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Abstract

We explain a procedure to manifest the Bern–Carrasco–Johansson duality between color and kinematics 
in n-point one-loop amplitudes of a variety of supersymmetric gauge theories. Explicit amplitude repre-
sentations are constructed through a systematic reorganization of the integrands in the Cachazo–He–Yuan 
formalism. Our construction holds for any nonzero number of supersymmetries and does not depend on the 
number of spacetime dimensions. The cancellations from supersymmetry multiplets in the loop as well as 
the resulting power counting of loop momenta is manifested along the lines of the corresponding super-
string computations. The setup is used to derive the one-loop version of the Kawai–Lewellen–Tye formula 
for the loop integrands of gravitational amplitudes.
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1. Introduction

Recent progress on the study of scattering amplitudes has uncovered novel properties and 
symmetries of individual theories, as well as surprising connections between them. A notable 
example is the Bern–Carrasco–Johansson (BCJ) duality between color and kinematics in gauge 
theories, and double-copy relations to corresponding gravity theories [1,2].

The BCJ duality states that gauge-theory amplitudes can be expressed such that their kine-
matic dependence closely mirrors their color dependence, in which case the kinematic contri-
butions from trivalent diagrams are known as BCJ numerators. Their most remarkable property 
is that gravity amplitudes can be obtained from gauge-theory ones by simply substituting color 
factors for another copy of BCJ numerators. This procedure to construct gravity amplitudes was 
known as the double copy, and has led to great advances in the study of the ultraviolet behavior 
of supergravity amplitudes [2–4].

The BCJ duality has been proved at tree level [5], where the double copy is equivalent to 
the field-theory limit of the famous Kawai–Lewellen–Tye (KLT) relations between open- and 
closed-string amplitudes [6]. At loop level, despite of strong evidence [2,3,7–11], the duality re-
mains a conjecture and the principle behind it is poorly understood. More recently, there has been 
progress in trying to double copy without explicit BCJ numerators [12], which may shed light on 
the longstanding problem of finding the five-loop four-point integrand of maximal supergravity.

At one-loop level, a generalized KLT formula has been proposed for all-multiplicity in-
tegrands in gauge and gravity theories [13], which does not rely on BCJ numerators or any 
particular representation of these integrands. An important goal of the current paper is to prove 
this proposal for the one-loop KLT formula. And it will be shown that the formula is in fact 
equivalent to a cubic-diagram expansion involving double copies of BCJ numerators in a new 
representation of Feynman integrals.

Moreover, we will describe an algorithmic procedure to obtain all-multiplicity BCJ numer-
ators for one-loop amplitudes in supersymmetric gauge and gravity theories. This becomes 
possible thanks to the interplay of two closely-related approaches to tree and loop amplitudes: 
the approach based on scattering equations and that based on string amplitudes. The first ap-
proach has been originally proposed by Cachazo, Yuan and one of the present authors (CHY) 
as a new formulation for tree amplitudes in gauge theory and gravity [14,15]. It expresses tree 
amplitudes as localized integrals over the moduli space of punctured Riemann spheres, and the 
prescription turned out to extend flexibly to a variety of other theories,1 such as the bi-adjoint 
scalars [18], Einstein–Yang–Mills (EYM) [19], Born–Infeld, non-linear sigma models (NLSM) 
and special Galileons [20] as well as couplings thereof [21]. Elegant worldsheet models that un-
derpin the CHY formulation have been proposed, based on ambitwistor strings [22–24] including 
a manifestly supersymmetric pure-spinor version [25,26].

Already at tree level, it has become clear that the CHY approach is very closely related to 
the string-theory approach to field-theory amplitudes. The reduced Pfaffian, which is the cen-
tral object of the CHY integrand for gauge theory and gravity [18], can be recast in a form that 
coincides with open-superstring correlators [27]. This can be seen at the level of operator prod-
uct expansions of vertex operators, where the pure-spinor CHY setup of [25] is equivalent to 
superstring result [27,28] as shown in [29]. More recently, the CHY formulation for the NLSM

1 More formulae have been found for gauge-theory and gravity amplitudes with insertions of higher-dimensional op-
erators [16] as well as QCD and Higgs amplitudes [17] etc.
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[20,21] has found a natural counterpart in form of low-energy limits of the disk integrals in open-
string amplitudes [30,31], including couplings to biadjoint scalars [32]. Both approaches have 
provided important insights to the BCJ duality and double copy at tree level. The first explicit 
local expressions for BCJ numerators of gauge theories were derived in [33] from the pure-spinor 
formulation of superstring theory [34]. As shown in [18], in the CHY formulation, BCJ duality 
and double copy, as well as the KLT formulae for tree amplitudes become completely natural, 
which has also led to a variety of new theories related by double copy [20].

The ambitwistor theory was first generalized to higher genus in [23] (see also [26] for a pure-
spinor version). This has led the extension of scattering equations and the CHY formulation to 
loop level using nodal Riemann spheres [35], which yield loop amplitudes in a new representa-
tion of their Feynman integrals with propagators linear in loop momenta. The equivalence with 
usual Feynman-integral representations can be seen via partial-fraction manipulations and shifts 
in the loop momenta [36,35], which can also be naturally understood as forward limits of tree 
amplitudes [37]. In this way, CHY-like formulae have been written down for one-loop gauge 
and gravity theories [38], for biadjoint scalars [39] and more recently for two-loop amplitudes of 
super-Yang–Mills (SYM) and supergravity [40] as well as scalar theories [41]. See [42] and [43]
for closely-related constructions for loop-level scattering equations and CHY formulae.

In this paper, we exploit that the close interplay of the two approaches continues at loop level 
and apply a variety of results from the recent string-theory literature to supersymmetric one-loop 
gauge-theory and gravity amplitudes. Significant progress on loop amplitudes of the pure-spinor 
superstring has been driven by the framework of multiparticle superfields [44,45] which gave 
rise to explicit BCJ numerators at loop level [9–11]. Previously, these building blocks have been 
used to determine one-loop amplitudes for a BRST-invariant subsector of ten-dimensional open 
superstring [46] which yields the complete all-multiplicity results for four-dimensional MHV 
helicities as well [11]. Moreover, multiparticle superfields have been used to determine complete 
one-loop six-point [10] results and partial two-loop five-point [47] and three-loop four-point [48]
results for open and closed strings. Likewise, a component version of multiparticle superfields 
has been used to streamline the kinematic factors in one-loop open- and closed-string amplitudes 
with reduced supersymmetry [49,50].

However, in one-loop six- and four-point amplitudes with maximal and reduced supersym-
metry, respectively, the above approach faced difficulties in constructing BCJ numerators [9,50]. 
It will be shown how the new representation of Feynman integrals emerging from the CHY for-
mulation of loop amplitudes surpasses these obstacles and reconciles the BCJ duality with the 
hexagon anomaly of ten-dimensional SYM.

The main results of the current paper are threefold and may be summarized as follows.

(A) Based on the CHY-inspired representations of supersymmetric gauge-theory and gravity 
amplitudes, we present a general proof of one-loop BCJ and KLT relations proposed in [13].

(B) An all-multiplicity procedure to determine BCJ numerators for one-loop amplitudes is de-
rived from the RNS version of ambitwistor-string and superstring correlators on a nodal 
Riemann sphere. Our method works for external bosons in presence of any nonzero number 
of supercharges as well as for both parity-even and parity-odd sectors. The powercounting of 
loop momenta � is manifested in a manner that is well-known from superstrings: Correlators 
with maximal and reduced supersymmetry are identified as degree-(n−4) and degree-(n−2)

polynomials in � and the Green function on the nodal sphere, respectively.
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(C) At multiplicities n ≤ 6, these BCJ numerators are supersymmetrized such as to address 
any combination of external bosons and fermions. These expressions are obtained from the 
field-theory limit of the pure-spinor superstring.

1.1. Outline

The paper is organized as follows. In section 2, we review the color-kinematics duality and 
KLT relations in the tree-level CHY setup, as well as the one-loop CHY prescription and the 
resulting representations of Feynman integrals. Section 3 is devoted to our main result (A): The 
notion of “partial integrands” for gauge-theory amplitudes is introduced, and their BCJ relations 
as well as their combinations to yield one-loop KLT relations are derived from the scattering 
equations.

The proof of one-loop KLT relations relies on new representations of correlators on a nodal 
Riemann sphere which are obtained within the RNS formalism in section 4: For external bosons, 
all-multiplicity techniques are introduced to simplify supersymmetric correlators and to derive 
the BCJ numerators of (B) along with their powercounting in �. Some of the steps are known 
from the superstring literature [51–54] but nevertheless spelt out in a CHY context for the sake 
of a self-contained presentation.

In section 5, we proceed to (C) and derive supersymmetric generalizations of the CHY cor-
relator from the pure-spinor superstring. Particular emphasis will be placed on the resolution of 
earlier difficulties in finding six-point BCJ numerators in ten-dimensional SYM. An analogous 
discussion of correlators and BCJ numerators with reduced supersymmetry (along with a suitable 
infrared regularization scheme) is given in section 6.

2. Review

In this section, we first review, within the tree-level CHY setup, the color-kinematics duality 
and double copy, as well as the BCJ and KLT amplitude relations. The presentation is kept very 
explicit to later on connect with the analogous structures at one loop. Furthermore, a brief re-
minder of the one-loop CHY prescription as well as the new form of Feynman integrals therein 
will be given. Throughout this work, our conventions for Mandelstam invariants s12...p and mul-
tiparticle momenta k12...p are as follows:

k12...p ≡ k1 + k2 + . . . + kp , s12...p ≡
p∑

i<j

ki · kj , s12...p,±� ≡
p∑

i<j

ki · kj ± � · k12...p

(2.1)

2.1. CHY at tree level and doubly-partial amplitudes

Tree-level scattering amplitudes in the CHY formulation are represented by integrals over the 
moduli space of punctured Riemann spheres [14,15,18] parametrized by σi ∈ C

Mtree
L⊗R =

∫
dμtree

n I tree
L I tree

R , dμtree
n ≡ dσ1 dσ2 . . .dσn

volSL(2,C)

n∏′

i=1

δ
( n∑

j=1
j �=i

ki · kj

σij

)
. (2.2)

This formula applies to theories L ⊗ R that exhibit a double-copy structure such that the inte-
grand factorizes into two pieces I tree and I tree which depend on the scattering data (momenta or 
L R
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polarizations) as well as the punctures σij ≡ σi − σj . The delta functions in the measure dμtree
n

impose the scattering equations

Ei ≡
n∑

j=1
j �=i

ki · kj

σij

= 0 , (2.3)

and thereby localize the integrals to their (n−3)! solutions. Both of the theory-dependent “half-
integrands” I tree

L and I tree
R are designed to transform with weight two under Möbius transforma-

tions σi → aσi+b
cσi+d

, with a, b, c, d forming an SL(2, C) matrix. As indicated by (volSL(2, C))−1

and 
∏′, this symmetry is taken into account by fixing any three punctures to (0, 1, ∞) and by 

dropping three redundant scattering equations, see [14,15] for details.
The generic theory L ⊗ R in the CHY prescription (2.2) can be adapted to biadjoint scalars 

with gauge group U(N) × U(Ñ) by choosing I tree
L and I tree

R as [18]

I tree
U(N) =

∑
ρ∈Sn−1

Tr(ta1 taρ(2) taρ(3) . . . taρ(n) )PT(1, ρ(2,3, . . . , n)) , (2.4)

where taj denotes the U(N) generator associated with the j th leg. Given that the dependence on 
the punctures is captured by the Parke–Taylor factors

PT(1,2,3, . . . , n−1, n) ≡ 1

σ12σ23 . . . σn−1,nσn1
, (2.5)

the most general integral appearing in the tree-level S-matrix of the U(N) × U(Ñ) theory is the 
doubly-partial amplitude

mtree[ρ(1,2, . . . , n) | τ(1,2, . . . , n)] ≡
∫

dμtree
n PT(ρ(1,2, . . . , n))PT(τ (1,2, . . . , n)) .

(2.6)

It accompanies the product of traces Tr(taρ(1) taρ(2) . . . taρ(n) )Tr(t̃bτ(1) t̃ bτ(2) . . . t̃ bτ(n) ) (with possibly 
distinct permutations ρ, τ ∈ Sn) in the expression (2.2) for Mtree

U(N)×U(Ñ)
. The doubly-partial 

amplitude mtree[ρ(. . .) | τ(. . .)] assembles the propagators s−1
i1i2...ip

of all the cubic diagrams com-
patible with the cyclic orderings ρ and τ and can be computed through the algorithm in [18] or 
a Berends–Giele recursion [55] (see also [56]).

2.2. Tree-level BCJ numerators from CHY

The CHY formula (2.2) describes (possibly supersymmetric) Yang–Mills theory and gravity 
if one or both of the half-integrands I tree

L and I tree
R are identified with a gauge invariant function 

I tree
SYM ≡ Ktree

n of the polarizations in the gauge multiplet. For external bosons, the realization 
of Ktree

n as the (reduced) Pfaffian of an antisymmetric 2n × 2n matrix was presented in [15]. 
Despite the lack of a Pfaffian-like representation, the supersymmetric completion is known from 
the pure-spinor version of the CHY setup [25].

As pointed out in the ambitwistor setting in [22], and detailed in [29] in a pure-spinor context, 
Ktree

n is identical to the field-theory limit α′ → 0 of the n-point correlation function of open-
string vertex operators (which sets the Koba–Nielsen factor to the identity). This equivalence 
of CHY integrands and superstring correlators holds on the support of scattering equations, or 
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Fig. 1. Half-ladder diagrams with legs 1 and n attached to opposite endpoints and BCJ master numerators 
N tree

1|ρ(2,3,...,n−1)|n determine any other cubic diagram via kinematic Jacobi relations.

Fig. 2. The Jacobi identity implies the vanishing of the color factors associated to a triplet of cubic graphs, Ci + Cj +
Ck = 0. In the above diagrams, the legs a1, a2, a3 and a4 may represent arbitrary subdiagrams. The BCJ duality states 
that their corresponding kinematic numerators Ni(�) can be chosen such that Ni(�) + Nj (�) + Nk(�) = 0.

integration-by-parts relations of the string worldsheet. Hence, one can import the manifestly su-
persymmetric results on the superstring tree-level correlators obtained in [27,33,28], and we will 
later use the analogous correspondence at one loop.

The superstring version of Ktree
n was shown in [33] to be organized in terms of (n−2)! Parke–

Taylor factors (2.5),

Ktree
n =

∑
ρ∈Sn−2

PT(1, ρ(2,3, . . . , n−1), n)N tree
1|ρ(2,3,...,n−1)|n , (2.7)

and the same form can be attained in the CHY setting [18] by applying scattering equa-
tions to the Pfaffian representation of its bosonic components [15]. The kinematic numerators 
N tree

1|ρ(2,3,...,n−1)|n refer to the cubic diagrams of half-ladder topology with fixed endpoints 1 and n, 
see Fig. 1. Their explicit realization in pure-spinor superspace [33] is based on superfields of ten-
dimensional SYM [57], and the components involving gluon polarization vectors em and gaugino 
wave functions χα can be conveniently extracted using the streamlined θ -expansions of [58], also 
see section 5 for more details.

As emphasized in [33,18], the representation (2.7) implies that numerators for all the other 
cubic diagrams besides the (n−2)! master graphs in Fig. 1 are determined by the BCJ duality 
between color and kinematics [1]: In the same way as any triplet of graphs as shown in Fig. 2 are 
related by a group-theoretic Jacobi identity f ba1[a2f a3a4]b = 0 among their color factors, one can 
arrange the kinematic dressings of these graphs such that they satisfy the same Jacobi identities. 
When computing color-ordered SYM amplitudes Atree(. . .) from the CHY prescription,

Atree(τ (1,2, . . . , n)) =Mtree
SYM⊗U(N)

∣∣
Tr(taτ(1) t

aτ (2) ...t
aτ (n) )

=
∫

dμtree
n PT(τ (1,2, . . . , n))Ktree

n

=
∑

ρ∈Sn−2

mtree[τ(1,2, . . . , n) |1, ρ(2, . . . , n−1), n]N tree
1|ρ(2,3,...,n−1)|n ,

(2.8)

the expansion of Ktree
n in (2.7) and the form of the doubly-partial amplitudes guarantee that 

each cubic-diagram numerator is a linear combination of N tree with coefficients 
1|ρ(2,...,n−1)|n
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∈ {0,1,−1}. Their (n−2)!-counting agrees with the number of master numerators under kine-
matic Jacobi identities, and it follows from the arguments in [33,18] that the linear combinations 
of N tree

1|ρ(2,...,n−1)|n in (2.8) satisfy kinematic Jacobi identities. In summary, the expansion of the 
tree-level correlator (2.7) in terms of (n−2)! Parke–Taylor factors PT(. . .) allows to read off a 
set of BCJ master numerators.

2.3. BCJ and KLT relations from CHY

At tree level, a manifestly gauge invariant double-copy expression for gravity amplitudes is 
given by the KLT formula

Mtree
SYM⊗SYM =

∑
ρ,τ∈Sn−3

Ãtree(1, ρ(2, . . . , n−2), n,n−1) S[ρ|τ ]1

× Atree(1, τ (2, . . . , n−2), n−1, n) (2.9)

derived from tree-level scattering of open and closed strings [6]. The (n−3)! × (n−3)! matrix 
S[ρ|τ ]1 ≡ S[ρ(2, . . . , n−2)|τ(2, . . . , n−2)]1 with entries of order ∼ sn−3 has been firstly pin-
pointed to all multiplicity in [59] and was later on studied in the momentum-kernel formalism 
[60]. A recursive formula for its entries is given by [30]

S[A,j |B,j,C]i = kj · (ki + kB)S[A|B,C]i , S[∅|∅]i = 0 , (2.10)

see (2.1) for the multiparticle momenta kB associated with B = b1b2 . . . bp . Permutation invari-
ance of (2.9) follows from BCJ relations among partial amplitudes [1]

n−1∑
j=2

(k1 · k23...j )A
tree(2,3, . . . , j,1, j+1, . . . n) = 0 (2.11)

which have been elegantly derived from monodromy properties of the open-string worldsheet 
[61]. In the CHY setup, BCJ relations emerge from the scattering equations (2.3) which relate 
Parke–Taylor factors in complete analogy to (2.11) [62,14]

n−1∑
j=2

(k1 · k23...j )PT(2,3, . . . , j,1, j+1, . . . n) = 0 mod Ei , (2.12)

and they also hold for both entries of the doubly-partial amplitudes (2.6). Note that the string-
theory correlator (2.7) can be simplified to a BCJ basis of (n−3)! worldsheet integrals using 
integration by parts on the string worldsheet [27]. This result was later on identified to reproduce 
the structure of the KLT formula (2.9) [63]

Ktree
n =

∑
ρ,τ∈Sn−3

PT(1, ρ(2, . . . , n−2), n,n−1) S[ρ|τ ]1 Atree(1, τ (2, . . . , n−2), n−1, n) .

(2.13)

Insertion into (2.8) identifies doubly-partial amplitudes (2.6) in a suitable basis as the inverse of 
the momentum kernel (2.10) [63,18],

mtree[1, ρ(2, . . . , n−2), n,n−1 |1, τ (2, . . . , n−2), n−1, n] = S−1[ρ|τ ]1 . (2.14)

Then, the KLT formula (2.9) follows from insertion of (2.13) in the CHY prescription (2.2),
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Mtree
SYM⊗SYM =

∫
dμtree

n Ktree
n K̃tree

n , (2.15)

where it is convenient to exchange the roles of n and n−1 in the formula (2.13) for K̃tree
n .

Notice that (2.15) also makes the BCJ double-copy relations manifest, which are equivalent 
to KLT relations at tree level: By plugging (2.7) into (2.15), it follows that the (super-)gravity 
amplitude is given by sum of all cubic diagrams with numerators given by the double copy 
N tree Ñ tree. This is the major advantage of having a representation of gauge-theory amplitude 
with numerators satisfying the BCJ color-kinematics duality [1].

