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We have carried out dynamical system analysis of hessence field coupling with dark matter in 𝑓(𝑇) gravity. We have analysed
the critical points due to autonomous system. The resulting autonomous system is nonlinear. So, we have applied the theory of
nonlinear dynamical system. We have noticed that very few papers are devoted to this kind of study. Maximum works in literature
are done treating the dynamical system as done in linear dynamical analysis, which are unable to predict correct evolution. Our
work is totally different from those kinds of works. We have used nonlinear dynamical system theory, developed till date, in our
analysis.This approach gives totally different stable solutions, in contrast to what the linear analysis would have predicted. We have
discussed the stability analysis in detail due to exponential potential through computational method in tabular form and analysed
the evolution of the universe. Some plots are drawn to investigate the behaviour of the system (this plotting technique is different
from usual phase plot and that devised by us). Interestingly, the analysis shows that the universe may resemble the “cosmological
constant” like evolution (i.e., ΛCDMmodel is a subset of the solution set). Also, all the fixed points of our model are able to avoid
Big Rip singularity.

1. Introduction

High end cosmological observations of the Supernova of type
Ia (SN Ia), WMAP, and so forth [1–19] suggest the fact that
the universe may be accelerating lately again after the early
phase. Many theories are formulated to explain this late time
acceleration. However, these theories can be divided mainly
into two categories fulfilling the criteria of a homogeneous
and isotropic universe. The first kind of theory (better to
known as “standard model” or ΛCDM model) assumes a
fluid of negative pressure named as “dark energy” (DE). The
name arises from the fact the exact origin of this energy is
still unexplained in theoretical setup. Observations, anyway,
indicate that nearly 70% of the universe may be occupied by
this kind of energy. Dust matter (cold dark matter (CDM)
and baryon matter) comprises the remaining 30% and there
is negligible radiation. Cosmologists are inclined to suspect
dark energy as the primal cause of the late acceleration of
universe. Theory of dark energy has remained one of the
foremost areas of research in cosmology till the discovery

of acceleration of the universe at late times [20–25]. One
could clearly notice from the second field equation that
the expansion would be accelerated if the equation of state
(EoS) parameter satisfies 𝑝/𝜌 ≡ 𝜔 < −1/3. Accordingly, a
priori choice for dark energy is a time-independent positive
“cosmological constant” which relates to the equation of state
(EoS) 𝜔 = −1. This gives a universe which is expanding
forever at exponential rate. Anyway, cosmological constant
has some severe shortcomings like fine tuning problemand so
forth (see [20] for a review); some recent data [26, 27] in some
sense agrees with this choice. By the way, observation which
constrains 𝜔 close to the value of cosmological constant
of 𝜔 does not indicate whether 𝜔 changes with time or
not. So, theoretically, one could consider 𝜔 as a function
of cosmic time, such as inflationary cosmology (see [28–
32] for review). Scalar fields evolve in particle physics quite
naturally. Till date, a large variety of scalar field inflationary
models are discussed. This theory is active area in literature
nowadays (see [20]). The scalar field which lightly interacts
with gravity is called “quintessence.” Quintessence fields are
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first-hand choice because this field can lessen fine tuning
problem of cosmological constant to some extent. Needless
to say, some common drawbacks for quintessence also exist.
Observations point that, at current epoch energy, density of
scalar field andmatter energy density are comparable. But we
know that they evolve from different initial conditions. This
discrepancy (known as “coincidence problem”) arises for any
scalar field dark energy; quintessence too suffers from this
problem [33]. Of course, there is resolution of this problem;
it is called “tracking solution” [34]. In the tracking regime,
field value should be of the order of Planck mass. Anyway,
a general setback is that we always need to seek for such
potentials (see [35] for related discussion). EoS parameter𝜔 of quintessence satisfies −1 ≤ 𝜔 ≤ 1. Some current
data indicates that 𝜔 lies in small neighbourhood of 𝜔 =−1. Hence, it is technically feasible to relax 𝜔 to go down
the line 𝜔 < −1 [36]. There exists another scalar field
with negative kinetic energy term, which can describe late
acceleration. This is named as phantom field, which has EoS𝜔 < −1 (see details in [20, 37]). Phantom field energy density
increases with time. As a result, Hubble factor and curvature
diverges in finite time causing “Big Rip” singularity (see
[38–40]). By the way, some specific choice of potential can
avoid this flaw. Present data perhaps favours a dark energy
model with 𝜔 > −1 of recent past to 𝜔 < −1 at present
time [41]. The line 𝜔 = −1 is known as “phantom” divide.
Evidently, neither quintessence nor phantom field alone can
cross the phantom divide. In this direction, a first-hand
choice is to combine both quintessence and phantom field.
This is known in the literature as “quintom” (i.e., hybrid of
quintessence and phantom) [41]. This can serve the purpose
but still has some fallacy. A single canonical complex field is
quite natural and useful (like “spintessence” model [42, 43]).
However, canonical complex scalar fields suffer a serious
setback, namely, the formation of “Q-ball” (a kind of stable
nontopological soliton) [42, 43].

To overcome various difficulties with above-mentioned
models, Wei et al. in their paper [44, 45] introduced a non-
canonical complex scalar field which plays the role of quin-
tom [45–47]. They name this unique model as “hessence.”
However, hessence is unlike other canonical complex scalar
fields which suffer from the formation of Q-ball. Second kind
of theory modifies the classical general relativity (GR) by
higher degree curvature terms (namely, 𝑓(𝑅) theory) [48–
50] or by replacing symmetric Levi-Civita connection in
GR theory by antisymmetric Weitzenböck connection. In
other words, torsion is taken for gravitational interaction
instead of curvature. The resulting theory [51–53] (called
“teleparallel” gravity) was considered initially by Einstein
to unify gravity with electromagnetism in non-Riemannian
Weitzenböck manifold. Later, further modification was done
to obtain 𝑓(𝑇) gravity as in the same vein of 𝑓(𝑅) gravity
theory [54]. Although the EoS of “cosmological constant”
(ΛCDM model) is well within the various dataset, till now
not a single observation can detect DE or DM, and search for
possible alternative is on the way [55]. In this regard, alternate
gravity theory (like𝑓(𝑇)) is really worth discussing.Thework
in [56] is a nice account in establishing matter stability of𝑓(𝑇) theory in weak field limit in contrast to 𝑓(𝑅) theory. It

is shown that any choice of 𝑓(𝑇) can be used. Other reasons
for the theoretical advantage for their choice are discussed in
the next section.

