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Abstract

Rare decays of B mesons are an ideal probe to search for phenomena beyond the
Standard Model of particle physics, since contributions from new particles can affect
the decays on the same level as Standard Model predictions. The rare decay of
B → K(∗)ℓ+ℓ− offers the quark transition b → sℓ+ℓ−, a flavor changing neutral
current which is forbidden at tree level in the Standard Model. Higher order processes
such as penguin or W+W− box diagrams allow for these processes, leading to
branching ratios of less than one in a million. Various extensions to the Standard
Model predict influences of new physics, which can enhance or suppress branching
ratios or lead to changes in angular distributions of the decay products. In order to
produce a sufficient amount of B mesons, the so-called B-factories were designed.
One of them is the asymmetric-energy e+e− collider KEKB with the Belle experiment,
located in Tsukuba, Japan. During 1999 to 2010 the experiment recorded a total
luminosity of 1 ab−1 of electron positron collisions.

In this thesis a comprehensive study of the flavor changing neutral current process
b → sℓ+ℓ− in B meson decays with accompanying kaons is presented in two separate
analyses. All three lepton modes, e+e−, µ+µ− and τ+τ− are investigated to search
for evidence of physics beyond the Standard Model. The measurements are performed
using the full Belle data sample of 772×106 BB̄ pairs, recorded at the Υ(4S) resonance
energy.

The first analysis in this thesis covers the muon and electron modes in the decay of
B0 → K∗(892)0ℓ+ℓ−. To maximize signal efficiency and purity, neural networks are
developed sequentially from the bottom to the top of the decay chain, transferring each
time the output probability to the subsequent step such that most effective selection
cuts are applied in the last stage based on all information combined. Reconstructed
signal yields of both channels exceed previous B-factory results of Belle and BaBar
measurements, enabling a full angular analysis in this decay with the Belle data for
the first time. In total 117.6 ± 12.4 signal candidates for B0 → K∗(892)0µ+µ− and
69.4 ± 12.0 signal events for B0 → K∗(892)0e+e− are observed in the data. The
branching ratios of both modes are extracted and found to be in agreement with
previous measurements. With the combined data of both channels, the differential
decay rate is extracted in three angular dimensions in five bins of q2, the di-lepton
invariant mass squared. A series of spatial transformations is applied to reduce the
number of free parameters of the differential decay rate from eight to three. With four
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different transformations the fit is independently sensitive to observables P ′
4, P ′

5, P ′
6 and

P ′
8, which are optimized regarding uncertainties arising from form-factors. Altogether

20 independent three-dimensional maximum likelihood fits are performed extracting
P ′

4,5,6 or P ′
8, the K∗ longitudinal polarization FL and the transverse polarization

asymmetry AT . Results in the region of q2 < 8 GeV2/c4 are compared with Standard
Model predictions and overall agreement is observed. One measurement is found to
deviate by ∼ 2.1σ from the predicted value in the same direction and in the same q2

region where the LHCb collaboration reported the so called P ′
5 anomaly [1, 2].

The second analysis in this thesis is dedicated to the τ mode of b → sℓ+ℓ− in the
search for B+ → K+τ+τ−. This mode is particularly interesting as new particles
could couple to the high mass of τ leptons stronger than to e and µ. However, due
to several neutrinos being present in the final state, it is difficult to find. The full
reconstruction technique is used, which is unique for e+e− colliders and makes it
possible to find signatures of the decay. On the control channel, B+ → K+τ+τ−(KS),
it is shown that the reconstruction and background suppression methods work as
expected and that they deliver consistent results in both data and Monte Carlo.
This analysis demonstrates using simulated events and control channels on the Belle
dataset, that the current upper limit can be improved by more than one order of
magnitude compared to the current value to

BProjected(B+ → K+τ+τ−) < 3.17 × 10−4, (1)

at 90% confidence level including systematic uncertainties determined by an extensive
study of all the sources. This limit will come close to the prediction of models
developed in the context of Minimal Lepton Flavor Violation [3].
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Zusammenfassung

Für die Erforschung der Physik jenseits des Standardmodells der Teilchenphysik sind
seltene Zerfälle von B-Mesonen von großer Bedeutung. Sie eignen sich besonders gut,
um Vorhersagen des Standardmodells zu testen und Hinweise für Neue Physik zu
finden. Neue Physik kann bei seltenen Zerfällen in der gleichen Größenordnung wie
Standardmodell-Prozesse auftreten und damit einen signifikanten Beitrag zum Signal
darstellen. Der seltene Zerfall B0 → K∗(892)0ℓ+ℓ−erfolgt über den Flavor Changing
Neutral Current b → sℓ+ℓ−. Diese Quark-Zerfälle sind im Standardmodell nicht direkt
im Zerfallsdiagramm möglich, sondern erfolgen nur durch Prozesse höherer Ordnung
wie Pinguin-Diagramme oder W+W− Box-Diagramme, wodurch sie stark unterdrückt
werden und daher nur sehr selten auftreten. Die Verzweigungsverhältnisse sind dabei
in der Größenordnung oder kleiner als eins zu einer Million. Erweiterungen des Stan-
dardmodells prognostizieren verschiedene Einflüsse Neuer Physik, die mit dem Zerfall
im Standardmodell interferieren und zu veränderten Verzweigungsverhältnissen oder
zu Änderungen der Winkelverteilung der Zerfallsprodukte führen können. Der Zerfall
von B → K(∗)ℓ+ℓ− bietet vier unabhängige kinematische Messgrößen, aus denen eine
Vielzahl an weiteren Beobachtungsgrößen bestimmt werden kann, um die Vorher-
sagen des Standardmodells zu überprüfen. Das Belle Experiment am japanischen
Teilchenbeschleuniger KEKB in Tsukuba ist als sogenannte «B-Fabrik» ausgelegt
und hat zwischen 1999 und 2010 Daten aufgenommen. An dem asymmetrischen
Elektron-Positron-Beschleuniger werden die Strahlen nahe der Υ(4S) Resonanzener-
gie bei einem Lorentz-Boost von βγ = 0.425 zur Kollision gebracht. Für die Analysen
in dieser Arbeit wird der volle Belle-Datensatz von 772 × 106 B-Mesonenpaaren
verwendet.

Im Rahmen dieser Dissertation wird der Zerfall b → sℓ+ℓ− anhand der Messung
der Winkelverteilung von B0 → K∗(892)0ℓ+ℓ−und der Bestimmung des oberen Li-
mits des Verzweigungsverhältnisses von B+ → K+τ+τ− untersucht. In der ersten
Analyse werden sechs Zustandsgrößen in fünf Intervallen der invarianten Masse des
Leptonen-Paares q2 in einer Winkelanalyse gemessen. Insgesamt werden 20 unabhän-
gige Messungen durchgeführt, in denen die zu bestimmenden Größen mit einem dreidi-
mensionalen Maxiumum-Likelihood-Fit aus den Daten gewonnen werden. 2013 hat das
LHCb Experiment in einer dieser Größen eine Abweichung von der Standardmodell-
Vorhersage von 3.7σ gefunden [1]. In dem hier präsentierten Resultat wird eine
Abweichung im gleichen kinematischen Bereich bestätigt. Insgesamt kann eine solche
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Abweichung entweder durch Physik jenseits des Standardmodells erklärt werden oder
durch einen unerwartet hohen Einfluss der hadronischen Charmonium-Resonanz auf
die Genauigkeit der Theorievorhersage [2].

In der zweiten Analyse dieser Arbeit wird der τ -Kanal von b → sℓ+ℓ− anhand der
Bestimmung des oberen Limits des Verzweigungsverhältnisses von B+ → K+τ+τ−

untersucht. Bei dem Zerfall entstehen 2 bis 4 Neutrinos, die nicht detektiert werden
können. Um dennoch Signalkandidaten zu finden, wird die Methode der vollständigen
Rekonstruktion verwendet, die einzigartig an e+e− Beschleunigern ist. Es konnte
durch simulierte Ereignisse demonstriert werden, dass die Erwartung des oberen
Limits des Verzweigungsverhältnisses bei Belle mit diesen Methoden auf B(B+ →
K+τ+τ−) < 3.17 × 10−4 gesetzt werden kann – damit wäre eine Messussung um etwa
eine Größenordnung präziser als die aktuell beste Messung.
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Preamble

From the beginning of documented history mankind has tried to understand its
surrounding nature. Over the last centuries, vast advancements were made in mathe-
matics, physics and technology. The idea arose to find a universal underlying theory,
capable of explaining all processes in our universe. The current knowledge about
the structure of matter and its interactions is formulated in the Standard Model of
particle physics, which was formed during the past decades based on experimental
observations and their implications. It is capable of explaining the subatomic phe-
nomena within the boundary of the field of experimental particle physics to a great
precision. However, mainly from cosmological observations, it has become clear that
the Standard Model is incomplete. Up to this point, we are still far away from a
theory, which is capable of explaining everything in our universe. Many alternative
theories deliver extensions to the Standard Model, in most cases by introducing new
particles none of which could be found in experiments so far. Actually, particle physics
does not suffer particularly from a lack of competing theories but rather from a lack
of uncharted territories where new physics may be found. In the worst case, effects of
new physics enter at an energy scale which is far beyond reach for humanity – making
it impossible to further explore the fundamental principals of our universe.

There are two frontiers searching for new physics. The high energy frontier like
experiments at the Large Hadron Collider probe the structure of matter at energies
allowing for the direct production of exotic heavy particles. The other frontier looks
for indirect effects of new physics in high precision measurements, where new particles
can appear in intermediated steps of the decays. One of the leading roles in the
high precision frontier is taken by the Belle experiment, dedicated specifically to
measurements related to decays of B mesons. The experiment is located in Tsukuba,
Japan, at the KEKB accelerator, and recorded a data sample containing about 772
million BB̄ pairs during its operation from 1999 to 2010. It is designed as a so-called
B-factory, an e+e− collider operating at the Υ(4S) resonance energy, allowing for the
pairwise production of B mesons in a clean experimental environment.

Recent observations in particle physics exhibit a variety of tensions with the Standard
Model – although none of these observations provides strong indications towards one
specific physics scenario, but in their entirety they offer a hint that new physics might
be within the reach of the present experiments. One of the most promising areas to
find deviations from the Standard Model are flavor changing neutral currents like the
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quark transition of b → sℓ+ℓ−. In the Standard Model, these decays cannot occur
directly, but only as higher order processes involving heavy bosons leading to a strong
suppression. In this case, relative contributions of any effects from new particles or
new phenomena increases and can be identified and examined in high precision.

In this thesis, the analysis of the b → sℓ+ℓ− transition in decays of B → K(∗)ℓ+ℓ−

at the Belle experiment is presented in two separated studies: an analysis of the
angular distributions of in the decay of B0 → K∗(892)0ℓ+ℓ−in the ee and µµ final
states and the search for B+ → K+τ+τ−. During the last years, several observations
were made in this transition, which might hint to new physics. For example the
LHCb collaboration reported a discrepancy in the angular distribution of the decay
B0 → K∗(892)0µ+µ− with a significance of 3.4σ with respect to the Standard Model
prediction [2]. In part II of this thesis, this decay is analyzed with the Belle dataset.
The extraction of this process is an experimental challenge as the decay occurs only in
about one of a million B decays – in fact it is among the smallest B meson branching
fractions ever observed at B-factories [4]. With the use of consecutive neural networks
and advanced data analysis techniques, it is demonstrated that enough statistics
can be obtained to perform a full angular analysis in this channel for the first time
at B-factories. In contrast to the LHCb measurement also the di-electron channel
is used to access the three dimensional differential decay rate. Another interesting
tension related to this decay was discovered in the ratio of the branching fractions
of B+ → K+µ+µ− and B+ → K+e+e−. Whereas the Standard Model predicts
lepton-universality, thus a ratio of nearly one, LHCb observed a 2.6σ deviation from
this value [5]. In this light, the tau decay mode is particularly interesting, because
effects from new physics might additionally couple to the high mass of τ leptons
stronger than to e and µ. In the second analysis of this thesis, in part III, a search
for B+ → K+τ+τ− is performed. The final state of the decay contains at least
2 neutrinos, which cannot be seen in the detectors making this decay particularly
difficult to analyze. The clean experimental environment at Belle, however, provides
the possibility to reconstruct the entire event and find a signal of the decay using the
so-called full reconstruction technique.

Contrary to searches in the high energy frontier, new discoveries in the flavor sector
will most likely arise through a conjunction of results throughout a variety of different
decays. For example by adding a single new scalar particle to the Standard Model, a
TeV-scale leptoquark, it is demonstrated in Ref. [6] that most tensions in the flavor
sector could be explained. In particular, b → sℓ+ℓ− transitions covered in this thesis
are affected by this theory. Additionally, excesses in the decay rate B → D∗τ ν̄ which
are found by BaBar, Belle and LHCb deviating by 3.5σ from the Standard Model
[7–9] could be explained. An interesting connection between these tensions and a
possible resonance in the di-photon spectrum in measurements by ATLAS and CMS
experiments at 750 GeV is drawn in Ref. [10]. This would be a perfect paradigm
where precision and high energy frontier work together to determine the nature of
this possible manifestations of new physics. The following analyses are dedicated to
add further pieces to this overall picture.
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1. Introduction to B → K(∗)ℓ+ℓ−

In this thesis the decay B → K(∗)ℓ+ℓ− is analyzed experimentally. An angular analysis
of B0 → K∗(892)0ℓ+ℓ−is performed in part II and a search for B+ → K+τ+τ− is
described in part III. Beforehand, this chapter provides a theoretical introduction
to the decays. First, a brief overview of the Standard Model of particle physics is
presented. The theoretical description of the decay is detailed and observables that
can be measured experimentally are presented. Finally, the need for physics beyond
the Standard Model is discussed and implications for the measured quantities are
investigated for a variety of new physics scenarios.

1.1 Overview of the Standard Model

The Standard Model (SM) of particle physics is a relativistic quantum field theory
describing the interplay between elementary particles and the electromagnetic, weak
and strong force. It is the agreed common theory of particle physics and result of
several decades of measurements, discoveries and predictions. The theory aggregates
the unification of the electromagnetic and weak force to the electroweak interaction
by the Glashow-Weinberg-Salam (GWS) [11, 12] model and the Quantum Chromo
Dynamics (QCD) describing the strong force. The SM is able to describe observable
phenomena in particle collisions by large detail but is not a «theory of everything», as
particularly gravitation is not included in this theory, although being a fundamental
force.

The SM is formulated as a quantum gauge theory with three local groups

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1.1)

where C indicates the color charge of the strong interaction, L is the left chirality
of the weak interaction and Y the hypercharge of the electroweak force. Within
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1 Introduction to B → K(∗)ℓ+ℓ−

Figure 1.1: Constituents of the Standard Model. Credit: Cern.

the SM elementary particles are considered to be point-like, with no intrinsic sub-
structure. There are two kinds of particles: matter- and forces-particles – fermions
and bosons respectively. Interactions are mediated by bosonic particles, the gauge
bosons. They couple to the individual charge of the gauge groups, which can involve
self-coupling if they carry charge themselves. The weak force is mediated by the
exchange of heavy W± and Z0 bosons, the strong and electromagnetic force by
massless gluons and photons respectively. The fermions are divided into leptons and
quarks. Each of them appears in three generations of tuples, where in each tuple,
the partners are separated by one unit of electrical charge. The generations share
the same physical proprieties and differ only by increasing mass. Quarks carry color,
weak and electromagnetic charge, making them interact via all three forces. Leptons
participate in weak interactions and, except for the neural neutrinos, additionally
in electromagnetic processes. An overview of the particles of the SM is depicted in
fig. 1.1.

1.1.1 The Electroweak Interaction

For the electroweak interaction, fermions of the SM get arranged into doublet and
singlet states of the weak isospin, where left-handed particles appear in doublets
and right-handed particles in singlets. Fermions of the Standard Model with their

6



1.1 Overview of the Standard Model

corresponding quantum numbers regarding the electroweak force are shown in table 1.1.
The gauge symmetry of the left-handed isospin group is SU(2)L and U(1)Y is the
symmetry group of the weak hypercharge Y , which is defined by the Gell-Mann–
Nishijima formula as

Y = 2 · (Q− T3), (1.2)

where Q is the electric charge of a particle and T3 the third component of the weak
isospin. The W± bosons allow for transitions between the doublets as they carry
T3 = ±1, thus only left-handed particles are affected. The GWS theory describes the
electroweak interactions as spontaneously broken symmetry groups

SU(2)L ⊗ U(1)Y
SSB→ U(1)EM . (1.3)

This spontaneous symmetry breaking (SSB) is introduced by the Higgs mechanism
and causes the four primordial massless gauge bosons to mix into the massive weak
mediators W±,Z0, the massless γ and it is responsible for the masses of the fermions
[13].

Table 1.1: Fermions of the Standard Model with their corresponding quantum numbers
regarding the electroweak force. The particles are divided into singlets and
doublets of the weak isospin, denoted with R for right-handed and L for
left-handed respectively. T is the weak isospin with its third component
T3, Y is the weak hypercharge and Q the electrical charge.

(1) (2) (3) T T3 Y Q
νe
e


L


νµ
µ


L


ντ
τ


L

1
2

+1/2
−1/2 −1 0

−1
eR µR τR 0 0 −2 −1
u

d′


L


c

s′


L


t

b′


L

1
2

+1/2
−1/2 1/3 +2/3

−1/3
uR cR tR 0 0 +4/3 +2/3
dR sR bR 0 0 −2/3 −1/3

In weak currents, transitions between the generations are not possible. For quarks
however decays like b → c+W− can proceed. This is possible because the quark mass
eigenstates appear as a rotation of the weak eigenstates of the quarks. The rotation
is usually described for the down-type quarks, denoting the flavor eigenstate as q′,
which is a superposition of the mass eigenstates. This principal was first introduced
by Cabibbo [14] for two generations of quarks and generalized by Kobayashi and
Maskawa [15] to three generations1. Hence, the CKM matrix describes the rotation

1In 2008 Makoto Kobayashi and Toshihide Maskawa were awarded the Nobel Prize in Physics,
where the Belle and BaBar experiment were explicitly mentioned for the effort of proving their
predictions.
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1 Introduction to B → K(∗)ℓ+ℓ−

by 
d

s

b


weak

=


d′

s′

b′

 =


Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



d

s

b


mass

. (1.4)

The CKM matrix is complex and unitary if there are no more than three generations
of quarks. It offers four free parameters: three mixing angles and one complex
phase. The elements Vij appear at each vertex of the charged current, where i and
j are the flavors of the corresponding quarks. In the CP-conjugated processes, the
complex-conjugated element V ∗

ij accounts for the coupling. In the SM the complex
phase leads to Vij ̸= V ∗

ij and provides the only known mechanism that leads to CP
violation. The diagonal elements of the matrix correspond to the flavor transition
within one generation, where the magnitude for this is close to one. Off diagonal
elements are suppressed: |Vus| and |Vcd| are about 0.22, |Vcb| and |Vts| are of the
order 4 × 10−2 and |Vtd| and |Vub| of the order 5 × 10−3. As a consequence the quark
transition b → c is suppressed by the CKM mechanism, which leads to the relatively
long lifetime of B mesons. The unitarity of the CKM matrix can be expressed by

i

VijV
∗
ik and


j

VijV
∗
ik = δjk (1.5)

for all generations i, j. The relations can be visualized as triangles in the complex
plane, where a particularly interesting relation is given by

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = δdb = 0, (1.6)

as many of the elements can be extracted from measurements related to B decays.
From this relation one can construct the so-called Unitary Triangle by dividing each
side by the experimentally best known term VcdV

∗
cb. The angles in this triangle are

defined as

α = ϕ2 = arg


− VtdV
∗
tb

VudV
∗
ub


, (1.7)

β = ϕ1 = arg


−VcdV
∗
cb

VtdV
∗
tb


, (1.8)

γ = ϕ3 = arg


−VudV
∗
ub

VcdV
∗
cb


. (1.9)

The current constraints on the Unitary Triangle are depicted in fig. 1.2 in the ρ̄η̄-plane,
where ρ̄ and η̄ are defined as

ρ̄+ iη̄ = −VudV
∗
ub

VcdV
∗
cb
. (1.10)
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Figure 1.2: Constraints on the Unitary Triangle by the CKMfitter group [16].

sb

Z

sb

Z

W− W−

u, c, t

Figure 1.3: Example Feynman diagrams for the flavor changing neutral current b → s.
The left diagram is forbidden in the Standard Model.

1.1.2 Flavor Changing Neutral Currents

In the Standard Model neutral weak interactions, mediated by the Z boson are not
capable to perform transition between quark flavors, such as b → s or s → d. These
Flavor Changing Neutral Currents (FCNC) are forbidden in the SM on tree-level
and can only appear via higher order penguin or box diagrams. An example for a
forbidden and allowed FCNC is depicted in fig. 1.3. By far the dominant decay mode
of B mesons is the b → c transition and already b → u is suppressed compared to
this mode by [Vub/Vcb]

2 ∼ 0.01. These suppressed modes are particularly suited for
searches of new physics, because influences of new operators can add a large relative
contribution to the SM amplitude.

1.1.3 Theoretical Framework of Effective Hamiltonians

Decays of B mesons can involve different energy scales, which are related to the
underlying mediators. The electroweak scale is mediated by heavy W and Z bosons
and the interaction distance is relative to the mass of its propagator, hence δx ∼ 1/W .
The energy scale of the hadronization is in the order of δx ∼ 1/mb. In theoretical
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1 Introduction to B → K(∗)ℓ+ℓ−

frameworks it is complicated to calculate decay amplitudes at several energy scales
simultaneously. The solution is to separate the short distance processes, which can
be calculated with pertubative techniques, from long distance processes. Resulting
from this is an effective theory, where the heavy fields get integrated out, leaving the
hadronic effects separated. The matrix element for a quark transition from state M
to F is given by

A(M → F ) = ⟨F |Heff |M⟩ = GF√
2

i

V i
CKMCi(µ)⟨F |Oi(µ)|M⟩, (1.11)

where Heff is the effective Hamiltonian for the transition, GF is the Fermi constant,
VCKM is the CKM matrix element of the transition and µ is the renormalization scale.
Now the physical processes are split into two sets of operators: the short distance
effects are included in the so called Wilson coefficients Ci(µ) and the long distance
effects in operators Oi(µ), which are handled by non pertubative theory. Wilson
coefficients can be calculated including effects of new physics. With measurements of
Wilson coefficients one can probe the predictions of the SM with a high precision and
differentiate between new physics scenarios.

1.1.4 Effective Hamiltonian for b → sℓ+ℓ−

The b → s transition can proceed through electromagnetic, gluonic and weak penguin
and box diagrams. For one-loop processes the effective Hamiltonian is given by the
operator product expansion:

Heff = −4GF√
2
VtbV

∗
ts

10
i=1

Ci(µ)Oi(µ), (1.12)

where Vqq′ is the corresponding CKM matrix element. The local operators O1 and
O2 are current-current operators, O3−6 are QCD penguin operators, O7 and O8 are
electromagnetic and chromomagnetic operators and O9 and O10 are the vector and
axial vector component of the electroweak penguin operator respectively.

For the b → sℓ+ℓ− transition only the operators O7, O9 and O10 contribute in leading
order. They are described as

O7 = e

16π2 s̄ασµν (msL+mbR) bαF
µν , (1.13)

O9 = e2

16π s̄αγ
µLbαℓ̄γµℓ, (1.14)

O10 = e2

16π s̄αγ
µLbαℓ̄γµγ5ℓ, (1.15)

where α represents the color index, e is the electromagnetic coupling constant, L and R
refer to the projection operators (1 − γ5)/2 and (1 + γ5)/2 respectively, σµν = [γµ, γν ],
the symbols s and b are the fields for a strange and bottom quark, ℓ is the field for a
lepton and Fµν is the electromagnetic field tensor. The right-handed counterpart of
these operators are denoted with O′

7, O′
9 and O′

10, where L ↔ R are interchanged.
The underlying process of these operators are visualized in fig. 1.4.
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b

s

γ b

s ℓ

ℓ

Figure 1.4: Feynman diagrams for the underlying process of the operators O′
7 (left),

O′
9 and O′

10 (right).

1.1.5 Decay Rates

In quantum mechanics transition probabilities or decay rates between two energy
eigenstates |i⟩ and |f⟩ of a quantum system can be described by perturbation theory
in first order with Fermi’s Golden Rule:

Γi→f = 2π
ℏ

|M|2ρ, (1.16)

where ρ is the density of final states, M = ⟨f |H ′|i⟩ is the matrix element and H ′

the corresponding Hamiltonian. Decay rates can be measured in experiments and
directly related to the matrix element.

1.2 The Differential Decay Rate

Three Feynman diagrams contribute in the lowest order to the decay amplitude
of B → K(∗)ℓ+ℓ−: Two electroweak penguin diagrams exchanging a photon or Z
boson and a box diagram with a W boson loop. They are depicted in fig. 1.5. In
these diagrams non Standard Model particles can occur and enhance or suppress the
amplitude of the decay. In fig. 1.5(d) a possible contribution of a super-symmetric
charged Higgs is shown. Not only the decay amplitude can be changed by new physics
operators, also the angular distributions of the decay products can be affected due to
short distance interactions.

