special position,

ie. in a plane (Zi 1ZiZi+1) passing through the point Zi, there are only two different

quadrupole cuts we can get from this triple cut, i.e. α = 0 or β = 0. It is also evident

from the expression above, that there are no other choices. Obviously we can not cut

some random 〈AB j j+1 because the corresponding leading singularity does not have

a location (AB)` = ZiZj as it should. The only choice would be to cut 〈(AB)`(AB)k〉.
However, let us look at the minors of the (4× n) matrix (A`B`AkBk). Most of them

are vanishing, the interesting one is (i 1 i i+1, j) for some j,

(i± 1 i i+1 j) = (i i± 1)`(i+1 j)k + (i i+1)`(i 1 j)k

Cutting 〈(AB)`(AB)k〉 = 0 we also set this minor to zero. However, this is a

sum of two numbers, both of them non-negative. Therefore setting it to zero would

mean to set both terms to zero independently which is not possible, we can not have

(i i+1)` = (i 1 i)` = 0 – then all minors of (AB)` would be zero.

Loop factorization

There is one additional property which is obvious from positivity: loop factorization.

Let us take n-pt `-loop MHV amplitude and calculate the residue (AB)` = ij,

CutA(`)
n (1, 2, . . . n) =

∑
`1+`2=`−1

A(`1)
n1

(i, i+1, . . . j) · A(`2)
n2

(j, j+1, . . . i)

This is a consequence of the positivity of (n× 2`) matrix A1B1 . . . A`B`.

4.3 NkMHV one-loop amplitudes

The extension to the general NkMHV one-loop amplitude must combine both fea-

tures we saw in previous sections: the special k-plane Y living in (k+4) dimensions

and a line AB in P3. There is a natural geometry that unifies both these objects:

We consider the k+4 dimensional space, the k-plane Y inside this space and the 4-

dimensional complement T . The line AB lives in this complement. This means that

the space T (the letter T obviously stands for twistor space) is not a fixed P3 but it

changes depending on the choice of Y .
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We have two objects Y I
α and AIγ which can be parametrized

Y I
α = CαaZ

I
a AIγ = Lγ aZI

a (4.3.55)

where C matrix is G+(k, n) and the L matrix is G+(2, n) as before. But this is not

quite correct. The line AIα ∼ (AB) is defined with respect to the k-plane Y , therefore

the invariant objects is the (k+2)-dimensional plane (Y AB) rather than the 2-plane

(AB). Let us combine Y and AB into

W I
α = (Y I

1 , Y
I

2 , . . . , Y
I
k , A

I
1, A

I
2) (4.3.56)

then we expand

W I
α = CαaZ

I
a (4.3.57)

where

C =



↑
← C(Y ) →

↓

↑
← C(A) →

↓


=



∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
...

...

∗ ∗ ∗ . . . ∗ ∗

∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ . . . ∗ ∗


(4.3.58)

The condition we impose is that all minors of matrices C(Y ) and C are positive.

I. NMHV amplitudes

In the special case of k = 1 we can formulate the problem purely geometrically. The

matrix C(Y ) consists just of one row and the matrix C is (3× n),

C =


∗ ∗ ∗ . . . ∗ ∗

∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ . . . ∗ ∗

 (4.3.59)

All entries in the first row must be positive as well as all (3 × 3) minors. It

is interesting to see what is the symmetry of this matrix. Note that it is NOT a
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GL(3) because we treat the first row as being special and it has only positive entries.

Therefore the actual symmetry of the matrix is smaller. Let us parametrize C as

C =

 y1 y2 y3 . . . yn 1 yn

y1
−→v 1 y2

−→v 2 y3
−→v 3 . . . yn 1

−→v n 1 yn
−→v n

 (4.3.60)

where −→v j are two-dimensional vectors. Writing C in that form requires the posi-

tivity of all (3× 3) minors of the matrix

C̃ =

 1 1 1 . . . 1

−→v1
−→v2
−→v3 . . . −→vn

 (4.3.61)

Matrices C and C̃ differ just by re-scaling of columns by yi which are all pos-

itive numbers. The matrix C̃ represents a polygon in P2. There are two different

symmetries of C̃:

1. GL(2) symmetry responsible for the choice of origin of two-dimensional space

−→v i.