We, in this work, have chosen hessence in 𝑓(𝑇) gravity.
Since the system is complex, we have preferred a dynamical
analysis. As we have mentioned previously, hessence field
and 𝑓(𝑇) theory both are promising candidates to explain
present accelerated phase. So, we merged them to find if
they can highlight present acceleration more accurately with
current dataset. A mixed dynamical system with tachyon,
quintessence, and phantom in 𝑓(𝑇) theory is considered in
[57]. Dynamical systems with quintom also exist in literature
(see [58, 59] for review). The dynamical system analysis for
normal scalar field model in 𝑓(𝑇) gravity has been discussed
in [60]. But, to the best of our knowledge, hessence in 𝑓(𝑇)
gravity has not been considered before.

We arrange the paper in the following manner. Short
sketch of𝑓(𝑇) theory is presented in Section 2. Hessence field
in 𝑓(𝑇) gravity is introduced to form dynamical system in
Section 3. Section 4 is devoted to dynamical system analysing
and the stability of the system for hessence dark energy
model.The significance of our result is discussed in Section 5
in light of recent data. We conclude the paper with relevant
remarks in Section 6. We use normalized units as 8𝜋𝐺 = ℎ =𝑐 = 1 in this paper.

2. A Brief Outline of 𝑓(𝑇) Gravity:
Some Basic Equations

In teleparallelism [54, 61, 62], 𝑒�휇�퐴 are called the orthonormal
tetrad components (𝐴 = 0, 1, 2, 3). The index 𝐴 is used for
each point 𝑥�휇 for a tangent space of the manifold; hence each𝑒�휇�퐴 represents a tangent vector to the manifold (i.e., the so-
called vierbein). Also the inverse of the vierbein is obtained
from the relation 𝑒�휇�퐴𝑒�퐴] = 𝛿�휇] . The metric tensor is given as𝑔�휇] = 𝜂�퐴�퐵𝑒�퐴�휇 𝑒�퐴] (𝜇, ] = 0, 1, 2, 3); 𝜇, ] are coordinate indices
on the manifold (here, 𝜂�퐴�퐵 = diag(1, −1, −1, −1)). Recently,
to explain the acceleration, the teleparallel torsion (𝑇) in
Lagrangian density has been modified from linear torsion to
somedifferentiable function of𝑇 [63, 64] (i.e.,𝑓(𝑇)) like𝑓(𝑅)
theorymentioned earlier. In this new setup of gravity, the field
equation is of second order unlike 𝑓(𝑅) (which is of fourth
order). In 𝑓(𝑇) theory of gravitation, corresponding action
reads

A = 12𝜅2 ∫𝑑4𝑥 [√−𝑔 (𝑇 + 𝑓 (𝑇)) +L�푚] , (1)

where 𝑇 is the torsion scalar, 𝑓(𝑇) is some differentiable
function of torsion 𝑇, L�푚 is the matter Lagrangian, √−𝑔 =
det(𝑒�퐴�휇 ), and 𝜅2 = 8𝜋𝐺.The torsion scalar𝑇mentioned above
is defined as

𝑇 = 𝑆�휌�휇]𝑇�휌�휇] (2)

with the components of torsion tensor 𝑇�휌�휇] of (2) given by

𝑇�휌�휇] = Γ�푊�휆]�휇 − Γ�푊�휆�휇] = 𝑒�휆�퐴 (𝜕�휇𝑒�퐴] − 𝜕]𝑒�퐴�휇 ) , (3)
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where Γ�푊�휆]�휇 = 𝑒�휆�퐴𝜕�휇𝑒�퐴] is the Weitzenböck connection. Here,
the superpotential 𝑆�휌�휇] (2) is defined as follows:

𝑆�휌�휇] = 12 (𝐾�휇]�휌 + 𝛿�휇�휌𝑇�휃]�휃 − 𝛿]�휌𝑇�휃�휇�휃) ,
𝐾�휇]�휌 = (−) 12 (𝑇�휇]�휌 − 𝑇]�휇

�휌 − 𝑇�휌�휇]) .
(4)

𝐾�휇]�휌 is called contortion tensor. The contortion tensor mea-
sures the difference between symmetric Levi-Civita connec-
tion and antisymmetricWeitzenböck connection. It is easy to
check that the equation of motion reduces to Einstein gravity
if 𝑓(𝑇) = 0. Actually this is the correspondence between
teleparallel gravity and Einsteinian theory [53]. It is noticed
that 𝑓(𝑇) theory can address early acceleration and late
evolution of universe depending on the choice of 𝑓(𝑇). For
example, power law or exponential form cannot overcome
phantom divide [65], but some other choices of 𝑓(𝑇) [66]
can cross phantom divide. The reconstruction of 𝑓(𝑇)model
[67, 68], various cosmological [69, 70] and thermodynamical
[71] analysis, has been reported. It is so interesting to note that
linear 𝑓(𝑇) model (i.e., when 𝑑𝐹/𝑑𝑇 = constant) behaves as
cosmological constant. Anyway, a preferable choice of 𝑓(𝑇)
is such that it reduces to general relativity (GR) when redshift
is large in tune with primordial nucleosynthesis and cosmic
microwave data at early times (i.e., 𝑓/𝑇 → 0 for 𝑎 ≪ 1).
Moreover, in future, it should give de-Sitter-like state. One
such choice is given in power form as in [72]; namely,

𝑓 (𝑇) = 𝛽 (−𝑇)�푛 , (5)

with 𝛽 being a constant. In particular, 𝑛 = 1/2 gives same
expandingmodel as the theory referred to in [72, 73]. Current
data needs the bound “𝑛 ≪ 1” to permit 𝑓(𝑇) as an alternate
gravity theory. The effective DE equation of state varies from𝜔 = −1 + 𝑛 of past to 𝜔 = −1 in future.

Throughout the work, we assume flat, homogeneous,
isotropic Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
metric,

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2 (𝑡) 3∑
�푖=1

(𝑑𝑥�푖)2 , (6)

which arises from the vierbein 𝑒�퐴�휇 = diag(1, 𝑎(𝑡), 𝑎(𝑡), 𝑎(𝑡)).
Here, 𝑎(𝑡) is the scale factor as a function of cosmic time 𝑡.
Using (3) and (4), one gets

𝑇 = 𝑆�휌�휇]𝑇�휌�휇] = −6𝐻2, (7)

where 𝐻 = ̇𝑎(𝑡)/𝑎(𝑡) is the Hubble factor (from here and
in the rest of the paper “overdot” will mean the derivative
operator 𝑑/𝑑𝑡).
3. Hessence Dark Energy in 𝑓(𝑇) Gravity
Theory: Formation of Dynamical Equations

Here, we consider a noncanonical complex scalar field:

Φ = 𝜙1 + 𝑖𝜙2, (8)

where 𝑖 = √−1 with Lagrangian density:

LDE = 14 [(𝜕�휇Φ)2 + (𝜕�휇Φ∗)2] − 𝑉 (Φ,Φ∗) . (9)