1.2.1 Decay Topology

The decay can be completely described with four independent kinematic variables.
A common choice is q2 = M2

ℓℓ and three angles cos θℓ, cos θK and ϕ, illustrated in
fig. 1.6. The angle θℓ is defined as the angle between the direction of the ℓ+ (ℓ−)
and the direction of the dilepton system in the B (B̄) rest frame. The angle θK is
defined between the direction of the kaon and the direction of the K∗ in the B (B̄)
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1 Introduction to B → K(∗)ℓ+ℓ−

s̄

dd

b̄

W−

γ, Z0
ℓ−

ℓ+

ū, c̄, t̄

B0 K∗0

(a)

s̄

dd

b̄

W−

γ, Z0
ℓ−

ℓ+

ū, c̄, t̄

K∗0B0

(b)

s̄

dd

b̄

ℓ−

ℓ+

ū, c̄, t̄

νℓ

W+ W−

K∗0B0

(c)

s̄

dd

b̄

ℓ−

ℓ+

ū, c̄, t̄

νℓ

H+ H−

K∗0B0

(d)

Figure 1.5: Standard Model Feynman graphs (a,b,c) for the decay B → K(∗)ℓ+ℓ−

featuring penguin and box processes and (d) one non-SM scenario including
charged Higgs replacing the W boson loop.
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1.2 The Differential Decay Rate

rest frame. Finally, the angle ϕ is determined as the angle between the decay planes
of the ℓ+ℓ− and the K∗ decay planes. Definitions of the angles follows Ref. [17].

Explicitly the angles for the B0/B+ decays are defined as:

cos θℓ =

p̂

(ℓ+ℓ−)
ℓ

+


·

p̂

(B)
ℓ

+
ℓ

−


=

p̂

(ℓ+ℓ−)
ℓ

+


·


−p̂(ℓ+ℓ−)
B


, (1.17)

cos θK =

p

(K∗)
K


·

p

(B)
K

∗


=

p

(K∗)
K


·


−p(K∗)
B


(1.18)

and for B̄0/B−:

cos θℓ =

p̂

(ℓ+ℓ−)
ℓ

−


·

p̂

(B̄)
ℓ

+
ℓ

−


=

p̂

(ℓ+ℓ−)
ℓ

−


·


−p̂(ℓ+ℓ−)
B̄


, (1.19)

cos θK =

p̂

(K∗)
K


·

p̂

(B̄)
K

∗


=

p̂

(K∗)
K


·


−p̂(K∗)
B̄


, (1.20)

where the notation p̂(f)
a refers to the direction of momentum of particle a in rest frame

f . The angle ϕ is defined for B0/B+ as:

cosϕ =

p̂

(B)
ℓ

+ × p̂
(B)
ℓ

−


·

p̂

(B)
K × p̂(B)

π


, (1.21)

sinϕ =

p̂

(B)
ℓ

+ × p̂
(B)
ℓ

−


×

p̂

(B)
K × p̂(B)

π


· p̂(B)
K

∗ (1.22)

and for B̄0/B− as:

cosϕ =

p̂

(B̄)
ℓ

− × p̂
(B̄)
ℓ

+


·

p̂

(B̄)
K × p̂(B̄)

π


, (1.23)

sinϕ =

p̂

(B̄)
ℓ

− × p̂
(B̄)
ℓ

+


×

p̂

(B̄)
K × p̂(B̄)

π


· p̂(B)
K

∗ . (1.24)

1.2.2 Definition of the Differential Decay Rate

The measured decay in the experiment is not just B → K(∗)ℓ+ℓ− but B → K∗(→
Kπ)ℓ+ℓ−. Additional information about the polarization of the K∗ can be obtained
from the angle between the K and π. The differential decay rate can be obtained by
squaring the matrix element, summing over all spins of the final state particles and
constraining kinematics of the four-body decay. This procedure is described in detail
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Figure 1.6: Definition of the angles in the decay B0 → K∗ℓ+ℓ−.

in Ref. [18] resulting in the differential decay rate

1
dΓ/dq2

d4Γ
d cos θℓ d cos θK dϕ dq2 = 9

32π

Is1 sin2 θK + Ic1 cos2 θK

+ (Is2 sin2 θK + Ic2 cos2 θK) cos 2θℓ
+ I3 sin2 θK sin2 θℓ cos 2ϕ
+ I4 sin 2θK sin 2θℓ cosϕ
+ I5 sin 2θK sin θℓ cosϕ
+ I6 sin2 θK cos θℓ
+ I7 sin 2θK sin θℓ sinϕ
+ I8 sin 2θK sin 2θℓ sinϕ
+ I9 sin2 θK sin2 θℓ sin 2ϕ


, (1.25)

where the angular coefficients I(a)
i are functions of q2 only and can be expressed in

terms of the K∗ transversity amplitudes [18]. In this notation the q2 dependencies are
completely separated from the angular variables. The coefficients I(a)

i are all physical
observables and contain the complete information that can be extracted from the
measurement. They are functions of Wilson coefficients, containing information about
the short-distance effects and can be affected by new physics.

Definitions in eq. (1.25) are valid for the decay B → K∗ℓ+ℓ−. The CP conjugated
decay B̄0 → K̄∗0ℓ+ℓ− has to be considered separately. The differential decay rate for
the combined measurement of B0 and B̄0 decays can be written as

d4(Γ + Γ̄)
d cos θℓ d cos θK dϕ dq2 = 9

32π

9
i=1

(Ii + Īi)fi(cos θℓ, cos θK , ϕ), (1.26)
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where fi contain the angular dependencies as in eq. (1.25) and Ī
(a)
i equals I(a)

i with
all weak phases conjugated and the sign flipped for Ī(a)

5,6,8,9. In the context of this
thesis measurements will be performed only for the CP averaged quantities.

1.2.3 Definition of Observables

The CP averaged I
(a)
i terms can be combined into symmetric Si and asymmetric Ai

terms regarding their sign under CP transformation:

S
(a)
i = I

(a)
i + Ī

(a)
i

d

Γ + Γ̄


/ dq2 (1.27)

A
(a)
i = I

(a)
i − Ī

(a)
i

d

Γ + Γ̄


/ dq2 . (1.28)

Other important observables in measurements of B → K(∗)ℓ+ℓ− are the forward-
backward asymmetry AFB, the longitudinal polarization of the K∗0, FL and the
transverse polarization asymmetry A(2)

T , which are defined as,

AFB = 3
4

I6
Ic1 + 4Is2

= 3
4S6, (1.29)

FL = Ic1
Ic1 + 4Is2

= Sc2 = Ss2 − 1, (1.30)

A
(2)
T = 2I3

4Is2
= 2S3

1 − FL
. (1.31)

Although all information of the decay is included in the I(a)
i terms, in experimental

measurements one tends to use different combinations as observables in order to
cancel as many theoretical uncertainties on I(a)

i as possible. Especially the observables
P ′
i , defined as

P ′
i=4,5,6,8 =

Sj=4,5,7,8
FL(1 − FL)

, (1.32)

are considered to be largely free from form-factor uncertainties [19].

Angular Projections

By knowing the total differential decay rate, one could in principle determine all
Si observables experimentally by fitting the probability density function to data.
However, with low signal yields, which is a common problem examining rare B decays,
it can be necessary to integrate over one or two angles. This provides a projection
of the differential decay rate onto the remaining angles. The three possible one
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dimensional projections are

1
Γ

d2Γ
d cos θℓ dq2 = 3

4FL(1 − cos2 θℓ) + 3
8(1 − FL)(1 + cos2 θℓ) +AFB cos θℓ, (1.33)

1
Γ

d2Γ
d cos θK dq2 = 3

2FL cos2 θK + 3
4(1 − FL)(1 − cos2 θK), (1.34)

1
Γ

d2Γ
dϕ dq2 = 1

2π


1 + 1

2(1 − FL)A(2)
T cosϕ+AIm sin 2ϕ


, (1.35)

where AIm is defined as
AIm = I9

Ic1 + 4Is2
. (1.36)

In the next subsection a different way of reducing the dimensions of the problem is
presented.

1.2.4 Increasing the Statistical Sensitivity

The full differential decay rate of B → K∗0(→ K±π∓)ℓ+ℓ− with CP averaged
observables can be expressed using definitions from above and Ref. [18] by

1
dΓ/dq2

d4Γ
d cos θℓ d cos θK dϕ dq2 = 9

32π

3
4(1 − FL) sin2 θK + FL cos2 θK

+ 1
4(1 − FL) sin2 θK cos 2θℓ

− FL cos2 θK cos 2θℓ + S3 sin2 θK sin2 θℓ cos 2ϕ
+ S4 sin 2θK sin 2θℓ cosϕ+ S5 sin 2θK sin θℓ cosϕ
+ S6 sin2 θK cos θℓ + S7 sin 2θK sin θℓ sinϕ

+ S8 sin 2θK sin 2θℓ sinϕ+ S9 sin2 θK sin2 θℓ sin 2ϕ

.

(1.37)

In total there are eight free parameters, which can be derived by a direct fit to the
data. The expected statistics for Belle are not sufficient for performing an eight-
dimensional fit to the data. In the following a folding technique is described, lowering
the dimension of the problem thereby increasing the statistical sensitivity. The folding
is applied to specific regions in the three-dimensional angular space, exploiting the
symmetries of cosine and sine to cancel terms in the equation. As a consequence
the number of free parameters in the fit is reduced without loosing experimental
sensitivity. The procedure is explained in detail in Refs. [1] and [20]. With the
following transformations to the dataset one can be independently sensitive to the
observable of interest:

P ′
4, S4 :


ϕ → −ϕ for ϕ < 0
ϕ → π − ϕ for θℓ > π/2
θℓ → π − θℓ for θℓ > π/2,

(1.38)

16



1.3 Overview of Recent Measurements

P ′
5, S5 :

ϕ → −ϕ for ϕ < 0
θℓ → π − θℓ for θℓ > π/2,

(1.39)

P ′
6, S7 :


ϕ → π − ϕ for ϕ > π/2
ϕ → −π − ϕ for ϕ < −π/2
θℓ → π − θℓ for θℓ > π/2,

(1.40)

P ′
8, S8 :


ϕ → π − ϕ for ϕ > π/2
ϕ → −π − ϕ for ϕ < −π/2
θK → π − θK for θℓ > π/2
θℓ → π − θℓ for θℓ > π/2.

(1.41)

Each of the transformations vanishes all terms of eq. (1.37) except for the first five
and the corresponding Si term. The number of free parameters of each transformed
decay rate is consequently reduced to three: FL, S3 and one of the observables S4,5,7,8
or P ′

4,5,6,8.

1.3 Overview of Recent Measurements
The decay B → K(∗)ℓ+ℓ− has been studied by several experiments. The measurements
of Belle, BaBar and CDF, see Refs. [21–23], observed 230, 60 and 164 signal events
respectively. They extracted observables in projections of one of the three angles; in
particular AFB and FL.

The LHCb experiment was first to provide a full angular measurement in all three
angles with the extraction of AFB, FL, A

(2)
T , AReT , S3, S9 and A9, described in Ref.

[17]. The signal yield is 883 ± 34. In a separate analysis of the same dataset, LHCb
extracted P ′

4,5,6,8 together with FL and A(2)
T in six bins of q2 [1]. The folding technique

described in section 1.2.4 was applied to increase the statistical sensitivity. In 23 of the
24 measurements agreement with the standard model was found. One measurement
deviated from the Standard Model expectations by 3.7σ. The so-called P ′

5 anomaly
was found in the variable P ′

5 in the q2 region 4.30 < q2 < 8.68 GeV2/c4.

With three times more integrated luminosity LHCb published an update on the
full angular analysis [2]. For the first time enough signal candidates were available
to fit the full angular decay rate directly. Within a slightly different q2 region the
deviation in P ′

5 could be verified and a global deviation of 3.4σ from the Standard
Model expectation was announced. The LHCb result for all bins of P ′

5 is depicted in
fig. 1.7.

1.4 Beyond the Standard Model
Although the Standard Model can claim remarkable successes in particle physics,
it lacks to explain a variety of important phenomena. It is considered to be a
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1 Introduction to B → K(∗)ℓ+ℓ−

Figure 1.7: P ′
5 measurement by LHCb with results from 2013 [1] and from 2015 [2]

shown in blue and black respectively.

approximation of a more general theory that is only valid at the accessible energies
at the electroweak scale.

One of the most arguable flaws of the Standard Model are the number of free
parameters. In total 19 parameters have to be determined from experiments. There
are six quark masses, three2 lepton masses, three mixing angles in the CKM matrix,
one CP-violating phase, three gauge coupling constants, the QCD vacuum angle, the
Higgs vacuum expectation value and the Higgs mass. For a global theory it would be
desirable that measurable constants could be obtained from theoretical expectations.

The most stringent arguments however arise from cosmological observations. It has
been observed from the rotation speed of galaxies, that it is not in equilibrium with
the centrifugal force. From these observations it can be calculated, that the actual
mass of the galaxy has to be far greater than the visible mass. The existence of an
unknown form of gravitationally acting matter was proposed to account for this mass
– the so-called dark matter. Effects from gravitational lensing in collisions of galaxies
have supported this assumption furthermore. Additionally, there has to be a form
of energy, called dark energy, which accounts for the accelerated expansion of the
universe. In total it has been measured, that more than 95% of the universe consist
of dark matter and dark energy [24]. In the Standard Model, there is no candidate
for a dark matter particle or an explanation for dark energy – the upper limit for the
mass of neutrinos is too low to account for the observed phenomena.

Another unexplained phenomenon is the imbalance between matter and anti-matter
2Through neutrino mixing one knows that neutrinos must be massive – a phenomenon which is not

foreseen in the SM.
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1.4 Beyond the Standard Model

in the universe. The theory of the Big Bang assumes equal production of matter and
antimatter. However, there is no anti-matter observed in the universe today. CP
violating processes could serve as an explanation, but the mechanism included in the
Standard Model could only account for a small fraction of the observed discrepancy.

New physics is clearly needed for an explanation of these phenomena. Low energy
supersymmetry (SUSY) can explain a variety of problems with the SM. But in SUSY
the amount of particles is doubled, as every fermion gets a bosonic and every boson
gets a fermionic sypersymmetric partner. For the following new physics scenarios
predictions for the Si observables are calculated by [18]:

Models with Minimal Flavor Violation (MFV)
Models with constrained Minimal Flavor Violation (CMFV) belong to the sim-
plest extensions of the Standard Model. All operators and also the CP-violating
observables in these scenarios are SM-like. The flavor violating transitions are
governed by the CKM.

General Minimal Supersymmetric Standard Models (GMSSM)
In general MSSM no special flavor and CP-violation is assumed. These models
feature a huge amount of free parameters. In calculations performed by Ref.
[18], new physics effects are created dominantly by complex contributions to
the Wilson coefficient C ′

7.

Flavor-Blind Minimal Supersymmetric Standard Model (FBMSSM)
In this model the CKM matrix remains the only source of flavor violation [25].
New CP violating but flavor conserving phases are added to the soft sector.

The observables S4, S5 and S2
6 are displayed for these models in fig. 1.8. They are

particularly interesting by featuring a zero crossing point in q2, which is a powerful
measure in discriminating against various models.
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1 Introduction to B → K(∗)ℓ+ℓ−

Figure 1.8: New physic scenarios for the observables S4, S5 and S2
6 , taken from Ref.

[18].
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2. Experimental Setup

The analyses in this thesis are performed within the Belle Collaboration with data
recorded by the Belle detector. The Belle experiment is located at the asymmetric-
energy e+e− collider KEKB in Tsukuba, Japan. It was designed as a so-called
B-factory, an experiment aiming to record as many B mesons as possible in the
precise and clean environment of an electron positron collider. The center-of-mass
energy of the collider corresponds to the mass of the Υ(4S) resonance, which decays
almost exclusively into a B mesons pair. Although hadron colliders are able to produce
B mesons much more abundantly, only in e+e− collisions it is possible to produce
them without any further particles from the primary interaction. This circumstance
allows for unique measurements and clean experimental environments.

2.1 Fundamentals of Particle Collisions
To understand the nature of matter and its interactions one can use particle collisions
with energy densities which are close to the state of the very early universe.

Particle collisions serve two main objectives. On the one hand heavy matter and new
particles can be created from pure energy according to Einsteins famous relation

E = mc2 (2.1)

and on the other hand one can use high energetic particles as a probe to examine
the structure of matter. This can be derived from De Broglie’s theory of the duality
between matter and light, where the wavelength λ of a particle is proportional to its
momentum p:

λ = h

p
= h · c

Ekin · (Ekin + 2m0c
2)
, (2.2)

where h is the Planck constant, c is the speed of light, m0 is the rest mass and Ekin
int the kinetic energy.
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2 Experimental Setup

Figure 2.1: The KEKB accelerator facility at The High Energy Accelerator Research
Organization (KEK) in Tsukuba, Japan1.

The resolution one can achieve is proportional to the wavelength λ ≈ d.

Several quantities are important for physical analyses. The center of mass energy
determines what matter can be created and the luminosity relates to the rate of
physical interactions per time. Particularly, the interaction rate

dN

dt
= L · σ (2.3)

is determined by the luminosity L of the accelerator and the cross section (σ) of the
reaction. The luminosity is defined by

L = 1
4π

f ·N1 ·N2
σx · σy

, (2.4)

where f is the frequency of interactions i.e. the bunch crossing rate, N1,2 are the
numbers of particles in each bunch and σx,y is the width of the elliptical distribution
of the particles in the bunch.

2.2 The Belle Experiment
The KEKB accelerator [26] is an asymmetric-energy e+e− circular collider with a
circumference of ∼ 3 km, serving electrons in the high energy ring (HER) at 8 GeV

1Figure by Krib (Own work), via Wikimedia Commons.
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2.3 The Belle Detector

and positrons in the low energy ring (LER) at 3.5 GeV. The layout of the accelerator
is displayed in fig. 2.1. The center of mass energy

√
s is chosen slightly above the

mass-threshold of two B mesons at the Υ(4S) resonance energy:
√
s =


4 · ELER · EHER = 10.58GeV ≃ mΥ(4S), (2.5)

where ELER(EHER) refers to the energy of the LER (HER). Due to the asymmetric
layout of the beams the initial states of the reaction are boosted into the HER
direction, resulting in a Lorentz-boost βγ of the system equivalent to

βγ = EHER − ELER√
s

= 0.425. (2.6)

The boost leads to an increased lifetime of the B mesons in the laboratory frame,
allowing more precise measurements of its flight distance from which analyses of
CP-violation can benefit.

The KEKB accelerator holds two world records for luminosity. First in peak luminosity

L = 21, 083 · 1033 1
cm2 · s

(2.7)

and the second in the largest recorded integrated luminosity,
L dt = 1040 · 1039 1

cm2 = 1040 1
fb
. (2.8)

2.3 The Belle Detector
The Belle detector is a hermetic detector optimized for energy and momentum
resolution in the energy range from a few GeV down to some 100 MeV, located around
at the Tsukuba interaction region at KEKB. It features several layers of track finding
and particle identification layers within and around a 1.5 Tesla superconducting
solenoid, depicted in fig. 2.2. The detector is designed to record particle collisions
at a high luminosity and allows for high precision measurement of time dependent
CP-violating decays. Due to the asymmetric layout of the beams at KEKB, also
the detector features an asymmetric design to account for the boost of the produced
particles into the HER direction. The Detector is described in detail in [27, 28], main
parts will be discussed below.

SVD The Silicon Vertex Detector (SVD) is the innermost layer and the first element
for precise tracking of charged particles. The silicon detector from the first period
of data taking (SVD1) surrounded the interaction point covering 23◦ < θ < 139◦.
Due to damage from radiation, it was replaced in 2004 by an updated version
(SVD2). The new detector covers an angle of 17◦ < θ < 150◦, consisting of four
layers of silicon strip detectors. In the presented analyses, information from the
SVD is used for vertex fitting of the secondary particles in B meson decays,
serving as background suppression method.
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Figure 2.2: A schematic view of the Belle detector, from [27].

CDC The main tracking element is the Central Drift Chamber (CDC). Its main
purpose is to find tracks and measure the momentum of charged particles.
Moreover, it provides information about the specific energy loss dE/dx, which is
an important part in particle identification. The CDC consists of 50 cylindrical
layers of drift cells organized in 11 super-layers. It covers an angle of 17◦ < θ <

150◦ along the beam axis. The CDC is filled with a gas mixture of 50% helium
and 50% ethane.

ACC The Aerogel Cherenkov Counter (ACC) is designed for particle identification
of high energetic charged particles (p > 1.2 GeV/c). It surrounds the CDC
along the barrel side and also in forward direction. The ACC is made of 960
elements with the dimension of 12 × 12 × 12 cm3. Cherenkov light from the
aerogel radiators is detected in photomultipliers attached to the side of the
device. Its main purpose is to identify charged pions, kaons and protons.

TOF The Time Of Flight (TOF) counter is located around the ACC on the barrel side,
covering a polar angular range of 34◦ < θ < 120◦. It allows for a measurement
of the velocity of low energetic (p < 1.2 GeV/c) particles and serves as a part
of the particle identification system.The TOF and ACC array can be seen in
fig. 2.3.

ECL The Cesium iodide calorimeter is the electro-magnetic calorimeter (ECL) of
the Belle detector. It consists of 6624 Thallium doped Cesium iodide CsI(Tl)
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2.3 The Belle Detector

Figure 2.3: A side view the ACC and TOF of the Belle detector from [27].

crystal elements around the barrel and 2112 elements on the end-caps. Each
element has a cross section of 6 × 6 cm2 a length of 30 cm corresponding to 16.2
radiation lengths (X0) for photons and electrons. The crystals are wrapped
into a thin layer of goretex Teflon with a photo-diode mounted onto their end.
The main objective of the ECL is to measure the energy deposition of electrons
and photons. High energetic electrons and photons produce electromagnetic
showers in the scintillating crystals by bremsstrahlung and pair-production. The
size of the shower scales with the particle’s energy. The scintillating material
gets exited by the secondary particles of the shower and emits light during
the de-excitation process, which gets detected by the photo-diodes and scales
according to the energy of the primary particle. The ECL covers a polar angle
of 17◦ < θ < 150◦. For the measurement of particles in the extreme forward
direction, an Extreme Forward Calorimeter (EFC) is located around the beam
pipe the polar angle of 6.4◦ < θ < 11.5◦ and 163.3◦ < θ < 172.2◦.

Magnet The superconducting solenoid is made from a Niob Titanium Copper (Ni-
Ti/Cu) composition. It creates a nearly homogeneous magnetic field of 1.5 Tesla
inside the barrel, forcing charged particles into curved tracks, consequently
allowing for momentum measurements.

KLM The KL and muon detection system (KLM) is the most outer part of the
detector, serving as return path for the magnetic flux and as an absorber
and detector material for KL mesons and muons. The KLM detector consists
of two end-cap regions and a central barrel region. The latter is formed by
eight detector blocks and flux-return plates. Each detector is made of glass
Resistive Plate Counter (RPC) modules, separated by iron plates. Muons with
a momentum above 600 MeV/c can reach the KLM and can be separated from
KL candidates since they are charged and leave a track in the CDC pointing to
hits in the ECL and KLM.
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2.3.1 Triggers and Data Acquisition

The data acquisition system (DAQ) of the Belle detector is controlled by a trigger
system, deciding whether to store an event or not. The system is optimized for selecting
hadronic decays e+e− → qq̄, two photon processes, e+e− → τ+τ−, Bhabha scattering
or muon pairs. Background processes from synchrotron radiation, interactions between
the beam and residual gas or events from cosmic rays are tried to be suppressed. At
peak luminosity of L = 2 × 1034 cm−2s−1 the event rate for signal and background
processes were 200 Hz and 600 Hz respectively. The trigger system has to decide fast
over the quality of an event based on the signals in the detector and is organized
in several steps, so-called levels. At the lowest stage is the Level 1 trigger, which is
fed directly by all sub-components of the detector except for the SVD. The trigger
information of each sub-detector is combined 1.85 µs after the beam crossing in the
Global Decision Logic (GDL) and the trigger decision is produced 2.2 µs after the
collision. In total the GDL features four triggers for hadronic events. The two-track
trigger, three-track trigger, an ECL cluster separation trigger and a trigger based on
the total energy deposition. With a combination of these, the GDL offers more than
99 % efficiency for hadronic events. In the beginning of the Belle experiment this
was the only trigger system, however it became soon clear, that for a manageable
amount of data the reduction had to be improved. For this reason the trigger Levels
3 and 4 were implemented. The Level 3 trigger system is realized by a fast track
finding algorithm running on an online farm of computers with the main purpose
to suppress beam background events by vetoing tracks that do not originate from
the interaction point. After this step, the raw data is stored on tapes. In the last
step the software trigger Level 4 is applied to raw data offline. The main software
reconstruction algorithms are applied and data summary tapes, DSTs, are produced,
containing only physics events with an average size of 4 GB × pb. Altogether, the
trigger efficiency for hadronic events is nearly 100% while half of the background
processes are rejected. A detailed description of the system can be found in Ref. [27].

2.3.2 Particle Identification

The rest mass of particles cannot be measured directly by detector components. It
can be calculated from the momentum and energy of the particle, which is calculated
from the precise measurement of its momentum and rest-mass under a particle
hypothesis. With combination of information of different detector components the
particle identification (PID) system delivers probabilities of measured charged tracks
to be an electron, muon, kaon or pion. A likelihood is constructed with information
of the energy loss in the CDC (dE/dx), TOF information, number of photons in the
ACC and ECL clusters in the path of the corresponding track and KLM clusters. For
separating different particle hypotheses likelihood ratios are constructed with

PIDα vs. β =

i L

i
α

i L
i
α +


i L

i
β

, (2.9)

where

i L

i
α represents the likelihood for particle kind α in detector component i.
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2.3.3 Example Decay

In fig. 2.4 an event display of a sample decay, which is examined within this thesis is
shown. The event which was recorded on 16th November of 1999 on data with the Belle
detector shows a candidate for the decay B0 → KSJ/ψ with a high signal probability.
Two oppositely charged pions could be matched to daughters of a KS meson with
the help of CDC tracking and SVD vertexing. Additionally, two oppositely charged
muons were found with the invariant mass compatible with the J/ψ resonance. The
response of various detector components is colored in the plots. Blue circles indicate
the drift time on wires in the CDC.

