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94' RENCONTRES DE MORIOND 

The XXIXth Rencontres de Moriond were held in 1994 in Villars-sur-Ollon, Switzerland, 
and in Meribel les Allues, Savoie, France. 

The first meeting took place at Moriond in the French Alps in 1966. There, experimental 
as well as theoretical physicists not only shared their scientific preoccupations but also the 
household chores. The participants in the first meeting were mainly French physicists 
interested in electromagnetic interactions. In subsequent years, a session on high energy 
strong interactions was also added. 

The main purpose of these meetings is to discuss recent developments in contemporary 
physics and also to promote effective collaboration between experimentalists and 
theorists in the field of elementary particle physics. By bringing together a relatively small 
number of participants, the meeting helps to develop better human relations as well as a 
more thorough and detailed discussion of the contributions. 

This concern of research and experimentation of new channels of communication and 
dialogue which from the start animated the Moriond meetings, inspired us to organize a 
simultaneous meeting of biologists on Cell Differenciation (1970) and to create the 
Moriond Astrophysics Meeting (1981). In the same spirit, we have started this year a new 
series on Condensed Matter Physics. Common meetings between biologists, 
astrophysicists, condensed matter physicists and high energy physicists are organized to 
study the implications of the advances in one field into the others. I hope that these 
conferences and lively discussions may give birth to new analytical methods or new 
mathematical languages. 

At the XXIXth Rencontres de Moriond in 1994, four physics sessions, one astrophysics 
session and one biology session were held : 

* January 22-29 

* March 12-19 

* March 19-26 

"Particle Astrophysics, Atomic Physics and Gravitation" 

"Coulomb and Interference Effects in small electronic 
structures" 

"Electroweak Interactions and Unified Theories" 

"Clusters of Galaxies" 

"QCD and High Energy Hadronic Interactions" 

" Rencontre de Biologie -Meribel " 
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FOREWORD 

Electrons :>,re the simplest elementary particles that physicists can ma­

nipulate. The interaction of two electrons in the vacuum is known to a 

very high degree of accuracy and the basic quantum law which governs 
a collection of electrons was established more than sixty years ago. Con­

densed Matter physicists study electrons in conductors where the high 

density fully displays the Fermionic nature of electrons. Technological 
improvements in reducing the size of conductors to the micron scale and 
the electron temperature to the sub-Kelvin range have permitted physi­
cists to construct conductors which are quantum mechanical objects 

making it necessary to go beyond semi- classical concepts in describing 

electronic conduction. The proceedings of the first Condensed Matter 

session of the "Rencontres de Moriond" on "Coulomb and Interference 

Effects in small electronic structures" give an instantaneous view of this 

field. This book brings together the contributions of physicists coming 

from a very broad area, i.e. physicists studying quantum transport, ther­

modynamics, quantum chaos or charging effects in various mesoscopic 
systems such as disordered metals and insulators, superconductors, 2D 

conductors in the Quantum Hall regime, quantum dots and metallic 
islands, and electron billiards. 

"Interference Effects ": 

In a conductor, the zero point motion due to the high electronic den­

sity delocalizes the electrons despite the Coulomb interaction forming 

a Fermi liquid. Like free electrons, the quasi-particles which represent 

the excitations around the Fermi surface propagate elastically either dif­

fusely or ballistically up to the coherence length. The quantum phase 
coherence of the quasi particles can be preserved over micrometers in 
many conductors at low temperature. On this scale, called mesoscopic, 
a conductor is a quantum mechanical object whose conduction proper­

ties reflect the wavelike nature of electrons. The appropriate theoretical 
description is the transmission approach pioneered by R. Landauer who 
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gives here his personal view of the early history of this field. Interfer­
ence effects are the key to understanding the microscopic mechanism 

of conduction in small electronic structures. In this book the recent 

experimental and theoretical advances in the transmission of electrons 
through disordered structures are presented (see chapter Localisation 
Regime and M etal-lnsulator Transition). Elegant connections between 
disordered, classically chaotic and interacting systems have been dis­

covered using random matrix approaches applied either to the transfer 
matrix or to the Hamiltonian (see Energy Level Statistics). Tunneling 

experiments on Quantum Dots make tangible these ideas. Semi-classical 
approaches emphasize the importance of shape and geometry of small 

systems. They demonstrate the relevance of classical chaotic and peri­
odic trajectories in determining the quantum transmission of electron 
billiards, the Thermodynamics of Mesoscopics Systems, and the Per­
sistent Currents. Experimental evidence for these tiny currents is pre­
sented. Interference Effects are also present at the interface between 
superconductors and mesoscopic normal conductors. Transmission for­
mulae describe well experimental observations showing interference be­

tween correlated paths of incoming electrons and outcoming holes linked 
by pairs in an Andreev reflection (Quantum Interferences in Supercon­
ducting and Normal-Superconducting Systems). 

"Coulomb Effects" : 

In a conductor the quantum fluctuations work against the manifestation 

of Coulomb repulsion. However, for a nearly isolated conductor such 
as a submicron metallic island or a Quantum Dot, the sharp electron 
number quantization reveals the discrete charge carried by an electron 
: an incoming or outcoming electron must pay a Coulomb energy to 
change the charge neutrality of the dot. Combined with superconduc­
tivity this leads to 2e periodic effects in superconducting islands. In 
an array of superconducting islands, the vortices of the superconduct­

ing phase become quantum particles which experience Aharonov-Casher 

interferences induced by the electrical charge (see Charging Effects in 
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Superconducting Microstructures). Small electron number conducting 

islands, called Quantum Dots, show single particle energy level quanti­

zation just like real atoms. A combination of charge quantization and 
resonant tunneling helps experimentalists to make tunnel spectroscopy 
( Charging Effects and Resonant Tunneling in Quantum Dots or Nor­
mal Metal Islands). This Coulomb effect provides a tool to study the 

Quantum Hall Effect in 2D systems in high magnetic fields. At a mi­

croscopic level the Coulomb interaction favors correlations which give 
rise to Fractional Quantum Hall states, or even more correlated states 

which may also be probed in experiments on mesoscopic systems. ( see 
Coulomb interactions and Quantum Hall effect). 

In the quantum transport regime, in the limit of non interacting parti­

cles, the conductance provides information on the wave like properties 
of the electron: how these electron waves are transmitted. In contrast 

shot noise gives a corpuscular information : how the occupation num­

ber of transmitted waves fluctuates in a given sampling time. Recent 

theoretical advances in the understanding of non equilibrium noise as 

well as recent experimental results are presented. A complete descrip­

tion should work at finite frequency and include Coulomb interactions. 
Attempts to incorporate these effects in quantum transport theory are 

presented ( see: Shot Noise and A.G. Quantum Transport). 

D.C. Glattli and M. Sanquer 
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A PERSONAL VIEW OF EARLY HISTORY 

Rolf Landauer 
IBM Thomas J. Watson Research Center 

PO Box 218, Yorktown Heights, NY 10598 

ABSTRACT 

1 

This is a personal account of two early investigations related to the 
theme of this workshop. The first of these analyzed the energy level struc­
ture in a one-dimensional model of a disordered solid, using the engineering 
model of IBM's first large scale electronic computer. The second episode 
dealt with the calculation of conductance from the transmissive behavior 
of the sample, and with the spatial variation of field and current near lo­
calized scatterers. The two cases provide an obvious contrast in the way 
scientific contributions find acceptance. 
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1. INTRODUCTION 

This is a personal account of two early investigations related to the 

themes of this workshop. Personal recollections are not disciplined con­

tributions to the history of science. Nevertheless, I believe that there is 

something to be learned from the differing character of the two episodes. 

The earlier of the two investigations dealt with computer modeling of the 

distribution of energy levels in a one-dimensional model of a disordered 

solid. The work reached its deserved state of attention, in the usual way, 

without difficulty. With time, as the state of understanding of the topic ad­

vanced, my contribution became obscure. That is the inevitable course for 

most of our publications; our colleagues cannot keep an ever increasing list 

of papers in mind. The other contribution to be discussed deals with the 

calculation of conductance from the transmissive behavior of the sample, 

and with the spatial variation of field and current near localized scatterers. 

It took decades for these notions to reach acceptance. 

As the volume of scientific publications has increased, fashions have 

become more important. What causes one proposal to be accepted and an­

other to be ignored matters, and deserves to be understood. We have re­

ceived increased funding for science and technology, for many years. Are 

we using it effectively? If we publish more than we can consume, is there 

a purpose to the size of our fields? I hope that the contrast between the two 

episodes to be discussed will emphasize these questions, even if there are 

no simple answers. 

2. ENERGY LEVELS IN DISORDERED ALLOYS: LOCALIZATION 

The early history of this field is best summarized by a quotation from 

a review paper.1 

Interest in disordered materials in the fifties and sixties arose 

from a number of sources. The need for technological assessment 

of amorphous semiconductor device proposals2 was an important 

component in this. Theoretical interest in electrons in disordered 



structures, however, preceded that. fu the thirties disorder had been 
viewed as a source of scattering, acting on electrons which were 
presumed to be in a conduction band. This band was derived from 
the disordered structure by averaging out the disorder. Only in some 

very special ways were there attempts3.4 which tried to go beyond 
this. By the early to middle fifties, however, it became generally 
clear that one could systematically ask and answer questions about 
the distribution of carriers in space and energy, in disordered struc­
tures. fu 1953, Dyson5 examined the vibrational spectrum of a dis­
ordered linear chain. The three years, 1953-1955, also saw the 
emergence of three papers6-8 which for the first time gave a system­
atic investigation of the electronic structure of disordered systems. 
These papers anticipate, sometimes in a very ptjmitive fashion, 
concepts which were rediscovered later. Thus Parmenter8 provides a 
very clear definition of what is now called the Coherent Potential 
Approximation, though he does not actually employ it. All of these 
papers6-8 discuss band edge smearing. Reference [7] alludes to the 
localization of electrons to neighborhoods in parts of space which 
are particularly favorable for that energy. If the early electronic 
papers6-8 are to \be faulted, it is for the fact that despite their heavy 
concentration on one dimensional models they did not recognize that 
all states in a disordered one dimensional structure are essentially 
localized. That recognition did not come until 1960.9•10 

3 

All of us, including this author, have difficulty at times, responding 
perceptively to the literature. This is not a tale of good guys vs. bad guys. 

I still have my preprint of P.W. Anderson's famous Absence of Diffusion in 

Certain Lattices11 with Anderson's handwritten notation "Did I send you 
this?" I must have attached some significance to it, otherwise the preprint 
would not have survived in my files. Nevertheless, I failed to grasp what 
it was all about. I was interested in electrons in disordered structures, and 
as will become clear, in localization. I looked at Anderson's preprint and 
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knew that I was not particularly interested in spin diffusion. As a result, I 

did not take the trouble to understand Anderson's message. 

I came to IBM, in the spring of 1952, some two years after receiving 

my Ph.D., to work in a semiconductor effort. This group was one of the 

precursor's of IBM's subsequent Research Division. My manager's manager 

inquired whether there wasn't some way we could make use of the 70 1,  

IBM's first large scale electronic computer, then in  its final development 

stages, but in a state where the engineering model was capable of doing 

useful work. My proposal to calculate the energy level distribution in a one 

dimensional model of a disordered crystal was accepted. A collaborator, 

J.C. Helland, whose name appears as coauthor,7 did the most burdensome 

part of the programming. As is common in such situations, it quickly turned 

out that a calculation of the energy level distribution, for a disordered po­

tential, was not as trivial an analytical problem as I had at first assumed it 

would be. The procedure that I worked out was described in an IBM 

Technical Report, The Use of Oscillation Theorems in the Numerical Com­

putation of the Density of States, dated March 8, 1954. By that time the 

paper by James and Ginzbarg6 had appeared and the description of my es­

sentially identical method no longer seemed worth publishing. James and 

Ginzbarg, despite awareness of the same problem, did not have a digital 

computer available, and could not do much with their method. 

The paper by Landauer and Helland does not represent great pioneering 

in the use of digital computers, when contrasted, for example, to the paper 

by Metropolis, et al., on the Monte Carlo method.12 Nevertheless, it was a 

very early attempt to apply computers to condensed matter physics and an 

early utilization of computers to do experimental modeling, rather than 

calculating band structures or molecular wave functions. It was, in fact, an 

exceedingly burdensome progranuning chore, done at a time when higher 

level languages were nonexistent and subroutines almost unavailable. The 

primitive state of programming back then can be judged from the following. 

I tried to learn whether the 70 1 was reliable; did we need to put enough 

checks into the program to detect all errors? I could not get a good answer, 
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and decided to play it safe. Every part of the program was checked. We 
were, however, not sophisticated numerical analysts, and our checks were 

not designed sufficiently carefully, with all possible cases in mind. As a 
result our program stopped every few minutes, caught by a check which 
was too stringent. The 70 1 time available to us was usually at night, and 
I had to be there to help push the button after convincing myself that there 
was no real problem. Computers rarely make errors in the fifth decimal 
digit. An error typically causes the output to be totally unreasonable, or 
causes the machine to halt. But we did not know that, when we started. 

We were not the only ones, in IBM, to use the engineering model of 
the 70 1 for research purposes. Nat Rochester and some of his associates, 
who had developed programming for the 70 1 ,  were involved in an early 
attempt at artificial intelligence and the modeling of neurons firing at each 
other, on a computer. On the other hand, our work, which was less ambi­
tious in character, may have been the first successful research use of com­
puters within IBM. (For an alternative view of IBM's early neural network 
simulation see Waldrop.13) 

The Landauer-Helland paper has stood up, and was correct, with one 

limitation. The abstract contains the phrase localized states, and it is clear, 
throughout the paper, that there is a naive and primitive attempt to come to 
grips with the question of localization. There is no doubt that Anderson's 
subsequent work11 was the first serious and meaningful attempt to face the 
localization question, in a properly formulated way. Simpler notions about 
localization, however, were older and predated my own work. For a donor, 

say phosphorus in silicon, if the donor atom is isolated, clearly we have a 
localized hydrogenic state. The electron is localized and I believe that the 
word was used that way; perhaps more clearly in the case of lattice vi­
brations, than in the case of electrons. It was also well known in the early 
fifties that if one had a high density of donors, one would get an impurity 
conduction band. Thus, it is immediately apparent, if we view a random 
distribution of donors, that there will be pockets where the donor density 
is atypically high, and electrons will have a particularly hard time getting 
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away from that neighborhood. All of this was in the air when we wrote our 
paper. 

Fig. 1, extracted from Ref. [7]", shows one of a number of numerical 
results. Our results also included spatial disorder, modeling liquids, as well 
as the compositional disorder of Fig. 1.  
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Fig. 1. At left is part of the results for the disordered potential 2a, 
showing a range with no energy levels. The allowed ranges for the 
A crystal, the B crystal, and the ordered AB alloy are indicated by 
the shaded vertical regions. Note that the dots are not the locations 
of energy levels, but only serve to indicate the number of levels up 
to the energy concerned. The solid curve gives the level distribution 
for an infinite ordered AB chain, normalized to 75 states per band 
(in contrast to the slightly more irregular results obtained from a fi­
nite chain of 150 atoms). At right are similar results for a part of 
4a, a potential consisting of very similar A and B atoms. 

The next paper to do computer calculations for disordered systems ap­
peared four years later. It did not cite us in a way which would cause any­
one to rush and look at our earlier paper. Nevertheless, our paper did not 
go unnoticed. It influenced Parmenter8 and was cited by a number of others. 
In fact J. Hori14 states: 



As for the electronic-energy spectrum, the attempt at numerical 
computation was made somewhat earlier than for the vibrational one. 
The pioneers were Landauer and Helland ( 1954), who tried to cal­
culate the band structure of the spectrum of an electron moving in 

a one-dimensional random array of square-well potentials. 

7 

Mott, in his review paper, 15 as well as in the book by Mott and Davis, 16 cited 
our work. By that time, however, the work had already started toward ob­
scurity. 

We may ask why this study found more ready acceptance than that in 
our next episode. First of all our community was ready for this work, 
demonstrated by the close proximity of Refs. [5-8]. What happens to the 
well known band structure, in the presence of disorder, is not a deep ques­
tion. Furthermore, while Ref. [7] supplied a new tool, the computer, it was 
not threatening to any established efforts. The work did not question the 
validity of the work of others nor try to replace their viewpoint by a better 
alternative. 

3. TRANSPORT AS A CONSEQUENCE OF INCIDENT CARRIER 
FLUX 

This episode is more complex, and in contrast to the above history 

started with obscurity and rejection, and needed almost a quarter century to 
achieve some degree of recognition. Indeed, aspects of the work are still, 
after 30 years, struggling for acceptance. In this discussion I emphasize the 
early years. 

In the early fifties, I developed an interest in the then prevalent way 

of calculating the resistance due to localized lattice defects, from their 
scattering cross-section. I had published a calculation of edge dislocation 
resistance. I had also developed an effective medium theory of the resist­
ance of macroscopically inhomogeneous media, unintentionally reinventing 

an approach proposed 17 years earlier by Bruggeman. (The history of this 
subject is discussed in Ref. [l].) Thus, I was also very conscious of the 
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behavior of a macroscopic inhomogeneity or cavity, which causes the cur­
rent to detour. The extra field which causes the detour, and causes the 
extra resistance, is a dipole field with the source charges of the field at the 
surface of the cavity. Note, at this point, that we have discussed the extra 

field introduced by introducing a cavity into an initially homogeneous con­
ductor, maintaining the far away current density, or equivalently, the total 
current. This view, considering current introduced into a sample as the 
causative agent and then inquiring about the required build-up of fields, has 
been basic to my work. It is a natural view for those familiar with circuit 
theory, which has long recognized the duality between voltage sources and 
current sources. Solid state transport theory, however, had a narrower per­
spective. Fields were always taken as the cause and current flow as the re­
sponse. 

In the then prevalent approach, the residual resistance of elastic 
scatterers was calculated by averaging over an ensemble including all pos­
sible geometrical arrangements of the scatterers. After ensemble averaging 
the electric field and current flow are spatially uniform; spatial variation are 
suppressed by ensemble averaging. The fact that an actual sample was an 
ensemble member and not the whole ensemble, was ignored. Spatial vari­
ations were simply not a fit subject for discussion, whereas common sense 
would have led every elementary textbook to ask: How do current and field 

vary near a localized scatterer? 

I did ask about spatial variations, and how the transition from a 
macroscopic cavity to an atomic sized defect takes place. I had hoped that 
an understanding of the nature of this transition might yield a tool for 
measuring the size of small precipitates through the temperature dependence 
of the resistance. I surmised, incorrectly, that the transition takes place when 
the inhomogeneity becomes smaller than the mean free path in the sur­
rounding medium. 

The one-dimensional case, where only a spatial field variation but no 
current flow variation can exist, was trivial, but did not seem important. 
The three dimensional case was difficult, and it took me several years to 
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understand how to handle it. All of this was done semiclassically. By 1956, 

I finally had the answer: Point defects, in a number of ways, act much more 
like macroscopic inhomogeneities, e.g. cavities, than the textbook dis­
cussions suggested, or I had guessed. The extra voltage needed to carry the 
current past the defect comes from a dipole field concentrated about the 
defect. The current flows around the defect in a complex spatial pattern, 
but one which has some resemblance to that found for a macroscopic cavity. 
Unfortunately all of this did not have any effect on the calculated resistance; 
the existing calculations gave the correct value. 

Shortly after this work was completed, and before publication, I at­
tended a meeting in Ottawa, organized by D.K.C. MacDonald on "Electron 
Transport in Metals and Solids". The proceedings were published in a 
special issue of the Canadian Journal of Physics. Fig. 2 shows the 
participants.17 It was a remarkably impressive group. I was too young and 
inexperienced to try and grab a few minutes of the meeting to discuss my 
work. I did, however, try out a number of attendees, privately. The theore­
ticians scoffed, or paid no attention. I had somewhat better luck with the 
experimentalists, including D.K.C. MacDonald. Miland Fiske and Roland 
Schmitt of General Electric (Schmitt subsequently became V.P., Corporate 

Research and Development, of General Electric, later President of 
Rensselaer Polytechnic Institute and is now Chair of the Board of Gover­
nors of the American Institute of Physics) were interested, and some cor­
respondence took place after the meeting. After submitting my work to a 
journal early in 1957, I got a very detailed and very negative response from 
the referee. 

This totally negative report was my first experience of that kind. I sent 
the editor a detailed reply, justifying my paper, but also stating, "I do not 
believe that it still needs the extensive reworking that you mention, and 

would therefore like to withdraw my request for publication in your jour­
nal". A copy of the editor's reply follows. 



Fig. 2. 
Back Row: 

Next Row: 

Next Row: 

Front Row: 

Conference attendees, Ottawa, Canada, 1956. 
W.B. Pearson; R.B. Brode; W.J. Archibald; J. Friedel; E. Hart; D. Paider; M.D. Fiske; F.A. Kaempffer; 
H. Frohlich; G.K. Horton; H.P.R. Frederikse; E. Mooser; C.F. Yost; K.A.G. Mendelssohn; R.W. Schmitt; G.K. White. 
M.A. Mankhal; L.G . Elliott; K.K. Darrow; J.  Korringa; D.K.C. MacDonald; A. Seeger; J.S. Dugdale; A.B. Bhatia; 
F.R.N. Nabarro; T.H.K. Barron; R. Landauer. 
N. Bloembergen; R.P. Singh; A.N. Gerritsen; P.G. Klemens; R. Kubo; D. Pines; J.M. Ziman; E.H. Sondheimer; 
J. Bardeen: R.G. Chambers; A.C. Hollis-Hallett; C.A. Domenicali. 
I. Prigogine; C.J. Gorter; Miss U. Martius; J. deBoer; K.S. Krishnan; A.F. Joffe; Mrs. Joffe; N.F. Mott; Mrs. Slater; 
J.C. Slater; J.H. Van Vleck; P.R.R. Aigrain; G. Borelius; M. Kotani. 

Not in the Photograph: E. Fawcett; F.T. Hedgcock; G. Herzberg; W.B. Lewis; P.J. Price; Ta-You Wu. 

.... 
= 
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2nd April, 1957 

Dear Rolf, 

Thanks for your letter of March 20th. I have not yet had a 
chance to read your paper in the light of the comments in your letter 
but will try to do so and answer them in detail. In regard to your 

withdrawal of the paper I have assumed that you have plenty of ad­

ditional copies and that, therefore, you will not need back the man­
uscript which you sent to me. If I am not right in this assumption 
please advise me immediately and I will return your manuscript by 
air mail. 

It is possible my judgment was over-hasty and that I was un­
duly influenced by the report of the referee. However, the referee 
was one whom I had found reliable in the past and his views seem 
to confirm my own, admittedly superficial, impressions. 

Your letter raises an issue which was not discussed in the paper 
and which possibly gives your results a good deal more significance 
than I appreciated. This is the question of the interpretation of 
electrolysis in alloys and the influence of the inhomogeneity of the 
electric field on such processes. I had forgotten about this particular 
problem and I would like to think about your results again in the 
light of this. It seems to me, however, that your paper would make 
a lot more sense to the general reader and not seem so "much ado 
about nothing" if you had related it in the introduction a little bit 
more closely with this problem. 

I was, of course, quite aware that your method was equivalent 
to the ensemble averaging method. I did not mean to imply in my 

letter that your method was wrong but only that I thought the same 
conclusion could be arrived at in a simpler way. I am still not clear 
about the r/1-r. It would seem to me that not only the dimensions 
relative to a mean free path but also the spacing of the obstacles 
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relative to their dimensions is of significance. I still reiterate my 

belief that if the obstacles are inclined with respect to each other in 

a random way the composite resistance will not be nearly as patho­

logical as your result although I quite agree that the simple ensemble 

average will not be valid in this case. As indeed shown by the work 

of Thornton Read on dislocations. 

Very truly yours, 

I do not want to be excessively critical of this particular editor. In contrast 

to today's editors, he was willing to get involved, and to take responsibility 

for his judgment. He was not just a mailing center for debates. 

One point in the editor's reply is particularly worth noting. I had 

pointed out that the resistance of a planar barrier in a metal would be pro­

portional to r/(l-r), where r is the reflection probability for the barrier. In 

my work, at that time, this was still viewed as a result applicable to a single 

and highly localized obstacle. It seemed to me an obvious and sensible re­

sult. For small r it showed the expected textbook behavior; resistance was 

linear in r, i.e., in scattering probability. For r close to unity it also seemed 

reasonable, after all an impenetrable barrier must show an infinite resist­

ance. Indeed this small transmission coefficient limit, 1/(1-r), was known, 

and had been derived by Frenkel18 and by Ehrenberg and Honl.19 This is the 

same Ehrenberg who two decades later anticipated the Aharonov-Bohm 

effect.20 In view of the limiting cases for (1-r) < < 1 and for r < < 1, my 

result could be regarded as as a trivial interpolation. The editor, however, 

considered my result pathological. 

As indicated above, I withdrew my 1957 paper from the original jour­

nal, and resubmitted it to the newly started IBM Journal of Research and 

Development. Its acceptance and appearance there21 are probably not at­

tributable to lower standards or to greater perceptivity on the part of that 

journal, but more likely to a simpler lottery effect. Sooner or later a paper 
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reaches a referee with the right combination of sympathy and/or laziness, 

who is willing to recommend acceptance. 

The paper received little attention, perhaps none. At that time, the IBM 

Journal had more solid state physics than it carries today. The neglect of 

my paper, more likely, had other sources. The paper asked and answered 

questions which were not generally recognized. The analysis in the paper, 

in contrast to most of my work, was not all that simple; there was a non­

trivial level of mathematical complexity. Finally, my paper did not lead to 

new measurable experimental results. The fact that both my laboratory and 

I were inexperienced in representing ourselves did not help. 

I understood, at that time, that the force for motion of the defect in the 

presence of transport, i.e., electromigration, would be sensitive to the local 

field and current, and thus could serve as a probe for spatial variations. The 

editor's reply letter makes it clear that I had mentioned that. But I did not 

understand how to go about applying my new notions to electromigration 

theory in any detail. It took me many years, until I was able to return to the 

electromigration problem, and do something about that. That takes us into 

a separate history. I do, however, want to point out that electromigration is 

an important technological problem; at the same time a field in which 

Friedel, Nozieres, and Peierls have disagreed can't be all that dull. Never­

theless, the broader transport theory community has ignored the 

electromigration theory debates. 

In 1958 D.K.C. MacDonald organized another conference and invited 

me to give a paper. Conference Proceedings were prepared and distributed, 

and included my paper.22 Unfortunately, this volume, despite the care and 

effort expended by its editor (Paul Marcus, at Carnegie Tech., at that time), 

was not quite a formal publication, and was quickly forgotten. During the 

meeting, MacDonald approached me, obviously uncomfortable, and asked 

whether in view of the shortage of time, I'd drop my paper. I had the im­

pression, but no clear knowledge, that others had told him that he had made 

a mistake in inviting me. I refused, and gave my paper. The editor from 

the 1957 episode, whose letter I have included, was one of my more vocal 
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critics. Elihu Abrahams and Phil Anderson, who will reappear subsequently 
as heroes in this saga, were at the meeting. I doubt, however, if their sub­

sequent return to the subject had any relationship to that. For all I know, 
they may have been on the tennis court, or at the bar, during my talk. 

This 1958 meeting was my only opportunity to discuss the subject at 
a major international conference. Indeed, with the exception of one confer­
ence paper to be mentioned subsequently, it would be many years before I 

found any opportunity to discuss the subject, at all. 

By 1960, I realized that the r/(1-r) result did not need to assume a lo­
calized barrier. The reflection probability could represent the overall be­
havior of an array of successive scatterers. The ease of penetration of a 
sample, by carriers, is measured both by the transmission probability, and 
by the electrical resistance. It seems obvious, therefore, that there should 
be a relationship, and not just in the one-dimensional case I had treated. 
Furthermore, the existence of such a relationship should not depend on the 
fine details of the theory, e.g. is it a genuinely many body theory, or not. 
That was clear to me. On the other hand, the analytical details of the one­
dimensional case seemed totally conceptual and playful to me. It did not 
occur to me that films with real width and thickness might act one­
dimensionally. I attempted to evaluate the ensemble average of r/( 1-r), for 
a set of disordered one-dimensional arrays, but had difficulties. My col­
league Gordon Lasher came to the rescue, supplying the procedure which 
showed that the ensemble average grew exponentially, rather than linearly, 
with the length of the ensemble. Unfortunately, the details of Lasher's work 

and his interest in the problem were lost when I tried to return to the subject 
in 1969. 

My attempts to bring this 1960 work to public attention were limited, 
and not very successful; I had become discouraged. I gave a paper at a 
conference on Statistical Mechanics and Irreversibility at Queen Mary 
College, in December 1960. A written version of that paper, One Dimen­

sional Quantum Transport Theory9 is still in existence, and bears the note: 
"This is an informal note, not a publication preprint". The abstract follows: 



Some of the relatively sophisticated work in quantum transport 
theory published in recent years has obscured some of the simpler 

aspects of the problem by the formalism needed to meet the com­
plexity of particular situations. The attached note considers the par­
ticularly simple problem of one dimensional diffusion past reflecting 
obstacles. A system of finite extent in contact with reservoirs which 
maintain a concentration gradient is considered, rather than a closed 
system. This permits analysis of a genuine steady state transport 
process. 
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The paper alludes only incidentally to Lasher's ensemble averaging tech­
nique. The discussion was oriented primarily to the exposition of the general 
view that transport can be considered as a consequence of fluxes incident 
from a reservoir. 

A paper submitted, after the Queen Mary College meeting, to Annals 
of Physics, was rejected unconditionally in a letter containing only one or 
two sentences. This manuscript put together the contents of Ref. [22], the 
Queen Mary College conference paper,9 and a brief allusion to the expo­

nential rise in resistance, with length, found from Lasher's technique. An 
attempt to request reconsideration, by Annals of Physics, in 1974, was 

equally unsuccessful. The paper eventually appeared, with very minor 
updating. 23 

By 1969 I felt that enough was understood about localization to make 
my viewpoint more acceptable. Also, I was ending a period during which 
most of my energy had gone into management and into technology. I sub­
mitted a paper to Philosophical Magazine, deliberately chosen because Mott 
was its editor. I assumed that he would be perceptive enough to finally let 
my work appear. Indeed the very perceptive referee, whether Mott or not, 
did ask for one very valid change. The paper took less than five printed 
pages, with not very dense print. The paper pointed out that the ensemble, 
which after ensemble averaging yielded an exponential rise for the resist­
ance, was a very dispersive one. 
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The r/(1-r) result was eventually rescued from permanent oblivion by 
the work of Anderson, Thouless, Abrahams, and Fisher.24 In contrast to the 
prevailing and unfortunate mode of behavior, these authors went out of their 
way to interpret my earlier work in the most intelligent possible way, and 
to give me a maximum of credit. The work by Anderson, et al., resulted 
in additional work by many others, with a particularly detailed and percep­
tive series of papers by Mark Azbel. 

After that, the field became popular and diverse, as evidenced by this 
meeting. The history becomes complex, with many branches, and with in­
adequate el'T'�d time to allow the development of perspective. In our field, 
as else\'- l .cre, there are poor citation practices, based on haste rather than 
evil intent. That makes it particularly hard to reach a reasonable perspective. 
I can characterize these citation practices best by a slight adaptation of a 
paragraph taken from Ref. [25]. 

There is no dearth of citations, they are thrown in liberally to 
appease colleagues. But they are thrown in hastily at the end, with 
a citation dispenser, and with little regard to the real content of the 
citations. I've often been tempted to invent a citation, and see if it 

would be copied and propagate. Eventually, however, I learned that 
the experiment was not needed, it already existed. Science Citation 
Index for 1976 carries 36 citations to two papers by a non-existent 
J.C. Maxwell-Garnett. Enough to qualify him for tenure at may 
universities! The same Science Citation Index volume also carries 
five citations to two papers which, remarkably enough, occur on the 

same journal pages; and these are by the once very real J.CM. 

Garnett. Presumably the five citations come from those who actually 
looked at the Garnett papers, and did not just copy the author's name 
from earlier papers. Garnett's two papers, from 1904 and 1906, dealt 
with the optical properties of glasses with small metallic precipitates. 
At a 1977 conference I insulted many of the offending authors by 
displaying, via transparencies, the relevant pages from Science Ci­
tation Index. In the published proceedings1 I included some bi-



ographical material about the man with this mysterious name. It had 

a modest effect. A decade later, in the 1986 Science Citation Index, 
correct and incorrect entries were about equally abundant. 
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I do want to allude to one more episode from 1966, when I tried to 
convince some of my IBM colleagues to do an experiment. I had understood 
and stressed all along that an array of elastic scatterers determines a trans­
mission probability, and therefore the size of a resistance, but that the 
source of irreversibility came from the reservoirs. What if we eliminate the 
reservoirs by tying the sample onto itself, into a loop and then apply a flux? 
Our community then, and for a good many more years, assumed that the 
elastic scattering determines a resistance, and that any current flow induced 
by turning on the flux, would disappear with an L/R decay. I knew this was 
wrong, and that some relative of Josephson junction behavior should show 
up. I did not, however, anticipate the later conclusion,26 that in the presence 
of flux the ground state of the loop would have current flow, and that no 

decay at all was to be expected. My 1966 suggestion survives in the form 
of two memos; the address list of one included two subsequent Nobel 
laureates. As IBM's Director of Physical Sciences, at that time, all the re­
cipients were in parts of the organization reporting to me. That did not help. 
No one took my proposal seriously. The second of my two memos states: 
"I do not think too many people in the building agree with me on this, but 
I still think that I am right. If we can make a tunneling system out of a very 
good conductor, like bismuth, can't we observe some relative of Josephson 

tunneling?" There was a hand-written supplement: "Involving single elec­
tronic charges, of course, it would have to be a ring of bismuth interrupted 
by a thin tunneling layer, and driven through external flux." 

The correct subsequent formulation of all of this,26 written with Biittiker 
and Imry, had many precursors, some of them cited in that paper. A recent 
Ph.D. thesis by Felix von Oppen27 gives a longer list. The earlier work 
however, emphasized in varying degrees flux quantization in samples with 
a large self-inductance, off-diagonal long range order, free unscattered 
electrons, and periodicity with applied flux (a periodic current need not be 
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non-vanishing). I,  personally, find it  very difficult, in retrospect, to look 

at these earlier papers and calibrate the real level of understanding by their 

respective investigators. 

4. THE FUTURE? 

Some sociological questions about our way of doing science are ex­

plicit, and others are implicit, in this history. In another light, however, it 

is a great success story. The trail that has led to a conference like this re­

presents a marvelous interplay between science and technology. It is, after 

all, the interest in small structures, arising out of the microelectronics in­

dustry, and more than that, the fabrication tools that came out of that in­

dustry, which permitted all this to happen. In 1963 my own laboratory 

launched its Large Scale Integration project; that title eventually became 

accepted elsewhere. I remember originating that expression, and remember 

my unnecessary concern at a time when racial integration in the U.S. was 

becoming a serious public concern, whether our title might lead to misun­

derstanding. From the beginning of that project we knew that electron beam 

photoresist exposure was a key ingredient; indeed we vastly overestimated 

its role. The progress in that direction was not commensurate with our vi­

sion; it was not until Alec Broers appeared a few years later that real 

progress took place. And while the electron beam did eventually make its 

way into our factories, it had a limited role there. It is no coincidence that 

many subsequent developments, including the realization of the two­

dimensional electron gas on semiconductor surfaces, resonant tunneling 

structures, the scanning tunneling microscope, and some of the pioneering 

experimental mesoscopic studies came out of IBM's Research Division. 

Further history can be found in Refs. [28-31]. Of course, closely related 

events took place at a number of other industrial laboratories. 

The trail is not at an end, but there are symptoms that the period of high 

excitement, when there was such a close relationship between the motion 

of technology and the opportunities for physics, are past. As we make de-
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vices smaller and smaller they become more delicate. But as we make them 

smaller, we try to use more of them. That means that each device, circuit, 

and connection, has to become more reliable, not less. The resulting costs 

for development, tooling, testing and fabrication have grown explosively 

with each round of miniaturization. That forces a slowdown,32 as explained 

by the Chairman of the Board of futel. 

The progress of technology will not stop, and it will continue to relate 

to science. But the simplest extrapolations of miniaturization will not hold; 

ingenuity will have to go in other directions. The cost escalation we have 

discussed is a result of miniaturization, not of the details of transistor 

physics. It would be silly to assume that a transition to new and poorly 

understood technologies and/or materials would make the cost problems 

disappear; they would get far worse. When the optimists33 tell us: 

When will it make economic sense to stop building $1 billion 

semiconductor chip fab plants, and start figuring out how to produce 

molecular-scale circuits in high volume and at low cost? Chip and 

computer companies that neglect this issue may find themselves in 

the position of vacuum tube manufacturers confronting transistor 

technology. 

it is unrealistic. I do not want to be misunderstood and say that it will be 

silicon CMOS circuitry, forever. Devices are likely to evolve, hereafter. But 

I do want to suggest that a transition to any of the many novel schemes that 

are casually advertised by scientists, using quantum dots, molecular behav­

ior, single-electron tunneling, optically induced atomic transitions, etc., do 

not provide an easy way out. fudeed many of these proposals have problems 

above and beyond those posed by device control and fabrication. 34 
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The field of charging effects in normal metal and superconducting circuits was 
launched in the mid-eighties by the theoretical predictions of Likharev and his groupll. 
A couple of years later, the first conclusive experiments were conducted on normal 
metal circuits2l. In the following years, the theory became quite powerful at explaining 
in detail elaborate experiments on normal metal circuits, while even the most 
elementary experiments on superconducting circuits displayed several features that 
could not be understood. This strange situation persisted until 1992 when two papers, 
one theoretical by Averin and Nazarov3) and one experimental by Tuominen et a/.4), 

introduced a new idea in the subject, namely the asymmetry of a superconducting 
electrode with respect to an odd or even electron number. This asymmetry, while a 
straightforward consequence of the BCS theory5l, had not been thought obsetvable 
before. Soon after, several experiments confirmed this idea6-9) and produced the first 
quantitative results in circuits combining superconductivity and charging effects. In 
1993 ,  another theoretical paper by Matveev et a/. 10) explored the consequences of the 
odd-even asymmetry on Josephson tunneling through the "superconducting single 
electron transistor". This device consists of two nanoscale Josephson junctions 
connected in series, thereby defining an island between them. The supercurrent in the 
transistor results from a competition between the charging energy of a single electron 
on the island and the Josephson coupling energy of the junctions: the former tends to 
impose the number of electrons on the island whereas the latter favor quantum 
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fluctuations of this number. The Matveev et al. paper showed that the expected 

behavior of the supercurrent when one varies the island charge through a gate 

electrode could be dramatically affected by the presence of a single quasiparticle in the 
island: for values of the gate charge which are odd multiples of e, the predicted sharp 

supercurrent maximumll) is "poisoned" and becomes a supercurrent minimum. Still, 

this improvement of the theory did not suffice to explain why in the experiments done 

on this circuit12,13,4) the supercurrent was so weak and had such a complex gate 

voltage modulation. By incorporating normal-metal quasiparticle filters close to the 

island in the leads of a superconducting single electron transistor we have been able to 

measure for the first time a well-developed supercurrent which can reasonably be 

compared to a simple finite temperature extension14) of the theory of Matveev et al. 
The purpose of this paper is to explain in detail the steps of this comparison. 

Basic theoretical predictions 
The basic theory of supercurrent in the transistor evaluates its "critical current", which 

is defined as the maximum supercurrent that can flow through the transistor when 

biased by a perfect current source at T=O. Although this quantity is only indirectly 

related to the experimental results its calculation is still needed in a first step. The 
circuit we consider is the one depicted in the inset of Fig. 1 .  The normal metal leads 

act only as quasiparticle filters and have no effect on the dynamics of the circuit at low 

voltages. The transistor is assumed to be in the superconducting state, we assume for 
the moment that the voltage difference across the leads is zero. We will also assume 

for the moment that the electromagnetic environment has a negligible influence on the 

behavior of the system. 
The transistor has two degrees of freedom. For example we can choose to index the 

state of the transistor by the numbers n1 and n2 of electrons having crossed the left and 
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Fig. 1 Current-voltage charac­

teristic of the superconducting 

single electron transistor whose 

lay-out is shown in upper left 

inset. The letters N and S refer 

to normal (Cu) and supercon­

ducting (Al) electrodes. The 

tunnel barriers are indicated by 

grey rectangles. The gate volt­

age U induces on the middle 
island a gate charge ng whose 

value is nearly 1 for the data 

shown. The maximum current 

defines the switching current ls. 
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Fig. 2. a) Electrostatic plus configuration energy of the different n states as a function of n8• 

Even-n states are drawn using full lines. The odd-n states are higher in energy than the even-n 

states by the energy of the quasiparticles (which is at least �) and they form a continuum. The 

dashed lines correspond to the lowest odd-n state and are plotted with an assumed value of 

�=0.4 Ee. b) A plot of the energy states for a given value of n8, indicated by the dotted line in 

panel a), showing the degeneracy of n-states with k. States of a given parity are coupled by the 

Josephson Hamiltonians as represented by the thin lines. c) Energy bands obtained as the result 

of the exact diagonalization of the total Hamiltonian with three charge states only. Full 

(dashed) lines correspond to eigenenergies of the Hamiltonian for the even (odd) manifold of 

n-states. The value of E11=E12=0.5Ee was used for this plot. We can here see how the 

poisoning of the supercurrent peak occurs when �<Ee: in the vicinity of n8=1 a quasiparticle 

enters the island. The system then occupies the band formed by the n=±l and n=3 states. 11ris 

band is very shallow compared to that of the even states at this value of n8, resulting in a large 

reduction of the supercurrent. 

right jwiction, respectively. It iis also convenient to introduce the variables n=n1-n2 and 
k=n1+n2, measuring the excess number of electrons on the island and the number of 
Cooper pairs having flown trough the transistor, respectively. The phase difference o 
across the transistor is the conjugate variable of k. For the sake of simplicity, we will 
assume in the rest of this paper that the island, when neutral, has an even number of 
electron. The parity of the total number of electrons in the island is thus the same as 
the parity of n, the excess number of electrons. 
The Hamiltonian of the transistor alone can be written as: 

H=H.r+H11+H12+Hqp· 

The first term H.rEcCn-n8)2 is the electrostatic Hamiltonian of the circuit in which 
Ec=e2/(2CiJ denotes the electrostatic energy of a single electron on the island, while 
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n8=C8V/e is the charge (in units of e) on the gate capacitor induced by the gate voltage 
V8, which is our control "knob" over the transistor (CL and C8 denote the total 
capacitance of the island and the gate capacitance, respectively). In writing H.1 we 
have assumed that the gate capacitance is negligible compared with the junctions 
capacitances. The second and third terms are the Josephson coupling Hamiltonians of 
the two junctions. These terms can be written: 

Hn = -En '2i[ln + 2,k + l/2)(n,k l + ln - 2,k - 1/2)(n,kl] 2 n,k 

H12 = -
E

n L[ln - 2,k + l/2)(n,kl + l n + 2, k - 1/2)(n,kl] 2 n,k 

Here EJI,2 are the Josephson coupling energies of junction 1 and 2, respectively. Since 
we have Ec;<.<211 we will neglect the influence of charging effects on EJI,2• The last 
term of the Hamiltonian accounts for the internal degrees of freedom of the 
superconductors: 

Hqp = LE/Yhj · j 
In this expression y+-j and yj are the Bogoliubov quasiparticle creation and annihilation 
operators and Ej, the energy of the quasiparticle. To begin with, we will assume that all 
the electrons in the superconductors are paired (i.e. there are no quasiparticles). In that 
case, at T=O, Hqp can be dropped. Of course, only even-n states can be considered 
with this hypothesis of perfect parity. 
We will now find the eigenenergies of the Hamiltonian. The ln,k> states are obviously 
eigenstates of the electrostatic Hamiltonian alone and they are all degenerate with 
respect to the value of k. The electrostatic energy levels are plotted as a function of n8 
in Fig. 2a in full lines. The Josephson Hamiltonians HJI and H12 will couple all the 
ln,k> states, lifting the k-degeneracy and forming bands. At this point it is practical to 
perform a change of basis, introducing the new states: 

l n,o) = Iieiok ln,k) 
k 

At T=O we are only interested in the lowest energy bands. Also, since in practice we 
have E11,2::;£c, we can neglect n-states whose electrostatic energies are above a few 
Ee. In the domain where O�n8�2 the even-n states of lowest energy are n=0,±2, with 
the n=±2 being degenerate at n8=0. This degeneracy can be treated correctly in the 
restricted space generated by the three lowest energy states, 1-2,0>, 10,0> and 12,o>. In 
this basis, the matrix of the Hamiltonian writes: 



and the secular equation takes the form of a polynomial of third degree in E: 
(E -Ecni)( E-Ec(ng - 2)2)( E-Ec(ng + 2}2)- a{2E-Ec(8 + 2n;)) = 0, 

where 

1 ( 2 2 ) a =4 E11 +Eii + 2E11Eii coso . 
This equation is exactly soluble. Introducing intermediate quantities: 

29 

2 16 2 ( 1 2) 8 128 3 ( 1 2) -µ "-=3a+3Ec 3 + ng ; µ = 3aEc +3Ec 9- ng and 0 = Arccos 
2"'312 , 

the three roots are given by: 

�Jo,ng ) =G+ n; fc + �co{0 + 27t�m + 1)) 
with m = 0, 1,2 .  

These eigenenergies form bands parametrised b y  o, whose positions, shapes and 

amplitudes depend on the value of ng. The treatment we have applied is valid only in 
the domain where O�g�2 but, since the electrostatic energy diagram is periodic in ng, 
the solutions to the total Hamiltonian must be periodic with ng, with period 2, each 
interval of the form 2q�g�2(q+ 1) corresponding to a different set of three lowest 

electrostatic energy states. To extend the solution we have found, we simply duplicate 
it to cover the all range of ng values. The bands are also 27t-periodic functions of o 
(they involve 0 only through coso). 
The energy-phase relation in the ground band (m=O) is equivalent to the -E,r;oso 
relation of the single Josephson junction, its extrema being at O=O and 0=7t. To carry 

this analogy further we introduce the notation: 

�0(o,ng) = E0(ng)t0(ng ,o) with J0(ng ,n) - t0(ng ,0) = 2 .  
Thus, E0(ng) represents the effective Josephson coupling energy of the transistor which 
behaves as a gate-voltage tunable Josephson junction. The strength of the effective 
Josephson coupling for different values of Ee at a given E.rEn=E12 is plotted in Fig. 3. 
The critical current of the transistor which is the maximum theoretical supercurrent that 
can flow through the transistor is given by the relation: 
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The maximum of the derivative of fo does not have an analytical expression, but it 
turns out that its numerical value is very nearly equal to 1 for any reasonable set of 
parameters (1 is the value one would get with /0(8)=-coso, the function of the single 

Josephson junction). Thus, up to an excellent approximation, the critical current is 

proportional to the effective Josephson coupling energy (which is just half the 

amplitude of the ground band), with the same proportionality factor as in the single 

Josephson junction, and we finally get: 

Ic (ng ) ,,,�E0 (ng ). (1) <I>o 
Therefore, Fig. 3 can also be regarded as a plot of the critical current of the transistor. 

We will see later how a further theoretical layer must be added on this result for an 

effective comparison with experiment. 

Description of the experiment 
The sample was prepared using standard e-beam lithography and shadow mask 
evaporation techniquesI5). The main difference with previous experiments is the use of 

the 3-angle evaporation technique of Haviland et a/. 16) in order to fabricate in a single 

pump-down the alumina-covered Al island electrode, the two Al drain and source 

electrodes and the Cu (3% wt. Al) buffer electrodes (see device layout in the inset of 

Fig. 1).  We believe that these last electrodes allow the quasiparticle population in the 

transistor to reach the thermal equilibrium value and prevent uncontrolled poisoning of 
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Fig. 3 Effective Josephson 

coupling energy of the transis­
tor as a function of ng for 

various ratios of Ec!E.r. This 

coupling energy is also pro­

portional (see text) to the 

theoretical critical current of 

the transistor. The critical cur­

rent peaks get narrower and 

the peak-to-valley ratio gets 

higher as E .r is reduced, but 

then the absolute amplitude of 

2 the peaks is reduced in pro-

portion. 
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Josephson tunneling by out-of-equilibrium quasiparticles from the rest of the circuit. 

The electrical wiring between the sample and the measuring apparatus at room 

temperature was made through a series of cryogenic filters as in previous 

experiments6). 

From the measurement of the device with the Al electrodes brought in the nonnal state 

by a magnetic field, we deduced the gate capacitance Cg and we could estimate 

Eclk8= 1 .0 K. The nonnal resistance of the two junctions in series was R�49.2 kn. 
The value A= 180 µe V of the gap of the superconducting aluminum was extracted from 

the large scale 1-V characteristic of the sample in zero magnetic field. Using the 

Ambegaokar-Baratoff relation17) we deduced from RN and A the Josephson energy 

E if k8=215 mK and critical current / 0=2eE ifh= 1 1 .4 nA of each junction, supposing they 

are identical. In Fig. 1 we show the sub-gap current-voltage (l-V) characteristic of the 

transistor for ng"" 1 .  A supercurrent branch is clearly seen with nearly zero voltage like 

in the recent experiment by Biles and Martinis18). Its residual slope was measured to 

be less than 100 n, our resistance resolution given the wiring of the sample to the 

external apparatus. This branch defines a switching current ls at which the device 

switches to a voltage set by the resistance of the current bias source, which was 

12. 1  Mil for the data we present in the remainder of this paper. In Fig 4a, we show the 

variations of the switching current with ng at low temperature, for different magnetic 

fields. 

If we now compare the experimental results with the theoretical gate voltage 

modulation of the supercurrent using (1), we immediately notice that it can only agree 

qualitatively at low magnetic field and low temperature (Fig. 4a top curve vs. Fig. 3). 

At high magnetic field the experimental modulation pattern becomes more 

complicated. Moreover even at low temperature, the measured supercurrent is only a 
small fraction ( = 1/5) of the calculated critical current. 

0 

,e 0.1 _E 

Fig. 4 a) Switching current as 
a function of gate charge, for 

several values of the magnetic 

field H, at T=65mK. Top to 

bottom: H=O, 0.07, 0. 1 1, 0. 14, 
0. 16, 0. 17 T. The dip at odd 
integer values of ngle cor-

responds to the poisoning of 

Josephson tunneling by the 

entrance of one quasiparticle in 

the island. b) Theoretical 

runaway current as a function 

of gate charge, for the same 

field values as in a). 
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Effect of even-odd asymmetry 
The change in the modulation pattern with magnetic field at zero temperature was first 
predicted by Matveev et al.JO). This arises when one takes into account the Hqp term of 
the Hamiltonian and drops the hypothesis that the number of electrons remains even at 
all times in the island. According to the BCS theory5), when a single electron enters the 
island it cannot go into the condensate and it creates at least one excitation whose 
energy cost is at least A, the superconducting gap in the island. This means that the 
ground state of the electrostatic plus configuration Hamiltonian of odd-n states will be 
shifted by A with respect to the even-n states (dashed lines in Fig. 2a). Then we must 
consider two cases. In the first case (A>Ec), these odd-n levels are so high in energy 
that the ground state of the system remains even at all times and then the previous 
derivation of the effective Josephson coupling is essentially correct. In the second case 
(A<Ec), in parts of the n8 domain, odd-n states are the ground states of the electrostatic 
plus configuration Hamiltonian. This happens in the vicinity of n8=2q+ 1 (see Fig. 2a 
and b), where a single electron will enter the island and form odd-n bands similar to 
the even-n bands already described (the Josephson Hamiltonians only couple states of 
same parity). In order to distinguish the odd- and the even-n bands, we introduce a 
superscript p in the notation for the ground band and the effective Josephson coupling, 
i.e. @8(0,ng) = EC(ng )Jt(o,ng ) ,  p taking the value odd or even. From Fig. 2a we see 
that the degeneracy of the two lowest odd-n states occurs at even values of n8 and we 
thus have £0 even(n8)=E0ood(n8+1 ). As a consequence, when the single extra electron 
enters the island near n8=2q+ 1 ,  the effective Josephson coupling will drop from a 
nearly maximum value to a minimum value (see Fig. 2c): there will be a sharp, deep 
hole exactly at the position of the supercurrent peak. We have nicknamed this effect 
the "poisoning" of the supercurrent. The theory predicts also that if the gap is reduced 
by applying a magnetic field, the range of n8 value on which the odd state is favored 
extends and the "poisoning" is expected to widen up to a point where the weak 
remaining modulation becomes e-periodic. This corresponds qualitatively to what is 
observed in Fig. 4a. The hole is not as sharp and deep as predicted by the zero 
temperature theory of Matveev et al., but this is expected from a thermal "rounding" of 
the effect. 

Extension of the theory at finite temperature 
To go into a more detailed description of the experimental results, one must take into 
account i) the effect of the electromagnetic environment which affects the finite 
temperature dynamics of the switching of the transistor to finite voltage19,20) and ii) the 
effect of temperature which increases the relative probability of occupation of the 
odd-n states with respect to the even-n states, due to an entropic effect4.7>. 
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In the following, using the usual lumped element model, we describe the environment 

of the pure effective Josephson element as an admittance Y(co) in parallel with the 

current source /. We will make a classical treatment of the dynamics of the phase O(t) 
in the total circuit. Kirchhoffs law writes: 

21t a�g(ng ,o) J 
_ 

1 
= <I>o ao + V(t - 't)Y(t)d't , (2) 

where the first term is the current flowing through the Josephson element and the 

second term is the current in the environment, expressed as a convolution product of 

the voltage and the Fourier transform Y(t) of Y(co). Assuming a short response time of 

the environment compared to the characteristic evolution time of the phase, one can 

expand the convolution product as: 

v<kl (t) 
J 

(-j)k 
Jv(t - 't)f('t)d't = I,--, - (-'t)k Y('t)d't = I,-,-v<kl (t)Y<kl (co = O) . 

k k. k k. 
Replacing in (2) and using V = M>0/21t , one obtains a differential equation for o: 

<I>o [Y(0)8 - jY'(O)B -.!_Y"(0)8+ . . .  J+ 21tEg dfrf = I . 21t 2 <I>0 do 

The evolution of o is identical to that of a particle of mass -1Y'(O)( <I>0/21t)2 in the 

tilted potential E6Jcf' (o) - (<I>o/21t)o/ with friction terms in Y(O)B, Y"(O)B . . .  This 

equation generalizes the equation of motion of the resistively and capacitively shunted 

junction (RCSJ) model21l to an effective Josephson element shunted by a general 

admittance. 

For I 5, le (ng ) , this equation admits a zero-voltage solution (ii = o) corresponding to 

the particle sitting in a local minimum of the tilted potential. This solution is unstable 

against thermal fluctuations and therefore the particle will diffuse from well to well in 

the potential, giving rise to a departure of the supercurrent branch from the zero­

voltage axis. However, for Im 5, I <  le this diffusive motion is itself unstable against 

the runaway down the potential20), where Im is the current for which, on the average, 

the energy gain due to the tilt of the potential becomes greater than energy loss due to 

friction. In the weak friction limit appropriate to our experiment, the losses due to each 

friction term can be evaluated independently using the free dynamics of the phase and 

one gets for the runaway current Im: 

Im =<I>o[a.Y(O)( 2�6 1 )112 
+ �Y"(O)( 2�6 

1)312 + . . . ] , <I>0 Y'(O) <I>0 Y'(O) (3) 
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where ex, � . . . .  are dimensionless coefficients which are weakly dependent on/ 6. The 
first term in the expansion corresponds to the well known 4/of'lrRCroP result of the 
RCSJ modell9). Here, since we have an unshunted junction, this term arising from a 
fluid friction vanishes and the ng-dependence of Im is dominated by the second term 
which takes the form of a radiative-like friction. 
fu view of the importance of thermal fluctuations in our experiment ( Eg :5: E 1 /2) ,  it is 
certainly better to compare the ng-dependence of the measured switching current with 
the theoretical ng-dependence of Im rather than of the critical current le considered by 
Matveev et a/. 10). 
To go further, we will assume that the inverse of the transition rate between the odd-n 
and even-n states is much smaller than the characteristic time of the runaway process. 
These transitions involve a co-tunneling process of an electron between a normal metal 
lead and the island and the rate of this process can be very high due to their proximity 
in the sample (about 0.25 µm)3>. fu the calculation of the switching current, we thus 
replace Eg by the Boltzmann average E{)v = E8ddPodd + EgvenPeven where Podd and 
Peven are the probabilities of being in an odd- or even-n state, respectively, and which 
verify: 

Podd/even oc L exp{-[ Ec (Qg/e - n)2 + (n mod 2)D(T,H)]/kBT} , 
n odd/even 

where D(T,H) is the odd-even free energy difference4,6) and is calculated as in Ref. 7. 
Note that if the inverse of the quasiparticle co-tunneling rate was longer than the time 
it takes for the phase to run away but still shorter than the measuring time, then one 
expects to see the minimum of the two switching currents defined by E8dd and Egven 
in Eq. (3), with sharp jumps in the modulation pattern, very much as is predicted in 
Ref. 10. 
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Fig. Sa) Switching current as a 
function of gate charge, at 
H=0. 1 1  T and for several val­
ues of the temperature T, 
showing the complex transition 
from 2e-periodicity to e-perio­

dicity with the increase of T. 
Open dots: T=65 mK; solid 
dots: T=203 mK; triangles: 
T=356 mK. b) Theoretical 
runaway current as a function 
of gate charge, for the same 
temperature values as in a) (the 
full and dotted line correspond 
to the lowest and highest tem­
peratures, respectively). 
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Using the preceding analysis we can calculate the function Im(Qg,H,T) in which enters 

the unknown scale parameter Y "(O)/Y '(0)312 and two adjustable parameters: i) the 

parameter p of the reduction of I0 due to penetration of magnetic field in the junctions 

defined by I0(H)=I0(1-plf2) in the low field limit of relevance here and ii) the critical 

field He such that D(O,H>Hc)=O, which corresponds to the field at which Im(Q8) 
becomes e-periodic at T=O. In Fig. 4b, we plot Im(Qg,H,T = 6SrriK)/Imo where 

Imo = Im<Qg = e,H = O,T = 6S rriK) using the best fit values p=18.S T-2 and Hc=0.20 T 
which are consistent with the junction geometry and with a previous measurement of 

D 7), respectively. These values are also used in Fig. Sb. A close agreement with the 

experimental results is obtained. The validity of our model can be checked further on 

the temperature dependence of the Im versus ng data shown in Fig. Sa taken for the 

intermediate field H=0. 1 1  T. Experiments at higher temperatures agree less closely 

with theory, the relative amplitude of the peaks being greater in experiment than in 

theory. We believe this is due to the neglect of the influence of thermal fluctuations in 

the runaway process of the phase. However, the non-monotonic behavior of the ng=l 
switching current as a function of temperature is captured by our model14l. 

In conclusion, we have shown that in a Josephson system where the number of 

quasiparticles was controlled, experimental measurements of charging effects can 

agree with a simple model, in contrast with preceding experiments. As Fig. S 
exemplifies, the competition between the charging energy, the Josephson energy and 

the odd-even free energy difference produces a complex behavior of the supercurrent 

as a function of gate charge, magnetic field and temperature. This intrinsic complexity, 

together with the absence of control over the quasiparticle population, probably 

explains why the data of previous experiments in the superconducting state has always 

been somewhat of a puzzle. 
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COULOMB AND INTERFERENCE EFFECTS IN SMALL N-S TUNNEL 
JUNCTIONS 

F.W.J. Hekking 
Institut fur Theoretische Festkorperphysik, Universitat Karlsruhe 

Postfach 6980, 76128 Karlsruhe, FRG 

1 Introduction 

In the early sixties, shortly after the discovery of BCS theory, electron tun­
neling between a normal metal (N) and a superconductor (S) became an 
important tool to investigate properties of superconductors1l . With the help 
of single particle tunneling one could study e .g. the superconducting density 
of states or the temperature dependence of the superconducting gap. The 
key point is that the transport of a single charge through a tunnel interface 
between a normal metal and a superconductor (N-I-S interface) is strongly 
suppressed at voltages lower than D../e, /:J.. being the superconducting energy 
gap. Indeed, energy conservation forbids the transfer of a normal electron 
with an energy below the gap to the superconductor, since it would have been 
converted into a quasiparticle with an energy larger than /:J.. . 

At about the same time, Andreev2l found a mechanism which allows for 
electron transport under subgap conditions. He considered a clean interface 
(without a tunnel barrier) between a normal metal and a superconductor. 
An electron, incident from the normal side with an energy below the super­
conducting gap, will be reflected at the interface as a hole. As a result , two 
quasiparticles are excited in the superconductor, which will eventually recom­
bine into a Cooper pair. This process, called Andreev-refl.ection, will lead to 
an excess conductance at bias voltages smaller than D../e. 

In 1982, Blonder, Tinkham, and Klapwijk3) built a bridge between tunne­
ling phenomena on the one hand, and transport through "clean" interfaces on 
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the other hand. Using the Bogoliubov-de Gennes equations , they studied the 
transport properties of an interface between a superconductor and a normal 
metal which is characterized by a barrier of dimensionless strength Z (normal 
state transmission T = 1/(1 + Z2) ) .  In particular they showed how the excess 
current induced by Andreev-reflection is suppressed with increasing strength 
Z. In the limit of strong tunneling (Z � 1) they found a subgap conductance 
proportional to l/Z4. Since the normal state conductance in this limit , gover­
ned by single particle tunneling, is proportional to 1/ Z2, one concludes that 
the subgap conductance is caused by two-electron tunneling: Two normal 
electrons tunnel through the interface and are converted into a Cooper pair. 

More recently4l , the tendency towards miniaturization has led to the inve­
stigation of tunneling phenomena which occur in ultrasmall junctions, charac­
terized by a small capacity C. The simplest example of such a system consists 
of a small conducting grain, coupled to two macroscopic leads by tunnel bar­
riers. The grain is coupled capacitively to a gate electrode (capacity C9) .  
This gate allows to  control the number N of electrons on the grain by the 
gate voltage Vg.  For almost any value of Vg,  the ground state of the grain is 
non-degenerate, and variations of its charge in the course of electron tunne­
ling increase the electrostatic energy by an amount of the order Ee = e2 /2C. 
This is why electron tunneling through a small grain is suppressed (Coulomb 
blockade) . However, at certain values of Vy which form a periodic set with 
period e/C9, the ground state is degenerate and the blockade is lifted. At 
these values of Vy, the electrostatic energies of the system with N and N + 1 
electrons on the grain are equal. 

In case of a superconducting grain, interesting parity effects5)-S) can be 
observed. Since the ground state of a superconducting grain favors even num­
bers of electrons, its transport properties should reflect a free energy difference 
of the order of the superconducting gap � between even and odd parity of 
the total number of electrons N, which participate in the ground state of the 
grain. If the superconducting gap � exceeds the charging energy Ee, the 
ground state of the grain always involves an even number of electrons N. As 
a result , the subgap conductance is modulated with a period 2e/C9 as a func­
tion of the gate voltage Vy. If � < Ee, N can be both even and odd, and 
the modulation pattern as a function of Vg changes: In the limit � _, 0 the 
period of the modulation e/C9 is recovered. 

In addition, pronounced interference effects can occur. This is related to 
the fact that charge transfer through a N-I-S junction occurs via the tunne­
ling of two electrons. In the diffusive transport regime (diffusion constant D), 
the correlation length Lear = J'liD / E determines the length over which two 
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electrons with energy difference E move phase-coherently along the same dif­
fusion path (Cooperon propagation) . The subgap conductance therefore will 
depend on the geometry of the tunnel junction within a length Lear· Similar 
interference effects are known for the normal SET-transistor in the Coulomb 
blockade regime when higher order tunneling processes determine the trans­
port properties9l . 

It is the aim of the present paper to investigate Coulomb and interference 
effects occurring in small N-I-S junctions. In section 2, the transport proper­
ties of a single N-I-S junction are discussed. We will focus on interference 
effects. In section 3, the transport properties of the N-I-S-I-N double junction 
are presented, with the emphasis on charging effects. 

2 Transport properties of a single N-1- S junction 

The total Hamiltonian for the N-I-S junction can be written as H = HN + 
Hs + Hr. The subscripts N and S refer to the normal (left) and the super­
conducting (right) electrode respectively; the transfer of electrons through the 
tunnel interface is described by the tunnel Hamiltonian 

( 1 )  

The sum is taken over momenta k ,  p in the normal metal and the supercon­
ductor, respectively, and over the spin a =l , !- We assume that the electron 
spin a is conserved during tunneling. The operators a,t ,  a refer to the normal 
metal. For the superconductor, we introduced the quasiparticle operators it , 
i and the BCS coherence factors up,rn Vp,rr lO) . 

Using second order perturbation theory in Hr one can calculate the ampli­
tude for the transfer of two electrons from the normal to the superconducting 
electrode: 

(2) 

Here the spin dependence of the coherence factors was dropped after using 
the relation vp, I  = -v-p,t · We define electron energies �k and (p for the left 
and the right electrode respectively, and quasiparticle energies Ep = jt:J..2 + (J . 
The denominators in (2) reflect the fact that a virtual state is formed when the 
first electron enters the superconductor as a quasiparticle. The second electron 
couples to this quasiparticle, thus forming a Cooper pair. The corresponding 
rate f(V) for one spin direction as a function of the voltage e V � D.. applied 
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across the junction can be found by using Fermi's Golden Rule 

It contains the Fermi functions f for electrons with energies �k , �k' in the 
normal metal. The thermal distribution for quasiparticles is approximated by 
a step function at sufficiently low temperatures kBT � �-

By introducing the function F((; � , e) = u(()v(() [(� + eV - c)-1 + (e + 
eV - c)-1]  with c = c(() = J�2 + (2, we can write (3) as 

r(V) = z= J d�d�'d(d('8(� - �k)8(( - �k')8(( - (p)8((' - (r' ) x 
k,k'1p,p' 

t'k,pt'k',-ptk,p,tk' ,-p'F((; �' ()F( (' ; � ' ()f (�)f (()8(� + �1 + 2eV) .  ( 4) 
In coordinate representation the tunnel matrix elements can be expressed in 
terms of the eigenfunctions 'l/Jk (r') ('l/Jp(r'))  of the left (right) electrode: tk,p = 

f d3rd3r''l/Jk (i')'l/Jp(r")t(i, r") .  The amplitudes t(i, r") describe the tunneling from 
a point r" in the right electrode to a point i in the left electrode. They can be 
related to the conductance g( r) of the tunnel barrier per unit surface area (see 
Appendix A) .  We further introduce the spectral function for the left electrode: 

where QA(R) is the usual advanced (retarded) propagator. A similar spectral 
function can be defined for the right electrode, by replacing energies � __, (, 
and unprimed space arguments by primed ones. A last notational simplifica­
tion is achieved by introducing the function 

3((, (' ; �, () = j d3r1 . . .  d3r4 j d3r� . . .  d3r�t* (i1 , r;)t*(i2 , r;)t(r3 , r;)t(f4, r;,) x 

K�(ii ,  r3)Kdi2 , r4)Kc(r; , r;)K(' (r;,, r;) . 
We are now in a position to express (3) as 

r(V) = 
2; J d�d(d(d('F((; � ' ()F((' ; c ()3((, (' ; � ' () x 

f(0J(()8(� + ( + 2eV) . 

(6) 

(7) 
The information about the electron propagation in the left and right electrode 
is included in the function 3( ( ' (' ;  �, n 0 
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Figure 1 :  Ultrasmall tunnel junction. 

We assume the motion to be diffusive, characterized by a diffusion constant 
D and elastic mean free path le. This is quite realistic for present-day small 
junction systems4l. One may consider e .g. a junction which consists of elec­
trodes of thin metallic and superconducting films. Typically, the thicknes d 
of such films is about 20 nm. Tunneling occurs through a thin oxyde barrier 
between the films (see Fig. 1 ) .  The Fermi wavelength of the films is a few A. 
In this case the electronic motion is well described semi-classically in terms 
of diffusive boundary scattering, with le = d. 

Our assumption means that S has to be averaged in the standard way over 
disorder1 1l , if the junction area S exceeds l�. The phase coherence which exists 
between the two electrons propagating in N or S ( Cooperon propagation) 
comes into play when the product of two spectral functions in N or S is 
averaged. In the normal metal this involves the well-known average 

(8) 

where the Cooperon P satisfies the equation 

(9) 

We find S = SN + S5, where (see also appendix A) 

SN((, ('; �' e) = 32 ; 4 J d2r1d2r2g(r})g(r2){Pc (r1 - r2) + p_€ (r1 - r2) }  7f e VN B 
(10) 

involves Cooperon propagation in the normal metal. A similar expression is 
obtained for Ss by averaging in the superconductor. 

The solution of Eq. (9) will decay on a distance given by Lear =  JnD/c. 
For a superconductor, the relevant energy differences c = (' - ( contribu­
ting to Eq. (7) are of the order .6., whereas for the normal metal, we have 
c ,..., max(eV, kBT). Thus, under subgap conditions the contribution from 
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Cooperon_ propagation in N is more important than the contribution from S. 
For the total subgap current (two spin directions) we find 

j dc:{f(c:/2 - eV) - f(c:/2 + eV)}{P0(r1 - r2) + P_0(ri - r2)} . ( 1 1 )  

I f  the phase </> of  the superconductor varies spatially, the phase difference 
between the points where tunneling occurs </>(ri ) - ¢(r2) plays a role. This 
can be accounted for12l by multiplying the integrand of Eq. ( 1 1 )  by a phase 
factor exp i{ ¢(r1 ) - ¢(r2) } . This plays a crucial role in a recent experiment by 
Pothier et al.13) , who studied the flux dependence of two-electron tunneling for 
a superconducting fork, connected to a normal electrode by tunnel junctions. 

We assume a constant tunnel conductance per unit surface area of the 
barrier: g = Gr/S where S is the junction area. The subgap conductance 
Gs = 8Ij8Vlv=O is given by Gs = RearG}, where 

Here RQ = e2 / h is the quantum resistance. 
As long as Lear < le , we may neglect phase-coherence between the two 

electrons. In that case we put Pe'-e (i1 - r2) ex (Gf (r1 ,  r2) ) (Gf,(r1 , r2)) and 
find Rear rv RQ/Neff, where Neff = k}S denotes the number of channels 
penetrating the tunnel barrier. Since (Gf'A (r1 , r2)) decays over a distance le , 
this contribution to the subgap conductance is smaller than the one found 
in the opposite limit Lear > le . Alternatively one may say, that the phase 
coherence between the two electrons reduces the effective number of channels 
penetrating the barrier. This reduction was observed in a recent experiment8l . 
A numerical solution of Eq. ( 9) for the geometry of the junctions used in 8) 
leads to a good quantitative estimate for Rear · One thus may conclude that 
for Lear > le the subgap conductance not only depends on properties of the 
tunnel barrier, but also on properties of the normal metal through which the 
two electrons move phase-coherently over a distance Lear· 

Several other implications of these results were discussed recently12l .  Here, 
we will focus on the geometry depicted in Fig. 2a. It allows us to study in­
terference effects due to two-electron tunneling by tuning the electron phases 
by a magnetic flux. Solving Eq. (9) for a normal ring (resistance RL, circum­
ference L,  and aspect ratio o:) at a distance l from the superconductor and 
threaded by a magnetic flux <I> we find 
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Figure 2 :  (a) Loop connected to superconductor. (b) Sub gap conductance as a function of flux. 

G _ 2G}RL(1 + 2(l/L) sin2 7r<I>/<I>o)2 
s 

- (7ro:<I>/2<I>0) (cos 27r<I>/<I>o + 1 )  + (2 sin2 7r<I>/<I>o) ( l  + 2 (l/L) sin2 7r<I>/<I>o) " 
(13) 

The result is plotted in Fig. 2b , taking l / L = 0 .5 , a = 0 (upper curve) and a = 

0.1 (lower curve) .  Divergences occur at multiples of <I>0 = h/2e if the aspect 
ratio a = 0. They will be cut off e .g. by a finite temperature or bias voltage, 
which limits the result (13) to Gs = RearG} , with Rear ,...., Lear/ e2vNd2 D the 
resistance of the normal wire (cross-section d2) per correlation length Lear· 
The divergences also dissappear when flux penetrates the arms constituting 
the loop, i. e. when a -:/= 0. 

3 Coulomb blockade of two-electron tunneling 

We now turn to the system depicted in Fig. 3, which consists of a supercon­
ducting grain connected to two normal electrodes by tunnel junctions. The 
grain is linked capacitively to the leads (capacitors C1, Cr in Fig. 3) as well 
as to a gate electrode (capacity C9) . The latter allows to control the number 
N of electrons on the grain by the gate voltage Vy ;  transport is achieved if 
a bias voltage V = Vi - Vr is applied to the leads. As it was mentioned in 
section 1 ,  if � > Ee the grain will favor a ground state which involves an even 
number of electrons. We therefore expect a transport mechanism which gives 
a resonant contribution to the tunnel current at some particular values of the 
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Figure 3: Schematic representation of SET-transistor. 

gate voltage, when the ground state has the degeneracy 2n rt 2n + 2. The 
resonances are periodic in Vy with a period 2e/C9. The origin of these reso­
nances is similar to that for a non-superconducting system14) , but the period 
is twice larger than in the normal state of the grain. The period is doubled 
because two electrons are involved in the sequential transitions through the 
grain. Two electrons first tunnel into the grain and become a part of the su­
perconducting condensate. Then, another pair of electrons tunnels from the 
condensate into the opposite lead, thus returning the grain to its initial state 
and finishing an elementary event of charge transfer. In order to describe 
this so-called two-electron tunneling theoretically 7l we first have to adjust the 
results obtained for a single junction to include the charging energy. Then, 
we use a rate equation to connect transport through the first and the second 
junction. 