2.4. CHY at one loop

In the ambitwistor-string version of the CHY formalism, g-loop amplitudes in various theories 
are written as integrals over the moduli space of punctured genus-g surfaces [23]. At one loop, 
the surface of interest is a torus with modular parameter τ in the upper half plane such that its 
complex coordinate z is identified with z+1 and z+τ . Apart from the torus punctures zi=1,2,...,n, 
also the inequivalent choices of τ in the fundamental domain of the modular group with − 1

2 ≤
Re τ ≤ 1

2 and |τ | > 1 are integrated over.
However, one of the scattering equations at genus one can be exploited [35] to localize the τ

integral at the cusp τ → i∞ where the torus degenerates to a nodal sphere. Then, after a change 
of variables σ = e2πiz, one-loop amplitudes of (possibly supersymmetric) gravity and gauge 
theories in D spacetime dimensions simplify to [35]

ML⊗R =
∫

dD�

�2

∫ n∏
i=2

dσj δ
( (� · ki)

σi

+
n∑

j=1
j �=i

ki · kj

σij

)
ÎL(�) ÎR(�) . (2.16)

Note that translation invariance in the z-variable allows to insert another integration dσ1 along 
with a delta function e.g. δ(σ1 − 1), and the corresponding scattering equation

(� · ki)

σi

+
n∑

j=1
j �=i

ki · kj

σij

= 0 (2.17)

for i = 1 does not need to be enforced separately because it follows by adding the remaining 
equations for i = 2, 3 . . . , n.

For gauge theories, one of the integrands ̂IL(�) → ÎU(N)(�) is a sum of color traces2

ÎU(N)(�) =
∑

ρ∈Sn−1

Tr(ta1 taρ(2) taρ(3) . . . taρ(n) ) P̂T
(1)

(1, ρ(2,3, . . . , n)) , (2.18)

accompanied by one-loop analogues P̂T
(1)

(. . .) of the Parke–Taylor factors (2.5),

P̂T
(1)

(1,2, . . . , n) ≡ 1

σ1σ12σ23 . . . σn−1,n

+ cyc(1,2, . . . , n) . (2.19)

2 We suppress double traces in (2.18), and their accompanying color-stripped amplitudes can be recovered from linear 
combinations of single-trace subamplitudes [64].
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Fig. 3. Interpretation of the partial-fraction representation of loop integrals as (n+2)-point tree-level diagrams.

The polarization-dependent integrand ÎSYM(�) is the τ → i∞ degeneration of the genus-one 
correlation function involving n gauge-multiplet vertex operators V (σ) to be discussed in later 
sections 4 and 5,

ÎSYM(�) ≡ (−1)nKn(�)

σ1σ2 . . . σn

, Kn(�) ≡ lim
τ→i∞〈V1(σ1)V2(σ2) . . . Vn(σn)〉τ . (2.20)

The inverse σi can be traced back to the change of variables σ = e2πiz with dz = 1
2πi

dσ
σ

, and the 
prescription for evaluating the correlation function 〈. . .〉τ is left generic at this point to later 
on import results from both the RNS and pure-spinor superstring. In terms of the two inte-
grands (2.18) and (2.20), one-loop amplitudes (2.16) in gauge theory and gravity are obtained as 
MU(N)⊗SYM and MSYM⊗SYM, respectively.

2.5. New representations of one-loop integrals

It turns out that Feynman integrals arise in a non-standard representation when integrating 
over the σj in (2.16): Instead of conventional propagators (� + K)2 quadratic in � (with some 
linear combination K of external momenta), the σj -integrals yield the results of repeated partial 
fraction [35]. The massless n-gon, for instance, appears in the form of∫

2n−1 dD�

�2(�+k1)2(�+k12)2 . . . (�+k12...n−1)2

=
n−1∑
i=0

∫
2n−1 dD�

(�+k12...i )2

∏
j �=i

1

(�+k12...j )2 − (�+k12...i )2

=
n−1∑
i=0

∫
dD�

�2

i−1∏
j=0

1

sj+1,j+2,...,i,−�

n−1∏
j=i+1

1

si+1,i+2,...,j,�

, (2.21)

where the loop momentum � in the ith term has been shifted by k12...i in passing to the last line to 
ensure that the only quadratic propagator is a pure �2 in each term. Each term in the sum over i
singles out one way of cutting open the n-gon, and the result can be thought of as n tree diagrams 
involving off-shell momenta ±� [37], see Fig. 3. Each of these cubic diagrams will have a priori 
different kinematic numerators, leaving a total of n! inequivalent n-gon numerators.

The manipulations in (2.21) straightforwardly generalize to integrals with tree-level subdia-
grams, e.g. a box integral with massive momenta kA, kB, kC and kD allows for the following 
four-term representation:∫

8 dD�

�2(�+kA)2(�+kAB)2(�+kABC)2 =
∫

dD�

�2

( 1

sA,�sAB,�sD,−�

+ cyc(A,B,C,D)
)

.

(2.22)
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In this way, the one-loop integrand for color-ordered single-trace amplitudes can be split into 
n terms, similar to that of (2.21) for the n-gon. Each of the n terms can be interpreted as the 
forward limit of (n+2)-point trees with off-shell momenta, e.g. the momenta of the two legs 
between n and 1 being identified as � and −�. The off-shell momenta can be viewed as on-shell, 
higher-dimensional ones, and the one-loop CHY formula (2.16) was obtained as the forward 
limit of such higher-dimensional tree amplitudes [37]. Although it is non-trivial to perform loop 
integrations, the new representation of loop integrals has to give the same result as the canonical 
Feynman integrals.

These integrals not only naturally appear in the CHY formalism, but also play an important 
role in the Q-cut representation of loop amplitudes [65]. The new representation provides a well-
defined notion of “loop integrands” for generic, non-planar theories, which can be exploited to 
reveal structures of loop amplitudes. In particular, as conjectured recently [13], in the new rep-
resentation it is natural to generalize KLT and BCJ relations, (2.9) and (2.11), to one loop. In 
section 3.6, we prove these new relations, as well as the color-kinematics duality and double 
copy at the one-loop level in this new representation.

3. BCJ and KLT at one-loop

3.1. One-loop correlators in generic SL(2, C) frames

The expressions in the above review of the one-loop CHY setup are adapted to a partic-
ular SL(2, C) frame where two additional punctures σ+ = 0 and σ− → ∞ are identified on 
the nodal sphere and associated with momenta k± = ±�. This SL(2, C)-fixing is reflected in 
the hat notation for the integrands ÎU(N)(�) and ÎSYM(�) in (2.18) and (2.20) as well as the 

one-loop Parke–Taylor factors P̂T
(1)

(1, 2, . . . , n) in (2.19). In this subsection, we shall give the 
analogous expressions for “unhatted” quantities IU(N)(�), ISYM(�) and PT(1)(1, 2, . . . , n) in a 
generic frame: Requiring SL(2, C)-weight two in each puncture σj=1,2,...,n and σ+, σ− yields 
unique SL(2, C)-covariant uplifts, and we will introduce a method to express both IU(N)(�) and 
ISYM(�) in terms of (n+2)-point tree-level Parke–Taylor factors (2.5).

For instance, σj -independent contributions from the correlators Kn(�) to the gauge-theory 
integrands (2.20) can expressed via SL(2, C)-fixed tree-level Parke–Taylor factors with σ+ = 0
and σ− → ∞ [38],∫ n∏

j=1

dσj

σj

=
∫ n∏

j=1

dσj

σj,+

∣∣∣
σ+=0

= (−1)n
∑
ρ∈Sn

∫
dσ1 dσ2 . . .dσn

σ+,ρ(1)σρ(1),ρ(2) . . . σρ(n−1),ρ(n)

∣∣∣
σ+=0

= (−1)n lim
σ−→∞

∑
ρ∈Sn

∫
dσ1 dσ2 . . .dσn (−σ 2−)

σ+,ρ(1)σρ(1),ρ(2) . . . σρ(n−1),ρ(n)σρ(n),−σ−,+

∣∣∣
σ+=0

= (−1)n
∑
ρ∈Sn

∫ dσ− dσ+
∏n

j=1 dσj

volSL(2,C)
PT(+, ρ(1,2, . . . , n),−) , (3.1)

or in short

n∏
j=1

1

σj

= (−1)n lim
σ−→∞(−σ 2−) lim

σ+→0

∑
ρ∈Sn

PT(+, ρ(1,2, . . . , n),−) . (3.2)
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Likewise, one-loop Parke–Taylor factors P̂T
(1)

(. . .) in (2.19) were defined in [35] from their 
SL(2, C)-covariant uplifts PT(1)(. . .),

PT(1)(1,2, . . . , n) ≡ PT(+,1,2, . . . , n,−) + cyc(1,2, . . . , n) (3.3)

P̂T
(1)

(1,2, . . . , n) = lim
σ−→∞(−σ 2−) lim

σ+→0
PT(1)(1,2, . . . , n) , (3.4)

which implies the following form for the U(N) integrand in a generic SL(2, C)-frame,

IU(N)(�) =
∑

ρ∈Sn−1

Tr(ta1 taρ(2) taρ(3) . . . taρ(n) )PT(1)(1, ρ(2,3, . . . , n)) . (3.5)

As will be detailed in the next subsection, also a generic correlator Kn(�) with non-trivial 
σj -dependence admits a unique SL(2, C)-covariant uplift ISYM(�) for the SYM integrand (2.20). 
Regardless of the details of IU(N)(�) and ISYM(�), the one-loop CHY prescription (2.16) in a 
generic SL(2, C)-frame can be boiled down to the tree-level measure (2.2),

ML⊗R =
∫

dD�

�2 lim
k±→±�

∫
dμtree

n+2 IL(�)IR(�) , (3.6)

in lines with the degeneration of the torus to a nodal Riemann sphere as τ → i∞. Note in par-
ticular that the one-loop scattering equations (2.17) descend from their (n+2)-point tree-level 
instances (2.3) in the limit σ− → ∞ and σ+ = 0 with k± → ±�,

(k+ · ki)

σi,+
+ (k− · ki)

σi,−
+

n∑
j=1
j �=i

ki · kj

σij

∣∣∣
k±→±�

→ 0 . (3.7)

In the same way as only n−3 scattering equations are independent in the n-point tree-level pre-
scription (2.2), the n−1 scattering equations in (2.16) are sufficient for the situation in one-loop 
amplitudes (3.6) with n+2 punctures.

In theories with reduced or zero supersymmetry, the kinematic regime with k± → ±� gives 
rise to singularities upon integration over σj , and we will later comment on their regularization.

3.2. The σ -dependence of gauge-theory correlators

This subsection is devoted to the structure of σj -dependent correlators Kn(�) which carry the 
state-dependence in the SYM integrand (2.20). The expressions for Kn(�) can be imported from 
the superstring correlator in the field-theory limit, see sections 4 and 5 for explicit examples in 
the RNS and pure-spinor formalism. As is well-known from superstring theory, singularities of 
genus-one correlators at generic values of τ arise from the holomorphic torus Green function 
∂z log θ1(z, τ), where θ1 denotes the odd Jacobi theta function

θ1(z, τ ) ≡ 2iq1/8 sin(πz)

∞∏
j=1

(1 − qj )(1 − e2πizqj )(1 − e−2πizqj ) = −θ1(−z, τ ) (3.8)

with a simple pole at the origin and q ≡ e2πiτ . We recall the change of variables σ = e2πiz

between the punctures σ in (3.6) and the torus coordinates with identifications of z with z + 1
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and z+ τ . By the localization of CHY correlators at the cusp τ → i∞, we will only be interested 
in the limit [35]

1

2πi
lim

τ→i∞ ∂z log θ1(zi − zj , τ ) = Gij ≡ σi + σj

2σij

. (3.9)

In terms of the Green function Gij , the one-loop scattering equations (2.17) (and also the τ →
i∞ degeneration of integration-by-parts relations in string theory) can be written as

(� · ki) +
n∑

j=1
j �=i

(ki · kj )Gij = 0 . (3.10)

Note that the partial-fraction identity (σijσik)
−1 + cyc(i, j, k) = 0 among nested products of the 

tree-level Green function σ−1
ij does not carry over to Gij ,

GijGik + cyc(i, j, k) = [σjk(σi + σj )(σi + σk) + cyc(i, j, k)]
4σijσikσjk

= 1

4
. (3.11)

This result follows from the field-theory limit of the corresponding genus-one Fay identities 
studied in [66,54].

As will be proven in section 4, any one-loop gauge-theory correlator Kn(�) can be written as 
a polynomial in Gij and �, regardless of the multiplicity and the number of supersymmetries, 
and even in non-supersymmetric situations. The degree of this polynomial will be shown to 
vary with the number of supercharges, the highest power of Green functions being Gn−4

ij in 

presence of maximal supersymmetry, Gn−2
ij in gauge theories with 8 or 4 supercharges and Gn

ij

in non-supersymmetric cases. Of course, the Gij do not appear with homogeneous degree since 
integration by parts (3.10) interchanges combinations of Gij with loop momenta, and the Fay 
identity (3.11) mixes powers of Gk

ij , Gk−2
ij , Gk−4

ij , . . . along with a given �-dependence, see the 
examples in section 5.

With less than n powers of Gij , i.e. in presence of at least 4 supercharges, one can further-
more use the scattering equations in their form (3.10) to eliminate closed subcycles of Green 
functions such as G2

12 = −G12G21 and G12G23G31. In other words, when drawing an edge be-
tween vertices i and j for each factor of Gij , the pattern of Gij in supersymmetric Kn(�) can be 
represented as a Cayley graph. This is always possible at any multiplicity, see Appendix A below 
(for similar algorithms at tree-level, see [67]). After the first version of this work, it was demon-
strated in [68] that closed subcycles can still be eliminated in non-supersymmetric correlators.

3.3. Gauge-theory correlators in terms of Parke–Taylor factors

The central result of this section concerns the interplay of such Gij with the Parke–Taylor 
structure (3.2) seen in the case of σj -independent Kn(�), where it is convenient to define

Zi1i2i3...iq−1iq ≡ 1

σi1i2σi2i3 . . . σiq−1iq

. (3.12)

In the presence of Gij factors with no subcycles, it will be proven in the Appendix B that the 
sum in the right-hand side of (recall that σ+ = 0)
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n∏
j=1

1

σj

= (−1)n
∑
ρ∈Sn

Z+ρ(1,2,3,...,n) , (3.13)

is modified by ρ-dependent signs,

sgnρ
ij ≡

{
+1 : i is on the right of j in ρ(1,2, . . . , n)

−1 : i is on the left of j in ρ(1,2, . . . , n)
. (3.14)

More explicitly, with m factors of Gij without subcycles,

Gi1j1Gi2j2 . . .Gimjm

n∏
j=1

1

σj

= (−1)n

2m

∑
ρ∈Sn

sgnρ
i1j1

sgnρ
i2j2

. . . sgnρ
imjm

Z+ρ(1,2,...,n) . (3.15)

Given that

Z+ρ(1,2,...,n) = lim
σ−→∞(−σ 2−)P (+, ρ(1,2, . . . , n),−) , (3.16)

the net effect of Gij in converting the correlator Kn(�) to a Parke–Taylor expansion of the gauge-
theory integrand (2.20) is captured by the prescription Gij → 1

2 sgnρ
ij ,

ISYM(�) =
∑
ρ∈Sn

PT(+, ρ(1,2, . . . , n),−)
(
Kn(�)

∣∣∣
Gij → 1

2 sgnρ
ij

)
. (3.17)

This generalizes the expansion (2.7) of the tree-level correlator in terms of (n−2)! Parke–Taylor 
factors PT(1, ρ(2, 3, . . . , n−1), n) to the one-loop order: With n+2 punctures on the nodal Rie-
mann sphere – σ± and σj=1,2,...,n – the analogous family of Parke–Taylor factors has n! elements 
PT(+, ρ(1, 2, . . . , n), −). By analogy with (2.7), it is tempting to introduce a notation

N+|ρ(1,2,...,n)|−(�) ≡Kn(�)

∣∣∣
Gij → 1

2 sgnρ
ij

(3.18)

for the kinematic coefficients of the Parke–Taylor factors, and it will be argued in the next sub-
section that the resulting expansion

ISYM(�) =
∑
ρ∈Sn

PT(+, ρ(1,2, . . . , n),−)N+|ρ(1,2,...,n)|−(�) (3.19)

identifies the N+|ρ(1,2,...,n)|−(�) in (3.18) as BCJ master numerators of n-gon graphs. The 
counting of Parke–Taylor factors in (3.19) matches the n! inequivalent n-gon diagrams in the 
partial-fraction representation of loop integrals, realizing the permutations of 1, 2, . . . , n in Fig. 3. 
However, (3.17) to (3.19) are based on representations of Kn(�) without any closed subcycles of 
Gij which are known to exist for theories with at least four supercharges. For cases with zero 
supersymmetry, representations of Kn(�) without any closed subcycles of Gij were shown to 
exist as well [68] after the first version of this work.

3.4. Analytic evaluation of CHY integrals and BCJ master numerators

Already at tree level, a central advantage of expressing the kinematic integrand I tree
SYM in terms 

of Parke–Taylor factors is the availability of doubly-partial amplitudes (2.6) to evaluate the CHY 
integrals. Similarly, the Parke–Taylor form of the one-loop kinematic integrand (3.19) and the 
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dμtree
n+2 measure in (3.6) allow one to derive the one-loop propagators from doubly-partial ampli-

tudes at tree-level with (n+2) legs∫
dμtree

n+2 PT(α(1,2, . . . , n,+,−))PT(β(1,2, . . . , n,+,−)) (3.20)

= lim
k±→±�

mtree[α(1,2, . . . , n,+,−) |β(1,2, . . . , n,+,−)] .

Thanks to the Berends–Giele recursion for mtree[· | ·] [55], this makes analytic evaluations of 
gauge-theory and gravity amplitudes tractable for a large number of external legs,

A(1,2, . . . , n) =
∫

dD�

�2

∫
dμtree

n+2 PT(1)(1,2, . . . , n)ISYM(�)

=
∫

dD�

�2 lim
k±→±�

∑
ρ∈Sn

N+|ρ(1,2,...,n)|−(�) (3.21)

×
n−1∑
i=0

mtree[+, i+1, . . . , n,1,2, . . . , i,−|+, ρ(1,2, . . . , n),−]

MSYM⊗SYM =
∫

dD�

�2 lim
k±→±�

∑
ρ,τ∈Sn

N+|ρ(1,2,...,n)|−(�) Ñ+|τ(1,2,...,n)|−(�) (3.22)

× mtree[+, ρ(1,2, . . . , n),−|+, τ (1,2, . . . , n),−] .

It is important to perform the limit k± → ±� after summing the permutations ρ, τ because 
the conspiration of different N+|ρ(...)|−(�) leads to cancellations among spurious divergent prop-
agators. In absence of maximal supersymmetry, forward-limit divergences will arise in (3.21), 
and a regularization scheme for cases with at least four supercharges is given around (3.24) as 
well as section 6.

As an example for a smooth forward limit k± → ±�, let us reproduce the scalar box integral 
(2.22) in the four-point one-loop amplitude from a sum of six-point doubly-partial amplitudes at 
tree level following from (3.21) [35,39,38]∫

dD�

�2 lim
k±→±�

∑
ρ∈S4

(
mtree[+,1,2,3,4,−|+, ρ(1,2,3,4),−] + cyc(1,2,3,4)

)
(3.23)

=
∫

dD�

�2

( 1

s1,�s12,�s123,�

+ cyc(1,2,3,4)
)

=
∫

8 dD�

�2(� + k1)2(� + k12)2(� + k123)2 .

