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Abstract. Instabilities of the bunch form in storage rings may be induced through the wake field arising from corrugations in
the vacuum chamber, or from the wake and precursor fields due to coherent synchrotron radiation (CSR). For over forty years
the linearized Vlasov equation has been applied to calculate the threshold in current for an instability, and the initial growth
rate. Increasing interest in nonlinear aspects of the motion has led to numerical solutions of the nonlinear Vlasov equation,
augmented with Fokker-Planck terms to describe incoherent synchrotron radiation in the case of electron storage rings. This
opens the door to much deeper studies of coherent instabilities, revealing a rich variety of nonlinear phenomena. Recent work
on this topic by the author and collaborators is reviewed.

INTRODUCTION

I will concentrate on longitudinal motion of electrons in
a storage ring, the phase space coordinate being the lon-
gitudinal distance of a particle from a reference particle
which circulates on an ideal orbit with energyE0; the
conjugate momentum is the deviation of the particle’s en-
ergy fromE0. With appropriate modifications the general
approach should apply as well to transverse motion, and
also to particles such as protons which emit relatively lit-
tle synchrotron radiation.

At low beam current a bunched electron beam in
a storage ring has a nearly Gaussian particle distribu-
tion, thanks to equilibration due to damping and diffu-
sion from random emission of synchrotron radiation in
quanta. At higher current there are deviations from the
Gaussian form due to interaction of the bunch with its
electromagnetic environment: fields excited by the beam
in various corrugations of the metallic vacuum cham-
ber (cavities, bellows, transitions, etc.) act back on the
beam so as to modify the potential well of the external
r.f. field. This self-field mediated by the vacuum cham-
ber is called the “machine wake field". It provides a
feedback loop that typically becomes unstable at some
threshold in beam current, giving an initial exponential
growth of some small perturbation of the equilibrium
bunch form. The instability is expected to saturate, which
is to say that unlimited growth is suppressed by nonlinear
effects. Saturation may allow one to operate the machine
above threshold, but that possibility depends on the ex-
act pattern of bunch behavior at high current. Thus, there
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FIGURE 1. Sawtooth mode in SLC damping ring. Oscillo-
scope trace of BPM signal followed by square-law detector,
several traces for current increasing, bottom to top

is a strong motivation to predict and analyze nonlinear
effects. An example of the interesting phenomena that
arise in the nonlinear, high-current regime is the saw-
tooth mode, in which the bunch length undergoes oscilla-
tions of quadrupole type with slowly varying amplitude,
the amplitude changing periodically with period compa-
rable to the damping time of the ring. Figure 1 shows an
observation of the sawtooth in the SLC damping ring.

Another aspect of the self-field of a bunch arises
from centripetal acceleration on curved trajectories, giv-
ing synchrotron radiation. Components of the radiation
with wavelength comparable to the bunch size or larger
may come from all particles in the bunch radiating coher-
ently, as though they formed a continuous charge/current
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FIGURE 2. Real and imaginary parts ofZ(n)/n in ohms,
wheren/R is the wave number. Parallel-plate model withh =
4.2 cm,R= 1.9 m, andE0 = 737MeV, parameters appropriate
for NSLS-VUV ring.
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FIGURE 3. Far infrared detector output at NSLS VUV
(Courtesy of G. Carr) . Damping timeτε = 7 ms

source. The power from this CSR is proportional toN2,
the number of particles squared, whereas power from in-
coherent radiation goes asN. Consequently, CSR con-
tributes an intense self-field, with wake and precursor
components, which is a potential source of bunch insta-
bility beyond the effect of the machine wake.

Fortunately, CSR appears only in special circum-
stances, thanks to so-called “shielding" due to the vac-
uum chamber. The chamber provides an exponential sup-
pression of CSR with wavelength greater than the shield-
ing cutoff λ0, where an estimate from a simple model of
the vacuum chamber (infinite parallel plates with separa-
tion h) givesλ0 ≈ 2h

√
h/R, for bending radiusR. Fig-

ure 2 shows the cutoff in the real part of the radiation
impedance at long wavelength, thus a cutoff in radiated
power which is proportional toReZ(n).