2.4 Luminosity and Data Samples
Belle operated from 1st of June 1999 until end of June 2010. The total integrated
luminosity reached 1040fb−1, displayed in fig. 2.5. The majority of data was taken
at the center of mass energy corresponding to the mass of the Υ(4S) resonance.
Off-resonance data was taken 60 MeV below this energy for 10% of the running time
to collect data containing non BB̄ background. Apart from that, a noticeable amount
of data was taken at the energy of the Υ(5S), which allows additionally for the
production of BsB̄s pairs. In total Belle recorded (772 ± 11) × 106 BB̄ pairs at the
Υ(4S) resonance. A summary of the amount of data taken by the Belle experiment
at the corresponding resonances is presented in table 2.1.

Table 2.1: Summary of the integrated luminosity recorded by Belle broken down to
the resonance energy.

Resonance On-peak luminosity (fb)−1 Number of resonance decays

Υ(1S) 5.7 102 × 106

Υ(2S) 24.9 158 × 106

Υ(3S) 2.9 11 × 106

Υ(4S) SVD1 140.0 152 × 106 BB̄

Υ(4S) SVD2 571.0 620 × 106 BB̄

Υ(5S) 121 7.1 × 106 BsB̄s

2.5 Simulated Datasets
In this thesis, both analyses are performed on simulated data in the first place on
so-called Monte Carlo (MC) data. The analysis procedures are established and tested
within the simulated environment. The software packages EvtGen [29] and PYTHIA
[30] are used to simulate the particle decays. In this step the decay chain is simulated
and all intermediated and final state particles are determined. Final state radiation
is calculated by the PHOTOS package [31]. In this thesis this is crucial for the
electron modes of B → K(∗)ℓ+ℓ−. The simulation and detector response is afterwards
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Figure 2.4: Belle event display of a fully reconstructed B → KSJ/ψ event where the
J/ψ decays into two muons. The top plots show the x-y plane and the
bottom plot displays the y-z side-view of the detector.
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2.5 Simulated Datasets

Figure 2.5: Belle integrated luminosity. Taken from [27].

performed with the software package GEANT3 [32]. The Belle experiment provides
officially produced MC samples, aiming to resemble the recorded dataset in both size
and composition.

Generic MC

For studying the backgrounds large samples of b → c transitions were simulated
containing all known decays with their appropriate branching ratio. There are two
kinds of this MC depending on the spectator quark2, hence the charge of the B meson:
the charged (B+B−) and mixed (B0B̄0) generic MC. Belle provides ten independent
sets of MC, referred to as stream of generic MC, each of them corresponding to the
total integrated luminosity of the Belle dataset. The Continuum MC contains light
quark fragmentation e+e− → qq̄ (q = u, d, s, c). The hadronisation of decays are
simulated with PYTHIA and JETSET [33]. The total statistics of the continuum
MC corresponds to four times the Belle dataset. In table 2.2 all individual fractions
of the generic MC are listed. They serve as the basis of the background composition
in both described analyses.

Table 2.2: Composition of the Belle generic MC.

Name Process

mixed Υ(4S) → B0B̄0, with generic B0 decay
charged Υ(4S) → B+B̄−

charm continuum e+e− → cc̄

uds continuum e+e− → uū, dd̄, ss̄

2A spectator quark is the light quark component of the B meson, in Υ(4S) decays this can be a u
or d quark, defining the charge of the compound.
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b → ℓνℓ

The b → ℓνℓ MC contains B → Xuℓνℓ decays, where Xu originates from a b → u

transition, e.g. a π or ρ meson. The available sample corresponds to 20 times the
luminosity of Belle.

Rare MC

The rare MC contains all known and calculated B decays, which are not included
in the other samples, e.g. also b → sℓ+ℓ− transitions. For the context of this thesis
however, the total amount of signal candidates in this sample is not sufficient, so that
special signal MC is created.

Signal MC

For both analyses a particular large set of simulated events is created in order to
study the signal processes and train multivariate methods. Details of the generated
signal samples are presented in the corresponding sections of the analyses.
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Both measurements in this thesis offer improvements in statistical sensitivity compared
to previous analyses due to the use of advanced multivariate data analysis methods.
In this chapter the most important techniques for data analysis are presented. A lot
of improvements in reconstruction efficiency can be made by considering conditions
and correlations in-between features of the datasets. In the first parts dependencies
within datasets are discussed, followed by parameter estimation and classification
methods. The probabilities play an important role throughout the analyses and are
discussed in the beginning of this chapter.

3.1 The Concept of Probability
There are basically two antagonizing frontiers in statistical analyses: Bayesians and
Frequentits. The origin of the dispute is the very definition of probability itself. Both
opinions share axioms for the foundation of probability theory that were formed by
A. Kolmogorow. They state that for the probability P for some event E, denoted as
P(E) the following axioms have to be satisfied: First, the probability is a non-negative
real number:

P(E) ∈ R, P(E) ≥ 0 ∀E ∈ Ω, (3.1)

where Ω is the space of possible events. The second axiom states that the probability
that at least one of the elements of all possible events will occur is one:

P(Ω) = 1. (3.2)

This is sometimes also referred to as the unitarity of probabilistic theory. The third
axiom is the assumption of countable additivity. It states that the probability of the
occurrence of one of the incompatible events A and B is equal to the sum of their
individual probabilities:

P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅. (3.3)
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These three axioms define handling and behavior of probability. The exact method of
how to obtain probabilities is not determined. Two approaches are detailed hereafter.

Frequentists Approach

The Frequentists approach defines probability as follows: If an event can be realized in
n distinguishable ways, of which none is preferred over the others, and k realizations
have the attribute A, then the probability for the appearance of A is

P(A) = k

n
. (3.4)

One could argue, that the definition of probability with itself was a circular reasoning,
but in many cases there are underlying symmetries, allowing this kind of statement.
In all other cases one has to refer to the empirical definition of probability: If in n

observations, k carry the attribute A, the probability for the appearance of A is

P(A) = lim
n→∞

k

n
. (3.5)

With this definition, one could argue again, that the limes of infinity is impossible to
reach, but in many practical situations, the probability converges fast to a certain
value. However, the Frequentists approach has its limitations – for example the
answer to the simple question, if it will be raining tomorrow cannot be described with
this approach.

Bayesian Approach

The Bayesian definition of probability is at first glance rather subjective, as it states,
that probability is the degree of believe of the occurrence of the attribute A in an
observation. The belief in a hypothesis is expressed in a prior probability, which
is updated in the light of new, relevant data. In the limes of infinite number of
observations, the Bayesian definition approaches the Frequentists empirical definition
of probability. The Bayesian approach has advantages, when it comes to situations
with no underlying symmetries and no way of repeating the problem.

The true strengths of the Bayesian approach manifests in the Bayes theorem, which
relates conditional probabilities. The conditional probabilities P(A|B) refers to the
probability for A under the condition that B has occurred. The Bayes theorem states:

P(A|B) = P(B|A) · P(A)
P(B) . (3.6)

In particle physics an important application of the Bayes theorem is the determination
of the probability to observe a signal event in a given data sample. From simulated
data (Monte Carlo) the probability of P (data|signal) can be derived, hence one knows
the data under the condition for signal or background classes. The final goal is to
make conclusions of the probability for a signal event under the observation of the
measured data P(signal|data). With the help of the Bayes theorem and the proper
prior probability, one can easily calculate P(signal|data).
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3.2 Dependencies in Datasets

3.1.1 Probability Density Distributions

Random variables can be classified as either continuous or as discrete, where their
distribution can be described by an underlying probability density function (PDF).
Discrete random variables can adopt discrete values ri with the corresponding proba-
bility P (ri) = Pi ∈ [0, 1], with the sum over all possible realizations of the random
variable has to be one:

b
i=a Pi = 1. In physics, one rather faces continuous random

variables, such as lifetime or reconstructed mass of a particle. The random variable
x is described by the PDF f(x) and the probability to measure x in the interval
a < x < b is given by

P (a < x < b) =
 b

a
f(x) dx (3.7)

where the PDF is a non-negative, normalized function:

f(x) ≥ 0 and
 ∞

−∞
f(x) dx = 1. (3.8)

Important indicators of a PDF are the estimate value E and variance V . The expected
value is defined as

E[x] =
 ∞

−∞
xf(x) dx, (3.9)

which is equal to the mean value ⟨x⟩ and fulfills E[ax] = ⟨ax⟩ = a⟨x⟩ for a constant
a. The variance of the distribution is defined as the second central momentum µ2:

V [x] = µ2 = E[(x− ⟨x⟩)2] =
 ∞

−∞
(x− ⟨x⟩)2 f(x) dx. (3.10)

In the following sections random variables in multiple dimensions or sets of different
random variables are used. In many cases these random variables are not independent
of each other. Probability density functions in multiple dimensions have to be
also normalized and positive. Mean and variance for the n-dimensional function
f(x1, .x2, .., xn) are calculated below

⟨xi⟩ = E[xi] =

xif(x1, .x2, .., xn) dx1 dx2...dxn, (3.11a)

V [xi] =


(xi − ⟨xi⟩)
2f(x1, .x2, .., xn) dx1 dx2...dxn. (3.11b)

Additionally, in multiple dimensions, one can calculate the covariance between two
variables xi and xj :

σxixj
=


(xi − ⟨xi⟩) (xj − ⟨xj⟩) f(x1, .x2, .., xn) dx1 dx2...dxn. (3.12)

3.2 Dependencies in Datasets
Multidimensional maximum likelihood fits rely heavily on correct treatment of under-
lying correlation. Several methods are used in this thesis to determine correlations in
probability density distributions used in the fit. The algorithms used are inspired by
the framework presented in Ref. [34].
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Linear Correlation

The linear correlation between two features of the same dataset can be described by
the coefficient r, also known as Pearson’s correlation coefficient. For a dataset with
N entries and features x and y, it can be calculated from the data by

r =
N
i=1(xi − x̄)(yi − ȳ)N

i=1(xi − x̄)2
N

i=1(yi − ȳ)2
, (3.13)

where

x̄ = 1
N

N
i=1

xi and ȳ = 1
N

N
i=1

yi (3.14)

are the arithmetic means, of the distributions x and y. The range of r is by construction
within [−1, 1], where r = 0 corresponds to no linear dependence and r = 1(−1) to
100% linear (anti-) correlation. A sample distribution for r = 0.8 is shown in
figs. 3.1(a) and 3.1(b). Two linearly uncorrelated distributions are displayed in
figs. 3.1(c) and 3.1(e), where r = 0. However, one can observe in fig. 3.1(c) that
the shape of x2 is dependent on the region of y2. This is additionally demonstrated
in fig. 3.2 by displaying subsets of x2 in different regions of y2. Both distributions
offer non-linear correlations. One has to keep in mind, that this type of conditional
distributions cannot be found by looking at the linear correlation of a dataset, which
could be critical for maximum likelihood fits. In the following a method for automatic
detection of non-linear correlations is introduced.

3.2.1 Flat Distributions

For some applications it can be useful to transform a non discrete distribution x to xf
which is flat in for example [0, 100]. This can have benefits for instance if x has large
tails and one tries to calculate divisions between histograms. Statistical fluctuations
could lead to divisions by zero, whereas in flat distributions, always the same number
of events is expected in each bin. One example is a likelihood ratio between two
classes in the same feature, were in tails of the distribution statistical fluctuations are
large. One way to calculate a flat distribution is to use different bin sizes in a way
that all bins contain the average of N/nbins entries, where N is the size of the dataset
and nbins is the number of bins used. Values for the bin edges can be derived by
calculating percentiles of x. This way, however, the distribution stays the same but
the resulting histograms do not suffer from numerical instabilities. A different way is
to transform each value xi of the sample so that the transformation x → xf becomes
a flat distribution. This can be achieved by transforming the original distribution
with its Cumulative Distribution Function CDF . If the CDF is not known, one can
estimate it by creating a histogram horig with nbins bins and event yields norig

i in bin
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Distributions of different types of correlations between two observables
(left column) with the corresponding flat transformation (right column).
Plot (a) shows a correlated dataset with r = 0.8 and (c) and (e) both
show distributions without linear correlation r = 0.0.
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Figure 3.2: Demonstration of the dependency between x2 and y2 although both
distributions have no linear correlations, i.e. r = 0.

i, by successively adding all previous contents to each bin to derive hCDF with bin
content

nCDFi = 1
N

j<=i
j=1

xorig
j , (3.15)

for i = 1, 2, ..., nbins. Usually the normalization for hCDF is 1
N but also other factors

can be useful, like 100/N for extracting percentiles of x. The CDF can be constructed
from hCDF by a spline fit or linear interpolation between the content of each bin. In
applications throughout this thesis a spline fit is used for the estimation of the CDF .
The transformation to a flat distribution can be calculated by xf = CDF (x). This
procedure is demonstrated in fig. 3.3.

3.2.2 Analyzing Correlation

One can analyze correlations by looking at the two-dimensional distributions of two
observables. In order to find linear and non-linear correlations, a robust, automated
technique is needed.

Flat correlation plots

If one considers two observables x and y from the same dataset with N entries, one
can transform both of them to their corresponding flat distribution xf and yf . A test
statistic can be constructed from a two dimensional scatter-plot to test their linear
and non-linear dependency. From the scatter-plot, one can create a n× n histogram
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Figure 3.3: Flattening of a distribution with its CDF. The left plot shows the original
distribution x and the cumulative distribution function CDF . The right
plot is the flat transformation of x which can be calculated by xf =
CDF (x).

H with bins of equal size. For an uncorrelated dataset, one expects the scattered
distribution to be uniformly distributed in the two dimensional plane and thus one
can expect in each bin of the histogram nexp = N/n2 events. If n is chosen large
enough (i.e nexp ≳ 25), one can estimate the statistical error of each bin content
with the Poisson error σnexp

=

N/n2. From this average, a χ2 test-statistic can be

calculated:

χ2 =
n
i=1

n
j=1

(nij − nexp)
2

σ2
nexp

, (3.16)

where nij is the bin content H(i, j). The probability for both distributions being
uncorrelated follows a χ2 distribution with n2 − (2n− 1)1 degrees of freedom. This
procedure is adapted and described in detail in Ref. [34]. Examples of scatter plots
for two observables with different types of correlations and the transformation to
a flat distribution can be seen in fig. 3.1. The flat correlation plot for these three
types is displayed in fig. 3.4. The color of the plot indicates deviations from the
expected signal yield nexp in units of the standard deviation σ with respect to the
statistical error σnexp

. Regions in green match the expected yield, blue (red) color
signals significantly less (more) events then expected from a flat hypothesis.

With this test one can see by eyes if the distribution between two features of a dataset
1Constraints for the number of events in each row/column due to the flat transformation remove

one degree of freedom.
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(a) (b) (c)

Figure 3.4: Flat correlation of correlated and uncorrelated distributions. The distribu-
tion (a) shows a linear correlation from fig. 3.1(a). In the second plot (b)
the distribution of fig. 3.1(c) is shown in (c) the uncorrelated distribution
from fig. 3.1(e) is displayed as a flat correlation plot. The deviation from
a flat expectation is shown colored and expressed in standard deviations
σ.

are correlated or not. Moreover, the test produces a test-statistic, the probability
p for both features providing a two dimensional flat distribution. On the basis of
this quantity one can for instance select variables for a multidimensional maximum
likelihood fit. This technique is used throughout the thesis in the analysis section for
the angular analysis of B → K(∗)ℓ+ℓ−.

3.3 Parameter Estimation
A common problem in statistical physics is, that the true values of parameters of
a physical problem are generally not known. The estimated set of parameters â
differs from the true values a0 by statistical and systematic errors. In many cases
the measured data can be regarded as a set of random variables x⃗, following a
probability density function (PDF) f(x⃗|a0). The estimation process tries to estimate
the underlying parameters â and their errors. Prominent examples are the estimation
of the mean value of a distribution or the lifetime τ of an atomic state.

A parameter estimator has to fulfill in general four criteria:

• Consistency: limN→∞ â = a0

• Unbiasedness: E[â] = a0

• Efficiency: the variance of â has to be as small as possible

• Robustness: â has to be unaffected by wrong data or hypothesizes

3.3.1 Maximum Likelihood Method
The maximum likelihood method is a general technique for parameter estimation. In
case of data following a normal distribution this method is equal to the χ2-test, see
for instance [35].
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More generally, the common task is to determine a set of parameters θ = θ1, ..., θn
for a sample of random variables x = x⃗1, ..., x⃗m following a function f(x⃗i|θ). Usually,
f(x⃗i|θ) is chosen to be a probability density function P(x⃗i|θ), which is positive and
normalized for all possible parameters θ within their boundaries Ω:

∀θ :


Ω
P(x⃗|θ)dx⃗ ≡ 1 (3.17)

P(x⃗i|θ) ≥ 0. (3.18)

For an ensemble of N independent data points, the likelihood function L(x⃗|θ) of the
total set is the product of the probability of each data point:

L(x⃗1, ..., x⃗n|θ) =
N
i=1

f(x⃗i|θ). (3.19)

With the maximum likelihood method, the estimated parameters θ̂ are chosen to
maximize L(x⃗|θ):

L(x⃗1, ..., x⃗n|θ̂) ≥ L(x⃗1, ..., x⃗n|θ) ∀θ. (3.20)

For numerical stability in computational algorithms, the logarithm L(θ) is calculated
and the negative log-likelihood function is minimized. Furthermore, the data might
consist of several categories with individual number of expected events and which
each category following their own PDF. The parameters can then be obtained by an
extended maximum likelihood fit

L(θ) = lnL(θ) =
N
j=1

 C
i=1

NiPi(x⃗j |θ)


−
C
i=1

Ni, (3.21)

where C is the number of categories, Pi is the PDF of the ith category and Ni is the
signal count of the category. In the context of this thesis, this method is used to
determine observables from the angular distribution in the decay B0 → K∗(892)0ℓ+ℓ−.

3.4 Classification Methods
The general task of a binary classification is to discriminate between two hypothesizes
H0 and H1 from a set of random variables x following a multidimensional PDF f(x).
The goal is to find a function x → t which reduces the multidimensional problem
to a lower dimensional test statistic t, following the distribution g(t). It is chosen
in a way to allow for a maximal discrimination between the two hypothesizes in
g(t), i.e. to maximize the separation between the distributions g(t|H1) and g(t|H0).
The following sections detail various methods for the construction of the function
g(t). The classification is performed by a cut tcut on t where the hypothesis H1 is
accepted for t > tcut and otherwise rejected. If the classification method is not able
to completely separate both classes in t, which is the usual case, one is bound to miss
classify some events. These mistakes are called errors of the first and second kind. If
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Figure 3.5: Example of a test statistic with the corresponding purity vs. efficiency
plot o the right side.

one accepts the wrong hypothesis, one speaks of errors of the first kind, α. Errors
of the second kind are, if one rejects the correct hypothesis, with the corresponding
probability β. The probabilities for this can be calculated by

α =
 ∞

tcut

g(t,H0) dt

β =
 tcut

−∞
g(t,H1) dt.

This is depicted in fig. 3.5(a). Important measures of a classification method are the
purity and efficiency:

efficiency =
N(true|selected)

Ntrue

purity =
N(true|selected)

N(true|selected) +N(false|selected)

The strengths of a classifier can be displayed in the purity vs efficiency plot, shown in
figure 3.5(b). The optimal working point would be (1,1), which obviously can not be
reached in non-separable problems as always errors of the first and second kind are
made. In all other cases the optimal working point is dependent on the weighting of
the errors of first and second kind i.e. the compromise between purity and efficiency.
If one compares different methods with each other, the method which provides a
higher efficiency at a given purity is preferred.

3.4.1 Cut based Methods

A cut based analysis is the simplest method to separate two classes in a multidimen-
sional variables space x. Sequential cuts are applied to each input dimension in order
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to isolate the desired x ∈ H0 class from the background class x ∈ H1. This way no
transformation x → t is needed, but all applied cuts determine a fixed purity/efficiency
working point. Moreover, this method does not consider any correlations of the input
variables. Cut based methods are a commonly used technique, because they are
simple to implement and can be easily comprehended. Cuts are used within this
analysis to remove background events in unphysical regions. In general it is tried
within this thesis to apply as least cuts as possible where signal candidates would get
lost.

3.4.2 Fisher’s linear discriminant

The Fisher’s linear discriminant, often referred to as Linear Discriminant Analysis
LDA, is a simple method to separate classes in a vector space. One constructs a
hyperplane in the vector-space x in order to separate two classes by their mean
in units of their variance. To construct the test-statistic t, the variable vectors
(x = x1, x2 ..., xn) are assigned to the corresponding hypothesis: (x(1),x(0)). In a
next step, the mean of the vectors x̄(1) and the covariance matrix of each class is
calculated

V
(1)
ij = 1

N


N


x(1)
i − x̄(1)

i


·

x(1)
j − x̄(1)

j


. (3.22)

Accordingly one calculates x̄(0), V (0)
ij and the mean covariance matrix Vij = 1

2(V (1)
ij +

V
(0)
ij ). The test statistic t is then calculated by

t =
N
i=1

fi xi − 1
2

N
i=1

fi (x̄
(1)
i + x̄(0)

i ) (3.23a)

with

fi =

k


V −1


ik

(x̄(1)
k − x̄(0)

k ). (3.23b)

It can be shown, that this algorithm delivers optimal results in the case of Gaussian
distributed input variables Xi and linear correlation [35]. LDAs are one of the simples
multivariate methods, they are used within the presented analyses as a reference
model for demonstrating the benefits of more advanced techniques.

3.4.3 Neural Networks

Datasets can offer higher order, i.e. non-linear correlations between the signal or
background hypothesis H0,1 in the data x. One method to detect and benefit from
this correlation are artificial neural networks. They were developed in an attempt
to simulate the process behind biological nerve cells. Neurons in human brains for
example gather electrical stimulations from other brain cells. They fire themselves
an electrical pulse to other neurons, if the input signal exceeds a certain threshold.
The strength of the signal depends on the connection in between two neurons. It
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(a) The transfer function φ. (b) Feed forward network topology.

Figure 3.6: Topology of a Neural Network (right). The transfer function (left) with
different learning gradients β is used in each perceptron to map the sum
of the input to the range [−1, 1].

is believed that the adjustment of these connections implies learning. The artificial
neuron is called perceptron and offers the same structure. It sums up incoming signals
xi multiplied by a weight wi and determines the outgoing signal o with the transfer
function φ:

o(x) = φ


xiwi

. (3.24)

A common choice for the transfer function is the sigmoid function:

φ = tanh(βx) = 2
1 + e−2βx − 1. (3.25)

It maps the interval (−∞,∞) to [−1, 1] and its gradient β is a key factor in the
learning process of the network. Variations of the parameter β can be seen in fig.
3.6(a). This function is approximately linear in the region around zero and turns
into a function with exponential character at growing |x|, in this region, where φ
approaches ±1, the perceptron is called saturated. The optimal training conditions
are provided in the linear region of φ. The array of several perceptrons forms an
artificial neural network, where the topology of this arrangement determines the type
of neural network. It has been shown that feed forward networks deliver optimal
solutions for classification problems and are widely used in high energy physics. Feed
forward networks consist of an input layer, one or several hidden layers H and an
output layer, see fig. 3.6(b) for an example topology. The figure shows a network
with N input knots, H perceptrons in one hidden layer and O output knots. The
weights between the layers Bjk and Aij have to be determined during the learning
process and refer to the expertise of the classifier. For the learning process one
needs data with known truth (x⃗, t⃗). The truth t⃗ can be received from simulated data
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(Monte Carlo simulations) or historical data and is another important factor for the
quality of the training. The most frequently used algorithm for the training of neural
networks is called back-propagation of errors. It is an iterative process: Each input
x⃗i is propagated through the network and the output o⃗i is calculated. The network
output is compared to the truth and an error function ED(o⃗i, t⃗i) is calculated. Finally
the weights are updated in order to minimize the error function. The update of the
weights can be performed after each event (on-line learning), after the whole training
sample (batch learning) or after a certain number of events (quasi on-line learning).
A common choice of the error function is the χ2 error

Eχ
2

D = 1
2

i

(oi − ti)
2. (3.26)

Alternatively the entropy loss function can be used

ED =

i

ln(1 + oiti). (3.27)

The training of the networks is a crucial part of this algorithm and source of many
mistakes. As the learning process is a high dimensional minimization process (the
quantity of weights {w} is equal to this dimension), the global minimum is difficult to
reach. It is more likely that the minimization algorithm gets stuck at a local minimum.
From this point of view it is advisable to keep N and H and thus {w} as low as
possible. Another problem is the overfitting or overtraining of the network. If the size
of the training sample is in the order of {w}, the network can learn the sample by
rote. At this point the error function can even reach zero but the ability to generalize
is lost. For this reason a common technique is to split the dataset into a training
sample and a test sample. During the training one compares the error function on
the training and test sample. At the point of overfitting, the error function on the
test sample stops decreasing and rises.

Preprocessing of the input variables can furthermore improve the training. Various
preprocessing steps will be discussed alongside the next section with the NeuroBayes
framework as it performs an excellent preprocessing.

3.4.4 The NeuroBayes Framework

The NeuroBayes framework [36] combines robust preprocessing, decorrelation of the
dataset and a final neural network for classification. It has shown exceptional results
for physical and non-physical problems in terms of robustness, separation power, and
performance. The preprocessing steps are performed automatically, so that one can
use the algorithm out of the box without modification of the input data.