−→vj → L · −→vj

2. Translation T 2 of all vectors,

−→vj → −→vj +
−→
d

The total symmetry is then GL(2)× T 2 ×GL(1). This has a very nice geometric

interpretation. It represents a convex polygon where three of the points points are

fixed. This is also the case for the polygon with GL(3) symmetry but there we can

fix the three points to arbitrary positions and they are all identified. In the case of

GL(2)×T 2×GL(1) the angle between two of the lines connecting these three points

is fixed, e.g. the right angle.

The task is to add n 3 other points 4, 5, . . . , n into the positive quadrant such

that the resulting polygon is convex. The fourth point can be obviously added to any

position in the first quadrant above the line 13. However, starting with five point we

have to consider more cases.

Note that the positive region for four-point P
(1)
4,1 is spanned by a single matrix

only. This is an analogue of the top cell of the positive Grassmannian. However, the
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corresponding form vanishes. Therefore, we concentrate on the five point case as the

first non-trivial.

BCFW triangulation

First we provide the result obtained by the loop BCFW recursion relations. In this

case there is just one terms in the expansion which is the forward limit of 7pt N2MHV

amplitude,

A1−loop
5,1 = FL(Atree7,2 ) (4.3.62)

While Atree7,2 contains six terms in the BCFW expansion, only three of them do

survive the forward limit. The matrices C are

C1 =


b2(1 + t1) b1 t2 a2t2 + t3 1 + t1 + t4

0 a1 1 a2 0

−b2 −b1 0 0 −1



C2 =


1 + t1 t2 t3 + a1t4 b1 + a2t4 b2

1 0 −a1 −a2 0

−1 0 0 −b1 −b2



C3 =


t1 t2 t3 t4 1

0 t2 t3 + a1 + b1a2 a2 0

0 0 b2a2 t4 + b2 1


We solve for eight parameters t1, t2, t3, t4 and a1, a2, b1, b2 from equations

Y I = C1aZ
I
a W I

α = CαaZ
I
a (4.3.63)

where Wα is the three-plane (Y AB). The result is

Ω1 =
〈12345〉4

〈Y 2345〉〈Y 3451〉〈Y AB51〉〈Y AB12〉〈Y AB23〉〈AB(Y 145)
⋂

(Y 234)〉
(4.3.64)

Ω2 =
〈12345〉4〈Y AB14〉2

〈Y 1234〉〈Y AB12〉〈Y AB34〉〈Y AB45〉〈Y AB41〉〈AB(Y 123)
⋂

(Y 145)〉〈AB(Y 145)
⋂

(Y 234)〉
(4.3.65)

Ω3 =
〈12345〉4

〈Y 4512〉〈Y 5123〉〈Y AB23〉〈Y AB34〉〈Y AB45〉〈AB(Y 123)
⋂

(Y 145)〉
(4.3.66)
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We see the interesting pattern of spurious poles cancelation. The first and the

third terms contain spurious poles 〈AB(Y 145)
⋂

(Y 234)〉 and 〈AB(Y 123)
⋂

(Y 145)〉
which are canceled by the second term that contains both of them.

For this special case of 5pt NMHV we also know the local triangulation. It is a

parity conjugate of 5pt MHV one-loop amplitude which has the local expansion

Ω =
〈AB(512)

⋂
(234)〉〈3451〉 − 〈AB51〉〈1234〉〈2345〉 − 〈AB34〉〈4512〉〈5123〉
〈AB12〉〈AB23〉〈AB34〉〈AB45〉〈AB51〉

(4.3.67)

The parity conjugation replaces 〈AB(512)
⋂

(234)〉 → 〈AB13〉 and adds Y to any

four-bracket. Also we multiply the result by the R-invariant [12345],

Ω =
〈12345〉4

〈Y 1234〉〈Y 2345〉〈Y 3451〉〈Y 4512〉〈Y 5123〉
× (4.3.68)

〈Y AB13〉〈Y 2345〉〈Y 4512〉 − 〈Y AB51〉〈Y 1234〉〈Y 2345〉 − 〈Y AB34〉〈Y 4512〉〈Y 5123〉
〈Y AB12〉〈Y AB23〉〈Y AB34〉〈Y AB45〉〈Y AB51〉

It is easy to show that (4.3.68) is equal to the sum of three BCFW terms.

