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Abstract

The presentation will cover approaches and strategies of

modeling and implementing collective effects in modern

simulation codes. We will review some of the general ap-

proaches to numerically model collective beam dynamics in

circular accelerators. We will then look into modern ways

of implementing collective effects with a focus on plain-

ness, modularity and flexibility, using the example of the

PyHEADTAIL framework, and highlight some of the ad-

vantages and drawbacks emerging from this method. To

ameliorate one of the main drawbacks, namely a potential

loss of performance compared to the classical fully com-

piled codes, several options for speed improvements will

be mentioned and discussed. Finally some examples and

applications will be shown together with future plans and

perspectives.

INTRODUCTION

Collective effects can lead to beam instabilities and bright-

ness limitations and, thus, have a considerable detrimental

impact on the performance of high brightness machines. Nu-

merical modeling and simulations are a fundamental tool

in understanding the physics of collective effects in circular

particle accelerators. Moreover, they are a valuable means

to evaluate and propose mitigation techniques to improve

these limitations.

With the push towards higher brightness and higher en-

ergy these limitations play an increasingly important role.

They involve several effects, among them impedance driven

instabilities, electron cloud effects, the impact of long-range

and head-on beam-beam collisions and single and multi-

bunch effects.

In the past, simulation tools were often geared to modeling

certain types or subsets of these effects. Meanwhile, the un-

derstanding of the individual effects has improved by a large

amount and the combination of the different effects is now

becoming increasingly important. To systematically study

these combined effects on the beam stability, it is mandatory

to bring together all the specific features of collective effects

simulation codes.

In this paper we will investigate modern approaches to

code development for collective effects. We will briefly illus-

trate the numerical modeling of collective effects in circular

accelerators and then mention some general concepts and

strategies for modern code style. We will then embark into

a more specific discussion on the utilization of modern pro-

gramming languages where we will use the example of the

PyHEADTAIL framework. We will try to give an objective
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view on the advantages this type of approach can provide

and show how to cope with potential limitations. Finally,

we will present some specific applications illustrating the

particular usefulness of this type of approach.

BASIC MODEL OF THE

ACCELERATOR-BEAM SYSTEM

The numerical model that we will adopt to illustrate some

of the concepts is the macroparticle model. Macropar-

ticle models provide a direct and intuitive mapping of

physics onto computer systems. Nearly any physical effect

linked to particle beam dynamics can be easily implemented

which makes these models extremely flexible and powerful.

Macroparticles are essentially a numerical representation

of a cluster of spatially neighbouring physical particles. As

such, they follow the same dynamics following the same

equations of motion that hold for physical particles.

A macroparticle system’s dynamics is fully described by

the evolution of its six phase space variables, the generalized

coordinates and canonically conjugate momenta. Hence, a

physical particle system, or a particle beam, can be easily rep-

resented via a macroparticle system on a computer system as

an allocated chunk of memory where for each macroparticle

all values of the six phase space variables are stored.

The accelerator is represented as a concatenation of ele-

ments each individually performing a distinct particle track-

ing. On a computer system, this can be represented by dedi-

cated functions or methods that act on a macroparticle sys-

tem in a defined and specific manner. Typically, a ring is split

into a set of segments. A particle beam is transported from

one segment to another by means of linear transfer matrices

based on the machine optics in the transverse planes. In the

longitudinal plane, tracking is performed assuming linear

synchrotron motion, but also multi-harmonic RF systems can

be easily taken into account as long a symplectic integration

scheme is employed to assure numerical stability. Nonlin-

earities are treated via effective machine parameters such

as chromaticity or detuning with amplitude by adjusting the

phase advance of each individual macroparticle correspond-

ingly after tracking along one segment. At each segment

node, collective interactions can take place such as the appli-

cation of different forms of wake field kicks, beam – electron

cloud interaction, space charge kicks etc.

Typically, these effects are correlated with the longitu-

dinal position of particles within the beam. To make the

computations numerically efficient, a beam is longitudinally

binned into a set of slices via a 1D particle-in-cell (PIC)

algorithm. A single slice is then thought to be representa-

tive for all the macroparticles contained within. Collective
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effects are correspondingly applied to the macroparticles on

a slice-by-slice basis.

This type of modeling is illustrated in Fig. 1. Looking

at this model, it inherently exhibits a modular structure and

it becomes somewhat natural to follow the same modular

architecture also for the code design itself.

Figure 1: Illustration of the typical numerical model of

the accelerator-beam system for collective effects. α, β

denote the Twiss parameters, μ the phase advance between

the interaction points (red).