This example illustrates that the kinematic limit must be performed after combining the per-
mutations ρ: Several choices of ρ introduce divergent tadpole propagators such as s−1

1234 in 
mtree[+, 1, 2, 3, 4, − | +, 2, 1, 4, 3, −] = (s12s34s12,�)

−1 + (s12s34s1234)
−1 which drop out after 

summing over ρ.
A more delicate treatment is needed for half- and quarter-maximal supersymmetry, where one 

factor of G12 occurs in the three-point correlator, and (3.15) leads to

lim
k±→±�

∑
ρ∈S3

sgnρ
12 mtree[+,1,2,3,−|+, ρ(1,2,3),−] = 2

s12s12,�

+ 1

s1,�s12,�

lim
k±→±�

∑
sgnρ

13 mtree[+,1,2,3,−|+, ρ(1,2,3),−] = 1

s1,�s12,�

(3.24)

ρ∈S3
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Fig. 4. The divergent propagator s−1
ij

in external bubbles is canceled by a formally vanishing factor of sij in the kinematic 
numerator.

lim
k±→±�

∑
ρ∈S3

sgnρ
23 mtree[+,1,2,3,−|+, ρ(1,2,3),−] = 2

s23s1,�

+ 1

s1,�s12,�

via five-point doubly-partial amplitudes. In the kinematic phase space of three massless particles, 
we obtain divergences from the pole in s12 = 1

2 [k2
3 − k2

2 − k2
1] = 0. However, a compensating 

numerator of s12 can be extracted from the kinematic factor along with G12 [49], see Fig. 4. 
Hence, in a suitable regularization scheme due to Minahan [69] which is detailed in section 6, 
one can extract finite bubble contributions [50] from the terms ∼ (s12s12,�)

−1 and ∼ (s23s1,�)
−1

in (3.24).

3.4.1. The BCJ duality in the new representation of Feynman integrals
Given that the expression (2.8) for n-point gauge-theory trees is known to yield cubic-diagram 

numerators which satisfy kinematic Jacobi identities [33,18], its forward limit in (3.21) must also 
realize the BCJ duality between color and kinematics [1,2]. In particular, by restricting the tree-
level arguments of [5] to the forward limit, the cubic-diagram numerators in the representation 
(3.22) of the gravity amplitude are the double copies of the kinematic gauge-theory numerators 
from (3.21).

We emphasize that the present realization of the BCJ duality is adapted to the new repre-
sentation (2.21) of Feynman integrals with all �-dependent propagators but one linear in the 
loop momentum. In the original formulation of the loop-level BCJ duality [2] with propagators 
quadratic in �, each cyclically inequivalent n-gon graph is counted as a single cubic diagram. As 
explained in section 2.5, the results of the CHY integrals in (3.20) organize one-loop amplitudes 
into n distinct cubic diagrams per cyclically inequivalent n-gon. They are interpreted as dis-
tinct tree-level diagrams with two extra legs at the n possible positions of �, and their kinematic 
numerators are a priori unrelated.

Accordingly, the cubic-diagram expansion of one-loop gauge-theory and gravity amplitudes 
obtained from (3.21) and (3.22) takes the schematic form

MSYM⊗U(N) =
∫

dD�

�2

∑
i∈n+2

Ci Ni(�)∏
edges αi

P 2
αi

(�)
(3.25)

MSYM⊗SYM =
∫

dD�

�2

∑
i∈n+2

Ni(�) Ñi(�)∏
edges αi

P 2
αi

(�)
, (3.26)

where n+2 denotes the set of (n+2)-point tree-level graphs i. The propagators P −2
αi

(�) are 
linear in �, and the color factors Ci are obtained by dressing each cubic vertex with f abc while 
contracting the two extra legs ±� with a Kronecker delta. Note that all the n cubic diagrams in 
the partial-fraction decomposition of an n-gon yield identical color factors.

The numerators Ni(�) are linear combinations of the N+|ρ(1,2,...,n)|−(�) in (3.18) and (3.19)
such as to solve the kinematic Jacobi relations depicted in Fig. 2. Of course, these Ni(�) vanish 
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for tadpole graphs in supersymmetric theories, and also for bubble- and triangle graphs in case 
of maximal supersymmetry. In summary, the expression for supersymmetric n-point correlators 
(3.19) in terms of Parke–Taylor factors identifies the kinematic coefficients N+|ρ(1,2,...,n)|−(�) as 
BCJ master numerators of n-gon diagrams.

Since physical properties such as unitarity cuts and UV divergences are currently more evident 
in the standard representations of loop integrals in terms of propagators (� + K)−2, it would be 
interesting to study the systematic recombination of the loop integrals in (3.21) and (3.22) to the 
standard form. Moreover, it would be desirable to preserve the color-kinematics duality in this 
recombination process. We have checked that the local five-point BCJ numerators of [9] for the 
conventional (� + K)−2 propagators are reproduced in this recombination, and the situation at 
six points is discussed in section 5.5.

3.5. Partial integrands and one-loop BCJ-relations

The above construction of one-loop BCJ-representations was greatly alleviated by the tight 
analogy with tree level. In defining gauge invariant building blocks, however, this analogy is 
broken by the definition of color-ordered one-loop amplitudes A(. . .) of SYM through the sum 
(3.21) of several (n+2)-particle Parke–Taylor factors in PT(1)(. . .). In order to arrive at a mani-
festly gauge and diffeomorphism invariant formulation of the BCJ duality and double copy, it is 
convenient to study a more elementary quantity, the partial integrand [13]

a(τ(1,2, . . . , n,+,−)) ≡
∫

dμtree
n+2 PT(τ (1,2, . . . , n,+,−))ISYM(�) . (3.27)

We emphasize that this definition in the CHY framework does not require any supersymmetry. 
As studied in [35,39] and especially in [37], the one-loop integrand can be obtained from the 
CHY representation of tree amplitudes in one higher dimension, no matter what the theory is. 
The contribution of each solution of the scattering equations to the one-loop integrand of a gauge 
theory and the partial integrand (3.27) is gauge invariant before summing over all the solutions. 
This allows us to discard the singular solutions, considering that their contributions turn out to be 
homogeneous functions of the loop momentum and integrate to zero. This way, the CHY formula 
for one-loop amplitudes does not break gauge invariance like the case in [70] where the forward 
limit is taken in the original number of dimensions.

According to their definition (3.27), partial integrands isolate a single tree-level Parke–Taylor 
factor from their sum in PT(1)(. . .) and allow to reconstruct color-stripped single-trace amplitudes 
(3.21) via

A(1,2, . . . , n) =
∫

dD�

�2

n∑
i=1

a(1,2, . . . , i,−,+, i+1, . . . , n) . (3.28)

Choices of τ ∈ Sn+2 with non-adjacent + and − appear in the CHY description of non-planar 
amplitudes

A(1,2, . . . , j | j+1, . . . , n) =
∫

dD�

�2

∑
ρ∈cyc(1,2,...,j )
τ∈cyc(j+1,...,n)

a(+, ρ(1,2, . . . , j),−, τ (j+1, . . . , n))

(3.29)
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associated with double traces Tr(t1t2 . . . tj )Tr(tj+1 . . . tn). The partial integrands in (3.29) can 
be reduced to the cases in (3.28) with +, − adjacent via Kleiss–Kuijf relations [71]

a(C,+,B,−) = (−1)|C|a(+, (B Ct ),−) , (3.30)

where Ct and |C| denote the transpose cp . . . c2c1 and length p of the word C ≡ c1c2 . . . cp , re-
spectively. This reproduces the amplitude relations of [64] to express double-trace contributions 
at one loop in terms of single-trace amplitudes.

While the definition and Kleiss–Kuijf relations of the partial integrand are valid in absence 
of supersymmetry, we shall now explore the interplay with the Parke–Taylor organization of 
the supersymmetric gauge-theory integrands. Inserting (3.19) into (3.27) leads to the following 
cubic-diagram expansion analogous to (3.21),

a(τ(1, . . . , n,+,−))

= lim
k±→±�

∑
ρ∈Sn

N+|ρ(1,...,n)|−(�)mtree[τ(1, . . . , n,+,−) |+, ρ(1, . . . , n),−] . (3.31)

As an example with maximal supersymmetry, permutation invariance of the box numerator 
Nbox ≡ s12s23A

tree(1, 2, 3, 4) [72] gives rise to the following diagrams in the four-point partial 
integrand with 16 supercharges [13]

amax(1,2,3,4,−,+) = Nbox

s1,�s12,�s123,�

(3.32)

amax(1,2,3,−,4,+) = Nbox

s1,�s12,�s4,�

+ Nbox

s1,�s12,�s3,�

+ Nbox

s1,�s14,�s3,�

+ Nbox

s4,�s14,�s3,�

.

Moreover, three external gluons with polarization vectors em
i yield the following partial inte-

grands with half-maximal supersymmetry [50,13]

a1/2(1,2,3,−,+) = �m

[
em

1 (k2 · e3)(k3 · e2)+(1↔2,3)
]

s1,�s12,�

− (e1 · e2)(k1 · e3)

s12,�

− (e2 · e3)(k2 · e1)

s1,�

a1/2(1,2,−,3,+) = 0 . (3.33)

The bubble contributions ∼ (ei · ej ) are crucial for gauge invariance, and they stem from the 
cancellation of the (formally vanishing) invariant s12 between the doubly-partial amplitudes in 
(3.24) and the G12-coefficient s12(e1 · e2)(k1 · e3) in K1/2

3 (�), see section 6.
In comparison to the color-ordered amplitude A(1, 2, . . . , n), the partial integrand a(1, 2, . . . ,

i, −, +, i+1, . . . , n) only contains the subset of cubic diagrams with the loop momentum in-
serted between legs i and i+1. Hence, a single partial integrand cannot suffice to recombine to a 
Feynman integral with propagators of conventional (�+K)−2-form.

However, as a major virtue of partial integrands, they inherit BCJ symmetry from their def-
inition (3.27) via Parke–Taylor factor: In the same way as tree-level scattering equations yield 
the BCJ relations (2.12) for Parke–Taylor factors and thereby Atree(. . .), the one-loop scattering 
equations as a forward limit of their tree-level counterparts imply the one-loop BCJ relations:

n−1∑
i=1

(� · k12...i )PT(1,2, . . . , i,+, i+1, . . . , n,−) = 0 (3.34)
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Hence, the partial integrands (3.27) generalize the tree-level BCJ relations (2.11) to [13]

n−1∑
i=1

(� · k12...i ) a(1,2, . . . , i,+, i+1, . . . , n,−) = 0 , (3.35)

as well as another topology mixing different orders of � [13]

n−1∑
i=2

(k1 · k23...i ) a(2,3, . . . , i,1, i+1, . . . , n,−,+) = (� · k1) a(2,3, . . . , n,−,1,+) .

(3.36)

One can immediately check that these BCJ relations are obeyed by the three- and four-point 
partial integrands (3.32) and (3.33). As will be detailed in section 5.5, the BCJ relations among 
partial integrands still hold in presence of anomalies: Since permutation invariance of ISYM(�)

is broken by anomalies, all partial integrands must then be defined with respect to the same 
expression for ISYM(�) in (3.27).

Note that one-loop BCJ relations in the context of conventional (� + K)−2 propagators have 
been discussed earlier in the field- [73] and string-theory literature [74]. As we will see in the 
following subsection, the partial integrands (3.27) along with the partial-fraction representation 
of loop integrals are tailored to enter a one-loop KLT formula. It would be interesting to refor-
mulate the one-loop KLT formula in terms of (� +K)−2 such as to incorporate the one-loop BCJ 
relations in [73,74], possibly along the lines of [75].

Given that the tree-level BCJ relations leave a basis of (n−3)! independent permutations 
of Atree(. . .) [1], one may wonder about the analogous basis dimensions for partial integrands. 
The forward limit of the tree-level setup implies an upper bound of (n−1)! independent partial 
integrands, but already the maximally supersymmetric four-point examples in (3.32) illustrate 
that this bound is usually not saturated: All the amax(τ (1, 2, 3, 4, +, −)) are proportional to 
Nbox ≡ s12s23A

tree(1, 2, 3, 4), so they are all related by rational functions of kj and �. Similarly, 
we will find three linearly independent five-point partial integrands with maximal supersymmetry 
in section 5.4.

3.6. The correlator in a BCJ basis and one-loop KLT relations

We recall that integration by parts or scattering equations can be used to expand the tree-level 
correlator (2.7) in a BCJ basis of Parke–Taylor factors, leading to the KLT form (2.13). These 
steps will now be repeated at the one-loop order, assuming a minimum of four supercharges in 
one of the gauge theories.

Following the string calculations of [46], it is convenient to perform the integration-by-parts 
reduction of ISYM(�) at the level of the correlator Kn(�) whose σ -dependence is captured by 
the Green function Gij in (3.9). After choosing a reference leg 1, the scattering equations (3.10)
allow to eliminate all instances of G1j with j = 2, 3, . . . , n, i.e. the correlator Kn(�) is rendered 
independent on σ1. This representation of Kn(�) without G1j leaves no more freedom to apply 
further scattering equations without re-introducing σ1, so all the kinematic factors must be gauge 
invariant. Moreover, all factors of sgnρ

1j = 1 disappear when converting to ISYM(�), see (3.17).

In absence of sgnρ
1j , in turn, the coefficients of Parke–Taylor factors PT(+, ρ(1, . . . , n), −) in 

ISYM(�) do not depend on the position of leg 1 within ρ(1, 2, . . . , n). Hence, kinematic factors 
will be accompanied by
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PT(+,1,2,3, . . . , n,−) + PT(+,2,1,3, . . . , n,−) + PT(+,2,3,1, . . . , n,−) + . . .

+ PT(+,2,3, . . . ,1, n,−) + PT(+,2,3, . . . , n,1,−) = −PT(1,+,2,3, . . . , n,−)

(3.37)

and permutations in 2, 3, . . . , n, using Kleiss–Kuijf relations in the second line. Hence, the elim-
ination of G1j in Kn(�) naturally leads to an (n−1)!-term expression for the correlator,

ISYM(�) = −
∑

ρ∈Sn−1

PT(−,1,+, ρ(2,3, . . . , n))C+|ρ(2,3,...,n)|−(�) , (3.38)

where C+|ρ(2,3,...,n)|−(�) can be viewed as a gauge invariant but non-local representation of an 
n-gon numerator. More precisely, C+|2,3,...,n|−(�) accompanies all the n diagrams where the ex-
ternal legs of the n-gon appear in the orders 2, 3, . . . , n with leg 1 inserted at an arbitrary position. 
The non-locality of C+|ρ(2,3,...,n)|−(�) stems from the elimination of G1j via scattering equa-
tions, but this only generates poles in the external Mandelstam invariants s1ij ...p , i.e. there are no 
�-dependent propagators s−1

ij ...p,�. Explicit four- to six-point expressions for C+|2,3,...,n|−(�) can 
be found in section 5.4, also see section 6.3 for examples with reduced supersymmetry.

In order to ensure that the correct partial integrands a(+, τ(2, 3, . . . , n), 1, −) arise after per-
forming CHY integrals over (3.38), the gauge invariant coefficients C+|ρ(2,3,...,n)|−(�) must by 
themselves be expressible in terms of partial integrands. The requirement is met by the expansion

C+|ρ(2,3,...,n)|−(�) = S[ρ|τ ]� a(+, τ (2,3, . . . , n),1,−) (3.39)

which reproduces the pattern of the tree-level KLT formula upon insertion into (3.38):

ISYM(�) =
∑

ρ,τ∈Sn−1

PT(+, ρ(2,3, . . . , n),−,1) S[ρ|τ ]� a(+, τ (2,3, . . . , n),1,−) .

(3.40)

The (n−1)! × (n−1)!-matrix S[ρ|τ ]� ≡ S[ρ(2, 3, . . . , n)|τ(2, 3, . . . , n)]� follows the func-
tional form of the tree-level momentum kernel (2.10), where the loop momentum now en-
ters as the pivot leg. We are using that, before performing the forward limit k± → ±� in 
(3.20), S[ρ|τ ]� is the inverse of the (n−1)! × (n−1)! matrix of doubly-partial amplitudes 
mtree[+, ρ(2, 3, . . . , n), −, 1 | +, τ(2, 3, . . . , n), 1, −], see (2.14).

The KLT form (3.40) of the supersymmetric gauge-theory integrand can be used to derive the 
analogous KLT formula for loop integrands in supergravity. We are using the permutation sym-
metric and gauge invariant definition of a supergravity integrand mn(�) in the CHY framework,

mn(�) ≡
∫

dμtree
n+2 ISYM(�) ĨSYM(�) , MSYM⊗SYM =

∫
dD�

�2 mn(�) , (3.41)

where ISYM(�) and ĨSYM(�) may refer to different gauge theories. Similar to (3.28), the defini-
tion (3.41) amputates the overall quadratic propagator �−2 in a partial-fraction representation of 
Feynman integrals [13]. Next, we insert the minimal (n−1)! form (3.40) of the left-moving and 
supersymmetric gauge-theory integrand into (3.41),

mn(�) =
∑

ρ,τ∈Sn−1

a(+, ρ(2, . . . , n),1,−) S[ρ|τ ]�

×
∫

dμtree
n+2 PT(+, τ (2, . . . , n),−,1) ĨSYM(�) . (3.42)
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Then, the Parke–Taylor factor on the right-hand side suggests to apply the definition (3.27) of 
the partial integrand for ĨSYM(�), whose validity does not rely on supersymmetry. In this way, 
one arrives at the one-loop KLT formula [13]

mn(�) =
∑

ρ,τ∈Sn−1

a(+, ρ(2,3, . . . , n),1,−) S[ρ|τ ]� ã(+, τ (2,3, . . . , n),−,1) , (3.43)

whose present derivation applies to any double copy of gauge theories with at least four super-
charges on one side. For the case with zero supersymmetry, we expect that (3.43) still holds, 
but a careful proof including a suitable treatment of forward-limit divergences is relegated to the 
future. The results of [68] which appeared after the first version of this work are expected to play 
a key role in adapting the above arguments to zero supersymmetry.

4. One-loop RNS correlators for field-theory amplitudes

In this section, we will investigate one-loop correlators (2.20) for field-theory amplitudes in 
the RNS formulation of the underlying ambitwistor string or superstring. We will on the one 
hand point out universal structures that do not depend on the amount of supersymmetry and on 
the other hand describe the simplifications in supersymmetric theories. In particular, the sim-
ple dependence of supersymmetric correlators on the punctures which has been central to the 
discussion in sections 3.2 and 3.3 will be derived.

While external fermions will be addressed in section 5 by the supersymmetric correlators in 
pure-spinor superspace, we will focus the one-loop RNS correlators for external bosons in this 
section. Their multiparticle instances have been firstly discussed in [51] for maximally supersym-
metric superstring theory (see also [52,53,76]), and four-point string amplitudes with reduced 
supersymmetry can be found in [77,78,49]. A major challenge in the RNS variables is to man-
ifest the supersymmetry-induced simplifications when combining different spin structures, the 
boundary conditions for the worldsheet spinors ψm(z) in the RNS formulation as z → z + 1 and 
z → z + τ .

Even before performing the sum over spin structures, we find that at the degeneration τ → i∞
of the torus relevant for the field-theory limit, the correlators simplify significantly: They reduce 
to polynomials in the Green function Gij on the nodal Riemann sphere defined in (3.9), with 
local functions of external polarizations as their coefficients. After performing the spin sum, the 
final form of the polynomials depends on the amount of supersymmetry, and we present complete 
correlators for gauge theories with maximal as well as half- (or quarter-)maximal supersymmetry 
in various dimensions.

Scattering equations and algebraic identities of Gij ’s can be used to reduce these monomi-
als of Gij to a basis which leads to the KLT relations described in section 3.6. In this way, 
we obtain a basis expansion of the correlator with gauge invariant but non-local coefficients 
for external bosons, which can be nicely packaged using Berends–Giele currents. Using the su-
persymmetrized version of these Berends–Giele currents (see section 5), we will later present 
explicit results for BCJ master numerators in pure-spinor superspace whose bosonic components 
can be matched with the one-loop correlators in this section.