The inclusion of the charging energy affects the results discussed in section 
2. In the first step of two-electron tunneling, the grain is charged by a virtual 
electron, which changes the total number of electrons on the grain from N --+ 
N + 1 .  This step is accompanied by a change in energy of the grain by an 
amount EN+l - EN, where EN = (Ne)2/(2C) + (Ne/C) (C1Vi + CrVr + C9Vg) .  
The virtual state denominators in Eq. (2 )  should thus be replaced: �k  - Ep --+ 

EN - EN+! +�k - Ep· Near the resonance N rt N + 2  we have EN -EN+I � Ee. 
The total energy needed to transfer two electrons onto the grain through the 
left junction is E/ = EN+2 - EN - 2e1/i. Energy conservation implies that we 
should replace �k + 61 + 2eV --+ 6 + �k' - E/ in the b-function in Eq. (3) . We 



then arrive at the following expression for the rate: 

with 

21f E; f; (E;) = 7/i 
( /k T) 1 '  n exp E; B -

i = l, r 

Rear G; 2� � + Ee 2 2 { �} 2 
/i = RQ (7re2/fi)2 �2 - Eb 

arctan � - Ee 
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(14) 

(15) 

In order to find the total current through the left and the right junction, 
we use the fact that in the vicinity of the resonance only the states with N 
and N + 2 electrons on the grain play a role. We define the probability PN to 
find the grain in a state involving N electrons. Near the resonance we have 
PN + PN+2 = 1 .  The partial currents through each junction can be expressed 
through p, e.g. Ji___,9 = ef1(E1)pN , where the subscript g refe�s to the grain. 

At zero applied bias and low temperature kBT ,....., !EN - EN+2 I � Ee, the 
partial currents to and from the grain compensate at each junction: I;�g = 

I�D}.i · From this it follows that p�) = 1 + exp{( EN - EN+2)/kBT}-1 • If a small 
bias eV � kBT is applied, a current I1 will be induced at the left junction: 

I1 = I/O) v [-1- (ar1) + 2_ (aPN) 
--->g f1(E1) av V=O PN av V=O 

(16) 
Similarly, a current Ir will be induced at the right junction. Using the fact that 
the total current I =  I1 = In we obtain the differential (subgap) conductance 
of the N-I-S-1-N double junction: 

Gs = 4Jre2 11/r 2eC9(V9 - �(N)YCkBT 
. 

1i /I + Ir sinh{2eC9(Vg - Vg( ) )/CkBT} 
(17) 

Here �(N) = -(N + l)e/C9 is the gate voltage at which the resonance is 
reached. 

At zero temperature, partial currents only flow in the direction dicta­
tet by the applied bias. Using the relation I = I1__,9 = I9__,r we find I = 
2ef1( E1)f r (-Er )/ [f1 ( E1) + r r (-Er ) ] .  The conductance vanishes as long as Vg f= 
V/N), unless the bias voltage exceeds a certain threshold. We thus find current 
resonances as a function of Vg whenever 

C1 (N) Cr 
V. - -V < V. - V < Vii + -V r 

C g g C . g g 
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Figure 4: Overall I - V-characteristic for the double junction. 

In a symmetric set-up (C1 = Cr, 'YI = 'Yr = 1') with V,. = 0, the current 
resonance has the form: 

I(V ) = 
87re2 1- [v2 

- cg (v - v;(Nl - v) 2] . 
g ti v 4 c2 g g 2 

(18) 

Both the width and the height Imax = (27re2/n)1'V of the peak I(Vg) depend 
linearly on bias voltage, which is true also a non-symmetric set-up. In this 
case a more general expression for I(Vg) can be derived, which is in excellent 
agreement with recent experimental results8l. 

This proportionality holds as long as electrons can only traverse the grain in 
pairs. At larger bias, when quasiparticle tunneling into the grain is allowed, 
the transport mechanism changes abruptly. For instance, in a circuit with 
Vr = 0 (Fig. 3) , the threshold voltage at which this change occurs is vth = 

(� - Ec)C/(C9 + Cr)e (Cf. Eq. (15) : the addition of a quasiparticle to 
the grain costs an amount of energy "' � - Ee.) At voltages above the 
threshold, a single electron can tunnel into the grain with a rate of the order 
of wqp "' ( G1/ e) [V2 - yt�] 112 . The escape rate of this quasi particle from the 
grain into the opposite lead (r ) is quite different. The reason is that any 
electron with an above-threshold energy in the normal lead is available for 
tunneling into the grain, but only one unpaired electron can tunnel out of the 
grain. The escape rate Wesc is determined by the tunnel width of a discrete 
energy level available for the "odd" electron in the grain. Although the widths 
fluctuate from level to level, we can estimate the typical width nWesc through 
its relation to the conductance: Gr "' e2v9wesc· Comparison of Wqp with Wesc 
shows that Wqp is the larger one if the bias exceeds the threshold voltage by 
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a value ,...., 8;/e(D. - Ee) ,  with 89 = l/v9 the level spacing in the grain. At 
higher bias, the probability of having an odd number of electrons N + 1 is 
the dominant one. Current through the grain is determined by the escape 
rate of the quasiparticle and saturates at the low level Isat ,...., Gr/(v9e) .  At 
even higher bias, electrons belonging to the condensate can tunnel from the 
grain leaving behind excitations. As a result , the usual quasiparticle transport 
channel opens up, and at e V > e V* = ( D. + Ee )C / C1 current starts to grow 
rapidly with bias. The overall I-V characteristic is sketched in Fig. 4 and 
compares very well to the results obtained in Ref. 6),  8) .  A more detailed 
analysis of combined single electron and two-electron tunneling is given in 
Ref. 15) .  
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A. Normal state conductance of a single junction 

Consider a single junction between two normal metals. Using first order per­
turbation theory in the tunnel Hamiltonian, one can show that the rate for 
transferring electrons from the left (l)to the right (r) electrode is given by: 

The total rate f'(V) is found by subtracting a similar expression for /'r-+l(V). 
Arguing along the lines given in section 2 ,  we find the total current (for two 
spin directions) at T = 0 I(V) = 2ef'(V), with 

'Y(V) = 
2�e

V j d3r1d3r2d3rid3r�Ko(r2 ,  r1)Ko(fi, r1)t(ri ,  fi)t(r1, r2) .  (20) 

The spectral function is evaluated at the Fermi surface �' ( = 0. Although 
we assume the electron motion to be diffusive in the metallic films on both 
sides of the tunnel barrier, the averaged one electron spectral function does 
not depend on the structure of the wave function. rt decays ex 1/ lr1 - r2 1 
for lr1 - r2 I � >..F ,  where AF is the Fermi wavelength. Its maximum value at 
lr'1 - r2 I = 0 equals the density of states v1 (per spin) at the Fermi energy. We 
furthermore assume that tunneling occurs only between neighbouring points 
on the barrier B (i' = r = (x, y, z = ZB) ) :  t(r, i') = t(x, y)83(r - i')8(z - zB) · 
The normal state conductance is then given by 
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G = 8I I _ = A4Ke2>-.}vivr { d2 2 ( ;;'\ = { d2 (;;'\ T ()V V-0 1i }B rt r J - }B rg r; ,  (21)  

where we introduced g(i) : the conductance of the barrier per unit surface 
area, and a constant A which is of order unity. 
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1 Introduction 

Single electron charging effects influence the transport through small capac­
itance junction systems 1 ) . If part of the system is superconducting new 
phenomena have been observed 2-7) . 

When a superconductor and a normal metal are put in contact, Cooper 
pairs leak to the normal region and a superconducting order parameter is 
induced in the metal. Since charging effects inhibit tunneling they reduce the 
proximity effect. Both can be modulated by gate voltages, which opens the 
way to modulate supercurrents. This opens the possibility to detect the effect 
8) . 

The proximity effect had been studied in macroscopic junction systems 
by Aslamazov, Larkin and Ovchinnikov (ALO) 9 . We show how charging 
effects in mesoscopic systems modify their results. We first study the system 
shown schematically in the upper inset of Fig. 1 :  a small normal island 
separated from a bulk superconductor (with gap Li) by a low capacitance 
tunnel junction. The island is coupled capacitively to a gate voltage. In 
the second part of this article we consider the situation where the island is 
superconducting. In this case electron number parity effects can be observed 
in the proximity effect. 
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Figure 1 :  Temperature dependence of the induced pair amplitude (in units of Ge2 / h V) at 
Q9 = 0 for Ee//::;. = 0 (upper curve) ,  Ee//::;. = 0.23 (middle curve) ,  and Ee//::;. = 0.45 (lower 
curve) .  Upper inset: One of the setups studied. A small normal island (N) is coupled to a 
superconductor (S) by a tunnel junction. The gate voltage V,, applied via a capacitor C9 is 
used to modulate the charging effects. Lower inset: The induced pair amplitude in the normal 
metal (N) to second order in the tunneling in diagrammatic language. F is the Gorkov Greens 
function in the superconductor (S) , G is the ordinary Greens function. 

2 Model and Results 

The system is described by the Hamiltonian H = Ho+Ht +Hch where Ho refers 
to the electrons in the normal island and the superconductor, H1 describes 
tunneling, and Heh the capacitive Coulomb interaction. In the presence of 
the gate voltage source the electrostatic charging energy is Ec1i (q, Q9) = (qe -
Q9)2 /2C. Here q is the number of excess electrons on the island, C its total 
capacitance, i .e. the sum of the junction capacitance and that to the gate 
voltage. The gate voltage is responsible for the offset charge Q9 = q9e = C9 Vg .  

The essence of the proximity effect is a nonvanishing pair amplitude (1/;N'l/;N) 
induced in the normal metal by the coupling to the superconductor. The size 
of the induced energy gap !:lind = >.. ('l/;N'l/;N) depends further on the effective 
pairing interaction >.. in the metal. To lowest order in the tunneling matrix 
element I T 12 , the pair amplitude is represented by the diagram shown in the 
lower inset of Fig. 1 .  It has been analyzed by ALO 9) . In order to evaluate 
the influence of the charging energy (which is a nonperturbative effect) we 
formulate the problem in an effective action approach, generalizing the work 
of Ref. [10] .  The charging energy, including the effect of the gate voltage, is 



described by the action 

Sch = r dT - -- + iQ --
f3 [c ( ri a¢) 2 . ri a¢] 

lo 2 2e 8T 9 2e 8T 

It is possible to write the pair amplitude as 
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(1 )  

(1/JN1/JN)ro,To = go N N�O)S J dTdT'd2 pK(ro, p ,  T ,  T1 ; To)Fs (p, p ,  T - T1)h( T ,  T1 ; To) 

(2) 
Here G is the conductance of the junction and G0 = 4e2 / h the quantum 
conductance. The kernel K is related to the Cooperon propagator 1 1  ) . 

In the classical case the function h = 1 ,  and the ALO result is recovered. 
The quantum fluctuations due to charging are taken into account by the phase 
correlator h(T, T1 ; To) = (exp{i(¢(T) + ¢(T1) - 2¢(To))/2}kh · The expectation 
value has to be calculated using the charging action ( 1 ) .  

The charging effects are most important in  the case of a very small island 
nD I d2 � max( Ee' b.) ( d is the linear dimension of the island and Ee = 
e2 /2C) . In this case the propagator p(ri , r2 , � -e) ,...., v-28(� - e) is essentially 
a constant ; substituting this expression in eq. (2) we obtain 

(1/JN1/JN) = G
GV(33 L  L ( + W 

2 + b.2
h(wv - wµ , wµ - wri)eix . (3) 

0 Wµ Wv ,w">O Wv WT/ wµ 

The pair amplitude now depends on temperature and applied gate voltage. 
The temperature dependence is shown in Fig. 1 .  For Ee/ b. = 0 (upper 
curve) the pair amplitude diverges logarithmically for T --+ 0. This is the 
result of ALO 9) . For finite values of the charging energy the proximity effect is 
suppressed; also the divergence at T = 0 is removed. If the pairing interaction 
>. is finite, eq. 3 acquires an additional factor (1 + >.mppT Lw >O _!_)-1 . For 7r II W11 
repulsive >. this leads to a reentrant behavior at low temperatures. 

The charging effects and the proximity effect can be modulated by gate 
voltages as shown in Fig. 2. The periodicity of the modulation is le,  reflecting 
the effect of single electron tunneling. Even though the rate of single electron 
tunneling may be low for low voltages, it still is sufficient at low sweeping 
rates to reset the state of the system in a setup where the island is a normal 
metal. 

In the second arrangement, where a small superconducting island is coupled 
to a film of normal metal the modulation is even more pronounced. In this 
case a single excitation created in the superconductor does not find a partner 
to recombine. Hence the energy of odd electron number states lies higher by 
b. than that of the corresponding normal island. As a result a single electron 
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Figure 2: Dependence of the proximity effect on the induced charge Q9 = C9 Vg for T /Tc = 0.05, 
Ec/6.. = 0.23 (upper curve) Ec/6.. = 0.45 (middle curve) and Ec/6.. = 0.7 (lower curve). The 
curves are periodic in Q9 with period l e. 

tunnels at low temperatures only if the gain in charging energy exceeds the 
cost in excitation energy. The excitation energy can be regained when another 
electron enters the island 4, 12) . This leads to the 2-e periodic long-short cyclic 
dependence observed in the properties of SN electron boxes 3 ) or transistors 2) 
and studied theoretically in Refs. [6, 7] . As long as the temperature is low we 
can describe the new situation by summing in in the correlator only over even 
charges q = 0, ±2, . . .  in the range where even electron number states have the 
lower energy, Ech (even, Q9) < Ech (even ± 1 ,  Q9) + ll, or only over odd charges 
q = ±1 ,  ±3, . . .  in the range where odd states win. The pronounced dependence 
of the induced pair amplitude as a function of the gate voltage is shown in 
Fig. 3. At low temperatures the pair amplitude diverges logarithmically at 
the points of degeneracy Ech ( even, Q9) = Ech ( even) + ll. Only at these points 
the low temperature divergence of the ALO result is not removed. 

In the case where ll > Ee quasiparticle tunneling remains suppressed for 
all values of the gate voltage. In this case the process which transfers charges 
and resets the system is Andreev reflection 5,13) . A 2e-periodic picture emerges 
with peaks in the induced pair amplitude at odd integer values of q9 (Fig. 3) .  



0.5 

7\ 

� a) 

b) 
' 

' ' 
, ------- , 
' ' 

0.0 .__ ___ ...__ ___ _._ ___ ___.. ___ ___, 

53 

Figure 3: Dependence of the pair amplitude on Q9 in the case where the island is supercon­
ducting and parity effects reduce the regime of the odd electron number state for T = 0 and (a) 
Ee/fl = 0.45 < 1 ,  for curve (b) Ee/fl = 1 .8 > 1 (no single electron transitions). The curves 
have now period 2e. 

3 Conclusions 
The modulation of charging effects helps to make the proximity effect visible. 
As an application we consider the situation where a superconducting electrode 
is placed on top of a normal film. If the film is thin enough a uniform pair 

amplitude will be induced below the electrode. A current through this normal 

film depends on the induced superconductivity 8•14). If the electrodes have a 

low capacitance and are coupled to the voltage source, the current through 

the normal film can be modulated. 

In summary we have presented an effective action description of charging 
effects in normal metal-superconductor tunnel junctions and shown that the 

Coulomb interaction in the island suppresses the proximity effect. We recover 
the classical results of ALO. The charging is accounted for by an extra phase 

correlation function modifying the classical expressions. It removes the low 
temperature divergences obtained in the classical limit. Several extensions 
can be included, e.g. relaxation processes due to the fl.ow of Ohmic currents 

and the effect of a gap in the normal island induced by the proximity effect. 

Both regularize the divergence of the classical result. 

We thank D. Esteve for stimulating discussions initiating this work, and 
A.I. Larkin, B. Pannetier, A. van Otterlo, F. W. J. Hekking, Yu. V. Nazarov, 
G. Falci, and A. D. Zaikin for many useful comments. We acknowledge the 



54 

hospitality of the ISi, Torino, and the support of the 'Sonderforschungsbereich 
195' of the DFG. 

References 

[1) see for instance Single Charge Tunneling, NATO ASI Series, Les 
Houches, edited by H. Grabert and M. Devoret (Plenum, New York, 
1992) .  

[2) M. T. Tuominen, J .  M. Hergenrother, T. S. Tighe, and M. Tinkham, 
Phys. Rev. Lett. 69, 1997 ( 1992) .  

[3) P. Lafarge, P.  Joyez, D. Esteve, C. Urbina, and M. H .  Devoret , Phys. 
Rev. Lett. 70, 994 (1993) . 

[4) D.  V. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 69, 1993 ( 1992) . 

[5) F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekter, Phys. 
Rev. Lett . 70, 4138 ( 1993) .  

[6) K. A .  Matveev, M. Gisselfalt , L .  I .  Glazman, M. Jonson, and R. I .  Shek­
ter, Phys. Rev. Lett. 70, 2940, (1993) .  

[7] R. Bauernschmitt, J .  Siewert, A. Odintsov, and Yu. V. Nazarov, Phys. 
Rev. B 49, 4076 (1994) . 

[8] D. Esteve, private communication 

[9] L. G. Aslamazov, A. I. Larkin, and Yu. N. Ovchinnikov, Zh. Eksp. Teor. 
Fiz. 55, 323 ( 1968) ,  [Sov. Phys .-JETP 28, 171 ( 1969) ] .  

[10] U. Eckern, G. Schon, and V. Ambegaokar, Phys. Rev. B 30, 6419 (1984) . 

[11 ]  P.G. de Gennes Superconductivity of metals and alloys W.A. Benjamin 
Inc. (New York - Amsterdam) (1966) 

[12) G. Schon and A. D. Zaikin, preprint 

[13) F. Guinea and G .  Schon, Physica B152, 165 (1988) . 

[14) H.  Courtois and B. Pannetier, unpublished. 



THE AHARONOV-CASHER EFFECT FOR VORTICES 
IN JOSEPHSON-JUNCTION ARRAYS 

W. J. Elion, J. J. Wachters, L. L. Sohn, and J. E. Mooij 
Delft University of Technology 
Department of Applied Physics 
P.O. Box 5046, 2600 GA Delft 

The Netherlands 

55 

Vortices in superconducting networks with low-capacitance Josephson junctions can 

behave as macroscopic quantum particles.I The quantum mechanical properties are 

most prominent when the charging energy Ee of the junctions is comparable to the· 

Josephson-coupling energy Ej- The interplay between Josephson and charging effects 

in this regime leads to the interesting concept of quantum interference of vortices 

around an induced charge. This interference is essentially the two-dimensional 

analogue of the familiar Aharonov-Casher effect2, where particles with magnetic flux 

move around an infinite line charge. · 

Van Wees3 has studied quantum states of vortices in a ring-shaped array, bounded by 

superconducting banks. The charging energy of the junctions is only slightly smaller 

than the Josephson coupling energy. When a voltage source V g is connected via a 

small capacitor Cg to the superconducting inner ring a charge Q=Cg V g can be 

induced on this ring. Simultaneously, a voltage difference is induced between the 

inner and the outer ring that corresponds to a persistent current of vortices in the 

array. A charge vector potential Aq is defined that is related to the induced charge 

through the relation f Aq.dl == Q. One can verify that the time derivative of this vector 

potential times the flux quantum <1>0 equals the sheet current density flowing from the 

inner to the outer superconducting bank, which acts on the vortex as a classical force. 

The generalised vortex momentum becomes p + <I>0Aq . In an array where vortices can 

cross along a doubly connected path, quantum vortices will interfere as a function of 
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the charge that is capacitively induced on a superconducting island enclosed by the 
path. The difference in the phase of the two parts of the vortex' wave function is 

(2x I 2e}t Aq. dl = (2x I 2e)Q. 

We have perfonned the described interference experiment4, using a specially shaped 
array shown in Fig. I .  Two different junction sizes are used to confine the moving 
vortex to the doubly connected path shown. With the gate, charge can be induced on 
the center island. 

Fig. I :  Schematic layout of the sample. Rectangles are superconducting aluminum 
islands and crosses denote Josephson junctions. The junctions in the hexagon have a 
3 times smaller junction area than the junctions that couple the array to superconduc­
ting current and voltage contacts. The dashed line pictures the possible vortex paths. 

Our array consists of underdamped Al-Al203-Al junctions that are fabricated with a 
standard shadow evaporation technique.5 The experiments are perfonned in a dilution 
refrigerator at temperatures down to IO mK inside µ-metal and lead shields. A small 
magnetic field can be applied by means of a Helmholtz coil. Electrical leads are 
filtered at the entrance of the cryostat with rfi feedthrough filters and at sample 
temperature with RC and microwave filters. The junctions in the hexagon have a 
nonnal state resistance rn of 5.5 kOhm and a capacitance C of about l fF. The ratio of 
Ej over Ee is 1 .5. 

As a function of magnetic field, the critical current of the array exhibits sharply 
pronounced minima, shown in Fig. 2. 
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Fig. 2. The critical current as a function of magnetic field. 

The dips in the critical current correspond to a value of the magnetic field where two 
different vortex configurations have the same energy, and the vortices can move 
through the array very easily. The current-voltage (IV) characteristic of the array at a 
field of 1 .2 Gauss is shown in Fig. 3. Above the critical current a resistive branch is 
visible that we will call the flux-flow regime. The BCS gap 2A I e is 0.4 mV for our 
junctions, which is beyond the scale of Fig. 3. The flux-flow branch is only observed 
for magnetic fields where the critical current is depressed by a factor of 4 or more. If 
that is not the case the array will switch to the BCS gap voltage as soon as the critical 
current is exceeded. Computer simulations of the array using the classical resistively 
and capacitively shunted junction (RCSJ) model have convinced us that the flux-flow 
resistance is really caused by vortices moving across the array along one of the paths 
shown. In contrast to the classical simulations we find that in the experiment the 
resistance near zero bias is not zero but about 80 Ohms, depending on the magnetic 
field, and that the critical current is strongly reduced. These differences are clear 
evidence for quantum tunneling of vortices. 
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Fig. 3. Current-Voltage (IV) characteristic in a magnetic field of 1.2 Gauss. 
The arrow corresponds to the bias current at which the differential 

resistance shown in Fig. 4 was measured. 
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Fig. 4: Differential resistance as a function of gate voltage in a field of 1.2 Gauss. 
Bias current is 5 nA with 0.25 nA modulation amplitude. 
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With a standard lock-in technique, we current-biased our system in the flux-flow 

regime, and measured the differential resistance as a function of gate voltage. The 

result is shown in Fig. 4, corresponding to the IV characteristic of Fig. 3, at a bias 

current of 5 nA. With increasing gate voltage the resistance changes periodically from 

2.8 to 3.3 kOhm. The period, as determined by Fourier analysis, is 3.7 mV. With 

increasing temperature the amplitude of the oscillation decreases and vanishes 

between 400 and 500 mK. For higher bias currents we generally find a smaller 

oscillation amplitude. A small periodic modulation of the critical current by the gate 

voltage is seen in the regimes where the critical current is strongly depressed by the 

magnetic field. 

The period of the oscillations is the single electron charge e, while the Aharonov­

Casher effect has a fundamental period 2e. This is due to the presence of a small but 

finite amount of quasiparticles m our experimental system. In this case, for zero bias 

current, if the ·gate voltage is increased the potential of the centre island will rise until 

it exceeds the value of e/2Ct. Ct is the total capacitance of the center island, which is 

6 times the junction capacitance. A quasiparticle can then tunnel onto the island and 

reset the potential to -e/2Ct. The induced charge is effectively limited to the range 

between -e/2 and e/2 as long as the quasiparticle tunneling times are significantly 

shorter than the five minute time scale on which the gate voltage is varied. The 

tunneling times for quasiparticles are however still about four orders of magnitude 

longer than those for Cooper pairs. An applied bias current therefore consists of 

Cooper pairs that tunnel to and from the island. Because the interference of vortices 

is a 2e periodic effect, tunneling of Cooper pairs will not destroy the interference. We 

expect that as soon as quasiparticles become delocalised at the time scale of the 

crossing of a vortex over the array, the oscillations will disappear. This is in 

reasonable agreement with the temperature of 500 mK where the oscillations can no 

longer be detected. 

Recently, several groups6 have reported measurements on two superconducting 

junctions in series where the critical current shows periodic oscillations as a function 

of induced charge on the superconducting island that connects the two junctions. The 

question arises if there is a relation between those oscillations and the Aharonov­

Casher effect for vortices in an array. In an array a moving vortex induces a phase 

slip across the superconducting contacts. For a single junction with Ej>>Ec the 

critical current is determined by the onset of phase slips occurring across the junction. 

If Ee becomes comparable to Ej. these phase slips can also occur through quantum 

tunneling, and the critical current is reduced. For a double junction in the cfassical 

limit a phase slip will, with highest probability, occur over one of the two junctions at 
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a time. In the quantum mechanical limit the onset of phase slips, the critical current, 
will be detennined by a superposition of both possibilities. The induced charge might 
influence the interference between these paths. In view of the relation between our 

array and a double junction system it is also interesting to compare the treatment of 
the persistent vortex current by van Wees with the persistent voltage across a single 
junction as described by Biittiker1. 

The flux-flow branch observed in our experiment is the most important feature that 
discriminates the array from a double junction. This resistive branch signifies that 
vortices can move across the array in a controlled fashion along a well defined path, 
which greatly enhances the intuitive feeling for a vortex as a particle with a mass. 
Another difference is that in our experiment on a Josephson junction array, we did not 
find any influence of the gate voltage on the critical current in zero field. Oscillations 
are only visible when vortices are induced by the magnetic field. This is possibly 
related to the fact that the Ej/Ec ratio of our junctions is higher than the Ej/Ec ratio of 
the junctions used in ref. 6. 

To conclude: we have observed quantum-mechanical interference of vortices around 
an induced charge. This effect is a result of the subtle interplay between Josephson 
and charging effects and a manifestation of the generalised Aharonov-Casher effect. 

We want to acknowledge fruitful collaboration with L. J. Geerligs, U. Geigenmuller, 
M. Matters, Y. Nazarov and T. J. Oosterkamp. Samples were made at the Delft 
Institute for Microelectronics and Submicron Technology (DIMES). 
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1 Introduction 

In the last decades a new branch of solid-state physics arose, studying systems with sizes be­
tween microscopic and macroscopic dimensions: mesoscopic physics. This field has yielded 
many interesting results,2) as these proceedings also show. The transport properties of low­
dimensional systems are, in fact per definition, strongly determined by the boundaries. Whether 
we consider a quantum point contact, a quantum wire or a quantum dot, always the confine­
ment is essential. Therefore it is obvious that new effects will be encountered, if some of the 
boundaries can be formed by superconductors. Due to Andreev ref!ection3) the scattering of 
electrons at the boundaries will change dramatically. 

The aim of our research is to study the interplay of Andreev reflection and the mesoscopic 
effects which are known to occur in semiconductor nanostructures. We want to use semicon­
ductors, so that the normal N region can be patterned by means of gate structures, and since 
we want to study phase-coherent effects in particular, we need a semiconductor with a high 
electron mobility. That is why the use of a two-dimensional electron gas (2DEG) is preferred. 

In the past several superconductor/2DEG systems have already been studied: a Si MOS­
FET,4). 5) a native inversion layer on p-type InAs,6) an accumulation layer in Alo.5Ga0.5As/ 
GaAs,7) an InAs-AlSb quantum well8) and GaAs/ Al0.33Gao.67As heterostructures.9), JO) Each of 
these material systems has its own advantages and disadvantages. While it is relatively easy to 
make contact between InAs and a superconductor because of the absence of a Schottky barrier, 
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Figure I: Schematic uiew of an A ndree11 reflection process 

it is certainly not trivial to make good gate structures on this material. In Si MOSFET's su­
percurrents have indeed been observed and could be modulated by a gate; however, the phase 
coherence length is so small, that the distance between the superconducting contacts is not 
enough to place split gate patterns. 

We have chosen to use GaAs/ Al0.33G<IQ.67As heterostructures, because of its high mobility 
(µ � 102 m2 /Vs) and its excellent gating properties. The large elastic mean free path {l. � 
10-2 mm) gives the possibility to enter the ballistic transport regime, while the distance between 
the superconducting contacts can be large enough for gate structures like a quantum point 
contact or a quantum dot. One of the effects which are theoretically predicted to occur in such 
systems, is the quantization of the critical supercurrent.1 1)· 12) However, until now supercurrents 
in a ballistic superconductor/2DEG/superconductor structure that can be controlled by a gate 
have not yet been realized. On the other hand, new effects have been observed due to phase­
coherent Andreev reflection in mesoscopic systems. This will be the subject of the following, 
by discussing our experiments on GaAs/ AIGaAs heterostructures (section 4). Before that we 
will shortly describe the most important theoretical concepts (section 2) and the fabrication 
process of our samples (section :J) .  

2 Theoretical concepts 

If an electron from a normal material with an excitation energy E below the superconducting 
gap L). reaches the interface with a superconductor {S), it can't enter the superconductor because 
there are no states available {see figure I ) .  Andreev3) found out that the electron can be reflected 
as a hole, while a Cooper pair goes on in the S region. While in normal reflection the angle of 
incidence equals the reflection angle, in an Andreev reflection the hole traces back the path of the 
incoming electron (the time-reversed path) . 13) It is evident that this retroreflection feature has 
a large influence on quantum interference. The second important feature of Andreev reflection 
is the already mentioned particle conjugation. As can be seen in figure I we end up with a 
Cooper pair (charge 2e) in the superconductor, while we started with an electron {e) in the N 
region. This means that Andreev reflection effectively doubles the current; experimentally this 
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Figure 2: Schematic oueruiew of an NS interface with disordered N region 

will be observed as an increase of the conductance. 
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However, if the NS interface is not ideal, the probability for Andreev reflection will dramati­
cally decrease in the case of a small barrier. Since Andreev reflection is a two-particle process 
in contrast to normal electron tunneling, the conductance then will decrease at the transition 
from an NN interface to an NS interface. 

So on beforehand we cannot say whether the conductance of the interface will go up or 
down at the superconducting transition. The nett effect depends strongly on the transmission 
coefficient of the interface.14l 

For the study of mesoscopic effects it is useful to express the conductance of the NS interface 
GNs in terms of the eigenvalues T,. of the (normal-state) transmission matrix product ttl , like 
Landauer15l did for the normal state: 

2 2 N 
(JNN = -i- L: T,. .  ( 1 )  

n=t 

Beenakker16l recently found a generalization of this formula for the NS interface (B = 0 T): 

4e2 N r2 
(JNS = h L (2 - T. )2 "  (2) 

n=l n 

If this expression is applied to a ballistic quantum point contact (that means either T,. = 0 
or T,. = 1) near an NS interface, it is clear that the conductance will be quantized in units of 
4e2 /h instead of the normal value of 2e2 /h. 

Now we consider a more specific case, namely an NS interface with a disordered N region. 
Here "disordered" means that the elastic mean free path /0 is much smaller than the length L 
of the N region. The transmission of an eventual barrier at the NS interface is called r. This 
system has recently theoretically been described by Marmorkos et a/.17) and is schematically 
shown in figure 2. Classically ( i .  e. matching currents instead of amplitudes) the resistance in 
respectively the superconducting and normal state is given by: 

and 

R:;.1""" = _h_ cr-1 + 2(1  - r)r-2) NS 2e2N d 

miass = _h_ cr-1 + (1 - r)r-1) N 2e2N d 

(3) 

(4) 
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with Td the transmission of the disordered region. Looking at these formulas we can distinguish 
two limits: 

• high barrier (f < I ) :  R�s· :> R�ass , because the contribution of the barrier is oc r-2 
instead of I)( r-1 

• without barrier (f = I ) :  �s· = �ass . 

However for both limits deviations occur, when quantum interference is taken into account: 16)-!8) 

• high barrier (le/ L < r < I ) :  RNs � R�ass < R�s'. This is called reflectionless tunneling, 
because it is as if the Andreev-reflected hole is not reflected by the barrier. Experimentally 
this will result in a conductance peak 

• without barrier (f = I ) : RNs > R�s' due to an enhancement of weak localization: it is 
as if Andreev reflection effectively doubles the length of the disordered region, which will 
show up in measurements as an conductance dip. 

Experimental observations of three signatures of (phase-coherent) Andreev reflection will 
be discussed in this paper: conductance quantization in enhanced units, enhancement of weak­
localization effects and reflectionless tunneling. 

3 Sample fabrication 

For most samples a "conventional" GaAs/ A!GaAs heterostructure has been used. This material 
is grown by Molecular Beam Epitaxy and consists of a GaAs substrate with a 4 µm undoped 
GaAs layer, a 40 nm undoped Al0.33Ga,i.67As spacer, a 38 nm n-doped Alo.33Ga,i.61As layer and 
a 1 7  nm undoped GaAs caplayer. The electron mobility is µ �  1 1 0  m2/Vs and the electron 
density is ne � 2.4 X 1 015 m-2 (at T � 5 K). 

The major problem is the coupling between a superconductor and the buried 2DEG. We have 
developed a diffusion process for making highly transmissive superconducting Sn/Ti-contacts, 
which have shown clear evidence of Andreev reflection.9) , 19) Using this process we have made 
a sample with a layout as shown in figure 3 on this heterostructure. The centre of the sample 
consists of two 10 µm wide superconducting contacts at a mutual distance of 800 nm. Each 
of these contacts is attached to two large bond pads for the connection to the outside world. 
Split gates forming a quantum point contact (width � 1 50 nm, length � 90 nm) are positioned 
between the small contacts. Outside the contacts the gates are widened, so that they can 
confine the current flow to the region between the small superconducting contacts. The whole 
sample is surrounded by a wide gate (a moat gate) for device isolation. 

The patterning of all three layers (contacts, wide gate and quantum point contact) is done by 
100 keV electron beam lithography in a double PMMA resist layer to reduce negative influences 
of the lithographic proximity effect. The alignment of these three lithography steps is achieved 
by automatic marker search on especially prepared gold markers (with an inaccuracy below 
30 nm). With this process also six thin gates forming a quantum dot have been fabricated 
between superconducting contacts (distance � 900 nm) on a test wafer, proving the reliability 
and flexibility of this nanolithography and alignment technique. 
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Figure 3: Side-view of the centre of the sample 
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The measurements of reflectionless tunneling have been performed on a different heterostruc­
ture with a "shallow" 2DEG. For this material a different layer structure has been grown on 
a GaAs substrate: respectively, a 0.5 µm undoped GaAs layer, a 1 0  nm undoped AlAs layer, 
a 8-doped 0.56 nm GaAs layer sandwiched between two 1 . 13 nm Al0.33Gil-0.67As layers, again a 
10 nm undoped AlAs layer and a 5.4 nm undoped GaAs caplayer. In tills way the 2DEG (with 
µ "" 60 m2 /Vs and ne "" 3.6 x 1015 m-2)  is situated only "" 28 nm below the surface. On this 
material 200 µm x 200 µm superconducting contacts are placed on a 200 µm wide etched mesa 
at several mutual distances (a so-called TLM structure). 

The resistance measurements on the samples were performed in a dilution refrigerator, 
employing a current-biased ac lock-in technique as well as de methods. 

4 Results of the measurements 

4.1 Conductance quantization in enhanced units 

In figure 4 the conductance of the sample with the quantum point contact is presented as a 
function of the gate voltage Vg (T = 10 mK). It can be clearly seen that at zero magnetic 
field the conductance is quantized in units larger than 2e2 / h. We think this can only be 
due to Andreev reflection. In this respect it is important to note that these are the original 
measurement data, i. e. without a correction for a series resistance. 

The fact that the steps are practically equidistant for B = 0 T means that there is no 
significant series resistance. The figure also shows that the effect is suppressed by small mag­
netic fields; even the remanent field of the superconducting magnet is enough to destroy the 
enhancement. 

By means of formula (2) we can make an estimation for an effective, averaged transmission 
probability T (assuming mode independence). From the fact that the observed quantization 
unit is "" 2.2e2 / h instead of the ideal value 4e2 / h, we find T "" 0.85. To check this we can do an 
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Figure 4: The differential conductance as a function of the voltage on the quantum point contact gates 

analogous estimation in the normal state using formula ( 1 ) ,  which indeed yields the same value. 
This suggests that the transmission of an eventual barrier at the NS interface r is larger than 
0.85. Following the theory17l this is in the regime where enhanced weak-localization effects cai1 

be expected. Indeed this has been observed as will be discussed in the next section. 

4.2 Enhanced weak-localization effects 

At zero gate voltage the conductance shows a sharp minimum at zero bias, which is rapidly 
suppressed by a magnetic field (figure 5) and increased temperature (figure 6). We think this 

I ;.';.�...:·���:· ....... ���,;;.,.��� 
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Figure 5: The normalized differential conduc­
tance as a function of the bias voltage for several 
magnetic fields (I' = IO m K) 
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Figure 6: The differential conductance as a func­
tion of the bias voltage at several temperatures 
{B = 0 mT) 

minimum consists of two superimposed phenomena: a broad minimum due to the opening of 
the superconducting gap at a non-ideal NS interface14> and a sharp dip caused by enhanced 
weak localization.16) This hypothesis is confirmed by measurements on a sample in which the 
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major part of the thin gate between the superconducting contacts doesn't function, but in 
which the current flow still can be confined by means of the wider gates at the sides of the 
contacts (figures 7 and 8). Figure 7 clearly shows that at temperatures below 0.9 K a small dip 
arises superimposed on the broad minimum. This dip also vanishes in a small magnetic field 
(figure 8) which is in agreement with the fact that weak localization is suppressed when time­
reversal symmetry is broken. The depth of the dip is also in  good agreement with theory which 
predicts a magnitude in the order of e2 / h. 20> The disorder which causes the weak localization 
is probably introduced near the contacts by the diffusion process. 

Also in the original sample (figures 5 and 6) the sharp dip is suppressed at B � 35 mT and 
T � 0. 7.5 K. It is difficult to predict the voltage at which the enhanced weak localization is 
suppressed, since the Fermi velocity and the elastic mean free path of the disordered region are 
not known. However, the threshold voltage and the threshold temperature should be related by 
eV.1t � 4kBTth· The observed values are in good agreement with this prediction (V.1t � 0.25 m V). 

The enhanced weak localization can however also be suppressed by a large negative voltage 
on the nearby gates. At Vg = -890 m V not a conductance minimum but a maximum is found 
around zero bias and also the sign of the temperature dependence is opposite.21 >•22) We think 
the suppression is caused by the formation of a potential barrier in the quantum point contact; 

this lowers the transmission of the sample, which is then not in the regime of enhanced weak 
localization anymore. Anyway, it proves that phase coherence is preserved into the 2DEG. 

From the theoretical expression for the threshold magnetic field17l Bth = h/(el�) we find an 
estimation for the phase coherence length I.,, of the order of 0.4 µm. This is in agreement with 
the observed gate influence. 

4.3 Reftectionless tunneling 

Reflectionless tunneling was the first signature of phase-coherent Andreev reflection that was 
experimentally observed. It was measured for the first time in a Nb/InGaAs junction by 
Kastalsky et al.23) Later it has been observed in other material systems.5),B), 22)• 24) Van Wees25) 
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was the first to realize that the measured conductance peak could be explained by phase­
coherent Andreev reflection; this concept was elaborated by others .16) .  l7) 

We have observed reflectionless tunneling most clearly in samples on the shallow 2DEG. 
The data are shown in the figures 9 and 1 0. Below the critical temperature of tin (Tc = :3.7 K 

45 
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30

_4 -2 0 2 4 
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Figure 9: The differential conductance as a function of the bias current at several temperatu1"€s 
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Figure 10: The differential conductance as a function of the bias voltage for several magnetic fields 

for bulk) a broad conductance minimum arises because of "classical" Andreev reflection at an 
NS interface with a non-unity transmission.14) At very low temperatures (T < 0.3 K) ,  however, 
a small conductance peak appears, due to phase-coherent Andreev reflection (figure 9) . This 
temperature is in correspondence with the voltage at which the peak vanishes. The peak is also 
suppressed by a small magnetic field of B ""  20 mT (figure 10) .  This suggests that /"' '°"' 0.45 µm, 
which means that phase coherence is preserved into the 2DEG. 

The fact that we observe reflectionless tunneling in this shallow 2DEG means that the NS 
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interface is less transmissive as in the conventional 2DEG. This is in agreement with the higher 
contact resistances we find on this material, probably due to the different layer structure. 

5 Conclusions 

We have reported the experimental observation of three signatures of phase-coherent Andreev 
reflection in superconductor/2DEG systems. The conductance of a quantum point contact near 
a superconductor is quantized in units larger than 2e2 / h. At zero gate voltage an enhancement 
of weak localization by Andreev reflection has been observed for the first time. In a different 
heterostructure reflectionless tunneling has been measured for the first time in GaAs/ AlGaAs. 

The fact that in these effects phase coherence is preserved into the 2DEG shows that 
GaAs/ AlGaAs heterostructures are very promising for the study of the interplay between An­
dreev reflection and mesoscopics. 
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The transport properties of two dimensional electron gases with 
superconducting contacts are analysed. A dip in the differential resistance around 
zero bias is observed, and attributed to Andreev reflection at the interfaces, and 
higher bias structure is attributed to quasiparticle recombination in the 
superconducting contacts. The apparent temperature independence of the width of 
the dip is shown to be due to a balance between the thermal distributions of carriers 
in the normal and superconducting regions. 

Introduction 

At the junction between a normal material (N) and a superconductor (S) at 
biases less than the superconductor gap energy, there are no states for single electron 

transport into the superconductor, and so charge transfer can only take place by two 
electrons, equally spaced in energy around the pair energy, pairing and entering· the 
superconductor. This can be viewed as an incident electron at the Fermi level 
retroreflecting (Andreevl) reflecting) as a conduction band hole. Andreev reflection 
usually results in a dip in the differential resistance around zero bias (see Fig. 1), due 
to the extra hole current. The so-called zero bias anomaly has been observed in a 
remarkably wide variety of junctions that rangel5) from niobium-silver2) through tin­
GaAs3) to an interface between superconducting and metallic phases of a polymer4>. 

Although the probability of Andreev reflection has been predicted as vanishingly 
small in junctions with a finite tunnel barrier, van Wees5) has shown how the 
probability can be increased by quantum interference if there is disorder in the 
normal region. Beenakker6) and Marmorkos et al.7) extended this for a general 



74 

interface disorder potential. It has been predicted that the central dip should end at a 
bias of Me at a single interface, when the Fermi level in the normal region reaches 
the quasiparticle energy in the superconductor. However, experimentally the width 
of the central dip has often been found to be a few times greater than this, and 
explanations of this have generally been device-specific2,4). 

ZBA 

First peak 
t 
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Bias (V) 
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3rd 2ndl 
J J T Spike 

I I ,� n • I 
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Figure 1: dV!dl curves for an S-N-S device at l.6K (l) and 4.2K(r) 

We have made differential resistance measurements of S-N-S and S-N devices, 
and observe a resistance dip around zero bias with a higher bias peak. In addition we 
observe structure in the differential resistance at higher bias that only occurs in a 
narrow temperature range. The shoulder of the central dip occurs at a bias of 4Me in 
the S-N-S junction and approximately 2Me in the S-N junction. The width of the 
central dip is found to be almost independent of temperature below Tc, rather than 

following the temperature dependence of the superconductor gap, as predicted&). 
The apparent temperature independence of the shoulder position is due to a balance 
between the gap reduction with increasing temperature, and thermal broadening in 
the normal material. The higher bias structure appears to be due to quasiparticle 
recombination. 

Experiments 

A standard modulation-doped AlGaAs/GaAs heterojunction wa.s used with 
superconducting contacts, 3µm apart, diffused to make a connection between the 
surface and the two-dimensional electron gas (2DEG), 80nm below. These contacts 
were formed by evaporating a Sn-Cr-Au multilayer film which was sintered using 
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rapid electron beam annealing. The contacts have a critical temperature of 7 .2K, 
much higher than that of bulk Sn (3.7K), which is probably due to an alloy in the 
contact composed of Sn, Al, Ga and As. 

The differential junction resistance was measured, and for all devices the 
normal state resistances (RN) ranged from 40 - lOOQ. The differential resistance of 

a junction is shown in Fig. 1 .  The characteristics have three main features: the dip 
around zero bias, the first peak at higher biases, and further peaks, spikes and noise 
beyond the first peak. All of these effects disappear above the measured critical 
temperature of the electrodes at 7.2K. 

At 1 .6K the central dip has a minimum of approximately RN/3, and as 
temperature increases this minimum gradually increases, then the dip disappears 
rapidly above 5 .0K. The shoulder of the dip becomes less distinct with increasing 
temperature, becoming a smooth gradient change around 4.2K; at this point the 
width of the dip has also increased slightly. Above 4.2K the shoulder re-develops 
and the feature narrows, then rapidly disappears above 5.0K. 

The first resistance peak is observed at a higher bias than the shoulder. As 
temperature increases, the peak shifts consistently inwards, rapidly collapsing above 
5.0K. At l .6K only the first peak is seen, but as temperature increases further 
structure develops. A second peak starts to appear at 3.5K and is fully developed by 
4.2K, at which point a third peak is also seen. No further structure other than the 
return to the normal state resistance develops beyond the third peak at any 
temperature. Above 4.2K the second peak changes to a sharp spike which reverts to 
a small peak at higher temperatures. Spikes also develop just before the first peak at 
a temperature around 4.2K, and appear to shift inwards with increasing temperature 
in the same manner as the first peak. The second and third peaks are accompanied by 
an increase in the measured noise. 

Discussion 

At zero temperature, quasiparticle injection begins when the bias across a 
single interface reaches Me. This increases the interface resistance, and hence a 
shoulder should be observed in dV/dl at V=Me. However, the critical temperature 
of our electrodes is 7.2K, so A=l . lmeV at OK, and we observe the shoulder at 
4. l mV. This can be explained if we consider that what is normally described as a 
single S-N interface is in fact a N-S-N junction, as another normal contact must be 
made to the superconductor to make an electrical measurement. .  The second S-N 
interface formed by this contact cannot be ignored in determining the width, depth 
and temperature dependence of the central dip. 
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Figure 2: Temperature dependence of the shoulder of the central dip. 

The symmetry of the dV/dl characteristics suggests that the two S-N interfaces 
are electrically very similar. If both interfaces have a very low Andreev reflection 
probability then at zero applied bias the equilibrium state would look as inset (a) in 
Figure 2, but if Andreev reflection is probable, charge will cross the interface and 
fill the ground state. This will charge the superconductor until the ground state aligns 
with the Fermi energies in the two leads (inset (b)). When a bias is applied the 
bands offset as shown in inset (c)-(d). In case (c), no current can flow at zero 
temperature. Andreev reflection must be possible at both interfaces for excess 
current to flow in the junction, and in this case (inset (d)), most of the potential drop 
will be at the upstream interface, as Andreev reflection requires the spatial and 
temporal overlap of electrons satisfying the energy and wave vector conservation 
conditions. Pair injection into a continuum of empty states is less restrictive at the 
downstream interface9). 

We have also fabricated a single diffused contact overlapped by two Au-Cr 
bond pads to form an N-S-N device, with no 2DEG normal region. The shoulder 
occurs at l .4mV, which falls within the limit predicted by our model (2.2mV). This 
also agrees well with other observations2-4, 1O, 1 1). 

The depth of the anomaly is difficult to account for quantitatively from recent 
theories 5,6,7), as the disorder potential and barrier at the interface are not known. 
However, the number of junctions in series between the current probes will also 
affect the minimum resistance, as each Andreev reflecting junction creates an excess 
current through the device, and so multiple junctions in series will have lower 
resistances. The minimum for our N-S-N-S-N junction (RN/3) is approximately 
half of that for the N-S-N junction (2RN/3). 
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The temperature dependence of the central dip is expected to follow that of the 
BCS energy gap. The temperature independence of the central dip that we observe 
has been observed by others3.4, l l), but has not been explained. Finite temperature 
broadens the Fermi distribution in the normal region, so that instead of an abrupt 
change in dV/dl when the Fermi level reaches the quasiparticle energy, there will be 
a smooth transition. The differential resistance will start to increase at a lower bias 
and stop at a higher bias than it would if there were no broadening. The shoulder at 
finite temperature represents the upper end of this change in dV /di, and so will move 
to higher bias with increasing temperature. However, the gap decreases with 
increasing temperature, and so the two effects compete16). An estimate of the change 
in shoulder position can be obtained by adding a term linear in temperature to the 
BCS dependence of the energy gap. Figure.2 shows this dependence plotted with the 
experimental shoulder positions. It can be seen that thermal broadening widens the 
shoulder slightly and reduces the temperature dependence of the width, until very 
close to Tc, which approximately matches the experimental results. 

The other generally observed feature in the differential resistance is the first 
peak outside the shoulder. This has been commonly attributed to a collapse back to 
the normal state resistance, but an excess current exists after the first peak, and the 
transition to the normal state happens at a much higher bias. It is likely that the peak 
results from quasiparticle recombination in the superconducting electrodes. 

When the applied bias at the injecting contact is greater than /l/e, hot 
quasiparticles are injected into the superconductor. These can pair and relax to the 
ground state by emitting a phonon, or a quasiparticle can recombine to the ground 
state by pairing with an electron of equal energy below the ground state, in a zero­
phonon transition which is essentially internal Andreev reflection. A coherent 
electron-phonon process leads to a jump in the 1-V curvel 9), giving a dV /di spike 
similar to that we observe; the peak appears to be a broadening of this effect by 
temperature or disorder. 

Multiple peaks similar to those we see have been reported3) for a SnPd­
AlGaAs/GaAs device at the lowest-temperature measurement ( l .2K), and were 
attributed to the collapse of supercurrent paths in the contacts. We observe similar 
peaks in a similar material structure, but the additional peaks only appear within a 
small temperature band. The spikes could result from a coherent electron-phonon 
process as described above, which is strongly dependent on the cooling properties of 
the environment of the superconductor, and these broaden into the extra peaks. 

The increased noise at higher biases is, we believe, due to the generation of 
local phase slip centres20), making small regions of the tin remaining above the alloy 
resistive, which causes local heating, leading to random changes in the device 
resistance. 
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Conclusions 

We have shown that the width of the zero bias anomaly observed in 
superconductor - normal junctions can be explained by considering the changeover 
from Andreev reflection to quasiparticle injection at all the junctions present in 
series independent of material or geometry. The thermal distribution in the normal 
material slightly widens the central dip and alters the temperature dependence. 
Quasiparticle recombination in the superconductor determines the structure in the 
differential resistance at higher applied biases. 

The authors would like to acknowledge many useful discussions with Dr 
Mathias Wagner of the Hitachi Cambridge Laboratory, members of the collaboration 
between the Microelectronics Research Centre and the Hitachi Cambridge 
Laboratory, and Dr Trevor Thornton of Imperial College, London University. 
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Interest in the transfer process of electron pairs at the interface between 
normal and superconducting electrodes, first described by Andreev in 1 9641), was 
recently revived by experiments on semiconductor-superconductor contacts2,3). 
The electrical conductance of such contacts was found to be strongly enhanced at 
zero voltage, a result which the well accepted ballistic electron model4) failed to 
predict. Recently, Xiong et al.5) have shown that the conductance of normal metal­
superconductor (NS) contacts depends on the shape of the normal electrode. 
Furthermore, in experiments on charging effects in superconducting nanostruc­
tures, the conductance of NS junctions was found to be much larger than expected 
from the ballistic model6, 7). That multiple attempts for tunneling of electron pairs 
could enhance the conductance of NS junctions, unlike the case of NN junctions, 
was pointed out by van Wees et al. 8) and subsequently analysed by several other 
authors9, 10, 1 1, 12). In the semiclassical description of an NN junction, even if an 
electron collides n times with the barrier, it contributes to the conductance exactly 
like n electrons each colliding with the barrier just once. The reason is that the 
dephasing of the electron wavefunction is random between collisions with the bar­
rier. This is no longer the case in NS junctions in the presence of time reversal 
symmetry. Consider two electronic wavefunctions on the normal metal side. The 
phase of the pair tunnel amplitude at each point is the algebraic sum of the phases 
of the two wavefunctions and of the superconducting order parameter. If the wave­
functions are nearly time-reversed, as depicted in Fig. 1 ,  and if the order parameter 
of the superconductor is uniform, the total phase is constant along the barrier, and 
the amplitudes at different points interfere constructively. The total pair tunnel 
amplitude is thus multiplied by the number of points at which the trajectory hits the 
barrier. This simple semiclassical model describes how multiple attempts of tunnel­
ing of electron pairs near the tunnel barrier enhance the conductance. 



80 

N -... e s 

2e 

/ 

Figure 1 : Semiclassical representation of the mechanism responsible for the enhance­
ment of the Amlreev current. Two diffusing electrons in the normal electrode, with 
nearly time-reversed wavefunctions, tunnel through the barrier at different points 
with the same phase. If the order parameter of the superconductor is uniform, the 
tunnel amplitudes at these different points contribute constructively to the total 
current. 

Hekking and Nazarov proposed recently 1 1) different layouts in which this 
effect could manifest itself. In particular, they considered the case of two NS junc­
tions in parallel in which the interference between the pair tunnel amplitudes at the 
two junctions is controlled by the difference betwen the superconducting phases at 
the two junctions. 

We report here measurements of the Andreev current in such an "NS­
QUID" (Normal metal-Superconductor QUantum Interference Device) whose lay­
out is shown in Fig. 2. In NS-QUIDs, the difference between the superconducting 
phases at the two junctions is monitored by the flux cf> threading the loop. The 
normal electrode near the junctions is long and narrow in order to increase the 
number of tunnel attempts of electron pairs. Our sample was fabricated using elec­
tron beam lithography and shadow-mask evaporationl3). The superconducting and 
normal electrodes consist of a 20 nm thick aluminum film and a 30 nm thick 
copper film, respectively. The sample was cooled down in a dilution refrigerator. 
We deduced the normal state conductance Gr = 641 µS from the large scale 

normal state current-voltage (/- V) characteristic (dashed line in the top-left inset of 
Fig. 3), measured by applying a field of O.l  T perpendicular to the films. 
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Figure 2: NS-QUID layout: a nonnal metal wire overlaps an oxidized super­
conducting forlc electrode. The effective area of the loop (enclosed by the dashed 
line) is 13 µm2 • The superconducting bottom electrode (aluminum) and the nonnal 
top electrode (copper) were 20 and 30 nm thick, respectively. Regions where the 
nonnal electrode overlaps the superconducting electrode are in dark. 
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Figure 3: Extremal subgap 1-V characteristics measured at T=27 mK. The solid and 

the dotted lines correspond to maxima (Cl> =  kc1>0) and minima (Cl> =  (k+ I /2)c1>0) of 

the modulation of the current as a function of the magnetic field H shown in the 
bottom-right inset, respectively. The arrow indicates the bias voltage at which the 
modulation pattern was measured (circles: data; solid line: sine function fit). The 
top-left inset represents the large scale characteristics of the NS-QUID at H = 0 
(solid line) and H = 0. 1  T (dashed line). 
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At zero field, the current decreases considerably below the superconduct­
ing gap voltage (solid line in the same inset). As the temperature is decreased 
below 300 mK, the residual sub-gap current becomes strongly field modulated, as 
shown in the bottom right inset ofFig. 3 for V=20 µ V and T=27 mK. The magnetic 
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field dependence of the current follows a sine function (solid line), as predicted in 
Ref. 1 1 .  Assuming a cf> 0 ( = h/2e )-periodicity for the modulation as a function of the 
flux cf> threading the loop, we deduce an effective field capturing area A of the loop 
which agrees within 20% with the area defined in Fig. 2. Note that the positions of 
the maxima do not exactly correspond with integer multiples of flux cf>0, an offset 
which we attribute to the residual field in the cryostat. We show in the main plot of 
Fig. 3 the two extremal I-V characteristics (solid and dashed lines). The maximal 
(cf> = kcf>0) and minimal (cf> = (k + 1 /2)cl>0) conductances at V=O are Gmax = 4.6 µS 
and Gmm = 0.66 µS, which are much larger than the ballistic upper bound estimate 
Gbol = (h/ 4e2) G; / N etr "' 25 nS, where N etr = S/ 41tA2 is the effective number of 
channels calculated with the upper bound estimate A =  0.2 nm for the barrier 
wavelength cut-offl2). 
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0
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Figure 4: Comparison between the measured (symbols) and predicted (solid lines) 
temperature dependences of the maximal and minimal conductances G max and G .... . 

Predicted curves are calculated along the lines of Ref 12 with a diffusion constant 
D = 59 cm2 s·' and with a phase-breaking time 't"' = 120 ps . We have used 
n(EF) = l.Sx  1047 J"1 m·' for the density of states of copper. The dashed line shows 
the quasiparticle conductance contribution Gqp to G .  

Figure 4 shows the variations of Gmax and Gmin as a function of the tem­
perature T, from 27 to 350 mK. In Ref. 12, Hekking and Nazarov establish the link 
�etween the current and the return probability of an electron at the barrier. We 
have made the hypothesis of a diffusive motion of electrons in the normal electrode 
and have deduced from their formula Gmax and Gmin after solving the diffusion 
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problem for our particular device layout. The fit parameters are i) the diffusion 
constant D = 60 ± 5 cm2 s·1 and ii) the phase-breaking time 't<1> = 120 .± 10 ps, 

which are compatible. with previous measurementsl4). However, we had to scale 
the calculated conductances up by a factor 4.7, which is not understood at present. 
The expected extra contribution to the current arising from phase-coherent diffu­
sion of quasiparticles in the superconducting electrodel2) is too small to resolve 
the discrepancy, and should not affect the modulated part of the conductance. 
Allowing for this adjustment, we find a good agreement between experiment and 
theory at temperatures between 27 mK and 180 mK. Above 200 mK, the contribu­
tion Gqp of thermally activated quasiparticle tunneling to the conductance is no 

longer negligible, and we have added it to the Andreev conductance using IS) 

G = G �exp(- �) 
qp TV kBT 

. 
kBT 

with � =  205 µeV for the energy gap of our aluminium film. With this added con­

tribution, shown as a dashed line in Fig. 4, the agreement with experimental data is 
then excellent in the whole temperature range. 
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WIRE PERIODICALLY IN CONTACT WITH 

SUPERCONDUCTING ISLANDS 

Herve Courtois, Philippe Gandit and Bernard Pannetier 
C.R.T.B.T., C.N.R.S., 25 Av. des Martyrs, BP 166, 38042 Grenoble, France. 

Laboratoire Associe a l'Universite Joseph Fourier, Grenoble. 

In this paper, we report electron transport measurements in a long submicron 
metallic wire periodically in contact with ultrasmall superconducting islands. 
Evaporation in the same U.H.V. vacuum cycle of Cu and Al with two-axes shadow 
evaporation technique enables us to obtain high quality interfaces. The separation 
between Al lines has been varied between 0.4 and 2.5 µm whereas the normal 
coherence length LT is 0.2 µm at 1 K. The existence of a resistance increase below 
Tc is discarded. At low temperature, phase coherence extends over the whole 

system and zero-resistance state is observed. Current-Voltage characteristics show 
critical currents up to 1 µA at 40 mK and resistance steps, reminiscent of phase-slip 

centers. Magnetoresistance measurements in 2D arrays of parallel Cu wires coupled 
by transverse Al lines exhibit fluxoid quantization and interference effects. 

There is now a number of puzzling theoritical predictions! ) and experimental 
results on Normal-Superconducting systems2),3). In a recent experiment, Petrashov 
et al2) showed an increase of the resistance of a mesoscopic normal wire when a 

small piece of superconductor in contact with the normal metal goes in the 

superconducting state, even if the measurement current does not flow under the 
piece of superconductor. We present here results on a similar system with a larger 
length and at lower temperature. 

If a superconductor is put in clean contact (no oxide barrier) with a normal 

metal, the proximity effect between the two metals depresses the pair potential in 
the superconductor while superconductivity appears in the normal metal4) . 
Evaporated metallic layers are usually in the dirty limit, where the mean free path 
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is of the order of the thickness of the layer and much lower than the coherence 

lengths of the system. In the normal metal, the characteristic length over which 

Cooper pairs diffuse is the normal coherence length: 

L - � ( dirty limit)  (1) r - �2ik8T 
In our typical layers, the mean free path in the copper is 30 nm and the 

normal coherence length is 0.2 µm at 1 K. This scale is now easily attainable with 

modern lithography techniques. We designed a new type of mesoscopic system 

made of a single normal metallic wire periodically in contact with superconducting 

material. The total length L of our system is 92 µm or 79 µm. The distance 

between Al strips d has been varied between 0.4 and 2.5 µm, whereas the width w 

of the wires is about 0.2 µm. Figure I shows a draw of a part of one sample. 

w = 0,15 to L 
0.3 µm 1 

� 

d = 0,4 to 
2.5 µm 

Al 

I :6.s to 2 µ: � 
Figure 1 :  Scheme of our samples and SEM oblique view of a typical sample. 

We used e-beam lithography on a bilayer of resist (PMMA/MAA and 

PMMA) in order to obtain a PMMA mask suspended about 0.5 µm over the silicon 

substrate5). Angle evaporations with two axes of rotation enable us to choose which 

metal we evaporate on the substrate for a given direction of a line. The e-beam 

evaporation were performed in a UHV system with a pressure lower than 3. l 0-8 

mbar during all the process which lasts about 20 mn. This technique allows us to 

obtain a high-quality interface between Al and Cu. In order to test the quality of the 

metal layers and of the intetface, we performed Ratio of Residual Resistivity (RRR) 

tests on extended layers of Cu, Al and a Al-Cu bilayer. The RRR of the layer of Cu 

and Al were respectively of 3 and 3 .4, whereas the bilayer has a RRR of 2.7. The 
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RRR for the bilayer remains quite good and indicates that the Cu has not been 
alloyed with deposited Al. 

We performed high sensitivity transport measurement on more than IO  

samples down to  20 mK in  a dilution refrigerator. Lithographied rf filters with a 
reliable efficiency of more than - 60 dB at 300 Mhz were integrated in the sample 
holder6). The samples were shielded from earth magnetic field by µ-metal shields. 
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Figure 2: Two kinds of four probes geometry (size of the window 100 x 100 µm2) 
and the respective dV/dl behavior near Tc(Al) with 300Hz measurement frequency. 

We first consider the behavior of the measured resistance near the 
superconducting transition of Al. Due to the fabrication technique, the current and 
voltage contacts are made of a bilayer of Cu and Al. We found that the design of 
the contacts was very important to make an accurate measurement of the resistance 
of our hybrid samples. Figure 2 sketches two different four terminals contact 
designs and the measured dV /di beside. In the H-type geometry (Fig. 2a) we 
observe an increase of resistance which is related to the superconducting transition 
of the contacts, which occurs near the Tc of Al. When the wide line constituting the 
contacts goes from the superconducting to the normal state, the deformation of the 
isopotential lines gives a false measure of the resistance above Tc7). In Figure 2a, 
the relative percentage of the effect is about 0.1 % which is close to the geometrical 
aspect ratio of contact w/L (0.2% ). No such jump is observed in true four terminals 
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design (Fig. 2b). One must point out that our samples are much longer than all the 
characteristic coherence lengths and that mesoscopic fluctuations will be averaged 
out. The quality of the interface has also some importance if one wants to compare 
different results. 

As temperature is lowered, a zero-resistance state is obtained. Dynamic 
resistance versus current measurements show a sharp critical current (see fig. 3). 
We also notice remarkable structures which are not periodic in current or in 
voltage. If one plots resistance versus the label of the peak, one obtains a straight 
line (see inset), showing that every peak in dynamic resistance corresponds to the 
transition to the normal state of an equal length of Cu wire. This behavior is 
reminiscent of phase-slip centers in conventional superconducting wires. Hence the 
characteristic length of this normal region where single electrons and Cooper pairs 
are not in equilibrium is here 6 µm, much larger than the coherence length in Cu 
but of the order of the phase breaking length Lq, in Cu8). 
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Figure 3: Sample #9, d=0.4 µm, T=30 mK. Dynamic resistance versus current. 
Inset: Value of the resistance at which the peak label # occurs. 

We performed a systematic study of the critical current as a function of the 
temperature for various distances d between Al strips. Figure 4 shows the critical 
current of two samples of d = 0.4 and 1 .6 µm. At temperature higher than 600 mK 
the critical current of the sample d = 0.4 µm is smeared out by thermal 
fluctuations. The measured critical current can be viewed as the critical current of a 
S-N-S junction between two neighbouring Al islands. In order to evaluate this 
quantity, one has to know the order parameter in the Cu in contact with Al. We can 
consider our system locally as a bilayer of Al with a thickness equal to the length of 
the strip (usually 1 .6 µm) and Cu with a thickness equal to d. We can then calculate 
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the critical temperature of our system by the De Gennes-Werthamer4) model which 
is valid in the dirty limit and for thicknesses larger than the coherence lengths: [ rc2 gGL2 ]  

Tc NS = Tc s 1 -
( )2 (2) 

2 es + Lr 

where TcNS and Tes are respectively the transition temperature of Al and of the 
bilayer. Here Tc s = 1 .4 K and Tc NS = 1 .35 K. The superconductivity in Al is only 

slightly affected by the Cu. 
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Figure 4 :  Rnlc(T) with a resistance threshold of 3 Ohms and for two different 
samples; Squares: #10, d = 0.4 µm. Circles: #1 1 ,  d = 1 .6  µm. Inset: dlLT versus T. 

We can then use the critical current expression of a S-N-S junction9): { T }2 - fr  
Rn lc oc 1 - -- e T 

Tc NS 
(3) 

to derive the temperature behavior of LT from the experimental data, see the inset 
of figure 4. One can easily see that LT does not follow the expected dirty limit law 

1 I ..JT but rather a 1/T law, as would be expected in the clean limit: 

L 
h vr 1, 6 µm 

( 1 1
. . ) T - = --- c ean mut 

2 rck8T T (K) 
(4) 

This anamolous behavior has already been noticed in other types of proximity 
systems lO). We obtain from our data from sample #10 LT = 0. 1 µm at 1 K. The 

discrepancy between these two values can be explained by the presence of some 
diffusion barrier at the interface. Further experiments on other proximity couples 
are under progress in order to confirm this result. 

Finally, we present magnetoresistance measurement on a two-dimensionnal 
array of parallel Cu wires coupled by transverse Al lines (Fig. 5). The figure is 
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periodic with a period corresponding to a flux <I> in one cell equal to a quantum of 
flux <j>o.  The rapid oscillations inside one period correspond to quantum 
interference between the 1 8  parallel supercurrents which are dephased by a quantity 
f = <j>/<j>o. The result is the well-known Fraunhofer pattern of diffraction that can be 
observed in large S-I-S junctions with in-plane magnetic field: 
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Fig. 5: Sample #5: d =2 .5 µm. Magnetoresistance of a 2D array of Cu and Al wires. 

n 
. . sin ( 2 n n f) le = lco L sm {2 m !) = Ico . 

( ) i=l sm 2nf  
n = 1 8  (5) 

We can then deduce the R(H) characteristic from the RSJ (Resistively-Shunted 
Junction) model. 

In summary, we have discussed some transport properties of a new 
mesoscopic proximity system. In contrast to other experiments made on shorter 
samples, no resistance increase below Tc is reliably observed. A l /T  law for LT has 
been found, in contradiction with classical models. It will be interesting to study the 
effects of Coulomb blockadel 1 )  or quantum interference on this lateral proximity 
system. We would like to thank Louis Dumoulin for fruitful discussions. 
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MESOSCOPIC EFFECTS IN PROXIMITY INDUCED SUPERCONDUCTING 
CYLINDERS OF COPPER AND SIL VER 

P. Visani, A. C. Mota, K. Aupke, A. Amann, and B. Lundqvist 
Laboratoriumfiir FestkOrperphysik, EI'H- Honggerberg 

CH-8093 Ziirich, Switzerland 

Due to the proximity effect, the properties of a system consisting of a 
superconducting metal in good electrical contact with another superconductor or a 
normal metal, are changed within some characteristic distances from the interface of 
both metals. For the case where the mean free path l in the normal metal is large 
compared to the induced coherence length (clean limit), Deutscher and de Gennes l) 
have calculated the induced pair amplitude FN(r) for the case VN = 0. For this case 
the pair potential A(r) vanishes in N, but FN(r) = A(r) I V(r) has a finite "tail" in the 
N region. For the one dimensional case and for values of x large compared to the 
coherence length, FN has the asymptotic form: 

FN(x) = $(x) exp (-KN lxl) (1) 

where $(x) is a slowly varying function of x and the induced coherence length K;l is 
given by: 

ior s ver { 1.7 µm · K  & il 
_1 _ 1iVp _ 

T(K) 
KN - -- -27tkBT 1.9 µm · K  & ior copper 

T(K) 

(2) 

The importance of the understanding of this limit is readily realized if we 
consider that at millikelvin temperatures samples in the "clean" limit could have 
induced coherence lengths of the order of hundreds of microns. Cooper pairs that in 
the "dirty" limit are described in the phenomenological theories to propagate 
diffusively into the normal metal, should show in the "clean" limit long range 
coherent effects. 

Recently we have reported

2)3) 

the discovery of a novel quantum coherence 
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effect in cylinders of a normal metal in proximity with a superconductor. In the 
temperature regime where the induced coherence length K�l becomes greater than 
the perimeter L of the cylinders, we have observed that the full diamagnetic screening 
induced in the normal metal by the proximity effect is reduced below a well defined 
temperature T min following a law of the type AX = A exp(-T/f *}. The characteristic 
temperature T* of the new effect is strongly size dependent and given by 
T* = p (hvp/21tkB L), where p is a measured constant of order one. 

Specimens consisting of wires with a superconducting core (Nb or Ta) 
embedded in a normal metal matrix (Cu or Ag) were prepared similarly to the 
commercial wires in superconducting magnet technology. With this technique we 
could achieve excellent transmission coefficients at the N-S surface and long mean 
free paths of the order of several microns in the normal metal. AC susceptibility, DC 
isothermal magnetization and Meissner expulsion were measured using SQUID 
detection in the temperature range SmK < T < 9K. 

In Fig. 1 we summarize the result of three different experiments done on a 
Ag-Nb sample with an external perimeter L = 72J,Un. The in-phase component of the 
AC susceptibility has been measured with a frequency f = 80 Hz and an excitation 
field of 33 mOe. The DC susceptibility has been obtained from the initial slope of 
magnetization curves taken at constant temperature. For the Meissner experiment, a 
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Fig. 1: Xac(•), X<Jc{ *) and Meissner expulsion( o )  as a function of temperature 
for a Ag-Nb sample with L=72 µm. 
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magnetic field H = 1. 7 Oe was applied at T = 6 K and then the flux change recorded 
while reducing the temperature. Within the experimental uncertainties, the three 
experiments are in excellent agreement and show a general behaviour which is 
common to all the specimens we have investigated. In Fig. 1 the constant value of the 
diamagnetic contribution due to the superconducting core of Nb has been subtracted 
from the data so that a value of the susceptibility corresponding in the graph to x' = 0 
corresponds to full diamagnetism in the superconducting core and no induced 
superconductivity in the normal metal. A value of the susceptibility corresponding to 
x' = -1 means complete screening or for the Meissner effect experiment 100% flux 
expulsion in the normal metal. In the temperature interval T min < T < Tc all the 
samples screen the applied magnetic field and the effect is complete at T = T min. 

Below T min, a well defined temperature which is strongly size dependent, we 
observed a reentrance of the induced diamagnetic screening in the normal metal. The 
novel behaviour of the susceptibility for T < T min is given in Fig. 2 for different 
samples. Here the quantity t:.x' = x '(T) - x '(T min). corresponding to the deviation of 
the susceptibility from complete Meissner screening, is plotted as a function of 
temperature in a semilogarithmic graph. The fitted lines correspond to: 

t:.x' = A exp(-Tff*) (3) 

Values of T* obtained from the slopes of the lines in Fig. 2 are given in Fig. 3. 
as a function of the quantity p(livp I 2n-k8L). We also give in this graph the 

0 L = 72 µm 

• L = 1 29 µm 
1 0-1 0 L =  1 57 µm 

� L = 31 4 µm 

c: 
:::J 1 0-2 .ci ... 
� 
� 

1 o-3 

1 0� ..____._�......_->.L�-'---..____,_�...__._�..L-:......._...____,_� 0 20 40 60 80 1 00 1 20 
T (mK) 

Fig. 2: .1z'(T) = z'(T) - z'(T min) as a function of temperature for four Ag-Nb 
specimens with different perimeter L. 
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temperature T min for all the specimens investigated. The numerical constant 
p = ( K 'il )meas/( K 'il )theo is obtained from an independent measurement of breakdown 

fields Hb in the temperature range T > Tmin as explained in ref. 2) and 3). From 

Fig. 3 we can write: 

(4) 

l!.X' 
= A  exp [- L/(K):/)mem] (5) 

Clearly the ratio between the measured induced coherence length Ki./ and the 
sample circumference L characterizes this new form of quantum coherence. 

At this moment we do not have an explanation for the origin of the effect 
observed below Tmin· One scenario for this novel effect could be that for T < Tmin. 
the induced superconductivity is destroyed in the normal metal on further cooling. On 
the other hand, for T < Tmin. the condition Kil > L is fulfilled and novel quantum 
effects on the scale of the perimeter L can be expected. We have proposed to call this 
regime, where the induced coherence length KrJ is larger than the perimeter L, 
mesoscopic3> . A second scenario then for the appearance of the reentrance of the 

1 00 
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3 
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3 

Fig. 3: Characteristic temperature T* and reentrance temperature T min as a 
function of p( ltup/2 '!rks L). The lines through the points have slopes of 1 and 1.5, 
respectively. Open symbols correspond to the Ag-Nb sample with farrows. 
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susceptibility below T min could be the building of a paramagnetic persistent current 
which runs on the external surface of the cylinders and opposes the diamagnetic 
Meissner current. To test the scenario of a paramagnetic current running on the 
surface, we have prepared a sample with a different surface respect to the previous 
ones. A qualitative comparison of the surface structures can be obtained from Fig. 4 
where SEM pictures of both types of samples are given. Sample B clearly presents a 
continuous series of furrows running along the axis of the sample, approximately 
0.5 µm apart. An immediate consequence of this corrugated surface is an increase of 
the effective external perimeter Leff. From several SEM pictures we have been able 
to estimate that the increase in Leff respect to the perimeter L = 21tr, assuming a 
circular section for the cylinder, is roughly of the order of 1t(2. It is not surprising 
then to see in Fig. 3 that the points corresponding to the sample with corrugated 
surface lie to right of the lines that fit very well all the other samples. 