In normal electron rings,λ0 is small compared to the
bunch length, which seems to indicate that CSR would be
suppressed. If, on the other hand, the bunch shows micro-
bunching (significant Fourier components of wavelength
much less than the bunch length), then there can be
substantial coherent radiation. Micro-bunching may arise
through an instability at high current, perhaps due to
the CSR field itself, alone or in combination with the

machine wake. Experimental evidence of this effect has
appeared at several light source rings in recent years.
As we shall see, the conditions for micro-bunching are
transitory, but reappear in a roughly periodic manner,
with period comparable to the longitudinal damping time
of the ring. Thus we have CSR appearing in bursts, as in
data from the NSLS-VUV ring shown in Figure 3.

The traditional tool to determine the threshold of insta-
bility is the Vlasov equation, linearized about the equi-
librium distribution (or some approximation of the equi-
librium). In the case of a coasting beam (no imposed
r.f. field) this theory closely resembles Landau’s origi-
nal treatment of plasma oscillations [1]. One tries, with
some success, to apply the coasting beam theory also
to the bunched beam, usually the case of practical im-
portance. I wish to argue that the full nonlinear Vlasov
equation, augmented to include Fokker-Planck terms to
account for incoherent synchrotron radiation, provides a
good basis for theory and numerical simulation of multi-
particle beam dynamics in a range of accelerator prob-
lems. It is more common to apply the macro-particle
method in simulations, perhaps because the required cod-
ing is perceived to be simpler. In examples with a two-
dimensional phase space, I will show that the coding
required for a Vlasov-Fokker-Planck (VFP) simulation
is in fact very simple, and that spurious noise is much
lower than in the macroparticle approach. In higher di-
mensions the macroparticle method seems to be more
practical than current versions of VFP solvers. Efforts to
extend the success of the VFP method to higher dimen-
sions are underway, and should have a high priority in
further work.

I will review work carried out during the past six years,
mostly in collaboration with Jim Ellison and Marco Ven-
turini. Several other people made important contribu-
tions to our efforts: Karl Bane, Ron Ruth, Gennady Stu-
pakov, Fernando Sannibale, Gabriele Bassi, King-Yuen
Ng, Mathias Vogt, Andrey Sobol, and Marc Salas.

VLASOV-FOKKER-PLANCK EQUATION

Our dimensionless phase space variables(q, p) and time
coordinateτ are as follows:

q =
z

σz
, p =−sgn(η)

E−E0

σE
, τ = ωst

z= distance from reference particle, > 0 in front

E = energy, E0 = design energy

ωs = synchrotron frequency



η = slip factor, > 0 above transition

Hereσz andσE are any scale factors such that

β0ωsσz

c
=
|η |σE

E0
, (1)

β0c being the velocity for energyE0. The single-particle
phase space density is denoted byf (q, p,τ). It has unit
integral,

∫
f (q, p,τ)dqdp= 1. The VFP equation in the

form that we apply is [2]

∂ f
∂τ

+ p
∂ f
∂q

− [q+ IcF(q, f ,τ)]
∂ f
∂ p

=

2
ωstd

∂
∂ p

(
p f +

∂ f
∂ p

)
, (2)

where−q is the harmonic restoring force from the r.f.,
and−IcF(q, f ,τ) is the longitudinal coherent force de-
termined by Maxwell’s equations with charge/current
sources as obtained fromf itself. The normalized beam
current isIc, andtd is the damping time. The terms on
the right hand side give the Fokker-Planck account of
damping and diffusion from incoherent emission of syn-
chrotron radiation in quanta. The damping and diffusion
constants happen to be equal with our choice of vari-
ables.

Following usual practice, we represent the coherent
force in terms of a wake potentialW(q), as follows:

F(q, f ,τ) =
∫

W(q−q′)ρ(q′,τ)dq′ , (3)

ρ(q,τ) =
∫

f (q, p,τ)dp . (4)

HereW(q−q′) is the longitudinal electric field atq due
to a point source atq′, averaged over one turn. In prac-
tice the machine wake potential is computed by solving
Maxwell’s equations with a short Gaussian bunch rather
than a point charge as source. Since (3) depends only on
the current value of the particle densityρ, certain retar-
dation effects are neglected. The latter may have some
importance in the case of CSR [3]. For CSR we compute
F from the impedance (Fourier transform ofW) in the
parallel plate model. SinceW for CSR is rapidly vary-
ing, it is difficult to deal with it numerically.