4.4 General conjecture for the integrand

In the case of NkMHV `-loop integrand we have a natural (k+4)-dimensional space

with a positive k-plane Y defined via

Y I
α = CαaZ

I
a (4.4.69)

where C is the top cell, respectively union of 4k-dimensional cells of G+(k, n).

This k-plane has a natural complement which is P 3. We consider ` lines (AB)i,

i = 1, . . . , ` in this space,

AI (j)
σ = C(j)

σaZ
I
a , j = 1, . . . `. (4.4.70)

The index I runs from 1 to k+4 but each line (AB)i is defined with respect the

k-plane Y . Therefore only four directions of (AB)i that are orthogonal to Y are
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relevant. Also there is no invariant meaning of matrices C(j) if we do not specify C

which defines the k-plane Y . Therefore it is natural to build the k+2 by n matrices

C̃(j),

C̃(j) =

 C

C(1)

 (4.4.71)

and we demand them to be positive, ie. all their k+2 by k+2 minors are positive

and C̃(j) = G+(k+2, n). Furthermore, we define a big k+2` by n matrix C̃,

C̃ =



C

C(1)

C(2)

...

C(`)


(4.4.72)

and demand all relevant k+2j by k+2j minors to be positive. By relevant we

mean all minors that contain k rows from C together with j pairs of rows from C(j).

We call this structure generalized Grassmannian G+(k, n, `).

We associate a form ΩP which has logarithmic singularities on the boundaries of

this space. The boundaries correspond to setting (k+4)-brackets to zero,

〈Y i i+1 j j+1〉 = 0 or 〈Y AB i i+1〉 = 0 (4.4.73)

In fact, the form ΩP depends on external momentum twistors Zi, the k-plane Y

and the k+2-planes Y (AB)j rather than lines (AB)j.
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Chapter A All 2-Loop NMHV
Amplitude Integrands

In this appendix, we will provide all the details that go into the formula for the

n-point 2-loop NMHV amplitude, which can be graphically represented as follows:

A2−loop
NMHV =

∑
i<j<l<m≤k<i
i<j<k<l<m≤i
i≤l<m≤j<k<i

l

m
k

i

j

AB

× [i, j, j + 1, k, k + 1]

+
1

2

∑
i<j<k<l<i

k

li

j

×


Atree

NMHV(j, . . . , k; l, . . . , i)

+Atree
NMHV(i, . . . , j)

+Atree
NMHV(k, . . . , l)


Of these two terms, only the first requires any comment, because the second sum-

mand involves only the familiar double-pentagons which generate the MHV two-loop

amplitude’s integrand.

As indicated by the ranges of the summation, the first sum actually represents a

sum over three distinct cyclic orderings of the labels (i, j, k, l,m), corresponding to

each of the following cyclically-ordered integrands,

Integrand:

l

m
k

i

j

AB

l

m
jk

i

AB

l

mi

j

k

AB

Range: i < j < l < m ≤ k < i i ≤ l < m ≤ j < k < i i < j < k < l < m ≤ i

Boundary

terms :

 A i+1 = j

B i 1 = k+1


 A i = l

B i 1 = k+1


 A i+1 = j

B i = m


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For each range of indices, there are boundary-terms for which the general integrand’s

numerator must change slightly; these have been indicated in the table above. Given

the ranges and boundaries indicated above, the numerators for these contributions to

the 2-loop NMHV amplitude are given by,

term numerator

non-boundary 〈AB (i 1 i i+1)
⋂

(Σi,j,k)〉
A boundary 〈AB i+1(i 1 i)

⋂
(Σi,j,k)〉

B boundary 〈AB i 1(i i+1)
⋂

(Σi,j,k)〉
A&B boundary 〈AB i+1 i 1〉〈iΣi,j,k〉

where in all these cases the special plane Σi,j,k is given by the same object encountered

at one-loop, but with the arbitrary bitwistor X replaced by (lm),

Σi,j,k ≡
1

2

[
(j j+1)