The first step of the classification is the flattening of each input variable. The variables
are drawn into a binned histogram, where the bin size of the histogram is adjusted,
so that each bin contains the same amount of events. This stabilizes numerical
calculations for further preprocessing steps and allows for a robust estimation of
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the underlying probability density function. In the next step the PDF for signal
and background is obtained and the purity is calculated for each input variable. All
variables are then transformed to their corresponding purity. The last step transforms
each purity distribution to a Gaussian shape with mean zero. This step can be
achieved by transforming the data with the inverse error function.

The classification is performed by a decorrelation procedure similar to a principal
component analysis, in a way that the classifier output owns maximal correlation
to the signal and background class. This way all linear correlations are taken into
account and the result is optimal in the absence of higher order correlations [36].

The optional last step of the classification is the use of a neural network. This aims
to learn residual higher order correlations which are not taken into account from the
decorrelation procedure. For the most part in this thesis the neural network mode
does not improve the result significantly.

3.4.5 Boosted Decision Trees
In recent years, Boosted Decision Trees became more and more popular and the
method of choice for many classification tasks. The key point of their success is the
combination of many weak classifier with a technique called boosting. This method
shall be explained briefly in the following.

A decision tree classifier divides the training data into two regions, dominated by
either signal or background. This is done by consecutively cutting at one variable a
time, leaving a signal enhanced or suppressed subset of the data. The cut value is
chosen to maximize the separation gain, where commonly the entropy difference is
calculated. The method can be represented by a tree like structure, with a cut on
a feature at each branch where the number of consecutively performed cuts defines
the depth of the tree. As a result, the tree commonly delivers the signal fraction in
the accordant region. An example of a decision tree with depth 2 from a training in
part III of this thesis is shown in fig. 3.7.

Simple decision trees, especially those with a large depth, are susceptible for overfitting
and mostly not powerful classifiers. They became favored as a so-called weak-learners
in boosted learning algorithms by limiting their depth. Boosting algorithms combine
many weak-learners to one classifier with great separation power. In the training,
weights are assigned to the data and the first weak-learner is trained. Afterwards
event weights for miss reconstructed events are increased and a new weak-learner is
trained. This procedure is usually repeated many times. The final output is derived
as a weighted sum of the outputs of all weak-learners in the ensemble.

Boosting algorithms can be classified by the way the weights for the dataset are
determined and the ensemble is structured. In this thesis Stochastic Gradient Boosts
are used which follow the implementation based on Ref. [37]. The new event weights
are calculated as the negative gradient of the loss function L:

wi = − ∂L

∂σ(x⃗i)
, (3.28)
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BTagNBout <= 0.0146
impurity = 0.0272519519516

samples = 186104

Chanel <= 30148.0000
impurity = 0.0117965010018

samples = 133009

Ch0_Pstar_inBSigRest <= 1.2221
impurity = 0.0636938334848

samples = 53095

impurity = 0.0678
samples = 5644

value = [ 1.65628381]

impurity = 0.0091
samples = 127365

value = [-0.69032236]

impurity = 0.1001
samples = 27072

value = [ 3.1133944]

impurity = 0.0216
samples = 26023

value = [-0.21945861]

Figure 3.7: Example of a decision tree from a training in part III of this thesis. Cuts
are performed to variables of the training-set. The last row states the
number of entries in each category, the corresponding impurity and the
output value of the tree.

where σ(x⃗i) refers to the current classifier output. As a consequence, events which
are easy to classify become irrelevant after a few iterations and the method can
concentrate on difficult regions. In stochastic learning, the training dataset for each
weak-learner is additionally a random subset of the whole training set. This speeds
up the training and helps the method to generalize. Important parameters to tune in
the training are the depth of the weak-learners, the number of trees in the ensemble
and the learning rate. In part III Stochastic Gradient Boosted Decision Trees are
used.

3.5 Full Reconstruction Technique
The full reconstruction method is a unique technique suitable for B factories, which
allows for the reconstruction of decays which are not fully visible in the detector.
This method is used in part III of this thesis to reconstruct signal candidates for
B+ → K+τ+τ−. One of the most important advantages of an electron positron
collider is that the initial state of the collision is precisely known, since the four-vector
of both colliding beams is precisely known. The precise knowledge of the initial state
allows for constraints for missing energy and momentum. This method is essential
if the final state of interest contains neutrinos, as they can not be directly detected.
The Υ(4S) is just above the mass threshold for the decay into two B mesons, so
that it can decay directly via the strong interactions into B0B̄0 or B+B− in more
than 96% of the cases. For the full reconstruction method, the pairwise appearance
of B mesons is exploited to find otherwise (partly) hidden decays. A successful
reconstruction of one B meson (the tag-side) implies the existence of exactly one
other B meson (signal-side). For this it is needed that the tag-side B is reconstructed
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Figure 3.8: Schematic diagram of the full reconstruction.

in purely hardronic modes, hence without neutrinos in the final state. At the KEKB
accelerator this is possible because pileup, which means multiple interactions per
bunch crossing, is negligible. As the four-momenta P of the electrons in the HER
(High Energy Ring) and LER (Low Energy Ring) are precisely known, energy and
momentum conservation laws allow for calculating the four-momentum of the signal
side B meson, even without reconstructing one single of its tracks in the detector:

P
e

+ + P
e

− = Ptag-side + Psignal-side. (3.29)

In addition to the four-momentum of the signal-side B meson, one can assign all tracks
in the detector and hits in the ECL/KLM, which are not used for the reconstruction
of the tag-side B meson, to the signal-side B meson. It could be shown that with this
technique it is even possible to reconstruct signal-side B mesons with no detectable
decay products like the decay B0 → νν̄ [38]. Other examples for measurements which
can be performed with this technique are

B+ → τ+ντ , (3.30a)

B+ → D(∗)τ+ντ , (3.30b)
B+ → K+νν. (3.30c)

In Figure 3.8 this procedure is schematically demonstrated for the decay B+ → τντ .
The tag-side B is usually reconstructed in purely hardronic modes, for instance
B → DK. In the illustrated example it was possible to reconstruct the tag-side B
with combinations of tracks t1,2,3,4,5. The only remaining track originates from the
decay of the signal-side B meson in the decay B → τν. The precise knowledge of
the four-momentum of the signal-side B meson allows for calculating the missing
momentum.

In the context of this thesis the decay B+ → K+τ+τ− is reconstructed using the full
reconstruction technique. The neural network based framework at Belle [39] uses in
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total 1104 exclusive hadronic decay modes of B mesons for the reconstruction using
71 NeuroBayes [40] neural networks for classification. Compared to the previous cut
based method, the efficiency could be increased by almost a factor of 2.

The total efficiency of this technique is however limited by the fraction of pure
hadronic decays. The majority of B mesons decays semileptonically, thus these events
can not be used for a full reconstruction. In total, one can correctly reconstruct B+

or B0 candidates in 0.28% or 0.18% of all BB̄ events respectively.
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Angular Analysis of B → K∗ℓℓ

49





4. Reconstruction of B → K(∗)ℓ+ℓ−

The first analysis in this thesis covers the muon and electron modes of b → sℓ+ℓ−

with the reconstruction of B → K(∗)ℓ+ℓ−. In total 8 decay modes are exclusively
reconstructed in 12 final state configurations. This chapter details the reconstruction
procedures and background suppression methods. An angular analysis is performed
with the combined data of the decay modes B0 → K∗(892)0µ+µ− and B0 →
K∗(892)0e+e−. For this, an in-depth study is performed with simulated data presented
in chapter 6. All procedures are tested in advance with Monte Carlo toy studies,
detailed in section 6.3. Sources of systematic uncertainties are evaluated in chapter 7.
Finally, results on data are extracted, validated and compared to Standard Model
predictions and previous measurements, presented in chapter 8.

4.1 Analysis Overview
The decay B → K(∗)ℓ+ℓ− is reconstructed exclusively in 12 final states, where ℓ = e, µ.
An overview of the used decay channels is given in table 4.1. The charged conjugated
(cc.) mode is always implied if not explicitly stated otherwise. The reconstruction
procedure aims to reach an optimal signal efficiency and purity in order to gain
sufficient statistics for a full angular analysis. For this reason there are no strong
selection constraints applied on primary particles. All information of the decay is
gathered at the stage of the final reconstruction of the B meson candidate, where
multivariate data analysis techniques are used to determine its quality. The procedures
and data analysis tools used are explained in section 4.4. In case of multiple candidates
per event, the decay channel with the highest probability is selected.

4.1.1 Data

This analysis is performed on the full Belle dataset corresponding to 711 fb−1 (detailed
in section 2.4). Beforehand the analysis is performed on simulated data where both
the official Belle generic MC is used and dedicated sets of signal MC are generated.
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Table 4.1: Decay channels of the exclusive reconstruction of B → K(∗)ℓ+ℓ−, where
l = e, µ and cc. is implied.

B+ B0

B+ → K∗+(K+π0)ℓ+ℓ− B0 → K∗0(KSπ
0)ℓ+ℓ−

B+ → K∗+(KSπ
+)ℓ+ℓ− B0 → K∗0(K+π−)ℓ+ℓ−

B+ → K+ℓ+ℓ− B0 → KSℓ
+ℓ−

Simulated signal events are generated with a decay model in the EvtGen generator
using a routine to implement b → sll decays according to Ref. [41]. A large set of
signal events is generated for all modes shown in table 4.1. Additionally, a so-called
phase-space MC is generated, in which all angular distributions of the decay products
are uniformly distributed.

Table 4.2: Branching fraction of B → K(∗)ℓ+ℓ− and expected number of signal events
in Belle MC based on PDG ([4]).

Type B Expected signal candidates

B+ → K+e+e− (5.5 ± 0.7) × 10−7 424
B+ → K+µ+µ− (4.49 ± 0.23) × 10−7 346
B+ → K∗(892)+e+e− (1.55+0.4

−0.31) × 10−6 1195
B+ → K∗(892)+µ+µ− 9.6 ± 1.0) × 10−7 741

B0 → K0e+e− (1.6+1.0
−0.8) × 10−7 123

B0 → K0µ+µ− (3.4 ± 0.5) × 10−7 262
B0 → K∗(892)0e+e− (1.03+0.19

−0.17) × 10−6 795
B0 → K∗(892)0µ+µ− (1.05 ± 0.10) × 10−6 811

Two streams of MC are used for the training of the background suppression classifiers.
One independent stream of generic MC is used for evaluating all methods. For
calculating the expected purity of the candidates sample, generic MC is mixed with
the number of signal candidates that are expected in the Belle dataset. These
expectations are calculated based on the branching ratios from PDG [4] scaled
according to the total number of BB̄ pairs in the Belle dataset. The result can be
seen in table 4.2.

4.2 Particle Selection
The charged particles e±, µ±, π± and K± and the neutral particles KS , π

0 and γ can
be directly reconstructed in the detector. They are the first stage in the reconstruction
and in the following are referred to as primary particles.

For all charged tracks loose impact parameter constraints are applied to the nominal
interaction point in the radial direction of |dr| < 1.0 cm and along the beam direction
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4.3 Event Selection

of |dz| < 5.0 cm. Belle provides a particle identification (PID) calculated from a
variety of signals in the detector components. Soft cuts are applied on the particle
identification system to remove highly unlikely candidates. The PID system is
described in section 2.3.2. Electrons are identified by the electron ID (eid). The
eid provides a likelihood ratio Peid(e) = L(e)/(L(e) + L(hadron)). A soft cut is
applied and all charged tracks satisfying Peid(e) > 0.1 are accepted as electrons.
High energetic electrons can emit photons from bremsstrahlung. To recover the
original momentum of the electrons, a search for photons in a cone of 0.05 radians
around the initial momentum direction of the track is performed. If photons are
found in this region, their momenta are added to the electron. This is referred to
as bremsstrahlung recovery process. For µ± candidates there is a muon-id (muid)
separating muons from other particles detected in the KLM. Again, a soft cut is
applied and all charged particle candidates with Pmuid(µ) > 0.1 are accepted as
muons. Candidates for K± are separated against pions through information from the
TOF, ACC and CDC. A loose selection of P(K/π) = L(K)/(L(K) + L(π)) > 0.1 is
required. For the π± candidates no PID selection is applied. Candidates for KS are
formed from two oppositely charged tracks with the mass assumption of a charged
pion. Candidates for neutral pions are reconstructed from two photons, each required
to have Eγ > 30 MeV. Furthermore, candidates are required to have an invariant
mass of 115 MeV/c2 < Mγγ < 153 MeV/c2. An overview of all particle selection
criteria is shown in table 4.3.

Table 4.3: Summary of the particle selection criteria.

Selection cut value

Charged tracks |dr| < 1.0 cm
|dz| < 5.0 cm
pt < 10.0 GeV/c

e± candidate Peid(e) > 0.1
µ± candidate Pmuid(µ) > 0.1
K± candidate P(k/π) > 0.1
π± candidate no selection
KS candidate KS finder class accept status good KS

π0 candidate Eγ > 30 MeV
π0 candidate Mγγ 115 MeV/c2 < Mγγ < 153MeV/c2

4.3 Event Selection

In the event selection loose cuts are applied on masses and energies to exclude unphys-
ical regions for B → K(∗)ℓ+ℓ− and vetoes are applied to remove irreducible sources
of background. After this step the main suppression of background is performed,
detailed in the next sections.
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4 Reconstruction of B → K(∗)ℓ+ℓ−

In the second stage of the reconstruction, K∗ candidates are formed in four channels
from K±,KS , π

± and π0 candidates. The reconstructed channels are:

K∗0 → K+π−,

K∗0 → KSπ
0,

K∗+ → K+π0 and
K∗+ → KSπ

+.

For these candidates, an invariant mass cut of 0.6 GeV/c2 < MK
∗ < 1.4 GeV/c2 is

applied and a vertex fit is performed, which is used for background suppression later
on.

In the final stage of the reconstruction K(∗) candidates are combined together with
oppositely charged lepton pairs to form B meson candidates. Large amounts of
random combinations are rejected by cuts on kinematic variables. Two independent
variables can be constructed using constraints from the condition that in Υ(4S) decays
B mesons are produced pairwise and carry half the center–of–mass (CM) frame beam
energy, EBeam, each 1. They are the beam constrained mass, Mbc, and the energy
difference, ∆E, in which signal features a distinct distribution that can discriminate
against background. The variables are defined in the Υ(4S) rest frame as

Mbc ≡

E2

Beam − |p⃗B|2 and (4.1)
∆E ≡ EB − EBeam, (4.2)

where EB and |p⃗B| are the energy and momentum of the reconstructed candidate
respectively. Correctly reconstructed candidates are located around the nominal
B mass in Mbc and feature ∆E of around zero. Candidates are selected satisfying
5.22 < Mbc < 5.3 GeV/c2 and −0.10 (−0.05) < ∆E < 0.05 GeV for ℓ = e (ℓ = µ).

Large contributions of irreducible background arises from charmonium decays B →
K(∗)J/ψ and B → K(∗)ψ(2S), where the cc̄ state decays into two leptons. These
decays own the same signature as the desired signal and are vetoed with cuts on the
invariant mass of the lepton pair

−0.25 GeV/c2 < Mee(γ) −MJ/ψ < 0.08 GeV/c2, (4.3)
−0.15 GeV/c2 < Mµµ −MJ/ψ < 0.08 GeV/c2, (4.4)
−0.20 GeV/c2 < Mee(γ) −Mψ(2S) < 0.08 GeV/c2 and (4.5)
−0.10 GeV/c2 < Mµµ −Mψ(2S) < 0.08 GeV/c2. (4.6)

These veto regions are displayed in fig. 4.1. In the electron case, additionally photon
energies of detected photons from the bremsstrahlung recovery process are added.

1Assuming the environment of a B–factory such as Belle and BaBar.
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Figure 4.1: Veto regions for charmonium background for the di-electron (right) and
di-muon (left) channels.

Di-electron background can also arise from photon conversion γ → e+e− and π0

Dalitz decays (π0 → e+e−γ). In order to eliminate this source of background the
constraint Me(γ)e(γ) > 0.14 GeV/c2 is required.

For the B meson candidates, a vertex fit is performed, which is used for background
suppression and also to define the distance between the two leptons along the beam
direction ∆zℓℓ. All cuts and vetoes are listed in table 4.4.

Table 4.4: Summary of the event selection criteria.

Selection

Charmonium veto −0.25 < Mee(γ) −MJ/ψ < +0.08 GeV/c2

−0.15 < Mµµ −MJ/ψ < +0.08 GeV/c2

−0.20 < Mee(γ) −Mψ(2S) < +0.08 GeV/c2

−0.10 < Mµµ −Mψ(2S) < +0.08 GeV/c2

π0 Dalitz /γ → e+e− Mee > 0.14 GeV/c2

K∗ mass 0.6 /c2 < MK
∗ < 1.4 GeV/c2

Beam constrained mass 5.22 < Mbc < 5.3 GeV/c2

Energy difference −0.10 < ∆E(ℓ = e) < +0.05 GeV
−0.05 < ∆E(ℓ = µ) < +0.05 GeV

4.4 Background Suppression Strategy

In this analysis, only soft cuts are applied in the first place to keep most signal
candidates. With this approach it is tried to eliminate background as late as possible
in the reconstruction of B mesons. This leads to a large amount of different sources
of possible backgrounds. Multivariate data analysis techniques are used to combine
all available information of a B meson candidate in order to separate signal from
background.
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4 Reconstruction of B → K(∗)ℓ+ℓ−

A hierarchical framework is used in the reconstruction, starting in the first stage
with the primary particles from tracks (e, µ,K±, and π±) and the neutral particles
(KS , π

0 and γ). In the second step combinations to K∗ particles are performed and
in the last stage the final B meson candidates are constructed.

In each stage, all particle candidates are analyzed with a neural network (NeuroBayes
[36]) and an output NBout is assigned. This output is chosen to correspond to a
Bayesian probability in the range [0, 1] where 1 corresponds to the candidate being
true signal. In this manner a network output of NBout = 0.9 corresponds to a
probability of 90% for the candidate to be a true signal event. To transfer quality
information about the primary particles in the detector to higher stage composite
particles (K∗ and B) the network output of the secondary or children particles of
each candidate is included to its neural network input. One of the most important
variables in the training of B meson candidates is the combined probability for all
children corresponding to their correct hypothesis,

NBProd =


child i
NBout,i. (4.7)

4.4.1 Sources of Backgrounds
In the reconstruction several sources of background are considered. In the particle and
event selection, cuts are introduced, preserving almost all the signal and excluding
regions without signal. The probability of a signal event is in the order of O(10−6),
which means that a huge amount of background events exists for each signal candidate.

In this analysis the following sources of backgrounds are considered:

Continuum In continuum events, e+e− annihilates into light quark pairs uū, dd̄, ss̄
as well as events containing charm quarks cc̄. These initial quark pairs however
exhibit a large energy release, forming back to back jet–like structures.

Combinatorial Combinatorial background arises from wrong combination of tracks
in B decays. This is the dominant source of background.

Peaking A process is considered as peaking background when it mimics the signal
shape in Mbc. For the peaking background several sources have to be considered:
First, irreducible background exists from B → K∗J/ψ and B → K∗ψ(2S)
events, which passes the q2 vetoes. Secondly, double mistag events from B →
K∗ππ can occur, where both pions are misidentified as muons.

Cross-feed Here a candidate is assigned to the wrong decay channel hypothesis by
missing some decay products or misreconstruction of one of its children. This
source is analyzed in the systematics in chapter 7 in detail.

4.5 Neural Network Trainings
The neural network trainings are performed in several stages since the composite
particles like K∗ or B mesons use the network output of their children as an input.
Consequently, the networks for the primary particles have to be trained first.

56



4.5 Neural Network Trainings

4.5.1 The Prior Probability

The framework uses a prior probability for each candidate for being signal or back-
ground. Rare decay channels have a lower prior probability than decay channels with
high branching fractions.

When training the neural networks signal MC is mixed with generic MC. The trainings
are performed with almost equal sizes for the signal and background class. As a
result the signal to background ratio is much higher than expected in real data.
Consequently, in the trainings the probability Pt(S) for signal and background Pt(B)
is different to the probability for signal (background) in the data Pp(S) (Pp(S)). The
trained classifier delivers a probability ot valid only with the prior probabilities for
signal and background from the training sample. However, one is interested in the
probability op, which correspond to a Bayesian probability of the particle to be true
with respect to the branching fraction of the decay in real data. Predictions from
PDG are used and the number of BB̄ pairs in the Belle data sample for the expected
amount of signal candidates, see table 4.2.

To account for this one can calculate a correction with the Bayes theorem, which
described in section 3.1. The calculation of the correction for this probability can be
found in Ref. [42] resulting in

op = 1
1 + ( 1

ot
− 1)Pp(B)

Pp(S)
Pt(S)
Pt(B)

. (4.8)

This formula transforms the NeuroBayes output with the unweighted signal to
background ratio into the correct Bayesian probability.

4.5.2 Primary Particles - Stage One

In the first stage, the primary particles and KS are reconstructed:

e, µ, π±, π0,K±,KS , γ.

The classifiers in this stage are trained on generic MC to separate wrong and right
hypotheses of the particle type. This stage uses the same expertise as in the well tested
neural network based full reconstruction, widely used at Belle [42]. The classifiers use
kinematic variables as input as well as variables derived from the particle identification
system, for instance TOF and KLM information and energy loss in the CDC. A
detailed description of all variables and the training procedure can be found in Ref.
[42]. Lists of these particles alongside their probability of being the right hypothesis
are passed into the next stage. The output of the classifiers on generic MC can be
seen in fig. 4.2.
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4 Reconstruction of B → K(∗)ℓ+ℓ−
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Figure 4.2: Network output for the classifiers in stage 1 for signal and background
on a set of 10, 000 generic MC events after particle selection and before
event selection.
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4.5 Neural Network Trainings

4.5.3 Training of K∗ - Stage Two

In the second stage, K∗ candidates are reconstructed in the decay channels

K∗+ → K+π0,

K∗+ → KSπ
+,

K∗0 → KSπ
0 and

K∗0 → K+π− .

Also in this stage, a NeuroBayes classifier is trained to calculate a probability for
each hypothesis. The signal class consists of truly reconstructed K∗ from the signal
MC and the background class of all misreconstructed K∗ of the generic MC. This
means that the prior probability for each K∗ decay mode has to be adjusted to the
correct ratio in the MC. Variables used in the trainings are described in table 4.5.
The most important variables in the training are the momenta of the decay products
(children of the K∗), the product of the network output of the children and the χ2

value of the vertex fit. The classifier does not have information about the mass of
the K∗ candidate. This information is only used in the classification of the B meson
candidate.

Table 4.5: Variables used in the neural networks for the K∗ candidates.

Variable Description

p_tot ptot (total momentum) of the candidate
ChX_NBout Network output of child X

ChX_Pseudo_Hel_Ang Pseudo helicity angle of child X

ChX_ptot ptot of child X

sum_Chld_NB Sum of the NeuroBayes outputs
prod_Child_NB Product of the NeuroBayes outputs
mom_dir_dev Momentum direction deviation
sig_dist_to_IP Significance of distance to interaction point
chi2 χ2 value of the vertex fit of the daughters
dist_to_IP Distance to interaction point

In figs. 4.3 and 4.4 the result of the classification can be seen as well as the purity
vs. the network output. The purity aligns well with the diagonal in the latter. In
this case, the transformed network output NBout, which is rescaled to [0, 1] can be
interpreted as a Bayesian probability for a signal candidate. In figs. 4.3(d) and 4.4(d)
one can observe slight deviations of the distribution from the diagonal, which is not
severe for the analysis.
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Figure 4.3: Network output for signal (red) and background (black) in the first row
and purity vs. network output (black data points) in the second row for
the trainings of NeuroBayes for the charged K∗ modes, produced by the
NeuroBayes trainings-report.
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Figure 4.4: Network output for signal (red) and background (black) in the first row
and purity vs. network output (black data points) in the second row for
the trainings of NeuroBayes for the neutral K∗ modes, produced by the
NeuroBayes trainings-report.
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4 Reconstruction of B → K(∗)ℓ+ℓ−

4.5.4 B Meson Trainings - Final Stage

In the final stage of the background reduction, a neural network is trained for each
decay mode in the reconstruction for the following channels:

B+ → K+e+e−,

B+ → K+µ+µ−,

B+ → K∗(892)+e+e−,

B+ → K∗(892)+µ+µ−,

B0 → K0e+e−,

B0 → K0µ+µ−,

B0 → K∗(892)0e+e− and
B0 → K∗(892)0µ+µ−.

At this point of the reconstruction, all information of the quality of the reconstructed
candidates is available and fed into the network. The training of the final stage of the
reconstitution follows the same procedure as for the K∗ trainings. Two oppositely
charged leptons are combined with a K(∗) meson for B-meson candidates. Candidates
passing the event selection criteria (see table 4.4) are evaluated by the neural networks
and assigned the final network output on which signal events are selected.

Compared to the trainings of K∗, this stage has a larger set of variables:

∆E is the energy difference between the B candidate and half of the beam energy,
defined in eq. (4.2).

NBchildi
: NeuroBayes output of the ith child of the B candidate. It can be seen as

a probability that the hypothesis for the child is correct.
iNBchildi

: Product of the NeuroBayes output of the children of the B candidate.
It can be seen as the combined probability that all children have been assigned
the correct hypothesis. This variable is one of the most important variables in
the training of the main classifier.

iNBchildi
: Sum of the NeuroBayes outputs of the children of the B meson

candidate.

qrNN : Result of the neural network flavor tagging algorithm.

qrLR : Result of the multidimensional likelihood ratio flavor tagger.

cos θB : Cosine of the angle θB between the B candidate and the beam direction.

∆P⃗ X⃗ : The momentum direction deviation, i.e. the difference between the momen-
tum vector and the flight direction of the B candidate in the xy plane.