EQUILIBRIUM SOLUTION AND
LINEARIZATION

The equilibrium solution of the VFP equation is used in
two ways: first, we compute the threshold of instability
by linearizing the Vlasov equation about the equilibrium;
second, we use the equilibrium solution as the starting
point for a time domain integration of the nonlinear VFP.

FIGURE 4. Equilibrium particle distribution (compared to
unperturbed Gaussian) and distorted potential well for SLC
damping ring with bunch populationN = 3.2·1010.

This latter can be used to confirm the threshold obtained
from linearization, or merely to provide a quiet start
for the integration even when the current is well above
threshold.

A distribution of the form

f0(q, p) =
e−p2/2
√

2π
ρ(q) (5)

is a time-independent solution of (2) provided thatρ
solves the Haïssinski integral equation,

ρ(q) =
e−H(q,ρ)∫
e−H(r,ρ)dr

, (6)

where H is the “self-consistent Hamiltonian" or “dis-
torted potential well",

H(q,ρ) = q2/2− Ic

∫
S(q− r)ρ(r)dr ,

S(q) =
∫ ∞

q
W(r)dr . (7)

At small enough current, the solution of the Haïssinski
equation is unique in a certain space, for a wide class
of W. That follows easily from the contraction mapping
theorem.

For a numerical solution of (6) we discretize the inte-
grals by some quadrature rule, thus obtaining a system of
algebraic equations for the values ofρ at mesh points. A
solution of those equations by Newton’s method, with the
unperturbed Gaussian as a first guess, proves to be very
fast and robust at typical currents. For extremely high
current (say ten times a realistic current) , one still gets
a solution by using a linear extrapolation of a solution
at lower current as the first guess. Note that the normal-
ization integral in (6) is part of the functional equation,
so that a solution is automatically normalized. Figure 4
shows a typical Haïssinski solution and the correspond-
ing distorted potential well.

To determine the threshold of an instability including
the case of a bunched beam, we drop the Fokker-Planck
terms and linearize the resulting Vlasov equation about



the equilibrium solution. Dropping the FP terms is proba-
bly a good approximation, since at a current just slightly
above threshold the growth rate of a perturbation is so
fast that the FP terms do not have time to act; they are ef-
fective over times comparable to the damping time, usu-
ally in the millisecond range. As in Landau theory, we
make a Laplace transform in time. We write the Laplace
variable conjugate to time asp = −iω, and work with
the complex frequencyω instead ofp. Following Oide
and Yokoya [4], we transform to action-angle variables
(J,φ) of the distorted potential well, and make a Fourier
analysis inφ . Then a perturbation to an equilibrium,
call it f̂1(J,m,ω) with Fourier mode numberm, satis-
fies a linear integral equation, essentially the equation
of Oide-Yokoya (although those authors made a Fourier
transform in time, which need not exist, rather than
the Laplace transform which exists for sufficiently large
Im ω). Unfortunately, the integral equation is singular,
a so-called integral equation of the third kind [5], which
has generalized function solutions of the type (Cauchy
principal value)+ (delta function), analogous to Case -
van Kampen modes of plasma theory. Since these gener-
alized functions cannot be represented numerically, a di-
rect numerical treatment of such an equation will fail to
converge under mesh refinement. In practice Oide’s code
for such a treatment sometimes gives approximate val-
ues for thresholds, but often gives ambiguous answers. A
better approach is to cast the equation in a form which is
non-singular from the viewpoint of operator theory. This
can be done simply by redefining the unknown function
[6], giving an equation of the form

g(m,J,ω)− ieJ/2 f̌1(m,J,0)

+
∞

∑
m′=−∞

∫ ∞

0
dJ′

H(m,J,m′,J′)g(m′,J′,ω)
ω−m′Ω(J′)

= 0

, (8)

where

g(m,J,ω) = eJ/2(ω−mΩ(J)) f̂1(m,J,ω) . (9)

HereΩ(J) is the amplitude-dependent frequency for os-
cillations in the distorted potential well,H is a kernel
determined by the wake potential, andf̌1 is an initial-
value term. Eq. (8) is a regular Fredholm equation for
Im ω > 0, but is also well-behaved asIm ω → 0+ if we
define the integral over a pole whereω = m′Ω(J′) by the
usual Plemelj rule [7] (P(1/x)− iπδ (x)). In a space of
functionsg(m,J) with good decay inm andJ at infin-
ity, and some smoothness inJ (say Hölder continuity),
the integral operator is well-behaved (compact), thanks
to good decay ofH(m,J,m′,J′) in all variables and its
smoothness inJ,J′. Consequently, the integral operator
can be discretized and approximated numerically. The
determinant of the discretized system,D(ω), determines
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FIGURE 5. Density plot of f1(φ ,J), the unstable mode for
Ic = 0.048with frequencyω = 1.860+ i2.311×10−3.