Clearly the Lagrangian density is identical to the Lagrangian
given by two real scalar fields, which looks like

LDE = 12 (𝜕�휇𝜙1)2 − 12 (𝜕�휇𝜙2)2 − 𝑉 (𝜙1, 𝜙2) , (10)

where 𝜙1 and 𝜙2 are quintessence and phantom fields, respec-
tively. It is noteworthy that the Lagrangian in (9) consists
of one field instead of two independent fields as in (10) of
[41]. It also differs from canonical complex scalar field (like
“spintessence” in [42, 43]) which has the Lagrangian

LDE = 12 (𝜕�휇Ψ∗) (𝜕�휇Ψ) − 𝑉 (|Ψ|) , (11)

where |Ψ|denotes the absolute value ofΨ; that is, |Ψ|2 = Ψ∗Ψ.
However, hessence is unlike canonical complex scalar fields
which suffer from the formation of “Q-ball” (a kind of stable
nontopological soliton). Following Wei et al. as in [44, 45],
the energy density 𝜌ℎ and pressure 𝑝ℎ of hessence field can be
written as

𝜌ℎ = 12 ( ̇𝜙2 − 𝑄2𝑎6𝜙2) + 𝑉 (𝜙) , (12)

𝑝ℎ = 12 ( ̇𝜙2 − 𝑄2𝑎6𝜙2) − 𝑉 (𝜙) , (13)

where𝑄 is a constant and denotes the total induced charge in
the physical volume (refer to [44, 45]). In this paper, we will
consider interaction of hessence field and matter. The matter
is perfect fluid with barotropic equation of state:

𝑝�푚 = 𝑤�푚𝜌�푚 ≡ (𝛾 − 1) 𝜌�푚, (14)

where 𝛾 is the barotropic index satisfying 0 < 𝛾 ≤ 2. Also 𝑝�푚
and 𝜌�푚, respectively, denote the pressure and energy density
of matter. In particular 𝛾 = 1 and 𝛾 = 4/3 indicate dust
matter and radiation, respectively. We suppose that hessence
and background fluid interact through a term 𝐶. This term𝐶 indicates energy transfer between dark energy and dark
matter. Positive 𝐶 is needed to solve coincidence problem,
since positive magnitude of 𝐶 indicates energy transfer from
dark energy to dark matter. Also 2ND law of thermodynamics
is also valid with this choice. An interesting work to settle this
problem is reviewed in [74]. A rigorous dynamical analysis is
done there. Similar approach exists for quintom model, too.
Various choices of this interaction term 𝐶 are used in the
literature.Here, in viewof dimensional requirement of energy
conservation equation and to make the dynamical system
simple, we have taken𝐶 = 𝛿 ̇𝜙𝜌�푚, where 𝛿 is a real constant of
smallmagnitude, whichmay be chosen as positive or negative
at will, such that 𝐶 remains positive. Also, ̇𝜙 may be positive
or negative according to the hessence field 𝜙. So we have

̇𝜌ℎ + 3𝐻 (𝜌ℎ + 𝑝ℎ) = −𝐶, (15)

̇𝜌�푚 + 3𝐻 (𝜌�푚 + 𝑝�푚) = 𝐶, (16)
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preserving the total energy conservation equation:

̇𝜌total + 3𝐻 (𝜌total + 𝑝total) = 0. (17)

The modified field equations in 𝑓(𝑇) gravity are
𝐻2 = 1(2𝑓�푇 + 1) [13 (𝜌ℎ + 𝜌�푚) − 𝑓6 ] , (18)

�̇� = (−12) [ 𝜌ℎ + 𝑝ℎ + 𝜌�푚1 + 𝑓�푇 + 2𝑇𝑓�푇] . (19)

In view of (12) and (15), we have

̈𝜙 + 3𝐻 ̇𝜙 + 𝑄2𝑎6𝜙2 + 𝑉�耠 = −𝛿𝜌�푚. (20)

Here, “�耠” means “𝑑/𝑑𝜙.” Similarly, (14) and (16) give

̇𝜌�푚 + 3𝐻𝛾𝜌�푚 = 𝛿 ̇𝜙𝜌�푚. (21)

Now, we introduce five auxiliary variables:

𝑥 = ̇𝜙√6𝐻,
𝑦 = √𝑉√3𝐻,
𝑢 = √6𝜙 ,
V = 𝑄

√6𝐻√𝑎3𝜙 ,

Ω�푚 = 𝜌�푚3𝐻2 .

(22)

We form the following autonomous systemafter somemanip-
ulation:

𝑑𝑥𝑑𝑁 = −3𝑥 − 𝑢V2 − 𝜆√32𝑦2 − 𝛿√32Ω�푚
+ 3𝑥2 (2𝑥2 − 2V2 + Ω�푚) ,

𝑑𝑦𝑑𝑁 = 𝜆√32𝑥𝑦 + 32𝑦 (2𝑥2 − 2V2 + Ω�푚) ,
𝑑𝑢𝑑𝑁 = −𝑥𝑢2,
𝑑V𝑑𝑁 = −𝑥𝑢V − 3V + 32V (2𝑥2 − 2V2 + Ω�푚) ,

𝑑Ω�푚𝑑𝑁 = Ω�푚 (−3𝛾 − 𝛿√6𝑥 + 3 (2𝑥2 − 2V2 + Ω�푚)) .

(23)

In above calculations, 𝑁 = ∫( ̇𝑎/𝑎)𝑑𝑡 = ln 𝑎 denotes the “𝑒-
folding” number.We have chosen𝑁 as independent variable.
We have taken 𝑓(𝑇) = 𝛽√−𝑇 for above derivation of

autonomous system. Also, we have chosen exponential form
of potential, that is,𝑉�耠/𝑉 = 𝜆 (where 𝜆 is a real constant), for
simplicity of the autonomous system. This kind of choice is
standard in literature with coupled real scalar field [75] and
complex field (like hessence in loop quantum cosmology) in
[59]. The work in [60] dealing with quintessence, matter in𝑓(𝑇) theory, is also done with exponential potential. But, to
our knowledge, hessence, matter in𝑓(𝑇) theory, has not been
considered before. In view of (22), the Friedmann equation
(18) reduces as

𝑥2 + 𝑦2 − V2 + Ω�푚 = 1. (24)

The Raychaudhuri equation becomes

− �̇�𝐻2 = 32 (2𝑥2 − 2V2 + Ω�푚) . (25)

The density parameters of hessence (Ωℎ) dark energy and
backgroundmatter (Ω�푚) are obtained in the following forms:

Ωℎ = 𝜌ℎ3𝐻2 = 𝑥2 + 𝑦2 − V2,
Ω�푚 = 𝜌�푚3𝐻2 = 1 − (𝑥2 + 𝑦2 − V2) . (26)

The EoS of hessence 𝜔ℎ dark energy and total EoS of the
system 𝜔total are calculated in the following forms:

𝜔ℎ = 𝑝ℎ𝜌ℎ =
𝑥2 − 𝑦2 − V2𝑥2 + 𝑦2 − V2

,
𝜔total = 𝑝ℎ + 𝑝�푚𝜌ℎ + 𝜌�푚 = 𝑥2 − 𝑦2 − V2 + (𝛾 − 1)Ω�푚.