χ2 : Value of the vertex fit of the candidate.

dIP : Distance of the candidate to the interaction point.
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4.6 Continuum Suppression

σ(dIP ) : Significance of the distance to the interaction point, derived form the error
of the vertex fit and the beam spot size.

∆zℓℓ : Distance between the two leptons in the z direction. For true signal candidates
the value is around zero.

pt,i : Transverse momentum of child i.

Evis : Visible energy of the event. For the calculation, all tracks are assumed to be
pions and the energies of all photons are summed up. Semileptonic decays tend
to have lower visible energy due to neutrinos in the final state.

Mmiss : Missing mass of the event is calculated by the mass of PBeam − PEvent,
where PBeam is the four-vector of the center-of-mass system , and PEvent is the
four-vector of all tracks (assumed to be pions) and photons in the Event.

KSFW moments : In total 18 Super Fox-Wolfram moments are used at Belle. They
are described in section 4.6.

R2 : Ratio of the zeroth and the second Fox-Wolfram moments (see section 4.6).

4.6 Continuum Suppression
Continuum events contribute significantly to the background in this analysis. Several
observables and methods are used for continuum suppression. The information is
combined into the main neural networks for background suppression.

All observables use the fact that events from continuum have different kinematic
shapes. The beam energy at the Υ(4S) mass is close to the mass-threshold for the
production of two B mesons. Consequently, in Υ(4S) decays the B mesons are
produced nearly at rest in the center-of-mass system (CMS), so that these events tend
to be nearly isotropic in the detector. In contrast, events from continuum exhibit a
large energy release and have a preferred spatial distribution, forming back to back
jet-like structures.

In the following paragraphs the used variables are explained.

4.6.1 Fox-Wolfram Moment R2

The Fox-Wolfram moments [43] use all tracks in the event and describe the angular
distributions using Legendre polynomials. The moments are calculated by

Hk =
N
i,j

|p⃗i||p⃗j |Pk(θij)
E2

vis
, (4.9)

where N is the number of charged particles in the event, |p⃗l| the momentum of the
charged particle l, Pk is the kth Legendre polynomial, θij the angle between the ith
and jth particle and Evis the total visible energy of the event. The ratio

Rk = Hk

H0
(4.10)
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4 Reconstruction of B → K(∗)ℓ+ℓ−

can be formed, where R2 has proven to be especially effective in separating BB̄ from
continuum events.

4.6.2 Super Fox-Wolfram Moments

The Super Fox-Wolfram moments [44] are a modification of the normal Fox-Wolfram
moments. The summation over all particles is split into groups of the combination of
final state particles belonging to the B meson candidate (s) and the remaining tracks
(o). With this separation one can form in principle infinite sets of variables of the
three types Rssk , R

so
k , R

oo
k . In total 18 variables of this kind are used in this analysis

for continuum suppression.

4.7 Best Candidate Selection
Due to a loose pre-cut selection, multiple candidates for a B± (B0) meson are observed
in 31% (32%) of the events on signal MC. In this case, one has to choose one candidate,
based on certain criteria, which will be discussed in this section. The mass of the
B meson cannot be used as it is correlated with the Mbc distribution, which will be
fitted and should therefore remain unbiased. A common way is to choose the ∆E
variable for the best candidate selection. A correctly reconstructed B features ∆E
around zero. If multiple candidates occur, one takes the candidate with ∆E closest
to zero. The framework described in the previous section also allows for the selection
of the most probable candidate, based on the neural network output NBout. In this
case one takes the candidate with the maximum network output. The neural network
rank is calculated across all decay channels of a particle, for instance for all four
modes of the B0. This means, if one requires the B meson to have the highest rank,
events for some decay channels are missed because only one of the four decay channels
has rank one. The result of the neural network based best candidate selection is
presented in table 4.6. One can observe that the neural network output for the best
candidate selection delivers the best results. Consequently, max(NBout) is required
for the signal candidate. This selection performs better across all decay channels
compared to a selection on ∆E and does not introduce a correlation to Mbc, which is
demonstrated in section 4.9.

4.8 Peaking Backgrounds
Potential peaking background in Mbc can arise in B decays, when one or more of the
selected particles are misidentified. For instance if a π+ is misidentified as a ℓ+. The
largest contribution comes from B → D(K∗π)π, where both pions are misidentified
and accepted as muons. A cut on the mass of the K+/ℓ− system around the nominal
D meson mass could veto this contribution. To search for this source of background,
the truth of the lepton hypothesis in the background sample is monitored on simulated
data. One can see in fig. 4.5 that there is no peaking background from particles
wrongly classified as leptons.
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4.9 Evaluation of the Reconstruction Performance

Table 4.6: Best candidate selection efficiency as derived from signal MC before prior
probability is adjusted.

Channel Random NBout ∆E

B+ → K+e+e− 0.335 0.969 0.714
B+ → K+µ+µ− 0.376 0.990 0.945
B+ → K∗(892)+e+e− 0.297 0.828 0.732
B+ → K∗(892)+µ+µ− 0.318 0.841 0.744

B0 → K0e+e− 0.400 0.907 0.778
B0 → K0µ+µ− 0.310 0.993 0.942
B0 → K∗(892)0e+e− 0.400 0.907 0.778
B0 → K∗(892)0µ+µ− 0.417 0.920 0.832

4.8.1 Rare B Decays

The Belle «rare MC» contains b → s processes enhanced by a factor of 50 compared to
the total luminosity. The signal decay B → K(∗)ℓ+ℓ− is also included and thus has to
be excluded when looking at peeking background from this source. All contributions
in Mbc and q2 ≡ M2

ℓ
+
ℓ

− from rare MC after removing the signal can be seen in fig. 4.6.
The dominant source of background is B → K∗ππ where both pions are misidentified
as muons. For this reason almost no background of this source is observed in the
B0 → K∗(892)0e+e− sample. In the B0 → K∗(892)0µ+µ− sample 297 candidates are
observed, which correspond to 5.94 expected candidates on the whole Belle dataset.

4.9 Evaluation of the Reconstruction Performance
The reconstruction efficiency is the main quantity for the reconstruction performance.
However, in addition to a high reconstruction efficiency it is also required that the
neural network output is not correlated with the beam constrained mass Mbc. This
variable is used to extract signal and background yields in the analysis and must
remain unbiased. Generic background events do not peak in Mbc and can be well
distinguished from signal events. If, however, the neural network learns correlations
to the mass of the B meson from the input variables, background can peak and look
signal-like in Mbc. In fig. 4.7 one can see that this is not the case and NBout and
Mbc are uncorrelated.

4.9.1 Best Cut Estimation

The best cut on the neural network for each decay channel is selected by a Figure Of
Merit (FOM), defined as

FOM =
nsig

nsig + nbkg
, (4.11)

where nsig and nbkg are the estimated numbers of signal and background events in
the signal region Mbc > 5.27 GeV/c2. The result is displayed in fig. 4.8. To estimate
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Figure 4.5: Background for B0 → K∗(892)0µ+µ− on generic MC in Mbc with different
truth for the selected leptons.
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(a) Classifier for B
0 → K

∗(892)0
µ

+
µ

−. (b) Classifier for B
0 → K

∗(892)0
e

+
e

−.

Figure 4.7: Flat correlation plots (see section 3.2.2 for further information about this
kind of plots) for the neural network output vs. Mbc for two example
channels. There is no significant correlation observable.

the number of signal candidates nsig the branching fractions from Ref. [4] are used
and the estimated numbers of signal events on the Belle dataset are calculated with
respect to the reconstruction efficiency. The number of background events nbkg are
obtained after the final signal selection on generic MC, which compares to the Belle
data-set in size and composition.

The resulting total reconstruction efficiency for each decay channel is presented in
table 4.7.

Table 4.7: Neural network cut for the highest figure of merit (FOM). The correspond-
ing FOM, efficiency and expected signal and background events in the
signal region Mbc > 5.27 GeV/c2 are displayed. The efficiency includes all
reconstruction and acceptance effects.

Channel NBout Cut FOM Efficiency [%] nexpsig nexpbkg

B+ → K+e+e− 0.92 9.00 26.34 111 78
B+ → K∗(892)+e+e− 0.51 2.05 2.94 35 176
B+ → K∗(892)+µ+µ− 0.67 2.67 3.54 26 122
B+ → K+µ+µ− 0.93 9.33 33.00 114 66
B0 → K0e+e− 0.93 3.43 15.37 18 22
B0 → K∗(892)0e+e− 0.91 4.90 5.37 42 47
B0 → K0µ+µ− 0.97 6.11 17.60 46 21
B0 → K∗(892)0µ+µ− 0.83 7.05 14.28 116 199
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Figure 4.8: Estimation of the best cut on the basis of the Figure Of Merit (FOM) for
each decay channel.
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4.9.2 Efficiency

The reconstruction efficiency is first evaluated on MC and tested on data in the control
region of B → K(∗)J/ψ. The efficiency is defined as ϵ ≡ Nrec/Ngen, where Nrec is
the number of reconstructed events and Ngen is the number of generated events. All
generated candidates are accounted for in Nrec, regardless if they are cut by event
selection vetos or if tracks are missing in the detector. In this manner the calculation
of the efficiency accounts for reconstruction and acceptance effects. The efficiency and
signal purity of each decay channel is dependent on the cut on the neural network of
the decay channel. Different working points of each neural network can be selected
for a desired signal efficiency/purity.

The final neural network output for signal and background events is displayed in fig. 4.9
with the corresponding cut for the best FOM. For the angular analysis in chapter 6
cut values for B0 → K∗(892)0e+e− and B0 → K∗(892)0µ+µ− are optimized for the
sensitivity to angular observables, described in section 6.3.3, and cut values do not
correspond to the best FOM here. The efficiency in bins of q2 is of interest for this
analysis, which is shown in table 4.8. The efficiencies and errors of the efficiency in
bins of q2 are determined with

ϵ = N bin
rec

N bin
gen

and σϵ =

N bin
rec

N bin

gen −N bin
rec


N bin
gen

3 (4.12)

where N bin
rec is the number of reconstructed events and N bin

gen the number of generated
events in the corresponding bin.

The estimation of the efficiency on data is discussed in the next chapter.
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Figure 4.9: Performance of the neural networks for the classification of B mesons.
The data for signal corresponds to correctly reconstructed events in the
signal MC and background corresponds to generic MC for two times the
expected size of the Belle dataset.
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Table 4.8: Efficiency in bins of q2 in %. The binning is described in the angular
analysis in chapter 6. The efficiency is calculated based on the number of
generated candidates within the q2 range of the particular bin.

0 1 2 3 4 combined

B+ → (K+π0)e+e− 5.529 5.271 5.789 3.371 2.413 4.582 ±0.133
B+ → (K0π+)e+e− 4.880 4.440 4.739 2.550 2.452 3.921 ±0.087
B+ → (K+π0)µ+µ− 4.733 3.881 5.728 7.042 3.596 4.884 ±0.118
B+ → (K0π+)µ+µ− 4.260 3.550 4.885 5.135 3.482 4.203 ±0.078

B+ → K∗(892)+e+e− 5.091 4.712 5.080 2.823 2.437 4.137 ±0.073
B+ → K∗(892)+µ+µ− 4.414 3.658 5.160 5.777 3.515 4.426 ±0.065

B0 → (K+π−)e+e− 18.256 16.745 18.232 11.371 12.902 15.780 ±0.164
B0 → (K0π0)e+e− 1.844 1.931 2.088 0.971 0.839 1.587 ±0.079
B0 → (K+π−)µ+µ− 21.621 17.881 25.676 27.819 25.752 23.442 ±0.164
B0 → (K0π0)µ+µ− 2.800 2.071 3.322 3.196 2.123 2.663 ±0.089

B0 → K∗(892)0e+e− 12.697 11.704 12.820 7.875 8.910 11.003 ±0.115
B0 → K∗(892)0µ+µ− 15.289 12.635 18.133 19.658 17.938 16.511 ±0.118
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5. Signal Yields and Data Evaluation

The evaluation of the data is performed in several steps. First, signal yields for the
electron and muon modes of B0 → K∗(892)0ℓ+ℓ−are extracted on the whole range of
q2. Additionally, the data is split into bins of q2 and signal and background fractions
are determined for each bin by a fit to Mbc. These results are used in MC simulations
in chapter 6 for performing toy studies with correct statistics. The data is furthermore
used to perform several cross-checks aimed to verify the signal reconstruction efficiency.
For this, branching ratios are calculated for both decay channels and the well known
J/ψ and ψ(2S) resonance branching fractions are determined within the veto regions
in q2 .

5.1 Signal Yields
The yields for signal and background classes are extracted by an unbinned ex-
tended maximum likelihood fit to the Mbc distribution of reconstructed events for
B0 → K∗(892)0ℓ+ℓ−. Signal is parametrized by an empirically determined function
introduced by the Crystal Ball Collaboration [45]. The so-called Crystal Ball function
accounts for radiative tails in the distribution and for the calorimeter resolution. It is
defined as

PCB (Mbc,m0, σ, α, n) =

e
− (Mbc−m0)

2σ
2 if Mbc > m0 − ασ

n
α

n
e− α

2
2

m0−Mbc

σ + n
α − α

−n
if Mbc ≤ m0 − ασ,

(5.1)
where m0 and σ are the mean and width of the distribution. The Crystal Ball
function can be interpreted as a Gaussian shape which transits to a power-law tail,
below a certain threshold, which is defined by the parameters α and n. All shape
parameters are determined by a fit to data in the control channel B → K∗J/ψ in
the corresponding q2 veto region and fixed in the extraction of B0 → K∗(892)0ℓ+ℓ−.
The background distribution is parametrized by an empirically determined shape
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introduced by the ARGUS Collaboration [46]. This so-called ARGUS shape is defined
as

PARGUS (Mbc,m0, α) = Mbc


1 −


Mbc
m0

2
e−α


1−(Mbc/m0)2

, (5.2)

where α describes the slope and m0 the cutoff value of the distribution. Due to
kinematic constraints, m0 corresponds to half the center-of-mass energy (m0 =
EBeam/2) in the reconstruction of B mesons from Υ(4S) decays at Belle.

The neural network cuts are optimized for the angular analysis, which is described
in section 6.3.3 and do not correspond to the best FOM. On the total range of q2

there are 118 ± 12 signal candidates extracted for B0 → K∗(892)0µ+µ− and 69 ± 12
for B0 → K∗(892)0e+e−. The result of the fits is depicted in fig. 5.1. The signal
and background yields in bins of q2 are determined on the combined sample of the
electron and muon channel. The fit results in bins of q2 are displayed in fig. 5.2,
with the corresponding yields listed in table 5.1. Here, additionally the results for
a sample containing only the muon mode is presented. These values are used to
simulate accurate yields in the Monte Carlo toy studies detailed in section 6.3.

Table 5.1: Fitted yields for signal and background events in the binning of q2 for both
the combined and muon channels.

ℓ = µ,e ℓ = µ

q2 range [GeV2/c4] nsig nbkg nsig nbkg

1.00 − 6.00 49.5 ± 8.4 30.3 ± 5.5 23.8 ± 5.6 11.7 ± 3.4

0.10 − 4.00 30.9 ± 7.4 26.4 ± 5.1 12.2 ± 4.1 7.5 ± 2.7
4.00 − 8.00 49.8 ± 9.3 35.6 ± 6.0 29.7 ± 6.6 14.9 ± 3.9

10.09 − 12.90 39.6 ± 8.0 19.3 ± 4.4 31.9 ± 6.3 10.2 ± 3.2
14.18 − 19.00 56.5 ± 8.7 16.0 ± 4.0 36.8 ± 7.1 9.8 ± 3.1

5.2 Branching Ratios and Efficiency Evaluation
Several crosschecks are performed on data in order to validate the reconstruction
efficiency determination and background suppression procedure. Neural networks in
this analysis are trained on simulated data and are susceptible to differences between
data and MC. The reconstruction efficiency is derived from MC and assumed to
be the same for real data. With the following crosschecks for this assumption are
performed. An evaluation of the efficiency for the angular analysis B → K(∗)ℓ+ℓ−

is performed by extracting the branching fractions of processes with the signature
B0 → (K+π−)ℓ+ℓ−. The results are compared with other measurements and world
averages from PDG. First, the branching ratio B(B0 → K∗(892)0ℓ+ℓ−) is extracted
for electrons and muons. A second validation is performed in vetoed regions of the
invariant mass of the di-lepton system q2. The sidebands are defined in regions with
irreducible backgrounds from B → K∗J/ψ and B → K∗ψ(2S), where these decays
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Figure 5.1: Signal extraction for B0 → K∗(892)0ℓ+ℓ−on the total range of q2. Combi-
natorial (dashed blue), signal (red filled) and total (solid) fit distributions
are superimposed on the data points.

are dominant. The decays B → K∗J/ψ(ψ(2S)) have been studied with high precision
in the past, which makes them an ideal probe for crosschecks.

5.2.1 Extraction of B(B0 → K∗(892)0ℓ+ℓ−)

The efficiencies for the electron and muon channels are extracted on a large set of
simulated events with the same selection as on data. Veto regions for the electron
channel are larger due to an inferior resolution in q2 caused by bremsstrahlung of
electrons. All cut regions are depicted in fig. 5.3 and listed in table 4.4. Cuts on q2

preserve 58.75% (77.23%) of signal candidates for electrons (muons) on generator
level. The total reconstruction efficiency for B0 → K∗(892)0e+e− is 7.52 ± 0.03%
and 12.16 ± 0.04% for B0 → K∗(892)0µ+µ−, with neural network cuts optimized for
the angular analysis. These efficiencies are calculated on the whole range of q2 and
include reconstruction and acceptance effects.

The following results are extracted from data:

B(B → K∗(892)0e+e−) = (1.19 ± 0.21) × 10−6, (5.3)

and
B(B → K∗(892)0µ+µ−) = (1.25 ± 0.14) × 10−6, (5.4)

and for the ratio of the muon to electron channel

B(B → K∗(892)0µ+µ−)
B(B → K∗(892)0e+e−)

= 1.055 ± 0.216 (5.5)
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Figure 5.2: Signal extraction for B0 → K∗(892)0ℓ+ℓ−, ℓ = e, µ in bins of q2. Combi-
natorial (dashed blue), signal (red filled) and total (solid) fit distributions
are superimposed on the data points.
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Figure 5.3: Comparison of generator distribution for B0 → K∗(892)0e+e− and B0 →
K∗(892)0µ+µ−. The corresponding veto regions for the charmonium
resonances are superimposed.

where quoted errors on these measurements are statistical only. The PDG [4] values
for the measured quantities are

B(B → K∗(892)0e+e−)PDG = (1.03+0.19
−0.17) × 10−6, (5.6)

and
B(B → K∗(892)0µ+µ−)PDG = (1.05 ± 0.10) × 10−6. (5.7)

The extracted branching ratios are in agreement with averages from PDG within
errors. Both measurements are slightly above the world average from PDG, which
might be due to small pollution from peaking background that is not corrected for in
this study. For a proper branching ratio measurement this would need to be included
or be put into the systematic uncertainties. This measurement however aims to verify
the reconstruction efficiency determination, which is satisfied by the result for both
channels.

5.2.2 Extraction of B(B → K∗0J/ψ) and B(B0 → K∗0ψ(2S))

A second validation of the efficiency estimation of the classifiers in the analysis is
performed by measuring the well known branching fractions of B → K∗J/ψ and
B → K∗ψ(2S). In a first step the efficiency for these processes is derived from signal
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Monte Carlo. On data the signal yield for the individual process is extracted and the
corresponding branching ratio is calculated. Two sidebands within the veto regions in
q2 are defined, where the individual decay of the charmonium resonance is dominant
and decays from B0 → K∗(892)0ℓ+ℓ−can be neglected. The first region is

9.2 < q2 < 9.8 GeV2/c4, (5.8)

with the dominant decay of B → K∗J/ψ. The second is

13.0 < q2 < 14.0 GeV2/c4, (5.9)

with the dominant decay of B → K∗ψ(2S). The efficiency is evaluated in the sidebands
by calculating the ratio of the number of truly reconstructed signal candidates on signal
MC with the corresponding neural network selection and the number of generated
signal events in the particular region. The resulting efficiencies are listed in table 5.2.

Table 5.2: Reconstruction efficiency in the q2 sidebands.

Channel / Sideband J/ψ [%] ψ(2S) [%]

B0 → K∗(892)0e+e− 11.79 ± 0.21 11.26 ± 0.17
B0 → K∗(892)0µ+µ− 16.17 ± 0.22 16.25 ± 0.18

The signal component in Mbc is fitted with a Crystal Ball function and the background
with an ARGUS shape. The yields are extracted with an unbinned extended maximum
likelihood fit. All fit results are shown in fig. 5.4. The branching fraction for the
processes are calculated by:

B(B → Xcc̄K
∗) = Nobs

ϵs · fℓℓ ·NBB̄

, (5.10)

where Nobs is the extracted signal yield, ϵs is the signal efficiency and NBB̄ is the
number of recorded B meson pairs at Belle. An additional factor fℓℓ from PDG [4] is
taken into account describing the fraction of the cc̄ state decaying into lepton pairs,
detailed in table 5.3.

Table 5.3: Fraction fℓℓ of Xcc̄ into leptons from PDG.

B(Xcc̄ → ℓ+ℓ−) Xcc̄ = J/ψ [%] Xcc̄ = ψ(2S) [%]

ℓ = e 5.971 ± 0.032 0.789 ± 0.017
ℓ = µ 5.961 ± 0.033 0.79 ± 0.09

The resulting branching fractions are listed in table 5.4. The error on ψ(2S) → µµ is
by a factor of 5 larger than the corresponding electron mode. Hence, the error on
the branching fraction for B0 → K∗ψ(2S)(→ µµ) is larger compared to the electron
channel, despite higher statistics in this channel. The PDG values for the decays are

B(B0 → K∗J/ψ) = (1.32 ± 0.06) × 10−3 (5.11)
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5.3 Data and Monte Carlo Comparison

and
B(B0 → K∗ψ(2S)) = (5.9 ± 0.4) × 10−4. (5.12)

All results are in agreement within statistical errors. Systematic errors are not taken
into account.

Table 5.4: Extracted Branching Fraction. Xcc̄ is either J/ψ or ψ(2S).

B(B0 → K∗Xcc̄) Xcc̄ = J/ψ [×10−3] Xcc̄ = ψ(2S) [×10−4]

e+e− Mode 1.36 ± 0.04 5.5 ± 0.33
µ+µ− Mode 1.24 ± 0.03 6.0 ± 0.7

5.3 Data and Monte Carlo Comparison
The comparison between data and Monte Carlo is an important cross-check to verify
whether simulated distributions agree with measured ones. Since all methods of the
analysis are trained and tested on simulated data the importance of this step must
not be underestimated. First a comparison of the neural network input variables
is performed. Secondly sidebands are used in the charmonium veto regions of q2,
defined in section 5.2.2, in order to verify the angular dependence of the reconstruction
efficiency.

5.3.1 Variables of the Neural Network

The input variables after the neural network selection are compared between data
and Monte Carlo in figs. A.1 and A.2. In the MC sample, the number of background
and signal events are composed according to fitted yields from data with values from
table 5.1. A p-value of a Kolmogorov-Smirnov statistic on 2 samples is stated for
each variable. The most important quantity is the neural network output, which
is presented in fig. 5.5. It accumulates all information of the input. The observed
distributions agree very well, hence one can apply the trained expertise to data. This
is consistent with the observed agreement of extracted branching fractions to the
world averages, described in sections 5.2.1 and 5.2.2.

5.3.2 Angular Reconstruction Efficiency

The angular dependence of the reconstruction efficiency is evaluated in the q2 veto
regions for B → K∗J/ψ and B → K∗ψ(2S) between data and MC. The result is
displayed in figs. 5.6 and 5.7. A systematic discrepancy in the ratio data over MC in
form of a linear trend can be observed in cos θK . The consequences and implications
of this will be analyzed in the context of the systematic error estimation in section 7.1.
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Figure 5.4: Extraction of the signal yields for B → J/ψℓℓ and B → ψ(2S)ℓℓ in the
corresponding q2 sidebands. Combinatorial (dashed blue), signal (red
filled) and total (solid) fit distributions are superimposed on the data
points.
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the reconstruction of B0 → K∗(892)0µ+µ− in the Mbc sideband Mbc <

5.27 GeV/c2. The p-value of a Kolmogorov-Smirnov statistic on 2 samples
is stated.
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Figure 5.6: Data vs. MC comparison of the reconstruction of B0 → K∗(892)0µ+µ−

in the 9.4 ≤ q2 < 9.8 GeV2/c4 and 13 ≤ q2 < 14 GeV2/c4 veto regions.
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Figure 5.7: Data vs. MC comparison of the reconstruction of B0 → K∗(892)0e+e−

in the 9.4 ≤ q2 < 9.8 GeV2/c4 and 13 ≤ q2 < 14 GeV2/c4 veto regions.
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6. Angular Analysis

The angular analysis is performed for B0 → K∗(892)0ℓ+ℓ−including the electron and
muon mode. As detailed in the introduction, section 1.2.1, the decay is kinematically
described by three angles θℓ, θK and ϕ and the invariant mass squared of the lepton
pair q2. The binning in q2 is depicted in fig. 6.1 and detailed in table 5.1 alongside
the measured signal and background yields. Uncovered regions in the q2 spectrum
arise from vetoes against backgrounds of the charmonium resonances J/ψ → ℓ+ℓ−

and ψ(2S) → ℓ+ℓ−. A zeroth bin is defined in 1.0 < q2 < 6.0 GeV2/c4, which is
considered to be the theoretically cleanest [18].