MODERN APPROACHES AND PROGRAM

ARCHITECTURES

General Concepts

Modern programming languages have support for mul-

tiple programming paradigms. This gives flexibility in the

choice of programming style in order to describe and control

the underlying numerical model in the most suited manner.

There are some minimum requirements, apart from the

obvious one that the underlying physics should be correctly

modeled, that can be specified for modern computer sim-

ulation codes. A key guideline should be to keep them as

short and as simple as possible. In addition, they should be

designed in a modular way and they should be usable in a

dynamic manner. We will explain what we mean by these

requirements in more detail in the following.

Writing short and simple code keeps the code base com-

pact and concise and results in programs that are usually

much more straightforward to read and to understand, mak-

ing it easier to maintain and to extend and, at the same time,

less susceptible to errors. The philosophy here is not to

produce code bloat of which the quality and capabilities is

measured by the number of lines of code but instead to write

this code in as few lines as possible while capturing all the

essentials of the underlying physical processes. Although

this process does require some effort it usually pays off in

the long run.

A modular architecture was already identified in the pre-

vious section to be well-suited to describe and to set up

an accelerator-beam system simulation. The idea here is

to have an orthogonal set of code blocks that can be de-

veloped independently and that can be combined to allow

for a nearly infinite spectrum of simulation scenarios to be

carried out. Each of these code blocks should follow the

guiding philosophy of being compact and concise and ideally

self-documenting in order to make them easily accessible,

maintainable and usable. The concept of object-oriented

programming blends in perfectly with the idea of a modular

architecture. One can independently instantiate different

objects that represent different elements of a machine. Each

object can have its own interface, properties and methods to

then manipulate the macroparticle beam.

Finally, requiring the simulation codes to be usable in a

dynamic manner means several things. For one, the code

should be fast both in development time as well as in execu-

tion time. Incremental and interactive development allows

for efficient and effective implementation of complex physi-

cal processes. Code optimizations and parallelization allow

for speed gains during execution.

Technologies nowadays are changing extremely fast and

simulation codes should be able to adapt accordingly. For

this, the classical static and heavy code basis is not well

suited and should instead be replaced by more lightweight

and flexible code.

Choice of Programming Language

Most of the requirements stated above can be satisfied

by several modern programming languages. For the pur-

pose of illustration and because it was the choice made for

PyHEADTAIL, we will use the Python programming lan-

guage [1] as an example. Python is a high-level, interpreted

and dynamic programming language with a very large user

community. It supports multiple programming paradigms,

including object-oriented, imperative and functional pro-

gramming or procedural styles. Its design philosophy is

to foster short and simple code with an emphasis on code

readability.

In terms of modular architecture, the layout and structure

forms the backbone of the code design. Python’s package

and module management provide an easy and natural way of

implementing any given structure with only few constraints.

Thus, one is left with the pure architectural task of crafting

the different parts of the code and their interactions. Python’s

strong support for object-oriented programming allows to

build on this structure and to include additional functionality

provided by the Python class mechanism such as instantia-

tion of objects, inheritance, special methods, abstract classes

etc.

Code development itself becomes very easy, for one due

to the strongly reduced number in lines of code needed along

with the very expressive language and syntax of Python. On

the other hand, Python is an interpreted language. This

makes the programming procedure essentially interactive.

Online inspection and interaction with the program become

possible making programming much more efficient and reli-

able. Programs are developed and tested at the same time

almost naturally encouraging test-driven development with

all its benefits.

A potential problem remains due to the very fact that

Python is an interpreted language which is dynamically

typed. This comes with considerable overhead during exe-

cution of the program and can render the simulation code
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significantly slower compared to fully compiled simulation

codes. We will address this issue in the next section.

Example of PyHEADTAIL

PyHEADTAIL [2] is a project that was started at CERN

at the beginning of 2014. It is based on the well established

HEADTAIL code [3]. However, being more a framework

than a pure simulation code it builds on the very principles

stated above. As such, it is predominantly written in Python

and aims for a compact and concise code base making ex-

tensive use of Python’s powerful expressiveness. It is built

in a strictly modular way. The basic building blocks are

a particles package, several packages containing machine

elements and some utilities packages.

The particles package manages macroparticle systems

which representing the physical particle beams. Essentially,

this is a collection of data structures to keep track of the

macroparticle system’s dynamics and the evolution of its six

phase space variables along with some specialised methods

to help handling these data structures. It also contains all

the methods for the generation of different macroparticle

distributions and is mainly used to instantiate a bunch or

beam object.