(27)

Also, the deceleration parameter 𝑞 can be expressed as

𝑞 = −1 − �̇�𝐻2 = −1 + 32 (2𝑥2 − 2V2 + Ω�푚) . (28)

4. Fixed Points and Stability Analysis of
the Autonomous System

4.1. Fixed Points with Exponential Potential. We have made
the choice of exponential form of potential, that is, 𝑉�耠/𝑉 =𝜆 (where 𝜆 is a real constant). The fixed points 𝑃�푖, the
coordinates of 𝑃�푖, that is, (𝑥�푐, 𝑦�푐, 𝑢�푐, V�푐, Ω�푚�푐), are given in
Table 1 with relevant parameters and existence condition(s).

From Table 1, we note the following.

Case 1. Fixed points 𝑃1, 𝑃2 = (±1, 0, 0, 0, 0) always exist with
the physical parameters Ω�푚 = 0, 𝜔ℎ = 1, 𝜔total = 1, Ωℎ = 1,
and 𝑞 = 2.
Case 2. Fixed point 𝑃3± = (±1 or (6 − 3𝛾)/𝛿√6, 0, 0, 0, 0)
exists under the condition that (6 − 3𝛾)/𝛿√6 = ±1 with the
physical parameters Ω�푚 = 0, 𝜔ℎ = 1, 𝜔total = 1, Ωℎ = 1, and𝑞 = 2, that is, same as 𝑃1 and 𝑃2.
Case 3. Fixed point 𝑃4 = (−√(2/3)𝛿, 0, 0, 0, (6 − 3𝛾 + 2𝛿2)/3)
exists under the condition that 2𝛿2/3 + (6 − 3𝛾 + 2𝛿2)/3 = 1



Advances in High Energy Physics 5

Ta
bl
e
1:
Fi
xe
d
po

in
ts
of

th
ea

ut
on

om
ou

ss
ys
te
m

of
eq
ua
tio

ns
(2
3)

an
d
va
rio

us
ph

ys
ic
al
pa
ra
m
et
er
sw

ith
ex
ist
en
ce

co
nd

iti
on

s.
H
er
e𝐴

=−
√ (3

/2)(
𝛾/(𝛿

+𝜆)
)an

d
𝐵=

(6+
𝜆√ 6

𝐴−
6𝐴2

)/9.
𝑃 �푖

𝑥 �푐,𝑦
�푐
,𝑢 �푐,

V �푐
,Ω �푚
�푐

Ω �푚
𝜔 ℎ

𝜔 tota
l

Ω ℎ
𝑞

Ex
ist
en
ce

co
nd

iti
on

(s
)

𝑃 1
1,
0,
0,
0,
0

0
1

1
1

2
A
lw
ay
s

𝑃 2
−1,0

,0
,0
,0

0
1

1
1

2
A
lw
ay
s

𝑃 3±
±1o

r
6−

3𝛾 𝛿√ 6
,0
,0
,0
,0

0
1

1
1

2
6−

3𝛾 𝛿√ 6
=±

1

𝑃 4
−√

2 3𝛿,
0,
0,
0,

6−
3𝛾+

2𝛿2 3
6−

3𝛾+
2𝛿2 3

1
𝛾(1

−2𝛿
2 3)