6.1 Fit Components

Two main components are considered in the fit: the signal distribution and combina-
torial background. These components are combined to the final probability density
function and are described in the following sections.

6.1.1 Signal

For this analysis, the folding technique described in section 1.2.4 is applied. In this
manner, for each of the extractions of P ′

4, P ′
5,P ′

6 and P ′
8 a folded dataset is produced

to which a dedicated differential decay rate is fitted. In total four different signal
probability functions are used together with their individual dataset transformation,
which are presented in the following.

Using the transformation from eq. (1.38) one can extract P ′
4 from a fit to the differential
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6 Angular Analysis

Figure 6.1: Binning in q2 ≡ M2
ℓ

+
ℓ

− with generated distribution for B0 →
K∗(892)0µ+µ−. The cut veto for the charmonium resonances is indi-
cated in red.

decay rate

1
dΓ/dq2

d4Γ
d cos θℓ d cos θK dϕ dq2 = 9

8π

3
4(1 − FL) sin2 θK + FL cos2 θK

+ 1
4(1 − FL) sin2 θK cos 2θℓ

− FL cos2 θK cos 2θℓ + S3 sin2 θK sin2 θℓ cos 2ϕ

+

FL(1 − FL)P ′

4 sin 2θK sin 2θℓ cosϕ

. (6.1)

As a proof-of-concept it is demonstrated that the data transformation procedure
leads folded PDFs. For this, simulated data is generated from the total differential
decay rate eq. (1.37). Afterwards this data is folded using definitions from eq. (1.38)
and compared with the folded PDF of eq. (6.1). The result and data are displayed
in fig. 6.2 and one can observe that the folding procedure together with the folded
probability density function delivers coherent results, as the data is described perfectly.

Similarly, with the transformation from eq. (1.39) one can extract P ′
5 with the
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Figure 6.2: Simulated data according to eq. (1.37) is folded for the extraction of P ′
4

using definitions of eq. (1.38). The line indicates the fit result for the
transformed PDF eq. (6.1).

differential decay rate

1
dΓ/dq2

d4Γ
d cos θℓ d cos θK dϕ dq2 = 9

8π

3
4(1 − FL) sin2 θK + FL cos2 θK

+ 1
4(1 − FL) sin2 θK cos 2θℓ

− FL cos2 θK cos 2θℓ + S3 sin2 θK sin2 θℓ cos 2ϕ

+

FL(1 − FL)P ′

5 sin 2θK sin θℓ cosϕ

. (6.2)

With the transformation from eq. (1.40) one can extract P ′
6 with the differential decay

rate
1

dΓ/dq2
d4Γ

d cos θℓ d cos θK dϕ dq2 = 9
8π

3
4(1 − FL) sin2 θK + FL cos2 θK

+ 1
4(1 − FL) sin2 θK cos 2θℓ

− FL cos2 θK cos 2θℓ + S3 sin2 θK sin2 θℓ cos 2ϕ

+

FL(1 − FL)P ′

6 sin 2θK sin θℓ sinϕ

. (6.3)

Correspondingly, P ′
8 can be extracted using eq. (1.41), which leads to the differential

decay rate

1
dΓ/dq2

d4Γ
d cos θℓ d cos θK dϕ dq2 = 9

8π

3
4(1 − FL) sin2 θK + FL cos2 θK

+ 1
4(1 − FL) sin2 θK cos 2θℓ

− FL cos2 θK cos 2θℓ + S3 sin2 θK sin2 θℓ cos 2ϕ

+

FL(1 − FL)P ′

8 sin 2θK sin 2θℓ sinϕ

. (6.4)
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Figure 6.3: Correlation among the angular variables in the background sample dis-
played as correlation matrix (left) and flat correlation matrix (right), see
details for flat correlation plots in section 3.2.2. In the correlation matrix
a color is displayed corresponding to the amount of correlation, where
green signals a correlation coefficient of around zero.

6.1.2 Background

For parameterizing the background, several methods are evaluated. As a first method
the direct product of three second order polynomials, one for each dimension, is used

fpol
bkg(q2, cos θℓ, cos θK , ϕ) =

 
i=0,1,2

ai cosi θℓ ·


j=0,1,2
bj cosj θK ·


k=0,1,2

ckϕ
k

 , (6.5)

where ai, bj and ck are q2 dependent. This introduces in total nine additional
parameters to the fit. Moreover, the polynomials have to be able to describe the
shape of the background. The procedure of a direct product of each angular variable
assumes that they are uncorrelated and independent. The correlation among the
variables in the background sample can be seen in fig. 6.3. Additionally, non linear
correlations are investigated by flat correlation plots (explained in section 3.2.2) in
fig. 6.3(b). They are found to be insignificant. As no correlations are observed, the
factorization approach in eq. (6.5) is assumed to be justified.

The second method which is evaluated are template histograms. For a full histogram
in three dimensions an insufficient number of background events is available. As-
suming again that the angular variables in the background are uncorrelated the
three-dimensional PDF is build by multiplying the histograms of each projection of
the angular variables:

fhist
bkg (q2, cos θℓ, cos θK , ϕ) =


h1(q2, cos θℓ) · h2(q2, cos θK) · h3(q2, ϕ)


. (6.6)
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Figure 6.4: Definition of the signal and sideband regions in Mbc in an example fit for
the data of q2 bin 4.

This method is fast and robust even if the background shape is complicated. However,
it introduces systematic deviations from the true distribution due to statistical
fluctuations in the sideband. To compensate for this, the histograms are smoothed
with an algorithm introduced in Ref. [35], which takes Poisson errors for bins with
a small amount of entries into account. The method aims to optimize the pull
distribution from the smoothed histogram to the original histogram with a least
square minimization which accounts for statistical fluctuations in the bins. Both
methods are tested in pseudo experiments with simulated data in section 6.3.

6.2 Fit Procedure
The angular variables cannot be used to determine the fraction of signal and back-
ground events without biasing the angular distributions. Thus, a separate fit in the
beam constrained mass Mbc has to be performed. The fit in Mbc is done first to
determine the signal to background ratio. The Mbc distribution is split into a signal
(upper) and sideband (lower) region by introducing a cut at 5.27 GeV, as displayed
in fig. 6.4. With the fit over the total range of Mbc, one can determine the number of
signal events by a Crystal Ball function [45] and the number of background events
with an ARGUS shape [46]. The corresponding number of background events in
the signal region is extracted by integrating the background function over the signal
region. This is performed in chapter 5 and the yields for both classes are shown in
table 5.1.

The shape of the background for the angular observables can be estimated on the
Mbc sideband. This is beneficial as no Monte Carlo information is needed. In this
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6 Angular Analysis

Figure 6.5: Flat correlation plots of the angular variables with Mbc in the background
sample with the probability p for a flat hypothesis (see details for this
kind of plot in section 3.2.2).

Figure 6.6: Flat correlation plots of the angular variables with NBout in the back-
ground sample with the probability p for a flat hypothesis (see details for
this kind of plot in section 3.2.2).

procedure, the underlying assumption is that the angular observables are uncorrelated
with Mbc in the background sample. The correlation is displayed in fig. 6.5 were
no severe correlations can be observed. The statistics in the sideband is higher and
allows for a better estimation of the background shape and furthermore stabilizes the
fit in the signal region.

To further improve the estimation of the shape of the background, the background
sample can be enlarged by lowering the cut on the neural network for the sideband
region. For this, the shape of the background must not change with cuts on the
neural network. With a slightly decreased cut on the network one can more than
double the statistics for the determination of the shape of the background. In fig. 6.6
one can see that the shapes of the background are insensitive to a small reduction of
the cut on the neural network output NBout.

The final fits are performed in the signal region of Mbc in three dimensional unbinned
extended maximum likelihood fits in bins of q2, each featuring three free parameters:
P ′, A(2)

T and FL. Signal and background yields are determined from Mbc and the
shape of the background is derived from angular distributions on the sideband of Mbc
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6.3 Monte Carlo Toy Study

and fixed in the final fit.

Within the statistics of Belle, it is not possible to adopt the same binning as used in
Refs. [47, 48]. Instead of three, two bins in the low q2 region below the J/ψ resonance
in the range of [0.1, 8] GeV2/c4 are chosen. The theoretically preferred region is in
the range of [1, 6] GeV2/c4 in which most of the assumptions for the Standard Model
prediction are assumed to be valid [18]. Outside of this region uncertainties for the
theoretical predictions are less well known or unclear due to hardronic interferences
with the charmonium resonances. This region has overlaps with both bins one and
bin two and will be additionally fitted as a 0th bin.

6.3 Monte Carlo Toy Study
In Monte Carlo toy studies various aspects of the fit procedure are tested and
evaluated including the background parametrization, tests with simultaneous fitting,
optimization of the cut on the neural networks and the evaluation of the expected
sensitivity. In the toy study, Monte Carlo data is generated with the known truth of
the observables in the fit. The fit is then performed 10000 times and the results are
averaged across all fits. At the end, the deviation of the fit result from the simulated
truth, divided by the fit error, is examined. This is called a pull distribution of a
variable v:

Pull(v) =
vfit − vtrue
error(vfit)

, (6.7)

where vfit is the value derived from the fit and vtrue is the simulated truth. If the
fit procedure is not biased or corrupted and errors are calculated correctly, the pull
should be a Gaussian distribution with mean zero and width of one. Any deviation
from this expectation can be interpreted as a systematic uncertainty or may hint
to flaws in the fit procedure. For each toy experiment, signal MC and background
MC statistics are generated according to the measured yields from data, shown in
table 5.1.

Small systematic deviations from the simulated values are observed due to low
statistics and low signal to background ratios in some measurements. The following
toy studies examine a variety of procedures all aiming to minimize both a fit bias
and the statistical error, which lead to more precise results in the final measurement.
The focus in the following studies is to optimize the results for P ′

5 and P ′
4.

6.3.1 Background Parametrization

In a first evaluation the effect of different background parametrization is monitored.
The shape of the background is determined on sidebands of Mbc and the shape is
fitted with smoothed histograms and polynomials, described in section 6.1.2. The
result is presented in fig. 6.7 for the variables P ′

4 and P ′
5 as an example. Both methods

perform equally well, since the errors are compatible between both methods and no
significant difference in a fit bias can be observed. The smoothed histograms exhibit
slightly more stability in the fits for which reason they are preferred in this analysis.
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Figure 6.7: Result of the toy studies for two different background parametrization,
where each data point represents the averaged result of 10000 fits to
pseudo data.
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Figure 6.8: Result for simultaneous fitting. In each bin the measurements of P ′
4 and

P ′
5 are fitted simultaneously and share the same values for FL and AT ,

where each data point represents the averaged result of 10000 fits to
pseudo data.

6.3.2 Simultaneous Fitting

With the folding procedure, described in section 1.2.4, one can in principle perform
a simultaneous fit with four different datasets, where FL and AT are constrained to
the same value for the extractions of P ′

4,5,6,8. However, in this case the fit stability is
not sufficient due to the small amount of data as for all four extractions one needs to
use independent angular observables because they have different transformations and
boundaries. But it is possible to fit the variables (P ′

4, P
′
5) and (P ′

6, P
′
8) together in an

independent fit since the transformations of the angles lead to the same boundaries
in the angular space. The result is displayed in fig. 6.8. It is observed, however, that
a substantial amount of fits fails, which leaves the final result biased and worse in
terms of statistical sensitivity.
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Figure 6.9: Result for different cuts for the neural network which lead to varied signal
yields and purities in each measurement. All data points represents the
averaged result of 10000 fits to pseudo data.

6.3.3 Neural Network Cut Optimization

The most important optimization covers the neural network cut and hence the signal
to background ratio for both B0 → K∗(892)0e+e− and B0 → K∗(892)0µ+µ−. One
can allow the classifier to run at different working points in purity vs. efficiency,
leading to varied signal to background yields in the fit. As a default, the best cut
estimation is based on the FOM (section 4.9.1). However, the best cut according
to the figure of merit is not necessarily the best working point for the angular fit.
Two different alternatives are tested in the first place: Cutting slightly softer on the
neural network output leads to more signal events but worse purity and cutting harder
leads to less total signal events but with a higher purity. The result is displayed in
fig. 6.9. It shows clearly that a higher purity, thus a tighter neural network cut, is
superior as the observed deviations from the simulated truth becomes smaller. It
can be observed that the statistical sensitivity increases with lower cut on the neural
network. However, this effect is negated by additional systematic uncertainties for
the fit bias and peaking backgrounds, which are not displayed.

Particularly interesting is the result of the measurement of the second bin of P ′
5. For

this bin, a grid search in the cuts for the electron (cee) and muon (cµµ) channel is
performed. For each pair of cuts, signal and background yields are extracted from

93



6 Angular Analysis

the Mbc distribution on data. This creates a two dimensional map of the signal
to background ratio in dependence of cee and cµµ. With this information, a toy
study is performed to gain the statistical sensitivity and systematic error from a fit
bias. Additional uncertainties for peaking backgrounds are added to the sensitivity
estimation. The sensitivity is optimized by minimizing the total error of P ′

5, which
is the linear addition of the statistical error from the toy study estat, the systematic
error from the fit bias ebias and the estimated error from peaking background êpeaking.
The latter is estimated from rare MC. From this procedure, the estimated sensitivity
for each pair of cuts is obtained. The result can be seen in fig. 6.10. This procedure
is computationally intensive for which reason the search is performed first in a coarse
grid on a large range of the neural network outputs to find the area of the global
minimum, depicted in fig. 6.10(a). Afterwards the minimum is localized in this area
in a second search on a finer grid, displayed in fig. 6.10(b).

This optimized cut also delivers persistently good results regarding the fit bias for
other bins and P ′ observables, which can be observed in fig. 6.9.

6.3.4 Fixing AT or FL

In some measurements a fit bias can be observed, for instance in third bin of P ′
5, see

fig. 6.9. A test is performed to control this bias by fixing the values for FL and/or
AT to the values in the simulation of the datasets. In fig. 6.11 one can see that no
significant improvement can be achieved with this procedure compared to the result
shown in fig. 6.9.

6.3.5 Estimating the Sensitivity in the Muon Mode

The statistical sensitivity of just using the channel B0 → K∗(892)0µ+µ− is evaluated
separately. Since the statistics of the electron channel is found to be insufficient for
stable fit results, a difference between a measurement of combined and muon only
data would be an interesting observation. The result of the toy study based only
on the data of the muon channel is depicted in fig. 6.12. One can observe that the
sensitivity and the fit bias is significantly worse due to the reduced number of events
in the fits.

6.3.6 Conclusions from Toy Studies

In summary, the following conclusions from the toy studies have been made for
the final fit. The background parametrization is based on kernel density smoothed
template histograms. Each P ′

i observable is fitted individually together with AT
and FL, as simultaneous fitting turned out to be worse. The neural network cut
is determined with a grid-search for both channels simultaneously, optimizing the
measurement for P ′

5 in the second bin of q2.
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Figure 6.10: Cut optimization for the measurement of P ′
5 in bin 2. The estimated

total error estat + ebias + êpeaking is displayed on the z-axis in dependence
of the cuts for the electron (cee) and muon (cµµ) channel on a large range
of cuts (top) and in the region with the global minimum (bottom).
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Figure 6.11: Result of the MC toy studies with fixed values for AT or FL and the
expected signal and background yields for the FOM cut.
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Figure 6.12: Estimation of the sensitivity for the muon mode only, displayed in
addition to the combined sample.
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6.4 Acceptance and Efficiency

6.4 Acceptance and Efficiency
To account for acceptance and efficiency effects in the fit, weights are assigned to
the data. For the fit with efficiency, each event is weighted by the inverse of its
combined efficiency. The dependence of the reconstruction efficiency is determined
across all three angular observables and q2 in each bin of q2. The total reconstruction
efficiency is calculated from the direct product of the relative efficiencies ffiteff in the
corresponding variables by

f bineff (cos θℓ, cos θK , ϕ, q
2) = ffiteff (cos θℓ) ⊗ ffiteff (cos θK) ⊗ ffiteff (ϕ) ⊗ ffiteff (q2), (6.8)

assuming that the efficiency is uncorrelated in the three-dimensional angular space
and uncorrelated to q2. This assumption is investigated in fig. 6.13, which does not
show significant correlations between the reconstruction efficiency among the angular
variables. The correlation to q2, however, is significant and analyzed separately.

In the following, the method is presented for calculating the relative reconstruction
efficiency ffiteff (A) for an observable A. This method calculates the difference between
generated and reconstructed distributions on signal MC. One could in principle
achieve this by dividing a histogram of the generated distribution for A by the
reconstructed one. However, bins with low amount of statistics can lead to instabilities
in this procedure. In this analysis, numerical stability is achieved by using flat
distributions, with similar techniques as described in section 3.2.1. For this, the
generated distribution xgen from the signal MC is used and the cumulative distribution
(CDF) is estimated. The CDF is estimated by a histogram, fitted with a spline-fit
sCDFgen (see section 3.2.1). In the next step the reconstructed distribution xrec, which
includes reconstruction and acceptance effects, is transformed with the spline fit of
the CDF. The distribution of the reconstruction efficiency is then defined as

xeff = sCDFgen (xrec), (6.9)

where the axis corresponds to percentiles of the generated distribution xgen. The final
reconstruction efficiency is obtained by a spline-fit ffiteff (A) to the distribution of xeff .
This method fits orthogonal splines to the data in a way that the pull between the
fit and the data points becomes ideal, i.e. that it is a Gaussian with width one and
mean zero. All fits for the efficiency in bins of q2 are depicted in fig. 6.14. In these
plots, the data points correspond to the distribution xeff for the individual observable
and the fit ffiteff is displayed additionally. In the case of uncorrelated efficiencies
within the observables the generated and reconstructed distributions would be equal,
consequently a flat distribution for xeff would be expected. This is approximately
the case for the observable ϕ in this measurement. Large variations of the efficiency
across cos θℓ and cos θK can be observed. Especially for small angles between the
leptons (θℓ), the reconstruction efficiency is low for low values of q2.

Correlation to q2

In fig. 6.13 strong non-linear correlations between q2 and cos θℓ are observed although
their linear correlation coefficient is consistent with zero. As the efficiency is deter-
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Figure 6.13: Correlation among the efficiency of the angular variables in the back-
ground sample displayed as flat correlation matrix (see details for this
kind of plot in section 3.2.2).
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Figure 6.14: Results for the fits of the efficiencies. Both the fits for the electron
(orange) and muon (blue) efficiency are superimposed over the ratio of
generated and reconstructed events (data points).
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mined in each bin, the average across changes within one bin is taken into account. In
fig. 6.15 one can see the variation of the reconstruction efficiency of cos θℓ in each bin.
In the range of 2 < q2 < 8 GeV2/c4 the transition of the reconstruction efficiency in
cos θℓ is strong, affecting in particular bins 0 and 1. For this correlation a systematic
error is assigned, see chapter 7. For the angles cos θK and ϕ no significant correlations
within the bins are observed.
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6.4 Acceptance and Efficiency

Figure 6.15: q2 dependence of the reconstruction efficiency in cos θℓ for each bin of
q2 for B0 → K∗(892)0µ+µ−(left) and B0 → K∗(892)0e+e−(right) (see
details for this kind of plot in section 3.2.2).
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7. Systematic Study

For the angular analysis sources of systematic uncertainty are considered, if they
introduce an angular or q2 dependent bias to the distributions of signal or background
candidates. Systematic uncertainties are examined using pseudo-experiments with
large signal yields in order to minimize statistical fluctuations and compare the
nominal with a varied model. The average variation between the two models is taken
as systematic uncertainty.

7.1 Data to Monte Carlo Differences
A difference between data and Monte Carlo will influence the neural network classifier
and thus may lead to a bias in the acceptance function.

From the data to MC comparison in the q2 sidebands in the J/ψ region, only small
deviations from the fits are expected, see figs. 5.6 and 5.7. As one can see in these
plots, significant deviations occur only in cos θK . These deviations are modeled by
applying a linear fit to the observed ratio between data and MC, depicted in fig. 5.6(e).
This difference is subtracted twice from the fit for the efficiency on MC in order to
simulate a mismodeling of the true efficiency. Thus, the fit for the efficiency weights
does deviate from the actual reconstruction efficiency on MC by twice the deviation
observed between data and MC. The result of the fit with a biased efficiency correction
leads to modified results, where the observed deviation from the expected truth is
taken into account as a systematic uncertainty. For possible influences in the other
two variables ϕ and cos θℓ, the smoothness of the acceptance spline fit is increased,
making it less accurately follow features in the data. The result of this modified
acceptance function can be seen in fig. 7.1.

The bias on the angular variables for this modified acceptance function can be seen
in fig. 7.2. This difference is taken into account as systematic error. The assigned
errors are listed in table 7.1.
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Figure 7.1: Fit for the acceptance function for cos θK with a linearly depended bias.
The bias simulates twice the observed deviation between data and MC in
this variable. From a fit with the modification of the efficiency function
the systematic uncertainty is derived for the data MC discrepancy.
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7.2 Fit Bias

Figure 7.2: Fit to the simulated data with efficiency and acceptance effects from the
neural network and with added bias to the cos θK acceptance fit.

Table 7.1: Systematic uncertainty for the difference between data and MC.

bin P ′
4 P ′

5 P ′
6 P ′

8

0 0.011 -0.011 -0.130 -0.143
1 -0.009 -0.007 -0.138 -0.163
2 0.002 -0.021 -0.165 -0.153
3 -0.000 -0.014 -0.220 -0.195
4 0.005 -0.003 -0.234 -0.232

7.2 Fit Bias
Due to the limited statistics, a fit bias in some bins of the angular analysis is observed.
In 10000 pseudo experiments on simulated data the fit for each measurement is
performed and the results are compared to the simulated values. The information of
the mean of the pull distribution from the toy study is used for each measurement
to determine a systematic bias on the measurement. The central values of the
measurements are not corrected for the bias but the absolute value of the deviation
is assigned as systematic error. The assigned corrections for each measurement are
displayed in table 7.2.

Table 7.2: Fit bias for all measurements in the statistically preferred binning. The
values are the absolute deviations from the simulated values.

bin P ′
4 P ′

5 P ′
6 P ′

8

0 0.032 -0.003 0.073 0.034
1 0.011 -0.006 0.119 0.103
2 0.001 0.043 -0.056 -0.058
3 0.056 0.013 -0.003 -0.005
4 -0.003 -0.046 0.027 -0.005
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Figure 7.3: Toy Study With Efficiency: Displayed is the comparison between a toy
study with data on generator level and data on reconstruction level with
added weights according to the efficiency fit with the NN cut from the
best figure of merit.

7.3 Efficiency Correction

For the fit of the reconstruction efficiency function a factorization of the efficiencies
in the angular observables and q2 is assumed. In figs. 6.13 and 6.15 one can see, that
there are slight correlations between q2 and cos θℓ within the range of the bins.

With this correlation the reconstructed dataset including a correction for the efficiency
will deviate slightly from the dataset from the generator. The deviation in results
between a dataset of simulated data with efficiency correction weights and a dataset
based on generator truth is evaluated. The individual bias can be seen in table 7.3.

Table 7.3: Bias for all measurements from correcting for the reconstruction efficiency.

bin P ′
4 P ′

5 P ′
6 P ′

8

0 0.148 0.040 -0.084 -0.032
1 0.024 0.021 -0.043 0.082
2 0.060 -0.010 -0.068 -0.036
3 0.088 0.022 -0.022 -0.042
4 0.065 0.033 -0.019 0.010

Another possibility is to perform the toy study with data on reconstruction level
and applied weights and combine the measured deviation into the systematic error
to account for the fit bias and the acceptance function together. The result of the
toy study with efficiency correction deviates in some bins slightly from the result on
generator level, see fig. 7.3. With this method, the overall systematic error would
be smaller compared to the case when one accounts for the fit bias and acceptance
function bias separately.
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7.4 Peaking Backgrounds

7.4 Peaking Backgrounds

Peaking backgrounds are estimated for each q2 bin in the measurement using MC.
Peaking components are not considered in the fit to Mbc, which adds a systematic error
on the estimation of the number of signal events in the signal region. In section 4.8 it
is estimated that the only dominant contribution can arise from B0 → K∗ππ where
both pions were misidentified as muons. In total less than 6 events are expected
for the muon channel only. The impact of the peaking component is simulated by
repeating the toy study and subsidizing 6 events from the signal with events from
the peaking background in each bin. The mean deviation of the procedure is ±0.027
for the value of P ′

4,5,6,8, which corresponds to approximately 2 − 5% of the statistical
error.

7.5 Other Sources of Systematic Uncertainties

The following sources of systematic uncertainties have been considered and are found
to be negligible due to their small contribution.

7.5.1 Cross-Feed

The signal cross-feed is calculated for the B0 decay channels ( B0 → K∗(892)0µ+µ−,
B0 → K∗(892)0e+e−, B0 → K0µ+µ−, B0 → K0e+e−) with the following procedure.
Signal MC is generated for each of the channels. For each set of signal MC the
corresponding neural network cut is applied and the remaining yields of the other
three channels is counted. With this yield, one can calculate the efficiency for the
cross-feed component. Together with the estimated number of candidates in the Belle
dataset (table 4.2), one can consequently calculate the number of estimated cross-feed
events. The numbers are presented in table 7.4. No relevant amount of cross-feed is
observed.