(
(i k k+1)

⋂
(lm)

)
− (k k+1)

(
(i j j+1)

⋂
(lm)

)]
.
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Chapter B All 3-Loop MHV
Amplitude Integrands

In this appendix, we present the explicit form of the n-point 3-loop MHV ampli-

tude, which we represent graphically graphically represented as follows:

A3−loop
MHV =

1

3

∑
i1≤i2<j1≤
≤j2<k1≤k2<i1

j1

j2

k1k2

i1

i2

CDAB

EF

+
1

2

∑
i1≤j1<k1<

<k2≤j2<i2<i1

k1

k2j2
i2

i1
j1

AB

As described in the body of this Chapter, the ‘boundary terms’ of the summands

above require some comment. We will discuss the two topologies separately, starting

with with the first summand in the equation above. Because when any two of the

indices become identified in the first graph the wavy-line numerators become ill-

defined, special consideration must be made for each of the degenerations allowed in

the range of the summand—that is, all the cases where two or more of the indices

are identified. Separating each type of such degeneration that is allowed in the first

summand,

1

3

∑
i1≤i2<j1≤
≤j2<k1≤k2<i1

j1

j2

k1k2

i1

i2

CDAB

EF

=



1× 1
3

∑
i1<i2<j1<

<j2<k1<k2<i1

IA1 (i1, i2, j1, j2, k1, k2)

 all indices

distinct


3×1

3

∑
i1<i2<j1<
<j2<k<i1

IA2 (i1, i2, j1, j2, k) (k1 = k2 ≡ k)

3×1
3

∑
i1<i2<j<k<i1

IA3 (i1, i2, j, k)

(
k1 = k2 ≡ k

j1 = j2 ≡ j

)

1× 1
3

∑
i<j<k<i

IA4 (i, j, k)


k1 = k2 ≡ k

j1 = j2 ≡ j

i1 = i2 ≡ i


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Here, the overall factor of ‘1
3
’ reflects the Z3-symmetry of the loop integrand (recall

that every term in the sum is understood to be fully-symmetrized with respect to the 3!

permutations of the loop-variable labels); although every term in the summand has the

same factor of 1
3
, the boundary terms for which e.g. k1 = k2 in the sum are equivalent

to those where j1 = j2 or i1 = i2, allowing us to represent all three degenerations with

a single integrand—IA2 in this case, and similarly for IA3 .

Let us now carefully define the contributions to this class of graph each in turn.

First, we have the generic integrand:

• IA1 (i1, i2, j1, j2, k1, k2)
for i1<i2<j1<j2<k1<k2<i1

⇐⇒

j1

j2

k1k2

i1

i2

CDAB

EF

Numerator

Tr [(i1 |AB| i2)(j1 |CD| j2)(k1 |EF | k2)]

Here, we have left implicit the twelve propagators shown in the figure by solid lines,

and the three ‘wavy-line’ numerators 〈AB (i1 1 i1 i1+1)
⋂

(i2 1 i2 i2+1)〉 etc. Observe

that we have introduced a new notation for remaining tensor components of the nu-

merator for this integrand. Letting ‘•’ denote an arbitrary bitwistor, we may define a

‘trace’ over a pair of such auxiliary bitwistors: Tr [(a b •)(• c d)] ≡ 〈a b c d〉; that is, the

trace is nothing but the completely-antisymmetric contraction of bitwistors which are

dual to a pair of auxiliary bitwistors, which are indicated by ‘•’ in the corresponding

formula.1

It may be helpful to illustrate the meaning of this numerator using the familiar no-

tation of Wick contraction; in this notation, the tensor numerator of IA1 (i1, i2, j1, j2, k1, k2)

corresponds to: ⋂

Tr [(i1 |AB| i2)(j1 |CD| j2)(k1 |EF | k2)] ≡ 〈AB (i1 •)
⋂

(i2 •)〉〈CD (j1 •)
⋂

(j2 •)〉〈EF (k1 •)
⋂

(k2 •)〉;

alternatively, the numerator can be written in any one of the following equivalent