+4
𝛿2 3−

1
2𝛿2 3

1 2+
𝛿2

2𝛿2 3+
6−

3𝛾+
2𝛿2 3

=1
𝑃 5

𝑥=
6−

3𝛾 𝛿√ 6
,0
,0
,√ 𝑥
2
−1,

0
0

1
1

1
2

6𝛿2
≤(6

−3𝛾
)2

𝑃 6
𝑥=

6−
3𝛾 𝛿√ 6

,0
,0
,−√

𝑥2 −
1,0

0
1

1
1

2
6𝛿2

≤(6
−3𝛾

)2
𝑃 7

0,
1,
an
y
va
lu
e,
0,
0

0
−1

−1
1

−1
𝛾=

0
𝑃 8

0,
1,
an
y
va
lu
e,
0,
0

0
−1

−1
1

−1
𝛾=

0
𝑃 9

−𝜆 √ 6,√ 1
−𝜆
2 6,0

,0
,0

0
−1+

𝜆2 3
−1+

𝜆2 3
1

−1+
𝜆2 2

𝜆2 ≤
6

𝑃 10
−𝜆 √ 6,−√

1−
𝜆2 6,0

,0
,0

0
−1+

𝜆2 3
−1+

𝜆2 3
1

−1+
𝜆2 2

𝜆2 ≤
6

𝑃 11
𝐴,√

1−
𝐴2 −

𝐵2 ,
0,
0,
𝐵

𝐵
−1+

2𝐴2
+𝐵2

1−
𝐵

−1+
𝐴2 +

𝐵2 +
(𝛾−

2)𝐵
1−

𝐵
−1+

3 2𝐵
+3𝐵
2

𝛿+
𝜆̸=

0
𝑃 12

𝐴,−
√ 1

−𝐴
2
−𝐵2

,0
,0
,𝐵

𝐵
−1+

2𝐴2
+𝐵2

1−
𝐵

−1+
𝐴2 +

𝐵2 +
(𝛾−

2)𝐵
1−

𝐵
−1+

3 2𝐵
+3𝐵
2

𝛿+
𝜆̸=

0
𝑃 13

−√ 6 𝜆,
0,
0,
√6 𝜆2−

1,0
0

1
1

1
2

𝜆2 ≤
6

𝑃 14
−√ 6 𝜆,

0,
0,
−√

6 𝜆2−
1,0

0
1

1
1

2
𝜆2 ≤

6
𝑃 15

𝑥=
−6 𝜆=

6−
3𝛾 𝛿√ 6

,0
,0
,√ 𝑥
2
−1,

0
0

1
1

1
2

−6 𝜆=
6−

3𝛾 𝛿√ 6
an
d
𝜆̸=

2𝛿
𝑃 16

𝑥=
−6 𝜆=

6−
3𝛾 𝛿√ 6

,0
,0
,−√

𝑥2 −
1,0

0
1

1
1

2
−6 𝜆=

6−
3𝛾 𝛿√ 6

an
d
𝜆̸=

2𝛿



6 Advances in High Energy Physics

with physical parameters Ω�푚 = (6 − 3𝛾 + 2𝛿2)/3, 𝜔ℎ = 1,𝜔total = −1+𝛾(1−2𝛿2/3)+4𝛿2/3,Ωℎ = 2𝛿2/3, and 𝑞 = 1/2+𝛿2.
Case 4. Fixed points 𝑃5, 𝑃6 = (𝑥 = (6 − 3𝛾)/𝛿√6, 0, 0,±√𝑥2 − 1, 0) exist under the condition that 6𝛿2 ≤ (6 − 3𝛾)2
with physical parameters Ω�푚 = 0, 𝜔ℎ = 1, 𝜔total = 1, Ωℎ = 1,
and 𝑞 = 2.
Case 5. Fixed points𝑃7, 𝑃8 = (0, 1, any value, 0, 0) exist under
the condition that 𝛾 = 0 with physical parameters Ω�푚 = 0,𝜔ℎ = −1, 𝜔total = −1,Ωℎ = 1, and 𝑞 = −1.
Case 6. Fixed points 𝑃9, 𝑃10 = (−𝜆/√6, ±√1 − 𝜆2/6, 0, 0, 0)
exist under the condition that 𝜆2 ≤ 6 with physical
parameters Ω�푚 = 0, 𝜔ℎ = −1 + 𝜆2/3, 𝜔total = −1 + 𝜆2/3,Ωℎ = 1, and 𝑞 = −1 + 𝜆2/2.
Case 7. Fixed points 𝑃11, 𝑃12 = (𝐴, ±√1 − 𝐴2 − 𝐵2, 0, 0, 𝐵)
exist under the condition that 𝛿 + 𝜆 ̸= 0 with physical
parameters Ω�푚 = 𝐵, 𝜔ℎ = (−1 + 2𝐴2 + 𝐵2)/(1 − 𝐵), 𝜔total =−1+𝐴2+𝐵2+(𝛾−2)𝐵,Ωℎ = 1−𝐵, and 𝑞 = −1+(3/2)𝐵+3𝐵2.
Case 8. Fixed points 𝑃13, 𝑃14 = (−√6/𝜆, 0, 0, ±√6/𝜆2 − 1, 0)
exist under the condition that 𝜆2 ≤ 6 with physical
parametersΩ�푚 = 0, 𝜔ℎ = 1, 𝜔total = 1,Ωℎ = 1, and 𝑞 = 2.
Case 9. Fixed points 𝑃15, 𝑃16 = (𝑥 = −6/𝜆 = (6 −3𝛾)/𝛿√6, 0, 0, ±√𝑥2 − 1, 0) exist under the condition that−6/𝜆 = (6 − 3𝛾)/𝛿√6 and 𝜆 ̸= 2𝛿 with physical parametersΩ�푚 = 0, 𝜔ℎ = 1, 𝜔total = 1,Ωℎ = 1, and 𝑞 = 2.
4.2. Stability of the Fixed Points. Dynamical analysis is a
powerful technique to study cosmological evolution, where
exact solution could not be found due to complicated system.
This can be done without any information of specific initial
conditions. The dynamical systems mostly encountered in
cosmological system are nonlinear systems of differential
equations (DE). Here the dynamical system is also nonlinear.
Very few works in literature are devoted to analysing nonlin-
ear dynamical systems. But we used the methods developed
till now [76]. Also we devised some method (as in the
plotting of the dynamical evolution and use of normally
hyperbolic fixed points). We now analyse stability of the
fixed points. In this regard, we find the eigenvalues of the
linear perturbationmatrix of the dynamical system (23). Due
to the Friedmann equation (24), we have four independent
perturbed equations. The eigenvalues of the 4 × 4 linear
perturbation matrix corresponding to each fixed point 𝑃�푖 are
given in Table 2. Before further discussion, we state some
basics from nonlinear system of differential equation (DE)
[76]. If the real part of each eigenvalue is nonzero, then the
fixed point is called hyperbolic fixed point (otherwise, it is
called nonhyperbolic). Let us write a nonlinear system of DE
in 𝑅�푛 (the 𝑛-dimensional Euclidean plane) as

�̇� = 𝑓 (𝑥) , (29)

where 𝑓 : 𝐸 → 𝑅�푛 is derivable and 𝐸 is an open set in 𝑅.
For nonlinear system, the DE cannot be written in matrix

form as done in linear system. Near hyperbolic fixed point, a
nonlinear dynamical system could be linearized and stability
of the fixed point is found by Hartman-Grobman theorem.
As we can see from the following, let 𝑥�푐 be a fixed point and
let 𝜁(𝑡) be the perturbation from 𝑥�푐; that is, 𝜁(𝑡) = 𝑥−𝑥�푐; that
is, 𝑥 = 𝑥�푐 + 𝜁(𝑡). We find the time evolution of 𝜁(𝑡) for (29) as

̇𝜁 = 𝑑𝑑𝑡 (𝑥 − 𝑥�푐) = �̇� = 𝑓 (𝑥) = 𝑓 (𝑥�푐 + 𝜁) . (30)

Since 𝑓 is assumed to be derivable, we use the Taylor
expansion of 𝑓 to get

𝑓 (𝑥�푐 + 𝜁) = 𝑓 (𝑥�푐) + 𝜁𝐷𝑓 (𝑥�푐) + ⋅ ⋅ ⋅ . (31)

𝐷𝑓(𝑥) = 𝜕𝑓�푖/𝜕𝑥�푗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛; as 𝜁 is very small, higher
order terms are neglected above. As 𝑓(𝑥�푐) = 0, (30) reduces
to

̇𝜁 = 𝜁𝐷𝑓 (𝑥�푐) . (32)

This is called the linearization of the DE near a fixed point.
Stability of the fixed point 𝑥�푐 is inferred from the sign of
eigenvalues of Jacobian matrix 𝐷𝑓(𝑥�푐). If the fixed point
is hyperbolic, then stability is concluded from Hartman-
Grobman theorem, which states the following.

Theorem (Hartman-Grobman). Given the nonlinear DE (29)
in 𝑅�푛, where 𝑓 is derivable with flow 𝜙�푡, if 𝑥�푐 is a hyperbolic
fixed point, then there exists a neighbourhood 𝑁 of 𝑥�푐, on
which 𝜙�푡 is homeomorphic to the flow of linearization of the
DE near 𝑥�푐.