Table 7.4: Estimated number of cross-feed events in the data.

decay channel cross-feed efficiency [%] expected number of events

B0 → K∗(892)0e+e− B0 → K0e+e− 0.069 0.085
B0 → K∗(892)0e+e− B0 → K0µ+µ− 0.001 0.003
B0 → K∗(892)0e+e− B0 → K∗(892)0µ+µ− 0.001 0.008
B0 → K∗(892)0µ+µ− B0 → K0e+e− 0.002 0.002
B0 → K∗(892)0µ+µ− B0 → K∗(892)0e+e− 0.000 0.000
B0 → K∗(892)0µ+µ− B0 → K0µ+µ− 0.028 0.073

7.5.2 K∗(892) S-Wave Component

The parametrization on eq. (1.37) does not include a potential S-wave contribution
from K∗(892) decays. For the S-wave contribution, the fraction FS of the S-wave
component in the K∗0 mass window has to be considered in the differential decay
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rate. Following Ref. [48] and denoting the right side of eq. (1.37) as WP , one can
add correction terms by

(1 − FS)WP + 9
32π (WS +WSP ), (7.1)

where
WS = 2

3FS sin2 θℓ (7.2)

and

WSP = 4
3AS sin2 θℓ cos θK +A

(4)
S sin θK sin 2θℓ cosϕ+A

(5)
S sin θK sin θℓ cosϕ

+A
(7)
S sin θK sin θℓ sinϕ+A

(8)
S sin θK sin 2θℓ sinϕ, (7.3)

which includes all the interference terms, A(i)
S , of the S-wave with the K∗0 transversity

amplitudes, defined in [49].

The fraction FS is searched for in our data by fitting the invariant mass of the Kπ
pair. The background shape is fixed on MC for random combinations. The resonant
part of the K∗0 decay mode is described by a non-relativistic Breit-Wigner shape
with free shape parameters in the fits. For the S-wave component of the K∗0 decay a
third order Chebychev polynomial is used to describe discrepancies between the total
data and a combination of the Breit-Wigner shape and the background shape. In
order to get sufficient statistics, the fit is performed on a data sample with lowered
neural network cut. The result is displayed in fig. 7.4(a). In the next step, the shape
for the S-wave component is fixed and a fit to the final distribution of the K∗ mass is
performed, where the yield for the S-wave fraction is determined in the fit. The result
FS = 0.000 ± 0.024 is consistent with zero and the fit result is displayed in 7.4(b).

7.5.3 CP Asymmetries

In eq. (1.37) the number of B0 and B̄0 decays are assumed to be equal as the measured
parameters correspond to symmetric or antisymmetric CP-averages terms. If there is a
production, detection or direct CP asymmetry observed, the measured CP-symmetric
parameters, defined in eq. (1.28), must be corrected by

Sobs
i = Si −Ai(ACP + κAP +AD), (7.4)

where ACP is the direct CP asymmetry between B0 → K∗0ℓ+ℓ− and B̄0 → K̄∗0ℓ+ℓ−,
AP is the production asymmetry, which can be neglected at Belle and AD is the
detection asymmetry, which can be caused due to different interaction cross-sections
with matter for K+ and K− mesons. The measured direct CP asymmetry is consistent
with zero [50]. Also the yields of B0 and B̄0 events are statistically equal in the signal
region of our measurement with 153 and 150 events respectively. Together with the
small theoretical values for the CP asymmetric parameters A(s)

i (≲ O(10−3) [18])
influences of this kind are neglected.
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Figure 7.4: The K∗(892) invariant mass in the decay of B0 → K∗(892)0µ+µ− for a
low and a high cut on the neural network (NN). Combinatorial (dashed
blue), potential S-wave signal (red filled) and total (solid) fit distributions
are superimposed on the data points.

7.6 Summary
All sources of included systematics are summarized separately for P ′

4, P ′
5, P ′

6 and P ′
8

in tables 7.5 to 7.8. The total systematic uncertainty is calculated as the square root
of the quadratic sum of all systematic uncertainties assuming they are uncorrelated.

Table 7.5: Summary of all considered systematic uncertainties for P ′
4.

Bin 0 1 2 3 4

Peaking Background 0.0855 0.0646 0.0366 0.0457 0.0358
Data/MC Difference 0.0109 0.0088 0.0020 0.0003 0.0047
Efficiency Correction 0.1475 0.0241 0.0599 0.0877 0.0650
Fit Bias 0.0316 0.0114 0.0007 0.0558 0.0027
Total 0.1738 0.0704 0.0702 0.1135 0.0744
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Table 7.6: Summary of all considered systematic uncertainties for P ′
5.

Bin 0 1 2 3 4

Peaking Background 0.0901 0.0636 0.0078 0.0498 0.0131
Data/MC Difference 0.0112 0.0067 0.0208 0.0142 0.0029
Efficiency Correction 0.0397 0.0205 0.0098 0.0215 0.0327
Fit Bias 0.0031 0.0061 0.0430 0.0127 0.0460
Total 0.0992 0.0675 0.0494 0.0575 0.0580

Table 7.7: Summary of all considered systematic uncertainties for P ′
6.

Bin 0 1 2 3 4

Peaking Background 0.0170 0.0513 0.0229 0.0215 0.0026
Data/MC Difference 0.1298 0.1378 0.1655 0.2201 0.2341
Efficiency Correction 0.0835 0.0432 0.0683 0.0218 0.0192
Fit Bias 0.0735 0.1189 0.0562 0.0027 0.0268
Total 0.1718 0.1939 0.1890 0.2222 0.2364

Table 7.8: Summary of all considered systematic uncertainties for P ′
8.

Bin 0 1 2 3 4

Peaking Background 0.1242 0.0161 0.0395 0.0518 0.0255
Data/MC Difference 0.1433 0.1630 0.1531 0.1955 0.2316
Efficiency Correction 0.0319 0.0824 0.0359 0.0418 0.0099
Fit Bias 0.0337 0.1033 0.0579 0.0048 0.0047
Total 0.1952 0.2105 0.1722 0.2065 0.2332
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8. Results and Discussions

8.1 Angular Analysis Results
The angular analysis is based on methods, which are evaluated with toy studies based
on simulated events, as detailed in chapter 6. The results of the measurement are
compared with Standard Model predictions.

8.1.1 Standard Model Predictions

The measurements are compared with Standard Model predictions based upon different
theoretical calculations. Values from «DHMV» refer to the soft-form-factor method
of Ref. [51]. The form factors are computed from QCD sum rules on the light-cone
(LCSRs) with B meson distribution amplitudes of Ref. [52]. «BSZ» corresponds
to using QCD form factors computed from LCSRs with K∗ distribution amplitudes
described in [53]. Predictions for the large q2 bin are calculated using Lattice QCD
with QCD form factors from Refs.[54, 55] the labels do not refer to DHMV and BSZ
here. All provided values are calculated by the authors of Refs. [19, 51, 56] by doing
a Gaussian scan to all parameters and taking the mean for the central value and one
standard deviation as an error bar.

The third set of theoretical predictions is provided by the methods and authors of
Refs. [57, 58] whose framework is specially tailored to the low q2 region. It is referred
to as «Camalich et.al.».

No predictions are made for the region close to the cc̄ resonances J/ψ and ψ(2S).
Here, many of the assumptions made for the Standard Model predictions are thought
to be violated due to interferences with the hadronic state.

8.1.2 Extraction

The procedure of the extraction of the final results is detailed in chapter 6 and
follows directly insights gained from pseudo experiments. All observables P ′

4,5,6,8 are
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8 Results and Discussions

extracted from three-dimensional unbinned maximum likelihood fits in four bins of q2

and the additional zeroth bin. Each P ′
i is fitted together independently with FL and

AT . Considering also the zeroth bin, which exhibits overlap with the range of the
first and second bin, 20 independent measurements are performed. The background
shape in each fit is determined on data in the Mbc sideband Mbc < 5.27 GeV/c2 and
the signal to background fraction is determined by a fit to Mbc in each q2 bin, see
section 5.1 and table 5.1. A sample fit result for P ′

5 in bin 2 is displayed in fig. 8.1 with
the corresponding projections. The results are shown in figs. 8.2 to 8.6 together with
available Standard Model predictions and LHCb measurements. All fit projections
are depicted in appendix A.2.

Additionally, there are further derived quantities, calculated from the fit results. The
CP-symmetric observables Si are calculated from

S4,5,7,8 = P ′
4,5,6,8


FL(1 − FL) (8.1)

and
S3 = 1

2(1 − FL)AT . (8.2)

Their values are displayed in fig. 8.7 together with the LHCb measurements. The
result of all parameters in the fits are stated in table 8.1 together with the respective
distance to Standard Model prediction. No significant CP asymmetry is observed.
The yields of B0 and B̄0 events are statistically equal in the signal region of the
measurement with 153 and 150 events respectively.

8.2 Discussion and Outlook

The results of this analysis are compared to three different Standard Model predictions,
described above. For each measured quantity, the distance to all three predictions is
calculated in measures of the combined error, which is calculated as the square root
of the quadratic sum of the theory error, the statistical error of the measurement
and the systematic uncertainty. For P ′

5 a deviation corresponding to 2.1σ is observed
to the DHMV Standard Model prediction in the q2 range 4.0 < q2 < 8.0 GeV2/c4.
Among the P ′ observables this is the largest observed deviation in the measurement.
The pull distributions between predictions and measurements is shown in fig. 8.8.
From fig. 8.8(a) one can clearly observe a distinct separation from this measurement
to the others. For all three theoretical models the mean of the pull distribution is
compatible with zero. Distributions for DHMV and BSZ are slightly shifted towards
the deviation of the P ′

5 anomaly. Additionally, their width are smaller than one, which
means that at least one of the error sources is overestimated. This is an indication
that the discrepancy in this bin is conservatively estimated.

The discrepancy in P ′
5 supports measurements by LHCb [1], where a 3.7σ tension was

observed in the region 4.30 < q2 < 8.68 GeV2/c4. This analysis was originally intended
to examine the same q2 region. Theorists however expressed skepticism about unknown
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Figure 8.1: Projections for the fit result of P ′
5 in bin 2. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure 8.2: Result for P ′
4 compared to Standard Model predictions from various

sources described in section 8.1.1. Results from LHCb [1, 2] are shown
for comparison.
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Figure 8.3: Result for P ′
5 compared to Standard Model predictions from various

sources described in section 8.1.1. Results from LHCb [1, 2] are shown
for comparison.
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Figure 8.4: Result for P ′
6 compared to Standard Model predictions from various

sources described in section 8.1.1. Results from LHCb [1, 2] are shown
for comparison.
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Figure 8.5: Result for P ′
8 compared to Standard Model predictions from various

sources described in section 8.1.1. Results from LHCb [1, 2] are shown
for comparison.
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Figure 8.6: Result for FL and AT in the fit for P ′
5 compared to Standard Model

predictions by [19]. The error corresponds to the statistical only. Results
from LHCb [1, 2] are shown for comparison.
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Figure 8.7: Result for derived quantities S4,5,7,8 and S3. The error corresponds to the
statistical only. Results from LHCb [1, 2] are shown for comparison.

119
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theory errors originating from the hadronic J/ψ resonance at q2 > 8.0 GeV2/c4.
LHCb performed an update on the analysis [2] with three times the integrated
luminosity. In the update a discrepancy was observed in 4.0 < q2 < 6.0 GeV2/c4

and 6.0 < q2 < 8.0 GeV2/c4 at the level of 2.8σ and 3.0σ respectively. The global
discrepancy to the DHMV Standard Model prediction in the measurement is stated
with 3.4σ.

The largest discrepancy between the measurements performed by LHCb and this
results can be observed in bin 3 of the observable P ′

8. Combining both total errors
quadratically, the observed distance corresponds to 1.7σ for the LHCb result from 2013
which serves equal binning in this measurement and can consequently be compared.
Considering all 20 independent measurements, a deviation of this magnitude in one
measurement can be expected.

It has to be remarked that this Belle measurement is performed on a dataset consisting
of 177.2 ± 16.6 events and includes muon and electron modes. Compared to the latest
LHCb measurement this sample is smaller by a factor of 12. The LHCb detector
is specialized in detecting charged hadronic and muonic final stats, which makes
B0 → K∗(892)0µ+µ− an ideal channel for the experiment. Furthermore the B cross
section is large in pp̄-collisions at 8/13 TeV . Despite the differences in statistics the
discrepancy measured in this analysis is significant and the central value aligns with
both LHCb results.

In contrast to LHCb, the Belle detector is more efficient in reconstructing neutral
final states and electrons. This analysis contains B0 → K∗(892)0e+e− decays
in addition to the muon mode, which is currently not possible for LHCb . For
the future it is planned to add charged decay modes B+ → K∗(892)+e+e− and
B+ → K∗(892)+µ+µ− to the fit. It is expected that this will increase statistics by
about 30%. The theory values will have to be slightly modified for that case. However,
as isospin symmetry breaking is supposed to be almost negligible, the corrections are
expected to be small.
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8 Results and Discussions

Table 8.1: Results of the angular analysis. Observables are compared to Standard
Model predictions for the analyzed q2 regions, detailed in section 8.1.1.
Systematic errors are only calculated and presented for P ′

4,5,6,8, where the
first errors is the statistical and the second the systematic error. Values
for AT and FL are presented from the fit and data transformation of P ′

5.

q2 Range Observable Measurement Theory Significance Theory Significance Theory Significance
in GeV2/c4 “DHMV" of deviation “BSZ" of deviation “Camalich et.al." of deviation

[1.00, 6.00] P ′
4 −0.095+0.302

−0.309 ± 0.174 - - - - −0.300+0.090
−0.080 0.56σ

P ′
5 0.385+0.276

−0.285 ± 0.099 - - - - −0.360+0.190
−0.170 2.09σ

P ′
6 −0.202+0.278

−0.270 ± 0.172 - - - - 0.040+0.100
−0.100 0.71σ

P ′
8 0.440+0.311

−0.320 ± 0.195 - - - - 0.010+0.020
−0.019 1.14σ

FL 0.339+0.088
−0.084 - - - - 0.720+0.090

−0.120 2.56σ

AT 0.168+0.354
−0.367 - - - - - -

[0.10, 4.00] P ′
4 0.208+0.400

−0.434 ± 0.070 −0.026 ± 0.098 0.52σ −0.029 ± 0.103 0.53σ −0.010+0.060
−0.060 0.49σ

P ′
5 0.631+0.403

−0.419 ± 0.067 0.175 ± 0.086 1.05σ 0.199 ± 0.077 1.00σ 0.200+0.110
−0.110 0.98σ

P ′
6 −0.670+0.419

−0.387 ± 0.194 −0.055 ± 0.018 1.33σ −0.055 ± 0.018 1.33σ 0.040+0.060
−0.060 1.53σ

P ′
8 −0.309+0.519

−0.472 ± 0.210 −0.030 ± 0.017 0.50σ −0.031 ± 0.016 0.50σ 0.006+0.033
−0.033 0.56σ

FL 0.190+0.099
−0.086 0.445 ± 0.251 0.95σ 0.535 ± 0.178 1.69σ 0.530+0.120

−0.130 2.08σ

AT 0.154+0.397
−0.417 - - - - - -

[4.00, 8.00] P ′
4 −0.477+0.266

−0.252 ± 0.070 −0.441 ± 0.106 0.12σ −0.521 ± 0.087 0.16σ −0.490+0.070
−0.060 0.05σ

P ′
5 −0.267+0.275

−0.269 ± 0.049 −0.881 ± 0.082 2.15σ −0.770 ± 0.100 1.72σ −0.810+0.170
−0.140 1.68σ

P ′
6 −0.057+0.264

−0.262 ± 0.189 −0.003 ± 0.011 0.17σ −0.002 ± 0.008 0.17σ 0.020+0.110
−0.110 0.23σ

P ′
8 0.130+0.257

−0.259 ± 0.172 −0.022 ± 0.010 0.49σ −0.020 ± 0.007 0.48σ 0.007+0.020
−0.021 0.39σ

FL 0.525+0.086
−0.087 0.666 ± 0.232 0.57σ 0.682 ± 0.153 0.90σ 0.640+0.130

−0.150 0.67σ

AT 0.173+0.542
−0.575 - - - - - -

[10.09, 12.90] P ′
4 −0.088+0.414

−0.402 ± 0.114 - - - - - -

P ′
5 −0.504+0.351

−0.327 ± 0.057 - - - - - -

P ′
6 −0.341+0.347

−0.326 ± 0.222 - - - - - -

P ′
8 −1.017+0.415

−0.374 ± 0.207 - - - - - -

FL 0.348+0.098
−0.093 - - - - - -

AT 0.245+0.385
−0.405 - - - - - -

[14.18, 19.00] P ′
4 −0.371+0.272

−0.252 ± 0.074 −0.632 ± 0.026 0.99σ −0.632 ± 0.026 0.99σ - -

P ′
5 −0.547+0.257

−0.225 ± 0.058 −0.601 ± 0.051 0.23σ −0.601 ± 0.051 0.23σ - -

P ′
6 0.384+0.292

−0.306 ± 0.236 −0.004 ± 0.069 0.99σ −0.004 ± 0.069 0.99σ - -

P ′
8 0.242+0.301

−0.309 ± 0.233 −0.001 ± 0.028 0.63σ −0.001 ± 0.028 0.63σ - -

FL 0.363+0.088
−0.085 0.346 ± 0.036 0.18σ 0.346 ± 0.036 0.18σ - -

AT −0.696+0.383
−0.317 - - - - - -
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Part III

Search for B+ → K+τ+τ−
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9. Motivation and Analysis Overview

The second analysis in this thesis focuses on the decay B+ → K+τ+τ−1, which is
experimentally only very poorly constrained [59]. Compared to the electron and muon
mode of b → sℓ+ℓ− the tau decay mode is more difficult to analyze, due the presence
of at least 2 neutrinos in the final state. As a consequence, one cannot detect the full
decay chain in the detector, since neutrinos remain hidden and it is not possible to
detect signal candidates in invariant mass or energy distributions because information
is missing. In order to reconstruct the decay, the full reconstruction technique is used,
which is explained in section 3.5. With this method a second B meson is searched for
in the same event and fully reconstructed. This reduces the reconstruction efficiency
drastically, as the efficiency for finding a B meson in purely hadronic final states is
about a few permille.

Despite these experimental challenges, the decay mode offers interesting aspects to
be examined. It belongs to a class of rare decays, which are sensitive to a variety
of new physics scenarios. Recent results in b → sℓ+ℓ− related measurements, as for
instance the P ′

5 deviation which is covered in the first analysis of this thesis, make it a
promising candidate for new insights. Especially the so called RK anomaly is related
to the tau decay mode and might reveal deviations to Standard Model predictions.
The RK anomaly was found by LHCb [5] in the ratio between the electron and muon
branching fraction

RK ≡ B(B+ → K+µµ)
B(B+ → K+ee)

= 0.745+0.090
−0.074(stat) ± 0.036(syst), (9.1)

which is supposed to be one in the Standard Model [60] to a high precision due
to lepton universality. Unlike the angular observables discussed in the previous
part this quantity is almost free of theoretical uncertainties as most hadronic effects
cancel in this ratio. The observed deviation correspond to 2.6σ. In particular the

1The charge conjugated mode is always implied if not especially stated.
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9 Motivation and Analysis Overview

branching ratio of B+ → K+τ+τ−, may deliver important hints regarding lepton
flavor universality and may provide evidence for the existence of new physics in the
flavor sector.

The boundaries for b → sττ are poorly constrained and a comprehensive study of new
physics effects in this channel is performed in Ref. [61]. In some theoretical models the
τ modes of B → K(∗)ℓ+ℓ− are preferred for searching for new physics. New particles
could couple to the mass of the comparably heavy τ lepton, and thus enhance
the sensitivity by a factor of |mτ/mµ|2 ≃ 286. The only experimental study for
B+ → K+τ+τ− was performed by BaBar and an upper limit of 3.3×10−3 [59] at 90%
confidence was set. This limit is about four orders of magnitude above Standard Model
prediction for the branching ratio, which is B(B+ → K+ττ)SM < 1.44(15) × 10−7

[62]. The Minimal Lepton Flavor Violation (MLFV) scenario is examined in Ref. [3]
and concludes that effects from new physics could enhance the branching ratio to

B(B → Kτ−τ+)MLFV < 2 × 10−4, (9.2)

which is already close to the current experimental limits.

In this analysis the full Belle dataset is used and it is performed blinded, which
means that all methods are evaluated and tested on simulated data before real data
is examined. The neural network based full-reconstruction technique at Belle [42]
is used to reconstruct a tag-side B meson. Using kinematic constraints from the
knowledge of the initial state of the e+e− pair and the tag-side B, the signal B meson
is reconstructed. After removing all tracks and hits from the signal and tag-side B
candidates from the event, the remaining energy deposition in the electromagnetic
calorimeter (ECL) is accumulated and the sum of the extra energy EECL is calculated.
For signal events one does not expect additional energy in the calorimeter, hence
a peaking distribution at zero in EECL. A counting experiment is performed in a
signal window in this variable after the final selection to calculate the upper limit on
B+ → K+τ+τ−. In chapter 10 the reconstruction of the signal and the suppression
of backgrounds is detailed. With the expected number of signal and background
events and the sensitivity for signal candidates the expected upper limit is calculated
in chapter 11. Finally, systematic uncertainties are analyzed in chapter 12.

Signal MC

Two sets of signal Monte Carlo are generated for the analysis. In each, the decay
B+ → K+τ+τ− is simulated 10 million times. Each event of this sample contains a
signal candidate and a generically decaying B meson. Two different generator models
are used with form-factor calculations are provided in Ref. [63] and Ref. [41].
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10. Reconstruction and Analysis

10.1 Event Selection

The first step is to search for a tag-side B meson in each event, the Btag. This is done
by a neural network based full-reconstruction method [42]. The algorithm delivers
candidates for B± mesons in each event using many exclusive hadronic decay channels.
If one or more tag-side candidates are found by this algorithm, the rest of the event
is used to find the signal-side B meson, Bsig, in the decay B+ → K+τ+τ−. For each
Btag candidate all belonging tracks and hits in the calorimeter are removed from the
event and the signal side selection is applied. Furthermore, it is required that no
additionally π0 and exactly three additional charged tracks remain in the event. One
of the charged tracks has to be identified as a K± with the opposite charge than the
Btag and a particle identification likelihood ratio RK ≡ LK/ (LK + Lπ) greater than
0.6. The remaining two charged tracks are required to have opposite charge without
further constraints. With this selection, the τ is identified in single-prong τ decays
τ+ → e+ντ ν̄e, τ

+ → µ+ντ ν̄µ and τ+ → π+ντ , summarized in table 10.1. In order to
lower the amount of multiple candidates per events, only the two most probable Btag
candidates are accepted, based on their neural network output.

Table 10.1: List of the reconstructed τ decay channels.

Decay channel Branching fraction [%]

τ+ → e+ντ ν̄e 17.4 ± 0.4
τ+ → µ+ντ ν̄µ 17.8 ± 0.4
τ+ → π+ντ 10.8 ± 0.6

Sum 46.0 ± 0.8
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10 Reconstruction and Analysis

10.1.1 Best Candidate Selection

More than one tag-side candidate is observed in 20% of the events on signal MC. For
the remaining two oppositely charged tracks besides the K±, there are six possibilities
for the mass hypothesizes: ee, eµ, eπ, µµ, µπ and ππ when τ decays are reconstructed
in τ+ → e+ντ ν̄e, τ

+ → µντ ν̄µ or τ+ → π+ντ . The analysis consists of six categories,
one for each of the charged final states of the two taus. All of these decay-modes
are treated combined in the analysis. The mass hypothesis is assigned for each of
the two tracks using pre-trained neural networks from the neural network based full-
reconstruction framework [42]. These NeuroBayes classifiers were trained separating
i.a. e, µ and π± from other charged primary particles. The mass hypothesis with the
highest corresponding neural network output is accepted. The information of the
individual decay-channel is taken into the classifying stage as a dedicated variable.
All event selection criteria are summarized in table 10.2.

Table 10.2: Summary of the event selection criteria.

Selection

K+ RK ≡ LK/ (LK + Lπ) > 0.6
charge(K) = − charge(Btag)

BTag Rank of the Btag <= 2
Number of remaining charged Tracks 3
Number of remaining π0 0

10.2 Pre-Selection Cuts
This analysis aims to use as few cuts as possible and rather classifies signal and
background using multivariate methods. However, some pre-cuts are performed in
variables removing large fractions of background while conserving the majority of
the signal. One of the most important pre-cuts is the cut on the neural network
output of the Btag, N B(BTag) > 0.0001, which preserves almost the entire signal
while removing more than 50% of the background. The variable q2, described in
eq. (10.1), can be interpreted as the constrained invariant mass of the τ pair. It
is calculated using the momenta of the Υ(4S), the Btag and the reconstructed K±

momentum and is able to reject background in the region q2 < 12 GeV4/c2 almost
without loosing any signal candidates. Furthermore, a signal window in Mbc of the
Btag and the EECL variable is defined. All the cuts are listed in table 10.3. The
corresponding signal and background efficiencies are displayed in fig. 10.1.

10.2.1 Background Composition

After the event selection is performed, the data consists of both the desired decay
B+ → K+τ+τ− and miss-reconstructed background events. The majority of the
background originates from generic b → c transitions like B+ → D0(→ K+π−)ℓ+νℓ
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10.3 Background Suppression

Table 10.3: Summary of pre-cuts used in the analysis. See section 10.3 for a definition
of the variables. The efficiencies are determined independently.

Cut Lost signal [%] Lost background [%]

q2 > 12 0.10 18.43
Mbc(BTag) > 5.27 14.45 75.96
N B(BTag) > 0.0001 2.43 55.61
EECL < 1.5 2.45 25.94

decays. As charged B± mesons are selected, the largest background component is
due to random combinations in the charged (B+B−) generic MC. Without a tight
selection on the neural network output of the Btag, also the other components like
mixed (B0B̄0) generic MC, as well as continuum events e+e− → qq̄ (q = u, d, s, c),
contribute (uds and charm MC).