4.1. Structure of RNS correlators on a torus

As a spurious difference between the correlators of the ambitwistor string and the superstring, 
the bosonic worldsheet fields xm do not exhibit any two-point contractions in the former case 
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[29,23]. At tree level this difference is known to wash out after removing double poles in σij via 
integration by parts [29] and expanding the correlators in terms of Parke–Taylor factors. Since 
the same kind of integration by parts can be performed at arbitrary genus, there is no loss of 
generality in starting with the one-loop RNS correlator of the ambitwistor string for n external 
gluons [23], the same end results would have been obtained from the superstring.

The parity-even part of the n-point RNS correlator Kn can be expanded in terms of n! gauge 
invariant terms

Kn(�|τ) =
∑
ρ∈Sn

Rρ(�|τ) , with ρ = (i) · · · (j) I · · · J , (4.1)

R(i) ··· (j) I ··· J (�|τ) ≡ ci (�|τ) · · · cj (�|τ) tr(fI ) · · · tr(fJ )GI,...,J (τ ) , (4.2)

where the summand Rρ is defined according to the unique decomposition of ρ into disjoint 
cycles.3 Each length-one cycle or fixed point (i), · · · , (j) of ρ contributes a factor of

ci (�|τ) ≡ 2πi (ei · �) +
n∑

j=1
j �=i

(ei · kj ) ∂ log θ1(zij , τ ) , (4.3)

which captures the contributions from the worldsheet bosons and is the only place that the loop 
momentum appears. Cycles of length two and larger, on the other hand, are denoted by I, . . . , J , 
e.g. I = (i1i2 · · · ia), J = (j1j2 · · · jb) with a, b ≥ 2. The associated kinematic functions of mo-
menta and polarizations are traces (over Lorentz indices m, n) of linearized field strengths

tr(fI ) ≡ −1

2
tr(fi1fi2 · · ·fia ) , with f mn

i = km
i en

i − em
i kn

i . (4.4)

Finally, the accompanying functions of the punctures boil down to two-point contractions

Sν(x, τ ) ≡ θ ′
1(0, τ )θν(x, τ )

θ1(x, τ )θν(0, τ )
(4.5)

of the worldsheet spinors with even spin structures ν = 2, 3, 4:

GN(x1, x2, . . . , xN |τ) ≡
4∑

ν=2

(−1)ν−1
[
θν(0, τ )

θ ′
1(0, τ )

]4

Sν(x1, τ )Sν(x2, τ ) . . . Sν(xN , τ ) . (4.6)

More precisely, cycles I = (i1i2 · · · ia), J = (j1j2 · · · jb) of length a, b ≥ 2 yield

GI,...,J (τ ) ≡ Ga+...+b(x1, x2, . . . , xa, . . . , y1, y2, . . . , yb|τ)

∣∣∣xk=zik
−zik+1

yk=zjk
−zjk+1

(4.7)

subject to cyclic identification ia+1 = i1 and jb+1 = j1. By (4.7), each cycle I, . . . , J in 
GI,...,J (τ ) yields a group of arguments xj in (4.6) which add up to zero, 

∑
k∈I xk = ∑

k∈J xk = 0. 

3 For example, the sum ρ ∈ S3 relevant to n = 3 is organized in terms of the cycles ρ =
(1)(2)(3), (1)(23), (2)(31), (3)(12), (123), (321), leading to the following expansion (4.1):

K3(�|τ) = c1c2c3G∅ + tr(f(123))G(123) + tr(f(321))G(321)

+ c1tr(f(23))G(23) + c2tr(f(31))G(31) + c3tr(f(12))G(12) .

.
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In particular, we always have x1 + x2 + . . . + xN in (4.6) and can derive all cases with multiple 
cycles from specializations of the single-cycle configuration.

The even Jacobi theta functions θν=2,3,4(z, τ) entering (4.5) are regular at z = 0 and defined 
in Appendix C. They conspire in the sum over the even spin structures ν = 2, 3, 4 along with the 
partition functions ( θν(0,τ )

θ ′
1(0,τ )

)4. Capturing the effect of spacetime supersymmetry, the expressions 

in (4.6) simplify drastically after performing the spin sums as in 0 = G0(∅|τ) = G2(x1, x2|τ) =
G3(x1, x2, x3|τ) as well as [51]

G4(x1, x2, x3, x4|τ) = 1 , G5(x1, x2, . . . , x5|τ) =
5∑

j=1

∂ log θ1(xj , τ ) . (4.8)

The higher-multiplicity systematics has firstly been discussed in [51] (also see [52,76]) and 
was later organized via combinations of Eisenstein series and elliptic functions [54] explicitly 
known to all multiplicities. One can see from the results of the references that the spin sum in 
GN(x1, x2, . . . , xN |τ) only leaves N−4 simultaneous poles in the arguments xk .

The contributions from the odd spin structure ν = 1 yield the parity odd part of Kn which 
vanishes in spacetime dimensions D < 9 and will be discussed separately in section 4.6.

4.2. Structure of RNS correlators on a nodal Riemann sphere

The CHY integrands (2.20) for maximally supersymmetric gauge theories can be obtained 
from the degeneration limit

Kn ≡ 1

(2πi)n−4 lim
τ→i∞ Kn(τ ) (4.9)

of (4.1) which preserves the expansion in terms of n! separately gauge invariant terms

Kn =
∑
ρ∈Sn

Rρ , with ρ = (i) · · · (j) I · · · J , (4.10)

R(i) ··· (j) I ··· J ≡ ci(�) · · · cj (�) tr(fI ) · · · tr(fJ )GI,...,J (σ ) . (4.11)

The unique decomposition of ρ into disjoint cycles is explained below (4.1), so it remains to in-
vestigate the behavior of the τ -dependent constituents when the toroidal worldsheet degenerates 
to a nodal Riemann sphere. The loop-momentum dependent part (4.3) is easily seen to degenerate 
into

ci(�) ≡ 1

2πi
lim

τ→i∞ ci (�|τ) = ei · � +
n∑

j=1
j �=i

ei · kj

σi

σij

= ei · � +
n∑

j=1
j �=i

ei · kj Gij , (4.12)

which is manifestly gauge invariant on the support of the one-loop scattering equations (3.10). 
Note that we have used momentum conservation and transversality of ei in passing to the repre-
sentation in terms of Gij .

The traces tr(fI ) over linearized field strengths, see (4.4), are accompanied by spin-summed 
correlators over worldsheet fermions detailed around (4.6) and (4.7),

GI1,I2,...,Ik
≡ 1

(2πi)N−4 lim
τ→i∞ GN(x1, x2, . . . , xN |τ)

∣∣∣∑
i∈Ij

xi=0
. (4.13)
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The cycles I1, I2, . . . , Ik track the subsets of xi that add up to zero, and the remarkable simplifi-
cations in the τ → i∞ limit of the all-multiplicity spin sums (4.6) will be presented in the next 
subsection. Again, any instance of (4.13) with multiple cycles Ij can be obtained by specializing 
the single-cycle configuration

GN ≡ G(12...N) = 1

(2πi)N−4 lim
τ→i∞ GN(x1, x2, . . . , xN |τ)

∣∣∣
x1+x2+...+xN=0

. (4.14)

It is useful to illustrate the expansion (4.10) of Kn with the n = 3, 4 examples,

K3 = c1c2c3G∅ + c1tr(f(23))G(23) + c2tr(f(31))G(31) + c3tr(f(12))G(12)

+ tr(f(123))G(123) + tr(f(321))G(321) , (4.15)

K4 = c1c2c3c4G∅ + (
c1c2tr(f(34))G(34) + 5 more

) + (
c1tr(f(234))G(234) + 7 more

)
+ (

tr(f(1234))G(1234) + 5 more
) + (

tr(f(12))tr(f(34))G(12)(34) + 2 more
)
,

and the analogous five-point expressions along with the resulting numerators are spelt out in 
Appendix D.

Recall that the x’s in GN denote differences of z’s on the torus; here in the τ → i∞ limit, as 
a slight abuse of notation, we will continue to denote the arguments of GN as x1, . . . xN . Now 
they simply refer to N pairs of labels x1 = (i1, j1), . . . , xN = (iN , jN) determined by the cycle 
structure I, . . . , J . For example, we have x1 = (1, 2), x2 = (2, 1) for G(12), x1 = (1, 2), x2 =
(2, 3), x3 = (3, 4), x4 = (4, 1) for G(1234) and x1 = (1, 2), x2 = (2, 1), x3 = (3, 4), x4 = (4, 3) for 
G(12)(34).

4.3. Spin sums in maximally supersymmetric correlators

This section is devoted to the impact of the τ → i∞ limit on the fermionic correlators GN in 
the expansion of Kn(τ ): all the elliptic functions in the expressions (4.6) for GN simplify drasti-
cally, and their degenerate versions GN become polynomials in Gij ’s. More precisely, each cyclic 
structure {x1, x2, . . . , xN } of length N gives rise to symmetric polynomials in Gx1, Gx2 , . . . , GxN

of degree 0 ≤ k ≤ N , and it is convenient to introduce the notation

�k(x1, x2, . . . , xN) ≡
∑

1≤α1<α2<...<αk≤N

Gxα1
Gxα2

· · · Gxαk
(4.16)

with �0(x1, . . . , xN) ≡ 1. For example, the symmetric polynomials at length N = 2 with 
x1 = (1, 2), x2 = (2, 1) are �1(x1, x2) = G12 +G21 = 0 and �2(x1, x2) = G12G21 = −G2

12. For 
N = 3 with x1 = (1, 2), x2 = (2, 3), x3 = (3, 1), we have �1(x1, x2, x3) = G12 +G23 +G31 and 
�3(x1, x2, x3) = G12 G23 G31, whereas �2(x1, x2, x3) is a constant by the Fay identity (3.11):

�2(x1, x2, x3) = G12G23 + G23G31 + G31G12 = −1

4
. (4.17)

The maximally supersymmetric spin sums (4.13) turn out to yield extremely simple linear com-
binations of the polynomials �k ≡ �k(x1, x2, . . . , xN) in (4.16). By taking the τ → i∞ limit of 
the elliptic functions in GN [54], we find

GN = �N−4 + 1

2
�N−6 + 3

16
�N−8 + 1

16
�N−10 + · · ·

=
�(N−4)/2�∑

m=0

m + 1

4m
�N−4−2m , (4.18)
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where the all-multiplicity conjecture has been checked up to N = 20. In other words, the only 
contributing degrees in Gij are N−4, N−6, N−8, . . ., and all cases G0, G1, G2, G3 below four 
points vanish, GN = 0 ∀ N < 4. Let’s spell out some simple non-vanishing examples, starting 
with G4 = �0 = 1. The first non-trivial dependence on xi arises at N = 5, where two types of 
inequivalent cycle structures occur,

G5 =
5∑

i=1

Gxi
, e.g. G(12345) =

5∑
i=1

Gi,i+1 , G(12)(345) = G34 + G45 + G53 , (4.19)

in lines with the τ → i∞ limit of (4.8). A complete expression for the resulting five-point corre-
lator is assembled in Appendix D.

The single-cycle expressions for n = 6, 7 are

G6 =
6∑

i<j

Gxi
Gxj

+ 1

2
, G7 =

7∑
i<j<k

Gxi
Gxj

Gxk
+ 1

2

7∑
i=1

Gxi
, (4.20)

which can be specialized to multiple cycles such as

G(123)(456) = (G12 + G23 + G31)(G45 + G56 + G64) ,

G(12)(34)(56) = 1

2
− G2

12 − G2
34 − G2

56 , (4.21)

G(12)(3456) = 1

2
− G2

12 + [
G34G45 + cyc(3,4,5,6)

] + G34G56 + G45G63 ,

G(12)(34)(567) =
(

1

2
− G2

12 − G2
34

)
(G56 + G67 + G75) + G56G67G75 , etc. ,

where the Fay identity (4.17) has been used in the first and last line.
As is well-known from the superstring literature, the spin sums (4.18) expose the structure 

of maximally supersymmetric field-theory correlators and manifest their power-counting of loop 
momenta: The n-point correlator (4.10) comprises spin-summed GN of highest power GN−4

ij

along with n−N factors of ci(�) defined in (4.12). Given that each ci(�) is linear in � and Gij , 
the correlator Kn is a polynomial of degree n−4 in � and Gij . More precisely, contributions with 
k powers of � are accompanied by at most n−4−k powers of Gij .

Moreover, after evaluating the CHY integral, the bounds on Gij imply the absence of tri-
angles, bubbles and tadpoles in maximally supersymmetric amplitudes, see e.g. [72,53] for the 
analogous superstring discussion: In each term of the doubly-partial amplitudes (3.20), the num-
ber of external propagators (i.e. those independent on �) is bounded by the powers of Gij . With 
at most n−4 powers of Gij , at least three of the propagators from the doubly-partial amplitudes 
depend on �, corresponding to box diagrams and higher n-gons. Hence, the spin sum (4.18) is 
responsible for the famous no-triangle property [64].

4.4. CHY correlators with reduced supersymmetries

4.4.1. The anatomy of spin sums
In fact, some of the simplifications seen in the previous section even work for individual spin 

structures ν = 2, 3, 4 before the spin sum, thus they also apply to cases with reduced supersym-
metry. Once we denote the cycles of fermion Green functions (4.5) with spin structures ν by
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S(ν)
N (x1, x2, . . . , xN |τ) ≡ Sν(x1, τ )Sν(x2, τ ) . . . Sν(xN, τ ) , (4.22)

it turns out that the τ → i∞ limit of (4.6) picks out three independent contributions

Gf
N ≡ 1

(2πi)N
S(ν=2)

N (x1, x2, . . . , xN |τ)
∣∣
q0 (4.23)

Gs
N ≡ 1

(2πi)N
S(ν=3)

N (x1, x2, . . . , xN |τ)
∣∣
q0 = + 1

(2πi)N
S(ν=4)

N (x1, x2, . . . , xN |τ)
∣∣
q0

Gv
N ≡ 1

(2πi)N
S(ν=3)

N (x1, x2, . . . , xN |τ)
∣∣
q1/2 = − 1

(2πi)N
S(ν=4)

N (x1, x2, . . . , xN |τ)
∣∣
q1/2 ,

which remain inert for any amount of supersymmetry [35,38]. In an expansion w.r.t. q ≡ e2πiτ , 
the notation |q0 and |q1/2 in (4.23) refers to the coefficients of q0 and q1/2, respectively, and we 

have used the fact that these lowest orders of S(3)
N and S(4)

N are simply related to each other.
In terms of the symmetric polynomials �k in (4.16), all of Gf

N, Gs
N and Gv

N can be identified 
as extremely simple linear combinations:

Gf
N = �N ,

Gs
N = �N + 1

4
�N−2 + 1

16
�N−4 + 1

64
�N−6 + . . . =

�N/2�∑
m=0

�N−2m

4m
, (4.24)

Gv
N = −2

(
�N−2 + 1

2
�N−4 + 3

16
�N−6 + . . .

)
= −2

�(N−2)/2�∑
m=0

(m + 1)�N−2−2m

4m+1 ,

as can be straightforwardly checked through the leading q-orders of Sν spelt out in (C.2). All 
contributions �N−1, �N−3, �N−5, . . . whose parity is opposite to �N drop out, so the sum ex-
tends down to �1 for odd N and �0 for even N .

The partition functions (−1)ν−1
[

θν(0,τ )

θ ′
1(0,τ )

]4
which multiply (4.22) reflect maximal supersym-

metry. Their leading orders in q are spelt out in (C.3) and combine the building blocks in (4.23)
to

GN = 16(Gs
N − Gf

N) + 2Gv
N . (4.25)

By inserting the expansions (4.24), one recovers the organization (4.18) of GN in terms of sym-
metric polynomials �k . The highest degree k = N−4 in GN results from cancellation of both 
�N and �N−2 due to the interplay between bosons and fermions as well as the GSO projection 
in the NS sector.

4.4.2. Super-Yang–Mills theories
Since supersymmetry breaking only affects the one-loop correlator through a modification of 

the partition function in (4.6), the structure of the correlator (4.10) and (4.11) is universal. In 
scenarios with reduced supersymmetry, we simply adjust the spin sums GI,...,J → G∗

I,...,J to the 
particle content of the theory (indicated by the placeholder ∗):

K∗
n =

∑
ρ∈Sn

R∗
ρ , with ρ = (i) · · · (j) I · · · J , (4.26)

R∗
(i) ··· (j) I ··· J ≡ ci(�) · · · cj (�) tr(fI ) · · · tr(fJ )G∗

I,...,J . (4.27)
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The four-point instances of the corresponding superstring amplitudes in compactifications with 
reduced supersymmetry have been discussed and simplified in [77,78,49]. In particular, a sys-
tematic method to express the all-multiplicity spin sums in terms of the Eisenstein series and 
elliptic functions of [76,54] has been given in [49].

The results of the previous subsection pave the way to extending the above analysis of spin 
sums to cases with less or no supersymmetries. As pointed out in [38], the linear combinations 
of Gf

N, Gs
N and Gv

N in (4.25) can be adjusted such as to describe any number of d-dimensional 
massless vectors, fermions and scalars running in the loop. Every scalar and fermionic de-
gree of freedom, for instance, contributes with 2Gs

N and −2Gf
N to the spin sum, respectively. 

A d-dimensional vector, one the other hand, yields the combination 2Gv
N + 2(d − 2)Gs

N [38].
Accordingly, the spin sums of pure SYM theories are given by

Gα−SYM
N = 2Gv

N + 16α(Gs
N − Gf

N) , α = 1,
1

2
,

1

4
, (4.28)

with α = 1, 12 , 14 for maximal, half-maximal and quarter-maximal supersymmetry, respectively. 
These values of α control the number of fermions, and the rigid combinations of Gs

N −Gf
N ensure 

the same number of bosonic degrees of freedom while keeping a single vector in the multiplet. 
Explicitly, the spin sums of half- and quarter-maximal SYM read

G
1
2 −SYM
N = 2�N−2 + 3

2
�N−4 + 5

8
�N−6 + 7

32
�N−8 + . . .

= 2
�(N−2)/2�∑

m=0

2m + 1

4m
�N−2−2m (4.29)

G
1
4 −SYM
N = 3�N−2 + 7

4
�N−4 + 11

16
�N−6 + 15

64
�N−8 + . . .

=
�(N−2)/2�∑

m=0

4m + 3

4m
�N−2−2m (4.30)

and can be reconciled with the string-theory results of [49] for certain choices of the compacti-
fication details. From the difference of (4.29) and (4.30), the contributions of a spin- 1

2 multiplet 
with two scalar and fermionic degrees of freedom each is identified as

G2+2
N = 4

(
Gs

N − Gf
N

) = �N−2 + 1

4
�N−4 + 1

16
�N−6 + . . . =

�(N−2)/2�∑
m=0

1

4m
�N−2−2m .

(4.31)

Therefore, as long as a minimum of four supercharges is preserved, �N always drops out from 
(4.28), and the degree k of the polynomials �k does not exceed N−2 (with the additional can-
cellation of �N−2 in case of (4.25) with maximal supersymmetry).

4.4.3. Pure Yang–Mills theory
For pure Yang–Mills theory, i.e. in absence of supersymmetry, one is left with the bosonic 

truncation of (4.24), where the contribution from Gf
N is set to zero. For a single gauge boson in 

d spacetime dimensions, the relevant spin sum is
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Gd−YM
N = 2Gv

N + 2(d − 2)Gs
N

= 2(d − 2)�N +
(d

2
− 5

)
�N−2 +

(d

8
− 9

4

)
�N−4 +

( d

32
− 13

16

)
�N−6 + . . .

= 2(d − 2)�N +
�(N−2)/2�∑

m=0

(d

2
− 4m − 5

)�N−2−2m

4m
. (4.32)

In dimensions d > 2, one can see that �N no longer drops out, and the spin sum of pure YM is 
a degree-N polynomial.