But for nonhyperbolic fixed point this cannot be done
and the study of stability becomes hard due to lack of
theoretical setup. If at least one eigenvalue corresponding to
the fixed point is zero, then it is termed as nonhyperbolic. For
this case, we cannot find out stability near the fixed point.
Consequently, we have to resort to other techniques like
numerical solution of the systemnear fixed point and to study
asymptotic behaviour with the help of plot of the solution, as
is done in this work (details are described later). However,
we can find the dimension of stable manifold (if exists) with
the help of centre manifold theorem. There is a separate
class of important nonhyperbolic fixed points known as
normally hyperbolic fixed points, which are rarely considered
in literature (see [77]). As some fixed points encountered
in our work are of this kind, we state the basics here. We
are also interested in nonisolated normally hyperbolic fixed
points of a given DE (e.g., a curve of fixed points; such a set
is called equilibrium set). If an equilibrium set has only one
zero eigenvalue at each point and all other eigenvalues have
nonzero real part, then the equilibrium set is called normally
hyperbolic.The stability of normally hyperbolic fixed point is
deduced from invariant manifold theorem, which states the
following.

Theorem (Invariant Manifold). Let 𝑥 = 𝑥�푐 be a fixed point
of the DE �̇� = 𝑓(𝑥) on 𝑅�푛 and let 𝐸�푠, 𝐸�푢, and 𝐸�푐 denote
the stable, unstable, and centre subspaces of the linearization
of the DE at 𝑥�푐. Then there exist a stable manifold 𝑊�푠
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Table 2: Eigenvalues of the fixed points of the autonomous system of equations (23) and the nature of stability (if any), where 𝐷 = −12 +24𝑎2 + 12𝑏2 + 2√6𝑎𝛿 +√6𝑎𝜆 and Δ = −144𝑎2 + 144𝑎4 + 144𝑎2𝑏2 + 36𝑏4 + 48√6𝑎𝛿 − 48√6𝑎3𝛿 − 72√6𝑎𝑏2𝛿 + 24𝑎2𝛿2 − 72√6𝑎𝜆 + 72√6𝑎3𝜆 +84√6𝑎𝑏2𝜆 + 48𝛿𝜆 − 72𝑎2𝛿𝜆 − 48𝑏2𝛿𝜆 − 48𝜆2 + 54𝑎2𝜆2 + 48𝑏2𝜆2.
𝑃�푖 Eigenvalues Nature of stability (if exists†)

𝑃1 0, 0, 3 + 𝛿√6, 3 + √32𝜆 2D stable manifold

𝑃2 0, 0, 3 − 𝛿√6, 3 − √32𝜆 2D stable manifold

𝑃3± 0, 0, 3 ± 𝛿√6, 3 ± √32𝜆 2D stable manifold

𝑃4 0, −32 + 𝛿2, − 32 + 𝛿2, 32 + 𝛿2 − 𝛿𝜆 3D stable manifold

𝑃5 0, 0, 3 + √6𝑥𝛿, 3 + √32𝑥𝜆 2D stable manifold

𝑃6 0, 0, 3 + √6𝑥𝛿, 3 + √32𝑥𝜆 2D stable manifold

𝑃7 −3, 0, −3 − √3(𝛿𝜆 − 𝜆2), −3 + √3(𝛿𝜆 − 𝜆2) stable

𝑃8 −3, 0, −3 − √3(𝛿𝜆 − 𝜆2), −3 + √3(𝛿𝜆 − 𝜆2) stable

𝑃9 0, −3 + 𝜆22 , −3 + 𝜆22 , −3 − 𝛿𝜆 + 𝜆2 3D stable manifold

𝑃10 0, −3 + 𝜆22 , −3 + 𝜆22 , −3 − 𝛿𝜆 + 𝜆2 3D stable manifold

𝑃11 0, −3 + 3𝑎2 + 3𝑏22 , 14 (𝐷 − √Δ), 14 (𝐷 + √Δ) 3D stable manifold

𝑃12 0, −3 + 3𝑎2 + 3𝑏22 , 14 (𝐷 − √Δ), 14 (𝐷 + √Δ) 3D stable manifold

𝑃13 0, 0, 0, −3 (2𝛿𝜆 − 𝜆2)𝜆2 1D stable manifold

𝑃14 0, 0, 0, −3 (2𝛿𝜆 − 𝜆2)𝜆2 1D stable manifold

𝑃15 0, 0, 3 + √6𝑥𝛿, 3 + √32𝑥𝜆 2D stable manifold

𝑃16 0, 0, 3 + √6𝑥𝛿, 3 + √32𝑥𝜆 2D stable manifold
†Nature of stability is discussed in detail.

tangent to 𝐸�푠, an unstable manifold 𝑊�푠 tangent to 𝐸�푢, and
a centre manifold 𝑊�푐 tangent to 𝐸�푐 at 𝑥�푐. In other words,
the stability depends on the sign of remaining eigenvalues. If
the sign of remaining eigenvalues is negative, then the fixed
point is stable; otherwise it is unstable. Table 2 shows the
eigenvalues corresponding to the fixed points given in Table 1
and existence for hyperbolic, nonhyperbolic, or normally
hyperbolic fixed points with the nature of stability (if any).

We see from Table 2 that each fixed point 𝑃�푖 is nonhyper-
bolic, except 𝑃7 and 𝑃8 (which are normally hyperbolic). So
we cannot use linear stability analysis. Hence, we have utilised
the following scheme to infer the stability of nonhyperbolic
fixed points. We find the numerical solutions of the system
of differential equations (23). Then, we have investigated the
variation of the dynamical variables 𝑥, 𝑦, 𝑢, V, Ω�푚 against 𝑒-
folding 𝑁, which in turn gives the variation against time 𝑡
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Figure 1: Plot of (1) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange), V
(red), and Ω�푚 (yellow) versus 𝑁 near 𝑃1, for 𝛾 = 1, 𝛿 = 0.5, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.

through graphs in the neighbourhood of each fixed point,
and notice if the dynamical variables asymptotically converge
to any of the fixed points. In that case, we can say that the
fixed point is stable (otherwise, it is unstable). This method
is used nowadays in absence of proper mathematical analysis
of nonlinear dynamical system. But we must remember that
the method is not full proof, since we have to consider
the neighbourhood of 𝑁 as large as possible (i.e., |𝑁| →∞), because a small perturbation can lead to instability.
The graphs corresponding to each fixed point are given and
analysed below. We consider the fixed points one by one.

We note from Figure 1 that 𝑃1 is not a stable fixed point.
Similar is the case of 𝑃2, as is evident from Figure 2. We note
that if 𝜆 ≤ −√6 and 𝛿 ≤ −√3/2 (or 𝜆 ≥ √6 and 𝛿 ≥ √3/2)
(equality should occur in one of them), then 𝑃1 (or 𝑃2) may
admit 2-dimensional stable manifold corresponding to the
two negative eigenvalues with EoS of hessence and total EoS
being 1, and universe decelerates.

We note that𝑃3± bears same feature as𝑃1 and𝑃2. So, none
of 𝑃1, 𝑃2, and 𝑃3 describes the current phase of universe. The
points bear no physical significance.