Continuum In continuum events, e+e− annihilates into light quark pairs uū, dd̄, ss̄
as well as events containing charm quarks cc̄. The initial quark pair however
exhibits a large energy release, forming back to back jet–like structures. The
full-reconstruction is used with continuum suppression, which combines the
quality of the Btag meson with event shape parameters (modified Fox Wolfram
Moments [44]) and allows for rejecting this kind of background by cutting on
the network output of the Btag.

Combinatorial Combinatorial background arises from wrong combination of tracks
in BB̄ events.

Peaking Irreducible peaking background arises from missing KL in the event. This
source can be controlled on data reconstructing an additional KS and removing
it from the event. This study is described in chapter 12.

10.3 Background Suppression

For the background suppression a Boosted Decision Tree (BDT) with a gradient boost
is chosen. These algorithms have shown exceptionally good results in recent years
and are described in section 3.4.5. They can be used without preprocessing the data.
Independent data samples for training and testing of the classifier are used to ensure
that no over-fitting is performed.

A set of 35 variables which provide reasonable separation between signal and back-
ground events is available for classification, depicted in figs. B.1 and B.2. Subsets
of variables are chosen to accord to their importance to the classifier. Only the best
variables regarding their separation power are kept. A larger set of variables may
show better performance but is vulnerable to over-fitting and differences between
data and Monte Carlo might have an influence.
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Figure 10.1: Pre-cuts on simulated data. The distributions are arbitrarily normalized.

The agreement between Monte Carlo and data is tested on a sideband in EECL,
described in detail in sections 12.1 and 12.1. Due to increasing systematic errors
more sensitivity might be lost than gained by the information in variables with bad
agreement. Consequently, variables with poor data/MC agreement are removed from
the training set.

In total 14 variables are kept for the separation between signal and background:

N B(Btag) : The NeuroBayes output of the Btag candidate.

M
K

+
τ

− : Invariant mass of the K+ and charged daughter of the τ−.

p̂
τ

+ : The momentum of the positively charged τ in the rest frame of the signal B
candidate.

decay channel : Decay hash value corresponding to the six possibilities for the mass
hypotheses of the charged children of the τ pair (ee, eµ, eπ, µµ, µπ and ππ).

N B(τ+ × τ−) : The product of the NeuroBayes outputs of the children of both τ .

∆Etag : The beam constrained energy of the Btag candidate.

q2 : The constrained invariant mass of the τ pair, defined as

q2 ≡ (p⃗(Υ(4S)) − p⃗Btag
− p⃗

K
+)2, (10.1)
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10.3 Background Suppression

where p⃗(Υ(4S)) is the momentum of the Υ(4S), p⃗tag the momentum of the Btag
and p⃗K the momentum of the K±.

M
τ

+
τ

− : The reconstructed invariant mass of the τ pair.

M tag
bc : The beam constrained mass of the Btag candidate.

θhel
τ

− : The pseudo helicity angle of the τ−.

σ(dBtag
) : The significance of the distance to the Btag candidate, derived from the

error of the vertex fit.

χ2 : χ2 value of the vertex fit of the candidate.

dIP : Distance of the candidate to the interaction point.

Q : Defined as the reconstructed mass of the B candidate subtracted by the recon-
structed mass of the children: Q ≡ MB −M

K
+ −M

τ
+ −M

τ
− .

The input variables are displayed in figs. 10.2 and 10.3.

In addition to the BDT the performance of a NeuroBayes neural network and a Fisher
discriminant (LDA) is tested for comparison, which have also both proven to deliver
reliable results in high energy physics. Figure 10.4 shows that the BDT delivers the
best results, as it serves higher efficiencies for all chosen purity levels.
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Figure 10.2: Input variables for the boosted decision tree. The signal distribution is
shown with a red line and the background is displayed as a stacked plot
for several sources (blue tones for generic MC and green for rare uℓν
MC). The description of the variables can be found in section 10.3.
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Figure 10.3: Input variables for the boosted decision tree. Continuation of fig. 10.2.
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11. Limit Estimation

The upper limit on B+ → K+τ+τ− is calculated with a counting experiment in a
signal window in EECL under the assumption that no signal is observed. The cut
parameters cE on EECL and cBDT on the output of the BDT are optimized in order
obtain the to most stringent upper limit. Both cut parameters influence the amount
of expected background events in the signal region and the reconstruction efficiency
ϵs for signal candidates.

11.1 Branching Ratio

The branching ratio for a decay channel d is calculated by:

B(d) = N true
d

N
, (11.1)

where N is the total number of decays and N true
d is the true amount of signal events

from the desired decay channel. Since this number is unknown in analyses which are
subjected to acceptance and efficiency effects, it can be estimated by correcting the
number of observed events Nobs

d by the reconstruction and acceptance efficiency ϵs:

N true
d ≃ Nobs

d

ϵs
. (11.2)

The observed B± candidates in this analysis corresponds to

N = 2 · f
B

+ ·NBB̄, (11.3)

where NBB̄ is the number of recorded B meson pairs in the Belle dataset and
f
B

+ = 51.4 ± 0.6% [4] is the fraction of B+B− pairs. An upper limit is calculated for
the maximum number of observed signal candidates NUL with a certain confidence,
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11 Limit Estimation

assuming the absence of a signal. Combined, the upper limit on the branching fraction
can be derived by

B(B+ → K+τ+τ−) < NUL

ϵs · 2 · f
B

+ ·NBB̄

. (11.4)

11.2 Limit Calculation
Upper limits are calculated in dependency of a certain degree of confidence. In case
of absent backgrounds they can be derived from the equation:

1 − α =
n
k=0

P (k;µ), (11.5)

where 100(1 − α)% is the chosen confidence level, µ is the unknown true expectation
value and P the underlying probability density function. The ROOT [64] implementa-
tion TRolke is used, suggested by W. Rolke [65]. It uses as Profile Likelihood method
with a Gaussian background model and Poisson signal distribution:

L(µ, b, σ|x, y) = (µ+ b)x

x! exp (−(µ+ b)) × 1√
2πσ

exp


−(y − b)2

2σ2


, (11.6)

where b is the expected background with uncertainty σ, x and y are the measured
values for signal and background. The uncertainties on x and y are treated as nuisance
parameters and are modeled with a Gaussian probability density function.

11.3 Limit Optimization
The cut parameters cE on EECL and cBDT on the output of the BDT are optimized
in order to minimize B(B+ → K+τ+τ−)UL. For each pairs of cuts cBDT and
cE , the corresponding signal efficiency ϵs and the expected amount of background
events in the signal region is calculated. The systematic uncertainties, which are
detailed in chapter 12, are also evaluated for each cut, as they are partly dependent
on cBDT . With these values NUL and consequently the estimation of the upper
limit on the branching fraction can be derived. The best upper limit is found at
B(B+ → K+τ+τ−) < 3.96 × 10−4 at 95% confidence level (C.L.) for cBDT = 0.553
and cE = 0.206 GeV, including the uncertainties on NUL and ϵs The expected
number of background events in the signal window is 8.83 and the signal efficiency is
ϵs = 2.709 × 10−5. The distributions for EECL and the boosted decision tree output
are displayed in fig. 11.1. The result for the limit optimization is shown in fig. 11.2.

Additionally, the limits are calculated with the Bayesian Markov-Chain based tool,
Theta [66], and a scan over the upper limit with different amount of observed events
while expecting 8.83 events is performed. The scan for the observed upper limit for
different yields on data is depicted in fig. 11.3.
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Figure 11.1: The output of the BDT and the variable EECL prior to the cut for the
best upper limit.
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12. Systematic Uncertainties

For this analysis systematic uncertainties which affect the branching fraction mea-
surement are covered. The upper limit is derived from

B(B+ → K+τ+τ−) < NUL

ϵs · 2 · f
B

+ ·NBB̄

=
ÑUL(Nexp, ϵs, σϵs)

N
. (12.1)

This implies that two main quantities can have errors: The number of observed events,
N = 2 · f

B
+ ·NBB̄ and the expected upper limit for the observed signal candidates

NUL. The latter includes all systematic uncertainties from the signal efficiency ϵs and
the expected amount of background events Nexp. They can be treated as nuisance
parameter in the calculation of the upper limit and lead to an adjusted NUL

sys including
uncertainties. The errors are dominated by the statistical error on the number of
expected background events. For this reason conservatively large estimates on the
systematic errors can be assumed without large effects on the total upper limit.

12.1 Data MC Comparison
12.1.1 Tag Side Correction
Large differences between yields of the data and MC samples are observed in the
analysis, depicted in fig. 12.1(a). The reason for this discrepancy arises from systematic
differences of the reconstruction efficiency from the NeuroBayes full reconstruction.
This effect has been studied on a variety of control channels on data and can be
corrected by introducing correction-weights for the Btag candidate based on the neural
network output N B(Btag) and the decay channel of the tag-side B. The distribution
of the weights is displayed in fig. 12.1(c) which has a mean value of 0.81, indicating
that the reconstruction efficiency of the tag-side is overestimated by the framework.
When weighting each event in the MC class by the corresponding weight, almost
perfect alignment and equal total yields for the Mbc distribution of the Btag candidate
can be observed in fig. 12.1(b). The systematic error of this procedure for the efficiency
of the Btag is estimated with 4.6%.
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Figure 12.1: Impact of the Monte Carlo efficiency correction for the Btag candidate.
Displayed is Mbc of the Btag with (b) and without (a) weights (c).
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Figure 12.2: EECL sideband for all different types of MC (left) and the comparison
with data (right) after the Monte Carlo efficiency correction for the Btag
candidate is applied.

12.1.2 EECL Sideband

A comparison between generic MC and data is performed on a sideband in EECL,
where EECL > 0.5 GeV/c2. The sideband region is displayed in fig. 12.2. A systematic
discrepancy in EECL (fig. 12.2(b)) is observed, which has to be analyzed on the full
range for determining systematic effects.

The agreement of data and MC for all variables which are suited for background
suppression are compared in appendix B.2. In order to assign an uncertainty to
the agreement between data and Monte Carlo, the mean of the classifier output for
data and MC on the sideband of EECL is compared. The observed difference is
0.067 ± 5.734%, dominated by statistical fluctuations. The BDT cut cBDT is varied
within this error and systematic uncertainties are applied for observed differences
in the limit. For the signal efficiency 6% and for the expected background 10%
uncertainty is applied (corresponding to 2 events).

12.1.3 EECL Distribution

Before looking into data in the signal region of EECL region, one can only extrapolate
the observed difference in the EECL distribution into the signal region, fig. 12.2,
and estimate a yield difference. A preliminary uncertainty of 10% is applied to the
candidates in the signal region. When opening the box in the signal region, the
distribution with increasing cut on the classifier can be monitored. It is possible, that
some backgrounds are not modeled correctly on MC and soft cuts on the BDT output
can make the distribution more similar.

12.1.4 Control Channel on Data

The distribution of EECL can also be studied with the control process B+ →
K+τ+τ−(KS), where the KS daughters are removed from the event. The con-
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Figure 12.3: EECL distribution for B+ → K+τ+τ−(KS), where the KS daughters
are removed from the event with the final cut cBDT = 0.553 (right) and
cBDT > 0.1(left) for comparison.

trol process is reconstructed on the full range of EECL and the BDT output is applied
to the events. The result is shown in fig. 12.3.

With the final selection of cBDT = 0.553 in total 9 events are observed while ex-
pecting 9.11 events from simulations. The distributions are displayed in fig. 12.3(b).
Excellent agreement between data and MC can be observed. This result leads to the
conclusion that the used methods work as expected. Trained expertise from MC can
be successfully applied to real data.

12.2 Other Uncertainties

12.2.1 Number of B+B− Pairs

The number of observed candidates can be estimated by N = 2 · f
B

+ ·NBB̄, where
NBB̄ = 771 · 106 ± 1.4% is the B meson pairs in the Belle dataset and f

B
+ =

0.516 ± 0.006 [4] is the fraction for the decay Υ(4S) → B+B−. Combining both
uncertainties, 1.8% error for the normalization of the signal is assigned.

12.2.2 Particle Identification

For the charged kaon track, a particle identification value of RK > 0.6 is required. A
conservative systematic error of 2.2% is applied for this selection. For the remaining
two charged tracks the mass hypothesis (e, µ or π±) based on the probability output
of trained neural networks is applied. Randomly switching the hypothesizes to the
second best option, changes the mean of the output of the main classifier by 3.6%.
This results in 5.09% uncertainty for the tau daughters. Combined with the kaon
identification 5.54% uncertainty for the total particle identification is taken into
account.
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12.2.3 Tracking

The Belle standard systematic uncertainty of 0.35% error for each charged track is
applied, resulting in 1.05% total tracking uncertainty.

12.2.4 Generator

Two sets of signal MC are used with different decay model for the generator with
form-factor calculations by Ball et al.[63] and Ali et al. [41]. The classifier is trained
on one dataset and the upper limit is estimated on the other one. When switching the
datasets for training and limit estimation, a difference of 1.715 ± 6.949% is observed.
For the generator model a conservative uncertainty of 8.66% is applied.

12.2.5 Statistical Uncertainties from Simulation

The dominant source of systematics arise from statistical uncertainties for the esti-
mation of the signal efficiency and the number of expected background events. The
signal efficiency is calculated by

ϵs =
Nsig

Ngen
, (12.2)

where Nsig is the number of correctly selected candidates and Ngen is the number of
generated signal events. The statistical error on the estimation of the signal efficiency
can be calculated with a binomial error

σϵs =


Nsig(Ngen−Nsig)

Ngen

Ngen
. (12.3)

The difference to Poisson errors is however negligible in the light of small signal
efficiencies. For ϵs, 6.13% statistical uncertainty is applied and 33.7% for Nexp.

12.3 Summary
All sources of systematic errors are summarized in table 12.1. The errors are treated
as nuisance parameters in the calculation of the upper limit.
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12 Systematic Uncertainties

Table 12.1: List of covered systematic uncertainties.

Source Error [%]

Nexp Tracking 1.05
PID 5.54
Btag correction 4.60
EECL distribution 10.00
Data - Monte Carlo discrepancy 10.00

Statistical error 33.64

Total 37.21

ϵs N
B

+
B

− 1.80
Tracking 1.05
PID 5.54
Btag correction 4.60
Data - Monte Carlo discrepancy 6.00
Generator 8.66

Statistical error 6.18

Total 14.33
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13. Results

The estimated upper limit B(B+ → K+τ+τ−) < 3.97 × 10−4 is obtained at the 95%
confidence level using Belle Monte Carlo datasets and Frequentists methods. With
a Bayesian Markov Chain Monte Carlo calculator a limit of B(B+ → K+τ+τ−) <
4.61 × 10−4 is observed. All results are summarized in table 13.1 and the expected
distribution in EECL is presented in fig. 13.1.

Table 13.1: Determined parameters for the best upper limit on MC including system-
atic uncertainties.

Description Value

Cut on the BDT cBDT = 0.553
Cut on EECL cE = 0.206 GeV
Efficiency for signal events ϵs = 2.709 × 10−5

Expected number of background events 8.84
Upper limit for signal candidates NUL95% = 8
Upper limit at 90% C.L. B(B+ → K+τ+τ−) < 3.17 × 10−4

Upper limit at 95% C.L. B(B+ → K+τ+τ−) < 3.96 × 10−4

On the control channel B+ → K+τ+τ−(KS) it is demonstrated on data that the
reconstruction and background suppression methods work as expected.

It could be shown, that this analysis is capable of improving the current upper limit
for B+ → K+τ+τ− by one order of magnitude compared the previous analysis from
BaBar. In addition, New Physics scenarios, in particular Minimal Lepton Flavor
Violation models, are in reach of the upper limit prediction [3].

The final result on data can be obtained immediately, however in order to comply
with the Belle publication guidelines an internal review process has to be performed
first, which was not yet granted in favor of the angular analysis.
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Figure 13.1: Expected amount of background for the final result. The signal distribu-
tion has arbitrary normalization.

Prospects for Belle II

In a brief analysis the sensitivity for Belle II is estimated using the same methods.

The goal for Belle II is an increase in statistics by the factor 50, see [67] for more
details. Together with a higher instantaneous luminosity also more beam background
is expected. To compensate for this, a new tracking and particle identification system
is installed into the Belle II detector. A major advantage is also provided with the
new software framework for Belle II, which will lead to better reconstruction efficiency
and background suppression. The Full Event Interpretation framework [68] will
supersede the full reconstruction technique and is expected to have more than twice
the reconstruction efficiency compared to Belle.

Assuming a linear scaling of the classification methods and systematic errors, which
is reasonably conservative, the projected Belle II result is

B(B+ → K+τ+τ−)BelleII < 2 × 10−5, (13.1)

based on the methods used in this analysis.

With this prediction Belle II will be able to challenge predictions made in the
framework of MLFV models with the measurement of B+ → K+τ+τ−.
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14. Conclusion

In this thesis I present a comprehensive study of the flavor changing neutral current
process of b → sℓ+ℓ− in B meson decays with accompanying kaons in two separate
analyses. All three lepton modes, e+e−, µ+µ− and τ+τ− are investigated to search
for evidence of physics beyond the Standard Model. The measurements are performed
using the full Belle data sample of 772 × 106 BB̄ pairs, recorded at the Υ(4S)
resonance.

The first analysis in this thesis covers the muon and electron modes in the decay of
B0 → K∗(892)0ℓ+ℓ−. The reconstruction efficiency is sufficient to gather enough signal
candidates to perform a fit to the differential decay rate in three dimensions, which is
sensitive to effects from new physics. Reconstructed signal yields of both channels
exceed previous B-factory results of Belle and BaBar measurements, enabling a full
angular analysis in this decay with the Belle data for the first time. To maximize
signal efficiency and purity, neural networks are developed sequentially from the
bottom to the top of the decay chain, transferring each time the output probability
to the subsequent step such that most effective selection cuts are applied in the last
stage based on all information combined. In total 117.6 ± 12.4 signal candidates for
B0 → K∗(892)0µ+µ− and 69.4 ± 12.0 signal events for B0 → K∗(892)0e+e− are
reconstructed. With the reconstruction efficiency and signal yields the branching
ratios of both modes are extracted and compared to previous measurements in order
to validate the reconstruction procedure. The measurements are in agreement with
values from PDG [4]. With the combined data of both channels a full angular
analysis in three dimensions in five bins of the di-lepton invariant mass squared, q2,
is performed. A data transformation technique is applied to reduce the dimension
of the angular decay rate from eight to three dimensions. By this means the fit
is independently sensitive to observables P ′

4, P ′
5, P ′

6 and P ′
8, which are optimized

regarding uncertainties from form-factors. Altogether 20 independent measurements
are performed extracting P ′

4,5,6 or P ′
8, the K∗ longitudinal polarization FL and the

transverse polarization asymmetry AT . The results in the region q2 < 8 GeV2/c4
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14 Conclusion

are compared with Standard Model predictions and overall agreement is observed.
One measurement is found to deviate by ∼ 2.1σ from the predicted value in the
same direction and in the same q2 region where the LHCb collaboration reported
the so called P ′

5 anomaly[1, 2]. From a global perspective the deviations in P ′
5 can

be explained by unexpectedly large hadronic contributions from the charmonium
resonance which are not accounted for in the theory prediction or by a yet unknown
particle [2]. Further investigations from theoretical and experimental side have to
be performed in order to unveil the nature of the anomaly in P ′

5. With this result a
second independent measurement shows that Standard Model predictions might not
be valid in this observable and new physics could be around the corner.

The second analysis in this thesis is dedicated to the τ mode of b → sℓ+ℓ− with the
search for B+ → K+τ+τ−. This mode is particularly interesting as new physics could
couple to the high mass of the tau. However, due to several neutrinos being present
in the final state, it is difficult to reconstruct. For this decay, the full reconstruction
technique is used, which is unique for e+e− accelerators and makes it possible to
find signatures of undetected neutrinos in the decay. In this analysis it could be
demonstrated using simulated events and control channels on the Belle dataset, that
this analysis is able to improve the upper limit by more than one order of magnitude
compared to the current value to

BProjected(B+ → K+τ+τ−) < 3.17 × 10−4 (14.1)

at 90% confidence level including systematic uncertainties determined by an exten-
sive study of all the sources. On the control channel, B+ → K+τ+τ−(KS), it is
demonstrated on data that the reconstruction and background suppression methods
work as expected and that they deliver consistent results on both data and Monte
Carlo. With this measurement Belle will be able to set the lowest experimental limits
to this branching ratio. Furthermore, the limit will come close to the prediction of
models developed in the context of Minimal Lepton Flavor Violation, which will help
to constrain these models [3].

The next major step for the analyses described in this thesis will be the upcoming Belle
II experiment with improved vertexing, reconstruction and particle identification
system, expected to collect 50 ab−1 of integrated luminosity at the SuperKEKB
collider. Both analyses will benefit from the increased statistics and may reveal
more hints for new physics. In a sensitivity study I demonstrated that with methods
described in this thesis it will be possible to set tight constrains for Minimal Lepton
Flavor Violating models in the decay of B+ → K+τ+τ− with the data of Belle II.
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A. Appendix B → K(∗)ℓ+ℓ−

A.1 Data – Monte Carlo Comparison
The result for the data Monte Carlo comparison for all input variables of the neural
network are depicted in figs. A.1 and A.2.

A.2 Fit Projections
Fit projections for the angular analysis are presented in figs. A.3 to A.22.
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Figure A.1: Data vs. MC comparison of the Neural Network input variables after
the final cut on the network. In the MC component, the number of
background and signal events are composed according to fitted yields
from data. The p-value of a Kolmogorov-Smirnov statistic on 2 samples
is stated for each variable.
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A.2 Fit Projections
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Figure A.2: Continuation of fig. A.1.
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Figure A.3: Projections for the fit result of P ′
4 in bin 0. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.4: Projections for the fit result of P ′
4 in bin 1. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.5: Projections for the fit result of P ′
4 in bin 2. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.6: Projections for the fit result of P ′
4 in bin 3. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.7: Projections for the fit result of P ′
4 in bin 4. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.8: Projections for the fit result of P ′
5 in bin 0. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.9: Projections for the fit result of P ′
5 in bin 1. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.10: Projections for the fit result of P ′
5 in bin 2. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.11: Projections for the fit result of P ′
5 in bin 3. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.12: Projections for the fit result of P ′
5 in bin 4. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.13: Projections for the fit result of P ′
6 in bin 0. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.

180



A.2 Fit Projections

 (rad)Kθ
0 1 2 3

 r
ad

 )
π

E
ve

nt
s 

/ (
 0

.1
0 

0

5

10

15

20

25

30

 (rad)Kθ
0 1 2 3

P
ul

l

-2

0

2
 (rad)lθ

0 0.5 1 1.5

 r
ad

 )
π

E
ve

nt
s 

/ (
 0

.0
5 

0

5

10

15

20

25

 (rad)lθ
0 0.5 1 1.5

P
ul

l

-2

0

2
 (rad)φ

-1 0 1

 r
ad

 )
π

E
ve

nt
s 

/ (
 0

.0
5 

0

5

10

15

20

25

 (rad)φ
-1 0 1

P
ul

l

-2

0

2

 (rad)Kθ
0 1 2 3

 r
ad

 )
π

E
ve

nt
s 

/ (
 0

.1
0 

0

2

4

6

8

10

12

14

16

18

 (rad)Kθ
0 1 2 3

P
ul

l

-2

0

2
 (rad)lθ

0 0.5 1 1.5

 r
ad

 )
π

E
ve

nt
s 

/ (
 0

.0
5 

0

2

4

6

8

10

12

14

 (rad)lθ
0 0.5 1 1.5

P
ul

l

-2

0

2
 (rad)φ

-1 0 1

 r
ad

 )
π

E
ve

nt
s 

/ (
 0

.0
5 

0

2

4

6

8

10

12

14

16

18

20

22

 (rad)φ
-1 0 1

P
ul

l

-5

0

5

Figure A.14: Projections for the fit result of P ′
6 in bin 1. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.15: Projections for the fit result of P ′
6 in bin 2. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.16: Projections for the fit result of P ′
6 in bin 3. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.17: Projections for the fit result of P ′
6 in bin 4. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.18: Projections for the fit result of P ′
8 in bin 0. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.19: Projections for the fit result of P ′
8 in bin 1. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.20: Projections for the fit result of P ′
8 in bin 2. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.21: Projections for the fit result of P ′
8 in bin 3. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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Figure A.22: Projections for the fit result of P ′
8 in bin 4. Fit to the Mbc sideband

for the determination of the background shape (top) and signal region
(bottom) are displayed. Combinatorial (dashed blue), signal (red filled)
and total (solid) fit distributions are superimposed on the data points.
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B. Appendix B+ → K+τ+τ−

B.1 Variables for the Classifier
All variables, which we can use for classification between signal and background are
displayed in figs. B.1 and B.2. The variables are transformed to a flat distribution,
where the x-axis corresponds approximately to the percentile of the distribution. The
variables which are used for the analysis are explained in section 10.3.

B.2 Data MC Comparison
Data MC comparison for all variables is performed. The result is shown in figs. B.3
and B.4. Bad agreement is observed in variables related to missing mass and energy.
Also, numbers of missing γ and KL differ. Surprisingly, there is a discrepancy in
the ratio for the zeroth and second Fox Wolfram moment R2. This variable is useful
to suppress background from continuum events. But as the full reconstruction with
continuum suppression is used, it is not problematic to remove this variable from the
trainings set.
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Figure B.1: Input variables for the boosted decision tree.
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Figure B.2: Input variables for the boosted decision tree.
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Figure B.3: Data vs. MC comparison in the EECL sideband.
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B.2 Data MC Comparison
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Figure B.4: Data vs. MC comparison in the EECL sideband.
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