4.4.4. Implications for the power counting of loop momenta
The theory-dependent spin sums G∗

I,...,J comprising N legs are accompanied by n−N factors 

of ci(�) which are linear in � and Gij by (4.12). For half- or quarter-maximal SYM, G
1
2 , 1

4 −SYM
N=0

and G
1
2 , 1

4 −SYM
N=1 vanish by the cancellation of �N , and K

1
2 , 1

4 −SYM
n can be identified as polynomials 

of degree n−2 in � and Gij . Similarly, Kd−YM
n of pure YM with Gd−YM

N of degree N in Gij are 
polynomials of degree n in � and Gij . For example, the four-point correlator is of degree four 
for the pure Yang–Mills case, of degree two for half- or quarter-maximal SYM and constant for 
maximal SYM.

Accordingly, by evaluation of the CHY integrals, an n-gon numerator in half- and quarter-
maximal SYM can have a maximum power of n−2 loop momenta. Tadpole diagrams are 
suppressed by this power counting, and external bubbles cancel when combining the partial in-
tegrands to a color-ordered single-trace amplitude as in (3.28). In absence of supersymmetry, 
however, any n-gon diagram may appear with n loop momenta in the numerator.

4.5. The correlator in a basis of worldsheet functions

As we have shown, the one-loop correlators (4.26) with any amount of supersymmetry are 
written as a polynomial of Gij with {i, j} ∈ {1, 2, . . . , n}. However, different monomials in these 
functions are not independent due to scattering equations and the Fay identity (3.11). In addition, 
higher-point correlators (4.26) also contain subcycles of propagators such as G2

ij or GijGjkGki . 
Such subcycles do not allow an immediate application of the methods in section 3.3, but we will 
see that they can always be eliminated from supersymmetric correlators via scattering equations, 
e.g.

G2
ij = Gij

sij

n∑
k �=i,j

sjkGjk + Gij

sij
� · kj (4.33)

for a length-two cycle.4

4 In the corresponding superstring computation, such a double pole in the worldsheet variables appears in combination 
α′∂2 log θ1(zij , τ) + sij (∂ log θ1(zij , τ))2, see appendix B.1 of [79]. The result of integration by parts[

∂2 log θ1(zij , τ ) + α′sij (∂ log θ1(zij , τ ))2
]
I6 = −∂j

[
∂ log θ1(zij , τ )I6

]
+ ∂ log θ1(zij , τ )

n∑
α′sjk∂ log θ1(zjk, τ )I6
k �=i,j
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However, the elimination of length-m subcycles Gi1i2Gi2i3 . . .Gimi1 generally introduces 
poles in the m-particle Mandelstam invariants si1i2...im which generalize the factor of s−1

ij on 
the right hand side of (4.33). Hence, in absence of numerator factors ∼ si1i2...im , the treatment of 
length-m subcycles requires a momentum phase space of at least m+2 massless on-shell parti-
cles to keep si1i2...im �= 0 and avoid singularities. Given that supersymmetric n-point correlators 
involve a maximum of n−2 powers of Gij by the discussion of section 4.4, their subcycles of 
maximum length n−2 are all compatible with this phase-space constraint. It remains to find a 
suitable treatment of length-n subcycles in the n-point correlator of pure Yang–Mills, possibly 
along the lines of [37]. The possibility to eliminate closed subcycles in non-supersymmetric cor-
relators without introducing any singularities follows from the results of [68] which appeared 
after the first version of this work.

In the Appendix A we describe an algorithm to expand arbitrary polynomials in Gij in a basis 
of worldsheet functions which do not depend on σ1. A central role in our choice of basis is played 
by the following combinations of Green functions [46],

Xa1a2 ≡ sa1a2Ga1a2 , Xa1a2···am ≡
m∏

p=2

(p−1∑
q=1

Xaqap

)
, (4.34)

whose simplest instances at m = 3, 4 read

X234 ≡ X23(X24 + X34), X2345 ≡ X23(X24 + X34)(X25 + X35 + X45) . (4.35)

The choice of (4.34) is motivated by the simple action of scattering equations which can be used 
iteratively to eliminate any appearance of ai = 1, see Appendix A (in particular (A.4)) for further 
details. Moreover, their symmetry properties such as X23 = −X32 as well as X234 = −X324 and 
X234 + cyc(2, 3, 4) = 0 shared by nested commutators [t2, t3] and [[t2, t3], t4] leave (m−1)!
independent permutations of Xa1a2···am [46].

When written in terms of a basis of functions Xa1a2...am with ai ∈ {2, 3, 4, . . . , n}, the one-loop 
correlators K∗

n for supersymmetric theories take the schematic form,

K∗
n =C(�) +

∑
2≤i<j

Ci,j (�)Xij +
∑

2≤i<j,k

Ci,j,k(�)Xijk (4.36)

+
∑

2≤i<j

∑
i<k<l

Ci,j ;k,l(�)XijXkl +
∑

2≤i<j,k,l

Ci,j,k,l(�)Xijkl + · · · ,

where the terms in the ellipsis involve at least three powers of Gij . Since the worldsheet functions 
form a basis, the coefficients C(�) are gauge invariant kinematic factors. They build up the gauge 
invariant n-gon numerators C+|ρ(23...n)|−(�) in (3.38) and (3.39) through the dictionary Gij →
1
2 sgnρ

ij of section 3.3.
Recall from (4.26) that K∗

n are polynomials in � and Gij of total degree n−4 for maximal 
supersymmetry, n−2 for reduced supersymmetry and n for zero supersymmetry. Accordingly, 
each accompanying factor of Xij reduces the maximum power of � in the kinematic factors C...

of (4.36) by one. Given that the subleading symmetric polynomials �k in the spin sums reduce 

with the six-point Koba–Nielsen factor I6 = ∏
p<q |θ1(zpq , τ)|2α′spq then degenerates to the right hand side of (4.33)

and exemplifies that the correlators of the ambitwistor string and the superstring are identical after elimination of subcy-
cles.
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Table 1
The numbers Sn−1,n−k−1 of independent degree-k polynomials in Gij . Sum-
ming over the ranges 0 ≤ k ≤ n−4 and 0 ≤ k ≤ n−2 admitted by maximal and 
reduced supersymmetry yields the tabulated numbers #Cmax and #Cred = (n−1)!
of worldsheet functions in (4.36), respectively.

n k

0 1 2 3 4 5 #Cmax #Cred

2 1 0 1
3 1 1 0 2
4 1 3 2 1 6
5 1 6 11 6 7 24
6 1 10 35 50 24 46 120
7 1 15 85 225 274 120 326 720

the homogeneity degree in � and Gij by 2, 4, 6, . . ., the n-point kinematic factors along with p
powers of Xij have an expansion of the schematic form

(n−p) even : CI (�) = CI + �m�n Cmn
I + �m�n�p�q C

mnpq
I + . . . ,

(n−p) odd : CI (�) = �m Cm
I + �m�n�p C

mnp
I + �m�n�p�q�r C

mnpqr
I + . . . . (4.37)

The subscript I collectively refers to the labels of the accompanying p factors of Xij , and the 
highest powers of � is n−4−p, n−2−p or n−p for maximal, reduced or zero supersymmetry.

Before ending, let us record the number of independent worldsheet functions in (4.36) for su-
persymmetric theories. The counting is governed by unsigned Stirling numbers SN,r of the first 
kind (see Table 1) which count the number of ways to distribute N elements into r cycles. Scatter-
ing equations together with the symmetry properties of Xa1a2...am leave Sn−1,n−k−1 independent 
polynomials in Gij of degree k. Then, the range 0 ≤ k ≤ n−2 for reduced supersymmetry yields 
a total of #Cred = ∑n−2

k=0 Sn−1,n−k−1 = (n−1)! terms in (4.36). Maximal supersymmetry, how-
ever, only allows for 0 ≤ k ≤ n−4, and the resulting numbers #Cmax = ∑n−4

k=0 Sn−1,n−k−1 of 
basis functions are gathered in Table 1.

Even though the methods of this section only give access to their bosonic components, we will 
provide the maximally supersymmetric completions for the (n≤6)-point kinematic factors C(�)

in the next section. These kinematic factors in pure-spinor superspace are conveniently organized 
in terms of Berends–Giele currents, and we will spell out the corresponding Berends–Giele de-
scription of their gluon components which follows from the basis reduction described in this 
section.

4.6. Parity-odd contributions to RNS correlators

The above discussion has been tailored to the parity-even contributions to one-loop gauge-
theory amplitudes. However, the running of chiral fermions in the loop yields additional parity-
odd terms proportional to the d-dimensional Levi-Civita tensor εd . They arise from the single 
odd spin structure of the worldsheet fermions whose correlation functions in an ambitwistor 
setup have been described in [23]. By the integral over fermionic zero modes, these correlators 
are bound to vanish for multiplicities smaller than d2 .

As manifested by the expressions of [23] reviewed in Appendix E, the parity-odd correlators 
are polynomials in � and ∂ log θ1(zij , τ) of degree n+1− d

2 after integration over fermionic zero 
modes. Hence, their degeneration (3.9) at τ → i∞ is manifestly a polynomial in Gij and �, in 
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complete analogy to the above parity-even results. However, from the additional zero modes in 
the ghost sector of this spin structure, a picture changing operator introduces a spurious depen-
dence on its insertion point σ0 via G0j . Since BRST invariance of the RNS ambitwistor string 
guarantees that the final result is independent on σ0, one can always eliminate any appearance of 
G0j through a sequence of Fay identities and scattering equations.

The conclusion from the parity-even sector is therefore unchanged: The parity-odd contri-
butions to the n-point correlator due to chiral fermions can be expressed as degree-(n+1− d

2 )

polynomials in � and Gij with i, j �= 0. In particular, chiral theories in d = 10 and d = 6 dimen-
sions lead to the degrees n−4 and n−2 familiar from the parity-even sectors with maximal and 
half-maximal supersymmetry, respectively.

Since analogous statements hold for the RNS superstring, we will translate results for string 
correlators with all dependence on σ0 eliminated to the ambitwistor setup. In case of ten-
dimensional SYM, the contributions from chiral fermions vanishes below five points5

Kε10
n≤4 = 0 , Kε10

5 = i�mεm
10(e1, k2, e2, k3, e3, k4, e4, k5, e5) , (4.38)

where the shorthand εm
10(e1, k2, e2, k3, e3, k4, e4, k5, e5) = ε

mnpqrsabcd

10 en
1k

p

2 e
q

2kr
3e

s
3k

a
4eb

4kc
5e

d
5

avoids proliferation of indices. While the five-point correlator does not allow any contribution 
with G0j on kinematic grounds, a long calculation is needed to demonstrate the disappearance 
of G0j from the six-point correlator. The manifestly σ0-independent superstring correlators of 
[80,79] then degenerate into

Kε10
6 = i

[
(� · e2)ε10(�, e1, k3, e3, k4, e4, k5, e5, k6, e6) + (2 ↔ 3,4,5,6)

]
(4.39)

+ i
[
G12�mEm

12|3,4,5,6 + (2 ↔ 3,4,5,6)
] + i

[
G23�mEm

1|23,4,5,6 + (2,3|2,3,4,5,6)
]
,

with vectorial kinematic factors

Em
12|3,4,5,6 = (e1 · k2)ε

m
10(e2, k3, e3, . . . , k6, e6) − (e2 · k1)ε

m
10(e1, k3, e3, . . . , k6, e6)

− (e1 · e2)ε
m
10(k2, k3, e3, . . . , k6, e6) (4.40)

Em
1|23,4,5,6 = (e2 · k3)ε

m
10(e1, k23, e3, . . . , k6, e6) − (e3 · k2)ε

m
10(e1, k23, e2, . . . , k6, e6)

− (e2 · e3)ε
m
10(e1, k2, k3, . . . , k6, e6) − (k2 · k3)ε

m
10(e1, e2, e3, . . . , k6, e6) (4.41)

and k4, e4, k5, e5 in the ellipsis. The notation (i1, . . ., ip|i1, . . ., iq) on the right hand side of (4.39)
with q > p instructs to sum over all possibilities to choose p elements i1, . . . , ip out of the larger 
set {i1, . . ., iq}, for a total of 

(
q
p

)
terms.

For chiral SYM in six dimensions, the minimal multiplicity is shifted by two such that

Kε6
n≤2 = 0 , Kε6

3 = i�mεm
6 (e1, k2, e2, k3, e3) . (4.42)

The above expressions for Kε10
6 including the mechanisms for the decoupling of G0j have been 

generalized to arbitrary even dimensions in [49]. Accordingly, the six-dimensional four-point 
correlator

Kε6
4 = i

[
(� · e2)ε6(�, e1, k3, e3, k4, e4) + (2 ↔ 3,4)

]
(4.43)

+ i
[
G12�mEm

12|3,4 + (2 ↔ 3,4)
] + i

[
G23�mEm

1|23,4 + (2,3|2,3,4)
]
,

5 The factor of i reflects our conventions εm1m2...md ε
m1m2...md = +d! for the normalization of the Levi-Civita tensor.
d d
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follows the structure of Kε10
6 with kinematic factors resembling (4.40) and (4.41),

Em
12|3,4 = (e1 · k2)ε

m
6 (e2, k3, e3, k4, e4) − (e2 · k1)ε

m
6 (e1, k3, e3, k4, e4)

− (e1 · e2)ε
m
6 (k2, k3, e3, k4, e4) (4.44)

Em
1|23,4 = (e2 · k3)ε

m
6 (e1, k23, e3, k4, e4) − (e3 · k2)ε

m
6 (e1, k23, e2, k4, e4)

− (e2 · e3)ε
m
6 (e1, k2, k3, k4, e4) − (k2 · k3)ε

m
6 (e1, e2, e3, k4, e4) . (4.45)

The pure-spinor superspace expressions for the ten-dimensional correlators to be discussed in the 
following section automatically combine both the parity-even and the parity-odd components. 
The BCJ master numerators in n ≤ 4-point amplitudes of chiral SYM in six dimensions will be 
given in section 6.

5. Pure-spinor representations for the gauge multiplet

In this section we present the field-theory limit of the superstring one-loop correlators that 
have been computed using the pure-spinor formalism [34,81]. By the arguments of [29], identical 
results are obtained when performing the computation with the loop-level prescription [26] of the 
pure-spinor ambitwistor string [25].

5.1. Review of pure-spinor superspace

Supersymmetric scattering amplitudes in ten dimensions admit compact representations in 
the language of pure-spinor superspace. This new type of superspace arises naturally within the 
pure-spinor formalism of the superstring and its properties played an important role in recent 
advances in the computation of string scattering amplitudes.

A super-Poincaré invariant description of ten-dimensional SYM theory uses four types of 
superfields

Aα(x, θ), Am(x, θ), Wα(x, θ), Fmn(x, θ) (5.1)

that depend on the superspace coordinates xm, θα with vector indices m = 0, . . . , 9 and spinor in-
dices α = 1, . . . , 16 of the ten-dimensional Lorentz-group. They satisfy the following (linearized) 
equations of motion [57]

D(αAβ) = γ m
αβAm, DαWβ = 1

4
(γ mn)α

βFmn

DαAm = (γmW)α + ∂mAα, DαFmn = ∂[m(γn]W)α ,

(5.2)

where Dα ≡ ∂α + 1
2∂m(γ mθ)α is the supersymmetric covariant derivative and γ m

αβ = γ m
βα denote 

16 × 16 Pauli matrices.6 The θ -expansions of the superfields (5.1) are written7 in terms of gluon 
polarizations em, gluino wavefunctions χα as well as the field-strength fmn = 2k[men] [82]:

6 They often appear in antisymmetrized combinations subject to γ mnp
αβ = −γ

mnp
βα and γ mnpqr

αβ = γ
mnpqr
βα with normal-

ization conventions such as γ mn
α

β ≡ 1
2 (γ mγ n − γ nγ m)

β
α .

7 For historical reasons, we omit the factor of i in the plane wave expansion.
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Aα(x, θ) =
(1

2
em(γ mθ)α − 1

3
(χγmθ)(γ mθ)α − 1

32
fmn(γpθ)α(θγ mnpθ) + · · ·

)
ek·x

Am(x, θ) =
(
em − (χγmθ) − 1

8
(θγmγ pqθ)fpq + 1

12
(θγmγ pqθ)kp(χγqθ) + · · ·

)
ek·x

Wα(x, θ) =
(
χα − 1

4
(γ mnθ)αfmn + 1

4
(γ mnθ)αkm(χγnθ) + · · ·

)
ek·x (5.3)

Fmn(x, θ) =
(
fmn − 2k[m(χγn]θ) + 1

4
(θγ[mγ pqθ)kn]fpq + · · ·

)
ek·x .

Pure-spinor superspace expressions are defined as expansions of the form [34]

〈λαλβλγ fαβγ (θ)〉, (5.4)

where fαβγ (θ) denotes an arbitrary function of the superfields (5.1) and encodes the information 
about the polarizations of the particles participating in the scattering. For example, the three-
particle scattering of SYM states is described by fαβγ (θ) = A1

α(θ)A2
β(θ)A3

γ (θ). In the above 
definition (5.4), the variables λα are the zero modes of a pure spinor subject to (λγ mλ) = 0, and 
the angular bracket is defined by [34,83]

〈(λγ mθ)(λγ nθ)(λγ pθ)(θγmnpθ)〉 = 2880 , (5.5)

while expressions of different degrees λ�=3 or θ �=5 yield a vanishing bracket. The prescription 
(5.5) is motivated by supersymmetry and the cohomology of the BRST operator Q = λαDα : 
BRST invariant superfields Q(λαλβλγ fαβγ (θ)) = 0 are mapped to supersymmetric and gauge 
invariant components 〈λαλβλγ fαβγ (θ)〉. BRST exact superfields, on the other hand, are annihi-
lated, i.e. 〈Q(λαλβgαβ(θ))〉 = 0 for any choice of gαβ(θ).

5.2. Review of one-loop building blocks

The superspace description of SYM theory can be generalized to a multiparticle setup which 
is convenient to describe the scattering of a high number of external particles. The so-called 
multiparticle superfields have been defined using recursion relations both in local and non-local 
forms [44,45]. For example, in a notation where uppercase Latin letters P = 123 . . . p encompass 
the labels of p external legs, the non-local recursion relations are given by

AP
α = 1

2sP

∑
XY=P

[
AY

α (kY ·AX) +AY
m(γ mWX)α − (X ↔ Y)

]
(5.6)

AP
m = 1

2sP

∑
XY=P

[
AY

m(kY ·AX) +AY
nFX

mn + (WXγmWY ) − (X ↔ Y)
]

(5.7)

Wα
P = 1

2sP
km
P γ αβ

m

∑
XY=P

[
An

X(γnWY )β − (X ↔ Y)
]

(5.8)

Fmn
P = km

P An
P − kn

PAm
P −

∑
XY=P

(
Am

XAn
Y −An

XAm
Y

)
, (5.9)

and they give rise to a supersymmetric generalization of the Berends–Giele currents [84]. In 
the above formulae, the summation over XY = P denotes a sum over the deconcatenations of 
P = 123 . . . p into non-empty words X = 12 . . . j and Y = j+1 . . . p with j = 1, 2, . . . , p−1. 
The propagators 1/sP in the above recursions identify the tree-level subdiagrams described by 
the currents and characterize their non-local nature.
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The above Berends–Giele supercurrents constitute the fundamental building blocks for kine-
matic factors in ten-dimensional one-loop superstring amplitudes. They have been systematically 
assembled in [85] by closely following the zero-mode saturation rules in the pure-spinor formal-
ism [81]. For example, from the definitions

MA,B,C ≡ 1

3
(λγ mWA)(λγ nWB)Fmn

C + (A ↔ B,C) , (5.10)

Wm
A,B,C,D ≡ 1

12
(λγnWA)(λγpWB)(WCγ mnpWD) + (A,B|A,B,C,D) ,

it follows that

Mm
A,B,C,D ≡ [

Am
AMB,C,D + (A ↔ B,C,D)

] +Wm
A,B,C,D (5.11)

Mmn
A,B,C,D,E ≡An

AMm
B,C,D,E +Am

AWn
B,C,D,E + (A ↔ B,C,D,E)

exhibit covariant BRST transformations, and they naturally appear in string scattering computa-
tions at one loop.