1The idea of ‘tracing’ over auxiliary bitwistors turns out to be a very powerful generalization

of the four-bracket. Indeed, all the four-brackets in this chapter could be translated directly into

traces, and often with considerable simplification.
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forms (the equality of which offering further justification for calling this a ‘trace’):

Tr [(i1 |AB| i2)(j1 |CD| j2)(k1 |EF | k2)]

≡ 〈i2 j1

[(
j2 k1

(
(k2 i1A)

⋂
(FE)

))⋂
(DC)

]
B〉 − (A↔ B);

= 〈j2 k1

[(
k2 i1

(
(i2 j1C)

⋂
(BA)

))⋂
(FE)

]
D〉 − (C ↔ D);

= 〈k2 i1

[(
i2 j1

(
(j2 k1E)

⋂
(DC)

))⋂
(BA)

]
F 〉 − (E ↔ F ).

As we will see presently, this numerator will change only very slightly for the

boundary terms in the summand. Always leaving the propagators and wavy-line

implicit from the the corresponding figures, the remaining integrands are defined

according to the following:

• IA2 (i1, i2, j1, j2, k)
for i1<i2<j1<j2<k<i1

⇐⇒

j1

j2

k

i1

i2

CDAB

EF

Numerator

Tr [(i1 |AB| i2)(j1 |CD| j2)(k |k 1 k+1| k)]

• IA3 (i1, i2, j, k)
for i1<i2<j<k<i1

⇐⇒

j

ki1

i2

CD

AB

EF

Numerator

Tr [(i1 |AB| i2)(j |j 1 j+1| j)(k |k 1 k+1| k)]

• IA4 (i, j, k)
for i<j<k<i

⇐⇒

j

k

i

AB CD

EF

Numerator

Tr [(i |i 1 i+1| i)(j |j 1 j+1| j)(k |k 1 k+1| k)]

For the second topology, the boundary terms in the summand lead to just three

separate contributions that must be specifically addressed.
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1

2

∑
i1≤j1<k1<

<k2≤j2<i2<i1

k1

k2j2
i2

i1
j1

AB =



1× 1
2

∑
i1<j1<k1<

<k2<j2<i2<i1

IB1 (i1, j1, k1, k2, j2, i2)

 all indices

distinct


2×1

2

∑
i1<j1<k1<
<k2<i2<i1

IB2 (i1, j1, k1, k2, i2) (k2 = j2 ≡ k2)

1×1
2

∑
i1<k1<

<k2<i2<i1

IB3 (i1, k1, k2, i2)

(
i1 = j1 ≡ i1
k2 = j2 ≡ k2

)

As above, the overall factor of ‘1
2
’ reflects the Z2-symmetry of the integrand (we

remind the reader that each term in the summand is to be fully-symmetrized with

respect to the 3! permutations of the loop variables). As before, we have exploited

the symmetry of the integrand to identify various boundary terms: the degenerations

i1 = j1 and k2 = j2, being equivalent in the cyclic sum, they can be combined into

the single summand IB2 —which explains its relative factor of 2.

With this, we can directly present the three classes of integrands of the second

topology which contribute to the 3-loop MHV amplitude:

• IB1 (i1, j1, k1, k2, j2, i2)
for i1<j1<k1<k2<j2<i2<i1

⇐⇒

k1

k2j2
i2

i1
j1

AB

Numerator

〈AB (i2 i1 j2)
⋂

(j1 1 j1 j1+1)〉
×〈AB (j2 1 j2 j2+1)

⋂
(j1 k1 k2)〉

• IB2 (i1, j1, k1, k2, i2)
for i1<j1<k1<k2<i2<i1

⇐⇒

k1

j2 � k2i2

i1
j1

AB

Numerator

〈AB (i2 i1 k2)
⋂

(j1 1 j1 j1+1)〉
×〈k2+1 j1 k1 k2〉

• IB3 (i1, k1, k2, i2)
for i1<k1<k2<i2<i1

⇐⇒

k1

j2 � k2i2

i1 � j1

Numerator

〈k2 i2 i1 i1+1〉
×〈k2+1 i1 k1 k2〉
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