If 𝛿2 ≤ 3/2 and 𝛿2 − 𝛿𝜆 ≤ −3/2 (equality should occur
in one of them), 𝑃4may admit 2-dimensional stable manifold
corresponding to the two negative eigenvalues with EoS of
hessence being 1 and total EoS is −1 + 𝛾(1 − 2𝛿2/3) + 4𝛿2/3
and universe decelerates. Here, the plot in Figure 3 indicates
that with a small increase of𝑁 the solution moves away from𝑃4. This is an unstable fixed point.

We note that, for 𝑃5 and 𝑃6, if 𝑥𝛿 ≤ −√3/2 and 𝑥𝜆 ≤−√6 (equality should occur in one of them), 𝑃5 may admit
2-dimensional stable manifold corresponding to the two
negative eigenvalues and 𝑃6 too may admit 2-dimensional

x

0

1 × 1045

2 × 1045

3 × 1045

4 × 1045

x
,y

,u
,�

,Ω
m

−2 0 2 4−4

N

Figure 2: Plot of (2) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange), V
(red), and Ω�푚 (yellow) versus 𝑁 near 𝑃2, for 𝛾 = 1, 𝛿 = 0.5, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.
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Figure 3: Plot of (3) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange), V
(red), and Ω�푚 (yellow) versus 𝑁 near 𝑃4, for 𝛾 = 4/3, 𝛿 = 0.5, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.

stable manifold corresponding to the two negative eigen-
values with EoS of hessence being 1 and total EoS is 1 and
universe decelerates. Figure 4 indicates that the three of the
variables (namely, 𝑥, V, and Ω�푚) are moving away from 𝑃5
and intruding in a neighbourhood of 𝑁 = 10. This may
denote the stable manifold corresponding to the negative
eigenvalues. However, this point gives the decelerated phase
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Figure 4: Plot of (4) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange),
V (red), and Ω�푚 (yellow) versus 𝑁 near 𝑃5, for 𝛾 = 1, 𝛿 = 1, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.
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Figure 5: Plot of (5) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange),
V (red), and Ω�푚 (yellow) versus 𝑁 near 𝑃6, for 𝛾 = 1, 𝛿 = 1, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.

of the universe. Similar phenomena can be noted from
Figure 5.

We note that if 𝛿𝜆 − 𝜆2 ≤ 3, both 𝑃7 and 𝑃8 are normally
hyperbolic set of fixed points and as the rest three nonzero
eigenvalues are negative, they are stable. The set of fixed
points has EoS of hessence of −1 and total EoS is also −1 and
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Figure 6: Plot of (6) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange),
V (red), and Ω�푚 (yellow) versus 𝑁 near 𝑃7, for 𝛾 = 0, 𝛿 = 1, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.
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Figure 7: Plot of (7) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange),
V (red), and Ω�푚 (yellow) versus 𝑁 near 𝑃8, for 𝛾 = 0, 𝛿 = 1, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.

universe accelerates like “cosmological constant.” We note
clearly from Figures 6 and 7 that all lines from negative and
positive values of𝑁 (i.e., frompast and future) are converging
towards𝑁 = 0 (i.e., the set of fixed points).

We note that if 𝜆2 ≤ 6 and 𝜆2 − 𝛿𝜆 ≤ 3 (equality should
occur in one of them), 𝑃9 and 𝑃10 may admit 3-dimensional



10 Advances in High Energy Physics

x

−2 × 1010

−1 × 1010

0

1 × 1010

2 × 1010

x
,y

,u
,�

,Ω
m

−2 0 2 4−4

N

Figure 8: Plot of (8) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange),
V (red), and Ω�푚 (yellow) versus 𝑁 near 𝑃9, for 𝛾 = 1, 𝛿 = 1, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.
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Figure 9: Plot of (9) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange),
V (red), and Ω�푚 (yellow) versus 𝑁 near 𝑃10, for 𝛾 = 1, 𝛿 = 1, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.

stable manifold corresponding to the negative eigenvalues
with EoS of hessence being −1+𝜆2/3 and total EoS also being−1 + 𝜆2/3 (i.e., both EoS are “quintessence-like” if 𝜆2 < 3
or “dust-like” if 𝜆2 = 3). The graphs in Figures 8 and 9 also
support the fact corresponding to the stable manifolds. For𝜆 = −0.5, the EoS of hessence and total EoS both behave like
“quintessence.”
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Figure 10: Plot of (10) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange),
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under consideration.
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Figure 11: Plot of (11) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange),
V (red), and Ω�푚 (yellow) versus 𝑁 near 𝑃12, for 𝛾 = 1, 𝛿 = 1, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.

We note that if 𝑎2 + 𝑏2/2 ≤ 1,𝐷 ≤ −√Δ (equality should
occur in one of them), 𝑃11 and 𝑃12 may admit 3-dimensional
stable manifold corresponding to the negative eigenvalues
with EoS of hessence being (−1 + 2𝐴2 + 𝐵2)/(1 − 𝐵) and total
EoS being −1+𝐴2 +𝐵2 + (𝛾−2)𝐵. We see from Figure 10 that
the system is moving away from the fixed point 𝑃11. Similar
phenomena happen for fixed point𝑃12 as seen from Figure 11.

We note that if 2𝛿 < 𝜆 < 0 or 0 < 𝜆 < 2𝛿, then 𝑃13 and𝑃14 may admit 1-dimensional stable manifold corresponding
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Figure 12: Plot of (12) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange),
V (red), and Ω�푚 (yellow) versus 𝑁 near 𝑃13, for 𝛾 = 1, 𝛿 = 1, and𝜆 = −0.5. The position corresponding to 𝑁 = 0 is the fixed point
under consideration.
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under consideration.

to the negative eigenvalues with EoS of hessence and total EoS
being 1 and universe decelerates.The graphs in Figures 12 and
13 show that the system is diverging from the fixed points 𝑃13
and 𝑃14. So, both the points are unstable in nature.

We note that if 𝑥𝛿 ≤ −√3/2 and 𝑥𝜆 ≤ −√6, then 𝑃15 and𝑃16 may admit 2-dimensional stable manifold corresponding
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under consideration.
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Figure 15: Plot of (15) variations of 𝑥 (blue), 𝑦 (green), 𝑢 (orange),
V (red), and Ω�푚 (yellow) versus𝑁 near 𝑃16, for 𝛾 = 1, 𝛿 = 1/(4√6),
and 𝜆 = −0.5.The position corresponding to𝑁 = 0 is the fixed point
under consideration.

to the two negative eigenvalues with EoS of hessence and total
EoS being 1 and universe decelerates. Here, we note that the
solution set of the dynamical system moves rapidly from the
fixed points 𝑃15 and 𝑃16 as clear from Figures 14 and 15. The
fixed points are unstable.
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5. Cosmological Significance of
the Fixed Points

In this section, we discuss the possible singularities that any
dark energy model could have and compare the fixed points
against recent dataset’s, Planck 2015, data [27]. If the EoS𝜔 ≤ −1 (i.e., the null energy condition 𝑝 + 𝜌 ≥ 0 is violated)
and Big Rip singularity happen within a finite time [20], this
singularity happens when, at finite time 𝑡 → 𝑡�푠, 𝑎 → ∞,𝜌 → ∞, and |𝑝| → ∞.