5.2.1. BRST invariant combinations
Generalizing the above structures paves the way for the definition of kinematic BRST in-

variants and so-called pseudo-invariants of arbitrary tensor rank [85]. For example, using MP ≡
λαAP

α one can recursively8 define scalar BRST invariants such as:

C1|2,3,4 ≡ M1M2,3,4

C1|23,4,5 ≡ M1M23,4,5 + M12M3,4,5 − M13M2,4,5 ,

C1|234,5,6 ≡ M1M234,5,6 + M12M34,5,6 + M123M4,5,6 − M124M3,5,6

− M14M23,5,6 − M142M3,5,6 + M143M2,5,6 , (5.12)

C1|23,45,6 ≡ M1M23,45,6 + M12M45,3,6 − M13M45,2,6 + M14M23,5,6 − M15M23,4,6

+ [
M124M3,5,6 − M134M2,5,6 + M142M3,5,6 − M143M2,5,6 − (4 ↔ 5)

]
.

In addition, one can define pseudo-invariants9 of arbitrary tensor ranks and multiplicity. In this 
paper we will be concerned with explicit amplitudes up to multiplicity six, for which the follow-
ing definitions suffice

Cm
1|2,3,4,5 ≡ M1M

m
2,3,4,5 + [

km
2 M12M3,4,5 + (2 ↔ 3,4,5)

]
, (5.13)

Cm
1|23,4,5,6 ≡ M1M

m
23,4,5,6 + M12M

m
3,4,5,6 − M13M

m
2,4,5,6

+ [
km

3 M123M4,5,6 + (3 ↔ 4,5,6)
] − [

km
2 M132M4,5,6 + (2 ↔ 4,5,6)

]
+ [

km
4 M14M23,5,6 + km

4 M142M3,5,6 − km
4 M143M2,5,6 + (4 ↔ 5,6)

]
,

Cmn
1|2,3,4,5,6 ≡ M1M

mn
2,3,4,5,6 + 2

[
k
(m
2 M12M

n)
3,4,5,6 + (2 ↔ 3,4,5,6)

]
+ 2

[
k
(m
2 k

n)
3 (M123 + M132)M4,5,6 + (2,3|2,3,4,5,6)

]
.

8 See [85] for the explicit form of the recursion and associated definitions. To keep the presentation short, here we 
chose to write down a few examples of their outcome.

9 Pseudo-invariants are defined to be expressions whose BRST variation, instead of vanishing, gives rise to anomalous
superfields [85] that carry the fingerprints of the hexagon anomaly of ten-dimensional SYM. For a prominent example 
of their use, see [79].
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5.2.2. Pure-spinor superspace versus gluon components10

The above kinematic expressions are written in pure-spinor superspace. While compact super-
space expressions suffice for most purposes, one might still want to obtain the explicit component 
form of the amplitudes written in terms of the physical gluon and gluino polarizations. For-
tunately, the properties of the pure-spinor superspace measure (5.5) can be exploited to easily 
automate this task. In addition, with the techniques advanced in [45] the results take an ele-
gant and compact form even at the level of components. To see this one defines Berends–Giele 
currents for the gluon polarization and field-strength in component form, starting with the single-
particle cases emi = em

i and fmn
i = km

i en
i − kn

i em
i :

emP ≡ 1

2sP

∑
XY=P

[
emY (kY · eX) + eYn f

mn
X − (X ↔ Y)

]
(5.14)

fmn
P ≡ km

P e
n
P − kn

P e
m
P −

∑
XY=P

(
emXe

n
Y − enXe

m
Y

)
. (5.15)

This can be viewed as a truncation of (5.7) and (5.9) where the fermionic variables are sup-
pressed, and it is straightforward to generalize (5.14) and (5.15) to include gluino polarizations. 
Using the multiparticle Harnad–Shnider gauge introduced in [45], one can show that the gluon 
components of the above BRST pseudo-invariants can be compactly written in terms of the 
t8-tensor [87]:

tA,B,C,D ≡ fmn
A f

np
B f

pq
C f

qm
D − 1

4
(fmn

A fnm
B )(f

pq
C f

qp
D ) + cyc(B,C,D) = t8(fA, fB, fC, fD)

tmA,B,C,D,E ≡ [
emAtB,C,D,E + (A ↔ B,C,D,E)

] + i

2
εm

10(eA, fB, fC, fD, fE) (5.16)

tmn
A,B,C,D,E,F ≡ 2

[
e
(m
A e

n)
B tC,D,E,F + (A,B|A,B,C,D,E,F )

]
+ i

[
e
(m
B ε

n)
10(eA, fC, fD, fE, fF ) + (B ↔ C,D,E,F )

]
.

Moreover, we have used the shorthand εm
10(eA, fB, fC, fD, fE) ≡ ε

mnpqrsabcd

10 enAf
pq
B frsC fab

D fcdE to 
avoid proliferation of indices in the parity-odd contributions from section 4.6. Motivated by the 
simple examples

−16 〈C1|2,3,4〉 = t1,2,3,4 (5.17)

−16 〈C1|23,4,5〉 = t12,3,4,5 + t1,23,4,5 − t13,2,4,5 ,

−16 〈Cm
1|2,3,4,5〉 = tm1,2,3,4,5 + (

km
2 t12,3,4,5 + 2 ↔ 3,4,5

)
−16 〈Cmn

1|2,3,4,5,6〉 = tmn
1,2,3,4,5,6 + (

2k
(m
2 t

n)
12,3,4,5,6 + (2 ↔ 3,4,5,6)

)
− (

2k
(m
2 k

n)
3 t213,4,5,6 + (2,3|2,3,4,5,6)

)
,

one can verify that the translation from pseudo-BRST invariants (5.12) and (5.13) to their gluonic 
components can be obtained as follows11

10 This subsection was written by Carlos Mafra with the aid of [86].
11 It is important to stress that the validity of the map (5.18) is checked within BRST (pseudo-)invariants as its contact-
term mismatch cancels in such cases.
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−16 〈MAMB,C,D〉 → tA,B,C,D

−16 〈MAMm
B,C,D,E〉 → tmA,B,C,D,E (5.18)

−16 〈MAMmn
B,C,D,E,F 〉 → tmn

A,B,C,D,E,F .

5.3. Maximally supersymmetric one-loop correlators from string theory

In string theory, the supersymmetric one-loop integrands at four, five and six points have been 
computed using the pure-spinor formalism in [81,46,79]. In the field-theory limit they can be 
written as,12

K4 = 〈C1|2,3,4〉 (5.19)

K5 = 〈�mCm
1|2,3,4,5 + [X23C1|23,4,5 + (2,3|2,3,4,5)]〉 (5.20)

K6 = 〈1

2
�m�nC

mn
1|2,3,4,5,6 + �m

[
X23C

m
1|23,4,5,6 + (2,3|2,3,4,5,6)

]
+ [

X23 X34C1|234,5,6 − X23 X24C1|324,5,6 − X24 X34C1|243,5,6 + (2,3,4|2,3,4,5,6)
]

+ [
X23 X45C1|23,45,6 + (2,3|4,5|2,3,4,5,6)

] − 1

4
km

1 kn
1Cmn

1|2,3,4,5,6〉 , (5.21)

see the previous subsection for their gluon component expansions. We note that the last term in 
the six-point correlator without any accompanying factors of Xij or � is permutation symmetric 
and in fact proportional to the six-point tree-level amplitude of Born–Infeld theory13:

− 1

4
km

1 kn
1 〈Cmn

1|2,3,4,5,6〉 = M tree
BI (1,2,3,4,5,6) (5.22)

=
∑
ρ∈S4

s1ρ(2)(s1ρ(3) + sρ(23))(sρ(45) + sρ(4)6)sρ(5)6A
tree(1, ρ(2,3,4,5),6)

The representation of the Born–Infeld amplitude is based on its double-copy structure [20] in-
volving gauge-theory trees and the BCJ master numerators for the NLSM of [30,32].

5.4. Pure-spinor representations of BCJ numerators and partial integrands

As discussed in section 3.4, one can identify BCJ master numerators at one loop by rewriting 
the correlator in terms of Parke–Taylor factors. Applying the dictionary (3.17) to the pure-spinor 
correlators (5.19) to (5.21) and exploiting the absence of G1j in our basis of functions leads 
to a manifestly supersymmetric CHY integrand of the form (3.38). We obtain the following 
supersymmetric BCJ master numerators C+|ρ(2,...,n)|−(�) for the n-gon diagrams:

C+|ρ(2,3,4)|−(�) = 〈C1|2,3,4〉 = s12s23A
tree(1,2,3,4) (5.23)

C+|ρ(2,...,5)|−(�) = �m〈Cm
1|2,3,4,5〉 + 1

2

[
s23sgnρ

23〈C1|23,4,5〉 + (2,3|2,3,4,5)
]

(5.24)

C+|ρ(2,...,6)|−(�) = 1

2
�m�n〈Cmn

1|2,3,4,5,6〉 + 1

2
�m

[
s23sgnρ

23〈Cm
1|23,4,5,6〉 + (2,3|2,3,4,5,6)

]
12 This particular representation using the explicit loop momentum �m is based on unpublished work [88].
13 We thank Carlos Mafra for several discussions on finding a compact representation for the LHS of (5.22).
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+ 1

4

[
s23s45sgnρ

23sgnρ
45〈C1|23,45,6〉 + (2,3|4,5|2,3,4,5,6)

]
(5.25)

+ 1

4

[
s23s34sgnρ

23sgnρ
34〈C1|234,5,6〉 − s23s24sgnρ

23sgnρ
24〈C1|324,5,6〉

− s24s34sgnρ
24sgnρ

34〈C1|243,5,6〉 + (2,3,4|2,3,4,5,6)
]

− 1

4
k1
mk1

n〈Cmn
1|2,3,4,5,6〉 .

An explicit form of the bosonic components in terms of recursive Berends–Giele currents is 
readily obtained via (5.18). The notation +(2, 3|4, 5|2, 3, 4, 5, 6) in the second line of (5.25)
means a sum over all pairs {i, j} and {p, q} such that i, j, p, q ∈ {2, 3, 4, 5, 6} and i < j , p < q

and i < p. In absence of factors of sgnρ
1j , the above n-gon numerators do not depend on the 

position of leg 1, and by the kinematic Jacobi identities, numerators with leg 1 involved in a 
tree-level subdiagram vanish.

Note that the above BCJ numerators yield the following partial integrands

a(1,2,3,4,−,+) = 〈C1|2,3,4〉
s1,�s12,�s123,�

(5.26)

a(1,2, . . . ,5,−,+) = 〈�mCm
1|2,3,4,5 − 1

2 [s23C1|23,4,5 + (2,3|2,3,4,5)]〉
s1,�s12,�s123,�s1234,�

(5.27)

− 〈C1|23,4,5〉
s1,�s123,�s1234,�

− 〈C1|34,2,5〉
s1,�s12,�s1234,�

− 〈C1|45,2,3〉
s1,�s12,�s123,�

a(1,2, . . . ,6,−,+) =
1
2 〈�m�nC

mn
1|2,3,4,5,6 − �m[s23C

m
1|23,4,5,6 + (2,3|2,3,4,5,6)]〉

s1,�s12,�s123,�s1234,�s12345,�

+ 〈C1|2;3;4;5;6〉
s1,�s12,�s123,�s1234,�s12345,�

+ 〈C1|23;4;5;6 − �mCm
1|23,4,5,6〉

s1,�s123,�s1234,�s12345,�

+ 〈C1|2;34;5;6 − �mCm
1|2,34,5,6〉

s1,�s12,�s1234,�s12345,�

+ 〈C1|2;3;45;6 − �mCm
1|2,3,45,6〉

s1,�s12,�s123,�s12345,�

+ 〈C1|2;3;4;56 − �mCm
1|2,3,4,56〉

s1,�s12,�s123,�s1234,�

+ 〈C1|234,5,6〉
s1,�s1234,�s12345,�

(5.28)

+ 〈C1|2,345,6〉
s1,�s12,�s12345,�

+ 〈C1|2,3,456〉
s1,�s12,�s123,�

+ 〈C1|23,45,6〉
s1,�s123,�s12345,�

+ 〈C1|23,4,56〉
s1,�s123,�s1234,�

+ 〈C1|2,34,56〉
s1,�s12,�s1234,�

with the scalar hexagon numerator

4C1|2;3;4;5;6 = −k1
mk1

nC
mn
1|2,3,4,5,6 + [

s23s45C1|23,45,6 + (2,3|4,5|2,3,4,5,6)
]

(5.29)

+ [
s23s34C1|234,5,6 − s23s24C1|324,5,6 − s24s34C1|243,5,6 + (2,3,4|2,3,4,5,6)

]
and scalar pentagons such as

2C1|23;4;5;6 = s45C1|23,45,6 + s46C1|23,46,5 + s56C1|23,4,56 (5.30)

+ [
s34C1|234,5,6 − s24C1|324,5,6 + (4 ↔ 5,6)

]
.
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Fig. 5. Counterexample for kinematic Jacobi relations at six points.

The partial integrands (5.26) to (5.28) have been checked to follow from the partial-fraction de-
composition of the Feynman integrals in the color-ordered amplitudes of [9]. Given that the scalar 
invariants 〈C1|A,B,C〉 can be expanded in a BCJ basis of SYM tree amplitudes Atree(. . .) [46,44], 
the five-point kinematic factors 〈�mCm

1|2,3,4,5〉 and 〈C1|ij,k,l〉 allow for three linearly independent 
permutations of the partial integrand (5.27). This is another example of how maximal super-
symmetry introduces extra degeneracies beyond the upper bound of (n−1)! linearly independent 
n-point partial integrands.

5.5. Reconciling the hexagon anomaly with the BCJ duality

5.5.1. Deviation from BCJ relations in the literature
Among the one-loop integrands constructed in [9] from BRST invariance and locality, only 

the five-point numerators were found to obey the BCJ duality. It deserves clarification why the 
six-point amplitude of [9] incorporated deviations from the BCJ duality even though it gives rise 
to the same partial integrand (5.28) as the BCJ master numerators (5.25). Generally speaking, 
the puzzle is resolved by the different bookkeeping of cubic diagrams resulting from the new 
representation of Feynman integrals reviewed in section 2.5. As explained in subsection 3.4, this 
leaves more flexibility to tune the numerators such as to satisfy the kinematic Jacobi relations.

An example for a kinematic Jacobi relation which has been violated in the six-point amplitude 
representation of [9] is depicted in Fig. 5: Since each cyclically inequivalent pentagon in the 
reference is associated with a single numerator, diagrams with different positions of � among the 
internal edges are interlocked through shifts such as � → � − k23. The resulting numerator for 
the rightmost diagram in Fig. 5 was found to violate the depicted Jacobi relation [9].

In the present context with most propagators linear in �, however, the numerators for the pen-
tagon diagrams on the right hand side are both given by differences C+|23456|−(�) −C+|32456|−(�)

of hexagon numerators (5.25). In other words, the numerator of the rightmost diagram is not
given by C+|45623|−(�−k23) − C+|45632|−(�−k23) as one might naively think by tracking the mo-
mentum in the edge adjacent to leg 1. We exploit that the hexagon numerators (5.25) do not 
depend on the position of leg 1 in the diagram, and the box numerator on the left hand side of 
Fig. 5 with leg 1 in a massive corner vanishes accordingly.

5.5.2. The hexagon anomaly from a partial integrand
It has been speculated in [9] that the deviations from six-point kinematic Jacobi relations in 

the representation of the reference are related to the hexagon anomaly of ten-dimensional SYM. 
We will propose a treatment of the anomaly which preserves both the BCJ duality and the KLT 
relations for supergravity amplitudes.
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At the level of the partial integrand (5.28), the hexagon anomaly can be seen from the tensor 
hexagon numerator 1

2�m�nC
mn
1|2,3,4,5,6 whose non-zero BRST variation ∼ �m�nη

mn [85] signals a 
breakdown of linearized gauge invariance. The gauge variations [79]

a(1,2, . . . ,6,−,+)
∣∣
e1→k1

= �m�nη
mniε10(k2, e2, k3, e3, . . . , k6, e6)

s1,�s12,�s123,�s1234,�s12345,�

(5.31)

of the partial integrands combine to a rational term in the ten-dimensional color-stripped single-
trace amplitude after undoing the partial-fraction rearrangement of the hexagon:

A(1,2, . . . ,6)
∣∣
e1→k1

= iε10(k2, e2, k3, e3, . . . , k6, e6)

∫
d10�

�2

×
{

�m�nη
mn

s1,�s12,�s123,�s1234,�s12345,�

+ cyc(1,2,3,4,5,6)

}
= 32iε10(k2, e2, k3, e3, . . . , k6, e6)

∫
d10� (5.32){

�m�nη
mn

�2(�+k1)2(�+k12)2 . . . (�+k12345)2

− 1

(�+k1)2(�+k12)2 . . . (�+k12345)2

}
= iε10(k2, e2, k3, e3, . . . , k6, e6)

(2π)5

5!
In dimensional regularization with d10� → d10−2ε�, the rational result can be understood from 
the difference between the ten-dimensional components �m�nη

mn in the numerator and the 
(10−2ε)-dimensional loop momenta in the propagators [89].

5.5.3. BCJ and KLT relations in presence of anomalies
Given that the partial integrand (5.28) only exhibits a gauge variation (5.31) in the first leg 

but stays invariant under ej → kj for the remaining ones j = 2, 3, . . . , 6, it cannot stem from 
a permutation invariant CHY integrand. Indeed, the breakdown of permutation symmetry in the 
string-theory correlator underlying (5.21) has been identified as a boundary term in moduli space 
[79] which translates into

K6 − (K6
∣∣
1↔2) = �m�nη

mniε10(e1, e2, k3, e3, k4, e4, k5, e5, k6, e6) . (5.33)

Strictly speaking, one-loop (n ≥ 6)-point correlators single out one external leg14 which carries 
the violation of linearized gauge invariance by a rational term (5.32) [90,79]. Keeping track of the 
singled-out leg j in the correlator through an additional superscript K(j)

n (and I(j)
SYM according to 

(3.17)), partial integrands also need to be defined with a reference leg,

a(j)(τ (1,2, . . . , n,+,−)) =
∫

dμtree
n+2 PT(τ (1,2, . . . , n,+,−))I(j)

SYM(�) , (5.34)

which is taken to be j = 1 in the above expressions. However, this dependence on the reference 
leg j does not alter the BCJ relations (3.35) and (3.36) among a(j)(τ (1, 2, . . . , n, +, −)) with 

14 In the opening line for the computation of the superstring amplitudes, one leg enters through the unintegrated vertex 
operator in the pure-spinor formalism or in the −1 superghost picture in the parity-odd sector of the RNS setup.
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different permutations τ , provided that j is the same for each term in the BCJ relations: They 
are a sole consequence of the scattering equations relating the Parke–Taylor factors in (5.34), 
regardless of the permutation properties of the accompanying I(j)

SYM(�). By a similar argument, 
kinematic Jacobi relations are not affected by the dependence (5.33) of the underlying correlators 
on the reference leg.

Accordingly, there is no obstruction in constructing six-point integrands for ten-dimensional 
supergravity from the double-copy of the BCJ numerators (5.25) or from the partial integrands 
(5.28) along with the one-loop KLT relations. Regardless of the relative chirality of the fermions 
in the two gauge-theory copies, the resulting supergravity is known to have no hexagon anomaly 
[91].