stability, in exact analogy to the dispersion function of
coasting beam theory. A zero ofD in the upper half plane
means instability. For small current there is no such zero,
and the first zero to enter as the current is increased corre-
sponds to the most unstable mode. The distribution func-
tion of the mode is obtained by solving the homogeneous
equation at the zero of the determinant.

The determinant has zeros corresponding to coherent
modes only, none corresponding to the incoherent spec-
trum of single particle motion whereω = mΩ(J). By
contrast, eigenvalues in the incoherent spectrum enter the
Oide-Yokoya formalism, and are responsible for numer-
ical difficulties since they represent the support of gener-
alized functions.

We have applied (8) to find the threshold of instability
in the SLC damping ring, and find good agreement with
the threshold determined by time-domain integration of
the VFP equation [6]. Figure 5 shows a density plot of the
most unstable mode, which is primarily of quadrupole
character. For convenience the calculation was done with
ω having a small imaginary part.

METHOD FOR SOLUTION OF THE
NONLINEAR VFP EQUATION

We write the VFP equation as

∂ f
∂τ

= AV( f )+AFP( f ) . (10)

and consider separately the Vlasov (V) and Fokker-
Planck (FP) parts of the right hand side. SinceAV and
AFP require completely different numerical methods, we
employ operator splitting, interleaving small time steps
∆τ by AV alone with steps byAFP alone. This is justi-
fied if ∆τ is sufficiently small. The FP step is simple and



quick: discretize∂/∂ p by divided differences and take
an Euler step inτ. See [2] for the particular divided dif-
ference scheme that is used. Because of the small damp-
ing constant, implicit time stepping is not required. The
V step is unstable if done by divided differences. Instead
we use an approximation to themethod of characteris-
tics, which proves to be extremely stable.

We suppose that the coherent force is nearly indepen-
dent of time over a small time interval∆τ, so that we
have a single-particle map defined locally in time. This
volume preserving map is denoted byMτ→τ+∆τ(z) , z=
(q, p). Then the Perron-Frobenius (PF) operatorM as-
sociated withM gives the time evolution off :

f (z,τ +∆τ) = M f (z,τ) = f (M−1(z),τ) . (11)

This is another way of stating that the number of particles
in a phase space volume elementdz is preserved:

f (M(z),τ +∆τ)d(M(z)) = f (z,τ)dz . (12)

A discretization ofM simply consists of choosing a
finite-dimensional approximation off . For instance,f
might be described by its values on a grid{zi}, with
polynomial interpolation to off-grid points. In that case,
evaluation ofM f (zi ,τ) would be done by interpolation,
sinceM−1(zi) is an off-grid point in general.

We usually refer to this procedure as the PF method,
butmethod of local characteristicsis more descriptive. In
literature on plasmas and fluids [8, 9] it often called the
semi-Lagrangian method. In plasma physics it dates back
at least to the work of Cheng and Knorr [10]. Besides
the applications reviewed below, there have been appli-
cations to the coherent beam-beam interaction through
coupled VFP equations [11, 12, 13], to bunch stretching
through harmonic cavities [14], and to problems in beam
dynamics with stochastic applied fields [15].

SAWTOOTH MODE IN THE SLC
DAMPING RING

We wish to simulate longitudinal beam dynamics in the
positron damping ring at the SLC, comparing results to
data of Podobedov and Siemann [16]. For typical ma-
chine parameters see p.54 of [16], and for details of the
calculation see [2]. We apply the wake potential calcu-
lated by Karl Bane, who used detailed engineering plans
and codes such as MAFIA. Because of difficulties in
handling certain three-dimensional structures, and lim-
itations on the length of the driving bunch, the wake
potential is not expected to be reliable at very short
wavelengths. The PF method was carried out using a
400×400grid in phase space, and a simple bi-quadratic
interpolation to define the distribution function at off-
grid points. The number of time steps per synchrotron

period was 1024. The realistic value of the damping
time was used (td = 200 synchrotron periods), and the
distribution function was followed for several damping
times. The starting distribution function was the Haïssin-
ski equilibrium.