We now analyse the stable fixed points to see if they
can avoid (or suffer) Big Rip singularity. For the stable fixed
points 𝑃7 and 𝑃8, we have �̇�/𝐻2 = 0 which gives 𝐻 = 𝑘
(the integral constant); we get 𝑎 ∝ 𝑒�푘�푡. Also, in these cases,𝜔total = −1 which with energy conservation equation gives𝜌 = constant. Hence universe suffers no Big Rip singularity
here. Fixed points 𝑃7 and 𝑃8 exist with physical parametersΩ�푚 = 0, 𝜔ℎ = −1, and 𝜔total = −1. The values of the
parameters arewell within the best fit of Planck 2015 data; that
is, Ω�푚 = 0.3089 ± 0.0062 from TT,TE,EE + lowP + lensing +
ext data, and EoS of dark energy 𝜔 = −1.019+0.075−0.080 .

Now, we consider the unstable fixed points. An unstable
fixed pointmay describe the initial phase of universe, whereas
a stable fixed point may be the end phase of the universe.
For fixed points 𝑃1, 𝑃2, and 𝑃3 existing with the physical
parametersΩ�푚 = 0, 𝜔ℎ = 1, and 𝜔total = 1, clearly, no Big Rip
singularity occurs here. Here, the parameter Ω�푚 lies within
the best fit of Planck 2015 data; that is,Ω�푚 = 0.3089 ± 0.0062
from TT,TE,EE + lowP + lensing + ext data. But 𝜔ℎ and 𝜔total
defy the EoS of dark energy 𝜔 = −1.019+0.075−0.080 .

Fixed point 𝑃4 has values of physical parameters Ω�푚 =(6 − 3𝛾 + 2𝛿2)/3, 𝜔ℎ = 1, and 𝜔total = −1 + 𝛾(1 − 2𝛿2/3) +4𝛿2/3. Here, 𝜔ℎ and 𝜔total both are greater than −1; no Big
Rip singularity occurs here too. Wide choices of 𝛾 and 𝛿
can fit Ω�푚 and 𝜔total within Planck 2015 data; that is, Ω�푚 =0.3089 ± 0.0062, but 𝜔ℎ disobey the EoS of dark energy 𝜔 =−1.019+0.075−0.080 .

Fixed points 𝑃5 and 𝑃6 exist with physical parametersΩ�푚 = 0, 𝜔ℎ = 1, and 𝜔total = 1. We observe that this solution
is devoid of Big Rip singularity. Here,Ω�푚 lies within the best
fit of Planck 2015 data. But 𝜔ℎ and 𝜔total defy the EoS of dark
energy 𝜔 = −1.019+0.075−0.080 .

Fixed points 𝑃9 and 𝑃10 admit physical parameters asΩ�푚 = 0, 𝜔ℎ = −1 + 𝜆2/3, and 𝜔total = −1 + 𝜆2/3 and so avoid
Big Rip singularity. Also,Ω�푚 is within Planck 2015 data. Also,
suitable choice of 𝜆 fits 𝜔ℎ and 𝜔total within dataset.

Fixed points 𝑃11 and 𝑃12 have physical parameters Ω�푚 =𝐵,𝜔ℎ = (−1+2𝐴2+𝐵2)/(1−𝐵), and𝜔total = −1+𝐴2+𝐵2+(𝛾−2)𝐵, where𝐴 = −√3/2(𝛾/(𝛿+𝜆)) and𝐵 = (6+𝜆√6𝐴−6𝐴2)/9.
Here, we can adjust 𝐴 and 𝐵 to make 𝜔ℎ and 𝜔total ≥ −1miss
Big Rip singularity. Since only 0 < 𝛾 ≤ 2, 𝛿 can take arbitrary
small value and 𝜆 can have any real value, 𝐴, and hence 𝐵
can be adjusted well within Planck Ω�푚 = 0.3089 ± 0.0062
fromTT,TE,EE + lowP+ lensing + ext and EoS of dark energy𝜔 = −1.019+0.075−0.080 data.

Fixed points 𝑃13, 𝑃14, 𝑃15, and 𝑃16 can avoid Big Rip
singularity, as they bear physical parametersΩ�푚 = 0, 𝜔ℎ = 1,

and 𝜔total = 1. Here, the parameter Ω�푚 lies within the best
fit of Planck 2015 data; that is, Ω�푚 = 0.3089 ± 0.0062 from
TT,TE,EE + lowP+ lensing + ext data. But𝜔ℎ and𝜔total totally
defy the EoS of dark energy 𝜔 = −1.019+0.075−0.080 .
6. Concluding Remarks

In this paper, we have performed a dynamical system study
of a unique scalar field hessence coupling with dark matter
in an alternate theory of gravity, namely, 𝑓(𝑇) gravity. The
system is unconventional, complex, but quite interesting.The
model is chosen to explore one of the various possibilities
about the fate of the universe. The sole purpose is to explain
the current acceleration of universe. An unstable fixed point
may describe the initial phase of universe, whereas a stable
fixed point may be the end of the universe. We have chosen
exponential form of potential of the form 𝑉 = 𝑉0𝑒�휆�휙 (where𝑉0 and 𝜆 are real constants and 𝜙 is the hessence field)
for simplicity. The interaction term 𝐶 is chosen to solve
the so-called cosmological constant problem in tune with
second law of thermodynamics and is quite arbitrary (only𝐶 should remain positive), since 𝐶 = 𝛿 ̇𝜙𝜌�푚, where 𝛿 is a
real constant of small magnitude, which may be chosen as
positive or negative, such that 𝐶 remains positive. Also, ̇𝜙
may be positive or negative according to the hessence field𝜙. The resulting nonlinear dynamical system gives sixteen
possible fixed points. Among them, 𝑃7 and 𝑃8 are stable
set of normally hyperbolic fixed points, which resembles
“cosmological constant,” so it explains the current phase
of acceleration of universe. But, interestingly, it does not
show “hessence-like” nature. Among the other fixed points,
the initial phases of evolution may begin. However, the
complexity of the system is the main obstacle for a precise
explanation. Anyway, in future work, we may try some other
possible alternatives.
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