It is tempting to compare the results presented here for the proximity induced 

Fig. 4: Lateral surface of two Ag-Nb samples recorded with a scanning electron 
microscope. Sample A: smooth surface. Sample B: suiface with furrows. 

superconductors with the predicted behaviour of persistent currents in mesoscopic 
normal metal cylinders. Recently, Cheung, Gefen and Riede14> have analyzed one­
channel as well as multichannel systems. For impurity-free multichannel rings they 
find that the sensitivity of the current to temperature is governed by a characteristic 
temperature T* such that for T > T*, the current amplitude is: 

(6) 

with Io =  eUF/L and T* proportional to the level spacing of a one-channel ring of the 
same circumference, rather than the much smaller level spacing of the M-channel 
system �M oc  � t  I M. The level spacing for the one-channel system is: 
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and 

A - 21tli1.Jp LlJ -
L 

T· - � - livp -
2 -

2ti" k8 1tk8L 

(7) 

(8) 

The number of channels M is defined as the largest integer S 2 h I Ap where h is the 

height of the cylinder and AF is the Fermi wavelength. Persistent currents in 
multichannel normal metal systems have not been observed experimentally up to 
now. The striking similarities of expressions (3) and (4) with expressions (6) and (8) 
suggest the possibility that, in analogy with persistent currents on mesoscopic normal 
metal rings, a persistent paramagnetic current is also established in this proximity 
system, which opposes the Meissner persistent current induced in copper and silver 
by the proximity effect. In fact, the experimentally determined characteristic 
temperature T*, which gives the energy scale that is relevant in these new 
phenomena, not only has the same type of size dependence predicted for a persistent 
current in multichannel normal metal rings, but also agrees quantitatively with the 
predicted value. 

In conclusion, we have found an unexpected manifestation of mesoscopic 
effects in cylinders of copper or silver in proximity with niobium or tantalum. At a 
temperature T min at which superconductivity has been induced in all the normal 
metal cylinders by the proximity effect, the diamagnetic response starts decrea,sing on 
further cooling. An analysis of the data shows that for all the different specimens, the 
only parameter characterizing this novel effect is the temperature T* which depends 

solely on the ratio Kil I L between the measured decay length of the induced order 
parameter in the normal metal and the perimeter of the sample. Undoubtedly we are 
observing a novel type of quantum coherence which is not present in intrinsic 
superconductors where the coherence length remains almost constant for T << Tc­
Indeed, the fact that the induced coherence length in the normal metal is inversely 

proportional to the temperature allows the study of quantum coherence at millikelvin 
temperatures in samples with sizes that are not mesoscopic in the usual sense. 
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Abstract 

The superconducting phase boundary in the presence of a magnetic field, 7;; ( H) , has 
been measured for mesoscopic Al open and filled squares. The critical temperature 7;; 
of an open square with a circumference comparable to the superconducting coherence 
length � ( T) shows pronounced Little-Parks oscillations as a function of an applied 

field H. For a filled square the oscillations are less pronounced and are related to the 
transitions between superconducting states with different angular momenta. The 
observed superconducting phase boundary 7;; ( H) of the filled square is in good 

agreement with the theoretical predictions. 

Introduction 

The Ginzburg-Landau (GL) theory allows to calculate the spatial variations of the 
complex superconducting order parameter rp in the presence of a magnetic field H. 
For cylinders and loops with a circumference comparable to the GL coherence length 
� ( T) and the cross-section area S, the GL approach predicts that the superconducting 
transition temperature Tc oscillates as a function of the applied field H with the period 

Lili = ¢0 / S with ¢0 the superconducting flux quantum. These Little-Parks (LP) 

oscillations are observed for superconducting cylindersl,2), loops3) and disks4). In the 
case of a filled square, we find that the oscillations of the critical temperature Tc are 
related to the transitions between superconducting states with different angular 
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momenta, analyzed by Saint-James5). By comparing the phase boundary Tc (H) for an 
open and an filled square made from the same Al film, we show that Tc ( H) is not 

only material dependent, but also very strongly influenced by the sample topology. 

Influence of the sample geometry on the phase boundary 

For our study of the phase boundary I'c ( H) of systems with a different topology, we 

prepared open squares with a side of 1 µm and a Iinewidth w = 0. 1 5  µm and filled 
squares with the same side of 1 µm. These Al structures, with tickness t = 25 nm, were 
obtained by thermal evaporation of high purity Al (99,9995 %). The evaporation is 
performed in a reduced helium atmosphere (p = 10-3 Torr) to produce smooth and 
continuous metallic films. 

The normal to superconducting phase boundaries for the open and filled squares, 
shown in Fig. 1 ,  are obtained by carefully measuring the resistive R ( T) transition in 
different magnetic fields. It is clear that for the open square 1'c ( H) reveals classical 

Little-Parks oscillations, which are caused by the fluxoid quantization. If the applied 
flux ¢> is equal to a multiple of the flux quantum ¢b ,  i.e., the flux is quantized in units 
of ¢-0 ,  the critical temperature reaches a local maximum. Our experimental data for this 

geometry, are in good agreement with the theoretical calculations based on the 
Tinkham modeJ6). Furthermore, the phase boundary of the open 1 x 1  µm2 square shows 
a quadratic background as function of the applied field H which is due to the finite 
width of the structure. 

The investigation of the phase boundary for the filled Al square width side 1 µm 
reveals that the shape of the I'c (H) phase boundary is very different from the Tc(H) 
boundary of the open Al square, as illustrated in Fig. 1 .  For the filled Al square, the 
oscillating behavior is still present, but the amplitude is strongly suppressed. Close to 
the critical temperature, the 1'c ( H) phase boundary is a linear function of the applied 

field. Looking more into detail, the periodicity of the oscillations is no longer equal to 
a multiple value of <f-0 and the first period is much larger than the next periods. This 

behavior can be understood within the framework of the linearized GL theory and will 
be explained below. 

The dashed line in Fig. 1 shows the theoretical phase boundary for bulk Al with H c ( T ->  0 )  = 1 00 G .  It is clear that the sample topology defines the structure of the 

phase boundary for the systems which are all made of the same material under 
identical conditions. 
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Fig. 1 :  The measured superconducting phase boundary, 7;; ( H), for the 1 x 1  µm2 open 
Al square (D) and for the I xl µm2 filled Al square (0). The dashed line shows the 
theorectical calculated phase boundary for bulk Al (Hc(T -f O) = IOO G). The solid 
lines correspond to calculations based on Tinkham formula for an open square and a 
disk6l. 

In order to obtain the phase boundary for a filled square, it is necessary to solve the 
linearized GL equation: 

1i2 ( . - 2tr .A) 2m 
-1 V - �  1f1 = -a l/f  , (1 )  

Wl
.
th -

1i2 Tc - T 
A the vector potential, -a = and taking into account the 

2m ;2 (0)  Tc 

boundary condition at the superconducting-insulator interface: 

(2) 
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This problem can be considered as the problem of a particle in a box with charge 2e in 
the presence of a magnetic field. We asswne here that the solutions of this problem for 
a filled square is similar to that for a disk6). Given the radial symmetry of the structure, 
the order parameter I/I can be written as If!( r, q>) = f ( r) . exp ( -iL q>) , where L is the 

orbital quantwn nwnber. The possible solutions for the eigenvalue E oc -a , which 
correspond to the allowed energy levels for the enclosed electron pairs, are shown in 
Fig. 2. The envelope of these energy levels will correspond to the experimental phase 
boundary. For small values of </JI ¢0, the energy of the electron pairs is determined by 
the state with L = 0. This state corresponds with the first period of the I;; ( H) phase 

boundary. For higher values of </JI ¢0, the lowest possible energy for the electron pairs 

is defined by increasing values of the orbital quantwn nwnber L. The phase boundary, 
which is obtained for the filled Al square (see Fig. 1)  is clearly in agreement with the 
theoretical result shown in Fig. 2, including the difference in periodicity of Tc as a 
function of the reduced flux </>I <Po as well as the suppression of the amplitude. 

<1>/<l>o 

6 

4 

2 

0 
T 

Fig. 2: Solutions of the GL equation (1) with the boundary condition (2) for the angular 
momenta L as function of the reduced applied magnetic flux ¢-0.  The tick line gives the 
oscillating T;; ( H) phase boundary for the filled square (see solid line in Fig. I). 
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The macroscopic wave functions 'I' L ( r, rp) for the different orbital quantum numbers 

L, are related to the possible energy states, with energy E. These wavefunctions can be 
used to find the local density of the electron pairs in the superconducting system. 
Therefore, we have calculated the dependence for the amplitude of the order parameter 

I lfll for a disk. Fig. 3 shows three-dimensional figures of the amplitude I lfll as function 
of lrl with r the radius of the disk. For L =  0, the amplitude reaches a maximum at 

r = 0, which means that the Cooper pair density is localized around the center of the 
disk at small fields. By increasing the value L from l to 3, the amplitude I lfll is 

decreasing at r = 0 and the maximum is now found at a circle, which moves towards 
the edge of the disk. Increasing the field results in a growing number of the flux quanta 
L and on the average the electron pairs are pushed towards the border of the disk. 

L = O  2 L = 1 2 

0.8 

L = 2  2 L = 3  2 

Fig. 3: Three-dimensional representation of the amplitude of the order parameter I lfll 
for different values of the orbital quantum number L. 



102 

In summary, the study of the phase boundary of structures with different topology 

reveals that it is not only the material which defines the nature of the critical 

parameters of a mesoscopic superconductor, but the sample geometry must also be 

taken into account. Experimentally, we find that superconductivity still exists at the 

boundary of mesoscopic superconducting systems when the applied field is relatively 

large. 
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QUANTUM CHAOS: ENERGY LEVELS AS FERMIONS 

B D Simons, P A Lee and B L Altshuler 
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Cambridge, MA 02139 

I. INTRODUCTION 

In contrast to classical chaos, it seems impossible to offer a simple yet general defini­

tion of quantum chaos. One definition would prescribe systems whose classical dynamics 
are chaotic. However, a classical description is very often unavailable and attention has fo­
cused on finding apparently unique characterizations based on a common behavior of statistical 
properties.1•2> Remarkably, the union of chaos and quantum mechanics leads to an astonishing 
degree of universality. Our goal will be to extend the existing description to include new char­

acterizations. In doing so we will show some surprising connections to the quantum properties 
of an integrable Hamiltonian. 

Universal properties of quantum chaotic systems are characterized by only two time scales. 
The longest is the Heisenberg time, tH = n/ 11 equal to the inverse mean spacing between levels 
11. The second, t0 = n/ E0 is less precisely defined and reflects the typical time for all regions 

of phase space to become connected. In disordered metals it is equal simply to the typical 
time for an electron to diffuse across the sample, the in verse Thouless energy t0 = L2 / D, while 

in ballistic systems such as "quantum billiards" phase space is connected only after scattering 
several times from an irregular boundary t0 � L/v. At time scales shorter than t0 chaos is 
not fully developed and the spectrum reflects quasi-regularities of the system. At longer time 
scales there is a crossover to "zero-dimensional" behavior in which properties are universal. t0 

therefore plays a role in quantum chaos similar to the Lyapunov exponent in classical chaos. 
In recent years the technology of "periodic orbit theory" (POT) has been applied very 

successfully to describe the transition between the quasi-regular short time scale description 

and the universal properties that appear at longer times.3> In this path integral approach there is 
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an implicit assumption that only (closed periodic) classical trajectories contribute significantly 
and the effects of quantum tunneling can be neglected. Numerous experiments have provided 

strong evidence to justify this semi-classical approximation on short time scales. 
However, at scales comparable with tn, where quantum tunneling becomes increasingly 

important, POT appears to break down. At the same time, quantum chaotic systems begin 

to display a remarkable degree of universality. This coincidence is not accidental but closely 

related to the effective zero-dimensionality of the system at long times. The description of 
universality calls for a different approach which treats the quantum mechanics in a rigorous 

manner. We will show how such a theory reveals a new type of universality which offers fresh 

insight into quantum chaos. 
To introduce our main findings we begin by considering the dispersion of the energy levels 

of a non-integrable Hamiltonian, H(U) which depends on an adjustable parameter, U. One 

example would be the spectrum of hydrogen in a strong magnetic field.5l Beginning with the 

work of Pechukas6l and Yukawa7l problems of this kind have attracted great interest1l most 

recently in the study of the level curvature distribution.8-13) In Ref. 8 this distribution was 

argued to become universal after a rescaling of the curvature by the variance of the level 

gradients. We will argue that on energy scales smaller than Ee the rescaling of the energy levels 

and perturbation,4l 

E; = E;/ Ll, Ll = (E;+1 - E; ) ,  

u = U�, 0(0) = ((aE;jaU)2 ) /Ll2 , 

( la) 
( lb) 

make all of the statistical properties of E; (u) universal, dependent only on the symmetry of 

H.14) The statistical average ( · · · ) can be performed over a range of energy levels or U. 
A physical interpretation for 0(0) can be found through a universal formula for the rate of 

energy dissipation in the presence of a time-dependent perturbation,15•4) 

aw 
= 7rf31i O(O) (au) 2 

at 2 at , (2) 

where f3 is defined according to whether H conserves (/3 = 1), or breaks T-invariance (/3 = 

2). Systems which conserve T-invariance but display strong spin-orbit scattering .belong to 

a third ensemble (/3 = 4). Following from matrix ensembles, the different symmetry classes 

are frequently afforded the classification orthogonal, unitary, or symplectic for f3 = 1, 2, or 4 
respectively. Eq. (3) represents a type of "mesoscopic" fluctuation-dissipation theorem and 

gives to 0(0) the meaning of a "generalized conductance" . Typically 0(0) <X tn/tc which, as 

we will demonstrate for disordered metals, is analogous to the Thouless formula16l with the 
r.h.s. equal to the dimensionless conductance, g.4•17) 

Although it would be desirable to develop these ideas from a microscopic study of quantum 
Hamiltonians, theoretical progress does not seem possible for studying even average properties 

on time scales shorter than tn where universality is most robust. However, averaging over a 
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class of different systems which belong to the same statistical ensemble does enable certain 

properties to be studied analytically. If we accept the "ergodic hypothesis" that ensemble 

and spectral averaging are equivalent18l we can use "disordered" systems to investigate the 

universality proposed above. In surrendering the generality of POT we will be able to confirm 

Eq. ( 1 )  and derive ezact results for certain universal correlators. 

The effective zero-dimensionality at long time scales suggests a random matrix description 

in which all states are coupled by some element drawn from a random distribution.19) Random 
matrix theory (RMT) therefore represents a natural starting point for the study of statistical 

correlations. Indeed since tc � N where N denotes the number of eigenvalues, RMT can be 

regarded as a "fixed point" for universality in quantum chaos.20l Since its introduction as a 

model of complex nuclei more than forty years ago21l the Wigner-Dyson statistics of RMT have 

found considerable success in describing level correlations2•22l of a wide variety of non-integrable 

systems and the universality implied by Eq. ( la) has been firmly established. To interpolate 

between universal and quasi-regular behavior it is instructive to examine the physical example 

of disordered metals. In our discussion we will encounter two crucial assumptions related to 

the time scales tH and tc which define the regime in which behavior is universal. 
In the next section we will develop an approach for studying statistical correlations based on 

a field theoretic technique in which average properties are expressed in the form of a non-linear 

u-model. We will show how zero-dimensionality and universality is manifest and indicate why 

a random matrix interpretation of spectral correlations is natural. 
Remarkably the spectral correlations described in section II coincide with the dynami­

cal properties of an integrable one-dimensional many-particle quantum Hamiltonian when the 

eigenvalues are associated with the coordinates of hard-core particles (fermions) and the pertur­

bation with the Euclidean time.23) This striking correspondence can be revealed by a different 

kind of matrix model. In section III we will discuss this correspondence and its relation to the 

Brownian motion model of "level dynamics" introduced by Dyson19l more than thirty years 

ago. Finally in section IV we will conclude with a brief discussion of the results presented here 

and mention some future directions. 

II. SUPERSYMMETRY APPROACH 

The goal of this section is to motivate and to some extent justify the ideas discussed in the 

introduction by examining certain examples of non-integrable or quantum chaotic systems. We 

begin by examining the behavior of a single electron confined to a weakly disordered metallic 

ring of size Ld threaded by an Aharonov-Bohm flux, </> (measured in units of the flux quantum, 

hc/e) . The corresponding Hamiltonian is given by, 

n2 ( 211" ) 2  H(<f>) = 
2m 

- i\7 + J;<f> e<I> + V(r), (3) 
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where e,p is the unit vector along the azimuthal direction, V(r) is a Gaussian distributed white­
noise impurity potential, (V(r)) = 0, (V(r)V(r')) = h(r - r') n/27rvr, v is the average density 

of states at energy E, and T is the elastic scattering time. The definition of ( · · ·) is extended 
to include the ensemble average. The dimensions of the grain are assumed to be much larger 
than the elastic mean free path l = VT � L so that the motion of the electron is diffusive. 

Spectral properties of the system can be characterized by density of states (DOS) correlators. 
We will examine the first non-trivial correlator describing the dimensionless two-point function, 

k(f!,</i) = A2(v(E + f!/2,ef, + ¢/2) v(E - f!/2, ef, - ¢/2)) - 1 , (4) 

where v(E, </i) = Tr h(E - H(<fi)), and A =  (Ldv)-1 denotes the mean-level spacing. Eq. (4) 

can be expressed by the product of retarded and advanced Green functions, QR,A(E, </i) = 
[E - H(</i) ± i0] -1 

k(f!, </i) = �:R(f(f!, ¢)) - �' 
/(f!, ¢) = Tr GR(E - f!/2, if> - </i/2) Tr GA(E + f!/2, if> +  </i/2). 

(5a) 

(5b) 

To determine an analytical expression for k( fl, <fi) we adopt the supersymmetry approach 
developed by Efetov to study weakly disordered metals.24l Since our aim is not to supplement 
the many reviews on this method but rather to emphasize certain aspects in the context of 
quantum chaos we will keep discussion brief and refer to Refs. 24, 25 for a more lengthy 
pedagogical description. We also draw attention to a recent paper by Altland et al.26) in which 
much of the formalism presented here is discussed in detail and whose notation we will adopt. 

The starting point is the representation of Green functions as Gaussian integrals over a 

2 x 2 x 2-component supervector IJl'�(r) = (Sµt1(r), Xµt1(r)), where S and x denote commuting 

and anticommuting fields respectively, µ labels the retarded and advanced components, and d 
labels conjugate elements. (The use of supervectors obviates the need for explicit normalizations 
thereby circumventing possible difficulties associated with the replica approach. 27l ) Following 

the notation of Ref. 26 

I (f!, </i) = J VIJl'(r) e-L[i>) [j dr wl(r)P(a, B)IJl'(r) J dr' wl(r')P(r, B)IJl'(r')] , 
i J I [ f! + iO 'h2 ( .  27r - </i ) 2 l I L[IJI'] = "2 dr wt(r)A1 2 E - -2-A - 2m iV' + L(</i + 2'A)e,pr3 - V(r) A1 21Ji'(r), 

(6a) 

(6b) 

where the matrices r3 = (-)dhdd' and A = (- )µhµµ• break time-reversal and the ad­
vanced/retarded symmetry respectively. The matrices P(a, B) and P(r, B) project onto the 
advanced and retarded bosonic blocks of IJI'.  We remark that this approach is not restricted 
to correlators of DOS and can be easily generalized to include properties such as the density 
response function. 24•28) 

The ensemble average over the disorder potential generates a quartic interaction in the 

fields IJl'(r). To proceed it is crucial to assume that the disorder is weak so that the fields vary 
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only slowly in comparison to the electron wavelength, A = h/mv. Within this approximation 
the interaction can be decoupled by means of a Hubbard-Stratonovitch transformation with 

the introduction of 8 x 8 supermatrix fields Q(r) with the symmetry of the dyadic product 

A 1121)! 181 Wt A 112• As a result the 1J! integration becomes Gaussian and can be performed. 
Further progress is possible within a saddle-point approximation in which Q(r) acts as a 

mean-field self-energy satisfying the equation Q(r)2 = 1. The solution is defined by the manifold 

Q = T-1AT where T denotes unitary matrices which satisfy the symmetry requirements. 
Allowing for small spatial fluctuations about the saddle-point, and expanding to leading order 
in l/L and Or, we obtain the result, 

(!(fl, <fi)) = (7rv)2{ 1 - � j VQ(r) e-F[Q] 
x j dr STr [P(a, B)(Q(r) - A)] j dr' STr [P(r, B)(Q(r') - A)J}, (7a) 

F[Q] = 11"; j dr STr [nD (\7Q - i2;eq, [ra (ef, + <fiA/2), QJ) 2 + 2i (O + iO)AQ(r)j , (7b) 

where D = v2r/d is the diffusion constant, the supertrace STr is defined in Ref. 24, and 

the functional integral is constrained to the saddle-point manifold. The expression takes the 

form of a functional non-linear u-model, with Goldstone modes related to the breaking of 
supersymmetry, from which the well known effects of weak localization can be derived. For 
large values of flux ef, the ( Cooperonic) degrees of freedom of Q which do not commute with r3 
acquire a mass and become frozen out. To focus on a fixed (unitary) symmetry class in which 
T-reversal symmetry is fully broken we will impose the additional constraint that [r3, Q(r)] = 0. 

To proceed without resort to perturbation theory we restrict attention to n � 1iD / L2 = Ee, 
and <fi � 1 when the contribution from the higher spatial modes becomes exponentially small 
in comparison to the "zero-mode". Up to a trivial gauge transformation,4•26) this is given by Q 
independent of position. Thus, on time scales 1i/O � te = 1i/ Ee the system behaves as though 
it were zero-dimensional. In this limit we obtain the definite integral expression, 

(f(n, </i)) = GY [i - � j d[Q] e-F[Q] STr [P(a, B)(Q - A)] STr [P(r, B)(Q - A)J] , (8a) 

F[Q] = i1r(fl
4� iO) STr (AQ) - �3 

g<fi2 STr [A, Q]2 , (Sb) 

where g = Ee/� denotes the dimensionless conductance. Although the integral can be per­
formed the parametrization of the coset space requires some technology which it would be 

inappropriate to describe here. Instead we refer to Refs. 24, 26 for a detailed discussion. 
A knowledge of k( n, </i) allows the distribution of level gradients to be determined from the 

formula29) (h(c - 8E;/8</i)) = limq,-o </i k(c </i, </i) from which we find the distribution of c to 
be Gaussian with a variance C(O) = 411"g. Applying the rescaling of Eq. (1) we obtain the 
dimensionless integral expression, 

1 {"° 11 11"2u2 k(w, u) = !R2" }1 dA1 _1 dA exp [ - -2-(A� - A2) + i1r(w + iO)(A1 - A)j . (9) 
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With this derivation we have invoked only the semi-classical assumption that ,\ « l. We 

remark that, in contrast, diagrammatic perturbation theory is an expansion in the parameter 

ad = (1/g)df2(1/w)1-d/2 . In the zero-dimensional case this leads to as unphysical infrared 

divergences for h/f! > tH at all orders in perturbation theory.30·31) 

It is possible to verify that different perturbations with the same symmetry, such as magnetic 
field, generate the same u-model but with different prefactors in the free energy.4l The effect is 

merely to change the value of C(O) and leave the rescaled expression for k(w, u) unaffected and 

therefore universal. Corresponding correlation functions can be determined for orthogonal and 
symplectic symmetry by examining perturbations which conserve T-invariance and introducing 

spin-orbit scattering. Instead of reviewing those results which can be found in Refs. 4 and 23 
we turn to a different class of non-integrable Hamiltonians - random matrix ensembles . 

An analogous approach can be used to derive the density correlator k(f!, U) for, 

(10) 

where <P is a random hermitian matrix drawn from some (say Gaussian) ensemble, and <Pc is 

some fixed (traceless) matrix chosen from the same ensemble. With zero-dimensional super­

vectors, we are lead to the saddle-point constraint Q2 = 1 ( [r3, Q] = 0 for <P unitary, [ei ,  Q] = 0 
for <P symplectic) from which we arrive at the u-model of Eq. (8) with,32) 

F [QJ = . 7r(n + iO) ST (AQ) - 7r2u2 T [<P2] ST [A QJ2 
i 4ll 

r 8fl2 N2 
r 

c 
r ' . (11) 

Here we have assumed that n/ Cl and U(Tr[<Pm112 / N � � O(N°) .  It is straightforward to 

show that for all three Dyson ensembles the distribution of level gradients is Gaussian with 

C(O) = 2 Tr[<P�]/ ,Bfl2 N2 • Definite integration over the saddle-point manifold yields, 

roo roo 1' 
(1 - ,\2)(,\ - ,\1,\2)2 k(w, u) = R 11 d,\1 11 d,\2 -1 d\2U1,\2 - ,\? - ,\� - ,\2 + 1)2 

2 2 
x exp [ - 7r 4u {2,\i.\� - ,\i - ,\; - ,\2 + 1) + i7r(w + i0)(,\1,\2 - .A)] , 

for orthogonal (/3 = 1) symmetry, Eq. (9) for unitary (,8 = 2) symmetry, and 

,1 la' 
100 

(,\2 - 1)(,\ - .\1,\2)2 k(w, u) =.o Rj  d.\1 d,\2 d,\ ( ,\,\ ,\  ,\2 ,\2 ,\2 )2 -1 0 1 2 1 2 - 1 - 2 - + 1 
x exp [27r2u2(2,\�,\; - ,\� - .x; - ,\2 + 1) - i27r(w + i0)(,\1,\2 - .X)j , 

(12) 

(13) 

for symplectic (/3 = 4) symmetry. Setting u = 0 we obtain the results previously obtained for 

random matrix ensembles22l and verified by Efetov24l for disordered metallic grains. 
Although it is possible to generalize the supersymmetry approach to find an expression for 

arbitrary moments of density through a generating function expressed in terms of the non­
linear u-model, it does not seem possible to find a general parametrization of the saddle-point 

manifold. However, the rescaling of Eq. (1) can be applied directly to the generating function 
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showing all higher-point functions t o  b e  universal. This suggests that parametric correlations 

functions provide a new characterization of quantum chaos applying with the same generality 

as Wigner-Dyson correlations of RMT. 

To conclude this section we will apply these results to the spectra of a strongly interacting 

system of spinless fermions moving on a one-dimensional N-site ring, 

H = - L [e'2 .. <i>c�C,,+1 + h.c.] + L Vmnnnn+m · {14) n n,m 
Aharonov-Bohm flux changes the phase of the wavefunction by N </> as particles circulate around 

the ring. Even without disorder, by accounting for certain discrete symmetries (see Ref. 33), a 

potential Vm which extends over more than one lattice site makes H non-integrable. Invariance 

under T-reversal and inversion implies "anti-unitary" symmetry34) and level correlations are 

characteristic of the orthogonal ensemble. 

With </> acting as the adjustable parameter, Fig. 1 shows measurements of the correlator 

_( 
) 

_ L:;; (i;(u + u)i;(u) 5(e;(u + u) - e;{u) - w)) 
c w, u = 

L;(5(e;(u + u) - e;(u) - w)) 
' 

1 1•-w+• 1·+• 1 a2 
= -

k( )
lim de1 dE2 --

8 
k{E1 - E2, u).  

1 + w, u ·-00 •-w • 2 u2 

{15) 

which demonstrate a close agreement with theory over a wide range of u. This, as well as 

results from simulations of Anderson models, quantum billiards,4l and hydrogen in a magnetic 

field,12•35) provide compelling evidence for this new type of universality. 

2.5 

2 ·' 

1 .5 
tJ I \ 
I \f 6\ ,--.... 

::s 
8 1 � ' 

L\ "-' 1\ ' 
1 u  <\ 0.5 I 

� 
0 "G. 

-0.5 
0 0.2 0.4 0.6 0.8 1 

u 

Fig. 1 Measurements of c(w, u) together with theory {curves) for w = 0 ( O /continuous), 
w = 0.1 (o/dashed), and w = 0.25 (�/dash-dotted) for flux. A small regularization is included 
to control the numerics. 
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III. CONTINUOUS MATRIX MODEL AND INTERACTING FERMIONS 

The manifold of energy levels into which spectra separate have a form reminiscent of particle 

world lines with the eigenvalues playing the role of coordinates and the perturbation parameter 

acting as "time". Remarkably an interpretation of this kind is found to be exact. In this 

section we will demonstrate that correlation functions derived in section II apply equally to the 

many-particle Hamiltonian introduced by Sutherland,36) 

(16) 

To establish this connection we begin with a matrix model more commonly associated with 

string theory.37) The partition function Z = J V4>(T) exp{-S[4i(T)]} with the action 

(17) 

describes the time evolution of N x N matrices in a potential V(4>). The symmetry of 4i is 

denoted by the Dyson index /3, and the potential is for the present left unspecified. Interpreting 

the matrix model as a path integral it describes the quantum mechanics of the Hamiltonian H = 
-Tr (fJ/fJ4>)2 + Tr  V(4>). As N -+  oo the "angular" degrees of freedom of the matrices which 

diagonalize 4i give an exponentially small contribution leaving only the "singlet" component of 

the Laplace operator.38) The resulting Schrodinger equation for the wavefunction, P({Aj}, T) 
describes a one-dimensional system of interacting eigenvalues or "particles", 

{) N [ 1 {} {} l a7P({Aj}, T) = L 1 aA/ aA; - V(A;) P({Aj}, T), 
' 

( 18) 

where J = ITi<j IA; - Aj lll denotes the metric of the group transformation for Dyson ensembles. 

After a similarity transformation, t/i({Aj},T) = J1/2 P({Aj} ,T) we obtain fJT/i({Aj}, T)/fJT = 

-He 1/i({Aj}, T), where 

(19) 

He describes the motion of particles with an inverse square pairwise inieraction in the pres­

ence of a background potential V(A;). Although the hard-core nature of the particles suggest 

fermions, a Jordan-Wigner transformation can be used to assign arbitrary statistics. 

For a Gaussian potential, V(A;) = w� Al Calogero has shown that the model is separable, 

and the spectrum integrable.39) The ground state wavefunction of He, 

IO) ex II
<
. IA; - Ajlll/2 exp [ - �o � An ' 

' 3 ' 
(20) 

generates a probability distribution which coincides with that of Gaussian random matrix 

ensembles. The mean particle density corresponds to Wigner's semi-circular density of states 

distribution,22J and the mean interparticle spacing at the origin, Ll = (7r/2)V/3/Nw0• 
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Although the Hamiltonian depends explicitly on the form of V(A;), as N -+ oo corre­
lation functions become universal on a scale comparable to 11. Equivalently, to order 1/N, 
removing the confining potential and constraining the particles to move on a ring leaves the 
correlation functions unchanged. The resulting distribution corresponds to Dyson's circular 
ensemble.19) More generally the potential smoothly regulates the average density with particles 
filling the potential energy surface up to some Fermi energy. To order 1/N the local value of 
11 is fixed and correlation functions again coincide with those of the circular ensemble. 

As N -+ oo we thus expect the correlation functions of He to coincide with Hs when w0 is 

chosen to set /1 = 1. This establishes a precise connection between the continuous matrix model 

and H5. Time-dependent correlation functions of the Sutherland Hamiltonian can therefore be 
represented by the path integral, 

(OI · · · IO) = z-1 j Vcf1(r) · · · e-s[+(.,.ll . (21) 

The correspondence of ground state correlations of Hs with level statistics of Dyson ensem­

bles is immediately apparent from the structure of the wavefunction alone. The equivalence 
of dynamical correlations which depend on the excited states of Hs is not yet assured. To 
establish this connection we again make use of the supersymmetry approach of section II to 
determine the two-point particle density correlator, 

k(A, r) = 1:(0l5(X + A/2 - A;(f + r/2)) 5(X - A/2 - A;(f - r/2)) 10) - 1. (22) 
ij 

If we assume that Aa and Ira - r13 I � 0( N°), we can obtain an expression for k( A, T) which is 

exact to leading order in 1/N (see Ref. 32 for a detailed discussion).  The result is expressed in 
the form of the zero-dimensional u-model of Eq. (8) with 

F[Q] = i ir(A + iO) STr (AQ) + ir2,B lr l STr [A, Q] 2• 
4 8 

(23) 

As N -+  oo , when the quantum Hamiltonian converges to Hs, Eq. (23) generates the ezact 

time-dependent correlator of the Sutherland model if we assign 

W = A, u2 = 2lrl .  (24) 

Although not immediately clear from the non-linear relationship of u and r, we remark that a 
correspondence can be found for higher-point functions and we refer to Ref. 32 for a discussion. 

For unitary ensembles the coupling constant vanishes and Hs describes non-interacting 

fermions. The density correlator is determined by a single particle-hole excitation and it is 
simple to derive Eq. (9) directly.23) Orthogonal and symplectic ensembles generate strongly 
attractive and repulsive interacting models respectively, and the u-modei' approach seems to be 
the only way of determining k(A, r). However, despite the apparent complexity of Eqs. (12,13) 
the results indicate a remarkably simple structure which can be interpreted as the separation 

of a particle (or hole) into a quasi-particle pair.40•41) 



114 

Thus we have shown that the problem of level statistics in quantum chaotic systems and the 

ground state properties of Hs are related through the a-model. We remark that the Schrodinger 

equation obtained in Eq. {18) is also interpreted as a Fokker-Planck equation. Indeed, as first 
recognized by Sutherland36) it is in fact equivalent to Dyson's Brownian motion model19) of 

level correlations in random matrix ensembles. The results above give physical meaning to the 

"fictitious" dynamics of the particles showing the friction coefficient to be related directly to 

the generalized conductance 0(0). 

IV. DISCUSSION 

We have focused on the universal properties of quantum chaotic systems. For time scales 

longer than tc spectral correlations of disordered metals and random matrix ensembles were 

shown to depend on only two parameters, Ll and 0(0). The theory central to our discussion 

has involved a zero-dimensional non-linear a-model which we believe applies to chaotic systems 

with the same generality as Wigner-Dyson statistics. 

We have discussed a surprising connection of spectral correlations of chaotic systems and 

the dynamical properties of an integrable one-dimensional Hamiltonian. This correspondence, 

which was resolved by a matrix field theory, has provided new results for the physics of strongly 

interacting systems and has had important ramifications in the properties of quantum spin 
chains.41) Moreover, it has provided a natural interpretation of the fictitious particle dynamics 
proposed by Dyson,19) and suggested a new way of studying spectral correlations, which has 
already found application (see for example Refs. 42, 43). A summary of different connections 

made by the a-model is shown in Fig. 2. 

Continuous Matrix Sutherland 

Model S[$('t)] o----1 Hamiltonian H
s 

Quantum Chaotic 

Dyson's Brownian 
Motion Model 

Random Matrix 

Theory <I> +  U<I>c, 
/ Disorder Potential 

S terns 1-----1 Pcchukas Gas 

Fig. 2 A schematic diagram showing how the a-model draws together different branches of 
physics. The dotted line is established only in limiting cases, and the dashed lines require a 
statistical hypothesis which has been checked numerically. 
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To complete our discussion we mention briefly an alternative approach to level dynamics. 

Pechukas has expressed6) the dispersion of the energy levels of a Hamiltonian in response 
to an external perturbation as a set of first order differential equations, later shown to be 
integrable.44) To make the equilibrium statistical mechanics of the "Pechukas gas" equivalent 

to RMT, Yukawa7l proposed a certain statistical hypothesis (a comprehensive review can be 

found in Ref. 1, see also Ref. 45 for a recent discussion). In particular a similar approach allowed 
Gaspard et al.8l to obtain the large value tail of the level curvature distribution, P(k). Their 

findings suggested universality of P( k) after a certain rescaling of the curvature. We remark 

that this rescaling can be viewed as one application of Eq. ( 1) .  

It  is  instructive to reinterpret the connections in Fig. 2. terms of the appropriate pertur­

bation theory at large (w, u) <-> (>. ,T ) .  For RMT and weakly disordered metals the Cooperon 

and diffusion modes of diagrammatic perturbation theory generate the leading order contribu­
tions. The behavior in this regime is reproduced by the hydrodynamic limit of the Brownian 

motion model,46) and the Sutherland (or Luttinger Liquid) Hamiltonian.23) We remark that 

perturbation theory applies only for time scales shorter than t H. More seriously, for symplectic 

ensembles, the leading contributions derive from a non-perturbative 2k1 charge density wave 
which gives rise to long-range oscillatory correlations. Qualitatively, the leading order of per­

turbation theory can be viewed as the inclusion of all periodic trajectories in phase space, but 

with the exclusion of tunneling between trajectories. This same semi-classical interpretation 

we believe provides the basis of POT and the Gutzwiller trace formula.3l 

Although we have focused on spectral correlations, universality has been shown to en­
compass properties of wavefunctions. Complimentary calculations have provided characteri­
zations based on local density and conductance distributions,47) time-dependent correlations 

( "echo") in spreading wavefunctions,48) and the statistics of response functions and oscillator 

strengths.28) (Curiously, the response function can be interpreted as the conductivity of the 

Sutherland model.) These investigations emphasize the generality of the rescaling of Eq. ( 1 )  

and the power of  the supersymmetry approach. 

To conclude we will focus on some new directions which have yet to be fully explored. In 

section II, we assumed that the average flux, ¢> was sufficiently strong that the Cooperonic 
modes were frozen out. Very often the contribution from these modes can not be completely 

neglected.49) It is therefore natural to ask whether rescaling can be defined for the "crossover" 

regime. Universal results which involve a third parameter, u and interpolate between unitary 
- orthogonal, and unitary - symplectic ensembles have been derived. 50•26•51) For the one­
dimensional model these findings can be interpreted as the dynamics of free (/3 = 2) particles 

which satisfy the initial boundary condition 1/;(f = 0) = 10)13=1 or 10)13=4 respectively.52) 

The continuous matrix model proposed in section III provides a powerful tool for studying 
symmetries beyond the usual Dyson ensembles. In particular it is possible to extend consid­

eration to ten symmetric spaces.53) Each class is characterized by a different one-dimensional 
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Hamiltonian. Once again it is possible t o  derive a u-model and demonstrate the correspondence 
of RMT and the generalization of the Sutherland Hamiltonian. However, parametrization of 
the Q matrix for the wider symmetry class requires the development of new technology which 

remains the subject of continuing investigation. 
Other than the usual Dyson ensembles, transmission matrices have received most attention 

because of their connection to the conductance properties of long quasi one-dimensional metallic 

wires. The Laplace operator of the group of transmission matrices54l generates the Dorokhov­
Mello-Pereyra-Kumar equation,55 ) 

(25) 

describing the statistics of transmission eigenvalues where T denotes the reduced length of 
the wire. Recently Beenakker and Rejaei have made considerable progress by obtaining the 

complete analytical solution of Eq. (25) in the unitary (non-interacting) case.42l 
To conclude we have shown that a matrix field theory provides a precise correspondence 

between the universal non-linear u-model description of spectral correlations in non-integrable 
systems and an integrable one-dimensional quantum Hamiltonian. These results establish a 
precise connection between interacting quantum systems, matrix models and quantum chaos. 

We are grateful to E. Akkermans, A. Andreev, M. V. Berry, J. T. Chalker, M. Courtney, 
K. B. Efetov, M. Faas, A. Hashimoto, D. Kleppner, I. V. Lerner, L. Levitov, A. Macedo, E. 

R. Mucciolo, A. M. Polyakov, V. N. Prigodin, B. S.  Shastry, B. Sutherland, A. Szafer, and N. 
Taniguchi for valuable discussions. The work was supported through NSF Grant Nos. DMR 
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Abstract 
We report on two experiments that probe the quasi particle level spectrum and the 

ground state level statistics of disordered quantum dots. The quasi particle spectrum is 
found to be discrete only in close vicinity to the Fermi level. Levels farther than 0(10) 
levels away are broadened, probably by electron - electron interaction, beyond the 
average level spacing and merge to form a continuous spectrum. For the discrete part 
of the spectrum we study level statistics as a function of magnetic field and find it to 
agree remarkably well with recent predictions of the random matrix theory. The 
ground state energy is measured as a· function of dot population. Its fluctuations are 
considerably larger than those predicted by the constant interaction model. The 
fluctuations are probably due to mesoscopic fluctua.�on� -·· the many body interaction. 

I. Introduction. 
In the study of spectral properties of disordered quantum dots one may carry out 

two generically different spectroscopic experiments, In one of them, the spectrum is 
studied at a constant number of particles while in the other, the energy needed to add 
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one electron at a time is measured (so called addition spectrum). The information 

contained in each experiment is different. In the first case, under most circumstances, 

the quasi particle excitation spectrum is measured while the second experiment probes 

the many body ground state energy. This difference is overlooked in many studies 

where Coulomb blockade data are analyzed in terms of a constant charging energy 

plus a quasi particle level spacing. 

In the present paper we report on both types of experiments. In section II we 

present an experiment that measures the quasi particle excitation spectrum at a 

constant number of electrons. To that end we have developed a new spectrometer 

which is insensitive to charging effects. We find discrete spectrum only in close 
vicinity to the Fermi energy, E F ,  in the dot. Levels which are farther than roughly 7 ..:i 

( ..:i is the average level spacing) from E F are broadened beyond ..:i and merge to 

form quasi continuos spectrum. The breakdown of a simple single particle picture is 

attributed to electron-electron interaction 1). Calculations of the electronic dephasing 

time in the dot that support that interpretation are presented in the appendix and show 

that the life time of levels farther than a fraction of the Thouless energy, 

Ee =4,,(1-Dj L2 , from EF is shorter than ..:i--l (h =1 in our notation). Here D is the 

diffusion coefficient and L is dot dimension. 

In the energy range where single particle picture is valid we study the correlation 

between two spectra taken at different magnetic fields. The measured correlation 

function agrees well with recent calculations for disordered dots2) and in particular, 

the flux range over which levels are correlated is found to be cl> o� .:if Ee (cl> 0 = h/ e 
is the quantum flux unit) times a geometrical factor. 

In section III we present a Coulomb blockade type of experiment from which the 

fluctuations in the ground state energy vs. number of electrons can be deduced. We 

find these fluctuations to be a factor of five larger than those given by the constant 

interaction model and hence conclude that they probably originate from mesoscopic 

fluctuations in the many body interaction rather than fluctuations in the quasi particle 

level spacing. 

II. Quasi Particle Spectrum.3) 

The structure used in the experiment is schematically shown in Fig. l a. It 
comprises of a quantum dot and spectrometer separated by a tunnel barrier. The 

layers as grown (bottom to top) include an n 
+ 

GaAs substrate, a thick 2 x1018 cm -3 
n + GaAs buffer layer, a 5nm intrinsic GaAs spacer, a l Onm intrinsic GaAs well 
cladded between two 6nm Al_35Ga.65As barriers, a l Onm intrinsic GaAs spacer, and 
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an 85 or 45nm (two different growths) n 
++ top GaAs layer. The latter layer is  doped 

to 2 xI0
18 

cm-
3 next to the spacer and up to 5 Xl0

18 
cm-

3 near the surface. 

AIGaAs Barriers 

n+- GaAs Substrate 

Metal 

(a) 

EF (dot) 
I . 
! 

(b) 

Fig. I - (a) The structure (b) Band diagram. 

The fabrication process is detailed in ref. 3. A schematic cross section of the 

potential along the structure is depicted in Fig. lb. The quantum dot is vertically 
confined between the Schottky barrier and the top AlGaAs barrier. The Schottky 
barrier width at the Fermi level is approximately 15nm, implying electrical dot 

thicknesses of W =80 and 40nm for the two growths. The Fermi energies in the dot 
and in the well are 90meV and a few meV, respectively. The elastic mean free path 

in the dot, f �O nm, deduced from the doping level, is considerably shorter than L.  
For W =80 nm the average level spacing i n  the dot i s  approximately 10 times smaller 

than the level spacing in the well, o .  For a 200 X200nm
2 square dot, for instance, 

o =17 5 µe V and � =18µe V. The calculated charging energy for adding or removing 

one electron from the well is =O. 7o .  The conductance scales well with dot area over 
almost six orders of magnitude (insert to Fig. 4) except for the smallest dot 
(L =140 nm) which is partially depleted by the surface potential. 

The differential conductance, g, vs. de bias, Vdc• is depicted in Fig. 2 for a 

200 X200nm
2 square dot. The trace is reproducible in a given cool down and changes 

when the sample is thermally cycled. However, the average peak spacing is not 
affected by thermal cycling. At small voltages (!Vdcl � O. lmV in Fig. 2) there is no 

spectrometer state available for tunneling and the current vanishes. Upon increasing 
the bias, one spectrometer state starts conducting and the current peaks whenever that 
state resonates with a dot level. At even higher bias, more spectrometer states become 

available for transport and a complicated trace resulting from incommensurate, 
overlapping spectra is expected. Experimentally, however, we find no change in 
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periodicity over a range of a few m V .  We return to that point shortly. Finally, for jvdcl �.5m V ,  the structure associated with dot levels is hardly observable. 

Measurements of different dots indicate that the peak spacing is independent of dot 

shape, but inversely proportional to dot area and thickness. The average level spacing 

agrees with the calculated one, assuming that 30% of the external voltage drops 

between the dot and the well. All data reported here were taken at temperatures below 

70mK , where results are independent of temperature, and with an ac excitation 
voltage, v ac � 2 µ, V .  

� 1 5  -,---�����������������������---, 
c: j9 1 0  T=51 mK 
u �  
-5 _g 5 
B E O _,....J:..R'V'lllf'llf-"¥'-lllll-HH11L\fff-H-1'11HiH111-f-l+lr++iifffll1H+�1-H-lffi+HHt-�ff++.u.v\,#Z.Jl.lollH 0 00  
m w -5 :;:; a  
� �1 0  +-�����-+-�����-+-�����--+�����--l 

� 0 
i:5 

-1 -2 
Bias [mV] 

-3 

Fig. 2 - Differential conductance vs. de bias across the device. 

-4 

The lack of complex structure expected for tunneling via several spectrometer 

states is also evident from the total current vs. bias curve (thick line in Fig. 3) 
obtained by integrating Fig. 2.  Current increases in steps of nearly equal height, each 
corresponding to an opening of additional conducting spectrometer state. The fine 

structure superimposed on a step is due to that level scanning dot states. A closer look 

reveals two types of steps, a shorter (e.g., between -1.1 and -I.3mV) and a longer 

(e.g., -1.3 to -1. 7 m V) one, corresponding, we believe, to the two possible charge 

states ofa system composed of two quantum dots. A crucial clue to the interpretation 

of the tunneling data is provided by the autocorrelation function, 
J dVg(V )g(V +.6.V), depicted in Fig. 3 by thin line. A pronounced correlation with a 

periodicity of 0.6mV and a weaker one, shifted by 0.2m V ,  are evident and 

correspond to the step spacings discussed above. The correlation stems from the fact 

that the fine structure superimposed on equivalent plateaus is due to the same dot 
levels scanned by consecutive spectrometer states. The number of electrons in the dot 

and spectrometer is fixed along a given plateau and the fine structure is measured at a 

fixed number of electrons. It is therefore free of obscuring charging effects. 

Puzzled by the lack of fine structure due to tunneling via spectrometer states other 

than the top one, Sivan et at. I) have calculated the level width, r ,  due to electron-
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electron interaction in the dot (see appendix). It turns out that for energies e �.IEc 
the level width becomes larger than the level spacing. We therefore believe that the 
lack of complex structure is due to the fact that all dot states resonating with 
spectrometer levels other than the top one are already broadened by e-e interaction 
beyond a. Stairs, on the other hand, being a result of spectrometer level discreteness, 
are hardly affected by this broadening. 

20 
.6 T=51 mK 

.6 mV - --- mV --

.2 m � 
_______. 

1 0  -c: 
� .... 
:::J 

(.) 

0 
-0.50 -1 .00 -1 .50 -2.00 -2.50 

Bias [mV] 
Fig. 3 - Thick line-current vs. bias. Thin line-conductance correlation vs .. bias 

separation (arbitrary units). 

We tum now to discuss correlation between discrete levels. Calculations2) as well 
as numerical simulations show that for non-interacting electrons, level statistics 
follows random matrix theory.4) The major characteristics of that level statistics are 
remarkable spectral rigidity and universality that depend solely on the global 
symmetries of the system. Such level statistics has been known to apply to large 
nuclei4) and non-interacting particles in chaotic cavities.5) Recently, some features of 
that level statistics were observed in electrons scattering off a ballistic, chaotic 
cavity.6) 

The spectrum is very sensitive to magnetic field3) and application of less than one 
flux quantum shifts levels by roughly one level spacing. To quantify the correlation 
between two spectra taken at different magnetic fields we have carefully mapped the 
conductance as a function of both de bias and magnetic field in the range 
-2mV �de =::;- lmV and 0 =::; B ::;870G. At higher fields, Zeeman effect is 
dominant and we therefore confine ourselves here to weak fields. The resulting level 
correlation function 

K(cI> , acI>) = JdV[g(V, cI>) - g(cI>)] [g(V, cI> + acI>) -g(cI> + acI>)] , (1) 
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normalized to its value at .d� =O is depicted in Fig. 4 for several values of B =� / L2 . 
Here, g is the average differential conductance. In our geometry electrons pass two 

dots and hence, g(V.�) cxovfdV' v(V -V'.�)f(V'), where v (V,�) is the dot's 

density of states and f (V) is the line shape of a spectrometer level. The partial 

derivative with respect to V results from the fact that we measure the differential 
conductance rather than the conductance itself. Since energy is proportional to the 
bias one obtains with the aid ofEq. I 

K(� . .d�) cxffde'de"f(e)f(e")S(e' -e",� ,.d�) , (2) 

S(e' --e" ,� ,.d�) =Jde oev (e -e' ,�)oev (e -e" ,� +.d�) 
-fde oev (e,�)fde oev (e,� +.d�) 

The physics is contained in S( e' --e" , � ,  .d�) which measures the correlation 

between the derivative of the density of states with respect to energy at two different 
energies and fluxes. It also depends, in accordance with the random matrix theory,4) 

on the total flux, � ,  which determines time reversal symmetry and hence the 

statistics. 

0.8 
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Fig. 4 -Correlation function vs. flux. Insert -conductance of square dots vs. dot length. 

To compare our results with theory we note2) that S is a universal function of 
energy and flux separation, provided they are measured in units of .d and 
� o�r.d/Ec , respectively. The factor r depends solely on the geometry and, for a 

cubic dot, equals i3 1 3.  Assuming f(E/.d) =r,/((E/..1)2 +112 )7r, with 1/ =1/4 
estimated from the experiment, Eq. 2 yields the dashed line in Fig. 4. Since 
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Ecf .::i �00 is estimated from the doping level and lithography, there are no 
adjustable parameters in the theory. The agreement between theory and experiment is 
hence remarkable. Alternatively, one can treat -JEc/ & as a single fitting parameter 

and adjust it to yield best fit to the experiment. The results of such a procedure are 
displayed by the thick line in Fig. 4 and give -JEc/ & =7 .8 compared with the 6.4 

value estimated from doping level and lithography. This discrepancy can easily result 
from deviations in geometry and/or doping level. In fact, the agreement is good 
enough to suggest a new method for measuring conductance of a microscopic object 
which can't be otherwise measured. 

Note that the B =0 and, to some extent, the B =30G , curves in Fig. 4 are different 
from higher field ones. We attribute this deviation to these cases being members of a 
different universality class,4) namely, the orthogonal rather than the unitary one. 
Similar behavior is observed in numerical simulations.2) 

III. Ground State Level Statistics 7) 
We turn now to discuss measurements of the ground state energy as a function of 

number of electrons residing in the dot. The dot is schematically depicted in the left 
part of fig. 5.  It is fabricated using a standard modulation doped two dimensional 
electron gas formed in the interface between GaAs and AlGaAs layers. Confinement 
is provided by biased Schottky gates (dark areas in the figure) deposited on top of the 
structure. A low frequency ac voltage is applied between electrodes 8 and 16 and the 
resulting current is measured as a function of the de bias applied to gate 3 .  

Due to the small capacitance, at temperatures below ::::IJ.5K, the charging energy 
needed in order to drive current through the dot is usually larger than the temperature. 
The quantum dot is hence insulating except for special values of dot potential for 
which the ground state energy with N electrons is degenerate with that of N +l 
electrons. Since the dot potential depends on gate voltages, the conductance 
oscillates, for instance, as a function of the voltage applied to gate 3 (fig. 5). Each 
peak corresponds to an addition of one electron to the dot. Such oscillations are 
known as Coulomb blockade oscillations and have been observed in recent years by 
many groups (e.g. refs. 8,9). 

To extract information from the peak position we note that the total energy of a dot 
with N electrons is given by 

(3) 

where eN is the many body ground state energy of the dot with N electrons, If> is the 
total electrostatic potential, lf>o is the electrostatic potential induced by donors etc. 
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and by all gates except gate 3. aVG3 is the potential induced by gate 3 with VG3 being 

the bias applied to the gate and a a proportionality factor to be determined from the 

experiment. At the peak conductance, EN = EN-tl, thus eN-tl -BN =e<l>o +eaV� 
where vJ; is the bias satisfying the above degeneracy condition. Subtracting two 

expressions for consecutive electron number we find an expression for the pair energy 
in terms of peak spacing 

( 
N N -l) BN -+l -2eN +eN -l =ea VG3 -VG3 . (4) 

Since a is measured very accurately either by fitting the peak shape to a derivative 
of the Fermi function8) or by measurements in the quantum Hall effect regime, eq. 4 

provides an accurate method for measuring the ground state energy as a function of N. 

8 

� 0.2 ,�-- ·--·-- --
::c 0. 1 6  i f;j 0. 1 2  -
� l 

0.08 t 
(!) 0.04 . 

1 6  - 1 .05 - 1 .00 -0.95 

Vg (31 [VJ 

Fig. 5 -left-Dot schematics. nght-conductance vs. bias applied to gate 3 

For non interacting fermions with spin 1/2 the pair energy is the level spacing for 

even N and zero for odd N. Adding a constant Coulomb interaction adds a constant, 

e2 / C, to each term ( C is the capacitance). Based on the results of section II, which 

strongly suggest a random matrix theory statistics, we thus expect in the constant 

interaction model a constant pair energy for odd N and Wigner surmise4) statistics for 
even N. The experimental results, however, are very different. The measured pair 
energy calculated from curves like fig. 5 is presented in fig. 6 after subtraction of the 
average spacing. For comparison with the constant interaction model one bare level 
spacing is marked on the graph. This is a generous upper bound on the fluctuations 
predicted by this model. It is clearly seen that the actual fluctuations are considerably 
larger. Moreover, we have not observed any significant difference between the 
fluctuations at even and odd N. It is therefore concluded that the constant interaction 
model fails to describe the ground state level statistics. The observed fluctuations are 

probably due to mesoscopic fluctuations in the many body energy rather than quasi 
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particle level fluctuations. In retrospect, this result is rather expected. The Coulomb 

interaction in these objects is roughly an order of magnitude larger than the average 
quasi particle level spacing. Mesoscopic fluctuations in the interaction can therefore 

easily exceed the bare level spacing. It is interesting to note that upon application of a 

strong magnetic field, the fluctuations are greatly reduced and replaced by oscillations 
which reflect the Landau level structure. The constant interaction model works much 

better in this case as already noticed by several authors (e.g. McEuen et al.9)) .  We 
feel that full theoretical and experimental understanding of these fluctuations sets a 

challenge for practitioners in the field. 
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electron number (arbitrary origin) 

Fig. 6 - Fluctuations in peak spacing. Note magnitude compared with a level spacing 
(two horizontal lines). 

Appendix - Dephasing Time Due to Electron Electron Interaction in the Dot. I ) 
In second order perturbation theory the probability that the environment changes 

its initial state due interaction with a test electron is given by 1 0), 1 1) ' 

where V1(x,t) =f�1 (r' ,�) d3r' is the Coulomb interaction between the probe electron x -r' 
and the rest of the electrons in the dot, Pl ( r', t) is the density operator, I 0) and In) are 

the ground state and the n-th excited state of the Fermi sea, respectively, and x1,  x2 

stand for two different real space paths available for the electron. In the infinite case, 

eq. 5 reproduces previous bulk results. 1 2) Similarly to ref. 12 we consider pairs of 
paths of equal length only. The dephasing time, T<J> , is the value of r0 for which P is 

on the order of unity. We arbitrarily choose P =0.5 .  Following the steps leading from 

Eq. (8) to (1 2) in ref. 10, one obtains for a rectangular box of a side L and quasi 
particle energy e 
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I To To e 4e2 I · • 
P = 3 fdt fdt' fdw E -2 Im( )(S1 + S2 - S3 - S4 )e1w <r --1 > ,  (6) L o o o q1 ;eo q1 e(q1 , w )  

.
th S _ iqj '(x1 (t) -x1(t')) S _ iqj '(x2 (t) -x2 (t')) S _ iq1 '(x1 (t) -x2 (t')) wt 1 -e , 2 -e , 3 -e , 

s4 =eiq1 -<x2 (t) -xi (t')), and q1 =� jx �ly �mz; j,l,m =0,I,2 .. ; j  +I +m >O. 
L L L 

The q =0 mode is excluded due to charge neutrality. 

For q/ >l , the proper dielectric function is the ballistic one and typical exchanged 

momentum is on the order of the Thomas Fermi screening wave vector, 

qTF =�4kF >>e - 1 (aB is the effective Bohr radius and kF is the Fermi wave 
1raB 

vector). Since qrFL >>I , the finite dot dimensions play no role and the resulting 

dephasing rate for a 3D dot is identical to the one characteristic to an infinite 

system, 7i1 -� �: er: . This result is four times larger than the electron-electron 

rate calculated by Quinn and Ferrell. 1 3) To calculate the small exchanged momenta 

contribution we define new variables, t ±  =t ±t', and substitute w/47ra (a being the 

conductivity) for Im( I/ e( q, w)) ,  For diffusive dots, L > >£ , eq. ( 6) then takes the form 

(7) 

Obviously, 1j =P2 and � =P; . We start by calculating 1j.  The integrand in this case 

is independent of t + and the temporal integrations can be combined to yield 

Here, v3 is the 3D density of states. 
The coordinate x( t -) executes a random walk with a probability distribution 

II(x, t-) satisfying the diffusion equation with the boundary condition V .LIII rfi = o. su ace 

The solution is 
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where II0 and II jlm are detennined by IT(x,t =0) . The Fourier transfonned Coulomb 
interaction can now be averaged using Eq. (9) to yield 

(10) 

In particular, for IT(x,t =0) =o(x), IT2j,2l,2m =8L-
3
( -l)j +l +m _ Substituting 

IT2j,2l,2m into Eq. (10) and then Eq. (10) into Eq. (8) one obtains 

211" 2 -2 2 2 I -j 
16.6. To +' + _e �j2 -!l2 -+m2 �% e -(y) (J +l +m )D t I 

Pi =- J dt J dt Jdww E 2 2 2 cos(wt l, ( 1 1 )  
1fEc 0 0 0 j +l -+m >O j +I +m 

The integrals in Eq. ( 1 1 )  can all be calculated analytically and for EcTo >>1 we find 

�j2 +l2 +m2 �LI 8 If e 2 Ji =-.dTo I: ln{l -t{ 2 2 2 ] } . (12) 
1r j -tl-tm>O Ec(j +I +m ) 

To calculate P3 we note that (S3) is a function of t + only. A straightforward 
calculation then gives 

(13) 

In all cases, P3 <<Pi; for e <<Ee by a factor of ToEc >>1 and for e >>Ee by a 
factor of Toe >>I . Hence, P3 can be neglected. 
The dephasing time is the value of To for which P o:::2Ji =1/2 , thus 

�j2 +l2 +m2 �LI 
-l _ 32 7e e 2 T� - -a i; ln{l -t{ 2 2 2 ] } . (14) 

1r j +l +m >O Ec(j +I +m ) 
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For e >>Ee the sum can be replaced by an integral to reproduce a rate similar to the 
3D bulk one1 2) 

( 15) 

For e <<Ee we obtain a new, OD result 

The total dephasing rate is given by the sum of Eq. (14) and the large momenta 
,,?- e2 

q 2 1f4 e q f,2 
contribution, 7; "" -- TF =- .:i(-)2 JE__ 

16 EF kF 9 Ee L 
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Abstract 

We examine numerically and by means of random matrix theory (RMT) the statistical prop­
erties of the spectra of mesoscopic systems in the diffusive regime pierced by an Aharonov­
Bohm flux cp. The quantities considered are the statistics of single level curvatures c,,(cp) at 
zero and finite flux, the square of the typical single level current (i�(cp)), and single level 
current correlation functions. The curvature distribution function decays as c;;-3 for large 
curvatures, such that its second moment, which is commonly regarded as a measure of the 
Thouless energy Ee, diverges. The square of the typical single level current shows a logarith­
mic low-flux behavior, and a corresponding behavior is observed for the single level current 
autocorrelation function. We discuss the consequences of these results for the universal 
conductance ratio proposed in Ref. 1. 

Introduction 

Let us consider a parameter dependent Hamiltonian H(>-.) of the form H(>-.) = Hi + >-.H2 

where Hi and H2 are two independent random Hermitian matrices. The parametric motion 
of energy levels en(>-.) of such a Hamiltonian has recently been investigated by numerous 
authors 2, 3, 4, s, G) and various statistical properties of the spectra have been calculated, like 
distributions of the first and second derivatives of en(>-.), or correlation functions of these 
quantities. It has been shown 2> that the motion of the energy levels corresponds to the 
classical motion of interacting particles, when ).. is regarded as a fictitious time, and classical 
Hamiltonians which govern this dynamics have been derived. Most of the cited work dealed 
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with what we will call "pure symmetry cases", i.e. cases in which H1 and H2 belong both 

to the same universality class of random matrices, i.e. for example both to GOE or both to 

GUE (Gaussian orthogonal and Gaussian unitary ensembles, respectively). 

In this article we investigate the situation, where H1 and H2 belong to different symmetry 

classes (we will call this case the "transition case"), in particular a Hamiltonian of the form 

(1) 

where H1(S) is a random symmetric matrix and H2(A) a random antisymmetric matrix. 

The parameter a !hus allows for a continuous transition between GOE (a = O) and GUE 

(a = 1) 7• 8l. Such a form of the Hamiltonian is physically particularly interesting, since 

it corresponds to a situation, where the time reversal symmetry of the system is gradually 

broken. A physical realization of such a situation is a mesoscopic ring in the diffusive regime, 

i.e. a ring with a circumference L much larger than the elastic mean free path le = VFTe but 

smaller than the dephasing length Lee. It is well known that the low energy (E � n/r.) 

spectral correlations are well described by Random Matrix Theory (RMT) 9• 10>. Dupuis and 

Montambaux showed that the unique parameter which drives the transition from GOE to 

GUE and which is proportional to a is given by 'P/'Pc with 'Pc = ----b, where Ee = �  is the y Ec/1!. 
so called Thouless energy, D the diffusion constant and t. the mean level spacing. With this 
mapping they demonstrated that the fluctuation of the number of levels in a given energy 

range E, �2(E, cp), is a universal function of 'P/'Pc 11>. 

One of the interests in mesoscopic rings pierced by an AB flux comes from an argument by 

Thouless 12>. The AB flux may be thought of as introducing generalized boundary conditions 

along the circumference of the ring: 1/J(x + L, y, z) = e;2"<e.,P(x, y, z). Thouless showed that the 

average conductance G of the system can be related to the sensitivity of the spectrum of the 

system's Hamiltonian to a change of the boundary conditions. More precisely, defining the 

"level curvature" c,.(cp) = 112;;lce>, he showed that the width of the distribution Pce(c,.(cp)/ t.) 
at cp = 0 is proportional to the dimensionless conductance Uc = *· This "Thouless relation" 

has henceforth often be quoted in the form Uc = i: (c�(O)) t 1• 13• 14>. We show here that this 

choice of the typical curvature to describe the conductance in not correct, since the curvature 

distribution P0(c,.(O)) decays too slowly, so that its second moment does not exist. 
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Another measure of the sensitivity of the spectrum to a change of the boundary conditions 

has been introduced by Akkermanns and Montambaux 1>. They showed that the dissipative 

conductance 9d of the system (equivalent to the one obtained from the Kubo formula) is given 

by 9d = 12 (i�(cp)), where in(cp) = - 8';i£"'l is a single level current and the overline denotes 

an average over one flux period. Making certain assumptions about the current correlation 

function C(cp, cp') = p(in(cp)in(cp')), they also showed that 9d is proportional to the typical 

curvature of the levels and thus to 9c- Since the typical curvature actually diverges, this 

argument, based on a pertubative hypothesis, should be rephrased and the typical curvature 

replaced by the width of the curvature distribution, as originally proposed by Thouless. It is 

therefore worthwhile to reconsider the assumptions made about C( cp, cp'). Similar correlation 

functions have been considered before, e.g. by Szafer and Altshuler 15l and Simons and 

Altshuler 13l, who considered the auto correlation function C(cp_) = f01 C(cp, cp + cp_) dcp. 

They predicted a universal behavior of C(cp_) in the parameter region '{Jc « cp « � 15) 

and a universal behavior for all fluxes after appropriate rescaling 13l. Using the method of 

supersymmetry, Simons and Altshuler found the low-flux behavior of C(cp_) in the pure 

GUE case (with an additional transversal flux applied). In the case of a GOE-GUE crossover 

a RMT model predicts a logarithmic low flux behavior of C( rp, cp') 16l . 

In this paper we study the distribution of curvatures for zero and finite flux, P<e(c;.(rp)). 

We show numerically that C( cp, rp') has a logarithmic behavior at low flux, and confirm nu­

merically a linear relation between ( lc;.(O) I) and 12 (i�(cp)) 4l. A more detailed version of 

this work, also comprising numerical results for the distributions of in ( rp) and i� ( rp), will be 

published in Ref. 17. 

Curvature distributions 

The large curvature behavior of P<e(c;.(cp)) (0 � cp < 'Pc) is easily obtained from solving a 

2 x 2 RMT mode� 16) .  The results of such a simple model are expected to become exact 

for ;kc;.(cp) -> oo, since large curvatures arise from avoided crossings with very small level 

spacings, such that the interaction with next levels can be neglected 3, 5, 16). The result for 

cp = 0 is given by 16l 

where v 

3 �v ' (�)2 (c;.(O) ) 
Po(Cn(O)) = - - -e< •• D_§ --

Bv c;.(O) 2 2v ' 
(2) 

* is the variance of the randomly choosen matrix elements, and D0(x) a 
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Whittaker parabolic cylinder function. The same result has been obtained for the pure GOE 

case in Ref. 3. The asymptotic behavior of eqn. (2) -and only its asymptotic behavior should 

be taken seriously - reads P0(c,.(O)) '.'.:: C,"(o)) 3 for c,. (O) » v. Concerning the scale v of 

this algebraic decay, note that in a 2 x 2 RMT model the Thouless-energy is comparable to 

the mean level sp!lcing ( � ,..., N, where N is the size of the matrix). We therefore cannot 

determine from this model the scaling of P0(c,.(0)) for large matrices, but we will see below 

that the relevant scale is Ee, not 6.. 

A c;;-3(0) decay was also obtained for the tail of the curvature distribution function in the 

pure GOE case 2• 3• S). In fact, one can show that the complete distribution function P0 ( c,. ( 0)) is 

identically the same as in the pure GOE case for all curvatures l7). This is a priori not obvious, 

since the curvatures calculated at <p = 0 probe infinitesimally small fluxes to both sides of 

<p = 0, where the level statistics is changed already. Up to our knowledge, no analytical 

formulas have been derived for the whole distribution function in the pure symmetry cases 
21>, only the limiting behavior for large curvatures is well established. However, in Ref. 3 a 

distribution function was guessed which fits the numerical data remarkably well. It has the 

form of a generalized Lorentzian, 

PfJ(Cn) = NfJ ( 2) (fJ+2)/2 '  
1 + (�) (3) 

with /fJ = ,87r� and ,B = 1, 2, 4 for GOE, GUE, GSE, respectively 21>. NfJ is a normalization 

factor. Thus we expect to find for the GOE-GUE transition case the same distribution as 

above with ,B = 1 .  

1 1 
Po(cn(O)) = 

3/2 ' I (i + (�/) 
in agreement with the predicted 1 / c� ( 0) tail. 

(4) 

In order to verify these predictions numerically, we have calculated the curvatures of the 

energy levels of many tight binding Anderson Hamiltonians with diagonal disorder dis­

tributed in a box like distribution from -!!f to � - In Fig. 1 we show the result for P0(cn(O)) 

together with the generalized Lorentzian eqr,. ( 4) for a 3D sample 18). The width I was used as 

a fitting parameter. We will show below that .tt is related to ±(i; (ip)). Correspondmg results 

were found for all samples examined, independent of their geometry and their disorder, as 

long as we stayed in the diffusive regime. 
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Figure 1: The numerically calculated curvature distributions at 'P = 0 (empty circles) and 
rp = 0.24 (full circles) for 100 8*8*8 samples with w = 5. The full lines are fits to the generalized 
Lorentzians known from the pure GOE and GUE case with the widths as fitting parameters. 

As a consequence of eqn. (4), the second moment of P0(c,.(0)) diverges logarithmically 
with an upper cut-off C,.,.ax· 

In the transition regime, 0 < rp « ip0, the curvature distribution is , or.:�pletely different 
from the one in ejther the pure GOE and the pure GUE cases 16>: It has a Gaussian tail, 

2 c2 (rp) 
such that (c�(ip)) is finite for every finite ip: P1p(c,.(ip)) ex �e -g(1p)�"':;? for cn('P) » 72;1'1', . 
g(ip) is a fourth order polynomial slowly varying in the flux range 0 < 'P < ip0/../2 19l . For 
curvatures between v and 72;/<p, the c;;-3(ip) decay found for 'P = 0 prevails. Such Gaussian 
tails have been found numerically 17l. 

For 'P > 'Pe but close to rp0, a transition back to an algebraic decay of P,,,(c,.(rp)) must 
take place, which we haven't studied yet. However, for 'P » 'Pc the transition to GUE is 
completed and the formulas for the pure GUE case should apply. Thus we expect a c;;-4 
decay of P,,,(c,. (ip)) for 'P � �· This is indeed what is found numerically, as shown in Fig. 1 

for 'P = 0.241. The numerical data are well fitted by the generalized Lorentzian guessed for 
the pure GUE regime, Eq. (3) with f3 = 2 3l . 
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Current Correlation Functions 

We now consider the single level current correlation function C(ip, rp') = ;f,(in('P)in('P')). 

If the broadening of the levels or Ec'Pi with 'P± = 'P ± 'P' are much larger than D., it may 

be related to spectral density correlations by C('P, 'P') = 0:;"', f0E1 df. f0E1 d€ K(f., l{J; €, 'P'), 

where K(f., l{J; €, 'P') = (p(f., 'P)p(F!, 'P')) - (p(f., 'P)) (p(f!, 'P')), and p(f., 'P) is the energy and flux 

dependent density of states 15>. Under the above conditions K(f., l{J; €, 'P') was expressed 

diagrammatically by Al'tshuler and Shklovskir 10> in terms of Cooperon and Diffuson con­

tributions as K(f., l{J; f.1, 'P') = K(f., €; 'P+) + K(f., €, 'P-), such that C(l{J, 'P') can be written as 

C('P, 'P1) = f('P+) - f('P-), where f('P + 1) = f('P) = f(-l{J). 

Here we are interested in the low-flux behavior 0 � l{J, 'P' < 'Pc· At zero temperature, RMT 

results show that the effective low energy cut-off is of the order of /::,. 11>, so that the pertur­

bation theory breaks down 10>. The following low-flux behavior can be obtained from RMT 

16): 
E2 'P + 'P' 

C(ip, 1{)1) oc - A�'P'Pi ln(--) for O � ip, 1{)1 « 'Pc · (5) 
u 'Pc 

Note that this expression leads to (if.('P)) oc -E; ln � for 'P « 'Pc and thus back to a 

divergence of (c!(O)) , but to a finite value for all finite fluxes. 

For 'P = 'P' we get the square of the typical single level current: 

(6) 

with a constant prefactor N. We compared this expression to numerical data by using N 

and 'Pc as fitting parameters and found excellent agreement. The agreement is much better 

than with a simple power expansion in 1{)2 containing also two free parameters and fitted 

in the same parameter range. This latter form would be obtained by an extension of the 

perturbational results to 'P < 'Pc as well as by a low-flux expansion of a formula ·recently 

suggested by Delande et al. for the pure GOE case 6>. Also, the dependence of N and 'Pc on the 

disorder parameter w is as expected: Since 'Pc = --b, E0 = � (d is the dimensionality y Ec/f> 
of the sample) and le oc ;;!. 20>, we have 'Pc oc w. N is independent of disorder. Both relations 

are well observed numerically (N � 17.78 ± 2.40). The error margin is a simple standard 

deviation calculated from seven macroscopically different samples with 25 to 100 disorder 

realizations each. 

Eqn. (6) implies the following rescaling: 
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Figure 2: The rescaled function (i2(cp)}/(i2(1/4)) as a function of cpvf (i2(1/4)} for several two 
and three dimensional samples. 

(7) 

with x = :£.... Thus, }2 (i�(cp)}cp� is a universal function of cp/cpc, independent of any system "'' � 

specifications like geometry or disorder, as long as we stay in the diffusive regime. Due to 

the RMT origin of eqn. (7), we conjecture its validity more generally for any chaotic system. 

Furthermore, since it is found numerically that (i�(cp)} is basically constant for cp � 'Pc, the 

universality holds for a much larger flux range and is in fact only restricted by the periodicity 

of (i�(cp)} (see Fig� (2), where we made use of the fact that 'Pc ex 1/vf (i2(1/4)}, see Ref. 17). 

Note that (i�(cp)} is non-pertubative for all fluxes (cp_ = 0). 