Machine elements are derived from an abstract base class

and as such must all contain a track method. This method is

always called on a bunch or beam object and manipulates

the underlying data structures in accordance to the machine

element that the object represents. There are classes that

describe single particle tracking such as the ones contained

in the longitudinal tracking module describing synchrotron

motion. The multipoles module describes non-linear kicks

in the thin lens approximation. There are other classes that

simulate collective effects such as from wake fields or space

charge. The architecture is set up in a way to minimize depen-

dencies and to support the straightforward implementation

of additional packages, modules or classes in order to stream-

line the code design and development. It is continuously

being improved.

In providing the structure and classes that allow a mod-

ular composition of basic building blocks for customized

simulations, the question may arise how to create a suitable

inputfile syntax that can support and exploit this feature. We

found that it is not necessary to create a new syntax and

input files as used in the classical computer simulation codes

such as MAD-X [4] or MAFIA [5]. Instead, it would be

much easier to build on a syntax that is already available

and widely known – the Python syntax itself. The input

file becomes essentially a Python script and along with this

comes the full power of the Python programming language

injected up to the level of inputfile writing.

With this approach for example Python control flows be-

come available in the input file. Examples are conditional

execution of different parts of the input file (e.g. having a

trigger on file i/o) or dynamic change of object attributes

(i.e. resembling the implementation of trim functions). Any

missing functionality can be easily programmed at the level

of the input file. This can serve as a test and can later be

reworked up to form a new module, for example. We will

show some use cases in the last section.

Figure 2 shows the typical workflow in setting up and

running a PyHEADTAIL simulation.

Figure 2: Typical workflow when setting up a PyHEADTAIL

simulation.

PERFORMANCE CONSIDERATIONS

We mentioned in the previous section that the advantages

provided by an interpreted language typically come with the

price of performance loss in execution speed. Fortunately,

there are ways out of this limitation at least for the case of

Python.

First, Python contains a large set of third party libraries

specialized for scientific computing, most importantly to

be mentioned here, the NumPy and SciPy packages [6].

The core functionality of NumPy is its ndarray (for n-

dimensional array) data structure. These arrays are strided

views on contiguous memory buffers and they are homoge-

neously typed 1. Any arithmetic operation on an ndarray is

then automatically propagated down to a lower level such

that the inner loops are performed on the level of the com-

piled language. This is called vectorization 2. Algorithms

that are not expressible as a vectorized operation will typi-

cally run slowly because they must be implemented in "pure

Python". For these, Python can be interfaced with compiled

languages such as Fortan or C routines, for example, to speed

up computationally demanding parts of the code and thus to

overcome performance bottlenecks. There are basically two

different strategies for extending Python in this manner.

Python can be extended to use it as a "glue" language in

which the core programming language is another, usually

lower level compiled language, and Python is just used at

the high level to stich different components of the core pro-

gram together in a script. Different tools can be used for this

1 A new package called Blaze attempts to generalize the NumPy function-

alities to distributed and heterogeneous data structures and out-of-core

computations [7]
2 This should not be confused with the automatic vectorization provided

by modern CPUs via SIMD instruction sets.
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Figure 3: Comparison of the two strategies using Python as

a "glue" language (top) and using Python as the core pro-

gramming language (bottom) with the lower level language

being C++ in this example. The core programming language

is encircled in red in each case along with the basic data

structure used.

with SWIG [8] or Boost.Python [9] being among the most

popular. While most of the advantages mentioned earlier

about having the input file actually written as a Python script

still hold, the core programming is performed with a lower

level language, e.g. C++, and the core data structures are

the constructs of this language (i.e. for C++ the std::vector).

For most scientists this makes the fundamental principle of

writing short and simple code a lot more challenging. The

other option is to use Python as the core programming lan-

guage and to use lower level compiled languages only for

the parts that actually pose a performance bottleneck. There

are several tools available for Python that can be used for

this purpose, among them statically compiling ones such

as F2PY [10], ctypes which is part of the Python standard

library, Cython [11] or alternatives that interoperate with

NumPy, including scipy.weave, numexpr [12] or Numba [13].

Figure 3 shows and illustrative comparison of the two ap-

proaches.

In fact, PyHEADTAIL emerged from another project

that was started already in 2012 and actually followed the

first approach. This was cobra-HEADTAIL [14] which had

its core written in C++, exporting modules to Python via

Boost.Python. It was more cumbersome to add code written

in pure Python and to exploit the advantages provided by

NumPy since the basic data structures were C++ std::vectors.