Figure 6 shows the normalized energy spread (vari-
ance ofp) versus time, for three ascending values of cur-
rent. AtN = 1.55 ·1010 we have rather accurate preser-

FIGURE 6. Time evolution of the dimensionless energy
spreadσp, for bunch populationsN = (1.55 , 1.64 , 1.74) ·
1010. The initial value is σp = 1 for each, but to sep-
arate the curves we have plottedσp(1.55) , σp(1.64) +
0.09, σp(1.74)+0.18. The time unit is one synchrotron period.
The black band arises by fill-in from rapid oscillations, with
frequency close to2ωs.

vation of the equilibrium, indicating stability. (Admit-
tedly, there is1% decrease ofσp from its initial value,
but a later improvement in the PF interpolation algo-
rithm [9] gave a nearly constantσp at this current.)
At N = 1.64 · 1010 we see a slowly developing insta-
bility, indicating a current close to threshold, while at
N = 1.74· 1010 there is a pronounced instability evolv-
ing toward a pattern of quadrupole-type oscillations with
constant amplitude. The bunch lengthσq of course shows
similar behavior.

At still higher current the envelope of the quadrupole
oscillations shows a sawtooth behavior. Figure 7 shows
σq at N = 2.99 · 1010. Figure 8 displays snapshots of
the charge distribution in the sawtooth mode at various
times. Figure 9 shows an analogous but not directly
comparable calculation by Bane and Oide [17], using the
macroparticle method rather than VFP. This was for an
earlier version of the damping ring vacuum chamber, and
was done with3 · 105 macroparticles and the damping
time reduced artificially by a factor of 10. The simulation
shows much higher noise than our VFP calculation, but
it was done years in advance of our work, and gave a
qualitatively similar result.

To compare to experiment we try to simulate the os-
cilloscope trace from a BPM signal processed through
a diode which makes an analog squaring of the signal
[2, 16]. We had to assume a frequency-independent im-
pedance of the BPM system. A measurement of that im-



FIGURE 7. Time evolution of the dimensionless bunch
lengthσq, for bunch populationN = 2.99·1010. The time unit
is one synchrotron period. A fairly clear periodic behavior sets
in at about 2.5 damping times (500 synchrotron periods).

pedance is possible, but has not been made. The pre-
dicted trace is shown in Figure 10; it is qualitatively sim-
ilar to the corresponding experimental result, the third
trace from the top of Figure 1.

FIGURE 8. Typical snapshots of the charge distribution for
bunch populationN = 2.99·1010. The interval between snap-
shots is 6 synchrotron periods.

FIGURE 9. Macroparticle simulation of SLC damping ring
(old vacuum chamber) from Ref.[17]. The upper graph is the
normalized third moment (skew) of the charge distribution for
N = 3.5 ·1010 vs.number of turnsNt . The lower graph is the
normalized r.m.s. bunch length forN = 5 ·1010.

In summary, the calculation is qualitatively successful
in that it reproduces the observed sequence of behaviors

FIGURE 10. Simulated oscilloscope trace forN = 2.99 ·
1010, in arbitrary units. The time unit is one synchrotron period.
The straight line gives the mean value of the plotted data, zero
as it ought to be.

with increasing current: equilibrium→ quadrupole-like
oscillations with constant amplitude→ sawtooth pat-
tern in the envelope of quadrupole oscillations. Also, the
predicted form of the oscilloscope trace resembles ex-
periment. As reported in [2], the current threshold of
instability (N = 1.64· 1010), the quadrupole frequency
(1.8ωs), and the sawtooth period (0.6td) were in good
agreement with experiment. The claim concerning the
threshold may be revised in forthcoming work, however,
since there was a mistake in scalingz-dependence of the
wake field.

Experimentally, the sawtooth goes away at still higher
current, and is replaced by a sextupole-like constant am-
plitude oscillation. In the simulation, the sawtooth per-
sists at higher current, still with quadrupole oscillations.
Presumably this failure is due to our poor knowledge of
the wake field at short wavelengths.