FromC(cp, cp') the autocorrelationfunctionC(cp_) = b JJ-(in(cp)in(cp+cp-)) dcp = Ji C(cp, cp+ 

cp_) dcp proposed by Szafer and Altshuler 15> can be derived. They found the universal behav­

ior C(cp-) = -� for 'Pc « cp « 1/2. Later it was shown 13> that c(X) = � is a universal 

function of X = cp/C(O'J for all fluxes. However, so far no analytical formulas could be 
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Figure 3: The low flux behavior of C(cp)/C(O) (full circles) is well described by 
1 +N'cp2 ln(cp/cp�) (full line). The dotted line represents the pure GUE behavior: C(cp)/C(O) = 
1 - 2?r2C(O)cp2• 

derived for C(cp_) which are valid for all fluxes. In Ref. 6 a formula was proposed without 

derivation which amounts to a quadratic low flux behavior. A corresponding behavior was 

obtained in Ref. 13 for the pure GUE case (a transversal flux was applied in order to enforce 

unitary symmetry even for cp = O): c(X) = 1 - 2?r2 X2 + O(X4), whereas more general for­

mulas were obtained by the method of supersymmetry for a different correlation function, 

measuring the correlations of single level currents within a fixed slice of energy. 

The success of eqn. ( 6) in describing ( i� ( cp)) suggests to try a corresponding behavior for C ( cp), 

with parameters N' and cp� possibly different from N and 'Pc: C(cp) = C(O) + N'� Jn (�) . A 

fit to this function works indeed extremely well (see Fig. 3), and, like for (i�(cp)), much better 

than a power expansion to the fourth order in cp. 

Due to the universality of C(cp)/C(O) as a function of cp/C(O), the coefficients cp� and 

N' depend in the same way as 'Pc and N on the disorder (cp� oc w, N' independent of w), 
and we may identify cp� oc b, thus Ee oc ± (i�(cp)) (up to numerical coefficients). We y C(O) 
therefore propose the universal low flux behavior C(cp)/C(O) c:: 1 + N'x'2 lnx1 with x' = � 
and N' c:: 6.67 ± 0.14. The error margin is the simple standard deviation calculated from four 
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macrocscopically different samples with up to 100 disorder realizations each. 

The universal conductance ratio a = 9c/ 9d 

In Ref. 1 it was shown that a = !k = (c(�(o )/),.) should be a universal ratio, independent of 9d 'n cp 
any system specifications (in the diffusive regime), if C( cp, cp') can be written in the form 

C(cp, cp') = f(cp + cp') - f(cp - cp') for all cp, cp'. According to RMT, its value is given by 7rVf2. 
Having shown th�t (c!(O)) diverges, whereas l• (i�(cp)) is the average dissipative conduc­

tance of the system, it is clear that this relation cannot hold. Therefore the assumption made 

for its derivation must be wrong, and eqn. (5) shows indeed that C(cp, cp') can not be written 

in the form j(cp + cp') - f(cp - cp') for 0 < cp, cp' < 'Pc· An even more direct way of showing this 

is the following: Let us assume that C(cp, cp') = j(cp + cp') - j(cp - cp') for all cp, cp'. Then one 

immediately finds l' (i!(cp)) = f(2cp) and C(cp_) = -f(cp-). Thus, l' (i!(cp)) = C(O) - C(2cp) 

for all cp. However, it is easily seen numerically that this relation does not hold: Whereas 

l' (i!(cp)) is basically constant for cp > 'Pe1 C(O) - C(2cp) reaches a maximum and then decays 

again, corresponding to the universal -,J'P, behavior of C(cp) 15> . Therefore, C(cp, cp') cannot 

be written in the form f(cp + cp') - f(cp - cp') for all cp, cp', which is equivalent to the statement 

that the harmonics of in( cp) are correlated. 

The idea of the universal ratio 9c/ 9d was that the GOE -+ GUE transition is driven by the 

unique parameter cp/cpc, such that different measures of the sensitivity of the spectrum to a 

change of the boundary condition should be equivalent. If we measure this sensitivity by 

means of curvatures at cp = 0, an appropriate quantity is 'Yi = ( len l ) 4>. Indeed, we found nu­

merically a linear relationship between i( len l) and l2 (i�(cp)) : i ( len l )  � 13.4 + 6.7 l, (i�(cp)) . 

The error margin of the coefficients is estimated to be of the order of 10%. The ratio of the 

two conductances is thus universal in the diffusive regime where the offset can be neglected. 

As a consequence, the width of the curvature distribution is related to 9d and the rescaled 

distribution gdP( £,f) should be a universal function of �. Similar relations have been re­

ported earlier, like in Ref. 4, where a linear relation between ±(len l )  and l2 (i!{i:)) was found. 

Conclusions 

We examined various measures of the flux sensitivity of spectra of diffusive mesoscopic 

systems using numerical simulations and RMT description. We found that Po(en(O)) decays 

as 1/c�(O) for largli! curvatures, leading to a diverging second moment. P0(en(O)) is identical 

to the curvature distribution in the pure GOE case. P'P(en(cp)) with 'Pc « cp « � is identical 
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to the one of the pure GUE case. For 0 < cp « 'Pc, Pll'(c,.(cp)) has Gaussian tails, leading to a 

finite second moment of the curvature distribution. We also showed that the current correla-

tion function C( <p, cp') has a logarithmic low-flux behavior. This function becomes universal 

after appropriate rescaling. A logarithmic low-flux behavior was also found for the single 

level current auto correlation function C( <p) introduced in Ref. 15. Finally, a universal linear 

relationship between i:(lc,.(0) 1) and �' (i�(cp)) was found. 
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Spectral Correlations in Diffusive and Ballistic 
Systems 

Alexander Altland, Institut fiir theoretische Physik, 
Ziilpicher StraBe 77, D-50937 Koln, Germany 

Abstract 
Spectral correlations exhibited by disordered but non-interacting systems are analyzed 

in terms of the two level correlation function (Y2) and the fluctuation of the number of 
levels contained in energy intervals of given widtl1 E (�2) .  The analysis extends to non­
diffusive regimes, including E larger than the inverse elastic scattering time n/r and 
ballistic (but not perfectly clean) systems. It is shown that ballistic systems show a 
variety of inequivalent spectral correlations which necessitate the definition of different 
correlation functions. The relevance of this observation for the calculation of physical 
observables is discussed. 

1 Introduction 

143 

The quantum mechanical spectra. of diffusive metallic systems exhibit strong correlations which 
a.re responsible for a large variety of mesoscopic fluctuation phenomena.. Among these a.re 
persistent currents [1] ,  universal conductance fluctuations [2] or a.noma.leously large dia.ma.gnetic 
susceptibilities [3, 4] just io mention a. few of the most prominent examples. Recently it 
has been shown [5] that the correlation functions characterizing the sta.tistica.l properties of 
these systems contain even information a.bout the time evolution of individual charge carriers, 
thus providing an efficient tool to int�rpret seemingly complex mesoscopic effects in terms of 
elementary physical concepts. In consideration of these facts, it is natural to a.sk, whether 
spectral correlations a.re of relevance for the physics of ballistic mesoscopic systems too, but 
most surprisingly this question has not been a.dressed so far. 

A reason for this ignorance may be that the elastic mean free pa.th l characterizing the 
disorder strength in a given mesoscopic system is often interpreted in a too naive sense, i.e. as 
the "typical spacing between neighboring scatterers ". This identification implies that disorder 
is inessential or may at least be treated perturbatively once the system size L is smaller than 
I. In order to refute this assumption one ma.y compare the clean system's level spacing 6. with 
the size of a typical disorder matrix element M := (k lV lk') taken between electronic states 
J k) , l k') at the Fermi energy. Modeling the disorder by short range sca.tteres, one easily obtains 

IM l2 L ( L)d-1 � � / PF , ( 1 )  

i.e. even i f  L � l , the disorder" matrix element exceeds the level spacing by  a large factor 
(pFL )d-1 .  From this observation, one ma.y conclude that (i) disorder in ballistic systems must 
generally not be treated perturba.tively, whence it ca.n be expected that (ii) it is capable of 
inducing strong spectral correlations in these systems, too. (iii) It makes sense to define a class 
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of "perturbative" systems by the condition L < lp := pp.1 (lpF)1fd � l [6]. Systems of this size 
are nearly clean in the sense that disorder may indeed be regarded as a small perturbation. 

Before turning to the concrete analysis of spectral correlations in the ballistic case, it is 
worthwhile to classify all regimes with expectedly different spectral properties. For the sake 
of completeness, I will include the diffusive regime in this discussion as well. As long as no 
magnetic fields are taken into account, the various regimes may be classified with respect to 
two parameters, length and energy. Considering a completely idealized mesoscopic system at 
zero temperature and with no dephasing, the following length and energy scales are of relevance 
(n = I) : 

Length scales: 

L: The size of the system. 

�: The localization length (localization always occurs in systems of dimensionality d :S 2 or, 
otherwise, for sufficiently strong disorder) .  

l: The elastic mean free path. For "soft" scattering potentials one has to distinguish be­
tween the mean free path between subsequent scattering events, and the (longer) scale 
characterizing the randomization of the particle's original momentum, the latter is of 
relevance for transport coefficients. 

AF: The Fermi wave length (the inverse Fermi momentum, AF = 27rpp.1 ) . Unless we are in 
the strong disorder limit the inequality PFI � 1 holds. 

Energy scales: 

EF: The Fermi energy 

r-1 : The inverse elastic mean free time. Similarly to our preceding remarks one may distinguish 
between the elastic scattering time and the transport mean free time Ttr· 

t/1 : The inverse time of flight of electrons at the Fermi energy through a ballistic system, 
t/1 = VFL-1 . Here VF is the Fermi velocity. 

Ee: The Thouless (or correlation) energy, Ee = DL-2 , equal to the inverse diffusion time 
through a diffusive system. 

�: The mean level spacing at the Fermi energy. 

Combining length and energy to a two-dimensional parameter space, one obtains sort of a phase 
diagram which is displayed in fig. I .  In the diffusive (l < L < �) and ballistic ( Ip < L < I) case 
one obtains respectively three regimes, denoted by Di and Bi, i = 1 ,  2, 3, resp. ,  with different 
spectral behaviour. To understand the physical meaning of these regimes, it is essential to 
know the connection between spectral statistics and the dynamics of electrons [5] : In a sense 
to be precised a few paragraphs further down, spectral correlations over a given energy range 
w contain information about the probability that an electron released somewhere in the system 
returns to its initial phase space coordinates after times 1/w. In consideration of this fact, the 
different regimes may be interpreted as follows: 

Diffusive systems: 

DI : w < Ee- Time scales larger than the inverse diffusion time E;1 are probed. As a conse­
quence, the system behaves fully ergodic and can be described in terms of random matrix 
theory. 
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Figure 1: On the definition of regimes with different spectral statistics. Explanation, see text. 

D2 : E0 < w < 1/L Corresponds to time scales larger than the scattering time, but smaller 
than the inverse diffusion time; electrons move diffusively but do not yet feel the presence 
of the system's boundaries. 

D3 : w > l/r. The electron motion is no longer diffusive but governed by only a few impurity 
scattering events. 

Ballistic systems: 

Bl :  w < l/r. The same what was said under Dl applies. 

B2: 1/r < w < l/t1. Corresponds to times larger than the time of flight through the system 
but smaller than the scattering time, i.e. electrons bounce multiply off the boundaries 
but not significantly off impurites. The system geometry is of relevance in this regime. 

B3: w > l/t1- The motion is fully ballistic. 

2 Quantitative Analysis 

In most cases the probability distribution of the energy eigenvalues is unknown and one has to 
characterize the spectrum in terms of correlation functions. Here I will restrict myself to the 
discussion of the two functions 

Eo = O(E1), (2) 
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where the angular brackets denote a configurational averaging over the disorder and v := 
(v(Eo + w)) � (v(E0)) . The reason for this choice is that (i) these functions play the by far 
most important role for practical calculations in the field of mesoscopic physics (cf. Refs. [ l ,  2, 3] 
and references cited therein) and (ii) the Fourier transform of Y;,  Y2(t) establishes the above 
mentioned correspondence to the return probability via the equation [5] 

Y2 (t) oc tP(t). (3) 
Precisely speaking, P(t) is the probability for a classical particle released at time t = 0 some­
where in the system\ to return to its initial phase space coordinates after time t, averaged over 
all initial coordinat1s. As is obvious from their definition, the functions Y2 and E2 measure 
correlations in the density of states at different energies and the fluctuation in the number of 
energy levels contained in an interval of width E, resp. 

In a seminal paper [2] , Altshuler and Shklovskii have anaiyzed these two correlation functions 
for regimes Dl and D2 by means of diagrammatic perturbation theory. In the following I will 
sketch a generalization of the a.pproa.ch ta.ken in ref. [2] which yields Y2 a.nd E2 for all above 
mentioned regimes simultaneously. Details of the derivation ca.n be found in ref. [7] a.nd readers 
who are not interested in technicalities a.re invited to turn directly to the final result Eqs.(9) 
and (10) .  

To begin with the density of states is represented in a. somewhat unusual fashion a.s 

(4) 

where g+(E) = (E+ - H)-1 is the single electron Green function, H = Ho + V the system's 
Hamiltonian, H0 = p2 /(2m) ,  V the disorder potential and E± = E ± if, / =  0(6.J. The width 
I has to be introduced in order to cut off unphysical divergences appearing in diagrammatic 
analyses for small values w < 6.. To study correlations on these sea.Jes one has to resort to 
non-perturbative techniques, e.g. supersymmetry[SJ. As long as w > 6., the smearing / is 
inessential (see below).  Most regimes are universal in the sense that results do not depend on 
microscopic details of the disorder. To be specific, one ma.y model it by a white noise p_otential 

(11(.T ) )  = 0, 
1 

(V (x )V(y )) = -. -S(x - y) .  
· 27rVT 

(5 )  

The effect of different types of disorder will be discussed below. Expanding Eq.  ( 4) in powers 
of V a.nd ta.king only diagrams with a.voided crossings of impurity lines, i.e. dia.gra.ms of leading 
order in pp/ into account, we are led to the result 

(6) 

The quantities S�D) can be represented diagrammatically a.s 

5(D) = n c_· _c�+ (q�) _) 

( 7) 
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where the inner and the outer ring are mutually connected by n impurity lines. The solid 
arrows represent impurity averaged Green functions: 

(<,±) x' 
(8) 

Depending on the regime under consideration the evaluation of the diagrams S�D) may or may 
not depend on the system's geometry. Specializing the analysis to the relatively simple case of 
a two-dimensional square geometry one obtains [7] : 

6,2 ' 
Y2 (w) = 28�3? 2:: ln ( 1 - .\(q, w) ) , 7r q 

E2 (E) = �iRL 2 (1;1 ( l  - .\(q, E ) ) - l;1 ( l - .\(q, O)J) , 7r 
q 

(9) 

where Lq is an abbreviation for the summation over all values of the two-dimensional vector 
if =  7rL-1 (n1 , n2) ,  n; = 0 , 1 ,  . . .  , q = l<J1 ,  1;1(1 + x) = ln(l + x) - 1: and 

.\ (q, w) = (( 1 - 'YT + iwr) 2 + (qlJ2) - � . ( 10) 

In the following, I will briefly discuss the results obtained by eva]ua.ting Eqs. (9) approximately 
in the various regimes. 

Diffusive systems: 
Dl:  Retaining only the most important q = 0 contribution to the sums appearing in Eqs. (9) 

one gets 

( 1 1 )  

i n  agreement with results obtained for the Gaussian Orthogonal Ensemble of random 
matrix theory[2] . 

D2: Order of (L/1)2 » 1 modes contribute. An approximation of the sum over if by an 
integral, leads to [2] 

2(6.r)2 ( L )
2 

Y2 (w) 'C: --
7
r- 27r1 ln(wr) 

E2( E) 'C: (/:--1)
2 

Er. 2ri ( 12) 

D3: Here the diagram S�D) involving only two impurity scattering events gives the most im­
portant contribution. This reflects the fa.ct that we a.re probing trajectories shorter than 
the elastic mean free pa.th. The result obtained for SiD) depends crucially on the micro­
scopic features of the disorder po ten ti a.I \!. A calculation based on a white noise potential, 
results in 

1
(

£
)

2 6,2 Y2 (w) = -- - -27r 27rl w2 
1 ( L ) 2 ( 3) E2 (E)  = -:;--- -1 ln (Er ) + :._ , �7r 2ir 2 ( 13) 
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Figure 2: L:2(E) in the diffusive case (pFl = 100, L/ l = 100, d = 2) 

i.e. a logarithmically increasing result for L:2. In the case of a potential with finite 
correlation length a > pf-1 , however, L:2 saturates at a constant which is parametrically of 
the order of L:2,whiten0;0.( l/r,r) ·  Thus, one may conclude that the large energy behaviour of 
the correlation functions depends non-universally on microscopic details. Note, however, 
the existence of a general sum rule [9] which enforces that L:2(E)/ E � 0. 

A plot of L:2 for a square of size L = 1001 is shown in fig.2. 
Ballistic Systems: 

Bl: Again, the zero mode q = 0 dominates whence we obtain the same result as in Dl : On 
time scales longer than 1 / T ,  the presence of disorder leads to complete ergodicity, even 
though the system is ballistic. 

B2: In this regime the motion is indeed ballistic. Still the q = 0 mode dominates and we 
obtain 

( 14) 

B3: As soon as w becomes comparable with l /t,, q =f 0 modes contribute to the sum in 
Eq. (9). Replacing the summation by an integral we obtain the same asymptotic ba­
haviour as in D3 (and the same what was said there concerning non-universality applies). 
A close look at Eqs. (9), however, reveals that an approximation of Lq by an integral is a 
poor approximation. Fortunately the sum converges rapidly and can easily be computed 



,,..._ 

1:3. "' 
� 

1.6 2.0 

1.5 

1 .59 � 1.0 

0.5 

0.0 0.0 0.25 0.5 
1.58 Er 

1.57 

1.56 

0 5 10 

0.75 

15 
E T  

1.0 

I 
,_ ,  

, ,  
I ' I ' 

I ' , I ' 
' I ' 

20 25 30 

Figure 3: E2(E) in the ballistic case (pF/ = 104, L/l = 0 . 1 , d = 2) .  

149 

numerically. As a result one obtains fluctuations with typical period l/t f around the in­
tegral approximation (cf.fig.3 ) .  These fluctuations can be interpreted semiclassically (10] 
as due to periodic orbits bouncing off the system boundaries. Needless to say that they 
depend non-universally on the geometry. 

The different types of spectral correlations discussed above (regimes Dl,  . . .  , B3) have re­
cently been observed numerically by direct diagonalization of the Hamiltonian representing 
a 64 x 64 disordered tight binding lattice ( 11 ] .  Having obtained these results, one might be 
tempted to proceed and apply them directly to the calculation of physical observables. As 
will be explained in the following section, however, this may lead to incomplete or even wrong 
results if the systems under consideration are ballistic. 

3 Novel Types of Spectral Correlations in Ballistic Sys­
tems 

In order to understand the statement made in the last para.graph of the preceding section, one 
has to step back and review the whole concept of spectra.! correlations in mesoscopic physics. 
The point is that there is a lot of freedom in the averaging proced1tre necessary to characterize 
correlations between levels. As is indicated in fig.4, one ma.y e.g. take two energy levels at 
fixed positions E and E + w, resp. , and average over a.II microscopic disorder configurations; 
this procedure leads to the correlation function 12 = Y2d which has been discussed so far. 
Alternatively one may average over E but keep the disorder configuration fixed, thereby arriving 
at another correlation function Y2E. A third possibility is to generate a function Y.iH by averaging 
over an external magnetic field for fixed E a.nd disorder. In fact, the situation is even more 
difficile, as all sorts of combined averaging procedures can be applied. As long as one is 
concerned with diffusive systems these ambiguities in the averaging procedures do not cause 
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Figure 4: On the existence of different spectra.I correlation functions in mesoscopic physics. 
Explanation, see text. 

problems since there is  a well established ergodicity hypothesis ( cf.e.g.Ref. [ 12] ) stating that 
Y;d = Y;E 

= Y;H, at lea.st in regimes Dl and D2. In the ballistic regime, however, the situation 
is much more complex: Even in the field free case, H = 0, there exist qualitatively different 
types of spectral correlations. This pheuomenon is due to fluctuations in the di.5order averaged 
density of states: Consider the general expression for the disorder averaged density of states of 
a two-dimensional square 

( 15) 

where the la.st equation is valid up to corrections in l/(ErT )  � 1. Eq. ( 1 .5)  means that the 
density of states is given by the number of discrete p-modes contained in a ring of width � 1-1 
and radius PF· In the diffusive regime, the ring's width exceeds tlw inter-mode spacing � L - 1 ,  
whence the sum can be approximated by an integral resnlting iu a constant density of  states 
(v(Er)) = v = m/(27r) .  In the ballistic case, however, the number of captured modes and 
thereby the density of states fluctuate as functions of PF or equivalently as functions of Er. 
These fluctuations can be described quantitatively in terms of the function 

1'�(w) = �(ME +w)) (i;(E)) ) - 1 , (16) 

where (v(E)) is given by Eq. ( 15 ) and ( . . .  ) Ea denotes averaging over a sufficiently large 

(� r/) energy i nterval. Note that this object is an example of a correlation function employing 
composite averaging procedures. The rnlcnlation of Y{ is detailed in ref. [7] and results in 

( 1 7) 
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where Lk = 2LJki + k� , k; = 0, ±1 ,  . . . and Lk is an abbreviation for the summation over all 
tuples (k1 ,  k2) i= (0 ,  0) .  For small energies we/ , the sum may be approximated by an integral 
leading to 

Tf w<.tjl 2 _ J:.. 1 I2 (w) Co'. -e I 2 • ( 18) 
PFI (t) + (i.<Jt1) 2 

Note the presence of the damping term exp(-L/1) expressing the irrelevance of Y; in the 
diffusive regime. 

Besides 12 and Y; various other correlation functions characterizing different types of fluc­
tuations may be defined [7] . One thus encounters a relatively complex scenario of various 
inequivalent types of correlations, and may ask how to apply the rnncept of spectral statistics 
to the calculation of physical observables in the ballistic regime. This question will be a.dressed 
in the final section. 

4 Applications and Conclusive Remarks 

How does one use the theory presented in the preceecling ;;ections in physical applications? In 
many cases one is concerned with expressions of the type 

EF lo dulE' (11(t, . . .  ) 11 (t', . . .  ) ) , ( 19) 
where the dots indicate a possible dependence of 11 on other parameters, most typically external 
magnetic fields. The correlator Eq. ( 19)  appears e.g. in the calculation of averaged and 
typical persistent currents [ 1 ] ,  orbital susceptibilties [3 , 4] or conductance fluctuations [2]. At 
least, it may serve as fairly general example for the present discussion. At first sight, it may 
seem that the formalism discussed above, being restricted to correlations on energy scales 
� EF, is inapplicable to the ana.lysis of Eq. ( 19) since both energy arguments c; are integrated 
independently over the whole range 0, . . .  , EF. This, however, is not the case. In all cases of 
interest, it turns out that only the region f; Co'. EF contributes significantly to the integral in 
Eq. ( 1 9) (which is a consequence of a smn-rule mentioned i n  the discussion of regime D3). 

The answer to the question raised i n  the final section of the preceeding section may now be 
formulated as follows: The type of correlation functions entering the calculation of expressions 
like Eq. (19) ,  Y/ , Y2E , }�H or fund.ions involving multiple averages like }�, is uniquely prescribed 
by the modelling of the averaging procedure ( . . . ) . Even if no averages over external parameters 
like magnetic fields are involved, ( . . . ) need not at all correspond to a. simple average over a. 
random potential. Individual samples belonging to an array of mesoscopic systems, for instance, 
do not only differ in the distribution of microscopic scatteres but also in their size. Thus, even if 
the samples appear to be macroscopically identical, oue has to perform a simultaneous average 
( . . .  )dis.,sampl.siz. over the disorder configuration and the system size. In reality, the sample size 
fluctuations may be of the order of a few percent but for the present discussion it suffices to allow 
for fluctuations on atomic scales. The important point is that sample size fluctuations bring 
other correlation functions besides 1-;d into play. To see this, one has to know two properties of 
the combined average: (i) Samp le size and disorder average can be regarded as approximately 
statistically independent [?], i .e. ( . . . ) dis .. "mpl.siz. Co'. ( ( • • •  ) di>,) ,.,,.,,l.siz: ( ii )  The sample size average 
is equivalent to an average over the Fermi energy [7] . Qualitatively, the last point is evident 
from the remarks ma.de in connection with Eq. ( 1 5  ): Instead of changing the radius of the Fermi 
sphere ( energy-averaging) one may quench or stretch the htttice of discrete p-modes (sample 
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size averaging) ; both procedures lead to the same fluctuations in the disorder averaged density 
of states. Knowing these two properties, it is easy to see that 

(20) 

where y;ens denotes the density of states correlation function calculated with respect to the 
realistic ensemble average ( . . .  )dis.,sampl.siz.' 1·;d is the disorder correlation function which has 
been discussed in the first sections (an has been simply denoted by Y2 there) and Y{ has been 
defined in the previous section. The appearence of the correlation function Y{ upon sample 
size averaging has been recently been ob:;erved numerically by analyzing the spectra of tight 
binding lattices of slightly different size [ 1 1 J .  

In  the general case with account for magnetic fields, it may happen that more complex 
combinations of correlation functions appear. At this point it may be appropriate to mention 
that magnetic fields applied to ballistic systems are notoriously difficult to handle within the 
Green function approach ta.ken here. Even in simple cases like homogeneous fields applied 
to a square geometry one ha.s to resort to semiclassical techniques [1:3]. Thus, very little can 
be said about the field dependence of spectra.I correlations exhibited by ballistic systems in 
general. The important exceptio11 are Aharonov-Bohm (AB) geometries: It turns out that the 
present formalism, with account for magnetic fields, ca.11 straightforwardly be extended to the 
description of AB-cylinders. A detailed am1 lysis will be published elsewhere [14]. In fact, it 
turns out that some long standing puzzles related to canonical persistent currents [l J in ballistic 
geometries are solved once correlation functio11s like } ·� are taken into account. 

In conclusion, it has been shown that disorder in ballistic systems induces strong spectral 
correlations and may thus play an important role in the analysis of various physical observ­
ables. On energy scales < 1 /T,  the spectrum is fully chaotic and can be described in terms of 
random matrix theory. This imposes constraints on the feasibility of quantum-chaos experi­
ments intending to probe trajectories which exist the idealized, clean system's geometry: time 
scales larger than T cannot be probed due to the inevitable randomization of trajectories due 
to disorder scattering. The description of spect.ral correlations in ballistic systems turns out to 
be more complex than in the diffusive C<lse since there exists a variety of inequivalent types of 
fluctuations. As for practical applications, however, the situation is not too confusing since the 
physically prescribed averaging procedure determines the proper choice of correlation functions 
lll1iquely. 
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We have detected the presence of persistent currents of about 4 nA in a mesoscopic 
single loop etched in a GaAs-GaAlAs heterojunction. For this purpose a dedicated 
device with an integrated DC-SQUID has been developed. 

1 INTRODUCTION 

The ground state energy of a mesoscopic normal-metal ring has been predicted in 
1983 by Bi.ittiker, lmry and Landauer 1 )  to be a periodic function of the magnetic 
flux <I> enclosed by the loop with a period <I>o = hie, the flux quantum. Following 

Byers and Yang 2), they showed that, due to the periodic boundary conditions 
imposed by the doubly connected geometry, the electron wavefunctions 'l'n, the 
energy levels En and then any thermodynamical quantities such as the equilibrium 
magnetization, exhibit the same periodic dependance with <I>. This can be seen as the 
consequence of persistent currents In=-dEn/{)<I> carried by each electrons in the 

loop. 
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For a perfect one dimensional ring with a circumference L smaller than the phase 
coherence length L<1>, each successive energy level gives a contribution of opposite 

sign and the currents carried by every electrons almost cancel each other.The net 
current depends on the total number of electrons, but an order of magnitude of the 
amplitude is given by 

lo = e vp I L  ( 1) 

where VF is the Fermi velocity 3). 

Considerable theoretical work has since been devoted to a more realistic system, 
namely a disorded 3D ring 4-6). 
In the ballistic case, the effect of the finite transverse dimension Ly of the ring can 
be accounted for with a correcting factor VM, where M a kp Ly is the number of 
independant channels and kp is the Fermi wavevector. In the diffusive regime, the 

disorder introduces correlations between the energy levels and mixes the different 
channels. According to these early theoretical models, after averaging over all the 
microscopic configurations, the typical current in this regime is given by 

ltyp = Io Oe/L) = e/-ro (2 ) 

where le is the electronic mean free path and 

'!D = L2 I vp le = L2 I D (3) 

is the diffusive time along the ring perimeter. D is the one dimensional diffusion 
constant. Numerical simulations have also adressed the impurity scattering issue 
and showed that the typical current does not depend any longer on the number of 
channels 7). 

The first effect of a non zero temperature is to mix the contribution of different 
energy levels within an interval kBT and to decrease exponentially the persistent 
current. Due to energy correlations , the scale of this decay is given by the Thouless 
energy Ee. The second influence of the temperature is to reduce the phase 
coherence length L<I> via phonon scattering. Here also, the current vanishes 
exponentially with L/L<1>. 
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2 PREVIOUS EXPERIMENTS 

In 1990, L. Levy et al. 8) reported the first experimental evidence of persistent 
currents in an ensemble of 107 Cu rings. Since these currents are sample specific 
the ensemble-averaging is not a trivial issue and it can be shown that the amplitude 
of the mean current is dominated by the even harmonics which give an always 
positive contribution 9-1 1 ) . Actually, the persistent current period was found to be 
half a flux quantum and the mean current per ring measured was found to 
be 3 1 0-3  Io . 
More recently, the magnetization response of one single gold loop has been 
measured by Chandrasekhar et al. and the authors found a persistent current of 
about 0 .3  to 2 Io 1 2) . Both of these two results are more than an order of 

magnitude larger than the theoretical calculations in the diffusive regime. In order 
to understand these two experimental results and to solve the discrepancies with the 
theoretical models, a lot of work has been published to give a better description of 
the role of the disorder and to take into account the Coulomb interaction between 
electrons as wen 1 3- 19). 

We report here magnetization measurements of a single loop fabricated from the 
two dimensional electron gas (2 DEG) of a high mobility GaAs-GaAlAs 
heterojunction. Contrary to the two preceding experiments, this is a very clean 
system near the ballistic regime, i.e. L ""  L<I>. 

3 EXPERIMENTAL SET-UP 

Our device is fabricated by etching a GaAs-Gao.7Alo.3As heterojunction grown by 
molecular beam epitaxy. The geometry is the following : 720 nm GaAs buffer 
layer, 24 nm undoped GaAlAs spacer layer, 48 nm Si doped GaAlAs and 10 nm 
undoped GaAs cap layer. When cooled down at liquid Helium temperature in the 
dark, the 2 DEG has an electron concentration n = 3.6 101 1  cm-2 and a mobility 
µ = 1 . 14 106 cm2 I V.s which give a Fermi velocity VF = 2.6 105 m.s- 1 , a Fermi 
wavelength AF = 42 nm and an elastic mean free path le = 1 1  µm. Weak 
localization experiments performed with 80 µm long wires of different widths 
patterned in this 2DEG yield at T=OK a coherence length L<I> = 25 µm and no 

observable spin-orbit scattering. 



160 

The mean free path and the electronic density evaluated by conductance 
measurements and Shubnikov-de-Haas oscillations are not significantly modified 
compared with the original 2 DEG and give a depletion length of the order of 
0.27 µm. These wires as well as the mesoscopic loop are fabricated in the following 
manner. 

Electron beam lithography performed with a JEOL 5 DII on PMMA and a 
conventional liftoff technique are used to draw a Titanium mask before a I 0 nm 
deep Argon ionic etching. The mask is then chemically removed. The mean 
diameter of the ring is 2.7 µm (l.D. 2µm, 0.D. 3.4µm) and its arm width 0.7 µm 
(see fig. l a).  Because of the depletion this gives a real width of 0. 16  µm. Its 
electrical resistivity can be measured by a usual four-probe technique with the help 
of four leads also patterned in the 2DEG and ended with AuGeNi ohmic contacts. 

Fig. l a  : etched mesoscopic loop. 

second gate 
first gate 

Fig . lb : gates and test coil. 

A first Schottky gate in Gold is vapor-deposited on these wires. This allows to 
locally deplete the 2DEG by applying a negative electrostatic voltage and isolate a 
fixed number of electrons in the ring. A second gate is simultaneously deposited on 
one arm of the ring in order to open it and to destroy any quantum interference 
effect in the loop, such as the Aharonov-Bohm effect or the persistent currents. A 
test coil in Gold with the same geometry than the ring is also deposited nearby it 
(see fig. lb). The device is then covered with a 150 nm thick resist layer (AZ 1350) 
which plays the role of an electrical insulator. 

On the top, an Aluminium DC-SQUID is patterned. This SQUID is composed of 
two counter-wounded loops. The inner and outer diameters of each loop 
are 2.3 µm and 3 . 1  µm. One of them is superposed with the ring while the other 
one with two microbridge Josephson junctions is just above the test coil. Therefore 
it works like a magnetic gradiometer which in principle is insensitive to an uniform 
magnetic field. 



161 

Actually the lack of compensation is of a few percents. The previous attempts of 
measurements with a single loop SQUID and lithographed field coils have all been 
limited by current-induced field penetration in the superconductive films. It's the 
reason why we have built magnetic gradiometers and used an external coil to 
produce an uniform magnetic field. In order to connect the two loops without 
shortcutting them at the center of the device, the first lithographic level is made of 
two half loops (see fig. l e) .  An insulating layer is then spun (100 nm of AZ 1 350) 

and the circuit is closed with the two opposite half loops (see fig. Id). The contact 
between the two aluminium layers is ensured by covering them with aluminium 
pads deposited after an Argon ionic etching has been performed in the same vacuum 
in order to remove the aluminium oxyde (see fig. le). Each layer of this SQUID is 
made of 50 nm thick aluminium. 

Fig . l e  : first half loops of the SQUID. 

Fig. l e : electrical contacts between the 
two aluminium layers. 

Fig. Id : second half loops. 
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A detailed description of our SQUID and of our measurement method has already 
been given in Ref. 20. In summary, the two Dayem microbridges have a typical 
width of 30 to 50 nm, a thickness of 50 nm and a length of 200 nm. The critical 
currents le range from le =10 µA to 300 µA and the inductance Ls of the SQUID is 

typically a few pH. These values yield a � parameter close to one. 

� = 27tLslc/<l>'o (4) 

where <l>'O = h/2e is the superconductive quantum flux, and an optimum modulation 

of the critical current with the magnetic flux. 
The sensitivity which is achieved is about S = 8 10-6<1>'0/ VHZ. 

4 MEASUREMENT METHOD 

The key point of the method consists in measuring simultaneously the resitance and 
the susceptibility of the mesoscopic loop versus an external magnetic field while 
changing the voltage applied to the gate evaporated on the top of one of its arm. 

When this voltage is slightly positive ( +40 m V), the ring is closed and exhibits 
quantum coherence effects such as Aharonov-Bohm oscillations, related to its 
doubly connected geometry. On the contrary , when the gate voltage is negative 
(-330 m V), the electron gas is depleted under it and this rotational symmetry is 
broken. 

The device is cooled in a dilution fridge around 15 mK. The actual sensitivity of the 
SQUID is measured by sending a known current through the calibration coil. This 
allows to directly convert its critical current in terms of current in the ring. Then, 
an external magnetic field of +/- 2.1 mT corresponding to 4 <l>o in the ring is swept. 

The modulation is triangular at a frequency of 0. 1 Hz to avoid heating by eddy 
currents. The response of the SQUID is measured synchroneously (see fig.2). The 
main part of the signal is due to the lack of compensation of the gradiometer, but 
doesn't depend on the voltage of the gate. Therefore it can be easily removed by 
substracting a measurement when the ring is closed to another one with the ring 
open. Then it remains only the magnetization signal of the mesoscopic ring (see 
fig.3). 
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Fig. 2 : Response of the gradiometer to a uniform time dependent 
magnetic field.The modulation is triangular between ±2. lmT at 0.1  
Hz. The magnetization is  converted in equivalent current in the 
mesoscopic loop after calibration with the test coil. 
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Fig. 3 : Magnetization of the mesoscopic loop given in equivalent 
persistent current after substraction of the non compensated signal 
of the gradiometer. The field is calibrated in quantum flux with an 
arbitrary origin. 
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It should be emphazised that the signal displayed in figure 3 is one of the strongest 
ever measured. Usually the component of the magnetization at the frequency hie is 
only visible after averaging several Fourier transformed signals. 

A de current of 1 .5 nA is supplied to the ring and the voltage is recorded in order 
to measure its magneto-resistance whose mean value is around 1 kQ. When the ring 
is closed, the observation of the Aharonov-Bohm oscillations allows us to check the 
electronic temperature and the coherence of the mesoscopic loop (see fig.4). 
Although our SQUID is directly coupled without any pick-up coil, it seems that 
neither the current injected in it nor the Josephson oscillations affect the ring since 
no related modifications of the Aharonov-Bohm oscillations have been observed. 

1 00 

I 5 0  
Q. 
� 0 
c: 
cu 
�- 5 0  en 
� 
- 1  0 0  

magnetic flux i n  unit of h/e 
Fig. 4 : Aharonov-Bohm signal. The variation of the resistance is 
given in Ohm after substraction of an offset. 

The magnetization and the resistance signals are both extracted by Fourier 
transform of the difference between measurements with the ring open or closed, 
while the noise is evaluated from differences between measurements with the ring 
always open. 
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5 EXPERIMENTAL RESULTS 

Typical results are presented in figure 5 for the magneto-resistance of the ring and 
in figure 6 for its susceptibility. In both cases, the vertical scale is the squareroot of 
the spectrum power, expressed respectively in the equivalent resistance fluctuations 
in Ohm and in equivalent persistent currents in nA. Our modulation of 4 <Po gives a 
pitch of 1/4 <l>o for the horizontal scale. When the ring is closed, clear Aharonov­

Bohm oscillations with a period hie and their first harmonic (hl2e) allow us to 
calibrate the magnetic flux in it. The width of the peak is due to the aspect ratio of 
the mesoscopic loop 21). The low frequency signal of the spectrum is the signature 
of aperiodic fluctuations due to quantum interferences within the same branch. 
Therefore, contrary to the Aharonov-Bohm peaks, they do not disappear when the 
ring is open. 
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Fig.5 : Fourier transform of the Aharonov-Bohm signal 

Similarily, the hie peak in the Fourier spectrum of the susceptibility is a signature 
of persistent currents. Their amplitude which is sample specific is sometimes not 
detectable but averaging different measurements and substracting the noise give a 
typical amplitude of 4±2 nA comparable to the theoretical value 
Io = e vp I L =  5 nA, computed using our experimental parameters. Moreover, 

this peak is never present when the ring is open. This is a clear indication of its 
mesoscopic origin. 
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Fig.6 : Fourier transform of the magnetization 

The main experimental difficulties with this kind of mesoscopic ring come from the 
microscopic instabilities of the semi-conductor. We have observed random 
modifications of the Aharonov-Bohm oscillations on a time scale of 10 to 40 hours. 
These conductance fluctuations can be attributed to some slow relaxation process of 
impurities inducing changes in the electrostatic scattering potential configuration or 
in the Fermi level 22) . Since the amplitude and even the sign of the persistent 
currents are very sensitive to this configuration it becomes impossible to integrate 
the signal on a too long period otherwise it averages to zero. The data were 
therefore accumulated only during the period of time when the Aharonov-Bohm 
signal was stable enough. This problem causes the main limitation of our signal to 
noise ratio. 

Although we were able to check the randomness of the amplitude and of the sign of 
the persistent currents, the first harmonic signal at h/2e was too weak to determine 
wether it vanishes or not after averaging on different disorder configurations. 

Some measurements were made with the ring isolated from the leads, with the help 
of the first gate. Although the experiment became very difficult without the 
possibility of controling the Aharonov-Bohm signal, the preliminary results do not 
seem to show a significant difference between the canonical ensemble (number of 
electron fixed, ring isolated) and the grand canonical ensemble (Fermi level fixed, 
ring connected to the contacts). 
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6 DISCUSSION AND CONCLUSION 

We have observed persistent currents in a mesoscopic loop in the quasi-ballistic 
regime. Because of the very weak disorder, le/L ""1 .3 we find a typical amplitude 
close to Io = e vp I L =5 nA, in good agreement with the theory. Since the 

number of channels in our ring is very low : M "" 4, the expected correction is 
VM=2 which is not significant since we are dealing with typical values. 

The electron-electron interactions are known to be important in our samples 
because of the low electronic density. Although these interactions have been 
proposed 3 - 1 9) to explain the large values of the persistent currents measured 
previously in metallic samples, it is now clear that they do not play a major role in 
the ballistic regime. 

Other experiments to investigate the temperature dependence, the effect of disorder 
and of the geometrical dimensions are currently under way. For this purpose, 
improvement of our SQUID performance should be obtained with the help of 
shunting resistors. 

We are indebted to B. Etienne and V. Thierry-Mieg for the supply of very good 
quality heterojunctions. We wish to aknowledge R. Webb, H. Launois, H. Bouchiat, 
G. Montambaux, L. Levy, and B. Shapiro for helpful discussions and F.R. Ladan 
and C. Mayeux for technical assistance. 
This work has been partly supported by grants from DRET n°56466 and from 
European ESPRIT Latmic 3043. 
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SEMICLASSICAL APPROACH TO THE THERMODYNAMICS 
OF MESOSCOPIC SYSTEMS 

Felix von Oppen 
M ax-Planck-Institut fiir K ernphysik, 691 1 7  Heidelberg, Germany 

Semiclassical theory provides a useful and physically intuitive framework to understand the 
thermodynamic properties of mesoscopic systems. This is illustrated by results for persistent 
currents and the magnetic susceptibility of ballistic microstructures. 

1 Introduction 

Two recent experiments focused attention on the thermodynamics of meso­
scopic systems in the ballistic regime, where the elastic mean free path exceeds 
the sample size. Mailly et al. [1] observed persistent currents [2, 3] in a single 
GaAs/ AlGaAs ring. Levy et al. [4] measured the magnetic susceptibility of 
an array of isolated GaAs squares and found a paramagnetic susceptibility far 
exceeding Landau diamagnetism [5] . When considering these systems within 
the independent-electron model, semiclassics is a natural approximation be­
cause the Fermi wavelength is much smaller than the system size. While the 
theory for the persistent-current experiment [6] had been developed without 
explicit reference to the serniclassical approximation, semiclassics proved to 
be very valuable in understanding the susceptibility experiment [7, 8, 9] .  

In the following, I outline the general semiclassical approach to the ther­
modynamics of mesoscopic systems, first employed by Argaman et al. .{10] in 
the context of diffusive systems. The method is then applied to persistent 
currents in the ballistic regime [ 11] where it is shown that the current is much 
larger in integrable billiard geometries than in (completely) chaotic ones, and 
to the susceptibility of ballistic microstructures in order to understand the 
experiment by Levy et al. [4] . 

2 General formulation 

Within the independent-electron approximation, the (grand) thermodynamic 
potential 0 can be written in terms of the spectral density p(E) = L:n o(E-En) 
(the En denote the single-particle energy levels) ,  

1 roo 0 = -73 Jo dE p(E) ln { 1  + exp [-,6(E - µ)] } . (1 )  
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Here /3 = l/ksT denotes the inverse temperature. The leading contribution 
to fl comes from the energy-averaged spectral density (p(E) ) .  In mesoscopic 
systems the discrete nature of the spectrum leads to quantum-coherence cor­
rections 80 to the bulk potential. Semiclassically, the discreteness of the spec­
trum is reflected in the oscillatory periodic-orbit contributions to the density 
of states, first calculated by Gutzwiller [12] ,  

1 { i } 8p(E) =
n,v � A1 exp y,,S1(E) . (2) 

Here the sum is over all periodic orbits I of the system and S1(E) denotes 
the classical action of the periodic orbit. For billiards it is given in terms of 
the length L1 of the orbit, S1 = nkL1. The exponent v and the amplitude 
A1 depend on the type of periodic orbit. While v = (d + 1 )/2 for the non­
isolated periodic orbits of integrable systems (d denotes the dimensionality 
of the system),  one has v = 1 for the unstable and isolated periodic orbits 
of chaotic systems. Useful expressions for the amplitude A1 were derived by 
Gutzwiller (12] for chaotic and by Berry and Tabor [13] for integrable systems. 
Inserting the Gutzwiller formula into Eq. ( 1 ) ,  linearizing the action around 
the chemical potential µ ,  and performing the energy integration using contour 
integration one has 

where 
T _ dS1 

, - dE 

(3) 

(4) 

denotes the orbit traversal time. The contribution of each periodic orbit os­
cillates with chemical potential with a period equal to the orbit correlation 
energy h/T1 = hv F / L1. In general, infinitely many classical periodic orbits 
contribute to Eq. (3) . Its usefulness derives from the fact that finite tempera­
ture and inelastic scattering rapidly restrict the number of orbits that must be 
considered. A periodic orbit contributes significantly only if the orbit length 
L, is of the order of or shorter than both the thermal length Lr = n v FI kB T 
and the phase-coherence length Lil> . 

Our terminology "orbit correlation energy" for n/T1 stresses the analogy 
with the Thouless correlation energy n I TD of diffusive systems (TD is the 
diffusion time through the system) . The semi classical approximation is so 
successful for mesoscopic systems because it directly involves these mesoscopic 
correlation energies . By contrast , these relevant energy scales are masked in 
expressions involving sums over exact eigenenergies. 
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3 Persistent Currents 

Ballistic microstructures allow for the experimental investigation of billiard 
systems of different geometries. In particular, it is an interesting question 
whether there are differences between integrable and chaotic billiards. Semi­
classics can be used to demonstrate that mesoscopic persistent currents are 
a sensitive probe of quantum chaos: their amplitude has different universal 
dependences on the Fermi energy for integrable and for completely chaotic 
billiards (11] . For our purposes the main difference between integrable and 
completely chaotic billiards lies in the nature of the periodic orbits. In �n­
tegrable systems, they form continuous families. Each member of the family 
contributes with the same phase and hence their contribution is enhanced 
due to constructive interference. This constructive interference is absent in 
eompletely chaotic systems where all periodic orbits are isolated and unstable. 
Hence, the persistent current is larger in integrable than in completely chaotic 
billiards. 

Using a simple scaling relation for the density of states and sum n�les for 
the amplitudes A1 in the Gutzwiller formula (2) , this physical argument can 
be made more precise [1 1] . One finds that the the typical persistent-current 
amplitude is characterized by different dependences on the Fermi wave vector 
kF, 

(5) 

where Io = evF/ L denotes a natural current scale, L a typical length of the 
system. The exponent v reflects the nature of the classical dynamics. One 
has v = ( d + 1 )  /2 for integrable and v = 1 for completely chaotic systems ( d 
is the dimensionality) . It follows by dimensional analysis that Eq. (5) fixes 
the persistent-current amplitude up to functions of ratios of geometric length 
scales. 

It should be apparent that the arguments in this section are not specific 
to mesoscopic persistent currents. Similar results can be obtained for the 
magnetic susceptibility [7, 8] . 

4 Magnetic susceptibility 

Levy et al. (4] recently measured the magnetic susceptibility of an array of 
105 isolated GaAs/ AlGaAs squares, and observed a striking zero-field peak of 
the susceptibility. The peak amplitude was about two orders of magnitude 
larger than Landau diamagnetism, and decreased with temperature on the 
scale of 0.5K. The width of the peak corresponded to magnetic fields such 
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that roughly one flux quantum is threading each square. 
These experimental results can be (partially) understood in terms of the 

semiclassical approach outlined above. Details of the calculation will be pub­
lished elsewhere [7, 8] . The strategy of the calculation follows from the fol­
lowing observations: 

• Semiclassics should be an excellent approximation because the Fermi 
wavelength >.F � 50nm is much smaller than the system size L = 4.5µm. 

• For the magnetic fields of the experiment , the classical cyclotron radius 
is roughly 50 times larger than the system size. Hence, to a very good 
approximation, the periodic orbits can be taken as those for zero field. 

• The magnetic field enters only via Aharonov-Bohm phases clue to the 
flux enclosed by the periodic orbits. 

• The experiment measures the ensemble-averaged susceptibility which is 
vanishingly small for fixed chemical potential, but finite for fixed number 
of electrons per square [14, 15 ,  16] . 

• Only the shortest nontrivial (rectangular) orbit needs to be considered 
due to finite temperature and inelastic scattering. (However, it is not 
difficult to go beyond this approximation. ) 

In terms of the Landau susceptibility XLandau the average mesoscopic sus­
ceptibility of an array of square billiards becomes 

4y'2 (T /T*)2 2 (Jx) � s;.- (kFL) IXLandau l  sinh2(T/T* ) 
g(BL /<Po) 

with characteristic temperature 

k T* = 
hvF 

B 
4v'27r2 L .  

(6) 

(7) 

The clamped oscillations as function of the magnetic field are described by the 
function 

g( cp) 30 { fo1 dx cos[47rcpx( l - x )] fo1 dxx2 ( 1 - x )2 cos [47rrpx(l - x )] 

- (fo1 dxx (l - x) sin [47rrpx( l - x)Jf} . (8) 

One feature of this result is particularly noteworthy. One observes that for 
T = 0 the finite-size corrections (6) to the susceptibility increase faster with 
the system size than the bulk (Landau) contribution. This result which may 
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seem counterintuitive at first can be understood as a consequence of phase 
coherence. Since the magnetic field enters the mesoscopic corrections to the 
thermodynamic potential r50 only via the Aharonov-Bohm phases, one notes 
that 

02 (21rA ) 2 r5x "' o
B2 

cos(27rBA.tf </>o) "' </>o 
1 cos(27rBA1/1>o) .  (9) 

For billiards the enclosed areas A1 scale with the system size. Hence, even 
though one calculates corrections to the thermodynamic limit for the thermo­
dynamic potential, these finite-size corrections can dominate the susceptibility 
because of the additional area factors due to the derivatives with respect to 
the magnetic field. We conclude that the order of the limits T --+ 0 and 
V --+ oo (thermodynamic limit) is important. 

For a detailed comparison with experiment the reader is referred to Ref. [7] . 
Here we only mention that the results for the amplitude and the magnetic­
field dependence are consistent with the experimental results of Levy et al. 
[4] . By contrast, the theoretical temperature scale appears to be too small by 
about an order of magnitude compared to experiment. 

Clearly, the approach is not restricted to sq11are billiards. In fact, it is 
interesting to note that already in 1952 Dingle [17] found related results for 
the susceptibility of a cylinder subject to an axial magnetic field without using 
the semiclassical approximation explicitly. One can also consider the finite-size 
corrections to the magnetic susceptibility of completely chaotic systems [7, 8, 
18] .  A special case of completely chaotic systems are diffusive samples whose 
susceptibility had been discussed extensively by diagrammatic techniques [19] .  

5 Summary 

The semiclassical approach to the thermodynamics of mesoscopic systems has 
been outlined and applied to persistent currents and the magnetic suscepti­
bility. It was shown .that persistent currents are much larger in integrable 
than in completely chaotic billiard geometries and universal dependences on 
the Fermi energy were derived. Mesoscopic corrections to the susceptibility 
were found to be much larger than the bulk Landau susceptibility. While this 
explains the amplitude of the susceptibility in a recent experiment by Levy 
et al. on an array of GaAs squares, the theory predicts a faster decrease with 
temperature than observed experimentally. 
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ORBITAL MAGNETISM IN QUANTUM DOTS: A SEMICLASSICAL APPROACH 

Rodolfo A. Jalabert, Klaus Richter, and Denis Ullmo; Division de Physique Theoriquef 

lnstitut de Physique Nucleaire, 91406 Orsay Cedex, France. 

In this communication we review our recent work1l,2l on the magnetic response of ballistic 

microstructures. The study of orbital magnetism in an electron gas has a long history, and 

was initiated by Landau3l only four years after the discovery of the Schrodinger equation. For 

a free electron gas the low-field susceptibility is diamagnetic. In three and two dimensions it 

attains, respectively, the values x�n = -(1/l27r2 )e2kF/mc2 and x�n = -(1/l27r)e2/mc2, where 

kF is the Fermi wavevector. The modifications of these results arising from constraining the 

electron gas in a finite volume have been the object of several studies4l. On the other hand, in 

the last few years the field known as Quantum Chaos has been dealing with questions regarding 

the differences at the quantum level between systems whose underlying classical mechanics is 

chaotic and those where it is regular. Nakamura and Thomas5l were the first to address the 

problem of orbital magnetism from a Quantum Chaos point of view by numerically studying 

the differences in the magnetic response of circular and elliptic billiards. 

The interest on the orbital magnetism of confined systems, and its connection with Quan­

tum Chaos has recently been renewed with the experimental realization of ballistic quantum 

dots lithographically defined on high mobility semiconductor heterojunctions. Experiments by 

Levy et al 6) yielded, for an ensemble of 105 microscopic ballistic squares7l , a paramagnetic 

low-field susceptibility being more than an order of magnitude larger than lx�n J .  Combining 

a thermodynamic formalism that closely follows that developed in the context of persistent 

currents with a semiclassical approach, we are able to show that the enhancement of the low­
field susceptibility with respect to the Landau value is due to large modulations in the density 
of states caused by families of periodic orbits present in integrable systems. 

t Unite de recherche des U niversites de Paris XI et Paris VI associee au CNRS 
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The magnetic susceptibility of a two-dimensional system of N electrons occupying an area 

A is given by the change of the free energy F under the effect of a magnetic field, 

x = -� (��) . 
N,T 

(1) 

In the macroscopic limit of very large N and A the choice of the ensemble is a matter of 

convenience, we can equally well work in the grand canonical ensemble (GCE) at fixed chemical 

potential and obtain the susceptibility as a derivative of the thermodynamical potential n, 

n(T, µ, H) = F(T, N, H) - µN = -�/ dE p(E, H) ln (l + exp [,B(µ- E)]) . (2) 

p(E, H) is the density of states and ,B = 1/kBT. The above mentioned equivalence between 

the ensembles breaks down in the mesoscopic regime of small structures8l, and therefore it is 

important to work with the canonical expression (1) .  Separating p into a mean part p0 (that 

scales as the area of the system) and an oscillatory component pose (that in a semiclassical 

approach is given by the sum over periodic trajectories), we define a mean chemical potential 

µ0 from N = f dEp(E)f(E - µ) = f dEp0(E)f(E-µ0) . (! is the Fermi-Dirac distribution 

function.) Since p0 and p0'e have different order in the semiclassical parameter Ii, we can expand 

the terms in Eq. (2) up to second order in pose/ p0 obtaining9l 

Fo = µo N + no(µo) , 

flF(2) = _1_ [/ dE posc(E) f(E-µ0)] 2 
. 

2p0(µ0) 

(3) 

( 4) 

n° and nose are defined by using respectively p0 and p0se instead of p in Eq. (2). F0 is field 

independent to leading order in a semiclassical expansion. Higher order terms in Ii give rise to 

the standard two-dimensional diamagnetic Landau susceptibility xiv regardless of the confining 

potential 2l. The decomposition (3)-(4) has the advantage of that the corrections flF(I) and 

flF(2) are expressed as simple functions of the oscillatory part of the density of states which 

can be evaluated semiclassically. 

In order to calculate the oscillating part of the density of states we use a semiclassical 

approach starting from the expression of p0'e in terms of the trace of the semiclassical Green 

function 10) , 

(5) 
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The sum runs over all classical trajectories t joining r to r' at energy E. S1 is the action 

integral along the trajectory. For billiards without magnetic field we simply have Srf n = kL1 

where k = ../2mE /n and L, is the length of the trajectory. The amplitude D, takes care of the 

classical probability conservation and 1/r is the Maslov index. 

The free energy corrections LiF(I) and .!lF(z) are therefore given a.s sums over classical tra­

jectories, ea.ch term being the convolution in energy of the semiclassical contribution (oscillating 

as kL1) with the Fermi factor (smooth on the scale of r;-1 ) .  This implies tha.t the contribution 

of a given trajectory to .!lF(i) at finite temperature is reduced with respect to its T = 0 coun­

terpart by a multiplicative factor R(T) = (Lr/Le) sinh-1 (Lt/Le), with Le = n2kF(3/(7rm). A 

factor R2(T) is needed for .!lF(2l. At high temperatures R(T) yields an exponential suppression 
of long trajectories. Therefore the fluctuating part of the free energy, a.nd x, are dominated by 

trajectories with L, ::; Leo which a.re the only ones considered in our analysis. 

The square constitutes the generic ca.se of a regular system: it is integrable a.t zero mag­

netic field, but a perturbing field breaks the integrability. This implies that in calculating 

the susceptibility we ca.nnot use neither the standard Berry-Ta.bor tra.ce formula.11l (valid for 

integrable systems) nor the Gutzwiller trace formula.10l (applicable when the periodic orbits 

are well separated). On the other ha.nd, we can directly use Eq. (5) since the simplicity of 

the geometry allows the enumeration of all closed trajectories and the evaluation of the field 

dependence of their contribution to p0•e. Given the exponential suppression of long trajectories, 

the finite-temperature susceptibility will be dominated by the contribution to p0•e of the family 

of closed trajectories which, for H --> 0, tends to the family of shortest periodic orbits with 

non-zero enclosed area.. We note this family as (1,1) since the trajectories bounce once on each 

side of the square (upper inset, Fig. 1 ) . Their length is L11 = 2../2a, which is of the order of the 

cut off length Le � 2a at the temperature of the experiment of Ref. 6.12) 

Applying classical perturbation theory for the cha.nge in the action S1 of trajectories (1,1) 

under the effect of a small magnetic field (such that the cyclotron radius re  verifies re  � a), 
a.nd performing the energy integrations of Eqs. (4) we obtain for the contributions to the 

susceptibility coming from LiF(I) and LiF(2) respectively 

x(2J 3 ( 7r) dzc2 -- = --- kFa sin2 kFLll + -4 du,2 R2(T) . lxiD I ../27r3 r 
The field dependence enters through the function 

(6) 

(7) 
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C(rp) = � [cos(7rrp) C(�) + sin(7rrp) S(�)] . y2rp 
(8) 

C and S are respectively the cosine and sine Fresnel integrals, and rp = if!/ if!0 is the total flux 

if! =  Ha2 inside the square measured in units of if!0 = hc/e (the fundamental flux). x(l) is the 

leading contribution to the susceptibility of a given square since its typical magnitude is much 

larger than lx�DI and that of x(2). On the other hand, x(ll can be paramagnetic or diamagnetic 

(Fig. 1 )  and it will vanish by averaging over an ensemble of squares where the dispersion of 

kFL11 is of the order of 21!". Since sin2 ( kFL11 + 'I!"  /4) averages to 1/2, the average susceptibility 

is given by x(2) (solid line, Fig. 2). In particular, the zero-field susceptibility of the ensemble is 

paramagnetic and has a value 4v'2/(57r)kFaR2(T) 13l . For ensembles with a wide distribution 

of lengths (in the experiment of Ref. 6 the dispersion in size across the array is estimated 

between 10 and 30%) the dependPnce of C on a (through rp) has to be considered. Since the 

scale of variation of C with a is much slower than that of sin2 (kFL11 + 7r /4) we can effectively 

separate the two averages and obtain the total mean by averaging the local mean. The low-field 

oscillations of (x) with respect to rp are suppressed under the second average (performed for a 

gaussian distribution with a 30% dispersion, dashed line in Fig. 2), while the zero-field behavior 

remains unchanged. 
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Fig.1 :  Magnetic susceptibility of a square as 

a function of kFa at zero field and a temper­

ature equal to 10 level-spacings from numeri­

cal calculations (dotted), and from semiclas­

sical calculations (solid). The period 7r / v'2 

indicates the dominance of the shortest peri­

odic orbits enclosing non-zero area with length 

£11 = 2v'2a (upper inset). Lower inset: am-

plitude of the oscillations (in kFL11 ) of x as a 

100 function of the flux through the sample from 

Eq. (6) (solid) and numerics (dashed). 

We have checked the above semiclassical results by calculating the partition function Z = 

exp(-f3F) after direct diagonalization of the hamiltonian. As shown in Figs. 1 and 2, the 

agreement between semiclassical theory and exact quantum mechanical calculations is excellent, 

demonstrating that the concept of classical trajectories is essential for the physical understand­

ing of the phenomenon and showing the importance of the family (1 , 1 )  in the finite-temperature, 



low-field regime of interest. 
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Fig.2: Average magnetic susceptibility for 

an ensemble of squares with a small dis­

persion of sizes (solid) and with a large 

dispersion (dashed) from semiclassical cal­

culations. Thick dashed: average from nu­

merics. The shift of the numerical with 

respect to the semiclassical results reflects 

the Landau susceptibility (due to F0). In­

set: average susceptibility as a function of 

kFa for various temperatures ( 4,6 and 10 

level spacings) and a flux <p = 0.15, from 

semiclassics (solid) and numerics (dashed). 

The generic case of an integrable system perturbed by a weak magnetic field can be treated 

more generally within a semiclassical approach 2l , and one obtains the same qualitative be­

haviour as for the square geometry (Eqs. (6)-(7)). That is, a (kFa)312 dependence for the 

typical value of x(l) (which can be diamagnetic or paramagnetic) and kFa dependence for x(2) 

which gives the average susceptibility of an ensemble. The numerical prefactors obviously de­

pend on the particular geometry in consideration. Circles and rings, for instance, which have 

the same parametric dependence constitute a particularly simple case since the rotational sym­

metry avoids that a perturbing magnetic field breaks integrability, and we can calculate the 

magnetization by a direct application of the Berry-Tabor trace formula. In ring geometries it is 

customary to measure the magnetic response in terms of the persistent currents, and our semi­

classical calculations are in reasonable agreement with the existing experiments in the ballistic 

regime14l. 

For chaotic systems (of typical length a) the Gutzwiller Trace Formula provides the appro­

priate path to calculate p0•c(E, H). For temperatures at which only a few short periodic orbits 

are important, x(ll can be paramagnetic or diamagnetic and its typical value is of the order of 

kFax�D 15l. Extending this analysis to the case of an ensemble of chaotic systems we obtain 

(x) oc lx�D I .  The individual x are larger, by a factor (kFa)1!2 in regular geometries than in 

chaotic systems. For (x) the difference is of the order of kFa. These differences are due to the 

large oscillations of p in regular systems induced by families of periodic trajectories. There­

fore, the different magnetic response according to the geometry does not arise as a long-time 
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property {linear vs. exponential trajectory divergences) but as a short-time property {family 

of trajectories vs. isolated trajectories). 

It is important to notice that the semiclassical concepts that we have outlined can be 

extended outside the weak-field regime. For the case of the square2l the essential physical 

behavior can be understood from only one kind of trajectories in each field regime: the family 

{1 ,1)  for weak fields 1'c � a, the bouncing trajectories of electrons that are reflected between 

opposite sides of the square for 1'c ;::;; a, and the cyclotron orbits that give the standard de Haas 

- van Alphen oscillations when 1'c < a/2. 

We have so far ignored the possibility of impurity scattering. Our model of a clean system is 

quite appropriate from a Quantum Chaos point of view and also constitutes a good first order 

approximation to the physics of quantum dots. In order to get a more realistic description of the 

actual microstructures we consider the corrections to the above picture due to the presence of 

weak disorder scattering. Including the effect of the disorder in our semiclassical framework we 

obtain2l the rather natural result that the two contributions to the susceptibility coming from 

the (1 ,1)  family are reduced with respect to their clean counterparts as x(l) = x�:)e-Lu/21 and 

x(2) = x��)e-Lufl, where l is the elastic mean free path. We have checked these relationships 

numerically and in Fig. 3 we present the results of the typical susceptibility for 6-function 

impurities and various l's. We haw an excellent agreement with the semiclassical prediction for 

very weak disorder, while for l ;::;; a the semiclassical approximation tends to overestimate the 

reduction. It is important to notice that the long trajectories, very sensitive to the presence of 

disorder, are completely irrelevant at finite temperatures. 
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square as a function of kFa from numerical 
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from numerical calculations {crosses). The 
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Ref. 6 yielded a paramagnetic susceptibility at H = 0 with a value of approximately 100 

(with an uncertainty of a factor of 4) in units of XL· The two electron densities considered in the 

experiment are 1011 and 3 x 1011cm-2 corresponding to approximately 104 occupied levels per 

square. For a temperature of 40mK Eq. (7) gives, respectively, for the zero-field susceptibility 

values of 60 and 170. A further reduction arises from the effect of disorder and we are then 

within the order of magnitude of the experiment (given the experimental uncertainties in the 

magnitude of the susceptibility and in the determination of the elastic mean free path).  The 

field scale for the decrease of (x( cp)) is of the order of one flux quantum through each square, in 

reasonable agreement with our theoretical findings. A better knowledge of the actual impurity 

potential and the inclusion of interaction effects are desirable in order to attempt a more precise 

comparison with experiment. These more refined theories should necessarily incorporate the 

simple physics that we have discussed: the enhancement of the weak field susceptibility due to 

families of short periodic orbits. 
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In recent experiments1•2 persistent currents have been observed in the ballistic transport regime 
of mesoscopic rings formed in the laterally confined two-dimensional electron gas of certain 
AlGaAs heterostructures. The current I and the associated magnetic moment were found to 
oscillate as a function of magnetic flux with period <I>0 == hc/e - the quantum unit of flux -
and amplitude I0 � evF/L (e is the electronic charge, VF the Fermi velocity, and L the length 
of the circumference of the ring) . These results are in excellent agreement with a theory of such 
Aharonov-Bohm (AB) oscillations based on a free electron model of the ballistic electrons3•4• 
Since electron-electron interactions in the semiconductor ring are not weak, and since electron 
correlations must play an important role when the density of conducting electrons is low, 
this agreement is quite surprising. In diffusive metal rings, for example, where the electronic 
mean free path is short (£ < L), it has been suggested that electron correlations significantly 
enhance the amplitude of the AB oscillations5• Thus the question of how Coulomb correlations 
in a system of ballistic electrons affect the magnitude of the persistent current is of significant 
interest. 

In this paper we study persistent currents and AB oscillations in systems of spinless inter­
acting electrons confined to a one-dimensional ring; the electrons are assumed to be so strongly 
correlated that they form a Wigner crystal. In an ideal ring the mechanism of the persistent 
current is a dissipationless sliding of the crystal as a whole. We demonstrate that the result­
ing current oscillates as a function of magnetic flux with period <I>0. Its amplitude at zero 
temperature is exactly the same as for the noninteracting electrons of the same density in ac­
cordance with general theorem6• If the temperature is raised, the amplitude of the oscillations 
is exponentially suppresssed: I(T) � I0 exp( -rrT/2T0) , where I0 = evF/L , T0 = fivF/L is the 
characteristic crossover temperature and VF = rrfi/ma(a is the period of the \Vigner crystal, m 
is the electron mass). 

The situation changes drastically if a potential barrier, somewhere along the ring, impedes 
the motion of the electrons. Charge transport in this case requires that electrons tunnel through 
the barrier - the process which in the limit of strong repulsion can be viewed as a macroscopic 
tunneling of a Wigner crystal-ring. It is convenient to think of the motion of the crystal 
as a two-step process, where first a single electron tunnels through the barrier producing a 
deformation of a finite portion of the Wigner crystal, which then is relaxed7•8• This process 
necessarily depends on the elastic properties of the crystal, and as a result the magnitude of 
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the persistent current will depend on the sound velocity, s ,  in the Wigner lattice. As our 
analysis below will show, the temperature dependence of the amplitude of the AB oscillations 
is also affected in a qualitative way. The presence of the tunnel barrier, which pins the Wigner 
crystal and makes charge transfer possible only by macroscopic tunneling, strongly decreases 
the zero temperature value of the persistent current since for a repulsive interaction quantum 
fluctuations in a strongly correlated electron system renormalize the barrier upward. The finite 
ring circumference cuts off the divergent renormalization of the barrier height which occurs in 
the thermodynamic limit of a Luttinger liquid9 or Wigner crystal7•8. Thus the persistent current 
of a pinned Wigner crystal at zero temperature is greatly reduced but is still finite. At finite 
temperatures the effective barrier for tunneling is diminished which enhances the tunneling 
probability. The competition between two effects of an increased temperature - a reduced 
renormalized barrier height for tunneling and a loss of phase coherence due to the destructive 
interference - leads to a sharp maximum in the temperature dependence of the persistent 
current. For a rigid crystal this maximum occurs at T � 0.5 T., where T, = lis/ L � T0• 
This effect makes it posible to measure the Wigner crystal sound velocity in a ring with an 
'adjustable barrier' (height controlled by a gate voltage). 

The starting point of our analysis is a model system, where the Wigner crystal is regarded 
as an elastic chain of spinless electrons forming a ring. In the presence of a potential barrier, 
smooth on the scale of a but well localized on the scale of L, and the AB interaction the 
Lagrangian of such a system in the long wavelength approximation is 

( 1 )  

Here 'P = 27ru(x)/a is  the dynamical displacement field of  the crystal, Vo is the magnitude 
of the pinning potential (without loss of generality placed at the point x = 0) and <I> is the 
magnetic flux through the ring. 

We emphasize that ( 1 )  is an effective Lagrangian that describes the long wavelength aspects 
of the quantum dynamics of the Wigner crystal. The short wavelength fluctuations do not affect 
the global dynamics of the system, and only result in a renormalization of the magnitude, V0, of 
the potential, (already included in ( 1 )  but negligible for a stiff Wigner crystal8) .  We assume that 
the ring circumference is large enough to justify dropping terms from ( 1 )  which are irrelevant 
in an infinite system. 

The flux-induced persistent current I(<l>) = -c8F/8<l>, is defined in terms of the sensitivity 
of the free energy of the ring to a magnetic flux. For the following analysis, it is convenient to 
express the free energy F as a functional integral over quantum- and thermal fluctuations of 
the displacement field, 

(2) 

where the action SE derives from the Lagrangian ( 1 )  in the imaginary time representation. 
'Twisted' boundary conditions in imaginary time are imposed on the field 'P (see, e.g. 10) : 

'f'n(r + /3, x) = 'Pn(r, x) + 27rn . Here n = 0, ±1,  ±2 . . .  is the topological (winding) number, 
classifying homotopically inequivalent trajectories. The physical meaning of this boundary 
condition follows from the definition of the field 'P = 27ru(x)/a; a uniform shift of the crystal 
by a distance equal to an integer times the lattice constant a leads, in the ring geometry, to 
a state identical to the initial state after certain permutations of electrons. For the minimum 
shift by 1 x a (ti.<.p = 27r), the initial state is recovered after (N - 1) succesive permutations of 
pairs of electrons. The corresponding extra phase 7r (N - 1) ,  that appears in the many-particle 
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wavefunction because the electrons obey Fermi statistics, generates the factor (-1r<N-l) in 
( 2). As we will see below, this factor properly acounts for the parity effects in the response 
of one-dimensional interacting electrons to a magnetic field11-13. We note in passing that the 
analogous twisted boundary conditions appear when the Luttinger model is applied to a ring 
geometry12. The appearance of the homotopic index n in the boundary condition suggests 
that the functional integral should first be calculated for trajectories belonging to a definite 
homotopic class, and then the homotopically non-equivalent classes of trajectories should be 
summed over. 

In every homotopic class we will calculate the functional integral using the saddle point 
approximation, assuming the saddle point action to be large, Sn � Ii, on the extremal trajectory 
given by the solution of the classical equations of motion in imaginary time. Below we will show 
that this assumption is justified for a stiff Wigner crystal. 

First we calculate the persistent current in the ideal, unpinned crystal (Vo = 0). In a 
perfect ( or weakly pinned ) Wigner crystal, long-wave quantum fluctuations are cut off at the 
wavelength of the order of inverse crystal size L. It is physically evident that we can imagine 
ordered crystal structures until the mean square fluctations of the dimensionless field cp, 

1"/a dk ( sli ) (cp2) � a  "IL k coth 
2kBT

k 
' 

(3) 

are smalll (cp2) < 1 (T is the temperature, a =  7rn/msa denotes the dimensionless parameter 
that determines the intensity of quantum fluctuations in the Wigner crystal) .  For T -> 0 
this inequality imposes an upper bound to the chain length L < ae11°'. One can easily check 
that for such samples the thermal fluctations are suppressed up to the temperature T ;S T,/a 
(T, = lis/L). The situation is changed drastically for a strongly pinned Wigner crystal where 
an "intermediate" cut off scale appears8. 

One can readily calculate the persistent current of an ideal ring as the problem in the 
long wavelength limit is described by a quadratic Lagrangian. The extremal trajectory corre­
sponding to the twisted boundary condition is linear in imaginary time and independent of the 
x-coordinate, 

(4) 

By substituting ( 4) into (1) and (2), it is easy to find an exact solution for the free energy 
in terms of the Jacobi function i'J3 (see e.g. 14). The asymptotic expressions for the persistent 
current at high- and low temperatures are 

(5) 

Here { {x}} denotes the fractional part of x, and the parity dependent term SN is 1/2 (0) for N 
odd (even).  Thus the persistent current carried by an ideal Wigner crystal is a periodic function 
of flux with period i[>o = he/ e and amplitude 10 = evF / L at low temperatures. The oscillations 
are exponentially damped at T ;:=:; T0 = livF/L. The current has a paramagnetic character 
when there is an even number of electrons in the ring (i.e. the induced magnetic moment 
is parallel to the external magnetic field) and diamagnetic for an odd number of electrons. 
All these properties of the persistent current exactly coincide with those calculated using the 
model of an ideal Fermi gas. For T = 0, this was first shown in Ref.6 for a general case of 
arbitrary Coulomb-like interaction. At finite temperatures there are in general contributions 
due to crystal deformations produced by thermally excited phonons. It is possible to show15 
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that, even in a perfect Wigner crystal ring, the contribution of phonon fluctuations to the action 
results in a correction to the persistent current which is small if the temperature is less than 
mvFs/2. 