In the context of the double-copy approach, anomaly cancellation suggests that the integrated 
supergravity amplitude

M6 =
∫

d10�

�2

∑
ρ,τ∈S5

a(j)(+, ρ(2,3,4,5,6),1,−) S[ρ|τ ]� ã(j)(+, τ (2,3,4,5,6),−,1)

(5.35)

does not depend on the choice of the reference leg j in the SYM constituents. It would be 
interesting to verify this by explicitly integrating the hexagon contributions along the lines of 
(5.32) which carry the spurious sensitivity to j .

6. Bosonic correlators with reduced supersymmetry

This section is devoted to explicit and simplified representations of the CHY correlators for 
half-maximal and parity-even parts of quarter-maximal SYM. The three- and four-point results of 
this section coincide with the field-theory limits of superstring one-loop correlators with reduced 
supersymmetry, with the results of [49,50] as a starting point.

Most of the subsequent expressions for the correlators15

K1/2
n ≡ −1

2
K

1
2 −SYM
n (6.1)

are tailored to chiral SYM in six dimensions with eight supercharges. Their dimensional re-
ductions and quarter-maximally supersymmetric counterparts in four dimensions are straight-
forwardly obtained by dropping the parity-odd contributions ∼ ε6 and rescaling the scalar box 
numerator in the four-point correlator of section 6.2.

6.1. Review of Minahaning

As a consequence of the spin sums (4.29) and (4.30), parity even parts of n-point CHY corre-
lators of half-maximal and quarter-maximal SYM are polynomials in � and Gij of degree n−2. 
The symmetry properties of the resulting BCJ master numerators (3.18) give rise to triangle and 
bubble diagrams in the partial integrands (3.31). This includes bubbles in the external legs as 
depicted in figure Fig. 6, where one of the propagator ∼ s−1

12...n−1 = k−2
n formally diverges in the 

phase space of n massless particles.

15 The additional normalization factor of − 1
2 as compared to (4.26) is chosen for convenience to arrive at more natural 

expressions for kinematic factors in (6.6) and later equations.



S. He et al. / Nuclear Physics B 930 (2018) 328–383 367
Fig. 6. The divergent propagator s−1
ij

in external bubbles is canceled by a formally vanishing factor of sij in the kinematic 
numerator.

The external-bubble numerators derived from the CHY- or superstring correlators turn out to 
vanish with s12...n−1. The resulting “0/0” indeterminate can be regularized by relaxing momen-
tum conservation in intermediate steps, following the proposal of Minahan in 1987 [69] and the 
recent four-point implementation in [49,50]. The idea is to use no relation among Mandelstam 
invariants other than 

∑n
1≤i<j sij = 0 which amounts to a lightlike deformation of momentum 

conservation

k1 + k2 + . . . + kn = p , p2 = 0 , (ei · p) = 0 . (6.2)

In this regularization scheme for infrared divergences, the three-point correlator (4.15) with the 
spin sums (4.29), (4.30) and parity-odd part (4.42) is evaluated as

K1/2
3 = �m

[
em

1 (e2 · k3)(e3 · k2) + (1 ↔ 2,3)
] + iε6(�, e1, k2, e2, k3, e3)

+ [
G12s12(e1 · e2)(k1 · e3) + cyc(1,2,3)

]
, (6.3)

see [69,49,50] for the superstring ancestors. The deformation (6.2) temporarily assigns nonzero 
values such as s12 = 1

2 (k1 + k2)
2 = 1

2 (k3 + p)2 = (k3 · p) to the three-particle Mandelstam in-
variants, and the resulting triangle numerators (3.18) are given by

N+|123|−(�) = �m

[
em

1 (e2 · k3)(e3 · k2) + (1 ↔ 2,3)
] + iε6(�, e1, k2, e2, k3, e3)

− 1

2

[
s12(e1 · e2)(k1 · e3) + s13(e1 · e3)(k1 · e2) + s23(e2 · e3)(k2 · e1)

]
. (6.4)

After dressing with the doubly-partial amplitudes (3.24), all potential divergences from propaga-
tors s−1

ij are compensated by the numerator factors of ∼ sij in second line. In other words, the 
limit p → 0 and thereby sij → 0 is taken in the last step of

a1/2(1,2,3,−,+) = lim
sij →0

lim
k±→±�

∑
ρ∈S3

mtree[+,1,2,3,−|+, ρ(1,2,3),−]N+|ρ(123)|−(�)

= lim
sij →0

{
− 1

2

[ 2

s12s12,�

+ 1

s1,�s12,�

]
s12(e1 · e2)(k1 · e3) − 1

2

1

s1,�s12,�

s13(e1 · e3)(k1 · e2)

− 1

2

[ 2

s23s1,�

+ 1

s1,�s12,�

]
s23(e2 · e3)(k2 · e1) + �mNm

1,2,3

s1,�s12,�

}
(6.5)

= �mNm
1,2,3

s1,�s12,�

− (e1 · e2)(k1 · e3)

s12,�

− (e2 · e3)(k2 · e1)

s1,�

,

see (3.24) for the doubly-partial amplitudes. For the external bubble adjacent to leg 3, the cubic-
diagram numerator N+|123|−(�) − N+|213|−(�) = −s12(e1 · e2)(k1 · e3) cancels the divergent 
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propagator16 s−1
12 , and the situation is depicted in Fig. 6. The vector triangle contribution �mNm

1,2,3
refers to the first line of (6.4) which is unaffected by the limit sij → 0.

The analogous discussion with propagators quadratic in � can be found in [50], and in both 
the reference and in (6.5), gauge invariance of the integrands relies on the bubble contributions. 
Although the partial-fraction representation of the external bubbles manifest that they integrate to 
zero in color-stripped single-trace amplitudes (3.28), it would obscure gauge invariance to drop 
them at the level of partial integrands.

Before discussing the cancellation of divergent propagators in four-point partial integrands 
analogous to (6.5), we describe the correlator (6.3) in a Berends–Giele framework and set the 
stage for kinematic factors at higher multiplicity.

6.2. Berends–Giele representation of reduced-supersymmetry correlators

Kinematic factors in maximally supersymmetric correlators are conveniently expressed in 
terms of the Berends–Giele currents in (5.16) and their supersymmetrizations. In the same way, 
the following building blocks are tailored to describe the polarization dependence in gluonic 
one-loop amplitudes with reduced supersymmetry [49,50],

tA,B ≡ −1

2
fmn
A fmn

B

tmA,B,C ≡ [
emAtB,C + (A ↔ B,C)

] + i

4
εm

6 (eA, fB, fC) (6.6)

tmn
A,B,C,D ≡ 2

[
e
(m
A e

n)
B tC,D + (A,B|A,B,C,D)

] + i

2

[
e
(m
B ε

n)
6 (eA, fC, fD) + (B ↔ C,D)

]
.

By inserting the recursive definitions (5.14) and (5.15) of the Berends–Giele currents emA and fmn
B , 

the kinematic factor of the external bubble in Fig. 6 is reproduced by

t12,3 = (e1 · e2)(k1 · e3) . (6.7)

The cancellation of the pole fmn
12 ∼ s−1

12 in t12,3 follows from the infrared regularization scheme 
in (6.2). One can analogously show that the four-point scalars t12,34 and t123,4 only have simple 
poles in sij [50] in spite of the spurious pole structure ∼ (sij s123)

−1 of fmn
123.

In complete analogy to their maximally supersymmetric counterparts (5.12) and (5.13), the 
bosonic building blocks (6.6) enter one-loop amplitudes in their gauge invariant combinations 
[49,50]

C
1/2
1|23 ≡ t1,23 + t12,3 − t13,2 ,

C
1/2
1|234 ≡ t1,234 + t12,34 + t123,4 − t124,3 − t14,23 − t142,3 + t143,2

C
m,1/2
1|2,3 ≡ tm1,2,3 + km

2 t12,3 + km
3 t13,2 , (6.8)

C
m,1/2
1|23,4 ≡ tm1,23,4 + tm12,3,4 − tm13,2,4 + km

3 t123,4 − km
2 t132,4 + km

4

[
t14,23 − t214,3 + t314,2

]
.

16 A similar interplay between divergent propagators and vanishing numerators has been observed in the four-point 
four-loop amplitude of maximal SYM [3]. Their finite net contribution plays an important role to obtain the expected UV 
divergence.
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The parity-odd part of the tensorial generalization

C
mn,1/2
1|2,3,4 ≡ tmn

1,2,3,4 + 2
[
k
(m
2 t

n)
12,3,4 + (2 ↔ 3,4)

] − 2
[
k
(m
2 k

n)
3 t213,4 + (2,3|2,3,4)

]
(6.9)

which will appear in a box numerator gives rise to an anomalous gauge variation

C
mn,1/2
1|2,3,4

∣∣
e1→k1

= 2iηmnε6(k2, e2, k3, e3, k4, e4) , C
mn,1/2
1|2,3,4

∣∣
ej →kj

= 0 , j = 2,3,4

(6.10)

analogous to (5.31) due to the ten-dimensional tensor hexagon in pure-spinor superspace. The 
kinematic factors (6.8) and (6.9) have been noticed in the simplification of the superstring corre-
lators [49] as well as the resulting field-theory limits [50], and the scalar instances coincide with 
the tree-level amplitudes, C1/2

1|23...n = Atree(1, 2, 3, . . . , n).
In terms of the kinematic variables in (6.6), the three-point correlator (6.3) in half-maximally 

supersymmetric SYM and its four-point counterpart are given by

K1/2
3 = �mtm1,2,3 + [X12t12,3 + cyc(1,2,3)] (6.11)

K1/2
4 = 1

2
�m�nt

mn
1,2,3,4 + �m[X12t

m
12,3,4 + (1,2|1,2,3,4)]

+ [X12(X13 + X23)t123,4 + X13(X12 + X32)t132,4 + (4 ↔ 3,2,1)]
+ [X12X34t12,34 + cyc(2,3,4)] + 1

4
t8(f1, f2, f3, f4) , (6.12)

see [49] for the superstring antecedent of the latter with the loop momentum integrated out. Fol-
lowing the spin sums in (4.29) and (4.31), the relative factor between the last term t8(f1, f2, f3, f4)
and the remaining correlator depends on the particle content, also see section 5.2 of [50] for a 
discussion in a string-theory context. The use of scattering equations explained in section 4.5
leads to the manifestly gauge invariant rewritings

K1/2
3 = �mC

m,1/2
1|2,3 + X23C

1/2
1|23 (6.13)

K1/2
4 = 1

2
�m�nC

mn,1/2
1|2,3,4 + �m[X23C

m,1/2
1|23,4 + cyc(2,3,4)] (6.14)

+ [X23X34C
1/2
1|234 − X23X24C

1/2
1|324 − X24X34C

1/2
1|243] − 1

4
s23s34C

1/2
1|234 ,

and we have rewritten the last term using t8(f1, f2, f3, f4) = −s23s34C
1/2
1|234. The manipulations 

in section 4.6 and Appendix A allow to express higher-multiplicity correlators in a similar ba-
sis of functions. Note the close structural similarity to the maximally supersymmetric five- and 
six-point correlators in (5.20) and (5.21).

6.3. BCJ numerators and partial integrands with reduced supersymmetry

The correlators (6.13) and (6.14) translate into the following gauge invariant BCJ master 
numerators

C1/2
+|ρ(2,3)|−(�) = �mC

m,1/2
1|2,3 + 1

2
s23sgnρ

23C
1/2
1|23 (6.15)

C1/2
+|ρ(2,3,4)|−(�) = 1

�m�nC
mn,1/2
1|2,3,4 + 1

�m

[
s23sgnρ

23C
m,1/2
1|23,4 + cyc(2,3,4)

]
(6.16)
2 2
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− 1

4
s23s34C

1/2
1|234 + 1

4

[
s23sgnρ

23s34sgnρ
34C

1/2
1|234 − s23sgnρ

23s24sgnρ
24C

1/2
1|324

− s24sgnρ
24s34sgnρ

34C
1/2
1|243

]
for triangle- and box diagrams, respectively. These numerators result in the following expressions 
for the three- and four-point partial integrands [13]

a1/2(1,2,3,−,+) = �mC
m,1/2
1|2,3

s1,�s12,�

− C
1/2
1|23

s1,�

(6.17)

= �m

[
em

1 (k2 · e3)(k3 · e2) + (1 ↔ 2,3)
] + [

(� · k2)(e1 · e2)(k1 · e3) + (2 ↔ 3)
]

s1,�s12,�

+ iε6(�, e1, k2, e2, k3, e3)

s1,�s12,�

+ (e1 · e2)(k1 · e3) + (e2 · e3)(k2 · e1) + (e1 · e3)(k3 · e2)

s1,�

a1/2(1,2,3,4,−,+) = C
1/2
1|234

s1,�

− �mC
m,1/2
1|23,4

s1,�s123,�

− �mC
m,1/2
1|34,2

s1,�s12,�

− s23s34C
1/2
1|234

2s1,�s12,�s123,�

+ �m�nC
mn,1/2
1|2,3,4 − �m

[
s23C

m,1/2
1|23,4 + s24C

m,1/2
1|24,3 + s34C

m,1/2
1|34,2

]
2s1,�s12,�s123,�

(6.18)

cf. (6.5) for the three-point case. We have exploited permutation invariance of s23s34C
1/2
1|234 to 

identify the scalar box numerator in the first line of (6.18), and its prefactor − 1
2 is specific to the 

spin sum (4.29) of a single vector multiplet in the loop. In presence of nvec vector multiplets and 
nhyp hypermultiplets, the partial integrand generalizes to

a
1/2
nvec,nhyp(1,2,3,4,−,+) =

(
nvec + nhyp

2

){
C

1/2
1|234

s1,�

− �mC
m,1/2
1|23,4

s1,�s123,�

− �mC
m,1/2
1|34,2

s1,�s12,�

(6.19)

+ �m�nC
mn,1/2
1|2,3,4 − �m

[
s23C

m,1/2
1|23,4 + s24C

m,1/2
1|24,3 + s34C

m,1/2
1|34,2

]
2s1,�s12,�s123,�

}
− nvecs23s34C

1/2
1|234

2s1,�s12,�s123,�

by virtue of the additional spin sum (4.31), and the vanishing of the scalar box numerator with 
nvec has been noticed in [50].

Note that Kleiss–Kuijf relations (3.30) imply the vanishing of non-planar partial integrands at 
three points,

aβ−SYM(1,2,−,3,+) = 0 , β = 1,
1

2
,

1

4
. (6.20)

Accordingly, the three-point supergravity integrand from the KLT formula (3.43) involving at 
least one supersymmetric gauge-theory copy β = 1, 12 , 14 is identically zero,

m
(S)YM⊗β−SYM
3 (�) =

∑
ρ,τ∈S2

a(S)YM(+, ρ(2,3),1,−) S[ρ|τ ]� ãβ−SYM(+, τ (2,3),−,1)

= 0 . (6.21)

At four points, the anomalous gauge variation (6.10) of the tensor building block yields

a1/2(1,2,3,4,−,+)
∣∣
e1→k1

= �m�nη
mniε6(k2, e2, k3, e3, k4, e4)

s1,�s12,�s123,�

(6.22)
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in analogy to (5.31). For a six-dimensional color-stripped single-trace amplitude, one can follow 
the manipulations of (5.32) to undo the partial-fraction rearrangement of the box and to identify 
the anomaly as a purely rational term:

A1/2(1,2,3,4)
∣∣
e1→k1

= iε6(k2, e2, k3, e3, k4, e4)
(2π)3

3! . (6.23)

The representation of A1/2(1, 2, 3, 4) constructed in [50] from gauge invariance and locality is 
equivalent to the partial integrand (6.18), but it was observed in the reference to deviate from 
the BCJ duality. By the arguments of section 5.5, organizing the loop integrand in terms of 
cubic diagrams with propagators linear in � (cf. section 3.4) alleviates the task of finding BCJ 
numerators. Hence, there is no contradiction in presenting BCJ master numerators (6.16) in terms 
of the same building blocks seen in the BCJ violating setup of [50] since the cubic diagrams in 
the reference were tailored to propagators quadratic in �.

Similar to the maximally supersymmetric six-point correlator, the anomalous four-point cor-
relator (6.14) also violates permutation invariance, cf. (5.33). Following the reasoning around 
(5.34), a fully accurate labeling of the partial integrand (6.18) would involve an additional su-
perscript a1/2(1, 2, 3, 4, −, +) → a1/2,(j=1)(1, 2, 3, 4, −, +) to indicate that linearized gauge 
invariance is violated in the j th leg, see (6.10). Finally, the dependence on j is expected to 
disappear after integrating the supergravity amplitude from the one-loop KLT formula (3.43)
over �.

7. Conclusions

In this paper we studied new BCJ representations of one-loop scattering amplitudes in su-
persymmetric gauge-theory and gravity amplitudes, which are largely inspired by both the 
CHY/ambitwistor-string formulation and superstring theory. Based on the CHY-inspired rep-
resentation for supersymmetric amplitudes, we give a general proof of one-loop BCJ and KLT 
relations for the partial integrands proposed in [13]. In the RNS incarnation of this new represen-
tation, we bring one-loop correlators on a nodal Riemann sphere into a form which makes BCJ 
numerators accessible for all multiplicities. The method works for external bosons in presence of 
any nonzero number of supercharges and for both parity-even and parity-odd sectors. Moreover, 
from the field-theory limit of pure-spinor superstrings, we supersymmetrized the (n ≤ 6)-point 
BCJ numerators to include external fermions as well.

We would like to highlight three intriguing features of our results. First, the manifestly gauge-
and diffeomorphism-invariant BCJ and KLT relations can be proved solely based on structural 
results on one-loop CHY formulae, without referring to the explicit form of the BCJ numerators. 
Second, correlators with maximal and reduced supersymmetry are shown to be degree-(n−4)

and degree-(n−2) polynomials in loop momentum � and the Green function on the nodal sphere, 
manifesting the powercounting of � including the no-triangle property for maximal supersymme-
try. Last but not least, since we naturally obtain one-loop amplitudes with linear propagators, our 
BCJ numerators satisfy the color-kinematics duality in a slightly different organization scheme 
of cubic diagrams as compared to its original loop-level formulation [2], see section 3.4. How-
ever, to our best knowledge, this is the first D-dimensional, all-multiplicity control of one-loop 
BCJ numerators which can be directly double copied to give supergravity integrands.

Although we have only considered supersymmetric gauge theories and gravity, we expect our 
results to hold for non-supersymmetric theories as well. Besides, our main results naturally ap-
ply to other theories as well: the one-loop KLT formula with the NLSM and (super-)Yang–Mills 
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theory yields integrands of Born–Infeld theory along with supersymmetric extensions to Dirac–
Born–Infeld–Volkov–Akulov theories. As will be elaborated elsewhere, the one-loop amplitude 
relations for EYM partial integrands [13] can be proved using CHY representations. Using ex-
plicit results for the correlators, one can obtain BCJ numerators for one-loop amplitudes of the 
NLSM and for EYM in a similar way.

There are several directions to investigate in the future. Already at one loop, it would be highly 
desirable to determine higher-point supersymmetric correlators from the field-theory limit of the 
pure-spinor formalism. We expect the results to be expanded in a basis of worldsheet functions 
as explained in section 4, with coefficients given by BRST pseudo-invariants, which have been 
studied in [85]. Moreover, it would be interesting to incorporate α′-corrections of the superstring 
using the same approach and to study one-loop BCJ numerators and KLT relations for amplitudes 
from higher-dimensional operators as well as those in Z-theory [30–32].

A particularly exciting direction is to generalize the new BCJ representations and their ap-
plications to higher loops. For example, a natural follow-up question is how to construct BCJ 
numerators and derive KLT formulae at higher loops. We expect that a strategic path forward 
is to again organize g-loop correlators on the nodal Riemann spheres in terms of Parke–Taylor 
factors with g pairs of double points σ±. Although a systematic study such higher-loop correla-
tors, KLT relations and BCJ numerators will be given in the future, we would like to display the 
two-loop four-point correlator as an encouraging example.