BURSTS OF CSR IN THE NSLS-VUV

In this example, treated in [18], we use machine parame-
ters of NSLS-VUV light source, with a wake field given
by shielded CSR alone. Dynamics are such that the effec-
tiveness of the shielding varies with time. The machine
wake is ignored, and that is quantitatively wrong. Studies
are underway to include at least a broad-band resonator
wake [19]. We start with equilibrium state (here almost
Gaussian), slightly perturbed in the most unstable mode
as determined by linear coasting beam theory. We com-
pute the ratio of coherent radiated power to incoherent
power as a function of time. The result plotted in Fig-
ure 11 shows periodic bursts, in qualitative agreement
with experimental data shown in Figure 3. The current
threshold for bursting is higher than in experiments, but
that may be partly due to neglect of the machine wake.
Figure 12 gives the bunch lengthσq as a function of
time, which displays a sawtooth pattern reminiscent of



the SLC case. Bursts in coherent power correlate with
times of minimum bunch length, which in turn correlate
with microbunching such as that shown in Figure 13. Mi-
crobunching is necessary to overcome shielding of CSR
by the vacuum chamber.
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FIGURE 11. Coherent over incoherent power

A COMPACT STORAGE RING FOR
X-RAY PRODUCTION

Our next example is a design for a small, fast cycling
electron ring to produce X-rays by Compton scattering
on a laser pulse stored in an optical cavity [20]. The ring
circumference of only 6.3m is to maximize the collision
frequency. Because of the small bending radius, the ef-
fect of CSR on beam stability is an issue. Because of the
low energy, the damping time is effectively infinite, be-
ing much larger than the storage time. Parameters and
details of our calculation are given in [20]. The collec-
tive force is from shielded CSR alone, and there are no
FP terms sincetd = ∞. The integration begins with the
equilbrium (which is conditioned mostly by the space
charge force), slightly perturbed in the most unstable
mode n=702, wavelength 2.2mm. We follow the phase
distribution for a few synchrotron periods with high res-
olution.

The current threshold of instability (7.1 nC) agrees
well with the coasting beam estimate, and is well above
design requirements. Above threshold, small ripples in
the charge distribution build up in a fraction of a period,
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FIGURE 12. Bunch length vs. time
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FIGURE 13. Bunch density with ’microbunching’

but then die out to produce a smoother distribution within
two periods. This is seen in Figure 14 which shows the
phase space distribution and the corresponding projec-
tion giving the charge distribution.

The quick smoothing of the phase distribution sug-
gests a physical mechanism for the CSR bursts of the
previous section. Small ripples in a short bunch build up
through instability due to CSR, since the size of ripples
is below the shielding cut-off. There is a corresponding
burst of radiation, but it has limited duration, because of
the rapid smoothing out of ripples due to the nonlinear,
time dependent collective force. There is an attendant
bunch lengthening, and disappearance of all structures
below the shielding cutoff in size. Damping and diffu-
sion from incoherent radiation then gradually decrease
the bunch length until the conditions for the instability
are restored, and another burst occurs.

CONCLUSIONS AND OUTLOOK

We have improved the theory of longitudinal bunch insta-
bilities in several ways: (a) by providing a more efficient
method to determine the equilibrium distribution; (b) by
giving a better formulation of the linearized Vlasov equa-
tion for a bunched beam; (c) most importantly, by find-
ing a simple technique for time-domain integration of the
nonlinear Vlasov-Fokker-Planck equation. The latter has
led to insights on interesting nonlinear phenomena such
as the sawtooth mode and CSR in the bursting mode, and
to some agreement with experiments.

There is further work to be done on the longitudi-
nal problem in special circumstances, for instance for
steady CSR achieved by a special machine setup [21],
and for beam slicing experiments [22]. Also, it will be
informative to do simulations for other machines such
as DAΦNE in which the wake potential has been cal-
culated carefully [23]. Algorithm development, includ-
ing extensions to higher dimensional phase space, is of
course prominent in our plans and current work. Single-
pass CSR, as in bunch compressors, is an outstanding
problem of current interest. There the question of micro-



bunching and the matter of reducing noise in simulations
are big issues. We hope that the Vlasov PF method will
be helpful in this regard, even though it is complicated by
being in 4-D phase space with difficult issues concerning
field computation and choice of meshes. [24].
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FIGURE 14. Time evolution of bunch under effect of CSR. Density plots in phase space (top row) and charge density (second
row). Pictures are taken at (normalized) timeτ = ωst = 1.2,3.2, and9.6. Instability initiated by a small perturbation with mode
numbern = 702(wavelengthλ = 2.2 mm). A unit ofq corresponds to1 cm.