Now let us consider the persistent current in a Wigner crystal in the presence of a potential 
barrier. A uniform sliding motion of the crystal is impossible in this case, and the persistent 
current is inevitably accompanied by a local deformation in a small region adjacent to the bar­
rier. The mechanism for charge transport around the ring includes electron tunneling through 
the barrier, as well as elastic relaxation of the associated deformed state of the crystal. The 
relevance of such a partition of the macroscopic tunneling of the system into two processes 
becomes especially clear in the case of strong pinning, aV0 ;;!:> Ts. The above mechanism for 
macroscopic tunneling was first considered in connection with the tunneling of commensurate 
charge density waves7 and has also been used to describe the tunneling conductivity of a Wigner 
crystal8. In these contexts it was shown7•8 that in the case of strong pinning the dominating 
tunneling process is the elastic relaxation of the deformed state arising in the near-barrier 
region. 

Thus to evaluate the persistent current of a strongly pinned Wigner crystal at T of= 0 we 
need to find the instanton solution of the free equation of motion (Vo = 0) satisfying twisted 
boundary conditions imposed at the finite interval of imaginary time [O, ,BJ . ·  It is easy to verify 
that the desired exact solution is given by 

(6) 

Equation(6) transforms into the Larkin-Lee instanton7 at low temperatures and describes a 
uniform sliding of the Wigner crystal-ring, Eq.( 4) , in the high-temperature region. A description 
of the dominating relaxation process in terms of this 'periodic instanton'-solution is valid in 
the region outside the interval [-f0, f0] containing the part of the crystal deformed by the inital 
tunneling process. The length fa, which is inversely proportional to the potential Vo, appears 
only as a limit of the integration over coordinate x; we assume that f0 � L/2, a criterion which 
one can show to be equivalent to a restriction on temperature, T � aV0. 

At T --+ 0 the one-instanton action for the solution, Eq.(6), reduces to the expression derived 
in7. 

fi aVo 
St � - In(-) 

a Ts (7) 

This action is large, St/fi ;;!:> 1, in the strong pinning case and we can use the well-known dilute 
instanton gas approximation ( see e.g. 16) when evaluating the flux-dependent part of the ground 
state energy. In this manner we get the zero temperature value of the persistent current as 

Iwc(T = 0) � (-l)Nes (I!...)11" sin(27ril>/<I>0) .  
L aVo (8) 

This result for the persistent current of a Wigner crystal in the presence of a pinning potential 
barrier, clearly shows that the effect of the barrier is simply to suppress and smoothen the 
zero temperature current. The suppression of the current reflects the fact that due to the 
barrier, charge transport in the ring is not caused by a sliding rotation of the Wigner crystal 
as a whole. Rather, it is due to macroscopic quantum tunneling of the system through a 
deformed state of the crystal. Notice that the size dependence of the oscillation amplitude 
ex (l/L)1+i/a is intermediate (a � 1) between the regimes of Aharonov-Bohm oscillations in 
metals3•4 (I ex 1/L) and in dielectrics17•14 (I ex exp(-L/19) , L  ;;!:> l9, l9 = fis/!:19, !:19 being the 
gap in the energy spectrum on the Fermi level) .  
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Except at very low temperatures, T <t:: T., the main contribution to the oscillating part of 
the free energy of a stiff Wigner crystal provided by trajectories with minimal winding number 
(n = ±1) .  By using the periodic instanton solution, Eq.(6), one gets for the normalized 
temperature-dependent current in the strong pinning case 

Iwc(T) 
= '!_ ex (!.J (T/T l) 

Iwc(O) T. P "' • ' 
f(x) = !:.x - In (sinh(irx)) . 

2 7rX 
(9) 

This result implies a non-monotonic temperature dependence of the persistent current; for a 
stiff crystal (small a) the current has an exponentially sharp maximum at T � 0.5T., with a 
width of the order of ..;r;r.. The physical reason for this non-trivial temperature dependence 
- shown in Fig. 1 for different values of a - can be explained as follows: It is easy to see from 
(6) that as the temperature is increased the picture of the elastic deformation propagating as 
a 'sharp' instanton changes (at T � T,) into a picture of a homogeneous sliding of the crystal 
as a whole. 
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FIG. 1 Temperature dependence of the normalized persistent current in a strongly pinned 
Wigner crystal of different stiffness (measured by a-1 = 2msa/h; T, = ns/k8L, see text) .  The 
sharp peak for stiff crystals is a result of a competition between two effects of temperature: a 
reduced renormalized tunneling barrier and enhancement of destructive interference. 

This temperature-induced 'softening' of the instanton reduces the contribution to the action 
from the elastic deformation of the crystal. Hence, the persistent current should increase with 
temperature. On the other hand this effect competes with a thermal smearing of the phase 
coherence which - as we showed for the unpinned crystal - tends to reduce the current. 
The sharp peak in the temperature dependence of the persistent current carried by the pinned 
Wigner crystal, is a result of this very competition. 

Formula (9) is valid in the strong pinning limit, when temperature is much smaller than aVo. 
At high temperatures, T ;::; aV0 , the pinning potential can be treated as a perturbation when 
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calculating the depinning of the Wigner crystal. In this case we find unimportant corrections 
to the persistent current in an ideal Wigner crystal. Note, however, that the perturbation 
theory calculations have revealed that the result for the low temperature limit of a persistent 
current in a perfect stiff Wigner crystal-ring is unstable if an arbitrary small pinning potential 
(Vo > T, ; T --+ 0) is accounted for (the details of this calculation will be published elsewhere15) .  

B y  measuring the dependence of the persistent current o n  the barrier height at zero tem­
perature (8) and its temperature dependence (9), one has an opportunity to determine inde­
pendently the stiffness parameter, a = h/2msa, and the sound velocity, s, in this system of 
strongly correlated electrons. This gives us strong reasons to propose an experiment using a 
gate-controlled barrier in a mesoscopic semiconductor ring in order to study Wigner crystalli­
sation and to measure the parameters of the crystal. 

In conclusion we have shown that in an ideal ring with no impurity sattering, the persistent 
current carried by interacting electrons - so strongly correlated that they form a Wigner crystal 
- is indistinguishable from the current carried by a non-interacting Fermi gas. By incorporating 
a potential barrier in the ring structure, a qualitative change of the magnitude and temperature 
dependence of the persistent current appears. With an adjustable barrier, these differences can 
be used for detecting and investigating the properties of the Wigner crystal. 
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As is well known, the quantum motion of electrons in periodic potentials gives rise to energy 

bands. A precise determination of the density of states is necessary in order to obtain an 

appropriate description of the elementary physical properties, like the transport and magnetic 

properties. However, a direct calculation of the dispersion laws is in general difficult, like for 

example in the case of a chaotic underlying dynamics. 

Our purpose here is to consider the band structure of classically chaotic periodic systems 

from the point of view of periodic orbit theory. In this approach, the trace of the evolution 

operator - which can be related to the density of states - is expressed, in the semiclassical limit, 

as a sum over classical periodic paths I) ,2l. As shown below, the dependence of the dispersion 

laws on the quasimomenta (or Bloch angles) is related to the winding numbers of the periodic 

orbits (p.o.'s) around the elementary cell. Trajectories with winding numbers different from 

zero are associated to open diffusive processes through the periodic lattice. However, in some 

cases these processes are classically forbidden, or not well described by the real p.o.'s. The 

relevant features of the band structure can however be recovered going one step beyond this 

approximation by including some tunneling effects in the semiclassical trace formula. This is 

done by taking into account the complex p.o. 's (by complex or ghost p.o. 's we mean the pe­

riodic solutions of Hamilton's equations having at least one complex phase-space coordinate). 

Moreover, the inclusion of ghost orbits extends the range of validity of the semiclassical approx­

imation. As an illustration we present an example in which, in spite of being far from a classical 

behaviour, including the complex p.o.'s we obtain very good results for the dependence of the 

(quasi-)energies on the Bloch-numbers, while only taking into account the real p.o. 's gives a 

very crude approximation to the true solution. 

'Unite de recherche des Universites de Paris XI et Paris VI associee au CNRS 
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In the standard WKB theory - valid for integrable systems - complex classical paths have 

been used in the past in different contexts, as in the study of the band structure of one­

dimensional periodic potentials. To our knowledge, the existence and relevance of ghost orbits 

in the semiclassical trace formula was pointed out for the first time in 3),2). More recently, 

these orbits were studied in more detail in Refs. 4),5) in connection to the trace of the evolution 

operator of the kicked top and the standard map, respectively. Here, we also consider a dyna­

mics described by a discrete (chaotic) map, inspired by the study of the motion of an electron 

in a two-dimensional periodic potential in the presence of a uniform and constant magnetic 

field perpendicular to the crystal plane. For a strong magnetic field, the lowest Landau level 

approximation leads to the motion of a ID-particle whose phase space is a 2D-torus T. If 

Planck's constant is rational, h = M/N, then the corresponding evolution operator U is doubly 

periodic and its spectrum is made of N bands Ea( B) given by U/tfia(B) >= exp(iEa( B)) /t/ia( B) >, 

a = 1, . . . , N. For simplicity, in the following we take M = 1 and T will be of unit length 

in both directions. The Bloch parameters B = (Bi, 82) are associated to generalized periodic 

boundary conditions tfi(q + 1) = exp (i81) tfi(q), t/i(p - 1) = exp (i82) t/i(p). The classical limit is 

obtained when N -> oo. 

In order to mimic the motion of the electron as the magnetic field is lowered, we consider 

the kicked Hamiltonian H = f(p) + g(q) E 5(t - nr), which leads to a discrete map on the 

torus 
n=-oo 

q;+i = q; + T f'(Pi+i) mod 1; Pi+1 = p; - rg'(q;) mod 1, (1) 

where (q;,p;) E [0, 1[2 are the phase-space coordinates of the particle at time t = jr 

while f and g are two smooth functions of period one. One can interpret the two integers 

w�i+l) = [q; + rf'(P;+i)] , w�i) = - [p; - rg'(q;)] (square brackets denote integer part) as the 

winding numbers of the orbit around the torus for the iteration (q;,p;) ->  (q;+i ,Pi+i ) in the q 
and p directions, respectively. As we shall see in the following these two integers - which arise 

from the toroidal topology of phase space by the identification of points differing by an integral 

number of phase-space cells - play a crucial role in the semiclassical interpretation of the bands 

(see also Ref. 6>). 

Quantum mechanically the map is implemented by the one-step evolution operator 

U = e-ir/(fi)/lie-frg(fi)/li. In order to make explicit the dependence on the parameters B, in­

stead of U we consider the operator U( B) which is obtained from the expression of U by 

making the substitutions q -> q + 1i82,p  -> p + li81 7>. Then the dispersion laws Ea( B) 

are given by the roots za( B) = exp(iEa( B)), a = 1, . . .  , N of the spectral determinant 
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det ( z - U( B)) = E ak( B)zk, where aN( B) = 1 by construction. The coefficients of this 
k=O 

characteristic polynomial can be obtained from the trace of the first N powers of ir through 1 k -
the formula aN-k = -;; E aN-k+ntr (U"), (k = 1, . . . , N) whose interest comes from the n=l 
fact that in the semiclassical limit N -+ oo the trace of the powers of ir can be computed in 

terms of a :finite number of classical p.o.'s (which are assumed to be isolated) l) ,s). In our case, 

by considering the special topology of phase space, we get 

(u- ") ·n '°' T ( i S . 8 . 8 . ir ) tr = 1 L..J exp h + IWp 2 + lWq I - I-JI • 

p.o. JI det(M - 1) 1  2 
(2) 

In this formula the sum extends over all the real p.o.'s of the map (1) whose period T is an integer 
n-1 n-1 fraction of n, wp and wq are the total winding numbers of the p.o., Wp = E w�i) , Wq = E w�i) , 
j=O j=O 

S = �f {-r (g(q;) + f(p;)) + P;+1(q;+1 - q;) - w�ilq; - w�ilp;} is the classical action of the 
;=O 

p.o., M is the monodromy matrix (related to its stability) and JI is the number of negative 

eigenvalues of the Hessian of S (a 2n x 2n matrix assumed to be non singular). The informa­

tion concerning the band structure (i.e., the dependence on B of the dispersion laws) is thus 

recovered, semiclassically, through the factor exp (i ( wq81 + wp82)). This factor, which is differ­

ent from zero for open diffusive p.o.'s, can be interpreted for each "ii as a unitary representation 

of the homotopy group of T. The fact that the representation of that group appears in tr ( U") 

when one deals with path integrals (or their discrete equivalent) in multiply-connected spaces 

is well known 9l. Eq.(2) was obtained from the exact expression of tr (U") replacing the sums 

by integrals using the Poisson summation formula and then computing the integrals by the 

stationary phase approximation. One step further is to deform the contour of integration of 

the path integral in order to reach the stationary orbits lying in the complex plane. The out­

come of this procedure is to include in the summation (2) complex p.o. 's, whose contribution 

is exponentially small. However, as we shall now see, they cannot be neglected if 1i, is not too 

small or if we are close to a (first order) bifurcation of a p.o . .  

For the sake of definiteness, we consider the kicked-Harper model where we have 

g(z) = f(z) = --y cos(2'lrz )/(2'1rr). Phase-space plots of the classical trajectories of the kicked­

Harper map for different values of 'Y > 0 can be found in 7l : for 'Y -> o+ the dynamics is 

integrable (it tends to the Harper Hamiltonian); for 'Y � 0.4 it is a mixture of regular and 

chaotic orbits, while for 'Y ;::: 0.6 unstable chaotic trajectories dominate. At the quantum level, 

some spectral and transport properties of the model were studied in 7),lo) . 
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We now compute the trace of fJ for this model. The exact result is 

(3) 

where the second curly brackets in the r.h.s. is identical to the first one except for the fact 

that 81 is replaced by 82. In order to compute (3) semiclassically, we need to find all the p.o.'s 

of period one of the map. Their location (q,p) E [O, 1(2 is given by the solutions of the set of 

equations sin(27rq) = wvhi sin(27rp) = w0f'y, where ( w0, wp) E 'lll. For a fixed 1 > O, there 

is an infinite number of complex p.o.'s (all integers (w0 ,wv) whose modulus is larger than 7). 
Since the imaginary part of the coordinate is proportional to Arch jw;/11 ,  the complex p.o.'s 

with large winding number jw;j > > 1 are deeply located in the complex plane. As 1 increases 

(starting from 1/2, for example), a complex orbit becomes real if 1 becomes larger than the 

modulus of both winding numbers. This will happen at each integer value of 1 through a first­

order bifurcation (fold catastrophe), where several orbits coalesce in at least one phase-space 

coordinate. The total number of real p.o. 's increases with 1 as ( 4(1] + 2)2. 

Concerning the stability of those orbits, generically tr M = 2 at 1n = n E IN* for all the 

real p.o.'s emerging at that value of 1· When 1 is increased,° half of them are initially stable, 

the other half unstable; but very rapidly they become all unstable 11l . 
Using the information described above we have computed semi-classically the trace of fJ 

(for fixed 1 and arbitrary N) including all the real as well as complex p.o.'s. The result is 

where 

F(8) 

- 2 
tr U = -F(81)F(82) + 0(1/N) 

'11"1 

[-r] . cos( w8) 
2 :E'e-•wN.-/2 � cos {N ('Y cos(zw) - w(zw - 7r/2)) - 7r/4} 

w=O cos(zw) 

+ f: eiwN.-/2 cos(w8) 
e-N(wuw--rsinh(uw)) 

w=h]+I .Jsinh (Yw) 

(4) 

(5) 

and Zw = arcsin(wf'y); Yw = Arch (wf'y). In Eq.(4), F(92) is related to the q-coordinate of 

the orbit, while F(81) contains the information about its momentum. The first sum in Eq.(5) 

(w � [1]) comes from p.o.'s having a real coordinate (which reproduces the oscillating part of 

Bessel functions occurring in Eq.(3)), while the second sum (w > [1]) comes from those having 

a complex coordinate (reproducing the exponentially decreasing part of the Bessel functions) . 

The symbol L:' indicates that the term w = 0 must be multiplied by a factor 1/2. The product 

of both functions in Eq.( 4) gives rise to four different sums, one related to real p.o.'s, the other 

three to complex ones. The dependence on 0 in Eq.(4) is the same for both kinds of orbits, 
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but the complex orbits are exponentially dumped by a factor (or a product of factors) of the 

form exp(-NSr), where Sr = WYw - 1sinh (yw) > 0. Because of that, complex p.o.'s with 

large winding number can in general be neglected. On the other hand, as 1' approaches some 

integer value n from below, the contribution of the complex p.o. 's becoming real at 1'n = n > 0 

is particularly important, since the imaginary part of their action tends to zero. In fact, they 

remain important for parameter values relatively far from ')'n, since Sr � �(1'n -1)3/2 /37r as 

1' --+  1'n from below (the exponent 3/2 was also found for the kicked top and the standard map 

4J,5l). Moreover, because of the 1/./fi. dependence, the parameter interval in which complex 

orbits are important increases with 1' (at a fix N). Exactly at 1' = 1'n Eq.(5) is not defined 

since the denominator in both sums vanishes due to the coalescence of several orbits. In order 

to avoid divergences we must improve the approximation, and include third order terms in the 

computation of the integrals for 1' � 1'n using Airy functions 12),J). Including these corrections, 

we find that Eq.(4) reproduces extremely well the exact tr U, even for small values of N. 

In order to illustrate this, let us consider the extreme quantum limit N = 2. For the kicked­

Harper map, it can be shown that for N = 2 all the information concerning the spectrum of 

fj is contained in tr U, since the characteristic polymomial is of second degree with coefficients 

a2 = 1 ,  a1 = -tr U, a0 = 1. The two dispersion relations obtained from that equation are 

E±( 8) = ± arccos(tr u( 8)/2). Although our results are valid for arbitrary 1' > 0, the role of 

the complex p.o.'s is particularly stressed in 0 < 1' < 1. In that parameter interval there 

exist only four real p.o.'s of period one, located at (0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2). But 

these orbits do not introduce any B dependence in tr U (and therefore in E±( 0)) since for all 

of them wq = Wp = 0, leading to flat bands. In fact, the exact dispersion laws for N = 2 have 

a strong and non-trivial 0-dependence; in particular, for an arbitrary 1' there is at least one 

linear contact (diabolical point) between the two bands. In order to introduce semiclassically a 

0 dependence in the dispersion laws one must include complex p.o.'s. Fig.l(a) plots the exact 

result and the semiclassical dispersion laws computed from Eq.(4) with and without complex 

orbits for 1' = 0.86 and 92/27r: = 0.5 as a function of 9i/27r: (only complex p.o.'s up to winding 

number two were included). The result obtained with complex p.o.'s is extremely good even 

near the diabolical point, which is the worst situation for semiclassical analysis. Part (b) of 

that Figure shows the case 1' = 4.86. It is also possible to compute, using only the tr U, the 

dispersion laws for N = 3 since the coefficients of the characteristic polynomial are now given 

by a3 = 1 ,  a2 = -tr U, a1 = tr U, a0 = 1. Fig.l(c)-(f) illustrate the results obtained in this 

case for the dispersion laws and the trace of U. 
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Fig.l: Band structure and trace of the evo­
lution operator for the kicked-Harper model. 
(a) dispersion laws E( B) as a function of Oif 21r 
for 02/211: = 0.5, N = 2 and "'( = 0.86. Full 
line: exact; dotted line: semiclassical theory 
including the real and complex p.o. 's; dashed 
line: semiclassical theory including only the 
real p.o.'s. (b) same as in part (a) but for 
"'( = 4.86 and fJ2/27r = 0.25. (c)-(d) same 
as in part (a) but for N = 3, fJ2/27r = 0.25, 
"'( = 2.86 and 'Y = 52.1, respectively. (e)-(f) 
real and imaginary part of tr (U) as a func­
tion of 'Y for fJi/27r = 0.55, fJ2/27r = 0.32 and 
N = 3. The semiclassical result using only 
the real p.o.'s is not shown in (e)-(f) . Ex­
cept near the diabolical point in part (a) , in 
all the other plots the dotted line cannot in 
general be distinguished from the full line. 

As a. final remark, let us point out tha.t the a.pproach presented in this Letter is also relevant 

in systems where the topology producing the band structure is not toroidal, but for example 

cylindrical. This occurs in particular in the context of persistent currents, where the Aharonov­

Bohm flux threading the ring plays the role of the Bloch-parameter and the winding number 

of the p.o.'s is precisely the winding number around that flux (see Ref. 13) for a. more detailed 

discussion) . 
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The low-temperature transport properties of electronic systems may be appreciably 
modified by quantum-coherent effects. This issue has been intensively investigated for 
the last 1 5  years and is, by now, fairly well understood. In particular, quite well 
established theories exist for the weak scattering regime due to the applicability of a 
perturbation treatment. Quantum mechanical corrections to the Boltzmann theory in 
this regime arise from interference phenomena that are usually referred to as "Weak.­
Localization" (WL) effects. These are believed to be a precursor to the disorder­
driven, "true" Localization in which spatial disorder causes the electronic wave­
functions to be confined to a particular site with envelopes that decay exponentially 
away from it. The spatial decay length, �, called the localization length, is a function of 
disorder and diverges at the transition. 

When � becomes the smallest length in the problem, the system is "strongly­
localized" (SL) and electronic transport is only possible by some sort of hopping. This 
regime is much less understood than the diffusive one despite substantial theoretical 
and experimental efforts over several decades. Nevertheless, in many uniformly 
disordered electronic systems, it is established that transport is governed by Variable 
Range Hopping (VRH) as originally described by Mott. l) The problem is a 
complicated one even under ideal conditions (gaussian disorder) and may be further 
complicated by electron-electron interactions that are likely to be important in 
insulating media. These issue will not be considered here. We shall also omit from 
discussion granular systems and semi-continuous films where the transport mechanism 
is not of the "simple" VRH kind. 

Evidence for quantum interference effects in the transport properties of several VRH 
systems has been published by a number of researchers. Almost every phenomenon 
that is known to exist in WL system has been established in the SL regime as well. The 
most widely studied effect is the magnetoresistance (MR) which involves macroscopic 
samples. Some of the main features of the MR are summarized in the next section. 
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Observation of Conductance Fluctuations and hie oscillations, on the other hand, 
require mesoscopic structures and in section 3 we bring a brief account of the 
experimental attempts to observe these phenomena and discuss the inherent difficulties 
that may be encountered. Finally, in section 4 we elaborate on a more recent 
manifestation of quantum coherence in the SL regime which involves a mediation of 
Cooper-pairs between two superconducting banks. 

2. Magnetoresistance 

Most of the evidence for quantum interference in the hopping regime is based on 
MR measurements. This issue has been described elsewhere quite extensively2-5) so 
we restrict the discussion here to what we regard as the main features. A MR in the 
insulating regime may originate from "de-localization" (i.e . ,  an increase of � due to the 
field, in close analogy with WL). This is apparently the dominant mechanism near the 
metal-insulator transition where � is large. Indeed, once LH=( ch/eH) 112 is smaller than 
�' the MR should be qualitatively similar to that of WL.2) Accordingly, one expects tl1e 

1 0 0  

Hper. 
.. • 

1 0  
' 

Hpar. � 
1 
0 .  1 1 0  

r/d 
Figure 1 :  The MR anisotropy parameter, 13 (the ratio between the MR in  perpendicular 

field, Hper and a parallel one, Hpar) for a thin film of thickness d. Data are for 
crystalline In203-x with d's of 100, 200, 300, 500 and 1200A measured at the liquid 

helium temperature range. The range ofr's for these samples is 1 50-400A. 
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MR to be negative or positive dependent on the strength of spin-orbit scattering as 
indeed observed.8) In the limit of strong disorder, however, compelling arguments 
suggest that another MR mechanism, proposed by Nguyen et al4), should take over 
and only negative MR is observed (neglecting wave-function shrinkage). This regime 
has been studied only in few cases9) due to the difficulties in measuring highly 
disordered VRH systems at low temperatures. For either mechanism, the most 
convincing case for the MR being due to an orbital effect, comes from the anisotropy 
of the phenomenon when the system is 2D (or ID). Figure 1 depicts the dependence of 
the MR anisotropy on the hopping length, r, in units of the sample thickness, d. 

Such experiments are very useful in empirically estimating the phase-coherent 
length, Lq» in a VRH system. In WL, Lcp is essentially the inelastic diffusion length, 
Lin and the well established theories for this regime enable a fairly convincing 
determination of this length from a fit to MR data. In VRH, this length turns out to be 
just r as illustrated in the above figure and established in many different experiments. 2) 
The hopping length, r, may be controlled by either the temperature or be the electric 
field used in the measurement.2, 10) At liquid helium temperatures and small fields, r is 
typically 100-300A. It is noteworthy that this Lcp is only 20-60 times smaller than Lin 
of "good" metals while the resistivity of a VRH medium under such conditions can be 
10 (or more) orders of magnitude bigger. 

3. Conductance fluctuations and hie oscillations 

The phenomenon of Conductance Fluctuation (CF) is well known in WL where 
universal featuresl l) are predicted and observed as characteristic modulations of the 
sample conductance. CF are also observed in the VRH regime and, in fact, are much 
more prominent. The prominence of CF in this regime has been anticipated by Imryl3) 
and was experimentally established by demonstrating the existence of measurable CF 
in macroscopic samples, 14) with spatial extent much bigger than Lcp. The orbital 
(Aharonov-Bohm) nature of the CF can be appreciated from their dependence on the 
field orientation as shown in figure 2. 

The main goal of these experiments was to detect hie (or hl2e) oscillations in 
multiply-connected objects. Using crystalline In203-x samples enabled a control of the 
amount of disorder of a given sample by employing UV and heat-treatments. 12) In 
particular, a given array could be made WL or SL reversibly so the evolution of the 
various quantum interference effects could be studied systematically. The following 
facts were found: 
1 .  Both hie and CF are observed in the WL regime and their relative magnitude, i.e., 

i:lG/G, actually increases with disorder up to, and including, the crossover to SL. 
2. For SL samples, the rms. L'.lG/G of the CF is of order unity and remains so up to the 

highest disorder. At the same time, the hie modulation behaves differently. For just-
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insulating arrays, the rms. i'iG/G is large and can be seen at the entire range of the 

magnetic field used (0 to 14T). But, with further increase of disorder, it seems to 

disappear from the G(H) traces, or, to be observable only at rare regions of H. 
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Figure 2: Conductance, G, versus field traces for a crystalline In203-x film with 
thickness l 70A that was patterned as an array composed of 25x28 square "rings" .  The 
mesh periodicity is 3000A and the line width is 500A. The difference in characteristic 

field of the CF between the two different field orientation is about 3 which is quite 
close to the ratio between the line width and the film thickness as might be expected 

from an orbital, Aharonov-Bohm effect. (Ovadyahu, Milliken and Webb, unpublished). 

It should be noted that the hie oscillation is, topologically, exactly the same quantum 

interference mechanism as the CF. Thus, it is puzzling that one persists as disorder 

increases while the other seems to have vanished at moderate values of it. We believe 

that the absence of h/e modulation in the strong disorder regime is inherent to VRH 
transport. Basically, the h/e oscillation in a ring results from interference between the 

two probability-amplitudes of the quasi-particle (one for each ann) to cross from "side 

to side".  The modulus of each such amplitude is proportional to the conductivity of the 

respective "arm". In the VRH regime, the local conductivities are spread over an 
enormous (exponentially wide) range. As a result, the probability tl1at one will 
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encormter a situation where both anns have comparable conductivities is exponentially 
small. Clearly, the most likely situation is that the two amplitudes in question will be 
vastly different and the result of interfering them will give a negligible small 
modulation. This is just like a two-slit experiment with grossly different light intensity 
emanating from each slit. The problem in the hie case is further complicated due to the 
modulation of the amplitudes themselves by the applied field: Let us assume that by 
some chance the ring in question is "balanced" such that the conditions for hie 
oscillations are favorable. To observe this modulation, the field must be swept. But 
then, the ever-present CF (from the singly-connected parts of the ring), come into their 
own, and since they are rmcorrelated between the two anns, will quickly take the anns 
away from being balanced. The hie oscillation can then be observable only rmder these 
rare occasions where the field is such that the anns are accidentally balanced. 

4. Superconducting contacts and Andreev reflections 

The various manifestations of quantum interference discussed above have the 
Aharonov-Bohm effect as an essential ingredient. In this section we describe a 
different approach to the problem of quantum coherence in the hopping regime. This is 
based on some properties of SIS devices where S is a superconducting electrode and I 
is a VRH system. In particular, we demonstrate the existence of a regime where a 
superconducting current flows through the device that cannot be accounted for by the 
usual Josephson effect. The results are interpreted as evidence for an indirect 
Josephson coupling involving a quantum-coherent diffusion through the VRH system. 

Our experimental observations were made on structures fabricated as 
follows. A � 1 OOOA strip of Ag-doped Pb film was thermally evaporated onto room 
temperature glass-slide, previously cleaned and 02-ion-bombarded, in the vacuum 
chamber, prior to the actual deposition. Then, a thin film of either a-Ge or amorphous 
indium oxide was e-grm evaporated on the middle section of the Pb film. Finally, 
another cross-strip of Pb was evaporated to complete a 4-probe tunneling junction 
through the amorphous Ge or indium-oxide layer. The latter is the oxygen-rich, non­
superconducting phase of indium-oxide. Silver doping of the Pb films was used to 
improve the uniformity and mechanical stability and did not appreciably change the 
superconducting properties of the lead films. Junction area was typically 1 OOxl OOµm. 
The samples were mounted in an i1mnersion He4 cryostat and measured by a 4-probe 
lock-in techniques employing ac modulation of �i Oµ V. 

I-V curve and dV/dI versus voltage, V, typical of our samples, are depicted in figure 
3.  One notes that up to some critical current, le, no voltage appears across the sample. 
Above le, the dynamic resistance increases with V and reveals a superimposed 
structure that can be classified as follows: 
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Figure 3 :  Dynamic resistance versus voltage for a typical Pb/InOxfPb junction 
measured at T=4 . 1 1K. The inserts depict the sample geometry and the I-V curve 

(current in mA). The barrier thickness in this case is 150A. 

1 .  For thin barriers (70-250A for In Ox and 50- 1 50A for Ge), a clear dip at 2,0. is 

observed. This feature is common in S-S junctions and presumably reflects the 

existence of a single-particle tunneling-current, and, by inference, the lack of 

significant superconducting "shorts" in our devices. 

2. A series of peaks in dV/dI are observed at the superconducting gap sub-harmonics, 

i.e., at Vp=2Afn with n between 2 and up to 8 .  
3 .  Another modulation, fairly periodic-with-V, i s  observed at relatively small voltages.  

This feature is common in Josephson junctions and is believed to result from self 
generating Shapiro steps. 15) 

Lowering the temperature below 4K increased the amplitude of the periodic 

modulations but otherwise has only a small effect (mainly through i'.1(T)) on the above 

features.  Applying a magnetic field affected the observed structure appreciably. In 

particular, a field perpendicular to the plane of the Pb strips caused a monotonous 

reduction in the 2Afn peaks amplitude at fields that are much smaller than Hc2 of the 
electrode (the latter is typically 3k0e). 
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Not surprisingly, a sensitive parameter in these experiments is the barrier spatial 
extent, L. The evolution of the I-V characteristics as a function of L is described in 
figure 4 and some relevant junction parameters are summarized in figure 5 .  

4 L=600A 
2 

0 
20 

16 

12 
L=400A 

---:- 4 � 
.0 0 I-< ro 4 '-' 
...... -0 3 --
> 
-0 L=200A 2 

0 
10 

8 

4 L=lOOA 

0 
-3 -2 - 1  0 3 

V (mV) 

Figure 4 :  Characteristics of Pb/InOx!Pb junctions (at T=4. 1 1K) for samples with 
different barrier length, L. Note the strong quasi-periodic modulation at small voltages 

( I V I :'.5:0.5m V) that becomes very prominent for L=400A. 

The key observation here is the following. le is still finite for L as large as 600A 
while the feature at 2L'l is already washed out for L�300A. In other words, the "direct" 
single-particle tunneling is rapidly vanishing with L which is natural for such a process. 
But, one then expects that pair-tunneling, which is a higher-order process and thus 
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much less likely, is effectively shut-out even sooner. Therefore, to account for the 
finite le at large L's in these samples, one is compelled to look for a non-direct 
Josephson coupling. The validity of this conclusion does not depend on the actual L. 
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Figure 5 :The dependence of the S-I-S, normal-state resistance, R (measured at 
V=3mV and T=4 . 1 1K), and the quasi-pe1iod of the low voltage modulation, Vo, (see 

text), on the barrier length, L, for InOx samples (circles) and a-Ge (squares). 

A possible solution for this mystery is the Andreev reflection mechanism that has 
been recently proposed by several authors. 16) The physical model discussed in these 
papers is based on a S-N-S structure where N is a normal metal, i .e.,  a degenerate 
Fermi system capable of sustaining quasi-particles and quasi-holes. Superconducting 
coupling between the two S electrodes is mediated by the coherent diffusion of these 
quasi-particles that are Andreev-reflected at each S-N boundary in tum. Further, the 
same process may lead to the 2Afn series discussed above: When a finite V<t,. is 
imposed on the junction, a quasi-particle gains an energy of e V on each S to S trip and 
so does a quasi-hole. After n such trips, and provided no inelastic event has occurred, 
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the diffusive quasi-charge may acquire an energy of 21'., sufficient to escape the N­
region and modulate the dynamic resistance at V=2t:Jn. 

In the systems studied here, however, the region between the two superconductors 
is a VRH system rather than a "metal" . It can be easily shown that the observed 2t:Jn 
structure must involve transport via localized states rather than through "metallic­
bridges". There are several reasons why such an artifact is a dubious suggestion for 
our samples. In particular, let us consider the corollary that follows from such an 
alleged scenario. Assume that a metallic "filament" of length, L, and made from a 
metal with resistivity, p, does connect the two superconductors. Let the cross-section 
of this conducting channel at the N-S interface be A. In order to observe a structure at 
a voltage V', a finite current, V'NpL, must be maintained through this filament. If 
Andreev reflection is involved, this current must be much smaller than the critical 
current of the superconductor (or else there would be no 1'. to affect the process). It is 
easy to see that the condition p>>V/LJc must be obeyed, where Jc is the critical 
current-density of the superconducting electrode. Putting in V'= lQ-3 volt, L=lOOA, and 
the measured, Jc= 105 Ncm2, one obtains p>> 10-2 Dem. This value is, practically, 
much too large to be reconciled with "metallic conductivity" of any of the substances 
involved in our structures. It seems, then, that transport through localized states has to 
be considered which we do next. 

A VRH system, just like a metal, has a finite density of states I ), DOS, at the Fermi 
level. "Quasi-particle" and "quasi-hole" are then, fundamentally, still a valid 
description of an excitation above and below the Fermi energy respectively. The main 
difference between a metal and a VRH system is the structure of the electronic wave­
functions which in the latter case are localized i.e., their envelope decay in space as: 
exp[-x/s] . For both, a-Ge and a-InOx, s is of the order of few A ,  i.e., s<<L. This has 
a number of consequences relevant for charge transport in the medium. The most 
obvious one is that the conductivity on scales larger than s is exponentially small. But 
since L is finite, quasi-electrons and quasi-holes can still diffuse from side to side just 
like in a dirty metal. A more subtle requirement is the issue of quantum-phase 
coherence that must exist over distances comparable with L (and thus much larger 
than s) for the model to explain both, the Josephson coupling and the 2t:Jn series. As 
explained above, quantum coherence in VRH systems persists on scales as large as r. 
This length is, typically, 100-300A at 4K which is comparable with L in our devices. 
Energy exchange with the environment occur on the scale of r. One therefore expects 
that if quasi-particles have to traverse n-times a length of L in such medium, only a 
fraction of the order of exp[-nL/r] will do so without loss of energy. This, in turn, 
should reflect on the magnitude of the structure of the 2t:Jn series which is amenable to 
an immediate critical test. Figure 6 depicts the experimental dependence of the 2t:Jn 
peaks magnitude on n for three typical samples which reproduce the expected 
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functional dependence and, with values for r that agree quantitatively with the other 

measurements mentioned in previous sections. 
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Figure 6 :  The dependence of the amplitude, Ap, of the resistance peaks in the 2i:Vn 
series of several structures with different barrier length, on the order of the Andreev 

reflection, n. The logarithmic slopes yield r:::::200A for the InOx samples and r:::::90A for 
the a-Ge sample which are very reasonable values at T=4K. We note that these 

estimates neglect the possibility that the Andreev-reflection coefficient is smaller than 
1 which is most likely to be the case, especially for a-Ge where the DOS is smaller. 

Further in support of this physical picture, we cite the lack of a significant 

temperature dependence (below 4K) on the 2i:Vn structure which would be natural for 

a Hopping medium: Note that this structure appears at V's of the order of 1 Q-3 volt thus 

imposing electric fields that are typically 1 Q3 volt/cm across the insulating layer. Such 

fields are sufficient to make the hopping length field rather than temperature 
dependent. IO) Thus, both the junction resistance and the 2i:Vn structure should be 

essentially temperature independent as observed. On the strength of all these points, 

we conclude that the "multiple Andreev reflection" model, augmented by ideas 

pertinent to hopping conductivity may be a plausible explanation for the 2i:Vn structure 
and the "long-scale" Josephson effect observed in our experiments. 
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An intriguing question arises from the above picture that concerns the microscopic 
mechanism of the Andreev reflection in such cases. The localized nature of the 
electronic states and the concomitant weakening of screening in the medium render 
pairing in it energetically unfavorable. In the first place this eliminates the need to 
consider modifications due to "proximity-effects" in the bulk of the barrier region. 
However, some sort of pairing near the S-N interface seems to be needed for the 
Andreev reflection itself. Whether this becomes possible due to the screening by the 
superconducting electrode or another scenario is involved is not known at present. 

In summary, we have detailed several types of experiments that demonstrate the role 
played by quantum coherence in VRH systems. These include Aharonov-Bohm 
interference phenomena as well as a quantum-diffusion mediated superconductivity. 
The latter may prove to be a powerful new technique to study quantum coherence in 
the insulating regime as well as other fundamental issues such as electron-electron 
interactions and screening. 

We gratefully acknowledge illuminating discussions with Y. Imry, A Aronov, B. 
Laikhtman and M. Raikh. This research has been supported by a grant administered by 
the Israeli Academy for Sciences and Humanities. 
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SPECTRAL CORRELATIONS IN THE VICINITY OF THE ANDERSON TRANSITION 

Igor V. Lerner 
School of Physics, University of Birmingham, Birmingham Bl5 2IT, UK 

We demonstrate the level statistics in the vicinity of the Anderson transition in d > 2 dimensions to be 
universal and drastically different from both Wigner-Dyson in the metallic regime and Poisson in the insulator 
regime. The two-level correlation function is shown to have the asymptotic behavior R(w) � (!:;./w)2--r, and 
hence the levels number variance :E2(E) � (N).., in an energy interval of the width E, containing in average a 
large number of the levels(N) = E/ t:;. � 1, where t:;. is the mean levels spacing, and 'Y = 1 - (vdt1 with v 
being the correlation length exponent. 

1 Introduction 

One of the most surprising facts about the Wigner-Dyson (WD) statistics1 ) is their applicability to 
a wide variety of supposedly different situations2). These statistics describe, e.g. , the distributions 
of prime numbers and of zeros of the Riemann ( function, and the spectra of compound nuclei, of 
quantum billiards and of electrons in small metallic particles. In all these cases, the distributions of 
appropriate eigenvalues (energy levels) are too complicated to be known exactly. The only common 
feature for all these cases is the presence of some general symmetries which impose certain correlations 
between the levels. The knowledge of these symmetries turns out to be sufficient for a full statistical 
description of the spectral properties. Three symmetry classes introduced by Dyson 1) correspond 
to the general unitary ensemble (GUE), the general orthogonal ensemble (GOE), and the general 
symplectic ensemble (GSE) of random matrices. 

The main characteristics of the WD statistics are levels rigidity and levels repulsion. The rigidity 
is reflected by the long-range character of the two-level correlation function. In the simplest GUE 
case this function is given by 

s := w/t:;., ( 1) 

where w is a level separation and D. is the mean level spacing. The level rigidity suppresses the level 
number fluctuations L:2 = ( ( oN)2) (here 0 N = N - N, and N = EI t:;. is the number, and N = ( N) 
is the average number of energy levels in a given energy interval of the width E): 

2 :E2(E) = f3n:2 In (N(E) ) + C (2) 
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where f3 = 1 ,  2, or 4 for the GOE, GUE, or GSE, respectively, and C is a certain constant2) that is 
irrelevant for what follows. 

The levels repulsion reveals itself in a probability P( s) to find the nearest-neighbor level at the 
distance s from a given one. The famous Wigner surmise for this probability, 

(3) 

is very accurate for all s, although not exact2) (the coefficients B and A in Eq. (3) are defined by 
normalizing this distribution and noting that the first moment, i.e. the average distance between levels, 
s = w//::;. = 1) .  

The universal Poisson statistics describe spectral properties of systems with uncorrelated random 
eigenvalues. In this case, R(s) = 0, �2 = N, and P(s) = e-•. In general, the WD statistics are 
applicable to the quap.tum chaotic systems, while the Poisson statistics are applicable to the quantum 
integrable systems. A lot of efforts has been put to describing a crossover between the two universal 
statistics with changing some of parameters governing a quantum system. Naturally, statistics in the 
crossover regime are not universal. 

In this presentation we will discuss the spectral properties of a quantum particle in a random 
potential. For this problem the WD statistics are known to be applicable in the metallic region3• 4• 5 ) .  
With increasing the random potential, the system undergoes the Anderson transition into the insulator 
phase6), where all states are localized. In this region, the statistics of energy levels are expected to 
be Poisson. In the thermodynamic limit L --+ oo (L is the sample size) both statistics are exact. No 
smooth crossover between them is possible, as in this limit the disordered system is either an ideal 
metal for g > 9c, or an ideal insulator for g < 9c where g is a dimensionless conductance of the 
system, and 9c is its critical value. Obviously, at the mobility edge, where g = 9c• the statistics could 
be neither Wigner-Dyson nor Poisson. On the other hand, it is naturally to expect this statistics to be 
universal since the disordered systems at the mobility edge depend on no parameters at all. 

The existence of the universal statistics at the mobility edge has been first conjectured in Ref. 7 
where the number variance �2 has been considered. The dimensional scaling estimation made in 
Ref. 7 has resulted in �2 = aN, which differs from the Poisson statistics only by a certain number 
a < 1 .  Later8), it has been surmised on the basis of numerical simulations that the nearest-level­
spacing distribution P( s) is a certain universal 'hybrid' of the Poisson distribution for large s and the 
Wigner surmise for small s. 

We will show here basing on the analytical results of Refs. 9, 10 that, indeed, there exist universal 
statistics, exactly applicable near the Anderson transition point (the mobility edge). However, in 
contrast to the conjectures of Refs. 7, 8, they are entirely new and drastically different from both 
the Wigner-Dyson and the Poisson limit. Before going to this, we will recall how to describe the 
statistical properties of electrons in disordered metals using the perturbative approach5), and show 
how to obtain within this limit the number variance (2) for a closed disordered system. 

2 Spectral statistics in the metallic regime 

A finite disordered sample is characterized by a set of relevant energy scales that obey in the metallic 
limit the following inequalities: 

(4) 

where Ee = n / is the Thouless energy, Tv = L2 / D is the time of diffusion through the sample, D is 
the electronic diffusion coefficient in the classical limit, D = v;T / d, and T is the elastic scattering rate. 

The spectral properties in the metallic regime could be very different depending on what interval 
is considered on the energy scale or, via the Fourier transform, on the time scale1 1 ) .  The energy region 
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W > n/T (Or, equivalently, S > n/Til) corresponds to the ballistic behavior, as the appropriate time 
is shorter than the mean time of the elastic scattering T. The region Ee < w < n/T (equivalently, 
g < s < n/Til, where the average dimensionless conductance g = Ee/ il equals the average number 
of levels in the energy window of the width Ee) corresponds to the diffusive behavior. The region 
w < Ee (or s < g) is ergodic where the appropriate time is much longer than the average time of 
diffusion through the sample Tn . Part of this region, w < /:;. (s < 1), corresponds to the quantum 
regime where neither perturbative5), nor quasiclassical1 1)  technique is applicable. 

Altshuler and Shklovskii have shown5) that in the whole region /:;. < < w < < n/T the main 

(a) (b) 

Fig. 1. Diagrams for R( s). 

contribution to the spectral correlation function Re( w) is made by the "two-diffuson" diagram (and an 
equivalent "two-cooperon" one, if allowed by symmetry) shown in Fig. la. The wavy line corresponds 
to the standard diffusion (or cooperon) propagator, while the triangles are made of the one-particle 
Green's functions. Here the spectral density correlation function is defined as 

Re(w) = �(v(e)v(e + w)) - 1 , Vo (5) 

where v(e) is the exact density of states at the energy e, and ( . . .  ) denotes the ensemble average over 
the realizations of the random potential. In the whole region w < n/T, the average density of states 
vo is a constant (which the mean level spacing /:;. is related to as /:;. =  (v0Ld)-1), and Re(w) = R(w) 
depends only on the distance w between the two levels. Note that this function contains the /;(w) term 
resulting from the self-correlation of energy levels. This term is relevant for the integral properties of 
R(s). In general, R(w) is related to the function Y;, which is given for the GUE case by Eq. ( 1), as 

R(w) = -Y;(w) + /:;. · /;(w) 
On calculating the constants represented by the triangles, one reproduces the result of Ref. 5:  

1:;.2 
R(w) = -(3 

2
Re L;(Dq2 - iw)-2 .  

71" q 

(6) 

(7) 
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Each vector component of the momentum q takes the values q°' = (27r / L )n" where na is an integer. 
For a closed system (i.e. a finite disordered sample without leads to the reservoir) n" takes all integer 
values. In the ergodic region w « Ee, the summation in Eq. (7) reduces to the q = 0 term only which 
results in 

t:,.2 1 R(w) = -{37r2w2 = -{37r2s2 (8) 

Corrections from the 2n-diffusons diagrams like that in Fig. lb (for n = 2) are proportional to s-2n 
which reveals the failure of the perturbative approach in the quantum regime. Even in the ergodic 
region, 1 < s < g, this approach gives only the envelope of the exact correlation function ( 1). For the 
electrons in the ergodic region, this function has been calculated by Efetov4) within a non-perturbative 
technique of the "zero-dimensional" nonlinear a model. Such a technique, however, could not be 
extended even to the diffusive region w » Ee. not speaking about the region of the Anderson transition. 

Although the oscillating factor in Eq. ( 1) is obviously non-perturbative as the diagrammatic ex­
pansion is going on in inverse powers of s, the levels number variance E2 may be found perturbatively. 
It is given in terms of R( w) as 

E2(E) 
E �2 j (E - Jwl) R(w) d;,,;. 

0 
(9) 

A nai:ve lower-limit cutoff w � ti in this integral would be disastrous having led to an (absent) 
N-proportionalcontribution to the variance. In Ref. 5 the lower cutoff has been provided by changing 
w to w + ir  in the diffuson pole, that gives E2 for r » ti (e.g. , for an open sample). In this way 
one would not be able to compare this directly to the WD result for the levels number variance E2 at 
r = o, Eq. (2). 

Nevertheless, one can restore the expression (2), using the perturbative result (8) and the following 
sum rule 

lRex(s) ds = 0, s = w/t:., (10) 
-oo 

which results from the conservation of the total number of energy levels for any non-singular random 
potential, J�00 [v(c: + w) - v0]d;,,; = 0, and holds for the exact correlation function Rex(s) . 

Now suppose that we know Rex( s ). Then using the sum rule for the first term in Eq. (9) and 
splitting the second one into the sum of the two terms, one has: 

where N = E /ti is the average number of the levels in a wide enough energy window with ti « 
E < Ee (i.e. 1 « N < g), and a constant a is chosen so that 1 « a « N. Now one may substitute 
the asymptotic expression (8) for Rex( s) into both the first and the third integrals. The second integral, 
where such a substitution is impossible, is reduced to some N-independent constant. The first integral 
also gives a constant (neglecting small corrections coming out of the integration of the ballistic tail of 
R in the region s > 1/  t:.r), while the third one reproduces with the accuracy up to a constant the WD 
result (2): 

2 -
E2 ( E) = {37r2 ln N + const, l « N;:;,g. (12) 
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In the diffusive region, the perturbative approach is naturally applicable. In this case, the summation 
in Eq. (7) may be replaced by the integration: I;q ---+ Ld f ddq(27r J-d. Introducing the dimensionless 
variable of integration k = qL"'' with the diffusive length given by 

one obtains the following estimation for R( w): 
6.2 ( L ) d ddk 1 ( 1)2-d/2 

R(w) = - {37r2w2 Lw Ref (27r)d (l + ik2)-2 � yd/2 -:;- ' 

(13) 

s » g. ( 14) 

Naturally, it is easy to calculate the dimensionless integral here in order to obtain an exact coefficient 
of proportionality but for a moment we prefer to leave Eq. ( 14) as a dimensional estimation. Then �2 
in the diffusive region is obtained straightforwardly with the help of Eq. (9) to reproduce the result of 
Ref. 5: 

- 1 y « N;O;, 6.T . ( 15) 

In contrast to the variance in the ergodic region (12), the last one is not universal, as it depends on the 
conductance y. 

The universal WD statistics become exactly applicable to the entire metallic regime in the thermo­
dynamic limit 

L ---+ oo, N = E/6. = const » 1, ( 16) 

when the mean level spacing 6. = (v0LdJ-1 tends to zero but the number of levels in the energy 
window of the width E is kept finite, although very large. Indeed, as g = Ee/ 6. � v D Ld-2 ---+ oo for 
d > 2, the region of validity of the nonuniversal statistics ( 15) in the diffusive region vanishes. 

3 Universal spectral statistics in the critical regime 

Let us recall what is the scaling description of the Anderson transition6). The standard Gell-Mann -
Low equation near the transition has the form 

dy 1 
d ln ).-1 = f3(g) = -;; (g - Ye) , ( 17) 

where 9e, the critical value of y, is of order 1 for d = 3, >. is the scaling parameter, 0 < >. < 1, and 
l/v = f3 '(ye). The solution to this equation may be written down at the metallic side of the transition 
(y > 9e = Yo(c:e)) as 

e = l ( ___.!!.c_)v = l ( ___:.=_ )v . Yo - 9e C: - C:e 
( 18) 

Here e is the correlation length (with l being the elastic mean free path, and l being a certain length 
of order l), and £ is the coherence length (the shortest of L, Lw, the phase-breaking length Lq,, etc). 
For a given L, the correlation length diverges only when the energy c: is exactly at the mobility edge 
c:e. However, the critical region includes all energies obeying e(c:) > L. For the energy window of 
any fixed width E centered at the mobility edge, e 2'. e(E /2) � l(c:e/ E)v. Then the ratio 

( 19) 
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diverges in the limit ( 16) due to the Harris criterion 12) v > 2 / d. This ensures that an infinitesimal 
energy window centered at the mobility edge may contain an arbitrary large number of the levels. 

We have shown that in the limit ( 16) statistics of the levels in the infinitesimal energy window 
centered at the energy c: such that g(c:) > 9c were exactly Wigner-Dyson (the disordered system is 
an ideal metal with g -+ oo). Similarly, statistics in the energy window with g( c:) < 9c are exactly 
Poisson (the system is an ideal insulator with g -+ 0). Now we see that in the very same limit there is 
a possibility for the existence of new, critical statistics for the energy window centered at the mobility 
edge C:c. 

Let us return to the energy scale picture, Eq. ( 4). When the disorder increases so that the bare value 
of the dimensionless conductance decreases down to 9c � 1 in the vicinity of the Anderson transition, 
the whole ergodic region shrinks to s�l. while the ballistic region is shifted to s:<,c:p/ Li.. So the whole 
region of interest, fl.'/(,w�c:P is arising from the nonuniversal diffusive region in the metallic regime. 
Statistics in this paramter-free region may be analyzed within the standard scaling approach. 

The first attempt of this sort has been made in Ref. 7. It follows from Eq. ( 18) and the Einstein 
relation g = v0DLd-2 that at the mobility edge 

Lw = (gc/11ow)1ld � (110wr1/d . 

Comparing this with Eq. (13), one restores the well-known13) result at the mobility edge: 

D(w) ex L�-d ex w1-2/d_ 

(20) 

(21) 

This result has been converted in Ref. 7 to the statement that one can substitute g = v0DLd-2 ex E1-2/d 
into Eq. (12) obtained in the metallic regime. Had such a scaling been correct, it would lead to a 
sub-Poisson behavior �2 = a.N at the mobility edge. (A coefficient a has been claimed equal 0.25 in 
Ref. 7). 

However, the diffusion coefficient depends on the distance w between the two levels rather than 
on the width of the energy window. Moreover, it should also depend on the momentum q so that the 
diffusion propagator that enters Eq. (7) for the two-diffuson diagram may be expressed as 

P(w, q) = [n(w, q)q2 - iwr1 . (22) 

which is the most general expression compatible with the particle conservation law. Now, even without 
knowing this propagator exactly, we can estimate the two-diffuson contribution (7) at the mobility 
edge. It is actually similar to the estimation ( 14) made for the diffusion region in the metallic regime. 
Although the integral could be totally different, dimensional analysis gives the same expression in 
terms of D and Lw 

s » 1,  (23) 

where the final estimation is quite different, though, due to the w-dependence of D, Eq. (21). On 
substituting this into Eqs. (9), ( 1 1) ,  one obtains a very unpleasant result: �2 � N In N at the mobility 
edge. 

The subscript 2 in Eq. (23) is to stress that it describes the contribution of the two-diffuson and 
two-cooperon diagrams only. Naturally, one expects many-diffuson diagrams to be also important at 
the mobility edge. A similar dimensional estimation for the contribution of the 2n-diffuson diagram 
in Fig. 2a yields 

� 
fl. 2n £(2n-l)d _ (�) 2n (i'__) d(2n-1) 

� 
� 

R2n(w) fl2n(w) L�(2n-1)-4n - W Lw W '  
(24) 
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as at the mobility edge (L/ L.,)d � w/ 6., Eq. (20). Note that the same diagrams lead to the inappli­
cability of the perturbative approach in the quantum region in metals, w < 6.. At the mobility edge, 
the contribution (24) of each diagram is of the same order, ex: 1/ s, as that of the two-diffuson diagram 
(23). One can check that there are no diagrams that could give a bigger contribution to R(s ) . Then, 
on the face of it, the "unpleasant estimation" E2 = AENln N persists at the mobility edge, with AE 
being a dimensionless coefficient given by the sum of all diagrams. 

Let us argue now that this result is no more unpleasant than that of the Ref. 7, E2 = a.N, described 
above. Both of them are forbidden at the mobility edge by the sum rule (10). Indeed, one obtains 
from Eqs. (9) and (10) that 

dE (N) N 100 d(N) 
= 2 / R(s) ds = --2 

N 
R(s) ds. (25) 

The function R( s) must be universal at the mobility edge (in a sense that it does not depend on any 
other parameter but s). For such a function the sum rule ( 10) is fulfilled only if the integral in the r.h.s. 
of Eq. (25) tends to 0 with increasing N. Therefore, in this case E2 (N)/ (N) � o(N) for N » 1 .  

Note that were R( s)  to  contain a long fiat tail (proportional to some small parameter), the sum 
rule could impose no limitation on the value of the integral in the r.h.s. of Eq. (25). Indeed, it is 
just the case for the insulator regime where this small parameter is 6. / 6.e, with 6.e being the mean 
level spacing within a localization volume ed, and just the existence of the tail ensures, as we have 
shown,9) the Poisson behavior of E2 . However, the only small parameter at the mobility edge is 
r!J. � 6./c.r Within the standard one-parameter scaling6) such a dependence is forbidden as all 
microscopic parameters are absorbed by the dimensionless conductance g that is of order 1 near the 
mobility edge. Moreover, were any contribution proportional to this parameter to exist, it would be 
almost the same in the metallic regime, as it could only be originated from the ballistic region w > n/r 
which is hardly sensitive to the transition, thus leading to the sub-Poisson behavior of E2 in this regime 
as well. Therefore, it is hardly possible to believe in the existence of such a tail that could justify the 
sub-Poisson behavior at the mobility edge. 

The dimensionless estimation above has given E2 = AENln N which is absolutely unacceptable. 
A proverbial "poor man hope" would be that contributions of different diagrams cancel each other so 
that AE = 0. Again, it is hard to believe in such a miracle: the cancellation, if any, should happen for 
all the three ensembles, /3 = 1 ,  2, 4. 

The real result is that the 1 / s-proportional contribution of each diagram to R( s) does not exist. 
Dimensionless estimations are usually quite reliable, until an appropriate coefficient appears to be 
equal to 0. It is just the case for the problem under consideration. The key is the analytical properties of 
the diffusion propagator (22) resulting from the causality. The analyticity and certain scaling relations 
at the mobility edge similar to that in Eq. (20) ensure vanishing these 1 / s-proportional contributions. 
The same considerations will allow to find what is left after the cancellation of the 1 / s terms. 

The causality means that the propagator P(t, r - r') , that is the space-time Fourier-transform of 
P(w, q), Eq. (22), is zero for t < 0. Then P(w, q) is analytical in the upper half-plane of the complex 
variable w. It satisfies also the relation P•(w, q) = P(-w, -q), as Im F(t , r -r') = 0. Using also 
the spatial isotropy, one has P•(w, q) = P(-w, q). Then the conventional scaling arguments allow 
to express P(w, q) at the mobility edge Ce -+ oo) in the limit L -+ oo in terms of the dimensionless 
scaling function F depending on qL.,, the ratio of the only two lengths characterizing the system14) :  

1 - 1 qd P(w, q) = -( -. ) F(qL.,) := -( -. 
)
F (() , ( := -. - , (26) 

-= -= -=� 
where due to the above analyticity requirements, w contains an infinitesimal imaginary part, and the 
function F( () is analytical for Re ( > 0 and satisfies the condition 

F*(() = F(C ) . (27) 
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In the static limit P(w -+ 0, q) ex q-
d at the critical point15). In the opposite limit, L.,q « 1, the 

diffusion propagator has the form (22) with the diffusion coefficient (21) depending only on w. That 
results in the asymptotics 

(28) 

where a1,2 are real coefficients of order 1 .  
Now we can show the 1 / s-proportional contributions to vanish. Before coming to this, let us 

return to the dimensional estimation in the diffusive regime, F.q. ( 14). Calculating the integral in that 
equation exactly, one finds that it is pure imaginary at d = 2. Therefore, correlations between two 
levels are absent at d = 2 to the first order in l/g.5) We can show this in a different way. Namely, 
we change the variable of integration in F.q. ( 14) to (, F.q. (26), using that ( = iq2 L., 2 / g = ik2 / g for 
d =  2: 

d2 k . 2 -2 
oo dk2 . 2 -2 

ioo d
( -2 Rej (27r)d (l + ik ) � j (27r)d

Re ( l + ik ) � j (27r)d
Re ( l + (/g) (29) 

As the real part of the integrand is an even function of (, one extends the integration to the entire axis. 
Then, closing the contour of integration in the right half-plane of (, one shows the original integral to 
be equal to 0. A crucial point for this proof is that in the diffusive regime the integration at d = 2 is 
reduced to that over d(, with no additional dependence on (. 

From this viewpoint, the integration in the two-diffuson diagram at the mobility edge is similar to 
that at d = 2 in the diffusive regime. Indeed, using F.q. (26) one obtains: 

f'j,_2 dd . ioo d( R2 (s) = 
27r2/3

Ld Rej (27rJd [P(w, q)]2 � -+ / (27r)d Re F2((). (30) 

F.q. (27) ensures that the real part of the integrand is even, so that again the integration may be extended 
to the entire axis. Since the integrand is analytical for Re( > 0 and decreases fast enough at z -+ oo, 
F.q. (28), the original integral equals 0. A straightforward extension of these arguments allows to 
prove that the 2n-diffuson contributions vanish in the same approximation9) .  

So, what is left after the main contributions having been cancelled? It  transpires that one should 
calculate the same diagrams, Fig. 1, with the higher accuracy. Indeed, we have considered the limit 
( 16) in calculating the integral in F.q. (30). However, in this limit /'<,. -+ 0, and thus 1 /  s -+ 0. To keep 
corrections in powers of 1 / s, one should keep L finite, although large. We can consider the crossover 
regime where both the correlation length e and the system size L are much larger than L.,. In practice, 
it is more convenient to begin with the limit L » e » L.,. In this case any scaling function depends 
on the appropriate lengths measured in e. In particular, the diffusion propagator becomes a function of 
qe and L.,e . As L.,e is a small parameter, it is convenient to rearrange it as a function of ( � i(qL.,)d 
and L.,e, and expand in L.,e (such an expansion being not necessarily analytic) : 

P(w, q) = (-iwt1 [F (() + (/'<,.ef-iw)1--r <I>(()] , (31) 

where /'<;e = (l/voe) is the mean spacing withing the correlation volume ed. Here/'<;e/-iw = i(L.,e)d 
is chosen to be the parameter of the expansion to ensure that the scaling function <I>(() has the same 
analytical properties as F( (). 

To define the exponent 'Y in F.q. (31), one finds the diffusion propagator (22) in the limit L.,q « 1. 
For e = 00, an asymptotic behavior at small ( has been given by F.q. (28). For finite e. one uses 
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D(w) = (g/v0L., d-2), and substitutes g from Eq. ( 18) with [, = L.,. (The analyticity requirements 
mean, as above, that one always substitutes (i/wv0)1fd for L.,). It results for finite e in 

P(w, q) = _
1
__ [1 - a.2(2/d - a.2(2/d (�)1/vd1 ' 

-iw -iw 
J( J  « 1 .  (32) 

Comparing Eqs. (32) and (3 1), we have: 

(33) 

Note that 1/2 < r < 1 due to the Harris criterion12). 
Now, Eq. (31) can be used for estimating the first integral in (30). As the real part of the integrand 

is no more an even function of (, the integral does not vanish. The main non-vanishing contribution is 
obviously proportional to ( t.t., b./ w2-.,) . A coefficient of proportionality could not be found as one 
does not know an explicit expression for the diffusion propagator near the mobility edge. Anyway, 
this coefficient is irrelevant by itself since all 2n-diffuson diagrams give the same-order contributions 
to R( s ), see Ref. 9. Finally, the standard crossover reasoning allows to substitute b. for b.e in the 
universality limit ( 1 6) when e » L, Eq. ( 19), which leads to 

s » 1 ,  (34) 

where Cdf3 is some numerical factor which depends on the universality class ({3) and dimensionality. 
Now we can use Eq. ( 1 1) ,  based on the sum rule ( 10), for calculating �2 . Again, for both the 

first and the third integrals we can use the asymptotic expression (34). Thus, neglecting an irrelevant 
constant that depends on the arbitrary cutoff a in Eq. ( 1 1), we arrive at 

(35) 

that holds exactly at the mobility edge. Here adf3 = 2cdf3h(l - 'Y ), and r• Eq. (33), depends only on 
the dimensionality and the correlation length exponent v. Since the coefficient adf3 must be positive, 
Cdf3 > 0, and the correlator R(w) is negative for w » b.. For small w « b. one can use the same 
zero-mode approximation4) as in the metal region for w «  l/rv, so that the correlation function R(s) 
should have the Wigner-Dyson form. We can conclude, therefore, that the energy levels are repelling 
at all energy scales. 

4 Conclusion 

We have obtained that the statistics at the mobility edge are intermediate between the Wigner-Dyson 
and Poisson cases. It seems to be in line with our general understanding of behavior of the wave 
function at the transition. Indeed, in the absence of the level correlations in the insulator phase, where 
wave functions corresponding to different localized states have no overlapping in the limit ( 19), the 
variance �2 = N. A strong overlapping of the wave functions in the metallic phase leads to the 
logarithmic suppression of the level number fluctuations, Eq. ( 12). At the mobility edge the states are 
not localized but appear to be very patchy so that the overlapping is in general smaller, that leads to 
the level number fluctuations (35) that much larger than in the metallic phase but much smaller than 
in the insulator one. 

Note in conclusion that, having known the asymptotic behavior of the correlation function (34), we 
could use a Dyson-like plasma model to restore the asymptotic behavior of the nearest-level-spacing 
distribution P(s).10) Since for s « 1 the distribution should have the same behaviour P(s) � sf3 at 
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the mobility edge as in the metallic phase8) which follows from the general symmetry theorem proved 
by Dyson 1 ), the entire distribution could be described by the following surmise: 

P(s) = Bs13 exp (-Aafls2--r) . (36) 

The coefficients B and Aafl in Eq. (3) are defined by the normalization and the first moment, similar 
to that for the Wigner surmise (3). On the other hand, Aafl is directly related 10) to the coefficient Cdfl 
in the correlation function (34). So, provided that the surmise (36) is valid, we would be able to gain 
quite a thorough knowledge of the new universal statistics at the mobility edge. 

The author acknowledges travelling support under the EEC grant No. SSC-CT90-0020. 
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Abstract 
Correlation effect is investigated theoretically in the strongly Anderson-localized 
regime in the presence of spin-orbit (SO) interaction. Based on numerical studies 
on the Hubbard model with disordered on-site energies, we suggest the magnetic­
field-dependence of hopping conduction. In the absence of SO interaction the mag­
netoconductance (MC) is positive through the Zeeman effect. In its presence the 
MC can be negative in low magnetic fields while it becomes positive in high mag­
netic fields. This result is in good agreement with a recent experimental result of 
nearest neighbor hopping conduction in a Cu-particle film. 

1 Introduction 

In the strongly Anderson-localized regime both the interference and the corre­
lation effects play important roles. As for the interference effect, the positive 
magnetoconductance (MC) of the hopping conduction has been suggested.1•2•3) 

While the electron-electron interaction affects the localized electronic states 
in various ways: (i) The long range Coulomb interaction makes a gap of the 
density of states at the Fermi level, Coulomb gap, which changes the T de­
pendence of the variable range hopping conduction.4l (ii) The short range 
correlation has been studied to explain the T dependence of the spin suscep­
tibility and specific heat .5•6•7) 
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In this paper we investigate the correlation effect of short range on the 
hopping conduction based on numerical studies on the Hubbard model having 
disordered on-site energies. We have shown that the correlation effect makes 
the positive MC through the Zeeman effect in the absence of spin-orbit (SO) 
interaction. s) The proposed MC is independent of the direction of the magnetic 
field. Here we extend the calculation to SO-interacting systems. The spin flip 
processes are taken as random variables.9•3) We indicate that the MC can be 
negative in low magnetic fields while it becomes positive in high fields. Then 
we explain an experimental result of the nearest neighbor hopping conduction 
in a Cu-particle film10l for the first time. 

2 Model and Calculation Method 

To treat the many-body effect of short range in a quantum mechanical way, we 
adopt the Hubbard model with disordered on-site energies in two-dimensional 
square lattice. The Hamiltonian is, 

H = L E;a!,uai,u + L (T;i)u,u' a!,uaj,u' + U 2= n;,rn;,1 , ( 1 )  
i,u {i,j) ,(f,u1 i 

-W/2 < E; < W/2,  (2) 

where (i, j) denotes the nearest neighbor sites i and j. Hopping terms are 
assumed to be constant without SO interaction, (T;1· ) , = t Du u' ,  while they u,u , 
can be written as below with SO interaction; 

T;i = ( a;i
* 

(3� ) ' -(3ij CX;j 
(3) 

where a;j and {3;j are taken as random variables. We only consider the Zeeman 
effect when a magnetic field is applied. 

Electronic states are calculated by the unrestricted Hartree-Fock method 
in non-SO-interacting case. By the method not only mean field but also part 
of the correlation effect can be taken into account because the orbitals for 
up-spin electrons can be different from those for down-spin electrons.8l We 
determine the one-electron orbitals in a self-consistent way for all the total 
spin (Sz) states independently. 

In SO-interacting case we adopt the following approximation; 

Un;,rn;,1 � U(n;,r)n;,1 + Un;,r (nu) - U(n;,r ) (ni,! ) 

- U(a!,Tai.!)al,ia;,r - U(al,ia;,r)a!,1a;.! + U(a!,1a;,1) (al,ia;,1) · 
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This is a natural expansion of the unrestricted HF method. Although Sz is 
no longer a good quantum number, its average is determined automatically 
by the self-consistent calculation. 

To estimate the degree of localization in the real space we calculate the 
participation ratio. It is defined as 

all-site 
('¢4) = j 1'¢(r) l4dr = � 1'¢(i) l4, 

I 
(4) 

(5) 

in the absence and presence of SO interaction, respectively. Here the lattice 
constant is unity. The larger the value is, more localized is the orbital. 

3 Calculated Results 

3.1 Absence of SO interaction 

First we present the calculated results for two electrons in an 8 x 8 square 
lattice (W = 10, U = 20, t = -1 ) . The boundary condition is free. The 
calculation is done for Sz = 0 and Sz = 1 states independently. In Fig.l we 
show the wavefunctions in both states. The orbitals in the low spin state are 
more localized than those in the high spin state. The reason is as follows: 
the electrons with antiparallel spins are interacting with each other through 
the U term in the Hamiltonian (1) while the electrons having parallel spins 
do not interact, that is, the correlation effect is stronger for the former. Thus 
spin-antiparallel electrons tend to be apart from each other, as a result, to be 
localized. 

Next we perform the calculation for eight electrons in 4 x 4 sites to in­
vestigate the magnetic field (H) dependence of the localization length. We 
calculate the total energy including the Zeeman term, 2µBHSz, for states of 
Sz = 0, 1 ,  2, 3, 4 and determine the ground state as a function of H. The 
values of W, U and t are the same as before and the boundary condition is 
free. Taking ensemble average over 200 samples, we get the magnetization 
( (Sz) )  and the participation ratio of the electrons at the Fermi level (EF ) , the 
highest occupied orbitals. 

The result is indicated by solid lines in Fig.2 as a function of the magnetic 
field. As the magnetic field increases, the magnetization increases due to the 
Zeeman effect (Fig.2 (a) ) . With the field, the averaged participation ratio is 
reduced and hence the orbitals are more extended, reflecting the increased 
number of the high spin states (in Fig.2 (b) the ratio becomes smaller in the 
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(a) 

/© 
(b) \ 

Figure 1 :  The one-electron orbitals for a two-electron system of 8 x 8 sites; (a) (upper two 
figures) the spin-antiparallel state (Sz = 0) and (b) (lower two figures) the spin-parallel state 
(Sz = 1 ) .  The contour lines are drawn every 0.05. 

vertical direction) . The H dependence of the localization length seems to be 
almost linear. 

The extension of the orbitals with the magnetic field causes the positive 
MC of the hopping conduction. It is estimated to be a few % in the near­
est neighbor hopping conduction.8) The proposed MC is independent of the 
direction of the magnetic field in contrast to the interference mechanism in 
which only the component of H perpendicular to the orbitals is effective.1•2•3) 

3.2 Presence of SO interaction 

For spin flip processes, we take a model of Ref. 3: O!;j and (3;j in eq. (3) are 
randomly distributed under the condition 

(6) 

The SO disorder is independent of the site disorder. This model corresponds 
to a large SO interaction case. We consider eight electrons in a 4 x 4 square 
lattice with W = 10, U = 20, J t l  = 1 and free boundary condition. The 
ensemble average is taken over 200 samples. 

The calculated results are indicated by broken lines in Fig.2. Although 
the H dependence of the magnetization is almost the same as in non-SO­
interacting case (Fig.2 (a)) , that of the averaged participation ratio at EF is 
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Figure 2: The magnetic field (H) dependence of the averaged Sz (magnetization) per a system 
(a) and of the participation ratio (b} for systems of eight electrons in 4 x 4 sites. The ensemble 
average is taken over 200 samples. Solid and dotted lines indicate the cases in the absence and 
presence of SO interaction, respectively. The unit of µBH is J t j .  In (b} the value becomes 
smaller in the vertical direction. 

much changed by the SO interaction, as seen in Fig.2 (b ) : (i) its H dependence 
becomes much weaker, and (ii) it increases first and then it decreases with 
the magnetic field. 

This is due to the interplay between the SO interaction and the correla­
tion effect. It is well known that the SO interaction weakens the localization 
of electrons in the weak localization regime. The tendency seems to be the 
same in the strong localization regime. (It should be noted that the absolute 
value of the participation ratio is smaller with SO interaction than without 
SO interaction in Fig.2 (b) .) In low magnetic fields the spin flip processes are 
suppressed because the ratio of one-component of the electron spin is reduced 
and, as a result, the orbitals are localized. In high magnetic fields the correla­
tion effect becomes dominant, which extends the orbitals with increasing the 
magnetic field, as mentioned before. 

It indicates that the MC is negative in low fields while it becomes positive 
in high fields. This result is in good agreement with the recent experimental 
result of nearest neighbor hopping conduction in a Cu-particle film.10) 

The model we have adopted represents a large SO interaction. We are now 
examining another model for spin-flip processes9) to study a case of small SO 
interaction. 
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4 Conclusions 

We have investigated the correlation effect on the strongly-localized orbitals 
with and without SO interaction based on numerical studies on the Hubbard 
model. Taking account of the Zeeman effect, we have suggested a new mech­
anism of the positive MC of the hopping conduction in the absence of the SO 
interaction: the Zeeman effect increases the number of the high spin states in 
which the orbitals at EF are more extended owing to the weaker correlation 
effect of short range, than in the low spin states. The proposed MC is inde­
pendent of the direction of the magnetic field and thus it can be distinguished 
from the orbital MC in experiments. 

In the presence of the SO interaction the MC through the Zeeman effect 
has more interesting features; it is negative in low fields and positive in high 
fields at least in strongly SO-interacting case. The H dependence of the MC 
has been observed in the nearest neighbor hopping conduction in a Cu-particle 
film.10) The proposed MC of the hopping conduction will be also observable 
in other systems, e.g. doped semiconductors, an array of artificial quantum 
dots, if some condition is satisfied.8) 
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The subject of the Coulomb gap and its experimental manifestations were extensively investi­
gated for the last two decades [4, 5, 6, 7] . Though many works were devoted to the form of 
the gap and the influence of multiparticle transitions for the samples of various dimensionality 
[8, 9, 10 ,  1 1 ,  12,  13] ,  the dynamics of the correlation processes leading to the Coulomb gap were 
not studied in such detail. The relaxation process for a system of interacting localized electrons 
was discussed in [14] .  