For this reason and after some research on the ndarray data

structure it was finally decided to move to the second ap-

proach and to migrate to PyHEADTAIL.

Finally, parallelisation techniques exist for Python to

further boost the performance both by multi-threading

via OpenMP [15] (where the global interpreter lock, or

GIL, needs to be released) and by multi-processing via

mpi4py [16]. In addition, parallelsiation on the GPU is easily

added with libraries such as PyCUDA [17] or can be added

as CUDA [18] extensions via Cython or even via the CUDA

just-in-time (JIT) compilation offered by Numba [13].

APPLICATIONS, PRESENT STATUS AND

PERSPECTIVES

One of the big advantages that comes with running simu-

lations in a scripting language is the dynamic control over

the simulation process. For example, it is possible to ac-

cess instance variables representing simulation parameters

and to modify them at run time. This allows to seamlessly

implement trim functions into the simulation. In principle,

real machine cycles can thus be realistically simulated. One

example where dynamically changing parameters have been

employed is the creation of longitudinally hollow bunches

in the CERN Proton Synchrotron Booster (PSB) used for

space charge mitigation [19]. Here, the phase loop offset is

modulated around the synchronous phase to excite a dipolar

parametric resonance, effectively depleting the bunch core

in longitudinal phase space. Figure 4 shows the function

for phase loop offset modulation. The same function was

implemented in the simulation to reproduce the dynamics

during the formation of those observed in the experiments

(Fig. 5).

Figure 4: Trim function for the phase loop offset (blue

curve).

The advantage provided by the modular design of Py-

HEADTAIL was exploited when interfacing PyHEADTAIL

with PyPIC and PyECLOUD [20] to include the treatment

of electron-cloud effects. PyPIC includes a set of Poisson

solvers based on the particle-in-cell (PIC) algorithm includ-

ing, for example, FFT methods using integrated Green’s

functions or finite-difference time-domain (FDTD) solvers

which are able to handle complex boundaries using Shortley-

Weller stencils. PyECLOUD is a build-up simulation code

to simulate the formation of electron-clouds though multi-

pacting. It therefore contains, among others, a sophisticated

multipacting model and very detailed implementation of
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Figure 5: Comparison of the longitudinal phase spaces as obtained in simulation and measured in the experiments. Note

that the horizontal axis on the left plot indicated position whereas on the right plot it indicates time.

Figure 6: A graphical illustration of how PyHEADTAIL interacts with PyPIC and PyECLOUD.

Figure 7: Snapshot of a simulation including electron clouds

in quadrupoles. The plot shows the electron density distri-

bution in an LHC vacuum chamber.

the electron dynamics within magnetic fields. PyPIC and

PyECLOUD have been widely used in the past to study the

formation of electron clouds in different machines with their

specific beams and has also been benchmarked against ex-

periments [21]. To include electron cloud effects to study

them as collective effects it is therefore natural to reuse all

the existing features of the two projects. Thanks to the or-

thogonal design of PyHEADTAIL no additional knowledge

of any of the other modules was necessary for the success-

ful integration of PyPIC and PyECLOUD. This made the

inclusion of an entire separate code seamless and drastically

reduced the probability of introducing any bugs in any of

the working routines. Figure 6 illustrates how the different

parts of the codes interact with each other.

Equipped with this additional feature, PyHEADTAIL was

used to study electron cloud instabilities in different vacuum

chambers with different magnetic field configurations for

the Super Proton Synchrotron (SPS) at CERN. It is also

being used to study the beam stability in presence of electron

clouds in the quadrupoles of the LHC and the HL-LHC,

where the high beam energies generate very fast cyclotron

motion of the electrons which makes the correct modeling of

the electron motion numerically very challenging. Figure 7

shows a snapshot of such a simulation.

Finally, PyHEADTAIL has been partly ported to the GPU

using PyCUDA [22]. Following the usual philosophy, this

was performed in the least invasive manner possible. To keep

the interface unchanged at the user level, an abstraction layer

was added in the form of a context manager. This context

manager handles all dispatches of the different function calls

via the context to the matching platform. That way, the

performance of the GPU can be exploited when possible

without having to pollute any of the existing programs or

scripts.

Efforts are ongoing to include parallelisation at different

levels using multi-processing via mpi4py in order to boost
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performance for multi-bunch and electron cloud instability

simulations.
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