7.1. Preview example: the two-loop four-point correlator on the nodal sphere

A central ingredient of genus-g correlators are the global holomorphic one-forms ωJ with 
J = 1, 2, . . . , g which degenerate as follows on nodal Riemann spheres:

ωJ (σi) = (σJ+ − σJ−)dσi

(σi − σJ+)(σi − σJ−)
. (7.1)

They enter the genus-two superstring correlators of [92] through the antisymmetric combinations

�i,j ≡ ω1(σi)ω2(σj ) − ω2(σi)ω1(σj ) = εIJ ωI (σi)ωJ (σj ) , (7.2)

in lines with modular invariance. Moreover, the moduli-space measure introduces differences of 
the double points σ1± and σ2± into the correlator on the nodal sphere [40],

4∏
j=1

dσj I2−loop
4 = s12�4,1�2,3 + s23�1,2�3,4

(σ1+−σ2+)(σ1+−σ2−)(σ1−−σ2+)(σ1−−σ2−)
, (7.3)

where the overall kinematic factor t8(f1, f2, f3, f4) is suppressed. This result can be expanded 
in terms of eight-point Parke Taylor factors involving σ5,6 ≡ σ1± and σ7,8 ≡ σ2±:

I2−loop
4 = s12

[
PT(7,1,2,5,3,4,6,8) + PT(7,1,2,6,3,4,5,8)

]
(7.4)

+ s23
[
PT(7,1,5,2,3,6,4,8) + PT(7,1,6,2,3,5,4,8)

]
+ s12

[
PT(7,5,1,2,6,3,4,8) + PT(7,6,1,2,5,3,4,8)

] + perm(1,2,3,4) .

Based on this 144-term sum, it would be very interesting to study two-loop KLT formulae as 
well as BCJ numerators, for maximally supersymmetric Yang–Mills and gravity amplitudes. 
Of course, more work is needed to obtain the parental string correlators at higher multiplicity 
and loop order as well as reduced supersymmetry for generic points in the moduli space of the 
relevant Riemann surface.
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Appendix A. One-loop basis of worldsheet functions

The goal of this appendix is to arrive at a basis of worldsheet functions for field-theory ampli-
tudes at one loop. Following the discussion of section 4.5, we will describe how to achieve this 
in two steps:

1. Eliminating all subcycles of propagators Ga1a2Ga2a3 . . .Gana1

2. Eliminating the dependence on the position of leg 1 from any Gij

A.1. Eliminating subcycles of propagators

Since multiple subcycles can be recursively reduced to cases with fewer subcycles, it is suffi-
cient to consider the case with one subcycle, say Ga1a2Ga2a3 · · ·Gama1 . The algorithm to break it 
open selects a subset of its propagators (therefore this is not a cycle by itself) and rewrites it in a 
basis of “IBP functions” Xa1a2...am defined in (4.34). For example,

G12G13 = 1

s123

{
s23

4
+ X123

s12
+ X132

s13

}
, (A.1)

G12G13G14 = 1

s1234

{[ X1234

s12s123
+ symm(2,3,4)

]
(A.2)

+
[ s34

4

( 1

s12
+ 1

s134

)
X12 + 1

4

( s24

s124
− s34

s134

)
X23 + cyc(2,3,4)

]}
,

and such inverse relations exist for any monomial of propagators without subcycles. One can 
check these relations by plugging in (4.34) and by using the Fay identity (3.11). Alternatively, 
we will sketch how to derive such relations below.

For example, to break the subcycle G12G23G13 we rewrite G12G13 in terms of IBP functions 
as shown in (A.1). Since both labels 2 and 3 appear in X123 and X132, one uses an IBP relation 
to rewrite X123 = X12(X34 + X35 + · · ·X3n + � · k3) and similarly, X132 = X13(X24 + X25 +
· · ·X2n + � · k2). Then we have no subcycles left:
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G12G23G13 = G23

s123

{
s23

4
+ G12

( n∑
p=4

s3pG3p + � · k3

)
+ G13

( n∑
p=4

s2pG2p + � · k2

)}
,

(A.3)

and the same idea can be applied to any other subcycle. Apart from loop momenta and terms 
with fewer powers of Gij (such as the contribution of 1

4 s23G23 in (A.3)) which are intrinsic to 
genus one, the elimination of Ga1a2Ga2a3 · · ·Gama1 largely follows the tree-level techniques to 
address products of Parke–Taylor factors (see e.g. [67]).

After eliminating all subcycles, we are left with products of X functions with overlapping 
labels, such as X···a1···Gama1 and G12G23G3p with p = 4, · · · , n above. By using (A.1), (A.2)
and generalizations, we can again rewrite them in terms of products of functions without over-
lapping labels, which are suitable for integration by parts. One therefore obtains a polynomial of 
IBP functions Xa1a2...am where in every monomial each particle label appears at most once as a 
subscript.

A.2. Eliminating the dependence on σ1

After eliminating subcycles, the resulting X functions are not yet linearly independent; it is 
straightforward to see that one can still eliminate their dependence on particle 1 using scattering 
equations,

X123 = X12(X13 + X23) = (X23 + . . . + X2n + k2 · �)(X34 + . . . + X3n + k3 · �) , (A.4)

where, as we mentioned, no subcycle will appear and again we recast e.g. X23X34 into X234 and 
X243 using e.g. (A.1). By repeating this process we obtain a basis of Xa1a2...am functions where 
particle 1 is eliminated. Moreover, one can always fix the first subscript of X to be the smallest,17

for example X342 = −X234 + X243.
There is a straightforward way to count the degree directly in terms of X functions. It is 

convenient to introduce Xi ≡ 1 (i �= 1) for labels that did not appear in a monomial such that after 
inserting them, each label 2, . . . , n appears exactly once. For example, we write the identity 1 =∏n

i=2 Xi , X23X45 = X23X45X6 for n = 6, and X234X56 = X234X56X7X8 for n = 8 etc. After 
inserting these identities, we see that the degree of Gij ’s is given by n−1 minus the total number 
of X functions. In the examples above, the degree is 0, 5 − 3 = 2 and 7 − 4 = 3, respectively.

Now we are ready to count the number of basis elements of IBP friendly functions, for n
points with a given degree in Gij ’s. Since label 1 is eliminated, the number of independent 
monomials in X functions with degree 0 ≤ k ≤ n−2 is given by the number of ways to distribute 
n−1 labels into n−k−1 disjoint, non-empty sets, where labels in each set form a cycle (including 
length-1 cycles). The solution to this counting problem is known as the Stirling number of the 
first kind, Sn−1,n−k−1, see Table 1. For example, for k = 0, Sn−1,n−1 = 1 corresponds to the 
identity 1. For k = 1, choosing n = 4 and n = 5 allows for 3 and 6 elements X23, X24, X34 and 
X23, X24, X25, . . . , X45, respectively. Finally, k = 2, n = 4 gives rise to the 2 basis elements X234
and X243.

For correlators with reduced supersymmetry, the degree of the polynomial in � and Gij is 
n−2, thus the total number of basis elements for n points is given by 

∑n−2
k=0 Sn−1,n−k−1 = (n−1)!

(see Table 1 in section 4.5). For example, for n = 5, in addition to the elements with k = 0, 1

17 This follows from the fact that (4.34) satisfies Lie symmetries [46].
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above, we have 11 elements for k = 2: X23X45, X24X35, X25X34 and X234, X243 along with 
their images under cyc(2, 3, 4, 5). Finally, n = 5 and k = 3 introduces the six permutations of 
X2345 in 3, 4, 5 which altogether yields 1 + 6 + 11 + 6 = 24 basis elements at n = 5.

Maximal supersymmetry allows for maximum degree n−4 in X functions, thus the total 
number of basis elements is 

∑n−4
k=0 Sn−1,n−k−1 ≡ an (see Table 1). Here an counts the num-

ber of (n−1)-permutations with at least 3 cycles (sequence A067318 of [93]), e.g. a4 = 1, 
a5 = 7 and a6 = 46. For example, the 7-element basis for n = 5 consists of 1 (along with �) as 
well as X23, X24, X25, X34, X35, X45. For n = 6, we have 1 (along with �2), X23, X24, . . . , X56
(along with �) as well as X23X45, X24X35, X25X34 plus (2345 ↔ 2346, 2356, 2456, 3456) and 
X234, X243 plus (234 ↔ 235, 236, . . . , 456), altogether 46 elements.

Appendix B. Combinatoric proof of the formula (3.15)

In this appendix18 we prove the formula (3.15), namely

Gi1i2 . . .Gi2p−1i2p

n∏
j=1

1

σj

= (−1)n

2p

∑
ρ∈Sn

sgnρ
i1i2

. . . sgnρ
i2p−1i2p

Z0ρ(1,2,...,n) , (B.1)

where σ0 ≡ σ+ ≡ 0, and ZP was defined in (3.12). For convenience, define the shorthands

�123...n ≡ 1

σ1σ2 . . . σn

, �i
123...n ≡ σi�123...n = 1

σ1σ2 . . . σ̂i . . . σn

, (B.2)

where σ̂i denotes the absence of σi , and the generalization to multiparticle �Q
P is obvious. Note 

that �Q
P is totally symmetric in P and Q. Recalling the auxiliary variable σ0 = 0 and denoting a 

sum over permutations of the indices in P by (P ) one can show that,19

�
Q
P = (−1)|P |−|Q|Z0(P \Q) , (B.3)

Z0(Q)�
Q
P = (−1)|P |−|Q|Z0(P ) (B.4)

Z0(P )Z0(Q) =Z0(PQ) (B.5)

Z0(Pj)(2Zjk +Zk0) =Z0(jkP )signjk, if k ∩ P = ∅ , (B.6)

where we used that ZP iQ = (−1)|P |Z
iP̃ Q

. Note that (B.3) is also valid when Q = ∅, i.e., 
�123...n = (−1)nZ0{1 2 3 ... n}.

Now let us consider products of Gij�
Q
P with a single or no overlap between ij and Q:

G12�P = G12Z10Z20�
12
P = −1

2
(Z120 −Z210)�

12
P = 1

2
sign12Z0(12)�

12
P (B.7)

G23�
2
P = G23Z30�

23
P = −1

2
(2Z23 +Z30)�

23
P , (B.8)

18 This appendix was written by Carlos Mafra.
19 The proof (B.6) is as follows: Z0(Pj)(2Zjk + Zk0) = 2Zkj0(P ) + Zk0(Pj) = 2Z0{jk (P )} − Z0{k (jP )} =
Z0{jk (P )} − Z0{kj (P )} = sgnjkZ0(jkP ) , since one factor of Z0{jk (P )} is canceled by the permutations in 
−Z0{k (jP )} in which the labels j and k are in the same order as jk. Also note that Z0(Pj) = −Zj0(P ) was used 
in the first equality above.
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where we used �123...n =Zi0�
i
123...n =Zi0Zj0�

ij

123...n = . . . etc. as well as

G12Z10Z20 = −1

2

(
σ10

σ12
+ σ20

σ12

)
1

σ10σ20
= −1

2

(
1

σ12σ20
+ 1

σ12σ10

)
= −1

2
(Z120 −Z210)

G23Z30 = −1

2

(
σ20

σ23
+ σ30

σ23

)
1

σ30
= −1

2

(
2

σ23
+ 1

σ30

)
= −1

2
(2Z23 +Z30) . (B.9)

The general case Gi1i2 . . .Gi2p−1i2p
�P in (B.1) can be proven by induction using (B.7), (B.8), 

(B.5), (B.6) and starting with (B.7)

G12�P = 1

2
sgn12Z0(12)�

12
P = 1

2
sgn12Z0(P ) . (B.10)

The induction step leads to two cases for an additional propagator Gij multiplying the left-hand 
side of (B.10). When there is no overlap between Gij and the previous propagators,

G12G34�P = 1

2
sgn12Z0(12)

(
G34�

12
P

)
= 1

4
sgn12sgn34Z0(12)Z0(34)�

1234
P

= 1

4
sgn12sgn34Z0(1234)�

1234
P = 1

4
sgn12sgn34Z0(P ) , (B.11)

where we used (B.5) and (B.4) on the last line. If there is an overlap with the previous propagators 
one gets instead,

G12G23�P = 1

2
sgn12Z0(12)

(
G23�

12
P

)
= −1

4
sgn12Z0(12)(2Z23 +Z30)�

123
P

= −1

4
sgn12sgn23Z0(123)�

123
P = 1

4
sgn12sgn23Z0(P ) , (B.12)

where we used (B.6) to arrive at the second line. Since these steps can be freely iterated, it is now 
easy to see that each additional propagator Gij leads to a factor of 1

2 sgnij on the right-hand side 
of (B.1), finishing its proof. �
Appendix C. Theta functions and q series

Even Jacobi theta functions are defined by

θ2(z, τ ) = 2q1/8 cos(πz)

∞∏
j=1

(1 − qj )(1 + e2πizqj )(1 + e−2πizqj )

θ3(z, τ ) =
∞∏

j=1

(1 − qj )(1 + e2πizqj−1/2)(1 + e−2πizqj−1/2) (C.1)

θ4(z, τ ) =
∞∏

j=1

(1 − qj )(1 − e2πizqj−1/2)(1 − e−2πizqj−1/2) .
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These definitions yield the following leading q-orders for the Szegö kernel (4.5),

S2(zij , τ )|q0 = iπ
σi + σj

σi − σj

S3(zij , τ )|q0 = 2πi

√
σiσj

σi − σj

(C.2)

S3(zij , τ )|q1/2 = 2πi
σi − σj√

σiσj

,

where σj = e2πizj .
The contributions to the τ → i∞ limit of the ambitwistor-string and superstring correlators 

are selected by the partition functions[
θ2(0, τ )

θ ′
1(0, τ )

]4

= 1

(2πi)4

[
16 +O(q)

]
,

[
θ3,4(0, τ )

θ ′
1(0, τ )

]4

= 1

(2πi)4

[
1√
q

± 8 +O(q1/2)

]
.

(C.3)

Appendix D. Five-point example with maximal supersymmetry

This appendix is devoted to a maximally supersymmetric five-point example to illustrate the 
procedure of section 4 to express one-loop CHY integrands as a polynomial in � and Gij = σi+σj

2σij
. 

The starting point is the 5!-term expansion (4.10) of the five-point correlator,

K5 = c1c2c3c4c5G∅ + (
c1c2c3tr(f(45))G(45) + 9 more

) + (
c1c2tr(f(345))G(345) + 19 more

)
+ (

c1tr(f(2345))G(2345) + 29 more
) + (

c1tr(f(23))tr(f(45))G(23)(45) + 14 more
)

(D.1)

+ (
tr(f(12345))G(12345) + 23 more

) + (
tr(f(12))tr(f(345))G(12)(345) + 19 more

)
,

see (4.4) and (4.12) for the polarization-dependent ingredients tr(fI ) and ci(�). In case of maxi-
mal supersymmetry, spin sums GI,J with three or fewer particles in the union of the cycles I, J
vanish, see section 4.3. Their four-point instances in turn are given by G(ij)(kl) = G(ijkl) = 1, and 
five-point cases give rise to linear functions (4.19) in Gij . Hence, one can collect the coefficients 
of � and Gij in (D.1):

K5 = �mT m
1,2,3,4,5 + [

G12T12,3,4,5 + (1,2|1,2,3,4,5)
]

(D.2)

T m
1,2,3,4,5 = em

1

(1

4
tr(f2f3)tr(f4f5) − tr(f2f3f4f5) + cyc(3,4,5)

)
+ (1 ↔ 2,3,4,5)

(D.3)

T12,3,4,5 = (e1 · k2)
(1

4
tr(f2f3)tr(f4f5) − tr(f2f3f4f5) + cyc(3,4,5)

)
(D.4)

− (e2 · k1)
(1

4
tr(f1f3)tr(f4f5) − tr(f1f3f4f5) + cyc(3,4,5)

)
+

(1

2
tr(f1f2f3)tr(f4f5) + cyc(3,4,5)

)
−

(
tr(f1f2f3f4f5) + perm(3,4,5)

)
.

These expressions can be streamlined using the two-particle field-strength
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s12f
mn
12 = e1 · e2(k

m
2 kn

1 − km
1 kn

2 ) + s12(e
m
2 en

1 − em
1 en

2)

+
(
k2 · e1(k

m
2 en

2 − em
2 kn

2 + km
1 en

2 − em
2 kn

1 ) − (1 ↔ 2)
)

(D.5)

obtained as a special case of (5.15) as well as the definition t8-tensor in (5.16):

T m
1,2,3,4,5 = em

1 t8(f2, f3, f4, f5) + (1 ↔ 2,3,4,5) (D.6)

T12,3,4,5 = s12t8(f12, f3, f4, f5) = s12t12,3,4,5 . (D.7)

The dictionary (3.18) then implies the pentagon numerator

N+|12345|− = �mT m
1,2,3,4,5 − 1

2
(T12,3,4,5 + T13,2,4,5 + T14,2,3,5 + T15,2,3,4 (D.8)

+ T23,1,4,5 + T24,1,3,5 + T25,1,3,4 + T34,1,2,5 + T35,1,2,4 + T45,1,2,3) ,

and the corresponding box numerators determined by the BCJ duality collapse to

Nbox
12 = N+|12345|− − N+|21345|− = −T12,3,4,5 (D.9)

for the box diagram with legs 1 and 2 in a massive corner. The resulting partial integrand can be 
assembled via (3.31) and comprises four box diagrams, see example C of [13]:

a(1,2,3,4,5,−,+) = N+|12345|−
s1,�s12,�s123,�s1234,�

− T12,3,4,5

s12s12,�s123,�s1234,�

− T1,23,4,5

s23s1,�s123,�s1234,�

− T1,2,34,5

s34s1,�s12,�s1234,�

− T1,2,3,45

s45s1,�s12,�s123,�

(D.10)

After eliminating any G1j via scattering equations, the functions in (D.2) are converted to a 
basis. Their coefficients are then gauge invariant and match the bosonic components (5.17) of 
the five-point correlator (5.20) in pure-spinor superspace. Hence, the same conclusions can be 
obtained by taking the τ → i∞ limit of superstring correlators in the RNS formalism [51–53] or 
the pure-spinor formalism [46].

Appendix E. Parity-odd correlators from the ambitwistor string

As explained in [23], the parity-odd contributions to the d-dimensional RNS correlators of 
section 4.6 can be represented as a Pfaffian

Kεd
n = i

∫
dd�0 Pf

(
A −CT

C B

)
. (E.1)

The Grassmann integral requires the saturation of all the d zero-mode components �m
0 of the 

worldsheet fermions in their odd spin structure,∫
dd�0 �

m1
0 �

m2
0 . . . �

md

0 = ε
m1m2...md

d . (E.2)

In the τ → i∞ limit, the entries of the n × n blocks A, B and C in (E.1) are given as follows: In 
the off-diagonal cases with i �= j , we have

Ai j = ki · kj Gij + ki · �0 kj · �0 , for i, j �= 1

Bi j = ei · ej Gij + ei · �0 ej · �0 ,

Ci j = ei · kj Gij + ei · �0 kj · �0 , for i �= 1 , (E.3)
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while the diagonal entries are given by

Ai i = Bi i = 0 ,

Ci i = −ei · � −
n∑

j �=i

ei · kj Gij − ei · �0 ki · �0 , for i �= 1 . (E.4)

In the first row or column with i = 1, the entries of A and C are modified to

A1 j = P(σ0) · kj G0j + P(σ0) · �0 ki · �0 , for j �= 1

Cj 1 = ej · P(σ0)Gj0 + ej · �0 P(σ0) · �0 , (E.5)

where the picture changing operator of the RNS string contributes a factor of

P m(σ0) = �m +
n∑

j=1

km
j G0j . (E.6)

Since the Pfaffian in (E.1) is a polynomial of degree n+1 in Gij , � and (�0�0), the zero-mode 
integral (E.2) leaves a polynomial of degree n+1 − d

2 in Gij and �. Note that the correlator Kεd
n (τ )

at finite values of τ can be easily obtained from (E.4) and (E.5) by replacing Gij → ∂ log θ1(zij ).
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