These dynamics could be responsible for the persistent photoconductivity observed in recent 
experiments [ 1 ,  2] . In these experiments, relaxation of the photoconductivity of Anderson 
insulators was studied. The sample, a 2-d indium oxide film, was excited by light [2] or by an 
external electric field [ 1 ]  and the slow relaxation of the induced conductivity (Ou) was observed 
( ou / u � 10-2 at the time scale � 103 sec after the excitation; u is the conductivity of the 
material) (Fig. 1 ) .  

We will consider the following model for electron states in  the insulator. The states (sites) of 
characteristic size a are randomly distributed in space and energy in the absence of interaction. 

An interaction between electrons is purely Coulombic: Uij = e2 /rij , where e is the effective 
electron charge and rij is the distance between the sites. The characteristic distance between 

sites r is supposed to be greater than the localization length a .  

The ground state for such a system is, by definition, the state where any electron transition 
from one site to another corresponds to a non-negative change of the energy of the system. 
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This condition provides the following inequality for a transition from site j to i [ 18] :  

( 1 )  

where e 2  /rij i s  the energy of Coulomb interaction between the two sites and E; i s  the single 
particle energy of the site i, i .e. the energy necessary to deliver one electron to site i from 
infinity while all the others are frozen. 

To find the density of states which satisfies the restriction ( 1 )  the selfconsistent equation 
was proposed [8, 9] : 

(2) 

here g( E) is the single particle density of states as a function of energy measured from the Fermi 
level (hereafter all the energies will be measured from the Fermi level), g0 is the density of 
states far from the Fermi level, d is the dimensionality of the sample, Vd is the volume of unit 
d-dimensional sphere . 

The solution for this equation for E � W, where W � (g0/e2 )1/(d-I) is the width of the 
Coulomb gap, has the form 

(3) 

Such a behavior of the density of states is referred to as a Coulomb gap and is supposed to 
be responsible for the exp -(Ti/T)112 temperature behavior of the conductivity [18] .  Now we 
discuss the time dependent density of states g( E, t) for a system of interacting electrons which 

was excited at time t = 0 to such a degree that the Coulomb gap has completely disappeared. 
To estimate the relaxation time to such a correlated state from an initial homogeneous 

energy distribution we recall that the jump time between sites i and j is: 

t;j = To exp (r;j/a). (4) 

where To � 10-12sec is the characteristic time for electron site-to-site jumps. Here we neglect 
the energy term in the exponent since in the following we will only be concerned with long 
relaxation times. Eq.( 4) introduces characteristic distance, and energy for the problem: 

t 
r(t) = a ln - , 

To 
e2 

E(t) = -- .  
a ln ..£ 

TO 

(5) 

In the following we present two approaches for calculating the time dependent density of 
states. Both of them imply that for large time scale g( E, t) = g(-E, t) .  
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Relaxation of the density of states was considered previously in [14] .  It was assumed that 

in a time interval (t, t + 8t) only electron jumps of the range (r(t) ,  r(t) + .Sr) take place. The 
balance equation was written and solved in [ 14] for the g(E, t) using this assumption. The 

form of the nonequilibrium density of states obtained in [ 14] is presented in Fig.2. Below, 
calculating conductivity, we will use the following interesting feature of g(E, t) obtained in [14] .  
In the derivation of g( E, t) only jumps of distance r(t) were taken into account. During these 

jumps the changes of the energy for the abandoned and occupied sites are less than e2 fr(t) .  

Thus all the jumps between sites will take place within an energy strip l c;,jl < e2fr(t). This 
leads to the conservation of the number of states within this strip. 

Another approximation for calculating non-equilibrium density of states could be the fol­
lowing. Suppose that in a time t after excitation all the correlations at distances shorter than 

a In ( t f r0) are established. The problem becomes similar to the problem of the Coulomb gap 
for a cut off Coulomb potential U: 

U = 
{ e2 fr for r < r(t); 

0 for r > r(t) 

The problem can be solved with a help of Efros selfconsistent equation analogous to (2) by 
methods developed in [ 17] for the case of screened Coulomb potential, and the result is somewhat 
different from the one of [ 14] (see Fig.2). Note that the density of states calculated with this 
method demonstrates unrealistic behavior. Namely, there exists a domain of energies E for 
which J!E (g( E, t) - g( E, oo))  de < 0. One can see that if the jump from site j to site i is possible 
when f; - Ej - e2 f r;j '.S'. 0, then the energy of the abandoned state Ej + e2 fr becomes higher than 
the energy of the occupied one before the jump f;. This means that in single particle jumps 

approximation each jump causes the states to move away from the Fermi level, thus implying 
non-negative value for the integral . However, the negative values of the integral are small ( in 
a sense that will be clarified later), and we will be able to neglect it. 

We now calculate the conductivity relaxation according to the derivation of the variable 
range hopping conductivity presented in [19]. The whole sample can be considered as a set of 
random resistors connecting sites. Two sites i and j are connected with the resistor R;j : 

R;j = Ro exp (rfa + E;1fkT) (6) 

here Eij = l f2( l cd + lc1 l + Jcj - Ej i ) ;  Ei,j are the energies of the sites, T is the temperature and 
k is the Boltzmann constant. The conductivity of the sample cr has the form: 

(7) 
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here � is the critical value for which pairs of sites obeying the bonding criterion 

form an infinite cluster. We find �(t) = fo + 6 (t) substituting the time dependent DOS in the 
derivation [ 19] :  

Here 
e2 T1 = ­a 

(8) 

is the characteristic energy for the problem, a �  io-2 is the numerical constant. Time depen­

dent conductivity is : 
(9) 

The system achieves equilibrium when the characteristic width of the energy band where 
the relaxation takes place E � e2 /r(t) turns out to be of the order of the temperature. The 
corresponding time 

We expect, for the systems discussed in [ 1 ,  2, 16] ,  localization lengths to be several A, and hence 
T1 � lOOOK ( dielectric constant for the sample is of order 10) .  This leads to the relaxation 
time that somewhat exceeds the age of the Universe (actually measured relaxation times are 
determined by the accuracy of measurements). 

This means that even before the illumination the system was not in an equilibrium state 
and its conductivity should be described by equations Eq.(9) and Eq. (8), where instead of t one 
should substitute the time of preparation of the sample tprep which in actual experiments was 

� 104 + 105sec. Thus to understand the experimental results we will choose certain reference 
time t0 and study the relative variation of conductivity. This gives the following result for the 
excess conductivity due to the perturbation of the sample : 

��-�� - a  - In - - ln -cr(t) - cr(to) - (T1 ) d/2+l ( ( to ) -d-1 ( t ) -d-1) 
cr(to) T To To 

where er is the conductivity of the material after the preparation. 

( 1 0) 

Fitting the experimental data with expression ( 10) ( see Fig. I ), one gets for T1 the value 
� lOOOK. The corresponding localization length a is � lOA. 

I would like to thank Prof. Zvi Ovadyahu for the numerous helpful discussions and acquaint­
ing me with the unpublished experimental data. I am very grateful to Prof. M .E. Raikh for 
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Fig.I The plot represents the time dependence of the excited conductivity. The 

Y-axis is the relative difference between the conductivity at a given time u(t) and the 

conductivity at time t1 = 2685 sec. The X-axis is the time after the excitation. The gray 

area shows the experimental data from [2]. The solid line corresponds to a fit of Eq.(18), 

with parameters r0 = 10-12sec and a.112T1 = 1608K. 
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Fig.2 The time dependent density of states from [14] and calculated from equation 

(6). <o(t) = e2/r(t). 
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FROM CHAOTIC SCATTERING TO LOCALIZATION: 

A BRIEF REVIEW OF RANDOM MATRIX APPROACHES. 

Jean-Louis Pichard 

Service de Physique de l'Etat Condense, C.E.A. Saclay, 91191 ,  Gif sur Yvette cedex, France. 

Abstract 

The statistics of the transmission eigenvalues of a complex many-channel scatterer are 

reviewed, assuming different random matrix ensembles for its scattering matrix S or trans­

fer matrix M. We derive the distributions corresponding to the Dyson circular ensembles 

for S, which we compare to those given by the global maximum entropy approach for M 
and to those yielded by the multiplication of isotropically distributed transfer matrices. 

Following the considered ensemble, one gets the conductance distribution for ballistic dots 

with chaotic dynamics and for quasi-ld disordered conductors and insulators. We show 

in conclusion how some level repulsion persists in the transmission spectra of 3d Anderson 

insulators and how localization appears in the two level form factor of the scattering phase 

shifts. 

We consider a complex scatterer which is connected to two electron reservoirs by two iden­
tical leads where electron fluxes have a quantized transverse momentum. This quantization 

defines N channels by which the carriers can be injected through each lead. The sample be­

tween the two leads is represented by a 2N x 2N scattering matrix S (giving the outgoing fluxes 

in terms of the incoming ones) or by a 2N x 2N transfer matrix M (giving the fluxes in one of 
the lead in terms of the flux in the opposite lead) .  Introducing a certain polar parametrization 

of M and S, one can define N real positive parameters Aa, hereafter mentioned as the radial 

parameters, which are particularly convenient l,Z) since: 

( i) .  They give the transmission eigenvalues Ta = (1 + ,\a)-1 of ut, where t is a submatrix 
of S describing how the flux amplitudes are transmitted from one reservoir to the other. Using 
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a two-probe Landauer formula, the sample conductance g (in units of 2e2 / h) reduces in this 

parametrization to a linear statistics of the radial parameters: 

N 1 
g = l: 1 + .A . a=l a 

(1) 

as other physical quantities of interest (shot-noise power, conductance when one of the reservoir 

becomes superconducting, Josephson effect between two superconducting reservoirs). 

(ii ) .  Their joint probability distribution P( Pa}) is given, assuming for M a statistical en­

semble of maximum information entropy with a given average density p(.A) ,  hereafter mentioned 

as the global approach, by: 

P( Pa} ) = z-l exp[-,B?i( Pa})] ,  

1-£( Pa}) = - L In l .Aa - Ab l  + L V(.Aa) ,  
a<b 

(2) 

(3) 

where Z is a normalization constant. One can view this distribution as the Gibbs factor of 

a fictituous Coulomb gas. The parameter ,B, which plays the role of an inverse temperature, 

can take three possible values depending on the system symmetries: ,B = 1 when the system is 

invariant under time reversal symmetry and spin rotation symmetry (orthogonal case), ,B = 4 

when a strong spin-orbit scattering removes spin rotation symmetry (symplectic case) and 

,B = 2 if a magnetic field breaks time reversal symmetry (unitary case). The one-body potential 

V(.A) can be related, in the large N-limit, to the constraint p(.A) of this maximum entropy 

ensemble by: 

V(.A) = la"° p(.A') In I .A - A'Jd.A' + O(N°) .  (4) 

In this description, the radial parameters { Aa } are distributed like the energy levels of a complex 

system with Wigner-Dyson statistics3). This allowes us to use the powerful methods first 

developed for the energy levels statistics of complex nuclei, with two major differences: the 

Aa are confined to the positive part of the real axis and their density p(.A) contains a more 

direct information about transport than the Hamiltonian spectra. The average conductance 

< g >= f000 p(.A)(l + .A)-1 d.A indicates indeed wether the system is metallic or insulating. When 

V(.A) strongly confines the radial parameters to small values, one can for instance descibe a 

chaotic ballistic quantum dot or one can give a somewhat simplified picture of a diffusive quasi­

ld conductor with elastic mean free path l and size L (global approach) . When V(.A) weakly 

confines the Aa to exponentially large value exp(2L/ea) ,  one simply gets the statistics of an 

insulator with a localization length defined by the largest of the characteristic decay length ea · 
For weakly disordered wires, we discussed in section 4 the merits and the weaknesses of this 

simplified description. 
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(iii) The radial parameters are related to the logarithms Va = 2L/ea of the eigenvalues of 
Mt M through the relation 

Aa = 
coshva - 1 

2 (5) 

The Va obey a law of large numbers if one has a multiplicative combination law for M (Oseledec's 
theorem) and are normally distributed in the localized regime. 

The purpose of this contribution is to shortly review recent advances in the understanding 

of the validity and of the limit of Wigner-Dyson statistics for these radial parameters, concern­

ing chaotic ballistic dots4l , quasi-ld disordered conductors and insulators1 •2) , and disordered 

systems in higher dimensions (e.g. 3d insulators5l ) .  

1 Polar decomposition of S and M .  

Using system symmetries (current conservation, time reversal symmetry, spin rotation symme­

try) one can show6•7l that both S and M can be expressed in terms of the N radial parameters 
{>.a} of M and 4 (2 in the presence of time reversal symmetry) auxiliary unitary matrices. 

Writing S as usual in terms of the 4 N x N reflection (transmission) matrices r, r' (t, t') and 
similarly the 2N x 2N transfer matrix in terms of 4 N x N blocks, the polar decomposition of 

S and M is defined by: 

S =  ( : t' ) 
r' 

( u<3l O ) ( 
0 u(4) 

M = ( u�4) 0 ) ( (I + >.)1/2 

u(2)t ;.1/2 

-v'R 
ff 

VT ) ( u<1l o ) 
v'R 0 u<2l 

;.1/2 ) ( u(l) 

(I + >.)1/2 0 u�lt
) 

(6) 

(7) 

The u(ll (I = 1 ,  . . .  , 4) are arbitrary N x N  unitary matrices. >., R and T are real diagonal 
NxN matrices with non-zero elements being respectively the radial parameters Aa , the reflection 

eigenvalues Ra = >.a(l + >.aJ-1 and transmission eigenvalues Ta = (1 + >.aJ-1 . 

This decomposition applies to the unitary case. In the orthogonal case, S is symmetric and the 
polar decomposition requires only two independent unitary matrices: 

(8) 

(9) 

In the symplectic case, the spin degenracy is removed and each matrix element becomes a 

2 x 2 quaternion matrix, which doubles the size of M and S, but u(3) and u<4l are also given6l 

in terms of u(l) and u<3l and the >. have a twofold degeneracy (Kramers degeneracy). 
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2 Invariant measure of S in the polar parametrization. 

In the original work of Dyson8) , the measures µ13( dS) of an infinitesimal volume element of the 

matrix-space where S is defined, given the system symmetries, are expressed as a function of 

the 2N eigenvalues {exp iO.} and of the eigenvector coordinates. This is suitable to obtain the 

distribution of the scattering phase shifts { O.} ,  but not to study a transport property A which 
can be expressed as a linear statistic A = I:;:1=1 /(>. . • ) of the radial parameters. For having the 
measure µ13( dS) in terms of the { ,\. }  and of the u(I), we have adapted7l the original method of 

Dyson, as sketched here only for the orthogonal ensemble (/3 = 1 ) ,  where S is unitary symmetric 

and can be represented in the form S = yyT, where Y is unitary. Note that this decomposition 

is not unique. An infinitesimal neighborhood dS of S is given by dS = iY dQYT, with dQ a real 

symmetric matrix. It has been shown by Dyson 7) that if the matrix elements dQ ij vary through 
some small intervals of lengths dµ;j , the measure µ1 equals µ1 ( dS) = IT.:;j dµ;j ,  independent of 

Y. We use this freedom to choose Y in a form convenient for the polar parametrization 

( 10) 

Since idQ = dYTy• + ytdY, and since Y and dY can be expressed in terms of the matrices U, 

0, I and their neighborhoods dU and dO, one can easily get dQ in this parametrization. The 
result is an expression for µ1 ( dS) in terms of the measures µ( d U) and µ( d,\) associated with 

the matrices U and ,\ , times a Jacobian P( {A.}) :  

µ1 (dS) = P( {A.}  )µ(d.\)µ(dU). ( 1 1 )  

The calculations i n  the unitary3) and symplectic9) ensembles proceed similarly and give for 
the Jacobian P(  { A.} )  an expression valid for the three ensembles which we write under the 

form of a Gibbs distribution, 

P({A.})  = z-1 exp[-/3H({Aa}) ] ,  

H(p.} )  = - "E ln I .\; - Aj l + 2: V13(.\; ) ,  
i<j 

( 2 - /3) V13(.\) = N + 2j3 ln ( l  + .\) .  

3 Ballistic quantum dots with chaotic dynamics. 

( 12) 

(13) 

( 14) 

A quantum dot is essentially a mesoscopic electron billiard connected by two small holes to two 

electron reservoirs. In contrast to a disordered wire with bulk scattering and constant section 
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considered in the next section, there is not a natural multiplicative combination law for the 

corresponding transfer matrix, in the case of an arbitrary complex shape of the chaotic billiard. 

An electron which is injected through one of the holes will either return through the same 
hole, with probability R, or be transmitted through the other hole, with probability T. Clas­

sically, if the electron dynamics is chaotic, the uniform (ergodic) exploration of the boundaries 

yields T = R, if the two holes are of the same size and sufficiently small that direct transmission 

(without boundary reflections) can be ignored. 

For a closed quantum dot (without holes) ,  it is well known that one of the quantum signa­

tures of its classically chaotic character consists in the Wigner-Dyson distribution of the energy 

levels10l . The quantum dot with holes is an open, rather than a closed system. Just as the 

Wigner-Dyson distribution describes the Hamiltonian H of the closed system, Dyson's circular 
ensemble8l provides the statistical properties of the scattering matrix S of the open system. 
To have spectral or scattering properties given by Wigner-Dyson distributions can be actually 

regarded as a precise definition of the somewhat vague concept of "quantum chaos" . To what 

extent a real ballistic cavity is close to this precise universal ·limit is the subject of the theory 

of quantum billiards1 1•12l. 

Assuming this definition of a quantum chaotic system, the statistics of the radial parameters 
characterizing the circular ensembles and their implications have been derived in Ref. 4, which 

we summarize. Dyson's circular ensemble applies to a system where all scattering processes 
are equally probable (subject to the constraints of current conservation and time-reversal and 
spin-rotation symmetry). The probability Pf3(dS) to find S in a neighborhood dS of some given 

S is just 
1 Pf3(dS) = Vf3 µf3(dS), (15) 

where Vf3 = J µf3(dS) is the total volume of the S-matrix space. Then, the circular ensembles 

consist in auxiliary matrices uUl which are independent from each other (excepted symmetries 

related to time reversal inva:riance) and distributed according to the invariant Haar measure on 

the unitary group. The N parameters >.. are statistically independent from the u-matrices and 

have a joint probability distribution identical to the Jacobian P( {>..}) = Zj;1 exp (-(31-l( {>..} ) )  
given by  Eq. ( 12-14). The Hamiltonian of this Gibbs factor has a one-body potential Vf3(>.) 
which is symmetry-independent to order N, while the term of order N° depends on (3. This 
distribution is universal; i.e. does not contain any physical parameter, excepted the number N 
of channels in the leads. 

The expectation value (A) = J;' a(>.)p(>.)d>. of a linear statistics A =  I:;;=l a( >.n) is given 
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by the density p(.\) characterizing the circular ensembles. Decomposing p = PN + Op into a 

contribution PN of order N (giving the "Boltzmann conductance") and a symmetry-dependent 

correction Op of order N° (responsible for the "weak-localization effect") ,  one finds: 

(.\) - N 
PN - ir(l  + .\)V,\°' 

/3 - 2 op(.\) = �O+(.\), 
where the one-sided delta-function satisfies J� O+(.\) d.\ = 1 .  

This gives for the expectation value (g) of the conductance: 

1 /3 - 2 (g) = 2,N + og, og = �-

( 16)  

( 17) 

(18) 

For /3 = 2, one finds (T) = !N = (R) (where (R) = N - (T) is the total reflection probability) . 
This is the quantum analog of what we expect from the "ergodic" exploration of the dot 

boundaries by the classical trajectories. Quantum interference then breaks the equality (T) = 
(R) by an amount oT, due to weak localization (/3 = 1) or anti-localization (/3 = 4). In the 
same way one can compute the average of any other linear statistics4l . 

Fluctuations around the average in this ensemble can be computed using the general for­
mulas of Ref. 13, which hold for any ensemble with a logarithmic interaction (regardless of the 
form of the one-body potential) .  The variance in the large-N limit is given by 

Var A = _..!:. 2_ rood.\ rood.\' (da(.\) ) (da(.\') ) In I .,/.\ - .,/A' I · 
/3 ir2 lo lo d.\ d.\' .,/.\ + .,/.\' (19) 

One gets the analogue of the "Universal Conductance Fluctuations" (UCF) in a ballistic chaotic 

cavity, which can be induced by a change of the Fermi energy, of the applied magnetic field, 
or of the boundary spin-orbit scattering, as well as by a slight deformation of the shape of the 

dot, with Var g = 1/8/3. 

Another remarkable result mentioned in Ref. 4 (see also Ref. 14), which might be experi­
mentally confirmed without difficulty, applies to a semiconductor quantum dot which is coupled 
to the reservoirs by two quantum point contacts with a quantized conductance of 2e2 / h. For 

N = 1 ,  the probability distribution (2) reduces to P(A) = !/3(1 + .XJ-1-li/2 , giving for g the 

distribution 

(20) 

In the presence of magnetic field (/3 = 2), any value of the conductance between 0 and 2e2 / h is 

equally probable. In non-zero field it is more probable to find a small than a large conductance, 

provided that the boundary scattering preserves spin-rotation symmetry (/3 = 1 ) .  In the 
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presence of spin-orbit scattering at the boundary ((3 = 4),  however, a large conductance is 

more probable than a small one. 

4 Quasi-ld wires with weak bulk disorder. 

It is remarkable that the pairwise interaction for the radial parameters in the circular ensembles 

is the same than in the global approach (see Eq. 2), originally introduced for describing bulk 
diffusion with elastic mean free path I .  However, with bulk disorder, the V(,\) of the circular 

ensemble, which does not contain I, is not appropriate: the presence of many impurities in the 

sample strongly favors the reflection of the carriers back into their reservoir, while very few of 

them can reach the oppposite reservoir and the conductance � Nl/ L (metal) or � exp -(2L/e) 
(insulator). This has to be contrasted with a ballistic cavity where an injected carrier is 
subjected to many chaotic boundary reflections before finding with almost equal chance one of 
the two injection leads, when N is large. The appropriate form for the potential of a disordered 
wire is given 2) by: 

(21) 

Of little practical importance, but of great theoretical interest, the pairwise interaction 

u(,\a - ,\b) occuring in a quasi-ld disordered system is not exactly the simple Wigner-Dyson 

logarithmic interaction assumed by the global approach, but is given 15) by: 

(22) 

at least in the unitary case. One can see that this interaction reduces to the usual logarithmic 
interaction if l .\a - .\b l < 1, but is halved if l.\a - .\bl > 1. It is worth to note that this modified 
interaction does not introduce a new parameter, in contrast to the one describing in a metallic 

particle the energy-level interaction which is controlled by the time it takes for an electron to 

diffuse in the sample16l . This discrepancy is responsible for the slightly different U.C.F.  values 

characterizing ballistic quantum dots with chaotic dynamics (2/16(3, logarithmic interaction) 

and quasi-ld disordered conductors (2/15(3, local logarithmic interaction only) .  
Let us mention how to obtain these results for a long disordered wire of constant transverse 

section in the limit of weak disorder, such that the total M-matrix can be regarded as the prod­

uct of the transfer matrices of many slices. This multiplicative combination law for M is at the 
basis of many works, either numerical or analytical, as those developed by Dorokhov17) from 
purely microscopic considerations and by Mello et al3) from a local maximum entropy assump­

tion. Contrary to their numerical counterparts, the analytical works we refer to assume that the 
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radial part of M is statistically decoupled from the u-matrices, which are supposed to remain 

distributed with the Haar measure on the unitary group, independently of the sample length. 

The radial part of M, characterized by the distribution P( {.A.}) ,  has its length dependence 
given by a Fokker-Planck equation. t This isotropy hypothesis makes sense only for weak dis­
order and quasi--0ne dimension (one gets the same UCF and weak-localization corrections than 
diagrammatic calculations based on quasi-ld microscopic models) . Using Sutherland's trans­

formation, Beenakker and Rejaei15l have mapped this diffusion equation onto a Schrodinger 

equation (with imaginary time) of a quantum set of point like particles free to move on a half 

line (the positive part of the real axis) within a certain potential. For arbitrary values of (3, 

these particles have a pairwise interaction, attractive for (3 = 1 and repulsive for (3 = 4, making 
difficult the solution of the Schrodinger equation. Fortunately, this interaction vanishes for 

(3 = 2, and the solution of the diffusion equation is reduced to an exactly solvable quantum 
N-body free fermion problem, giving the interaction defined by Eq.(22). 

In the localized regime, the global approach (with the potential given by Eq. (21)) and 

the Fokker-Planck equation give identical symmetry dependence19l of the localization lengths, 

though the (log) conductance fluctuations differs by a factor 2 in the quasi-ld localized limit1 l. 

This later point again is consistent with the halving of the pairwise interaction u(Aa - Ab) 
when l>-a - >-b l >> 1. For metals and insulators far from a quasi-one dimensional shape, a 

more dramatic shrinkage of the logarithmic repulsion has been observed20l .  This means that 
transverse diffusion (or even more transverse localization 5) yields a more significant reduction 

of the logarithmic pairwise interaction than the one obtained in quasi one dimension by Rejaei 

and Beenakker. We have to deal with a more difficult case where the u-matrices and the radial 

parameters are correlated, such that the length dependence of the statistics does not reduce to 
an "isotropic" Brownian motion in the M-matrix space. 

Using the polar parametrization of S and M, we have exactly shown the similarity and 

the difference between the distributions implied by the Dyson circular ensembles, which are 

suitable for describing quantum ballistic dots with underlying chaotic classical dynamics, and 

those describing in the weak scattering limit long quasi-ld disordered conductors and insulators 
where M has a multiplicative combination law. In the two cases, the u-matrices are decoupled 
from the radial part and are distributed with the Haar measure on the unitary group. The 

10ne can say that the multiplicative combination law of M induces an isotropic Brownian motion on the 

Lobachesky plane, as understood18) a long time ago in radio-electrical engineering for N = 1 (C.W.J Beenakker, 

private communication) .  For arbitrary N, one has the heat equation on a space of negative curvature, with a 

diffusion constant related to I in front of the radial part of the Laplace-Beltrami operator. 
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statistics of the radial parts differ essentially because of the one-body potential V(,\), and 

slightly because of the long range part of the pairwise interaction. 

5 Disordered insulators in three dimensions. 

In the quasi-Id localized regime, when the sample length is larger than the symmetry dependent 
quasi-Id localization length � = (3Nl, the pairwise interaction, logarithmic with infinite range 

in the global approach, or locally logarithmic only as implied by matrix multiplication (Eq 

(22)) ,  remains unchanged for a fixed number N of channels. The statistics is only governed by 

the weakening of the confining potential as L increases, eventually giving exponentially large 

values for all the Aa, with exponentially large separations between them. Those very large 
spacings only prevent to observe the persistence of the pairwise interaction. 

It is t�ernfore interesting to consider strongly disordered L*L*L  cubes where the number N 

of channels is not kept constant, but scales as L2 , in order to numerically check the persistence 
of some repulsion in the presence of localization. In figure 1, one can see the ensemble averaged 

values of the variables Va (essentially the log >.a, see Eq. (5)) given in Ref. 5 for intermediate 
and strong disorder. One can see indeed that exponentially large values coexist with small 

spacings, such that the pairwise repulsion should be felt ,  and the spacing distribution between 

nearest neighbours should be close to the Wigner surmises. 
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This qm be seen in figure 2: the transmission eigenvalues still repel each other when they 

are exponentially small, but close to each other. This has been obtained from a 3d-network of 
disordered quantum wires as explained in Ref. 5. Using the usual microscopic Anderson model, 
one gets similar behaviours. The persistence of a strong repulsion between transmission modes 

with extremely short characteristic decay lengths is quite noticeable, though weaker than the 
Wigner-Dyson repulsion. We can note that weak magnetic fields (about one flux quantum 

through the sample) have no clear effects on the spacing fluctuations. For moderate disorder, 

we observe a change of the spacing statistics and an increase of the localization length for a 

cross-over field of the order of a flux quantum per localization domain, considerably larger 

than the cross-over field characterizing a good conductor (one flux quantum through the whole 
sample only) .  A study of the long range rigidity indicates that the random matrix correlations 
persist only for small .\ separations, but disappear on a larger scale, recalling to some extent 
the situation encountered with energy level statistics (Wigner-Dyson statistics persisting on 

energy interval smaller than g times the level spacing21) ) .  However, this analogy cannot be 

pushed very far, since we have seen, for the quasi-ld  wire, that the range of validity of the 

Wigner-Dyson statistics for the transmission spectra is independent of any physical parameter 

(see Eq. (22)) ,  in constrast to the hamiltonian spectra. 

0.8  I I I I I I I I I I 
P(s) 

0.6  

0 .2  

0 .5  1 . 5 2 2 .5  3 3 . 5  
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Fig.2: Distribution P(S) of the spacing S = Vz - v1 , measured in units of its average, for the 
same cubes than in Fig. 1. When e "° L, one gets the Wigner surmise (circles) .  When e << L 
(squares) ,  the fat curve indicates a weakening of the level repulsion. 
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6 Scattering phase shift form factor and localization. 

Diagonalizing S, one gets 2N scattering phase shifts {II.} .  Their density p(ll) and two point 

correlation function R2 (111 , 112) have been studied in Ref. 7, for 2d samples with bulk disorder 

and different aspect ratios L /Lt ( L and Lt denoting respectively the longitudinal and transverse 
lengths) . The two level form factor 7) :  

b(k) = j_: dr 12(11) exp (21rikll) (23) 

1s the Fourier transform of the 2 point cluster function Y;(ll) = I - 12 R2(11), where II is 

measured in units of the average spacing �. Numerically, the form factor b( k) calculated from 

a microscopic Anderson model turns out to be well described by the corresponding functions 

of the circular ensembles, in the quasi-Id metallic limit (Lt < < L < < �) .  This observation 

cannot be easily anticipated, since we have seen how quasi-Id disordered ensembles differ from 

Dyson statistics, if one uses the polar parametrization. This might mean that these differences 

mostly matter for the eigenvector statistics of S. Easier to un.derstand, if one assumes isotropy, 

quasi-Id localization (Lt << � < <  L) breakes S into two uncorrelated reflection matrices r 

and r', each one them distributed with a Dyson measure. One has just to look at Eq. (6), 

setting T � 0 and R � 1, to see that the distribution of the 2N phase shifts will be broken 
into the incoherent superposition of two Dyson series of N phase shifts. Figure. 3 presents 

this phenomenon for the form factor when L � � (cross-over regime between the metal and 

the insulator) .  One can see the evolution between the behaviour of two uncoupled circular 

ensembles ( small k) to the behaviour of a single circular ensemble (large k), showing in the 

harmonics of 12(11) how reflection by opposite edges is statistically decorrelated by longitudinal 
localization. Outside the weak-disorder quasi-Id limit, we find that the phase shift density 
is not uniform and that S remains nonzero after disorder averaging (non isotropy) .  Another 

correction to the circular ensemble behaviour of b( k) can be observed in addition of the crossover 

phenomenon related to longitudinal localization, more pronounced for sample shape far from 

the quasi-Id limit, in the low harmonics of 12(11). This deviation to the Dyson behaviour 

visible in Fig.4 is reminiscent of the non universal regime found by Altshuler and Shklovskii 
for energy-level separation larger than the Thouless energy Ee (with b(k) ex kl-d/2 for small 
k ). One can relate7l under certain assumptions the energy level form factor to the scattering 

phase shift form factor. Numerical check of the proposed relation between the dimensionality 
dependent corrections to the universal random matrix behaviours of the energy levels and of 

the scattering phase shifts for disordered systems are given in Ref. 7. 
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LOW TEMPERATURE TRANSPORT THROUGH A QUANTUM DOT: 

FROM THE COULOMB BLOCKADE TO THE KONDO EFFECT 

Yigal Meir 
Department of Physics, University of California at Santa Barbara, CA 93106 

Low temperature transport through a quantum dot is investigated theoretically. At rela­
tively high temperatures the conductance exhibits periodic peaks as a function of an external 
gate voltage, due to Coulomb blockade of tunneling through the dot. It is shown that as the 
temperature is lowered there is a crossover from multi-level to single-level transport, leading 
to nonmonotonic temperature dependence and the possibility of experimental spectroscopy of 
the quantum dot. At even lower temperatures correlation effects such as the Kondo effect are 
shown to play a significant role in the transport through the dot. 

I. INTRODUCTION 

Since the first experimental realization of an artificially constructed semi­
conductor quantum dot, our theoretical understanding of the experiments 
have progressed significantly [1] . The key ingredient in the experimentally 
explored regime is the interplay between the Coulomb interactions and the 
discrete spectrum [2-4] . Taking that into account explains most experimental 
results. 

A simple model which includes these effects is an Anderson-like model 

iEL,R 
,,. iEL,R TUT 

(1 ) 
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The first two terms describe the isolated quantum dot. The first term 
describe the discrete spectrum, with states denoted by the quantum number n 

and spin a, while the second term describes the interactions between electrons 
occupying these states. The third term describes the free electrons in the two 
leads, while the fourth term accounts for tunneling in and out of the quantum 
dot. While the interaction U may depend on the particular states the electrons 
occupy, a fact that must be taken into account in order to explain some 
experimental observations in the quantum Hall regime (see Van der Vaart's 
contribution in this volume) , I am going to assume for simplicity a constant 
U. This simplified model does indeed capture much of the physics involved 
(see Fig. 1) .  

r u 

Fig.l: A schematic representation of the energy scales associated with the transport through 
a quantum dot 

For a typical quantum dot [1] U ,...., 1 - 5K, the typical level spacing � ,...., 
0.2 - 0.5K, while the coupling to the leads r := 27r V2 p, where p is the density­
of states in the leads, can be of the order of lOOmK. These energy scales 
determine the different experimental temperature scales: (1) kT > U : the 
system behaves like a metal. (2) U > kT > � : Coulomb blockade plays a 
significant role. The conductance through the quantum dot consists of isolated 
peaks, where each peak corresponds to tunneling via several levels. 
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(3) � > kT > r :  each isolated peak corresponds to tunneling through a single 
level. ( 4) r > kT : correlation effects such as the Kondo effect start to play an 
important role in the transport. In the following section I will briefly describe 
the physics underlying the "high-temperature regime" , kT > r, where the 
Coulomb blockade controls the transport. Then I will describe the expected 
signature of the Kondo effects in the measured current. 

II. THE COULOMB BLOCKADE 

The conductance through a quantum dot exhibits spectacularly well sepa­
rated and periodic peaks as a function of an external gate voltage, Va. This 
effect can be attributed [5] to the Coulomb blockade: in order to add another 
electron into the quantum dot, one has to supply enough energy to compen­
sate for the repulsion from all the other electrons. In the constant U model, 
the ground-state energy of N electrons on the quantum dot is given by 

N(N - 1) E9(N) = U + I >= - NeVa, 
2 TIO" 

(2) 

where the sum is over the lowest N energies. Since transport occurs when the 
number of electrons can fluctuate between N and N + 1 ,  then Va has to be 
adjusted so that E9(N) = E9(N + 1) ,  or eVa = NU + EN+i· If U � �, the 
peaks will look periodic in gate voltage. 

One of the big puzzles in the original experiment [6] was the nonmonotonic 
temperature dependence of the peak amplitudes. This was later explained [3] 
in terms of a temperature crossover from the the single-level tunneling regime 
(� > kT) to the multilevel tunneling regime (kT > �) . In the first regime, 
each conductance peak corresponds to tunneling via a single level - when 
the chemical potential aligns with one of the energy levels, resonant tunneling 
takes place and there is a peak in the conductance; once the chemical potential 
is larger than the energy of that level, this level is filled, and no other level can 
participate in the transport. As temperature increases all the levels within 
kT of the chemical potential start to contribute to the transport because of 
the width of the Fermi-Dirac distribution. Still, only a single electron can 
tunnel at a time, so the peak amplitude will depend on a weighted average of 
the couplings of these levels to the leads. Thus depending whether the levels 
which start to participate in the transport are more strongly coupled to the 
leads or more weakly coupled than the single level that contributed in the 
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low temperature regime, the peak amplitude may increase or decrease. As 
the temperature increases, more and more levels participate in the transport . 
As higher gate voltage corresponds to transport via higher-energy states, and 
levels with energies closer to the top of the barrier will be, on average , more 
strongly coupled to the leads then in the high-temperature (kT >> r) regime 
the peak amplitudes should monotonically increase with gate voltage, as is 
indeed observed experimentally. 

(a) kT< A (b) kT> A 

Fig.2: The two temperature regimes discussed in the text. In (a) temperature is smaller 
than the level spacing, so when the chemical potential aligns with the second level, the first 
level is full, and the chemical potential has to be increased by another U to add an electron to 
the quantum dot . In (b) temperature is larger than the level spacing, so the lower level might 
not be occupied and an electron can tunnel through the second level. In this regime every peak 

in the conductance corresponds to tunneling through several levels. 

The fact that for kT < � each peak corresponds to transport through 
a single level suggests that by studying the characteristics of a single peak, 
one may obtain information about that specific level . Indeed this idea was 
implemented by McEuen et al. [7] , who have studied the dependence of the 
peak position and its amplitude on magnetic field. The data shows that in 
the quantum Hall regime the amplitudes of the peaks depend sensitively on 
whether the chemical potential aligns with a lower Landau level state or a 
higher one, or through the lower spin state or the higher one, as expected. 
Moreover, the peak position also oscillates as a function of magnetic field as 
one expects from the depopulation of the spin-resolved Landau levels. 
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This experiment suggests, however, that the amplitude of these oscillations 
are larger than expected from a constant U model, and one has to take a more 
sophisticated account of the interactions [10] . Additional information about 
the excitation spectrum of the quantum dot can be obtained via nonlinear 
I-V measurements, as one expects a signature in the current every time the 
chemical potential crosses one of the quantum dot levels (8,9] . 

III. THE KONDO EFFECT -

Since the Anderson model seems to describe very well the transport through 
a quantum dot, it was pointed out [11 ,12] that the Kondo effect may play a 
significant role in the low-temperature transport through the dot. For the 
case of symmetric barriers, the current can be directly related to the local 
density of states, Ploc( E) [13] , 

J = � � J dE [!L(E) - fR(E)] r(E) Ploc(E) , (3) 

where JL(E)[(!R(E))] is the Fermi distribution in the left (right) lead. Con­
sider a single degenerate level ( Eo = Eou) .  Since the Kondo effect leads 
to an enhanced density of states at the Fermi energy, this will lead to an 
enhanced conductance for all Eo ::; µ ::; Eo + U. Using the Friedel sum 
rule, these authors argued that the periodic peak structure will become a 
set of plateaus at zero temperature (see Fig. 3) . At finite temperatures, 
it was argued, the plateaus will become peaks with asymmetric line shape. 

conductance 

G! Gi+U 
chemical potential 

conductance 

kT= O 

G! Gi+U 
chemical potential 

Fig.3: The high-temperature (kT > r) conductance (a) vs. the zero temperature con­
ductance (b ). The enhanced density of states at the Fermi energy gives rise to an enhanced 
conductance at zero temperature for all fo < µ < fo + U. 
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Recently, we (14,15] have carried out a quantitative calculation of the den­
sity of state and the current at low temperatures, kT < r, using the non­
crossing approximation (16] and the equation-of-motion method [17,3] . Fig. 
4 displays the conductance through a quantum dot at relatively low tempera­
tures, down to kT = r /200. It is quite clear that the peak remains symmetric 
at these temperature. There is, nevertheless, an enhancement of the peak 
width and a shift in the peak position at low temperatures (Fig. 5), in con­
trast to the behavior in the absence of interactions (broken curves) . However, 
in order to definitely resolve that behavior one has to go to temperatures of 
kT ,..., r I 40, a rather difficult experimental 
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Fig.4: Linear-response conductance through an Anderson impurity for three different tern-

peratures as a function of chemical potential. The impurity has two degenerate spin states at 

e0 "' 0. The conductance peak first narrows then broadens with decreasing temperature. 

The quantum dot present a unique opportunity to study the Kondo effect 
out of equilibrium, as the two leads may be maintained at different chemical 
potentials. This is a situation which is not readily achieved in the usual 
systems that exhibit the Kondo effect - magnetic impurities in metals. Thus 
new theoretical questions arise concerning the nature of the Kondo effect out 
of equilibrium. In fact the calculation suggests that in nonequilibrium the 
signature of the Kondo effect in the transport is more easily traceable than 
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the linear response measurements. The reason is that in linear response one 
only probes the density of states at the Fermi energy, and as the Kondo peak 
is always exactly at the Fermi energy, one may obtain information only on 
the maximal value of the density of states at the peak. On the other hand, 
by having two different chemical potential, one can probe peak(s) associ­
ated with one chemical potential by sweeping the other chemical potential. 
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Fig.5: (a) Temperature dependence of linear-response conductance peak position. (b) Tem­

perature dependence of conductance peak amplitude. (c) Temperature dependence of conduc­

tance peak full-width at half maximum. In all three panels, the non-crossing approximation 

results are the data points and the solid curve is a guide to the eye. For comparison, the daBhed 

curves are the exact results for non-interacting levels . 

The density of states in equilibrium and in the presence of a finite bias 
(µL f µR) and in the presence of a magnetic field (i:or f Eo!) is depicted 
in Fig. 6. The sharp peak at the Fermi energy in equilibrium is split upon 
application of a bias and is suppressed due to dissipative processes where 
an electron is transferred from the high chemical potential lead to the lower 
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chemical potential one. A magnetic field shifts the peaks away from the 
chemical potential by the Zeeman splitting, and suppress them even further. 
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Fig.6: Density of states for an Anderson impurity symmetrically coupled to two leads with 

chemical potentials µL and µR(= 0) and Lorenzian bandwidth 2W, from the equation-of-motion 

method (continuous line) and the non-crossing approximation (dashed line) . The impurity has 

two spin states with energies for and e01 and an on-site interaction U --> oo. All energies 

are in units of the total coupling to the leads, r. The band width is W = 100 and the 

temperature is T = 0.005. (a) The equilibrium (µL = 0) density of states at zero magnetic 

field for = e01 = -2.0, exhibiting a single peak at the Fermi level. (b) The non-equilibrium 

(µL = 0.3) density of states at zero magnetic field for = e01 = -2.0, with a suppressed Kondo 

peak at each chemical potential. (c),(d) The non-equilibrium (µL = 0.3) density of states for 

spin up (c) and spin down (d) at finite magnetic field for = -1.9, e01 = -2 .1 . The Kondo peaks 

shift away from the chemical potentials by the Zeeman splitting tie = 0.2; the shift is up in 

energy for the up spin and down in energy for the down spin. 
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The implications of these results on the transport are quite striking. In zero 
magnetic field the differential conductance will exhibit a peak at zero bias -
zero-bias anomaly [18] - due to the enhanced density of states at the chemical 
potential (Fig. 7) . At a finite magnetic field, the peaks in the density of states 
are shifted away from the chemical potentials, so they will only contribute to 
the current once the bias, Aµ, is larger than the Zeeman splitting, A (Fig. 
8) . Thus we predict that the differential conductance will exhibit two peaks 
as a function of the bias, for Aµ = ±A. 
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Fig.7: Differential conductance, e dJ /d/1µ, with /1-R = 0, vs. applied bias. (a) Zero magnetic 

field differential conductance via the non-crossing approximation. (b) Differential conductance 

at the finite magnetic field, /1 = 0.2, used in Figs. 1 (c) and (d), via equations of motion. 

When the chemical potential difference, 11µ, reaches the Zeeman splitting, 11, the Kondo peaks 

in the density of states enter the region between the chemical potentials, giving rise to a peak 

in the differential conductance. 
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Fig. 8: Seema.tic picture of the Kondo pea.ks in the density of states a.t finite magnetic field. 

When the chemical potential difference, tiµ, reaches the Zeeman splitting, ti, the Kondo pea.ks 

in the density of states enter the region between the chemical potentials, giving rise to a. peak 

in the differential conductance (see Fig. 7). 

To date, no experiment on quantum dots has revealed any signature of 
the Kondo effect. Interestingly, though, a recent experiment by Ralph and 
Buhrman [19], where the current through a point contact has shown behavior 
typical of tunneling through a single magnetic impurity, which might reside in 
the barrier near the point contact. The results of this experiment, in particular 
the splitting of the peak in the differential conductance by a magnetic field, 
are consistent with the calculations presented in this work. 

Acknowledgments: This work has been carried out in collaboration with 
Ned S. Wingreen and Patrick A. Lee. Work at U.C.S.B. was supported by 
NSF Grant No. NSF-DMR-9308011, by the NSF Science and Technology 
Center for Quantized Electronic Structures, Grant No. DMR 91-20007, and 
by NSF, ONR, and ARO at the Center for Free Electron Laser Studies. 



257 

REFERENCES 

[1] For a review see M. A. Kastner, Physics Today, January 1993, p.24. 
[2] D. V. Averin and A. N. Korotkov, Zh. Eksp. Teor. Fiz. 97, 927 (1990) [ 

Sov. Phys. JETP 70, 937 (1990) ] .  
[3] Y.  Meir, N .  S. Win.green, and P. A. Lee, Phys. Rev. Lett. 66, 3048 (1991) .  
[4] C. W. J .  Beenakker, Phys. Rev. B 44,  1646 (1991) .  
[5] H. van Houten and C. W. J .  Beenakker, Phys. Rev. Lett. 63, 1893 (1989). 
[6] U. Meirav, M. Kastner, and S. J. Wind, Phys. Rev. Lett. 65, 771 (1990) . 
[7] P. L. McEuen, E. B. Foxman, U. Meirav, M. A. Kastner, Y. Meir, N. S. 

Win.green, and S. J. Wind, Phys. Rev. Lett. 66, 1926 (1991). 
[8] A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, C. 

J . P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 69, 1592 (1992). 
[9] E. B. Foxman, P. L. McEuen, U. Meirav, N. S. Win.green, Y. Meir, P. A. 

Belk, N. R. Belk, M. A. Kastner, and S. J. Wind, Phys. Rev. B 47, 10020 
(1993) . 

[10] P. L. McEuen, E. B. Foxman, J. Kinaret, U. Meirav, M. A. Kastner, N. 
S .  Win.green,· and S. J .  Wind, Phys. Rev. B 45, 11419 (1992). 

[ll] L. I. Glazman and M. E. Raikh, JETP Jett. 47, 452 (1988). 
[12] T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61,  1768 (1988) . 
[13] Y. Meir and N. S. Win.green, Phys. Rev. Lett. 68, 2512 (1992). 
[14] Y. Meir, N. S. Win.green, and P. A. Lee, Phys. Rev. Lett. 70, 2601 (1993). 
[15] N. S. Win.green and Y. Meir, Phys. Rev. B, in press. 
[16] N. E. Bickers, Rev. Mod. Phys. 59, 845 (1987). 
[17] C. Lacroix, J. Phys. F 1 1 ,  2389 (1981) .  
[18] S .  Hershfield, J .  H. Davies, and J.W. Wilkins, Phys. Rev. Lett. 67, 3720 

(1991) ;  Phys. Rev. B 46, 7046 (1992) . 
[19] D. C. Ralph and R. A. Buhrman, unpublished. 





259 

A FERMI-EDGE SINGULARITY PROBED BY RESONANT TUNNELLING 
SPECTROSCOPY 

N .  La Scala Jr. ,  A. K. Geim, P. C. Main, T. J .  Foster, P. H. Beton, 
J .  W.  Sakai, F. W. Sheard, N.  Mori and L. Eaves 

Department of Physics, University of Nottingham, Nottingham NG7 2RD, 
England 

A Fermi-edge singularity is observed in the tunnelling current between a two­

dimensional electron gas (2DEG) and a zero-dimensional localized state. The effect 

is observed in a double barrier resonant tunnelling structure in which there is a low 

but significant density of shallow donor impurities in the quantum well. A sharp 

peak in the tunnel current is observed when the energy of the localized state matches 

the Fermi energy of the 2DEG. The peak grows and becomes sharper as the 

temperature is decreased to 70 mK. We attribute the singularity to the Coulomb 

interaction between the tunnelling electron on the localized site and the Fermi sea of 

the 2DEG. The localised state occurs at an energy significantly below that expected 

for an isolated donor in the quantum well and is attributed to a closely spaced donor 

pair. 

PACS: 73.40 .Gk, 7 1 .45 .Gm, 7 1 .35 . +z, 73.20.Dx. 
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1 .  Introduction 
The Coulomb interaction between conduction electrons leads to various anomalies in 

the properties of a metal which involve the energy spectrum near the Fermi energy 

(ep)1) . The X-ray spectra of metals shows a Fermi-edge singularity (FES) which has 

become known as the Mahan exciton or Mahan-Nozieres-Dominicis (MND) 

singularity2) . In the case of X-ray emission, an electron in the Fermi sea recombines 

with an inner shell "core" hole. Conservation of momentum is maintained in the 

recombination process because of the momentum spread of the strongly localised 

hole. This enables electrons at the Fermi energy (with wavevector kp - 108 cm-1) 

to recombine. 

Recently, there has been much interest in a similar anomaly seen at low temperatures 

in the optical spectra of doped semiconductor quantum wells , in which one of the 

carriers (usually a photo-excited hole) is localised by disorder3). The tunnel current 

in such a system may also be influenced by electron-electron interactions and a 

number of mechanisms have been proposed which could lead to singularities at ep. 
In disordered metals electron-electron interactions cause the well-known singularity 

in the single-particle density of states which has been observed as a zero-bias 

anomaly in the tunnelling conductance between high-resistivity metals (for refs . ,  see 

[4]).  In the last few years it has been suggested that tunnelling through a quantum 

dot may emerge as a new tool for studying electron-electron interactions . Fermi­

edge singularities have been predicted due to either on-site Coulomb repulsion of 

electrons with different spins (Kondo resonance)5 •6) or the interaction between a 

tunnelling electron and the Fermi sea in the contacts?) . Although a large number of 

effects due to single electron transport and Coulomb blockade phenomena have been 

seen in metallic and semiconducting submicron tunnelling devices8), no evidence for 

a Fermi-edge singularity has been reported to date. 

In this paper we report the observation of a Fermi-edge singularity in resonant 
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tunnelling between a two-dimensional electron gas (2DEG) and a strongly localised 

zero-dimensional (OD) state. The electron-electron interaction leads to a remarkable 

enhancement of the tunnel current. To investigate the OD-2D tunnelling process we 

have employed our recent observation that the onset of the tunnel current at low bias 

voltages in mesoscopic and also conventional, macroscopic resonant tunnelling 

devices (RTD) is determined by tunnelling through random impurity-related states in 

the quantum well9) . These states occur at energies well below that of the edge of the 

continuum of two-dimensional bound states of the quantum well formed by the two 

tunnel barriers .  The 2DEG is created in the negatively biased emitter accumulation 

layer which forms adjacent to one of the tunnel barriers when the device is biased. 

The number of impurity channels may be successfully controlled by intentional 

doping and by careful design of the RTD layers9' lO) .  Our technique is an alternative 

to the nanofabrication of quantum dots8) and provides much more strongly confined 

OD states . 

2. Details of the device 

The double barrier RTDs were grown by molecular beam epitaxy on n+GaAs 

substrates with substrate temperatures between 480°C and 550°C to inhibit donor 

segregation from the doped contact regions into the active region of the device1 1) . 

The thickness of both (Al0.4Gao.6)As barriers is 5 .7  nm, the quantum well width is 

9 nm and there is a 20 nm undoped spacer layer between each barrier and the doped 

contact regions . Figure 1 shows a schematic energy band diagram for our devices 

under bias . Tunnelling occurs from the 2DEG, formed in an accumulation layer near 

the left-hand emitter-barrier, into the electron states in the well. We also grew 

samples in which the centre plane of the quantum well was a-doped with Si donors 

at concentrations between 2 and 8 x 1013m-2. At these sheet densities the donors 

have an average separation of at least 100 nm and most, though not all, are 

essentially non-interacting. Square mesas of side lengths varying from 6 µ,m to 100 

µ,m were fabricated using photolithography and dry or wet etching. 
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f- main resonance level 
�-=- f- localised states 

Figure 1 Schematic diagram of the conduction-band profile of our devices under 
bias. Tunnelling occurs from a two-dimensional electron gas through the ground state 
in the quantum well (for the main resonance) or highly localised impurity levels at 
lower energies. 
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3. Experiments and discussion 

A current-voltage characteristic l(V) for a 12 µm square device is shown in Figure 

2. This device has no intentional doping in the quantum well. A current flows when 

the energy of an electron in the emitter 2DEG is resonant with a state in the quantum 

wen 12) . The inset shows the main resonance due to the lowest 2D subband in the 

quantum well. This resonance has a large peak-to-valley ratio indicating the high 

quality of our structures. At biases below the main resonance near the onset of the 

tunnel current we have found additional steplike structure which is shown also in 

Figure 2 (V > 70mV) for this undoped sample. Similar structure is seen in all 

devices, although details are unique to a particular device, characteristic of a 

mesoscopic system. Similar features occur in both directions of the applied bias but 

their exact form is different. For the a-doped samples the additional features are 

more numerous and extend to lower values of applied bias. In many, but not all, of 

the devices with undoped quantum wells isolated peaks occur such as that shown in 

Figure 2 for V = 20m V.  We consider the additional features to be due to 

tunnelling through localised OD states in the quantum well of the RTD with energies 

well below the edge of the lowest 2D subband, as shown schematically in Fig. 

19• lO, l3) . The localised state giving rise to structure at 20 m V is at an energy well 

below the expected binding energy of an isolated donor in the quantum well 

( - 12 meV for a donor in the centre of a 9 nm quantum well10• 14)) .  A more tightly 

bound localised state of this kind can arise from a closely-spaced donor pair, which 

is statistically likely in a mesa of this size, due to the presence of the unintentional 

donor doping background. Naturally, the population of such pairs increases 

enormously in intentionally a-doped quantum wells. Assuming a background volume 

doping density in the quantum well of around 1021 m-3, the sheet density in the well 

would be n = 1013 m-2, corresponding to an average separation of 0.3 µm. At this 

separation donors can be regarded as isolated. However, a pair with separation d :::: 

l ln.JS can be expected for a mesa area S. Hence for a device with S = 12 µm 

square, it is statistically probable to find a donor pair with separation around 100 A. 
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This is comparable with the donor Bohr radius (a20 = 7 nm for an ideal 2D donor 

in GaAs) and hence such a pair would have a binding energy larger than that of an 

isolated donor. 

To illustrate this point further, Figure 3 plots the probability of finding a donor pair 

at separation r or less for a 7 µ.m square mesa at different sheet doping densities in 

the well. Figure 4 plots the results of a variational calculation, based on effective 

mass theory, of the binding energy of a donor pair (separation d) and a triangular 

arrangement of donors (triangle side = d). Note that in both cases, there is a 

significant increase in binding energy when d < 2a20.  Thus, the presence of the 

deep localised states in our structures can be naturally explained by the cluster 

model. 

Two examples of the step structure in I(V) characteristics are plotted in Figure 5 for 

several temperatures .  In Figure 5(a) we show in more detail the isolated peak of 

Figure 2 and Figure 5(b) is the current onset for a o-doped RTD with 2 x 1013m-2 

Si donors in the quantum well. The unexpected feature in the observed I(V) 

dependences is the singular enhancement of tunnelling near the threshold, when the 

localised state is resonant with the emitter Fermi energy (see Figure 5). Note that 

every current step in Fig. 2 is accompanied by such an enhancement. The 

characteristic width of the peaks at threshold biases can be as small as 0.2mV at the 

lowest temperature (e.g .  see the marked feature in Fig. 5(b)). The low voltage edge 

of each step is thermally activated down to 70 mK indicating that the 2DEG remains 

in thermal equilibrium with the main heat bath. In general, as in Figure 5(b), there 

is some additional oscillatory structure within the step at voltages above the threshold 

voltage "th. However, in contrast to the singularity this structure does not depend 

on temperature. The Fermi-edge singularity is seen in all devices at temperatures 

below 1 K. 
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Figure 3 Probability of finding, for different well sheet densities, a pair of donors 
with separation of r or less in a 7 µm square mesa. 
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Figure 4 Upper curve: binding energy as a function of donor separation d, of an 
electron on a shallow donor pair. Lower curve: binding energy for three donors 
arranged as an isosceles triangle of side-length d. 
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Figure 5 Detailed l(V) characteristics at low biases when the first localised level is 
resonant with the emitter 2DEG. (a) (top) - the same device as in Fig. 2 at three 
different temperatures of 70 mK (solid line), 1 .3 K (dashed line) and 5 K (dots) . 
Inset - temperature dependence of the logarithmic slope of the tunnel current near the 
threshold voltage. (b) (below) - another device 6 µm across at 70 mK (dashed line) 
and 1 .2 K (solid line). 
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The general behaviour of the tunnel current, i .e .  without the singularity, can be 

understood as follows. Under a typical applied bias of tens of mV, the collector 

barrier is lower than the emitter barrier. Also the 3D density of states in the 

collector available to the electron tunnelling from the localised state is larger than the 

equivalent density of states in the emitter 2DEG. Consequently, the current is 

limited by tunnelling through the emitter barrier and the states in the quantum well 

are empty most of the time. We estimate the escape rate rc-l from the impurity into 

the collector contact to be considerably larger than the tunnelling rate re-l from the 

2DEG into the impurity-related site . The latter rate can be found from a value of the 

single electron current through an impurity7-9• 13) , I = lOOpA, yielding 

Te = ell = 2ns. This is consistent with the barrier height and thickness. As the bias 

increases, the impurity level moves downwards relative to the energy of the emitter 

2DEG (see Fig. 1) and the tunnel current exhibits a step increase when the localised 

state coincides with the highest filled state, i .e. the Fermi level of the 2DEG. As the 

voltage is increased further and the energy of the OD state becomes lower than the 

lowest energy state of the emitter, no states are available for resonant tunnelling and 

the current falls sharply (see Fig . 5(a)). However, this sharp fall-off is not common 

to all devices .  In Figure 5(b) a second impurity channel comes into resonance with 

the 2DEG (at V = 50mV) before the first channel has passed away. The latter 

behaviour is also seen above 75mV in Fig. 2.  

For quantitative analysis, we discuss first the behaviour expected for impurity­

assisted tunnelling of non-interacting electrons . The tunnel current is given by1 1 )  

( 1 ) 

where f(e) = { 1 +exp[(e-ep)/kB TU-1 i s  the Fermi-distribution function, O(e) i s  the unit 

step-function and ei is the energy of the impurity state measured from the bottom of 

the 2DEG subband. For the case of tunnelling from a 2DEG, the tunnelling 

coefficient r can be written as15) 
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(2) 

where e0 is the binding energy of the localised state and t is a coefficient which 

includes parameters of the localised state and the tunnel barrier but is independent 

of the kinetic energy ei of tunnelling electrons within a 2DEG subband. Near the 

onset of the tunnel current, Eq.(1) varies as the Fermi function which fits very well 

the observed l(V) characteristics and their temperature dependence. This allows us 

to convert the voltage across the device into the energy difference between the 

impurity state and ep. We use ep-ei = ae(V-Vth) where the constant a is 

characteristic of the distribution of electrostatic potential across the device12) . 

Experimental curves yield a = 0.25 ±0.05 for all devices. The inset in Figure 5(a) 

shows an example of temperature dependence of the tunnel current below the 

threshold at biases when I oc f(ei) = exp[(ep-ej)/kBT)] and one can write dln(J)!dV 

= a/kB T.  The linear dependence of the logarithmic slope down to the lowest 

temperature of 70 mK indicates that the localised state has a very narrow linewidth. 

This is in agreement with the linewidth re = 'fl/re =: 4 mK estimated from the 

tunnelling time. We note that the sharp fall of the current which is seen at V = 

22mV in Fig. 5(a) is not a common feature for the isolated peaks and, usually, the 

decrease is much smoother. 

Equation 2 shows that, for non-interacting electrons, the tunnel current within the 

step varies on the energy scale of the binding energy e0 ;;::: 13me V 10). On the other 

hand, typical values of the Fermi energy in the emitter accumulation layer for the 

first few steps in the 1-V characteristics are between 1 - 4me V in our experiment, 

corresponding to 4 - 20mV in bias. Therefore, according to Eqs.(l)  and (2) , 

variation of the current within the step has to be small. The dashed line in Figure 

6 shows the l(V) characteristic for non-interacting electrons, calculated using Eqs .(l)  

and (2) for the sample in Fig . 5(a) . The binding and Fermi energies were estimated 

using the value of a = 0.2 for this sample, found by fitting the temperature 

dependence of the current onset. From Fig. 6 we conclude that the observed 
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Figure 6 Comparison of the observed singularity with theory. The solid line is the 
experimental curve at 70 mK for the same device as in Figures 2 and 5(a) . The 
dotted curve is the behaviour expected from the theory of Matveev and Larkin7). 
The dashed curve: if the electron-electron interaction is neglected, the tunnel current 
within the step exhibits only a very small increase with increasing bias . 
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singularity in the tunnel current cannot be explained within a model involving only 

non-interacting electrons . Therefore, we attribute the FES to the influence of the 

electron-electron interaction. 

Three models leading to a FES for the case of impurity assisted tunnelling have been 

considered recently. First, the interaction between conduction electrons in the 

emitter 2DEG yields a logarithmic singularity in the tunnelling density of states4>. 

Secondly, repulsion between electrons with the opposite spins on the impurity site 

may give rise to a Kondo resonance5•6l . Finally, the interaction between an electron 

on the impurity site and the Fermi sea in the emitter contact may cause the MND 

singularity 7) .  The first effect is important if the electron mean free path is short, 

/ - /...p, but is expected to be negligibly small for our 2DEG at the emitter interface. 

In addition, we would expect a negative contribution to the tunnel current near ep 
rather than the increase which is observed4) . The Kondo resonance also leads to I(V) 

qualitatively different from that observed (see Ref. 6 for the corresponding I(V) 

characteristics). The FES in our experiments is very similar to the behaviour 

predicted by Matveev and Larkin (ML) 7).  The singularity originates from extra 

tunnelling processes due to the Coulomb interaction between the fluctuating charge 

on the localised site and the Fermi sea in the contacts. The interaction allows an 

electron to violate the requirement of energy conservation between its initial and final 

states in the tunnel process. In addition to the direct tunnelling, the electron can 

tunnel into the localised site from an initial state which does not participate in 

tunnelling in a model of non-interacting particles .  The difference in the energies is 

transferred to or from the Fermi sea. A singularity arises at ep because scattering 

processes with small energy transfer are most effective (Fermi's golden rule) while 

the Pauli principle allows them only near the Fermi energy. The ML theory is 

basically analogous to the Mahan problem which considers the interaction between 

the Fermi sea and a positively charged virtual hole. The calculations take into 

account all many-body processes such as shake-up of the Fermi sea, excitonic effects, 
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The ML theory yields a power-law singularity of the form7> 

I oc: (ep-el/3 O(ep-ei) 

(3 = 3/47r(kpdt1 
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(3) 

(4) 

where kp=27r/Ap is the Fermi wavevector and d is the distance from the plane of the 

2DEG to the localised site. The parameter (3 is characteristic of the strength of the 

Coulomb interaction and can be found directly from the experimental data. We 

estimate d=25 nm assuming the Fang-Howard approximation for the emitter 2DEG 

and that the localised states are in the middle of the quantum well. For the first few 

steps which occur at biases V between 15-90m V, we found (3 between 0 . 1  and 0. 3 .  

The interaction lasts a finite time re, before an electron escapes from the impurity 

state into the collector contact, and this leads to smearing of the singularity on the 

energy scale re = hlr e. The smearing is described by adding the imaginary part ire 

to ei in Eq.(3), leading to the expression7> 

(5) 

Referring to the estimates for the ratio between the tunnelling rates re -l and re -l in 

our structures, we expect re to be of the order 0 . 1  me V (re = 1 Ops) . 

To describe the observed form of FES we assume that the net current includes both 

single-particle and many-body contributions given by Equations 1 and 5 ,  respectively . 

The absolute value of the many-body current in Eqs. (3-5) is unknown and used as 

a fitting parameter. Also, we vary re around O . lmeV to obtain the best agreement 

with the experimental data. Figure 6 shows the best fit to the low-temperature I(V) 

characteristic from Figure 5(a). The coefficient (3 is = 0.22 for this sample and the 

fit yields re = 0.2meV. For other samples, the singularities are also described by 
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values of r c within a factor of two close to O. lme V. 

For completeness, to describe the temperature smearing at the onset of tunnelling in 

Figure 6 we have multiplied Eq.(5) by the Fermi function f(ei), instead of using the 

theta-function as in ref. [7] . For higher temperatures, when k8 T = r c• the smearing 

of FES is due to the effect of both temperature and r c. Essentially, the singularity 

increases in size with decreasing temperature until it is limited by r c .  Further 

reduction in the temperature results in only minor modifications to the peak, although 

the current onset is still thermally activated. Although Figure 6 shows quantitative 

agreement between the experiment and ML theory, we note that Eqs . (3-5) are 

derived for biases close to the threshold. In addition, the numerical coefficient 3/411' 

in Eq.(4) is valid for the case kpd � 1 , while we deal with the situation when the 

interaction is strong and kpd = 1 16). 

We also note that some of our devices show another unusual form of l(V), as shown 

in Figure 7 for both bias directions . This exhibits an extended and smooth fall-off 

of current beyond the FES with some weak peaks superimposed on it. We postulate 

that the current at voltages well above the FES may also be related to electron­

electron interaction processes, such as a plasmon-emission process in the 2DEG, in 

which the tunnelling carrier transfers some of its excess energy to a collective 

excitation of the 2DEG in the emitter accumulation layer. Plasmon-assisted 

tunnelling has been reported repeatedly in large area resonant tunnelling diodes 17). 

4. Conclusions 

We have found that the electron-electron interaction has a remarkable effect on 

tunnelling between a degenerate 2DEG and a strongly localised OD state. We have 

observed this effect in small area ( - 10 µm square) double barrier resonant tunnelling 

devices . The localised state is most probably associated with a closely spaced pair 

of shallow donor impurities situated in the quantum well. This provides a distinct 
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OD tunnelling channel at an energy well below that of both the 2D continuum and of 

isolated donors. A distinct and strongly temperature-dependent singular feature is 

observed in the current-voltage characteristics when the Fermi energy matches the 

energy of the localised state. We attribute this feature to the Coulomb interaction 

between the fluctuating charge on the impurity site and the 2DEG and describe the 

results in terms of the Matveev-Larkin theory. The experimental system offers the 

possibility of investigating details of OD tunnelling and properties of the 2DEG on 

the spatial scale of a few nanometres. 

This paper describes the topic covered in the first part of the talk given by L. Eaves 

at the Recontres de Moriond Condensed Matter Physics Meeting . The second part, 

concerning tunnelling spectroscopy of chaotic electron states in a quantum well, is 

described in a paper by T. M. Fromhold, L. Eaves, F. W. Sheard, M. L. 

Leadbeater, T. J. Foster and P. C .  Main, submitted to Phys. Rev. Letters. 
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TWO-CHANNEL RESONANT TUNNELING 

M. E. Raikh and T. V. Shahbazyan 
Department of Physics, University of Utah, Salt Lake City, UT 841 12 

Resonant tunneling through a single energy level in a barrier has been subject of con­
siderable interest during the last decade.1-12) The essential manifestation of the resonant 
tunneling is that a single impurity, located in the barrier between metallic contacts ,  may 
increase the conductance significantly. The experimental observations of the resonant tun­
neling were reported in Refs. 1-7. The effect is most dramatic when the impurity forms 
a localized state with energy Ea close to the Fermi level EF in the contacts. Then the 
conductance is given by a Breit-Wigner type expression8-12) 

e2 fLfR 
G(EF) = 7r'ti (EF - Ea)2 + HfL + fR)2 ' (1)  

where fL and fR are the widths of the impurity level due to the tunneling into the left and 
right contacts respectively. If the impurity is located in the middle between the contacts, 
so that rL = rR, then at exact resonance, EF = Ea, the conductance reaches its maximal 
value G = e2 /7r'tt. Eq. ( 1 )  was derived neglecting the Hubbard interaction of electrons at 
the impurity and the Coulomb interaction of electrons in the contact and at the impurity. 
These many-body effects, resulting in the anomalies in the conductance, were studied in 
Refs. 13-20. 

L I R i 
I i d  I 

J 
- - �- -I l 1 I I I I I I I I 
--¥+-f--\ v  

Fig. 1 .  Schematic representation of the tunneling junction with two reso­
nant impurities (top view) .  The length of the barrier is D, and d/2 is the 
displacement of impurities from the symmetry axis (dash-dotted line). 
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In the present paper we study two-channel resonant tunneling. The geometry under 
consideration is schematically shown in Fig. 1 .  We consider a simplest case, when each 
channel contains a single resonant level, so that the tunneling from the left to the right 
metallic contact can occur through either channel 1 or channel 2. The crucial point is that 
if the de Broglie wavelength of electron in the contacts, ,\d , is of the order of, or much larger 
than the distance between the two impurities, s1 2, then the resonant tunneling involves 
multiple virtual transitions of electron between the impurity states and the continuum of 
the states in the contacts. In other words, in the process of tunneling electron visits each 
impurity many times. Thus, the impurities are coupled to each other not only by the direct 
overlap of their wave function, but also via the continuum of states in the contacts. The latter 
coupling, as we will show, results in the dramatic change in the shape of the conductance 
near the resonance. 

We will be working with the following Hamiltonian of the tunneling junction 

H = l: E�cLcLv + l: E�ctcRv + l: Eic;c; 

+ l::(V/;'CLc, + v;�cJcLv )  + l:(Vv�ckvci + v;�cJcRv) + L Vi;CJCJ >  (2) 
0 0 � 

where E� (Ef:'), cL (Ckv) and CLv (CRv) are the energy and creation and annihilation 
operators of the left (right) continuum state v, E;, CJ and C; are the energy and creation 
and annihilation operators of the i-th impurity state ( i = 1 ,  2), Vv� (Vv�) is the matrix 
element of the impurity potential between left (right) continuum state v and i-th impurity 
state, and Vi; is the overlap matrix element between the impurities. One can express the 
exact time-dependent wave function \II in terms of the wave functions in the contacts, wt, 
\II�, and the wave functions of impurities, W;, as follows 

(3) 

where the coefficients A(t) satisfy the following system of equations 

inA� = E�A� + l: Vf;'A;, (4a) 

inA� = E� A� + I: v,,� A;, (4b) 

inA; = E;A; + l: V.�A� + l: Vi�A� + l: VijAj. (4c) 
#i 

The rate of the electron transfer from some state v0 in the left contact to some state µo in 
the right contact can be expressed as 

W(Lvo lRµo) = lim [-d
d 

IA�0 (t) l2] , 
t-H)() t (5) 

where A�0 (t) is the solution of the system (4) wit\l the initial conditions 

A�(O) = 0, A;(O) = 0. (6) 
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The expression for the resonant conductance G(EF) is obtained by summing Eq. (5) over 
all the initial and final states at the Fermi level 

(7) 
µ,v 

The solution of system (4) can be easily found. Substituting it into Eq. (5) and, then, 
into Eq. (7), the conductance can be conveniently presented in the following form 

(8) 

where f'L and fR are 2 x 2 matrices, defined as 

(9) 

The matrix S is expressed through the matrices f'L and r'R as 

(10) 

where we also introduced an energy and overlap matrices E and V 

v = ( 0 Vi2 ) . 
V21 0 ( 1 1 )  

The matrix elements f;j satisfy a certain relation, which i s  a consequence of the coupling of 
the channels through the continuum. To specify this relation, consider the matrix element 
V;t, entering into the definition (9) of rt 

V;t = j drw;(r)V(r)w�(r) � w�(x; , y;) j drw;(r)V(r), ( 1 2) 

where (x;, y;) are the coordinates of the i-th impurity. In the x direction wt decays as e-nx , 
K being the decay constant, while in the y direction wt represents a plane wave eik•Y , ky 
being the y-component of the wave-vector. Thus, we have 

( 1 3) 

The summation over v in Eq. (9) reduces, in fact, to an averaging over the orientation of the 
wave vector k, since lk l  = kF = 27r /Ad - the Fermi wave vector. For the diagonal elements, 
rf;, the product V;tVv� is independent of the orientation of k, so that we have 

(14) 

with g(EF) being the density of states at the Fermi level. For fh the product V't�Vv� contains 
a factor eiky(Yi-Y2) , averaging of which results in 

( 15)  
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where J0 is the Bessel function. A similar formula can also be written for r�. Combining 
Eqs. ( 14) and ( 15) ,  we obtain the following relation between diagonal and non-diagonal 
elements of matrix f' 

rf2 = rf1 = aJrt1r�2, rf2 = rfi = aJrMf2 , (16) 
where we introduced a coupling parameter 

a =  Jo(kFs12) = Jo(27rs12/ >..d) ·  ( 17) 
We see from Eqs. ( 16) and( l  7) that when the two channels are well separated, i.e., s12 � >..d ,  
one can replace the Bessel function by its asymptotics, so that r 12 is small as compared to f;i 
by a factor a � J >..d/ s12 � 1 .  In this case the coupling of channels through the continuum 
is weak. Then the conductance (8) represents a sum of two lorentzians with the widths 
rf1 + rfi and rf 2 + r�. 

However, when s12 ;S >..d ,  the parameter a in Eq. ( 17) is of the order of unity, and all 
elements f;j are of the same order of magnitude. The latter condition can be satisfied in the 
resonant tunneling junctions, with the contacts representing heavily doped semiconducting 
regions. Such type of structures, with EF varying by the gate voltage, were studied, e.g. ,  
in Refs. 2, 4, and 7. In the case s12 � >..d ,  the two channels should be viewed as a single 
quantum mechanical system. As a result, the shape of the conductance, G( EF) ,  near the the 
resonance undergoes a drastical transformation, as a approaches unity. To demonstrate it, 
let us consider the most symmetrical situation, namely, when the two identical impurities, 
with no direct overlap (Vi2 = V.n = 0), are located exactly at the middle of the barrier. 
Setting Ei = E2 = E, rf; = r� = r, and rh = rf2 = ar in Eqs. (7) - ( 1 1 ) ,  we obtain 

2e2 { e2r2 ( 1  + a2) + f4(1 - a2)2 } 
G(EF) = 'ffn [4 + 2f2f2(1  + a2) + f4(1  - a2)2 . 

where we denoted e = EF - E. 

2 

0.5 

Q '-�-..l.��-'-��'--�_J 
-4 -2 0 

8/r 
2 4 

Fig. 2. The conductance, as a function of t: = EF - E, is shown for the 
case of two identical impurities in the middle of the barrier for different 
values of the coupling strength a: a =  0 (long-dashed curve), a =  0.75 
(dashed curve), and a =  0.95 (solid curve). 

(18) 
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The conductance, as a function of EF, exhibits a strong dependence on the coupling 
strength, a. In the absence of coupling, i .e., at a = 0, the conductance represents a lorentzian 
with the width r and peak value 2e2 /7rh, as it should be for two independent channels. 
However, with an increasing a the shape of G(EF) undergoes a dramatical transformation. 
The evolution of the conductance peak with increasing a is shown in Fig. 2. 

We see that a drastical narrowing of the resonant peak occurs as a approaches unity. 
The conductance curve looks like a narrow peak on top of the wide lorentzian. In the limit 
a = 1 the upper peak becomes infinitesimally narrow and the conductance represents a 
simple lorentzian with the height e2 /7rh and the width 2f. Note that the area under the 
resonant curve is independent of a. 

The narrowing of the resonant peak is the main result of our paper. To clarify the 
underlying physics, let us consider a related problem, namely, a decay of the localized state 
1 into the continuum. We assume that at time t = 0 an electron occupies the state 1 ,  while 
the state 2 is empty. Then evolution of the population, n(t), of the state 1 with time is 
given by 

where A1(t) is the solution of system (4) with the initial conditions 

A�(O) = 0, A�(O) = 0, 

This solution can be expressed through the matrix S, defined by Eq. ( 10) ,  as follows 

h 100 • t [ A A i A L  A R  ] -! A1(t) = - dwe-•w hw - E - V + -(r + r ) . 27r -oo 2 11 

(19) 

(20) 

(21 ) 

For the case E1 = E2 = E, rf; = rft = r, and rf2 = rfli = af, considered above, we obtain 

(22) 

with f1 and f2 defined as 

f1 = ( 1 + a)r, f2 = (1 - a)r. (23) 
We see that the proximity a to unity causes a slow-decay component of the population n(t). 
This long tail of the popu\ation decay manifests itself as a narrow peak in G(EF)· Indeed, 
it can be easily seen that the conductance (18 ) can be presented as a sum of two lorentzians 

G(EF) = :�(t:2?n + £2?r�) , (24 ) 

with the widths f1 and f2, given by Eq. (23). 
The origin of the slow-decay component can be explained as follows. In the absence 

of coupling to the continuum, the state of an electron at impurity 1 can be presented 
as a superposition (IJ!+ + w-)/../2 of a symmetric and antisymmetric combinations of 1)/1 
and W2. With the coupling taken into account, the amplitude A1 represents a sum A+ + 
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A- of amplitudes, corresponding to these combinations. Note now that the closer is the 
parameter a to unity (i.e., the smaller is the ratio s12/ >.d) ,  the smaller is the matrix element 
of coupling of the antisymmetric combination to the continuum. Indeed, for s12/ Ad � 1 the 
contributions from W1 and \j.12 to this matrix element almost compensate each other. As a 
result, the decay time for the amplitude A- is much larger than that for A+.  

The latter argument, in fact, goes back to Dicke.21) Forty years ago he considered a 
spontaneous radiation of an excited atom in the presence of another atom at a distance r12, 
much smaller than the radiation wavelength >.. Dicke pointed out that the radiation time 
increases drastically as r12/ >. -t 0. Namely, the probability that one of the atoms remains 
in an excited state changes with time according to Eqs. ( 19 )  and (22) with f1 -t 2f and 
f2 -t 0. 

We are strongly grateful to V. I .  Pere! for drawing our attention to the paper by Dicke. 
The useful discussions P. von Brentano, A. I. Larkin, and D. E. Khmelnitskii are gratefully 
acknowledged. 
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ANTI-CORRELATED OSCILLATIONS IN A THREE-LEAD QUANTUM DOT 

A. Kumar, J. Kinaret� C. Eugster, T. Orlando, D .  Antoniadis, M. Rooks! M. Melloch* 
Department of Electrical Engineering and Computer Science 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139, U.S.A. 

We present results of transport measurements on a quantum dot in which a novel 
gate geometry allows the dot to be contacted by three, rather than two, leads. When 
the dot charge is well-confined, periodic conductance oscillations due to Coulomb 
charging are observed in-phase with each other at two of the leads in response to 
a small excitation voltage at the third. As the tunnel barriers are made softer 
by changing the gate voltage, a strikingly different phenomenon is observed: con­
ductance peaks at the two output leads evolve from perfect correlation to perfect 
anti-correlation with each other. A simple model incorporating polarization states 
of the dot-lead system is presented as a possible explanation. 

Transport measurements have found that the conductance of a quantum dot structure is 

a periodic function of an external gate voltage.1l This striking modulation of the conductance 

results from the condition that the dot charge is an integer multiple of the electron charge. If 

the gate voltage is such that the electrochemical potential of the dot lies between the quasi­

Fermi levels of the leads, the number of electrons in the dot can fluctuate classically by one 

and hence the current is at maximum. For all other gate voltages, there is a Coulomb charging 

energy associated with the tunneling of an additional electron from the input lead, and current 

flow is suppressed. 

The above Single Electron Tunneling (SET) picture of electron transport has been highly 

successful in explaining the majority of conductance experiments to date1l in which a quan­

tum dot is coupled to two electron reservoirs. In this paper, we present results of transport 

*Nordita, Blegdamsvej 17, DK-2100, Copenhagen 0, Denmark. 

tNational Nanofabrication Facility, Knight Laboratory, Cornell University, Ithaca, New York 14853-5403. 

ischool of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907. 
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Figure 1: Schematic of the gate 
geometry of our three-lead quantum dot. 
Application of negative gate voltages 
VT and Vu depletes the 2DEG 
underneath, leaving behind an 
electron "island" coupled to three leads. 
Four ohmic contacts allow access to 
the 2DEG. In our measurements a 
voltage Vin is applied at 
contact 3 and currents /31 and /32 are 
measured simultaneously. 

measurements on a structure in which a novel gate geometry allows us to study a quantum 

dot coupled via tunnel barriers to three leads. A small voltage excitation at one lead results 

in currents at the other two leads, which can be measured simultaneously. We find that the 

first several Coulomb blockade oscillations in the two currents line up with each other as the 

gate voltage is swept, as expected from the simple SET picture. However, the main finding of 

this work is that, as the gate voltage is increased further, the oscillations undergo a striking 

transition from being lined up with each other to being perfectly out-of-phase with each other. 

Figure 1 shows a schematic of our gate geometry, fabricated over a standard GaAs/ AlGaAs 

heterostructure with mobility 25 m2 v-1 s-1 and carrier density 3x 1015 m-2 at 4.2 K. Appli­

cation of a negative bias voltage to the top gate, VT, and thin (� 40 nm linewidth) middle 

gate, Vu, depletes the high-mobility 2DEG formed in a GaAs/ AlGaAs modulation-doped het­

erostructure, resulting in an "island" of electrons coupled to narrow channels on the left and 

right, and to a semi-infinite 2DEG on the bottom. The currents at the output leads (lead 1 and 

lead 2) are measured in response to a small ac voltage Vin applied at the input lead (lead 3) . Two 

low noise current amplifiers are used to measure simultaneously the currents /31 = G31 Vin and 

/32 = G32Vin at the output leads. Each current amplifier outputs a voltage which is measured 

using an ac lock-in technique at frequency 7.7 Hz. Blocking capacitors are used at the inputs 

of the current amplifiers to shield the device from offset voltages; each output lead is therefore 

a virtual ground. As a check that the offset voltages are properly compensated, essentially no 

change is observed in fat and /32 if the two amplifiers are interchanged. All measurements are 

carried out at a base cryostat temperature of 300 mK. 
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Figure 2: (a) Conductances G31 (offset by 0.5µS) and G32 as the top gate voltage Vr is swept. 
The middle gate voltage VM = -0.7V is fixed in the tunnel regime. (b) Detailed plot of the first 
several resonances in (a) , indicating that they are in-phase with each other. (c) Detailed plot 
of resonances at higher Vr, indicating that they have evolved from almost perfect correlation 
to almost perfect anti-correlation in gate voltage. 

Figure 2(a) shows the conductances G31 and G32, measured concurrently, as the top gate 

voltage Vr is swept. The middle gate voltage VM = -0.7V is kept fixed in the tunnel regime, 

as determined by an exponential tail in its pinchoff characteristic.2l Due to some intrinsic, 

unintentional asymmetry in our structure, the quantum point contact near lead 2 has a turn-on 

voltage about 40 m V higher than the one near lead 1. 

The first several conductance oscillations in G31 and G32, along with the total conductance 

G31 + G32 through the dot, are shown in detail in Fig. 2(b). The perfect alignment of the 

oscillations in G31 and G32 for Vr <� -0.555V can be understood simply from standard SET 

theory. At a conductance maximum, an electron which has tunneled into the dot from the input 

lead has some probability of being transmitted through either one of the two output leads. As 

the gate voltage is increased in Fig. 2(c), the peak-to-valley ratio in the total dot conductance 

Ga1 + G32 drops markedly. · However, instead of broadening accordingly, resonances in the 

individual conductances G31 and Ga2 evolve from being perfectly correlated to being perfectly 

anti-correlated with each other. Another striking feature of the anti-correlated regime is that 



286 

(a) (b) 
Figure 3: (a) Lumped element circuit containing dot and two quasi-reservoirs to model effect 
of unequal electrochemical potentials on left and right sides of the dot. (b) Set of states used 
in calculation and possible transitions between them. The set of states includes the lowest­
energy unit polarization fluctuations of the states (QL , Qv, Qn) and (QL, QD + q, Qn). The 
unlabeled transitions show no resonant structure because of the strong coupling between the 
quasi-reservoirs and the reservoirs. 

G32 actually changes sign at some of the deep valleys. The total conductance through the dot 

G31 + Ga2 is, however, always positive. 

We have fitted the lineshapes of G31 + G32. In the correlated regime we find an excellent fit of 

the lineshapes to the derivative of the Fermi-Dirac function. As the gate voltage is increased so 

that the oscillations become anti-correlated, we find that the Fermi fit to Ga1 + G32 progressively 

worsens, predicting valleys much deeper and linewidths much narrower than given by the data. 

Foxman et aI.3) have found that such a transition from thermally to intrinsically broadened 

resonances is accompanied by a rapid increase in the capacitance between the dot and one of 

the leads. 

We now turn to a preliminary model to account for the separation of the peaks in the left 

and right currents with gate voltage. The crucial ingredient of the model is that there is some 

intrinsic, unintentional asymmetry between the right and left tunnel barriers which causes the 

local chemical potentials to be different on the left and the right sides of the dot. We can 

associate an effective capacitance with each barrier, the value of which depends on the barrier 

thickness and height. As the barriers are made softer by increasing the top gate voltage Vr, the 

barrier capacitances increase, and the relative barrier asymmetry becomes more important. In 

this regime it is no longer obvious that the transitions necessary to produce current peaks at 

the left and right leads will resonate at the same gate voltage. 

Figure 3(a) depicts a lumped-element circuit used as a first approximation to model the 

effect of unequal electrochemical potentials. In addition to the dot with quantized charge 

Qv = -Nve, the model contains two quasi-reservoirs which are coupled to the actual reservoirs 
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by large capacitances CL and Cn. Physically, we expect that a test charge placed in a quasi­

reservoir, representing the part of the lead nearest the barrier, will be partially imaged in the 

dot and partially imaged in the actual reservoir. 

The electrostatic energy of the circuit in Fig. 3(a) is 

where CL(R) 

1 2 1 2 1 2 
2c}Qn + /LQL + 1nQn) + 2CL QL + 2Cn QR 

+ �:Vg(Qn + /LQL + /nQn) , (1) 

1n)Cdn· Figure 3(b) shows the set of states used in the model and the possible transitions 

between them. The set of states includes the lowest-energy unit polarization fluctuations of 

the states (QL, Qn,  Qn) and (QL, Qn + q, Qn). The procedure for finding the resonant gate 

voltages for each of the 5 transitions I,L,L',R,R' is as follows. The electrostatic energies of 

the two states involved in each transition are equated, relating the resonant gate voltage V9 

to the charges (QL, Qn, Qn) . To find the charges, it is assumed that the time-average charges 

QL(R) = L;; P;Q�lR) are given by the classical electrostatics relations 8W/8QL(R) = 0, where 

the occupancy probability P; for state i is taken in the grand canonical ensemble. 

This procedure yields a set of coupled transcendental equations. In the limit CL, Cn > >  

C9, CdL, Cdn, we recover the conventional SET theory result that all transitions are at resonance 

at the same gate voltage Vy = e(Nn + 1/2)/C9. As the tunnel barriers become softer with 

increasing gate voltage, the capacitances cdL, cdR become comparable to CL, Cn, in which case 

the equations must be solved numerically. Figure 4 shows the results of such a calculation, in 

which the resonant gate voltage positions for the transitions L,L',R,R' are plotted as a function 

of cdL for the highly asymmetric case cdL = lOCdR· With increasing cdL = lOCdn, the 

injector transition I is unchanged and the transitions L,L' are shifted only a little. However, 

the transitions R,R' are strongly shifted; in the limiting case cdL/CL � 1, when the left barrier 

has nearly disappeared, transitions R,R' are at resonance almost midway between successive 

resonances of the injector transition I. 

This polarization model suggests a mechanism by which a phase shift in the resonances can 

occur. For a peak to occur in the current measured at the right lead, there must be a chain of 

events involving transition I and either transition R or R', which no longer occur at the same 

gate voltage. The currents !31 , h2 versus gate voltage can be found numerically by replacing the 

equilibrium probabilities P; with a non-equilibrium distribution function determined by a rate 

equation.1l Such a calculation has been carried out4l and indeed yields anti-aligned oscillations 
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Figure 4: Gate voltages at which each of Cdl /CL 
the transitions L,L',R,R' are at resonance 0 0.2 0.4 0.6 0.8 1 .0 
(relative to the position of the I resonance) 0.8 
as capacitances CdL and CdR are increased, 

0.4 for the highly asymmetric case CdL = lOCdR· > 
For CdL = Cdn = 0, we recover the stan- .s 
<lard SET result that all transitions occur O> 0 
at the same gate voltage. As CJL/CL ap- > 

proaches 1, so that the left barrier has nearly > O> -0.4 
disappeared, transitions R,R' occur 
almost midway between neighboring -0.8 
I transitions. 0 2 4 6 8 10  

Cdl {IF) 

in the limit that CdL and Cdn are large but asymmetric. However, the currents do not change 

sign. 

In summary, we have fabricated and studied a three-lead quantum dot. When the dot 

confinement is strong, the two output leads behave as two independent, parallel channels for 

current flow, resulting in Coulomb blockade oscillations which are aligned with each other in 

gate voltage. As the leak rates to the output leads increase, peaks in the total incident current 

broaden accordingly, but peaks in the two output currents evolve from being correlated with 

each other to being anti-correlated with each other. In this regime the simple single electron 

tunneling picture is inadequate to explain our results, and we suggested a simple circuit model 

which reproduces many of the observed features. 
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CONDUCTANCE SPECTROSCOPY OF A QUANTUM DOT IN WEAK MAGNETIC 
FIELDS 

M. Persson(l), B. von Sydow(2), P. E. Lindelof(3), A. Kristensen(3) and J. Pettersson(l) 
(l)Department of Physics, (2)Department of Applied Physics, Chalmers University of 
Technology and University of Goteborg, S-41296 Goteborg, Sweden 
(3)Tue Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Dk-2100 
Copenhagen 0, Denmark 

Transport spectroscopy is presented for a quantum dot confined by an electrostatic poten­
tial in a two-dimensional electron gas. The conductance oscillated quasi-periodically when 
the magnetic field or the size of the dot were changed. The measured data reflect the 
density of states at the Fermi energy in the quantum dot. This was observed without 
interference of charging effects, due to a high conductivity between the dot and the 
surrounding electron gas. The conductance oscillations agree with a simplified resonant 
tunneling model, where the energy levels are calculated for an isolated circular disc. 

INTRODUCTION 

Many new effects have recently been observed in low-dimensional mesoscopic systems: 

Quantization of conductance in ballistic point contacts, spatial energy quantization in 

zero-dimensional quantum dots, electron-electron interactions and single electron charg­

ing effectsl). Experimental characterizations of energy levels by transport measurement2) 

and capacitance spectroscopy3) have been reported. An addition spectra can be deduced 

from the positions of Coulomb blockade oscillation peaks or capacitive resonances. The 

distances between peaks give the separations between adjacent levels added to a constant 

charging energy term. Dots with few electrons where electron interactions can be 

modeled, have attracted much interest. 

Semiclassical theories of the spectra and eigenstates of quantum dots have been devel­

oped4,5), in which the electrons move as classical ballistic particles and carry phase infor­

mation that can be affected by a magnetic vector potential. The geometric form of the 

confining walls determines the scattering of electrons and strongly affects the energy 
spectra. Stone and BruusS) have found that minor distortions of the boundary may dra­

matically change the energy levels of a quantum dot. The statistics of transport properties 
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have been analyzed experimentally6) and theoretically41 7) by means of evaluating power 

spectra of magnetoconductance. A classically integrable system, for example a circular 

disc, was found to have higher amplitude of the high-frequency components in the power 

spectrum than a chaotic irregular structure. 

The eigenstates of a circular disc in weak magnetic fields8) can be deduced by perturba­

tion theory. This model does not take into account the imperfections or irregularities of the 

boundary and has been considered as irrelevant for describing the energy levels of quan­

tum dots. We have, however, measured the conductance of a quantum dot as a function of 

gate voltage and magnetic field and compared it with this simplified model and found 

qualitative agreement between measured and calculated magnetoconductance. One or 

more modes were transmitted through the point contact and therefore charging effects 

were not significant. The levels of the of the dot may be well-defined even when the total 

conductance is higher than the conductance quantum, provided there are many levels in 

the dot that individually have a low transmission probability9). The measured conduc­

tance oscillations remain up to a temperature of 2 K. The calculated conductance showed 

high frequency oscillations at low temperatures that were not clearly observed in the mea­

surement and the oscillations with longer period had a stronger temperature dependence 

than the measurement. Two energy scales of the oscillations can be identified; one is 

related to the separation between angular modes and the other to the average separation 

between discrete states in the dot. 
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Figure 1. (a) Measured and (b) calculated magnetoconductance at various tempera­
tures. Quasi-periodic oscillations are observed that resemble universal conductance 
fluctuations, but they have a regular dependence in both magnetic field and size of 
the dot. The long period oscillations persist up to 2 K. The high frequency fluctua­
tions that appear in the calculated sweeps (b), below T=0.2 K, is not observed in the 
measurements even at base temperature �20mK. High frequency oscillations appear 
in the calculations sweeps below T=0.2K. The traces are offset for clarity. 
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MEASUREMENTS 

The experiment was performed on a quantum dot, confined in a two-dimensional electron 

gas (2DEG) by the electrostatic potential of four Schottky gates (see inset of fig. 1 (a)). The 

gate geometry had a lithographically defined inner diameter of 1 µm. The gates formed a 

quantum dot of circular shape, with a diameter that may be estimated to be 0.8 µm at 

pinch off. The 2DEG was formed in a GaAs/GaxAl1-xAs heterostructure grown by 

molecular-beam epitaxy and had a mobility of 63 m2 /Vs and an electron density of 

3.7-1015 m-2. The mean free path is estimated to be 6 µm, which is longer than the perime­

ter of the dot. The gates (150 A Ti/ 150 A Au) were made by electron-beam lithography 

and lift-off. 

-1 .l 

-1 .2 

� �-1.3 

-1.4 

-20 0 20 40 -20 0 20 40 -20 0 20 40 
Magnetic Field [mT] 

Figure 2. The conductance of the quantum dot as a function of magnetic field and 
gate voltage V gl, displayed as a gray-scale image. The bright regions indicate higher 
conductance. The voltage on the other gate pair is changed: in (a) Vg2 =-l.34V, (b) 
=-l.33V, (c) =-l.32V. The dark regions that appear periodically at zero magnetic field 
are shifted when V g2 is changed. The periodic variation is thus not due to a change 
of the number modes in the point contact, but to a change of the area of the dot. The 
variations are clearly periodic in some regions and a zigzag pattern can be seen. 

We determined the two-terminal conductance by measuring the current and the voltage 

over the sample with two lock-in amplifiers, while the magnetic field or the voltages on 

one gate-pair (V gl) were swept. The dot was biased symmetrically by an ac-voltage over 

two 100 kn resistors, connected in series with the sample. The ac-voltage over the sample 

was of the order of 10 µV. The measurements presented in figure 2 were done at base the 

temperature of the dilution refrigerator T � 20 mK, but the effective temperature is 

estimated (based on other experiments) to have been in the range 100 to 300 mK. The 

temperature dependence of the magnetoconductance oscillations is shown in figure 1 .  
Note that any major differences between base temperature and 0.1 K cannot b e  observed. 

The variations have a regular dependence in magnetic field and size. This is seen in figure 
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2 as quasi-periodic oscillations. High conductance is indicated by bright image. The char­

acteristic pattern shifted and was distorted when V g2 was varied, but it can still be 

recognized. A third order polynomial is subtracted from the sweeps in the gate voltage 

direction to remove the influence of an increasing conductance of the point contact and to 

enhance the oscillatory behaviour. 

CALCULATIONS 

The calculation is based on a double-barrier resonant tunneling model. The dot is modeled 

as a perfectly circular disc with hard walls, where imperfection of the boundary is 

neglected. The conductance was calculated as a resonant transmission through bound 

states in the quantum dot, even though the conductance of each point contact was higher 

than or comparable to the conductance quantum. The temperature used in the calculations 

was 0.4 K. In the measurements, the swept gate voltage affected the area, the conductance 

of the point contacts, as well as the electron density in the dot. In the calculations, we vary 

only the radius. 

0.40 

]: 0.38 

i 8 0.36 

0.34 
-100 -80 -60 -40 -20 0 20 40 

Magnetic field [mT] 
60 80 100 

Figure 3. Calculated conductance through resonant states of an isolated circular disc. 
The variations are very complex, but still quasi-periodic. The characteristic zigzag 
pattern can be seen in these calculations. Bright regions indicate high conductance. 
The dot radius can be related approximately linearly to the gate voltage in the 
measurements. The radial change in figure 2 is estimated to be 0.03 µm. T=0.4K 

The energy levels of the bound states were calculated by solving the Schrodinger equation 

for a circular geometry in weak magnetic fields. The energy levels of the system can be 

expressed as 8, 9) 

Em,n = Eo[r�.n + 2ma +�a2(1 + 2(��.: l) J} 
where Eo = n2 I 2m * a2 , if the applied magnetic field is sufficiently small such that the 

cyclotron radius is much larger than the dot radius rc>>a. The classical cyclotron radius, 
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re = n(21Cfls/12 I eB, equals the dot radius at a magnetic field B=0.25 T. '»n,n is the n:th 

root to the m:th Bessel function, fm(/m,n)=O, n=l,2, . . .  , m=0,±1,±2, ... For a given magnetic 

field B, the flux through the dot is <I> =  na2B, which can be normalized by the magnetic 

flux quantum <I>o = h/ e, giving the dimensionless parameter a =  <I>/<l>Q. 

To find the conductance of the double barrier structure we use an expression for the 

current 10) 

J = 2�f dkv(k)Tn(k)[nF(E(k) -µ1) - nF(E(k) -µ2)l 2n 
where µ; = EF ± eV /2are the chemical potentials of the reservoirs and np is the Fermi­

Dirac distribution. v(k) is the group velocity of the incident electron to the double barrier 

structure. The Lorentian shaped energy dependence of the discrete tunneling probability 

(T12) is approximated by a delta function. The tunneling probability at resonance T res is 

assumed to be a constant. After evaluating the integral and summing the contributions 

from all resonance energies Em,n, the final expression for the current density is 

J = ;n rrres L [nF(Em,n -µ1) - nF(Em,n -µ2)] m,n 
where r is the full width at half maximum of the resonant levels. This gives the conduc­

tance at zero bias voltage, 

G (}
J
I 

e2f3 rrres � 1Jm,n 
[ ( )] = JV = ---:y; 12 £.. 

( )
2 • where 1Jn,m = exp f3 Em,n -EF and /3=1/kBT. 

V=O m,n 1 + 1Jm,n 
This expression was used to calculate the conductance as a function of both radius of the 

dot and magnetic field (figure 3). 

DISCUSSION 

The conductance through a resonant tunneling structure is proportional to the density of 

states at the Fermi energy. In figure 3 it can be seen that it has a complex dependence of 

magnetic field and size, but clearly has regular features. The conductance is strongly 

affected even by small changes of the radius or the magnetic field. Two magnetic field 

sweeps may seem uncorrelat�d after a gate voltage change of only a few tenths of m V. 

From the gray-scale images we see that the measured conductance has the same complex 

dependence as the calculated data. It is periodic at zero magnetic field, with a period cor­

responding to a change of the number of angular modes in the dot. The quantity kfa gives 

approximately the number of angular modes in the circular dot, where kf=(21Cfls)1/2 is the 

Fermi wavevector and a is the dot radius. For this dot kfaz60 (a,,,Q.4 µm). Two different 

energy scales can be distinguished: the average separation between discrete energy levels 

and the separation between angular modes (EF/(kfa)). They will give different tempera­

ture and flux dependence of the conductance. The second will give a contribution that is 

quasi-periodic in <I>o, whereas the first will lead to oscillations or spikes with higher 
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frequencies. The corresponding temperature scales were about 0.08 K and 2.6 K 

respectively in our experiment. The effective temperature of the sample, however, was � 

0.2 K and therefore the high frequency oscillation was consequently not observed. 

The bound states of the dot are well defined if the transmission probability for each state 

is small, ltl2 << J. This can be satisfied for a system with a large number of particles even 

when the total conductance G � ( 2e2 I h )(ltl2 N) > 2e2 I h 9) We therefore find it reasonable 

to use the simplified model of a double-barrier resonant tunneling structure and compare 

it with the transport properties of the quantum dot. 

CONCLUSION 

We have observed conductance oscillations that are due to variations of the density of 

states close to the Fermi energy. The oscillations were seen even though the conductance 

of one point contact was higher than the conductance quantum. That means that 

spectroscopy of bound states in a quantum dot can be done without the interference of 

charging effects. The measurements agree qualitatively with a simple resonant tunneling 

model where the energy spectrum is calculated for an isolated circular disc. We find that 

the spectra of perfectly shaped integrable geometries can be relevant for real systems that 

have roughness of the confining walls and contacts to the dot. 
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The conductance through a quantum dot made in a 2 -dimensional 
electron gas of a GaAs HEMT structure exhibit a quasiperiodic 
variation as a function of the gatevoltage , reflecting the 
level density as a function of the number of electrons in the 
dot . This has been seen in rather open dots , where Coulomb 
blockade does not play an important role . We and others observe 
it in the amplitude modulation of the Coulomb blockade oscilla­
tions for quantum dots . These results are suggested to be the 
result of shell effects in samples with a shape , which comes 
close to a circle . The results are consistent with a confine­
ment potential , which is parabolic for small quantum dots and 
with hard walls for larger quantum dots . 

INTRODUCTION 

Lately there has been considerable interest in the electronic 

spectrum of semiconductor quantum dots with a countable number 

of electrons1 > .  The interest has in particular been focused on 

the finestructure within the energy range set by one Coulomb 

blockade period . The methods are in these cases based on a 

variable bias across the quantum dot2•3> or by capacitive char­

ging4 > .  Both methods investigate the spectrum inside one Cou­

lomb blockade energy period , e2/ C .  Recently it has turned out 

possible to watch the spectral density over a much larger 

energy range . The overall spectrum density may be studied in a 

quantum dot , which has a high conductance ( in terms of e2/h) 
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0.3 
T 20 m K  
B 0 T 

• 

. 

0. 1 

-0.65 -0.60 -0.55 -0.50 Ve (V) 
Fig . 1 .  Conductance , G ,  through a 3 -splitgate quantum dot 
plotted as a function of the center splitgate voltage , Ve . The 
2 -dimensional electron gas is formed in a GaAs/AlGaAs hetero­
structure with a mobility, µ=1 • 106cm2/Vs , and a carrier densi­
ty , n

2
=1 . 4 • 1011  cm-2 • The split gate configuration is shown on 

the inserted SEM micrograph . The splitgates to the left and 
right defines two quantum point contacts ; the distance ( center 
to center) between these quantum point contacts is 1 . 2  µm . The 
conductances of these split gates were individually adjusted to 
values below e2/ h ,  corresponding to the two split gate voltages 
-0 . 2 3V and - 0 . 18V . The size of the quantum dot is adjusted with 
the middle split gate voltage , Ve , along the abscissa . The 
amplitudes of the Coulomb blockade oscillations have a charac­
teristic periodically varying envelope , which is ascribed to a 
penduling semiclassical orbit ( see text) . 

to the external 2 -dimensional electron gas5•6> or via the enve­

lope of the peaks of the Coulomb blockade oscillations2•7•8> .  In 

the lastmentioned case one has to be cautious due to the 

irregular properties of the quantum point contacts2> . We have 

experimentally studied the amplitude in Coulomb blockade 

oscillations , and we generally find a complicated envelope . In 

one particular sample we have , however , observed the regular 
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behaviour displayed in fig. 1 ,  which cannot be ascribed to the 

quantum point contacts . It turns out that other examples exist 

in the literature of such quasiperiodic behaviour6·7•8> .  In the 

following we describe our experiment and put our results and 

the avai lable data from the literature in the perspective of a 

spectral density of a circular quantum dot with a billiard or 

parabolic type confinement . 

EXPERIMENTAL DETAILS 

The quantum dot is formed in a low carrier density ( n�=l . 4 • 1011  

cm-2 ) 2 -dimensional electron gas with high mobility ( �=1 · 106 

cm2/Vs ) . 3 split gates form the quantum dot into a roughly cir­

cular shape with a diameter of 0 . 6  �m and holding 3 5 0  ( or less) 

electrons for the bias conditions of fig .  1 and 2 .  A SEM 

micrograph o f  the split gate configuration is seen as an insert 

to fig . 1 .  The two quantum point contacts act as source and 

drain for the quantum dot . The quantum point contact split gate 

voltages were adjusted to obtain significantly different 

conductances , when Ve < -0 . 5V. The center split gate voltage 

was adj usted to obtain a suitable quantum dot . The depletion 

voltage of the gates were -0 . 17V, and the quantum point con­

tacts p inched off at split gate voltages - 0 . 2 3V and - 0 . 29V, 

when biased separately , whereas the center splitgate had a 

pinch off voltage of - 1 . 65V, with zero bias on the two outer 

split gates . The self-capacitance of the quantum dot is c0 � 

7rf rf02R � 6 • 10-16F corresponding to a Coulomb energy of e2 / C0 � 

0 . 3meV. The experiment was carried out at very low tempera­

tures ,  T�20mK. The sample was well shielded from higher tem­

peratures by f ilters in the leads , and we estimated the noise 
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temperature of the sample to be below 4 0mK from watching the 

temperature dependence of the fractional quantum Hall effect in 

another experiment . The conductance was measured by an a . c .  

lock-in technique with an excitation current o f  1 nA and a 

lock-in frequency of 3 3  Hz . 
1 .2 
1 . 1  
1 .0 
0.9 
0.8 

,.-....0.7 _c �0.6 
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...__,0.5 
C) 0.4 
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0. 1  

T = 20 mK 
B = 0 T 

v. - 1 80.7 
Ve -229.0 

- 1 8 1 . 1  
-230.2 

0.0 
-0.65 -0.60 Ve (V) -0.55 -0.50 

Fig . 2 .  3 conductance versus center gate voltage curves with 
different settings of the quantum point contact split gates . 
The sample is the same as used for fig. 1 .  B=OT , T=2 0mK . The 
periodic envelope of the Coulomb blockade oscil lations is very 
sensitive to the status of the quantum point contacts . 

In fig . 2  we show another set of data on the same sample as used 

for fig . 1 .  The conductance through the quantum dot is measured 

as a function of the center split gate voltage for three split 

gate voltage settings for the two quantum point contacts . It 

turns out that the envelope of the Coulomb blockade oscilla-

tions shown in fig . 1  is a very sensitive function of the split 

gate settings of the two quantum point contacts . Changes of 



only lmV on the values -23 0mV and -18 0mV made considerable 

change and almost washed out the periodic envelope . 

SEMICLASSICAL TRAJECTORIES IN A CIRCULAR QUANTUM DOT 
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A classical billiard with a long mean free path and perfect 

specularity at the confinement has been predicted to have non­

periodic ( chaotic) orbits except for particularly symmetric 

confinements such as a circle9> . GaAs quantum dots have been 

considered a possible testground for such calculations and 

their quantum mechanical analoques5•6> .  We attempt to interpret 

our experimental results fig . 1 and f ig . 2  in terms of a circular 

confinement . It is wellknown that the eigen-energy spectrum can 

be represented by Bohr-Sommerfeld quantization on classical 

periodic traj ectories as indicated in the insert to fig . 3 .  This 

has been particularly developed for nuclei10> and 3 -dimensional 

clusters11 > ,  where it turns out that triangular and quadratic 

orbits dominates the spectrum leading to shell and supershell 

effects . 

Solving the Scrodinger equation for the circular confinement 

with hard walls is straightforward . The large dominance of one 

or a few types of orbits makes it however possible in a simple 

way to extract the main features of the density of states for 

the quantum dot . This approach is used to calculate the perio­

dicity of the level density with the number of electrons in the 

dot . As the simplest approach we only consider the dominant 

penduling orbit ( see insert to fig. 3 ) . For a circular quantum 

bill iard penduling orbits ( see insert to fig . 3 )  can be shown to 

have a 3 times larger Fourier amplitude than the triangular 
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Fig . 3 .  Shell period (AN, in number of electrons) as a function 
of the number of electrons in a quantum dot , N. The two curves 
are for a quantum dot with a circular shape . The upper curve 
is for a hard wall flat bottom confinement potential , where the 
penduling semiclassical orbit dominates in the Bohr-Sommerfeld 
quantization condition ( AN=7r (N/ 2 )  112) . The lower curve corre­
sponds to a parabolic confinement potential (AN= ( 2N) 112) . The 4 
circles are experimental points . A is from ref . 7 ,  B is from 
this work ( fig . 1 and 2 ) , c is from ref . a  and D is taken from 
ref . 6 .  Note that it is expected that quantum dot confinement 
potentials are parabolic for small dots and hard walled for 
large dots . The insert shows three circular hardwalled quantum 
dots with a penduling orbit , a triangular orbit and a circular 
orbit . The circular orbit may be considered the l imit of a 
periodic orbit with infinitely many scatterings at the hard­
walled potential . For a sphere the triangular and quadratic 
orbit has the largest ( by a factor of 1 0 )  Fourier ampl itudes10 • 
For a circular disk the penduling orbit has a 3 times larger 
Fourier component than the triangular orbit , which in turn is 
much larger than any of the subsequent orbits12 •  L/r i s  the 
length of the orbits measured in units of the radius . 
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orbit , which again has a much larger Fourier amplitude than 

orbits with 4 or more boundary touches12> . Applying the Bohr­

Sommerfeld quantization rule f ( 2mEF ) �dr=nh , where the integral 

is taken over twice the diameter , we find shells corresponding 

to integer n as deltafunctions in the density of states at 

Fermienergies EF= (hn/ a) 2/32m,  where a is the radius of the dot . 

The total number of electrons becomes N= ( nn) 2 / 8  leading to a 

periodicity in the density of states , 4N=n (N / 2 ) � ,  as a function 

of total number ,  N, of electrons . In fig . 3  we have plotted this 

shell period for a circular billiard as a function of N .  The 

billiard model is only expected to be valid for large quantum 

dots . For smaller quantum dots a parabolic confinement potenti­

al is more appropriate . For a parabolic confinement , �m�2r2 , 

all the different classical orbits gives a series of shells 

with the energies h � ( n+� ) . The total number of electrons i s  

N=�n2 and the number of electrons in each shell i s  4N= ( 2N ) 112 • 

This shell period is also plotted in fig . 3  as a function of N .  

The shell period o f  the sample, fig . 1 and fig. 2 ,  i s  shown in 

fig . 3  as the point marked B. We have also plotted the shell 

period extracted from conductivity of a quantum dot without 

Coulomb blockade from ref . 6  as point D. In the literature on 

Coulomb blockade of quantum dots periodic variation of the 

envelope has been reported several times . Pronounced are the 

results of ref . 7  and 8 ,  from which we have extracted the points 

A and C .  

CONCLUSION 

We have experimentally investigated a quantum dot , which has a 

particularly pronounced periodic variation of the Coulomb 
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blockade conductance peaks . The peaks are interpreted as 

reflecting a maximum in the electronic level density . We 

therefore believe to have found a shell structure for particu­

lar electron numbers in a quantum dot . In a separate article , 

we have also extracted a shell period from conductivity oscil­

lations without Coulomb blockade interference6 • We have extrac­

ted 2 datapoints from articles in the literature on quantum 

dots , which a lso reports a periodic variation of the coulomb 

blockade envelope . The 4 point fall on a curve , which for low 

numbers of electrons in the dots (A, B ,  and C) are close to the 

expected shell period of a quantum dot with a parabolic con­

finement potential and at high electronic number ( D )  is close 

to the shell period expected for a circular billiard . 
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TUNNELING SPECTROSCOPY ON THE LIGAND STABILIZED METAL 
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1 Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The 
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Abstract 

We performed low temperature (4.2 K) scanning tunneling microscopy and spectroscopy on Pt30Phen3.0w 

clusters, that were deposited on a bare Au[l 11 ]  surface. Spectroscopic curves above the clusters showed clear 

charging effects, indicating that the cluster core is metallic and the ligand shell surrounding the cluster is 

insulating. 

1 Introduction 

The invention of scanning tunneling microscopy (STM) by Binnig and Rohrer (for a review on scanning tunnel­

ing microscopy and spectroscopy see e.g. [1]) has opened the possibility of very local tunneling spectroscopy, 

even down to an atomic scale. Furthermore STM allows to combine this spectroscopic capability with to­

pographic information: high resolution topographic images (0.1 A> can be obtained and spectroscopy can be 

performed on specific sites of the sample. In this contribution we describe STM results, performed at 4.2 Kelvin, 

on ligand stabilized metallic particles that are deposited on a Au[111]  surface. 

Many STM experiments have been reported on small isolated metallic particles (2, 3, 4, 5, 6, 7]. In this type 

of experiments we obtain a situation with two tunnel junctions in series: one between the tip and the cluster 

and one between the cluster and the substrate (fig. 1).  The main feature that is observed in this situation 

is a stepwise increase of the tunnel current as a function of bias voltage. This effect is called the Coulomb 
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staircase (CSC). The origin of this CSC are the small capacitances between tip and cluster and between cluster 

and substrate. Since these capacitances are very small (order 10-18 F), the energy for charging such a small 

capacitance with one single electron (e2 /2C) may be large compared to the thermal energy (k8 T). Especially at 

liquid helium temperatures this charging effect may dominate the tunnel characteristics. As a result the tunnel 

current will show the above mentioned stepwise increase. For a recent review on this subject we refer to ref. 

[8]. 

Au(1 1 1  ) facet 

Fig. 1 .  Experimental situation in a tunnel experiment through an isolaied metallic particle. There are two tunnel 

barriers in this situation: one between the tip and the cluster and one between the cluster and the substrate. Both tunnel 

junction have a very small capacitance. 

The experiments on small isolated metallic particles are usually performed on a sample consisting of 

substrate-thin oxide-evaporated islands. Here we report results on a different type of sample consisting of a bare 

Au[l 1 1 ]  surface with ligand stabilized clusters on top. An advantage of these samples is that we do not need 

an insulating oxide. 

2 Experimental 

The STM used in this study is a home-built stainless steel design, that routinely operates at 1.3 and 4.2 Kelvin. 

The STM is in the center of a 9.5 Tesla superconducting magnet. Rough approach is achieved with a differential 

screw. 

The clusters that we used are full shell ligand stabilized P1Jo9Phenj6030 clusters (named Pt309 hereafter). 

These clusters consist of a core of 309 Pt atoms (ordered in a fee lattice), that is surrounded by a ligand shell of 

phenanthroline and 02 molecules. There are some advantages of this type of clusters above the normally used 

evaporated islands on an insulating oxide. First of all the size and geometry of the clusters is very well known 

and the same for all clusters. Secondly the ligands that stabilize the cluster can be used as a tunnel barrier, in 

stead of the normally used oxides. These oxides have impurity levels, that may get charged and decharged, 

thus giving rise to time dependent effects (see e.g. [4]). Because of these two advantages the experimental 

situation in our experiment might be less complicated. However, the unknown nature of the ligand shell may 

complicate the situation. For a review on the physical aspects of ligand stabilized clusters we refer to [9]. 
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The substrate on which the clusters arc deposited is a Au[l 1 1 ]  surface. This surface is produced by melting 

gold and cooling it down fast. In this way facets of about 0.5 x 0.5 mm2 form. On these facets we deposited 

a droplet of the solution with the clusters in water. This droplet was blown off after a few seconds with 

nitrogen gas and some clusters remain on the surface. STM images of samples that were produced in this way 

mostly showed either densely packed clusters or an uncovered Au[l 1 1 ]  surface, but sometimes single clusters 

were observed. Due to the interaction between the STM tip and the clusters, topographic images were only 

reproducable at high tunnel resistance (typically 1 GOhm) [10, 1 1 ].  

(/) 
s 

0 

- 1  

-0. 1  0 0 . 1  voltage (mV) 
Fig. 2. Spectroscopic curves above a Pl309 cluster at 4.2 K. The two different curves are taken at different distance 

between tip and cluster. For both curves the set point for the voltage is 0.18 Volt and for the current: 20 pA for the upper 

curve and 30 pA for the lower curve. The current indicated in the picture is normalized to this set point value I,. The 

curves are offset for clarity. At small distances between tip and cluster a sharpening of the features occurs and additional 

steps in the current are resolved (these additional steps are best resolved at negative bias). 

3 Results 

Figure 2 shows spectroscopic results obtained above a single cluster at 4.2 Kelvin. The different curves are 

taken at different tip-cluster distance. At large tip-cluster distance (high resistance between tip and cluster) 

we observe a regular CSC (see figure 2, upper curve). However, when the distance between tip and cluster 

is decreased we observe a sharpening of the features and irregular steps occur. Both effects are not predicted 

by the orthodox theory (sec for example [8]). First of all the theory predicts a flattening of steps if the tip­

cluster resistance is decreased, since then the two different resistances of the two tunnel junctions are closer to 

each other (in regular STM operation the resistance between tip and cluster is much larger than the resistance 
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between cluster and substrate, since otherwise the feedback system will not work). The irregularity of the 

steps is also not predicted in the theory for particles that have a constant density of states . However, when 

the clusters are small enough to cause level splitting of the electron states inside the cluster, irregular steps 

associated with the discrete levels inside the cluster may occur [12, 13, 14]. Quantum size effects may indeed 

become important in cluster of the size we studied. A rough estimate of the splitting due to this effect gives 

4Ep/3N "' 3 meV (where Ep is the Fermi energy of bulk platinum and N is the number of electrons inside the 

cluster (3090 in our case)). 

0 . 1  

0 

-0. 1 
-0.2 0 

voltage (V) 
0 .2 

Fig. 3. Tunnel characteristic obtained above a single P3o9 cluster a t  4.2 K (curve 1 )  and three theoretical fits. Curve 2 

is calculated using the orthodox theory without taking into account discrete energy levels of the cluster. The fit parameters 

for this curve are: R1 = 200 MOhm, Rz = 3300 MOhm, C1 = 1 aF, C2 = 2.9 aF and Qo = -0.Gl. Curve 3 takes into 

account a level splitting of 21 meV and the other parameters are the same as for curve 2. Curve 4 has the same parameters 

as curve 3, but takes into account heating effects due to the high current density (the effective temperature for this fit is 

T' = 15 K). All curves are offset for clarity and have zero current at zero bias. 

Figure 3 shows a measurement and calculations. The curve that does not take any discrete levels of the 

cluster into account (curve 2) is not very close to the measurement. Especially the additional steps at negative 

bias side are not present in this calculation. However, both curves that take discrete levels into account (3 and 

4) show these additional steps. The difference between these two last curves is that curve 4 is calculated at a 

higher effective temperature T' (15 Kelvin in stead of the bath temperature of 4.2 Kelvin) and thus takes heating 

effects into account that may be caused by the high current densities through the cluster. At negative bias side 

this curve is very close to the measured data. From this fit we see that the level splitting that we extract from 

the data (21 meV) is considerably larger than the estimated value. There are several effects that may cause this 

discrepancy. First of all it is not likely that the outer platinum shell is contributing to the conduction electrons 
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due to the bonding of the ligands [15]. This would reduce the number of electrons to 1470 and hence double 

the estimated splitting. A second effect that may play a role is that the clusters are highly symmetric which 

causes degeneracies and therefore increases the level splitting. The last effect that may be important is that it 

is expected that the level splitting around the Fermi level (which is the energy range that we are looking at in 

our experiment) is larger than the average level splitting [16]. 

However, for some clusters we observe CSC's that indicate an even larger splitting of about 50 meV (figure 

4). Although the irregular steps are in good agreement with the theory if we take discrete energy levels into 

account, the differences between the estimated and measured values of this energy splitting is very large. 

Therefore we don't want to exclude other effects that possibly might cause irregular steps. Especially the 

ligand shell might cause additional effects. There might for example be localized electron states in this ligand 

shell which cause additional structure. It is also possible that, although the ligands are good insulators, there 

are more spots on the cluster where tunneling to the substrate occurs. If this is the case the we obtain a situation 

of a few double tunnel junctions in series which also may complicate the interpretation of the data. 

50 
200 

0 
1 00 

� -50 .e, 
c Q) 0 � -1 00 (.) 

-1 00 -1 50 

-200 -200 
-0.8 -0.4 0 0.4 0.8 -0.6 -0.4 -0.2 0 

voltage (V) voltage (V) 

Fig. 4. A measured spectroscopic curve that shows a very large splitting of the steps (curve 1). Also indicated are two 

calculated curves: one without level splitting of the cluster (2) and one with level splitting (3). The fit parameters are: 

C1=0.47 aF, C2=0.16 aF, R1=3.6 MOhm, R2=0.18 MOhm, Qo=-0.08, T·=40 K and the level splitting (only used in the 

upper curve) 50 meV. The figure on the right shows the negative bias part of the measurement and the curve calculated 

with level splitting 

4 Conclusions 

Tunneling spectroscopy on Pt309Phenj,;030 clusters showed clear charging effects. From this observation we 

can conclude that the core of these clusters is metallic. Furthermore it shows that the ligands that stabilize these 

clusters are good insulators. However, in addition to the charging effect we observed structure on a smaller 

energy scale. Although this structure is consistent with discrete energy levels of the clusters, also other effects 
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may cause the observed structure. 
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CRYOGENIC PRECISION CAPACITANCE BRIDGE USING A 
SINGLE ELECTRON TUNNELING ELECTROMETER 

R.N. Ghosh,* A.F. Clark, B.A. Sanborn, and E.R. Williams 
National Institute of Standards and Technology 

Gaithersburg, Maryland 20899, USA 

The value of the electronic charge can be determined by placing a known num­
ber of electrons on a calibrated capacitor and measuring the resulting voltage, 
which can lead to a measure of the fine structure constant, a. Single electron 
tunneling (SET) electrometers with sufficient sensitivity for this application have 
been fabricated. We report on the design and preliminary results of a capaci­
tance bridge experiment using an SET electrometer as a detector to measure two 
capacitors in a dilution refrigerator. AC measurements of the capacitance ratio 
have a precision of one part in 104 and DC measurements provide information 
on the leakage rate of the standard capacitors. 

I. INTRODUCTION 

The single-electron-tunneling (SET) transistor can be used as a highly sensitive 
electrometer,1l and noise figures of 10-4e/VHZ at 10 Hz have been reported.2) We 
have proposed an experiment3l to measure the fine structure constant a by counting 
electrons on a standard capacitor. This experiment3l uses the sensitivity of the SET 
electrometer to small changes in charge on a coupling capacitor in order to monitor 
the voltage on an isolated island while electrons are being pumped onto the island. 
For the technique to be successful, the amount of charge pumped onto the island must 
be a well-defined quantity throughout the measurement time. Therefore, the leakage 
rate of charge from the island must be small in order to achieve metrological accuracy. 
In this paper, we report on a cryogenic capacitance bridge balance experiment which 
is a prerequisite to a precision measurement of a. We determined the AC and DC 
capacitance ratio of two standard capacitors in a dilution refrigerator, as well as the 
leakage rate of the capacitors. 
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II. THE SET ELECTROMETER 

The SET electrometer, shown schematically in the left portion of Fig. la, consists of 
two nanoscale normal metal/insulator/metal tunnel junctions in series, represented 
by the double-box symbols. If the junctions are designed so that their tunneling 
resistances are large compared to the resistance quantum h/ e2 , and if the capacitance 
Cr. seen by the island between the junctions is small compared to e2 /2k8 T, the 
tunneling probability is greatly reduced for IVE I  < e/2Cr., the Coulomb blockade 
region. Under these conditions, the tunneling current I through the junctions can 
be sensitively controlled by varying the gate voltage U across the capacitor C0. At 
constant bias VE, the SET current undergoes oscillations as U is varied, with period 
t::..U = e/C0. To use the transistor as an electrometer, the voltages VE and U are fixed 
at levels chosen to maximize sensitivity of the device, so that I is linearly proportional 
to small changes in charge induced on the interjunction region. The electrometer is 
then highly sensitive to charge induced on the coupling capacitor Cc, and it provides 
a high impedance technique to measure the potential controlling the charge on Cc. 

1 Electrometer 1 - ----- 10µm 

FIG. 1 .  a) Schematic of capacitance bridge circuit for determining the ratio of the stan­

dard capacitors C,1 and C,2. b) Scanning electron micrograph of the SET electrometer. 

The electrometer can be used as a null voltage detector in order to balance the 
two arms of a bridge circuit .  The proposed experiment3l to determine a uses an 
SET pump to place n electrons on a standard capacitor C, and then measures the 
resulting voltage V,.  In terms of this voltage and capacitance, e is determined from 
the relationship ne = C, V,.  If V, is related to the Josephson voltage standard, then 
a can be determined by comparing C, to the calculable capacitor. The circuit in 
reference 3 is a variant of a bridge balance with the SET pump on one arm and the 
standard capacitor on the other arm. An SET electrometer is used to maintain a 
constant potential at the isolated island while electrons are pumped onto the island. 
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III. AC C RYOGENIC CAPACITANCE BRID GE 

In order to explore issues relevant to the experiment to measure a, we have exper­
imented on a cryogenic capacitance bridge using an SET electrometer to determine 
the capacitance ratio of two fused silica capacitors at 10 mK. The electrometer in the 
left portion of Fig. la, including the coupling capacitor Cc, was fabricated on a single 
chip. Electron beam lithography and a shadow evaporation technique4l were used to 
fabricate Al/ AlO /Al tunnel junctions on an oxidized Si substrate. We can make (30 
nm)2 junctions which are reproducible across several 1 cm2 dies. The electrometer 
chip has four electrodes, two for voltage leads and one each for the gate capacitor 
C0, and the coupling capacitor Cc. The chip was placed inside one chamber of a 
three chamber copper box with each standard capacitor in a separate chamber. The 
standard capacitors are metallized fused silica disks with a grounded guard ring and 
have a nominal capacitance of 1 pF. By separating the two standard capacitors from 
one another and the electrometer chip, we insured that C.1 and C.2 each have a well 
defined capacitance. Coaxial leads were used for the two voltage leads Vi and v;. The 
assembled copper box was then thermally anchored to the platform of the dilution 
refrigerator. 

In order to make precision measurements, a ground shield must be provided to 
prevent the potentials V1 and V2 from affecting the electrometer except through their 
respective capacitances. Stray capacitance to ground will degrade the electrometer 
sensitivity, and therefore it must be kept small. The sensitivity of the electrometer to 
the bridge balance point is proportional to Cc/(Cs1 + C,2 + Cg),  where Cg represents 
all stray capacitance to ground. We have measured Cg to be 5 pF, which is reasonably 
close to our target of a few pF. Choosing Cs = C,1 + C,2 to be small both increases V,, 
and maximizes the electrometer sensitivity. A practical choice for C. is 1 pF, because 
it is of similar magnitude to Cg as well as a convenient value to compare with existing 
capacitance standards. Our tunnel junction capacitances are typically a few tenths of 
a femtofarad. A large value for Cc would increase the electrometer sensitivity, however 
Cc also contributes directly to the electrometer island capacitance, thus reducing the 
Coulomb charging energy. We measured Cc to be 2 fF in our experiment. 

For the AC bridge balance experiment, an inductive divider together with a 1 : 1  
doubly-shielded transformer and an AC signal generator (Vcap) was used to  supply 
the potentials Vi and v; .5l At balance, C,2/C.1 = Vi/V2 = Zif Z2 where Z1 is the 
setting of the inductive divider and Z2 = 1 - Z2• In order to improve our signal to 
noise ratio, a lock-in amplifier was used to detect the AC electrometer current that 
was in phase with Vcap· We also slowly ramped the gate voltage U to ensure that the 
electrorneter was functioning properly. Fig. 2 shows the capacitance bridge data at 10  
Hz and a platform temperature of 10  mK.  We deduce from these data that the ratio 
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of the two capacitors is C,2/C.i = 1 .0377 ± 0.0001 (one o-) , where the precision of our 
measurements is one part in 104• Bridge balance measurements were also made at 270 
Hz. Our precision was limited by the magnitude of the out-of-phase or quadrature 
signal . We therefore performed a double bridge experiment to determine both the 
in-phase and quadrature signals by introducing an orthogonal component to Vcap to 
cancel the quadrature signal. The large dissipation in the standard capacitors affected 
the SET oscillations and prevented an increase in the sensitivity of the bridge. 

"5 a. "5 0 
Q; Qi E 
e t3 Q) 
iii 

0.491 00 } 
0.49075 z 1 
0.49050 

1 0 mK 200 µV 

Gate Voltage 
FIG. 2. AC bridge balance data. The solid line is the electrometer output at balance, 

Z1 = 0.49075. The dashed and dotted lines are the off-balance traces which show SET 
oscillations due to charge accumulation on the island between the two standard capacitors. 

IV. DISSIPATION 

One of the advantages of our cryogenic capacitance bridge is the ability to make 
both AC and DC measurements. The DC capacitance ratio of the standard capacitors 
was measured using a resistive divider together with a battery (Vcap).0) With the 
platform temperature at 10 mK, we found C,2/C,1 = 1 .036±0.25%. Our precision was 
limited by a slow decay of the applied bias Vcap at balance. A second DC experiment 
was performed to measure the leakage rate of the standard capacitors at cryogenic 
temperatures. The two voltage leads Vi and V2 shown in Fig. la were connected 
together and a step voltage V.tep was applied to the standard capacitors in parallel. 
In this configuration, the electrometer is sensitive to the charge induced on Cc by 
the potential 11;, = V.tep[l + C9/(C,1 + C,2)]-1 .  If there were no leakage current 
at all, the electrometer output as a function of time would show rapid initial SET 
oscillations in response to the polarization charge induced by the step, but would 
detect no subsequent charge motion. In fact, after the initial response, we observed 
continued SET oscillations with increasing period as time progressed. This indicates 
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that the electrometer was responding to charge on Cc controlled by a potential that 
was decaying with time. 

The inset to Fig. 3 shows the SET oscillations against time observed after a 1 .35 V 
step voltage was applied to the standard capacitors in parallel (C.1 + C.2 = C.) .  Since 
each oscillation corresponds to one electron charge induced on the coupling capacitor 
Cc, the trace represents a voltage decay across C •. Plotted in Fig. 3 is N(t), the 
number of zero crossings as a function of time between t and T, where T is the final 
observation time. The times t were chosen so that t 2:: t0, where t0 is a time after 
the initial polarization response. N(t) equals twice the number of charges induced 
at times between t and T. If charge leaked from C. and induced charge on Cc at 
random times in the interval (t0, T), then the curve would correspond to a simple 
exponential form with a single leakage rate. Fig. 3 shows that the data do not fit 
this form. However, N(t) fits remarkably well to a sum of two exponentials, which 
indicates that the rates of two mutually dependent processes were governing the SET 
current. One model that is consistent with the two-exponential form is a two-level 
system subject to a decay process. Random telegraph switching between two charge 
states is frequently observed in SET devices2l and the rate for this process could be 
folded into the measured leakage rate. 

u;- 4 o -t-' ........ ---i ........................... ---il-'-' ........ '+''-'-''-'-1""'"''-'-''-+­
c 
.Q 3 5  I i :: i�. 

Time, sec 300 

0 5 0  1 0 0 1 5 0 2 0 0  2 5 0  3 0 0  
Time (Seconds) 

FIG. 3. SET oscillations vs time after application of l.35V step voltage. The open circles 
are the experimental data points. The fit to a single exponential is shown by the dashed 
curve and the sum of two exponentials is shown by the solid curve. 

From the data in Fig. 3, the apparent leakage rate measured by the SET elec­
trometer is on the order of one charge per second, which is equivalent to a leakage 
resistance of 1012!"! for the parallel combination of C.1 and C.2• Using a standard 
laboratory electrometer and a 45 V battery outside the cryostat, we obtain a lower 
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bound of 1014 n for the leakage resistance across C.i and C,2 in series at cryogenic 
temperature. Environmental noise caused by excessive dissipation could influence 
the SET electrometer signal and may be the reason we were limited in our ability to 
increase the voltage (Vcap) applied to the bridge. We are currently investigating the 
mechanisms responsible for the measured DC leakage and AC quadrature signal. If 
the dissipative signal is due to the leakage across the standard capacitors, alternative 
fabrication techniques, such as an air capacitor, can greatly improve the situation. To 
obtain a precision measurement of a as described in reference 3, we will need many 
orders of magnitude improvement on our standard capacitors. 

In conclusion, we have used an SET electrometer in a capacitance bridge experiment 
to measure the AC ratio of two standard capacitors to one part in 104 in a dilution 
refrigerator. The stray capacitance to ground which limits the sensitivity of the 
electrometer was found to be 5 pF in our first design. DC capacitance and leakage 
rate measurements demonstrate that the SET electrometer is a very sensitive detector 
of any time-varying potentials that induce changes in the charge state of the bridge 
balance point. This experiment is a first step towards a precision measurement of 
a, but it is clear that greatly improved capacitors will be required for success in this 
experiment. 
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We have recently developed a spectroscopic technique which allows direct measurement 

of quantum energy levels. The method is based on observation of the capacitance signal 

resulting from single electrons tunneling into discrete quantum levels. The electrons tunnel 

between a metallic layer and confined states of a microscopic capacitor fabricated in GaAs. 

Charge transfer occurs only for bias voltages at which a quantum level resonates with 

the Fermi energy of the metallic layer. This creates a sequence of distinct capacitance 

peaks whose bias positions directly reflect the electronic spectrum of the confined structure. 

Using this "single-electron capacitance spectroscopy" , we map the magnetic field dependence 

of the ground state energies of a single quantum dot containing from 0 to 50 electrons. 

Along with a spectroscopic measurement of the dot's ground states, we probe tunneling 

rates of electrons to individual quantum states. The experimental spectra reproduce many 

features of a noninteracting electron model with an added fixed charging energy. However, 

in detailed observations deviations are apparent: exchange induces a two-electron singlet­

triplet transition, self-consistency of the confinement potential causes the dot to assume a 

quasi two-dimensional character. Finally, broad features seen as the magnetic field strength 

is varied suggest changes in the shape and size of the dot induced by the magnetic field. 
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Several years ago, it became evident that semiconductor technology had, at least in one 

sense, began to touch the ultimate limits of miniturization. Several experiments, such as 

the resonant tunnneling system of Reed et al. , [ 1 ]  made it clear that it might be feasible to 

produce a "quantum dot or artificial atom" containing as few as one electron. Over the 

last few years, many other methods have been developed to study these systems. Among 

these are gated resonant tunneling devices [2] , far infrared spectroscopy [3, 4] , conventional 

capacitance studies of arrays [5, 6] , and photoluminescence spectroscopies [7] . Recently, two 

techniques have been developed which allow spectroscopic study of the ground state (GS) 

energies in individual quantum dots with a resolution limited only by the temperature of the 

electronic system. [8, 9] 

A key question to be answered by spectroscopic studies on quantum dots is the role of the 

electron-electron interaction in modifying the dot's electronic level structure. Bryant[lO] has 

addressed this question for quantum dots containing just two electrons. He finds a continuous 

evolution of the level structure, from single-particle like states in the limit of a very small 

dot, to a level structure dominated by the electron-electron interaction in larger dots. Since 

the confinement potential in semiconductor quantum dots can be controlled at will, a large 

range of this continuum which is not accessible in atomic physics can be examined. 

In the presence of magnetic field (B),  the electron-electron interaction is expected to affect 

the electronic level structure of a quantum dot in interesting ways. For instance, Maksym 

and Chakraborty[l l ]  find in their calculations that electrons in their GS in a quantum dot 

undergo discrete increases of angular momentum of several Ti as B is increased, reminiscent 

of transitions between different fractional quantum Hall states. In order to investigate 

experimentally such novel phenomena, we have undertaken a high resolution study of the 

GS energy levels and tunneling rate spectra of a single quantum dot in magnetic field. 

In a previous paper, [8] we have introduced single-electron capacitance spectroscopy 

(SECS) .  The method allows the direct measurement of the energies of quantum levels of an 

individual small structure (dot) as a function of magnetic field (B) .  When the Fermi energy 
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of an electrode becomes resonant with a quantum level of a nearby dot, single electrons 

can tunnel back and forth between the electrode and the dot through a tunnel barrier (see 

Fig. la). The resulting charge induced by this motion on the opposite electrode of a "tunnel 

capacitor" is detected by an on-chip, highly sensitive transistor. Using this technique we 

were able to detect spatially distinct localized states in a small tunnel capacitor. We now 

use SECS to measure the GS energies of a single quantum dot containing N electrons in 

which charge nucleates in only one central location. 

To measure the capacitance signal from single electrons moving back and forth across 

the tunnel barrier, we have incorporated our device into a "bridge on a chip" , with a 

standard capacitor and detector located very close to the tunnel capacitor. As a detector, 

we use a cryogenic high electron mobility transistor (HEMT) with input shunt capacitance 

of � 0.3 pF. It is positioned within 2 mm of the bridge. We mount the HEMT with its 

two-dimensional electron gas parallel to the magnetic field, and we find its characteristics 

practically unaffected by an applied field in this geometry. 

The basic configuration of our GaAs samples has been described previously,[8] although 

the semiconductor structure has been slightly modified for the present experiments. A 

schematic of the sample is shown in Fig. la. The layer sequence is as follows: 3000 A 
n+ -doped ( 4 x 1017 cm-3) GaAs bottom electrode; 600 A undoped GaAs spacer layer; 

125 A undoped AbGa.7As/GaAs superlattice tunnel barrier; 175 A quantum well (vertically 

confines the quantum dot); 500 A Al.3Ga.7As blocking barrier; and a 300 A GaAs cap layer. 

The blocking barrier contains a Si delta doped layer 200 A from the well edge. The wide 

600 A spacer layer and the superlattice tunnel barrier[12] were implemented to prevent Si 

atoms from migrating into the well. [8] Lateral confinement is provided by first patterning 

a 3500 A diam. circular metallic disk on top of the sample surface and using this as an 
etch mask to etch down to the AlGaAs blocking barrier surface. The 3500 A diam. top 

electrode is contacted for measurement by overlaying it with a 1 .5  µm diam. metal disk. All 

measurements are taken at 0.35 K. 
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Figure lb displays capacitance vs. gate bias data for the quantum dot sample. The top 

trace is the signal observed in-phase with the excitation voltage. A first peak appears at 

-373 m V and arises as the lowest electronic state of the dot becomes resonant with the Fermi 

energy of the n+ electrode. With increasing positive gate bias subsequent electrons tunnel 

onto the quantum dot. Unlike our previous results in a larger dot, the peaks are spaced 

rather uniformly, with their separation decreasing slightly with increasing electron number. 

The constancy of the peak heights attests to the quantization of charge that is being moved 

onto the dot. 

Beyond the 25th peak, the peak heights in the top trace of Fig. lb drop due to a decrease 

in the tunneling rate. This interpretation is confirmed by measuring the signal at the dot in 

90° lagging phase, shown in the bottom trace of Fig. lb, where peaks occur only for N�25. 

This behavior is unambiguous evidence that the tunneling rate of electrons is becoming 

smaller than the 210 kHz excitation frequency. A slow tunneling rate causes an electron 

to "wait" a length of time before it tunnels in response to the excitation voltage, and its 

motion thus lags the excitation. The present experiment thus allows both a tunneling rate 

spectroscopy based on the height and phase of capacitance peaks as well as an energy level 

spectroscopy based on the positions of the peaks. 

We have developed an understanding of why the tunneling rates decrease in these samples 

with increasing electron number based upon studies of different wafers with different undoped 

spacer layers just below the tunnel barrier. Briefly, the geometry of our samples suggests 

that the tunneling problem can be separated into transverse (in the plane of the quantum 

well) and longitudinal (in the direction of tunneling) parts. [13] The large 600 A spacer layer 

acts as a long and low ( <20 meV high) tunnel barrier. As the dot fills up with electrons, 

their bound state energy in the quantum well is lowered with respect to this barrier, reducing 

the tunneling rate. 

The regime of a few electrons in a dot has been probed by relatively few experiments. [14] 

We now use SECS in B-field to study this domain with unprecedented resolution. Figure 2 
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is a grey scale image of the dot capacitance as a function of gate bias and B-field applied 

perpendicular to the plane of the dot. The white and black regions correspond to the highest 

and lowest capacitance respectively. The gate bias scale is converted to an energy scale[S] by 

division by a lever-arm of 2.0±0.1 for this structure. This lever-arm was determined from 

capacitance measurements on large area mesas made on the same wafer. 

Fig. 2 represents the B-field evolution of the first 35 N-electron GS energies of the 

quantum dot. The field dependence of the lowest energy state in Fig. 2a is smooth and 

is well described by the first electron in a cylindrically symmetric parabolic potential[15] 

�m*w5r2 with hw0 = 5.4 meV. The high field asymptote of this curve follows the dashed line 

in Fig. 2a with slope hwc/2. From the classical turning points of the lowest bound state we 

deduce a dot diameter of 408 A. 

In contrast to the first electron, the evolution of the ground state energy of two electrons 

shows a pronounced "bump" and a change of slope at about 1.5 T (see dot on 2nd electron) .  

We interpret this feature as a singlet-triplet crossing. Considering noninteracting states, the 

first two electrons in the dot fall into a two-fold (spin) degenerate ground state for B=O. 

At higher field, the energy difference between the ground orbital state and the first excited 

state shrinks, and the Zeeman effect causes a level crossing at 25 Tesla for hw0 = 5.4 meV. 

Electron-electron interactions significantly reduce the B-field for this singlet-triplet 

crossing. Wagner, Merkt, and Chaplik[16] have calculated its position for parabolic quantum 

dots. For hw0 = 5.4 meV, the crossing is expected at 3.6 T, about a factor of 2 higher than 

seen in Fig. 2a. The discrepancy may arise from the assumption of a strictly parabolic 

potential in the calculation. Such a singlet-triplet crossing has not been observed in atomic 

physics experiments due to the exceedingly high B-field required (4 x 105T for He). The 

weak binding of electrons in our quantum dot along with the small electronic mass shifts it 

to attainable fields. 

The singlet-triplet crossing should exist even in the absence of a Zeeman splitting, arising 

soley from the electron-electron interaction. [16] The angular momentum quantum number 
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m of the two electrons in the ground state increases with B, being equal to zero only at 

low field. [ 1 1 ,  16] The energy difference between single-particle states of progressively larger 

angular momenta decreases with increasing B; in higher fields, it becomes advantageous for 

the system to place electrons in states of successively higher angular momenta (larger orbit 

radii) in order to decrease the Coulomb repulsion between electrons. To maintain exchange 

antisymmetry of the two-electron wavefunction, the system undergoes singlet-triplet (triplet­

singlet) crossings as m switches from even (odd) to odd (even) numbers. 

The Zeeman energy moves the first singlet-triplet crossing to yet lower fields. Moreover, 

at higher fields the Zeeman effect may force for the system to remain in a spin triplet, 

allowing only transitions between odd m states. For our GaAs dot , the nature of transitions 

beyond the initial singlet-triplet crossing depends sensitively on the value of fiw0 for the 

dot as well as on the precise shape of the bare confining potential. These transitions cause 

smaller changes of slope in the two-electron GS energy, and we do not attempt to label them 

here. 

The data of Fig. 2a, display several unexpected features. The bump seen in the GS 

energy of the two-electron system seems to progress through the few-electron system (white 

dots) .  Its position shifts monotonically to higher fields with increasing N, producing a clear 

"ripple" through the data set. It seems likely that these features are also spin related. Finally, 

selected traces of Fig. 2a show a distinct intensity loss with increasing B resulting from an 

unexplained decreased tunneling rate. At a lower excitation frequency (65 kHz rather than 

210 kHz),  all capacitance peaks continue smoothly to our maximum field of 10.8 T, except 

at N=2, for which the tunneling rate drops precipitously at 8 T. 

Figure 2b shows the ground state energies of the dot for N =6-35 on an expanded field 

scale. In order to interpret the general features of this data set, we turn first to Fig. 3. This 

graph reproduces the highly intertwined single-particle states of a cylindrically symmetric 

parabolic potential with fiw0 = 1 . 12  meV in a B-field. N electrons in this system fill the N 



325 

lowest energy states. The GS energy of the Wh electron should thus oscillate as levels cross 

as indicated in bold for the 35th electron GS. The oscillations cease at about 2 T. 

In magnetic field, Landau level structure develops in the dot. Because The density is 

higher near the dot center than at the edges, and in magnetic field, levels of larger Landau 

index v may be filled there than at the dot edge. As the field is increased, the degeneracy of 

the lower v levels increases, and electrons move from the higher v states at the dot center to 

the lower v states which become available at the dot edge. Taking the Landau level index 

v for the dot to be given by the Landau level occupancy at the dot center, the position of 

the last crossing in Fig. 3 can thus be identified with v = 2. At this field, all electrons have 

moved into the lowest Landau level, and at the dot center, there are two electrons (one spin 

up and one spin down) per flux-quantum passing through the dot. 

In order to incorporate the electron-electron interaction to lowest order into this picture, 

we follow the constant interaction (CI) model. [9, 17, 18] It consists of single-particle states 

each separated by a magnetic field independent charging energy. In Fig. 2b, the development 

of the v = 2 positions are clearly visible (white triangles). Beyond N= 10, the v = 2 positions 

for each successive electron agree well with the CI model using a constant nw0 = 1 . 12 meV. 

Curiously, the tunneling rates are attenuated around v = 2 at large N. At v = 2, the electrons 

in the dot center are in a quantum Hall state, and we speculate that tunneling suppression 

arises from the incompressibility of this state. 

Figure 4 zooms in on the v = 2 region for N=21-33. These data are taken at 125 kHz 

to achieve well developed capacitance peaks. The oscillations expected from the CI model 

are clearly visible. Although the qualitative agreement between experiment and the simple 

model of Fig. 3 is satisfying, there exist some remarkable differences: oscillations in the GS 

energy appear only very close to v = 2, and GS energies drop abruptly as the field is increased 

beyond v = 2. While we presently have no explanation for the existence of oscillations only 

close to the v = 2 region and their relative phases, we believe that the energy drop beyond 

v = 2 is related to the nonparabolicity of the self-consistent potential. 
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Hartree calculations [19] show that the bottom of the dot's confinement potential is 

"flattened" considerably by the presence of electrons, and in the interior can be considered as 

a small two-dimensional (2D) system. In a 2D system there exist well known sudden drops 

in the chemical potential as Landau levels depopulate in B-field. As N is increased, the dot 

approaches a 2D system, giving rise to the enhanced chemical potential drop at v = 2 seen 

in our data. 

The identification of the v = 2 position allows us to determine the size of the dot, 

calculate its charging energy and compare it with the observed gate bias spacing between 

successive electrons. [17] Since for large N the potential around the dot center is approximately 

constant, we can define a capacitance of the dot to external electrodes. With capacitances 

Ctop and Cbott of the dot to the top and bottom plates respectively, the electrostatic lever­

arm is ( Cbott + Ctop) / Cbott· Ignoring the comparably small quantum level spacings, successive 

electron additions occur when the electrostatic potential in the dot changes by an amount, 

e/(Ctop + Cbott) ·  Accounting for the lever-arm, electron additions are spaced by e/Ctop in 

gate bias. 

In a dot with a fiat-bottom potential, the area of the dot A is related to the Landau 

level filling fraction v by A = N(h/eBv). For the 30th electron, v = 2 occurs at about 

2.2 T, which translates into a dot diameter of 1900 A. Assuming parabolic confinement with 

nw0 = 1 . 1  meV rather than fiat-bottom confinement decreases the dot area by only 2%. A 

simple parallel plate capacitor model neglecting fringing fields yields e/Ctop = 4.2 mV, only 

�25% larger than the measured gate bias spacing of 3.3 m V between capacitance peaks. 

The dot sizes determined this way compare very well with sizes calculated using our own 

classical relaxation method[20] computer simulations. An alternate way of determining the 

dot size is by looking at Fig. 4 and noting that each oscillation seen here corresponds to 

adding an additional flux quantum to the dot . [21] The size of the dot determined from the 

oscillation period is, to within experimental error, the same as that determined above. 
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As we move to yet higher N, approaching the 2D limit, additional features become 

apparent in our spectra. Figure 5, taken at 125 kHz, displays the chemical potentials of 

the dot containing 33-50 electrons. Similar to Fig. 4, we observe the steep drop in chemical 

potential at B-fields just beyond v = 2 (at about 2.3 T for N=33) .  The same behavior 

is now apparent at v = 4 (at about 1 .2  T for N=33). We attribute the accentuation of 

these features to the increasingly 2D character of the system at high filling. A more precise 

understanding of the chemical potential steps will require a self-consistent calculation of the 

dot's edges. [22] 

Pursuing further the transition between a quantum dot and a finite-sized 2D electron 

system, we now examine the region v < 2 at B above 4 T. We observe a sequence of "bumps" 

shifting only slightly to higher B with higher N. These features are inexplicable in terms of 

any CI model which all predict that successive traces oscillate 180° out of phase.[9, 18] We 

note also, that unlike the predictions of a single particle model which predicts features with 

a periodicity of one flux quantum through the dot, the bumps seen in the v < 2 regime have 

a periodicity of about three flux quanta. The origin of these bumps is at present unclear. 

They may result from the transfer of electrons between the spin states of the lowest Landau 

level such as has been observed previously by McEuen et al. [18] Alternatively, these features 

may be of many-particle origin reminiscent of the fractional quantum Hall effect (FQHE). In 

the FQHE the chemical potential of the system undergoes maxima between FQHE steps and 

minima at the steps.[23] The features seen in Fig. 5 are 0.2-0.5 meV in height, not unlike 

the characteristic energy range of the FQHE at such B-fields. Moreover, the decrease in 

tunneling rates (intensity) between the bumps, may reflect the energy gaps in the FQHE. 

These features grow monotonically in prominence as more electrons are added to the dot, 

suggesting a two-dimensional origin. The size and distribution of the electron density within 

the dot vary with B-field, and it is thus difficult to assign a precise value of v at dot center 

for fields beyond v = 2. Finally, given the nonuniformity of the electron density, we expect 

the electron gas to form incompressible and compressible regions, with the FQHE chemical 
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potential minima occuring with the central portion of the dot is at a v value appropriate for 

the FQHE. [24] 

Between 5.0 T and 5.6 T for the lowest trace of Fig. 5 (33rd electron trace) displays a 

broad dip, and the tunneling rate is also attenuated. Because the dip commences at 5.0 T, 

which is precisely twice the field for v = 2, the start of the dip can be identified as the 

onset of the v = 1 regime. It is interesting that v = 1 forms such a broad minimum. As 

the magnetic field is increased in the v = 1 regime, the increased degeneracy of the lowest 

Landau level allows the dot to shrink in size. The electrons in the dot remain at a fixed 

filling fraction of v = 1 as the electronic density in the dot increases with field. At around 

5.6 T the electronic density cannot increase any further; the dot is held at a fixed size by the 

repulsion of electrons within the dot. The electron density in the dot may approach that of 

a "maximum density droplet" . [25] 

Beyond the v = 1 region, other features appear. For the lowest trace of Fig. 5, a "glitch" 

appears at 6.5 T. This feature clearly persists at higher electron numbers, and it occurs at 

fixed Landau level filling fraction. Recently, Klein et al.[26] have observed similar behavior 

in laterally confined quantum dots probed by transport. They attribute such glitches to a 

sudden reformation of the edges of the quantum dot predicted by Hartree-Fock calculations. 

In summary, SECS has permitted a detailed survey of the N-electron ground states of 

a quantum dot in magnetic field. There are several salient features of the data set. We 

observe the singlet-triplet transition in the two electron dot. An unusual "ripple" is seen to 

run through the data for fewer than 10 electrons in the dot., and it appears that the ripple is 

caused by correlations between spin-flips in the dot containing different numbers of electrons. 

Anomalous behavior is seen in both the ground state energies and the tunneling rates to the 

dot around integer Landau level filling fractions. Finally, features appear at high magnetic 

field and large electron number which are suggestive of the development of the FQHE. 
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Figure Captions 

Fig. 1 (a) Schematic of sample. (b) Capacitance data vs. gate bias for the quantum 

dot sample in zero magnetic field. The top and bottom traces show the signal 

resulting from electron tunneling in-phase and electron tunneling in 90° lagging 

phase with the 210 kHz excitation voltage respectively. 

Fig. 2 Grey scale plots of the sample capacitance as a function of both magnetic field 

and gate bias. The vertical bars in both (a) and (b) represent an energy of 

5 meV. The dashed line follows the zero point energy in magnetic field for a 

free electron, nwc/2. 

Fig. 3 (a) Theoretical Darwin-Fock states for a parabolic quantum dot with nw0 = 

1 . 12  meV (dotted curves) . The bold solid curve displays the magnetic field 

evolution of the 35th electron. 

Fig. 4 Grey-scale capacitance data for N=21-33. The data set zooms in on the v = 2 

region. 

Fig. 5 Sample capacitance as a function of gate bias and magnetic field for N=33 

(lowest full trace) up to 50. The vertical bar represents an energy of 5 meV. 
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PERIODIC MODULATION OF COULOMB BLOCKADE OSCILLATIONS 
IN A QUANTUM DOT AT HIGH MAGNETIC FIELDS 
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T. Heinze!, D.A. Wharam, S. Manus, and J.P. Kotthaus, (Sektion Physik der LMU, 80539 
Miinchen, Germany), G. BOhm, W. Klein, G. Triinkle, and G. Weimann, (Walter Schottky 
lnstitut, Technische Universitiit Miinchen, 85748 Garching, Germany) 

Transport measurements of laterally defined semiconductor quantum dots are 
currently the subject of considerable interest and show several striking effectsl. 
Conductance oscillations as a function of the Fermi energy inside the dot have their origin 
in the discreteness of the charge transport through the dot and in the Coulomb interaction 
between the electrons. These oscillations are usually called Coulomb blockade oscillations 
(CBO), each peak corresponding to a change in the occupation number of the dot by one 
electron. The peak conductance is determined by the coupling of the the current-carrying 
state in the dot to the external leads. The peak separation is a measure of the energy 
required to add an additional electron to the dot. This energy is determined by the sum of 
two components: the electrostatic energy necessary to add an additional electron to the 
dot, usually expressed as e2 /Ct (Ct is the total capacitance of the dot), and a discrete 
energy oEi, depending upon the state i the electron occupies in the dot2,3. At zero 
magnetic field the discrete energy contribution is usually of the order of 10% of the 
charging energy and gives rise to a statistical variation in the peak separation. 

In this paper we report on Coulomb blockade oscillations in the presence of a high 
perpendicular magnetic field. At low fields and high filling factors the amplitude of the 
CBOs shows a significant modulation, whose period is inversely proportional to the 
applied magnetic field. Staring et aJ.4 have previously reported such a periodic 
modulation of the peak conductance at high filling factors, and were able to explain this 
modulation by the different coupling of the (spin degenerate) Darwin-Fock states to the 
leads as a function of the associated Landau level. At filling factors v � 4 we observe not 
only a periodic modulation of the CBOs that can no longer be explained within a single 
particle picture, but in addition a dramatic periodic modulation of the peak separations 
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which can become as large as 25%. To interpret our data we apply a recently developed 

charge-density model5-7 which has been shown to be in good agreement with previously 

reported experimental results8. 

The lithographically defined dot geometry (illustrated in Figure 1) is defined by 

metallic gates on the surface of a GaAs/ AlGaAs heterostructure. Nominally the dot 

structure is a square of length 500 nm however we expect that, at definition, the actual size 

of the dot structure taking account for lateral depletion effects will be approximately 

300 nm square. The dot is coupled to the reservoirs via two weakly conducting tunneling 

barriers which can be independently tuned using the finger gates. The central dot is 

controlled via the centre gate which simultaneously sweeps both the Fermi energy as well 

as the dot geometry itself. 

mesa-2DEG Gate electrodes 

Isd
__.. ---1111111-111.....-----I � 

Figure 1 .  A schematic illustration of the gate electrode structure used to define 

the quantum dot structure investigated. 

The completed structure was inserted directly into the mixing chamber of a top­

loading dilution refrigerator with a base temperature of approximately 25 mK. 

Conductance measurements were then performed using a low-frequency Lock-In 
technique (f - 31 Hz) and low excitation voltages (Vsd :s; 4 µV). The current resolution thus 

obtained was of the order of 200 fA and limited by the noise properties of the operational 

amplifier used as a current-voltage pre-amp. 

The finger gates were adjusted such that the conductance of each point contact was 

less than e2 /h and the conductance of the dot itself then measured as a function of the 

voltage applied to each of the gate electrodes. Coulomb blockade oscillations were 

observed in all measured conductances; the period of the observed oscillations was then 

used to determine the partial capacitances of the gates to the dot and the resulting total 

capacitance, neglecting the influence of the two two-dimensional reservoirs, was 

determined to be - 144 aF. This value of capacitance compares favourably with the self­

capacitance of a two-dimensional dot of radius 150 nm which we calculate to be 140 aF. 

Assuming the geometry of our dot structure to lie somewhere between a square and a 
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circle and using the two-dimensional electron density (3.5 1Q15 m-2) we estimate the 

number of electrons in our dot at definition to be about 250 (±10). In Figure 2 the 

measured dot conductance is plotted as a function of the centre gate voltage for typical 

Coulomb-blockade 
'
conditions. Of particular interest here is the number of oscillations 

observed between definition of the dot structure and "pinch-off", where the oscillations 

finally disappear. At a gate voltage of approximately -200 mV the dot becomes defined as 

can be seen by a significant change in the periodicity of the observed conductance 

oscillations (not visible under the resolution provided in Figure 2). The number of 

subsequent conductance oscillations observed before "pinch-off" is 240 suggesting that we 

have realised a dot structure where it is possible to study the charging effects of a dot with 

only a few electrons in the dot using transport experiments. 
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Figure 2. Typical conductance oscillations are plotted as a function of the applied 
centre gate voltage at zero magnetic field 
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Under the influence of a perpendicular magnetic field the observed conductance 

oscillations show an extremely rich and complex behaviour. In weak magnetic fields (i.e. 

for high filling factors) the conductance oscillations show an additional sinusoidal 

modulation where the number of coulomb peaks per period scales with the reciprocal of 

the magnetic field (see e.g. the conductance trace for B = 2 T in Figure 3). This structure 

has been previously observed4 and can be readily understood as the sequential filling of 

the Landau levels within the dot. Within the context of this model the amplitude of the 



342 

conductance oscillations reflects the coupling of the dots within the states to the external 

leads. 

0 
- 1 00 -200 -300 -400 -500 -600 -700 -800 

Center Gate Voltage (mV) 

Figure 3. The low-field conductance oscillations are shown as a function of the 

voltage applied to the centre gate. The sinusoidal modulation of the peak 

structure is clearly illustrated. 

-900 

For higher magnetic fields the modulation is no longer sinusoidal and, in addition, 
the peaks positions are also significantly modulated. This behaviour is clearly illustrated in 
the traces of Figure 4 where the conductance of the dot is plotted as a fuction of the 

applied centre gate voltage for a number of magnetic fields. In order to understand this 

behaviour in detail it is necessary to consider the self-consistent electronic distribution of 

the electrons within the dot5. 
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Figure 4. High-field conductance oscillations are plotted as a function of the 

centre gate voltage. The periodic modulation of both the Coulomb peak 

amplitudes as well as the peak separation is clearly observed. 
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At B = 0 the self-consistent solution of the Poisson equation for a system consisting 

of a single gate and a conducting two-dimensional electron gas (2DEG) gives rise to a 

charge density distribution of the forms 

(1 ) 

where r0 is the lithographically defined dot radius (for the structure discussed here 

r0 = 240 nm), 21 is the depletion length between gate and 2DEG, and n0 the 2D electron 

density. The estimation of the dot size from the self-capacitance leads to 1 = 45 nm at 

definition, in agreement both with the depletion lengths observed for the two single 

quantum point contacts as well as with electrostatic considerations5, which give 

1 = ££0 V gl7tn0e. In this analysis we make the approximation that the local density is 

determined by the closest gate. This is justified since 1 is small compared with the 

electrostatic dot diameter. In the presence of a magnetic field the screening properties of 

the 2DEG are significantly modulated. The electron gas divides into compressible rings 

separated by incompressible rings with integer filling factor. The filling factor decreases 

from its maximum value at r = 0 to zero at the edge of the dot, thus traversing 

incompressible regions which act as insulators. As a consequence the confined electrons 

form intra-dot capacitances, Cij, where i and j denote the compressible zones. Each zone i 

has a partial capacitance with respect to the surrounding metallic gates, Cig, as illustrated 

in Figure 5. The width, wiv of the insulating rings can be estimated to bes 

(2) 

located at 

(3) 

where �E is either the Zeeman energy if k is odd, or the cyclotron energy for even k. 

Within the context of this model the peak separation modulation observed in the 

experiments reflects the energetic stability of particular electronic configurations within 

the dot determined by the interplay of the Cij and Cig· For the case of v $ 2 the problem is 

analytic and the separation modulation becomes most pronounced when C1g = C2g· We 

can thus estimate 



345 

(4) 

provided that an incompressible ring exists between the two Landau levels. This means 
that the width of the incompressible ring must be comparable to the magnetic length, lB. 

Here l\V g is the amplitude of the CBO peak separation and a the conversion factor as 

determined from the ratio between the total capacitance and the partial capacitance of the 
centre gate. From our measurements we find l\V g,max = 0.6 m V at V g = -480 m V leading 

to C12 :::: 290 aF. This value may be compared directly with the intra-dot capacitance 

derived from purely electrostatic considerations 

(5) 

From (3) the position of the insulating ring can be calculated, ri = 130 nm. The width of 

the ring we set equal to the magnetic length (10.5 nm at B = 6 T) corresponding to an 

effective g-factor of 3, and the characteristic distance between dot and gates we estimate 
to 200 nm :::: d :::: 400 nm. For the range of d assumed we calculate 260 aF :::: C12 :::: 300 aF in 

good agreement with the intra-dot capacitance as obtained from the measurement. 
However the information obtained about the width within this model is limited, not only 
due to the logarithmic dependence of C12 on w1 but also due to the uncertainty of the 

screening length d. Hence, our main conclusion is that the modulation of the CBO peak 

separation observed at 6 T can be well explained if we assume a spatial separation of the 

spin-split Landau levels of the order of the magnetic length. This corresponds to an 

enhanced g-factor of reasonable magnitude. 

Gate 

Figure 5. A schematic illustration of the compressible regions within the dot 

arising from the self-consistent charge distribution. 

While the above model is reasonable for the estimation of the characteristic lengths 

of the dot, a more physical picture is given by the recently developed phase diagram? in 
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the B-V g plane. In this diagram each phase is characterised by the number of electrons in 

each compressible region. In a gate voltage sweep, a transition between phases always 

corresponds to a change in the total number of electrons, N, inside the dot. The 

boundaries between phases with the same value of N are parallel to V g (see Figure 6). As 

the gate voltage is reduced the two compressible regions are cyclically depopulated and 

the peak separation is modulated as observed. 

N+l 

N 

N-1 

Figure 6. A schematic illustration of the phase diagram derived using the 

capacitance model of Ref. 7. The vertical line represents a typical gate voltage 

sweep showing the expected peak separation modulation as discussed in the text. 

A cyclic depopulation is also observed over a wide range of gate voltages at higher 

filling factors (2� v � 4). In this regime we clearly observe the spin-splitting of the Landau 

levels and observe a striking modulation of both the CBO peak amplitude and peak 

separation. Here however the intra-dot capacitances cannot be connected to the 

measured modulation of the peak separation in a simple way. To obtain a more 

quantitative understanding the electrostatic energy of such a system should be minimised 

by varying the charge in each compressible region, taking into account that charge 

transfer between regions can only occur in integer multiples of the elementary charge. 

Such a calculation is beyond the scope of this paper, however many of the qualitative 

features of the results can be explained within the framework of the phase diagram. Of 

particular interest is the observation that at filling factors - 3 (B = 4 T) the number of peaks 

per period clearly suggests that we are able to resolve the spin-splitting of the Landau 

levels within the dot. This observation is in clear disagreement with the single particle 

picture developed using the Darwin-Fock states and shows the necessity to consider the 

electrostatic interaction between electrons. This observation is further substantiated by 



347 

the clear switch in filling sequence observed at -470 mV. Another interesting feature 

which can be derived from an extended phase diagram is illustrated in the data at B = 5 T. 

It has been suggested7 that the boundaries between phases with constant N are only 

parallel to V g as long as additional capacitances to the reservoirs can be safely ignored. 

Preliminary calculations which take such additional capacitances into account have shown 

that the situation can arise where it is energetically more favourable to successively 

remove electrons from the same compressible region. Such a tilted phase diagram is 

clearly able to explain the modulation of the peak amplitudes observed at B = 5 T where 

we suggest that for each electron removed from the inner region four electrons are 

removed from the outermost compressible region. 

In conclusion, we have investigated the Coulomb blockade oscillations in a 

semiconductor quantum dot structure at high magnetic fields and have found strong 

modulations both in the amplitude as well as in the separation of the conductance peaks. 

A self-consistent charge density model is shown to be an appropriate description of the 

system. Within this model the modification of the screening properties of the 2DEG by 

the magnetic field leads to the formation of intra-dot capacitances. The electrostatic 

energy necessary for the rearrangement of charge inside the dot is shown to be the 

reason for the modulation of the conductance peak separations. To explain our data we 

must assume that the separation between spin-split Landau levels is of the order of the 

magnetic length. This requirement leads to an estimate of an enhanced g-factor within the 

dot. 
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Abstract 

We use the Chem-Simons gauge theory for the fractional quantum Hall 

effect (FQHE) to calculate the Joesphson current for two weakly coupled 

subsystems separated by a thin tunnel barrier where each subsystem is in a 

primary quantum Hall state v = (2k�l) (k = 0, 1, 2, . . .  ) , at zero temperature. 

We find that the Joesphson current. is strongly suppressed by the long-range 

quantum fluctuations of the Chem-Simons gauge field. We also show that 

this theory leads to the prediction that an applied gate voltage coupled to 

an isolated region in a two-dimensional electron gas can induce Little-Parks 

oscillations of the longitudinal conductance in the quantum Hall devices at 

odd denominator filling fractions. 

I. INTRODUCTION 

Recently a new theoretical framework has been developed to describe the fractional 

quantum Hall effect (FQHE) in two-dimensional electron gas (2DEG) systems, based on 

an exact Chem-Simons gauge transformation, which maps the original interacting electron 

system in a high magnetic field to that of interacting Chem-Simons (CS) bosons under an 

(on average) zero magnetic field [1 ,2] . To put i t  simply, this approach treats an electron plus 
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2k+ 1 flux quanta as a new composite (Chern-Simon) "particle" which can be shown to obey 

Bose statistics. For the primary FQHE states v = I/(2k + 1 ) ,  it is easy to show that the CS 

bosons on average do not see a net magnetic field. At the mean-field level , one then argues 

that these CS bosons condense into a superfluid state at low enough temperatures, and the 

( dissipationless) quantum Hall effect is equivalent to the superfluidity (or superconductivity) 

of the charged CS bosons, which play a similar role as the Cooper pairs in the problem of 

superconductivity. It can be shown that if one starts from the mean-field theory of these 

superfluid CS bosons, and then include the effect of quantum fluctuations calculated to 

(quadratic) Gaussion order, one can reproduce exactly the original Laughlin wavefunction 

for the primary fractional quantum Hall state v = I/(2k + 1) [2] . Thus this CS boson 

theory of FQHE is precisely equivalent to the Laughlin variational approach [3]. What 

this approach offers in addition to the standard Laughlin variational approach is that to 

a large extent, the phenomenon of fractional quantum Hall effect can be mapped onto the 

phenomena of superfluidity and superconductivity (for the Chern-Simons bosons) ,  which are 

more familiar conceptually to condensed matter physicists. Thus the relationship between 

the CS gauge theory and the Laughlin wavefunction theory for FQHE is quite analogous 

to that between the Ginzburg-Landau formulism and the BCS variational wavefunction 

approach in the theory of superconductivity. 

In this paper we continue to explore the similarities between the FQHE and supercon­

ductivity by considering the FQH equivalents of the .Joesphson Effect and the Little-Parks 

experiment. By testing the analogy between the two systems in this manner we find that 

it holds imperfectly beyond mean field order. Using this analogy we can make predictions 

about the existence of Little-Parks oscillations but find that gaussian fluctuations destroy 

the .Joesphson current predicted in the mean-field approximation. Thus we see the utility 

and danger of the analogy between FQHE and superconductivity. 
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II. THE J O ESPHSON EFFECT 

A. Formulation of the problem and the mean-field solution 

We envision our weak-link 2DEG system to consist of two sheets of electron gas (with 

equal dimensions Lx x Ly),  which are coupled weakly at x = 0 (see Fig. 1 ). We assume for 

simplicity that the junction itself has zero area, so that the "diffraction" type reduction of 

the Josephson current by the magnetic flux through the junction area can be neglected. In 

theory, such a weak-link geometry can be achieved by growing (using MBE) a GaAs/ AlGaAs 

heterostructure on top of a disorder-free substrate which contains an atomically sharp step, 

as we depict in Fig. 1 .  Since the single electron wavefunction is confined to a short distance 

,\ (,\ � 70A) in the vertical z-direction, an appropriate choice of the step size d >  ,\ would 

result in a weak coupling between the two 2DEG subsystems (hereafter we label them 1 and 

2). The task of the following sections is to use the Chern-Simons gauge theory to calculate 

the Josephson current for the system just proposed. 

t y tz 
A!GaAs 

2DEG 
L y 2DEG - Subsystem R 

R 
- 2DEG - Subsystem L GaAs 

-+ 

L x  L x 
(a) Substrate 

(b) 

FIG. l. The geometry of the weak-link 2DEG system under study. We assume that a high 

mobility GaAs/ AlGaAs heterostructure system is grown on top of a disorder-free substrate which 

contains an atomically sharp step of height dat x = 0. (a) Top view of the device; (b) side view of 

the device. The two 2DEG subsystems are assumed to have the same dimensions Lx and Ly . 

-
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We confine our calculation to the primary fractional Hall states which have filling factors 

v = 1 /(2k + 1 ) ,  with k = 0, 1 ,  2, . . . .  The Hamiltonian for this weak-link FQHE system in 

terms of the original electron (fermion) field operators 1/J£(1l and 1/JR(1""!j in subsystems L (for 

left) and R (for right) consists of three contributions: 

( 1 )  

The Hamiltonian for each subsystem L ( x  < 0) and R ( x  > 0 )  takes tlw usual form 

(2) 

where Y7 x A(x) Bz is the uniform external magnetic field, x = (:r, y) are the spatial 

coordinates, V(x) is the (Coulomb) interaction potential among electrons, and tipL(x) = 

pL(x) - p, where pL(i') = 1�l(i'"J1h(x) is the electron density operator, and p = 11Bj<f;0 is the 

average electron density which we assume to be the same in both subsystems L and R. 

HR can be obtained from Eq. (2) by subsituting L -t R, and the integrations are over 

the region x > 0 in this case. 

The tunneling Hamiltonian Hr in Eq. ( 1 )  can be written in terms of the original electron 

operators: 

Hr = E0 2:(Ta1bk + h.c.) 
;; 

(3) 

where a1 is the electron creation operator in the left (L) region (x < 0) for momentum 

mode k, and b1 is that in the right (R) region. We have here assumed implicitly that the 

tunnel junction between the two 2DEG subsystems is perfectly flat (in the y-direction), so 

that the transverse momentum of the tunneling electron is conserved upon tunneling from 

one side of the barrier to the other. Since the tunneling process also conserves energy, the 

longitudinal component of electron's momentum must also be conserved. Therefore, only 

the same (vector) momentum states are coupled through our tunneling Hamiltionian Eq. (3). 
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We take here E0 as some characteristic energy scale for the step perturbation potential at 

the junction, which should be of the order of the cyclotron energy 1iwc, and T � e-d/>. � 1 is 

a dimensionless overlap integral (amplitude transmittance) of the z-directional wavefunction 

from the two subsystems separated by a sharp step (see Fig. 1 ) , or is due to some other type 

of tunnel barrier between the two 2DEG subsystems. 

Using the relation 

.1. ( �) 1 "°" ;f.;; 'PL x = r:; L e  ak, 
v A i; 

for x < 0 with A = LxLy, etc., we can rewrite Hr as 

Hr = E0T { <l2x,Pl(x)i/ln(1 + Lx) + h.c. lx<O (4) 

We see clearly that the tunneling Hamiltonian for a flat (i.e. disorder free) tunnel barrier 

gives rise a coupling between any given point x in the bulk of the left subsytem and the 

corresponding point :r + L:i: in the right subsystem, and vice versa. Thus it is our opinion 

that for the problem of coherent tunneling between the two 2DEG subsystems, the relevant 

physics is that of the bulk rather than the edge. The edge states are important for the dissi-

pative (or incoherent) tunneling channel between the two subsystems, as discussed recently 

by Fisher and Kane [4]. 

We can now perform the (exact) Chern-Simons gauge transformation in subsystems L 

and R separately. In subsystem L, we introduce the CS boson field operator as 

(5) 

with 

being the Chern-Simons phase angle. Here m. = 2k + 1 is the odd integer corresponding to 

the primary filling factor 11 = 1 /(2k + 1) ,  a(.i - fj)  is the azimuthal angle substended by the 

vector x - y, and <Po = hc/e. It is easy to verify that the new field operator rPL(x) satisfies 

Bose statistics: 

[<PL(x) , <PUY!l = li(x - Y). 
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The physical meaning of the Chem-Simons transformation is to tie 2k + 1 flux quanta to 

each electron dynamically, such that a given electron at position x "feels" the Aharonov-

Bohm phase factor from thE' flux quanta tiE'd to all the other electrons. Since we tie an odd 

number of flux quanta to each electron at filling factor 11 = 1 / (2k + 1 ) ,  an exchange operation 

between two electrons introduce an additional statistical factor (-1  )2k+J in addition to the 

usual Fermi exchange factor ( -1 ), thus making the </> operator a bosonic one [5]. 

The Hamiltonion lh in tPrms of the new CS boson fiE'ld operators takes the form 

HL = -2
1 1 d2x</>l(x) (!!:.'\! + .:x(x) - aL(x)) 2 <f>L (x) rn* x<O 'l C 

(6) 

where ih(x) satisfies the CS constraint relation (corresponding to the physical requirement 

that each electron is tied to 2k + 1 flux quanta) : 

bL(:r) = (V' x aL)z = (2k + 1 )</>oPL(x). (7) 

Here, we can write PL(x) = <f;t(x)<f;L(x) in the new CS representation. 

It is clear that the CS bosons in the L region feel an effective "magnetic field" given by 

(8) 

where SpL(x) = pL(:r)- p, at primary filling factor 11 = 1 /(2k+ 1 ) .  Thus we see explicitly that 

upon averaging over the sample area, the effective magnetic field felt by the CS bosons Sh = 

0. As we shall see, however, that quantum fluctuations in ilh have important consequences, 

one of which is the severe suppression of the .Josephson effect which would be present if the 

system were to be describable by the mean field theory. 

We can perform the ChE'rn-Simons transformation for subsystem R identically as above, 

with the notational change L --+ R. 

We now consider how the tunneling Hamiltonian is modified under the CS transforma-

tion. It now takes the form 
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It is important to notice that in addition to the boson field operators, we have the additional 

Chern-Simons phase factors which we shall show lead to severe suppression of the .Josephson 

current amplitude. 

The operator form of the .Josephson current at zero temperature can be derived from 

= fh j d2x[1{(x')<h(x), HJ = fh j d2x [<Pl(x)1h(x), Hr] 

= 2eEo f d2xlrn {T<PL(x) exp[i1Jf5(x)] x <Pk(x + Li: ) exp[-i1J�5(x + Lx)J} . (10) 
n lx<O 

Within the mean-field (MF) theory, we make the approximation bL(R) (x) -> b = B. Thus 

we may take the average CS bosonic fields (order parameters of the quantum Hall liquid) 

to be simply C-numbers, in the form of fL = y'Pei9L , and fn = y'Pei9R, where lh and 

On are two mean field phases, the diference of which drives a coherent .Josephson current 

across the tunnel barrier. Since we assume the two subsystems to be identical in shape, we 

also have the relation Bf5(x) = 0�5(x + Lx) at the mean field level. Thus the messy CS 

phase factors in Eq. ( I O) simply drops out in the mean field theory of the .Josephson effect. 

This immediately leads to the first .Josephson relation in mean-field theory as (assuming for 

simplicity that the overlap integral T is a real number): 

( 1 1 )  

where the .Josephson current amplitude in the mean-field theory i s  given by 

MF 2eTE0pA 
Io = n ( 12) 

In the next subsection, we shall see how quantum fiuctutations of the (JCS angular vari­

ables in the ground state (Laughlin) wavefunction suppress severely the above mean-field 

result for the Josephson current, which makes it essentially impossible to observe the coher­

ent channel of quantum tunneling between two weakly coupled quantum Hall liquids. 



356 

B. Suppression of Josephson currrent amplitude by quantum fluctutations 

It is crucial to see how quantum fluctuations suppress the mean-field result from the 

previous section. i.e. we need to calculate 

( 13)  

where ( )HL denotes the quantum expectation value (T = 0) over the ground state (Laughlin) 

wavefunction for subsystem L, which is the ground state eigenfunction of HL to Gaussian 

approximation (similarly for subsystem R). Introducing fluctuational variables 8p(x) and 

8B(x) (orriltting the subscript L or R from now on as it is clear from context): 

</>(i) = Vii + 8p(x)ei[0i +•o(x)l , 

we expand HL up to quadratic order in 8p(x) and 8B(x), and perform Fourier transforms 

8p(x) = � L,;; eiii"·xspq, etc., while working in the transverse gauge "i7 · 8a(x) = 0. We then 

arrive at the following simple expression for HL [2]: 
n2p { ( [27l'(2k + l )]2 m*Vq- q2 ) 2 

} HL = Const. + 
-A L 2 + � + -=2 8p;;8p-;; + q 8Bq8B_;; , 2m* ii q 1i, p p (14) 

where 8p;; and 80;; obey canonical commutation relation [8pq, 8Bp-] = iA8;;,-i>· Thus for each 

qmode (with qx :'.": 0), the quantum fluctuational Hamiltonian takes the simple form of two 

independent harmonic oscillators, up to quadratic (Gaussian) approximation which we have 

made here. 

After some straightforward but tedious algebra, we can identify the dominant fluctuta-

tions in the quantity of interest, (<h(i) exp [iBf5(i)] )H, , to be from the 8BL(x) variables and 

the 8Bf5(x) variables. Thus we may write 

The fluctuations in the phase of the order parameter, can be readily evaluated, using 

the harmonic oscillator Hamiltonian in Eq. (14) ,  yielding for a square sample of length L, 
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t(liOliO} � 2k:1 ln(L/10). In the last expression 10 = � is the magnetic length which we 

use as a cutoff length scale for the (continuum) CS gauge theory. Thus the fluctuations in 

80 in the order parameter will only lead to power law reduction factors of the Josephson 

current amplitude, which is not too bad. 

The more severe quantum fluctuations come from the factor t(liOf5(x)liOfS(1) ) .  This 

quantity is a bit more complicated to evaluate, due to the presence of the azimuthal angular 

variable a(x-'fl). We let 10 be the cutoff length of the continuum After some tedious algebra, 

we find the following as an lower bound on the CS phase fluctuations 

(16) 

Thus we see that the .Josephson current amplitude 10 is severely suppressed by quantum 

fluctuations of the CS phase angle 0°5, with the final magnitude of order 

1 � 2eT E0pA ( 
2k + 1 

L/l ) 0 � x exp - --- 0 ri 47r 

III. THE LITTLE-PARKS EXPERIMENT 

( 1 7) 

In this section, we propose a direct test of the Chern-Simons picture for FQHE, by 

considering conductance oscillations in an inhomogeneous fractional Hall system with an 

external capacitive gate applied to an isolated region in the center of the device. This work 

by two of us has just been published [6]. 

Our starting point is the same CSLG Hamiltonian for the FQHE as used in calculating 

the Joesphson current in the last section. To illustrate our idea of gate voltage induced Little-

Parks oscillations due to the CS gauge field, let us consider a high mobility 2DEG sample 

where a capacitive gate of mesoscopic dimension (e.g. with an area of order A �  10-10cm2) 

is coupled to an isolated region of the sample. Assume the external magnetic field is such 

that 11 = l/(2k + 1 ) .  Suppose we now turn on a gate voltage V,, which is coupled capacitively 

to the central "hole" region. The application of this voltage leads to a change in the local 
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density op(x) = p(x) - p, which in term results in a net magnetic field ob(.r) = B - b(x) 

localized inside the hole region. However, the net flux inside a multiply connected superfluid 

system <!> is not arbitrary, but quantized in units of <Po = he/ e, chosen in such a way as to 

minimized the "kinetic" energy 

( 1 8) 

Here <!>9 = (2k + l )CVg¢;0/e is the flux induced by the gate voltage and can be changed 

continuously, C is the capatcitance of the hole region with respect to the gate, and L is 

a parameter which can be related to the quasi-particle creation energy. The quantization 

condition is accurate as long as the sample width is large compared with the magnetic 

length .  For <!>9 = N¢;0, E(<I>) is depicted in Fig. 2(a). In this case we obtain <!> =  N¢;0, and 

we see that there is a gap to adding one morf' flux quantum to the system, 6.E = <P6/2L. 

Integrating 

b(x) = V' x ii(x) = ¢;0mp(x), ( 19 )  

over two dimensional space w e  obtain <!> = (2k  + l )¢;0Q/e, where Q i s  t h e  induced charge 

on the hole. Thus adding one unit of flux is equivalent to adding Q = e/(2k + 1 )  unit of 

fractional charge, and this energy can therefore be identified with the creation energy of 

a Laughlin quasi-particle, or the incompressibility gap. Denoting this gap by 6.(2k + 1 ) ,  

this allows us t o  identify the parameter L through <P6/2L = 6.(2k + 1 ) . However, when 

<!>9 = (N + 1 /2)¢;0 ,  E(<I>) is shown in Fig. 2(b), and we see that <!> = (N + 1 )<Po is degenerate 

with <!> = N ¢;0. The incompressibility gap vanishes and dissipation could occur in this case! 

Equations ( 1 9 )  and ( 18 )  therefore lead to a highly nonlinear, in fact stepwise dependence 

of the screening charge Q on the applied gate voltage [7], as shown in Fig. 2(c). Whenever 

<!>9 = (N + 1/2)¢;0, Q changes by e/(2k + 1 ) .  At this value of <!>9, there is no gap to 

add a fluxon to the hole region ,  and the change in Q, or equivalently <!> ,  is accomplished 

by the spontanuous creation of a quasi-particle and quasi-hole pair (equivalent to a fluxon 

anti-fluxon pair) in the bulk followed by a tunneling process in which the quasi-hole goes 
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to the center hole region and the quasi-particle goes to the edge of the sample. Since the 

tunneling motion of fluxons across the superfluid region is associated with a longitudinal 

voltage drop (due to the Faraday effect), one should observe a resistance peak at this value 

of <I> 9• The fundamental periodicity in <I> 9 is ¢0. This implies a voltage periodicity of 

Li.V, = (2k:I)C ' i. e. proportional to v = 1 /(2k + 1 ) .  These resistance oscillations are similar 

to the Little-Parks resistance oscillations of a superconductor in an applied magnetic field, 

where resistance peaks at </> = ( N + 1 /2)</>0/2, the factor of 2 difference with our case comes 

from the charge 2e of the Cooper pairs. The resistance in between the peaks should vanish 

exponentially as temperature approaches zero. We suggest that in addition to measuring 

the resistance oscillations at a given temperature, one also measures the activation gap from 

the temperature dependence, to verify that it vanishes at <l>9 = (N + 1 /2)¢0• 

El�I  (a ) El�) (b) 

�-N+· 2-N·�I �N �N,-1-N+•-2 + �lfo 

Q (c)  (d) 

��-, -------+ � 
-12k>IJC -

FIG. 2. For v = l/(2k + 1) :  (a) Energy as a function of <I> for 4>9 = N </>o.  (b) Energy as a 

function of <I> for 4>9 = (N + 1/2)</>o. (c) Induced charge Q on a capacitive gate as a function of gate 

voltage, Q jumps by e/(2k + 1) whenever 4>9 = (N + 1/2)</>o. (d) Oscillations of the longitudinal 

resistance as a function of gate voltage. Resistance peaks at. 4>9 = ( N  + 1 /2)</>o, similar to the 

peaks in the Little-Parks experiment of a supercond11ct.or .  Note the period in the gate voltage is 

proportional to v = l/(2k + l ) . 
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However, it has been argued by Thonless and Gefan [8] that at zero temperature the 

process of quasi-particle and quasi-hole tunneling proceeds with a rate that depends expo­

nentially on the width of the Hall bar. Therefore, the gate potential has to be varied at 

a rate slower compared to the quasi-particle quasi-hole tunneling rate in order to observe 

the above mentioned voltage periodicity. A much faster rate is the tunneling of a real elec­

tron from the center hole region to the edge, since the tunneling barrier for this process 

is that between the 2D electron gas and the surrounding reservoir. If the rate for varying 

the gate potential is fastPr than the quasi-particle quasi-hole tunneling rate but slower than 

the tunneling rate of real electrons, then the resistance oscillation with a voltage periodicity 

of �v. = e/C is expected. This periodicity does not contain any information about the 

fractional charge. 

In a series of experiments by Simmons et al. [9], the conductance fluctuation is measured 

by both varying thP external magnetic field and the uniform backgate voltage. The observed 

periodicity in backgatP voltage is the same for 11 = 1 and 11 = 1/3. This experiment is 

originally interpreted in terms of the theory by Kivelson and Pokrovsky [10], in which a 

magnetic flux period of hc/(e*) is assumed. This observed period is different from the 

prediction we made above, in which the voltage periodicity of � V. = e* /C is expected. We 

have two general comments concerning this point. First of all, this experiment is performed 

with a variation of the backgate voltage that acts on all electrons, unlike the case discussed 

here where a local potential is varied. The local potential in our case can be changed 

continuously in a controlled way, whereas the impurity potential from the donors arise from 

quantized positive charge, which preferably attracts integral numbers of electrons. Second, 

even in the case where the local potential can be varied continuously, one has to be sure that 

the rate of the variation is slow compared with the tunneling rate of the quasi-particles, as 

discussed above. 
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We have observed time-resolved tunneling of single electrons between 
two quantum Hall states in a quantum dot. The tunneling of a single 
electron between two Landau levels within the dot switches the 
conductance through the dot from on- to off-resonance. The tunnel 
barrier between the Landau levels is formed by an incompressible 
quantum Hall liquid. This barrier increases with magnetic field. Upon 
increasing the field we find that the time between two tunnel events 
reaches macroscopic values on the order of 100 s. 

In the quantum Hall regime, electrons can travel over distances as long as a milli­
meter with only a small chance of being scattered into an adjacent edge channel 1, 2. 

Only recently, it has become appreciated that the self-consistent arrangement of 
charge is important for understanding the properties of the electron states at the 
sample edge3-5. The emerging picture is that near the sample edge the quantum Hall 
states separate in alternating strips of incompressible and compressible states. This 
picture is still valid when the quantum Hall states are confined in a quantum dot4. 
Scattering between the confined quantum Hall states involves the movement of a 
single electron in space. At present, little is known about the dynamics of such a 
scattering event. In this article, we present a method, based on the Coulomb 
blockade of tunneling6 , that enables us to control and measure single electron 
scattering events. We find that the time between two tunnel events can be tuned 
from less than 10  ms to more than 200 s, which allows a time-resolved 
measurement of single-electron tunneling between confined quantum Hall states. 

Fig. 1 shows the geometry of our quantum dot 7. The hatched parts are metallic 
gates fabricated on top of a GaAs I AlGaAs heterostructure with a two dimensional 
electron gas (2DEG) 100 nm below the surface. The ungated 2DEG has a mobility 
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of 2.3 · 106 cm2 / Vs and an electron density of 1 .8 · 1015 m-2 at 4.2 K. Applying a 
negative voltage to gates F, .C, 1 and 2 depletes the electron gas underneath them, 
and forms a quantum dot with a diameter of about 600 nm containing roughly 300 
electrons. Electron transport occurs via the tunnel barriers induced by gates 1 -F, 
and 2-F, which couple the dot to the two wide 2DEG reservoirs. We set the 
conductances of the tunnel barriers at about 0. 1 ·e2fh. The number of electrons in 
the dot can be varied with the voltage V c applied to the center gate C. The 
experiments are performed in a dilution refrigerator with a base temperature of 10 
mK using a small de-bias voltage of 6 µV. We work in the magnetic field regime 
where only the two spin-resolved states (LL1 and LL2) of the lowest Landau level 
are occupied. 

Fig. 1 .  Schematic of the gate geometry defining a dot with lithographic 
dimensions of 0.8 µm by 1 µm: F denotes the finger gate, 1 and 2 the 
quantum point contact gates, and C the center gate. The location of the 
compressible parts of LL1 and LL2 are denoted by the dark parts. 

At zero magnetic field, we observed equally spaced Coulomb oscillations as a 
function of gate voltage, where each period corresponds to a change of one electron 
in the dot. Fig. 2 shows the conductance through the dot versus center gate voltage 
at a magnetic field of 4.3 T. A striking feature is that the trace shows a split 

oscillation alternated by three regular Coulomb oscillations. 
The origin of the split-peaks becomes clear at higher fields. Fig. 3a shows two 

split-peaks and a regular Coulomb peak versus gate voltage at 5.2 T. A split-peak 
consists of two regular Coulomb peaks. We have added two dashed lines to each 
split-peak as a guide for the eye. At some gate voltages, the conductance switches 
discontinuously between the two branches of a split-peak. This behavior is further 
illustrated by Fig. 3b where we have fixed the gate voltage at the value denoted by 
the arrow in Fig. 3a. Here, the conductance is measured versus time and shows 
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switching between two discrete levels. The high value corresponds to the left branch 
and the low value to the right branch of the split-peak in Fig. 3a. The typical time 
between two switches is on the order of ten seconds. We found that at 6 T this time 
increases to about 200 seconds. On the other hand, in the lower magnetic field 
range of Fig. 2 the typical time between two switches is too short to be resolved by 
our measurement set-up. This smears out the switching between the two branches 
and gives rise to a continuous split-peak. 

0 

B = 4.3 T 

I � \ 
-0.57 -0.54 -0.5 1 
CENTER GATE VOLTAGE (V) 

Fig. 2. Conductance through the dot versus center gate voltage at 4.3 T. 

We will now discuss that a switch in the conductance in Fig. 3b is a time-resolved 
measurement of a tunnel event by a single electron between the two Landau levels 
in the dot8. McEuen et al.4 have pointed out that the phase separation of quantum 
Hall states in a quantum dot leads to the picture of Fig .  1 .  Self-consistent 
arrangement of the charge in a high magnetic field causes LL2 to form a 
compressible core in the center of the dot. LL1 is compressible only in the ring 
region around the core. The ring and the core are spatially separated by an 
incompressible quantum Hall fluid which acts as a tunnel barrier. Transport from 
one 2DEG reservoir via the dot to the other reservoir primarily occurs via the 
ring, since the core is separated from the reservoirs over a much larger distance. 

Adding an electron to a small isolated region costs a finite charging energy. At 
zero magnetic field, only one charging energy is important. However, in a high 
magnetic field with only LL1 and LL2 occupied, three charging energies are 
relevant. The total number of electrons N = N 1 + N1 is divided between N 1 elec­
trons in LL1 and N1 electrons in LL2. Adding an electron to LL1 increases the 
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electrochemical potential µi of LL1 with an amount E1 and also increases the 
electrochemical potential µ1 with an interaction energy E12. Similarly, adding an 
electron to LL2 increases µ1 with E2 and µi by E12 .  Single electron tunneling 
within the dot keeps the total number N constant. However, removing an electron 
from LL2 and putting it in LL1 increases µi by E1 - E12 and decreases µ1 by E2 -
E12. The same energies accompany the opposite process. We call these processes 
internal charging. 
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Fig. 3. (a) Conductance through the dot as function of center gate voltage 
at a field of 5.2 T using a time constant of 150 ms. The dashed lines are 
added as a guide for the eye. (b) Conductance versus time with the gate 
voltage fixed at the value denoted by the arrow in (a). 

The concept of internal charging provides a qualitative understanding of the 
observed two-level switching. A peak in the conductance occurs when µi is on­
resonance with the reservoirs: µi = µres ·  However, a tunnel event of a single 
electron between the Landau levels changes µi which switches the conductance from 
on- to off-resonance. The conductance through LL1 can therefore be used as a time­
resolved probe to detect a tunnel event between two quantum Hall states. This type 
of time-resolved experiment resembles the electrometer-box configuration 
employed by Fulton et al.9 and Lafarge et al. IO to measure single electron hopping 
events in the superconducting and normal state of Aluminium tunnel junctions. 

The values of the charging energies can be determined from the three peak 
spacing of the oscillations in Fig. 2. Using this, we found8: E1 = 800 µV, E2 = 1 175 
µV and E12 = 650 µV. 



µ1 (ring) µ2 (core) 

Fig. 4. Energy diagram showing the electro-chemical potentials µres of 
the reservoirs, µ1 of LL1 and µz of LL2 for different numbers of 
electrons Ni in LLj. The width of the thick dashed line represents the 
applied bias voltage across the dot. The left hand side shows schematically 
the conductance when the gate voltage V c is varied. 
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The role of the internal charging energies is illustrated in the energy diagram of 
Fig. 4. The electro-chemical potentials µ1 and µ2 denote the minimum energy for 
having a certain number of electrons in the ring (LL1)  and the core (LL2). The left 
hand side shows schematically the conductance through the dot versus V c. The 
topmost conductance peak occurs when µres lines up with µ1(N 1 ,  Nz) (solid 
arrows). By decreasing Ve, one electron is permanently removed from LL1  and 
transport is blocked. The dot is now in the charge state (N 1 - 1 ,  Nz). When Ve is 
decreased further, µres lines up with µ 1(N1 ,  Nz - 1) (dashed line). Transport via 
this state is possible only after an electron has tunneled from LL2 to LL1 (dashed 
arrow) which switches the conductance from off- to on-resonance. The conductance 
is switched back from on- to off-resonance when an electron tunnels back to LL2. 
Depending on the alignment of µl (N 1 ,  Nz - 1) relative to µz(N 1 - 1 ,  Nz), these 
processes may require thermal assistance. Another change in gate voltage aligns µres 
with µ 1(N1 - 1 ,  Nz). Similar arguments show that in this case a tunnel event from 
LL2 to LL1 switches the conductance from on- to off-resonance. When the 
switching is too fast to be resolved, the conductance shows a continuous split-peak. 

We have shown that the gate voltage and the magnetic field allow an experimental 
tuning of the two-level switching. Theoretically it is possible to describe the internal 
charging energies in terms of a capacitance model l l ,  12, with which we have been 
able to calculate the split-peaks and the regular pattern of Fig. 2. However, the 
dynamics of scattering between the Landau levels is still unknown. The large time 
scales may be explained by the large width of the incompressible strip. This width 



368 

increases with magnetic fields which will result in longer time scales. However, we 
would like to emphasize that scattering between the quantum Hall states involves a 
rearrangement of the charge distribution in the dot. The macroscopic time scale 
between two tunnel events is presumably related to such a kind of many-body 
rearrangementl 3. We expect that a study of the temperature dependence and the 
characteristics of the switching will further clarify the dynamics of scattering 
between confined quantum Hall states. 
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Quantum dots in GaAs heterostructures display a complex inner structure in high mag­
netic field. Distribution of electrons over different Landau levels results in the formation of 
alternating compressible and incompressible regions.1 

We investigate theoretically the situation when only a few electrons are confined to the 
uppermost Landau level. We show that these extra electrons form ''Wigner molecule". Mag­
netic field controls the number of electrons in the molecule, thus creating a new possibility to 
manipulate few electron objects. Moreover, in this way one can manipulate fractional charges. 
We discuss briefly the stability of the molecule in the presence of a fluctuating donor potential 
and the slow charge dynamics which is intrinsic for the system under consideration. 

It is known that for a homogeneous 20 electron gas the energy density as a function of 
electron density n shows a cusp at 

p H  
n = q <Po '  (1) 

p, q being integer numbers, 
<Po 

= 27rlic/ e. This indicates that the electron gas is incompressible 
at this point being compressible elsewhere2. The charged excitations are separated by an 
energy gap, E9, from the ground incompressible state. This is why the incompressible state 
may be thought as an insulator, whereas the compressible one is a conventional metal. The 
gap drops quickly with increasing denominator q, so that only few incompressible states can 
actually be observed. Those with q = 1 correspond to completely filled Landau levels of 
non-interacting electrons and give rise to the integer quantum Hall effect. Those with q =f. 1 
are Laughlin liquids and manifest themselves in the fractional quantum Hall effect. This 
picture seems to be correct in a wide range of electron-electron interaction strength. 

In recent years, a set of works has appeared giving an insight into the physics of the 
inhomogeneous 20 electron gas.1.3,4 The resulting picture can be summarized as follows. In 
the first approximation the density profile of the 20 gas is defined by the system of gate 
electrodes. The potential to be compensated by the gates is of the order of volts, which is 
much larger than the energy scale of the inner electron motion,liwc, E9• Therefore the applied 
magnetic field can not change the density profile much. The major effect of a magnetic field is 
formation of a narrow strip of incompressible phase near the point where the density satisfies 
the magic relation (1). These insulating strips separate compressible, metallic regions. The 
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Figure 1: Quantum dot in Quantun Hall regime (nm•x > eH/ch > nm0,,/2). A half of 
the top view (a), the density profile (b) and the potential energy profile are shown. The 
electrons occupy two spin-split Landau levels forming two compressible regions 1, 2 and the 
separating incompressible strip. The unperturbed density profile is shown as a dotted line. 

strip width was shown3 to be much smaller than the geometric size of the system defined 
by gates but, at least for the widest strips, much larger than the magnetic length. The width 
decreases quickly with increasing q. The picture becomes irrelevant if the width is of the 
order of magnetic length. Hence, incompressible states with large q do not occur. 

To illustrate this picture further, let us consider a quantum dot with a certain density 
profile, nmax being the electron density on the top (see Fig. 1). In addition, following1 I let us 
assume that there are no incompressible states occurring with q > 1 so that we can make use 
of a simple Landau level picture. If the magnetic field exceeds He = nm0,,¢xi, all the electrons 
are in the first Landau level. If He > H > He/2, the electrons in the second Landau level are 
confined near the top of the quantum dot, as shown in Fig. 1. The density profile remains 
almost the same, the potential is flat within two metallic regions and drops by a value of E9/ e 
inside the insulating region. It is important to note that the wave functions of the electrons 
in the second Landau level have almost no overlap with the wave functions of empty states 
in the first Landau level. That implies that the number of electrons in each Landau level is 
integer. It is worth to spell out what are the limits of validity of this approach. In fact, the only 
requirement is that the radius of the dot R is larger than "microscopic" lengths such as Bohr 
raduis aB , magnetic length IH, "interaction" length 19 = £(E9/e2)1� and screening length. For 
quantum dots in the quantum Hall regime, the electron concentation is of the order of Z-Jl, so 
that the radius R � IHVN, N being the number of confined electrons. Thus, the theory holds 
if N is big enough, say, N > 100. Starting this number, the plain electrostatics determines 
electron distribution in the dot and the effects of kinetic energy and magnetic field can be 
considered as small perturbations. 

Below we present a simple extention of the theory taking into account the discretness of 
electrons. This allows us to understand what happens near He where only few electrons in 
the second Landau level are confined near the top of the quantum dot. Let us first outline 
the results. As it was stressed above, at H > He all electrons in the dot are in first Landau 
level forming a compressible state. If H is far below HCI there are two compressible regions 
corresponding to electrons in the first and in the second Landau level. The scenario of the 
formation of the second compressible region appears to be rather complex consisting of four 
stages. (see Fig. 2) 

First stage: When H becomes smaller than He, the electrons of the first Landau level form 
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Figure 2: Four stages (a,b,c,d) the dot passes with decreasing magnetic field. The top views 
and potential energy profiles are shown. Small circles correspond to the electrons on the 
second Landau level. 

an incompressible flat on the top of the dot, since the density of the first Landau level cannot 
exceed H /<Po < nmax- In the flat, the density is exactly H /<Po- The density distortion creates a 
potential well. No electron can come yet to the second Landau level, since the depth of the 
well is smaller than E9• The radius of the flat and the well depth increase with decreasing 
the magnetic field. 

' 

Second stage: At H = Hcl < He the well depth approaches E9 and the first electron 
appears on the second Landau level near the center of the dot. The electrostatic repulsion 
of the electrons prevents the second electron to enter the flat at the same field. This will 
happen only at a lower field Hc2, when the well becomes deeper. The stable configuration 
of two electrons on the flat is such that the distance between electrons is much smaller than 
the radius a of the flat but much larger than the magnetic length. The configuration is then 
completely determined by the interplay of the Coulomb repulsion between the electrons in 
the second Landau level and the confining potential of the well. Thus, a what we will call 
''Wigner molecule" is formed near the top of the dot. With further lowering of the field, more 
electrons join the molecule. The size of the molecule increases whereas the average distance 
between electrons gets smaller. 

Third stage: For a certain number of electrons, the size of the molecule becomes com­
parable with the radius of the flat. Now only a narrow strip of the incompressible phase 
separates the compressible phase of the electrons in the first Landau level and the Wigner 
molecule which becomes similar to a piece of Wigner crystal. Such a formation is not yet a 
good metal since the distance between extra electrons exceeds the magnetic length and their 
wave functions do not overlap much. 

Fourth stage: The concentration of electrons in the second Landau level grows, and at 
some field they begin to overlap in the central part of the structure thus forming a true 
metallic state. 

Quantitative treatment implies a solution of 3D electrostatic problem in the manner of 
Chklovskii et al.3 For concreteness, we can use a simple model of a quantum dot den­
sity profile5, which corresponds to a parabolic confining potential. In this case, n( r) = 
nm ax Jl - ( r / R)2, and we obtain for the first critical field and the radius a of the incompress-
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Figure 3: Configurations of the Wigner molecule versus magnetic field. Solid lines separate 
the domains where a certain configuration corresponds to the energy minimum. Dashed­
dotted lines indicate where this configuration becomes unstable with respect to one-electron 
tunneling. 

ible flat 
He� Hc1 = 1 .228(/g/ R)2f3, e 
a(He1 ) = 1 .919R(/9/ R)113. 

(2) 

(3) 
This shows clearly that He - Hc1 < < He and lH < a < R justifying the perturbation 
approach we made use of. Another important parameter is the lack of electrons in the flat 
Ne in comparison with the unperturbed density profile, Ne = 0.565(RP.!zt. )213 >> 1.  We 
note that if the number of electrons in the second Landau level is much smaller than Ne, the 
confining potential well </>( r) is not perturbed much. The extra electrons drop to the boittom 
of the well which then can be treated as a parabolic one. Let us treat the electrons as classical 
particles. To determine the equilibrium configuration, we shall minimize the energy of the 
form 

e</>"{O) N 1 N e2 EN = (E9 - e</>(O))N - -2 - L: rf + 2 L: -1 · - · I ·  
i i,i c r, r3 (4) 

Here N is the number of extra electrons, r; are their coordinates. The problem closely re­
sembles the model of atom proposed by J. J. Thompson. It has been also treated quantum 
mechanically in this century6• The paper mentioned deals with a relatively strong confine­
ment potential where the electron wave functions overlap and quantum effects are important. 
Comparing the classical and quantum results, it is important to note the axial symmetry of 
the problem. The classical configurations can be rotated without energy change and are 
degenerate from the formal point of view. This degeneracy is lifted in quantum mechanics 
and the ground state is an eigenfunction of the angular momentum operator with all the 
electrons spread over a circle. In reality, the axial symmetry is approximate. We assume that 
either small ellipticity of the dot or small fluctuations of donor potential restore the uniqness 
of the classical configuration. 

We shall emphasize the interesting possibility to change the number of electrons in the 
molecule by changing magnetic field. Indeed, magnetic field changes a increasing the well 
depth ¢(0). As a result, we obtain a series of magnetic fields at which the number of •!xtra 
electrons changes from N - 1 to N: 

(5) 
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f3n being numerical factors. The corresponding magnetic fields are plotted for several 
n in Fig. 3. The average distance between the extra electrons r. is of the order of 
(f,P"(O)/eJ-113 c::- (a217H//9)113 c::- IH(R:'/ft/9)119• We see that a >> r. >> IH. This justifies 
our initial assumptions and our classical approach. 

These transition magnetic fields can be measured experimentally1 if one studies the 
transport properties of the dot. Due to Coulomb effects, conductance of the dot displays a 
sequence of peaks, each peak corresponds to addition of one electron to the dot. External 
charges may shift the potential of the conducting part of the dot changing the condition for 
such addition and thus influencing the conductivity. Thus the dot works as a very sensitive 
electrometer7 : the change of number of the electrons in the molecule will shift the potential 
of the conducting island with respect to the leads. This gives rise to a change of conductance 
at transition magnetic field. The series of the transition fields given by f3n is a signature of 
the Wigner molecule. One could then extract He - Hcl and Ne from the measurements. This 
gives a possibility to determine E9 experimentally. 

At further decreasing of the magnetic field, the number of extra electrons becomes of the 
order of Ne. This occurs at Hcl - H c::- (He - Hcl) indicating the third stage of the crossover 
we mentioned. Still at this magnetic field the electron wave functions do not overlap and the 
resulting state resembles Wigner lattice. The crossover to the true metallic state is expected 
to occur when the density of extra electrons corresponds to the filling factor 0.2 - 0.152• This 
corresponds to H � 0.8He1·  

We have discussed in detail the case when the incompressible state on the top of the dot 
corresponds to p = q = 1. The approach can be trivially generalized to the case of arbitrary 
p, q. The changes to be made are to substitute IH --+ lH\fifP into the equations and to use E9q 
of the corresponding incompressible state. The interesting detail is that the Wigner molecule 
can be formed by quasiparticles with fractional charge if q # 1.8 

We address below two additional questions: what might be the dynamical properties 
of the system and how stable is the molecule with respect to the fluctuations of the donor 
potential. 

There are three reasons to expect very slow rates of transitions which change the number 
of electrons in the molecule. The transition has to consist of an electron transfer from the 
center of the dot to the compressible region and a simultaneous flipping the spin. Similiar 
spin flip processes have been considered in9 to explain the equilibration of edge channel 
populations, which inevitably involve spin-orbit or spin-spin interactions. These interactions 
are believed to be small in GaAs, which is the first reason for the rate to be slow. 

The second reason is an exponentially small overlap between the wave functions of an 
electron in the flat and in the compressible region. If we just estimate this overlap for 
experimentally relevant parameters, we could obtain astronomical relaxation times. This 
forces us to think of more exotic tunneling mechanisms which could include, for example, 
subsequent tunneling. 

The third reason is intrinsic to tunneling to and from Wigner arrays10 and is related to 
many-body effects. If all the electrons in the molecule have to be shifted during the transition 
(compare different configurations in Fig. 3), the tunneling rate is proportional to the overlap 
between their wave functions in the initial and final positions. This gives an important extra 
suppression to the rate. However, this suppression can be relaxed far from the position 
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Figure 4: The potential energy profile for N = 1 and N = 2. One-electron tunneling may 
occur only if the potential energy minimum is lower than -E9• 

of equilibrium transition where the energy difference between the initial and final states 
becomes larger. To illustrate this, let us consider the transition between N = 1 and N = 2. 
Right below Hc'1., the process is possible only if accompained by shifting the electron in the 
center of the flat. Lowering the field, we can reach the point H&_ where such shift is not 
necessary. It is the field at which the bottom of the effective potential (which is the sum of the 
confining potential and the the potential created by the extra electron in the center) reaches 
the value of E9.(see Fig. 4) Below this point, the transition rate increases tremendously. We 
have calculated these threshold fields for N=l .. 7 and plot them also in Fig. 3. They are of 
the same scale as Hen and indicate the stability domains of possible metastable states. 

For practical purposes, it is important to be sure of the stability of the molecule with 
respect to the fluctuations of the donor potential. Naively, one could expect that the fluc­
tuations are strong enough to trap the electrons at random positions and hence destroy the 
molecule. Fortunately, the situation is not so bad for two reasons. First, the molecule is 
formed not far from the compressible region which screens the fluctuations. Second, if the 
fluctuations are strong but smooth, the molecule can be trapped as a whole keeping its own 
structure. 

We are indebted to G.E.W. Bauer, A. Groshev, and especially to N. C. van der Vaart for 
valuable discussions. 
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Abstract : In a high mobility 2D electron gas, we observe non linearities in the 
transmission through a quantum point contact in high magnetic field when the filling 
factor is less than 0.3. A threshold voltage for conduction is observed and a vanishing 
conductance is found for filling factor between 2/9 and 1/5 and below 1/5. These non 
linearities disappear below 400mK. This observation suggest

. 
the formation of a 

magnetically induced solid like in macroscopic samples. 

In this paper we present experimental results on the transmission through a 
quantum point contact in high magnetic fields. We show that the transmission enters a 
new regime where transport non linearities and vanishing conductance appear out of 
the tmmel regime. These observations can be relevant for the understanding of the 
Quantum Hall Effect ground state at low filling factor. 

Many experiments have demonstrated the presence of an insulating phase for 
high mobility 2D electron gas (2DEG), in high magnetic fields. This phase appears for 
filling factor less than 1/5 and a reentrant phase exists between 2/9 and 1/5 .  The 
experiments were perfonned using radiofrequency1l or transport measurements2l. This 
phase has been attributed to the fonnation of a solid which is characterized by an 
activation energy and a threshold voltage for conduction. This solid melts for a critical 
temperature which is at most 400mK for usual 2DEG densities. 
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Although quantum transport through a Quantum Point Contact (QPC)3l has been 
extensively studied, no experiments have studied the electronic transport through a 
QPC in the low filling factor regime below "" 2  I 9 . At zero magnetic field, it is known 
that the conductance is quantized as cr = N x (2 e2 /h), N is the number of fully 

transmitted ID subbands of the QPC constriction. In high magnetic field, for the 
Integral Quantum Hall Effect (IQHE), the confining potential of the QPC lowers the 
munber v of filled Landau levels (LLs) in the leads to a value v G < v at the 
constriction. A conductance quantization vG e'/h occurs when vG (integer) edge 
channels are fully transmitted. At low temperatures, electronic correlations leads to the 
fractional quantmn Hall effect (FQHE). A QPC conductance quantization is also 
observed4»5J and predicted6l for v0 a special odd denominator fraction ofFQHE. 

Here, we investigate the regime v 0 � 2 I 9. We observe a vanishing QPC 
conductance and transport non linearities similar to those observed in macroscopic 
samples. These features seem to be consistent with the formation of crystallized edge 
states in the constriction as proposed in ref.7. 

Two samples are used. They are obtained from the same GaAs/Ga(Al)As 
heterojllllction with Si o doping layer at 800A from the electron plane and 200A from 
the surface. Both samples have 3 x l06cm2v-1s-1 mobility and electron density 
ns = 1 .1 1 - 1. 1 7  101 1  cm·' . The same pattern is defined on each sample. At the centre of a 
6µm wide Hall bar mesa, three pairs of Schottky gates are deposited using electron 
beam lithography. Two of them define two QPCs of lithographic width 2800A, but 
only one will be used. Four point resistance measurements are made using lMQ or 
l OMQ current sources (sample #1). A two terminal configuration is used for sample 
#2 (note that a R, = 8.8 kQ resistance in series with the sample and the voltage across 
the sample V - R, I is slightly less than the applied voltage V). V I  2 is added to gate 
voltages for symmetrization. Differential conductance characteristics (DIDVC) are 
obtained using a l l  7Hz square wave 13  µ V amplitude ac voltage added to the bias 
voltage. The quality of the samples is shown in Fig. I by the well pronollllced zero-field 
conductance plateaux when sweeping VG for sample#2. The pinch-off value is 
= -670mV and = -650mV for sample#! .  

Both samples display pronollllced Hall plateaux with B ,  including the main 
FQHE fractions. This resistance quantization is useful to check the sample quality but 
also to establish a relation between the QPC gate voltage V0 and the density nG at the 
center of the constriction. Fig.2 shows the QPC resistance versus V0 . The data 
correspond to filling factors v = 8,6,4,2 (upper traces) and to 2/3 and 112 (lower 
traces). As expected, even in tl1e FQHE regime, well defined quantized resistance 
plateaux (7,6,5,4,3,2,1 ,2/3,2/5, l /3) are observed from which the filling factor v0 is 
deduced. From the whole series of curves, we remark that all plateaux with the same 



377 

ratiov0 I v  correspond to the same gate voltage (even for FQHE). From this, we can 
assert that QPC electron density n0 = n8 v 0 / v is independent of the magnetic field 
and a capacitive relation between na and Va is satisfied. This is in agreement with a 
Thomas-Fermi picture of quantum transport in IQHE or FQHE. As first mentionned by 
Halperin8>, the filling of each LL correspond to large compressible strips with fixed 
electrochemical potential pinned to the Fermi energy. The small regions in between are 
incompressible and correspond to the quantized density of an integral number of filled 
LLs. Recently, Chklovskii et aJ.9l have shown that, like in the non interacting picture, a 
resistance quantization occurs and is directly connected to the density at the 
constriction's center : v 0 = (n0 I n.}v. Because the incompressible strips are much 
smaller than the compressible strips, they found that the capacitive relation na (VJ 
which holds for zero fields is only weakly affected by orders of a8'"" / I ::::< 0.05 in the 
QHE (I "" 2000A is the s�(!le of the confining potential). 

4 SAMPLE #2 - 80 
� (Ve swept) . ..c 3  t= 75mKr---' .::;- B= o I 
�2 
w u z 

60 tj z 
� u 1  � :::> 

40 � :::> Cl z 0 u 
w -' ll. 

� 

0 u 
Cl w 

20 � 

0 - - - - - - - - - - - - 0 
-680 -630 . 580 -530 GATE VOLTAGE (mV) 

U1 
� 
::::i: 

Fig. l (left) : Zero-field conductance plateaux for sample#2. 
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Fig. 2 (right) : QPC diagonal resistance versus gate voltage for different bulk filling factor. 

Now we study the low filling factor regime. We use the capacitive relation 
between na and Va to detennine v 0 .  The traces for v = 2 I 3 or 1/2 display a striking 
resistance divergence for the same va , just below 2/9 (va ::; 0.32 x 2/3=0.21 and 
0.44 x l/2=0.22 respectively). Another feature is the resistance non linearity revealed 
for va ::; 0.3 by comparing the dashed and solid line traces ta.ken at v = 2/3 and applied 
current 200 and 20 pA respectively. These non linearities are also observed for 
va ::; 0.3, in sample#2 but are better studied using conductance measurements. The 
same method as for sample#! is used to detennine na (Va ) ·  Here, we present 
experimental results for Va = -560,-570 and - 580mV (n0 = 6.3 - 6.4,6. 0 - 6. 1, 
5. 7 - 5.8 10 10cm-2 respectively). The features of the nonlinearities are the following : 
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1) Their magnetic field dependence at fixed V0 and T=60mK is shown in fig.3. 
For V0 = -570mV and B ;:: 13.6T ,  the conductance is zero as shown for the traces 
taken at 13 .85T(vG ::::: 0 .185)1°>, 14.5T (vG ::::: 0.1 77 )  and 1 5.9T (vG ::::: 0.161). Around 
115, the conductance becomes finite (B=13 .05T, vG ::::: 0.196). Then, the conductance 
goes back to zero for 1/5 < V0 < 2/9 ,  (see the 1 1 .8T, v0 ::::: 0.228 trace) and is finite for 
v0 ::::: 2/9 (B=l l .5T). From 1 1 . IT  (v0 ::::: 0.2 15) to 7 .2T, the zero bias conductance 
shows oscillations around a finite value which increases. Finally, the DIDVC for 
B=7 .2 T (v0 ::::: 1/3) is flat. 

For gate voltage VG = -560mV , the non linearities are as well pronounced. The 
conductance is zero for high fields and is finite only for B=13T ( v0 ::::: 1 I 5). 

The same features are observed for VG = -580mV . For the six curves displayed, 
a finite conductance = 0.22µS is observed only for 12T (v0 ::::: 0. 1 96 - 0.2). At B=l lT 
(v0 :::.2 14-.218), the conductance is zero. 

These results stongly indicate that vanishing conductance appears for 
2 I 9 > v G > I I 5 and v G < I I 5 and is independent of the filling factor v of the leads. 
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Fig.3 : DIDVC at different magnetic fields and three different gate voltages 
Fig.4 : Threshold voltage for conduction versus magnetic field for V0 = -570mVand -580mV. A 
distinction is made between traces showing zero (dark symbols) and non zero (open symbols) 
conductance. 

2) Another feature of the conduction is the few hundred µV threshold voltage v, 
for conduction observed in the DIDVCs. Fig 4 shows its variation with B for 
V0 = -570 and -580mV. The experimental protocol is to take V, at half of the dI/dV 
peak value. Closed (opened) symbols are for DIDVCs showing zero (non zero) 
conductance. Both plots show the same feature : V, decreases when v G approaches 
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1/5, then slightly increases for vG just above 1/5 then decreases and vanishes for some 

field (10 Teslas for -570mV). 
3) The asymptotic differential conductance u., is closed to vG e2 /h .  This can be 

easily verified in the 12-15 Teslas range where the mesa filling factor v�l/3, so the 
longitudinal mesa resistance is roughly B independent. One finds (after R, 
substraction) for VG = -580mV , B=l5-12T : e2/(hcr.,)=6.52,6.l ,5.63,5.22 which 

differs from v� = 6.3,5.8,5.46,5.04 by the same quantity. The relation cr., = v0 e2 /h is 

well verified if we substract a = 0.2h I e2 = 5kQ mesa resistance which is the value 
measured at VG = 0 and v � 1 I 3 . 

4) The variation of a DIDVC with temperature is shown in Fig.Sa. 
(V0 = -580 mV but with a QPC density 1% smaller due to irreversible depletion 

effects). The sharp onset of the conduction smoothens and the conductance minimum 
increases with T. Fig.Sb shows, for four applied voltages, that the differential 
conductance (corrected for R,) follows a thermally activated law at low temperature. 
In inset, the deduced activated energy t:..(V) is represented versus de voltage V. Above 
�250 mK, a simple activated law is not found and at 400mK, the DIDVC, not shown, 
is flat altl1ough a t:..(O) � 0. 92K activation energy is found at low T. t:..(O) I e � 85µ V is 
lower than the threshold voltage v, =l l OµV. Finally, the asymptotic conductance 
a., = 0. 16 e2 /h = v G e' /h is not temperature dependent. ,..... ,.....20 ����.......,...........,��...., n"T..-."T..-."T..-.���� � 
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Fig.5 : (a} DIDVC at different temperatures. For clarity, the curves are shifted by 2µS. (b) 
Conductance versus lff for four applied voltages. thermal activation is found at low temperature. In 
the inset, the activation energy is plotted as a function of the applied voltage. 

5) The height of the dlldV peak can exceed the Hall conductance : this is 
clearly seen on the figure 3, B=13T, V0 = -580 mV DIDVC. The height of the highest 
peak � 0.48 e2/h is well above the Hall conductance � o.33e2/h . This is observed 

also for different QPC gate voltages, but only for filling factor v � I I 3 .  
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Points 1) and 4) are consistent with the filling factor and temperature range for a 
solid formation in macroscopic samples, but localisation effects can also show 
nonmonotonic behaviour with v0 and depend on the energy gap of the fractional edge 
states. The variation of V, with v 0 is also similar to that observed with v in 

macroscopic samples as well as the thermal activation of the zero bias 
conductance.The activation energy is not in favor to a localized state schema. For 
resonant tunneling through localized states, an activation energy �(O) = 0.9K would 
correspond to a length scale = lµm much larger than expected (. 1-.2µm) because of 
Coulomb effects. The relation �(O) = eV, should be verified and we do not expect that 
ti vanishes at 400mK. However, in the simplest cristallized edge state model, ti(V) 

would represent the pinning energy. In a one dimensional solid model11> : 
ti(O) = eV, < n0 > a0w I 7t ;z: eV, ,  < n0 >= n0n I 4 is the density at the center of the 

constriction averaged over the transverse direction, w is the constriction width and a0 
is the translation period of the ciystal in the transmission direction. M 0) should vanish 

at the melting temperature because the elastic restoring force of the ciystal vanishes. 
Using Fig.5 parameters, a reasonable a0 = 600A slightly larger than (n0t'12 is found. 

Finally, that differential conductance can exceed the Hall conductance implies that we 
have to consider the non linear conduction as a transmission problem in the frame of 
coherent adiabatic edge channel transport. Non adiabaticity would imply addition of 
the Hall mesa resistance to the QPC differential resistance. This picture suggests to 
write dI I dV = T(V)e2 I h with T(V) = 0 for V < V, and T(V) = .v0 for V » V, (note 
that I I V � v e' I h ,  the Hall conductance of the leads). 

The authors acknowledge fruitful discussions with F.I.B.Williams and 
F.Perrnchot and the technical help of C.Chaleil. 
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SEMI-BALLISTIC WAVE PROPAGATION IN DISORDERED CAVITIES 

Th.M. Nieuwenhuizen 

Van der Waals-Zeeman Laboratorium 

Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands 

Abstract. - Wave transport in a waveguide with moderate disorder may be diffusive 
in the longitudinal direction but still ballistic in the transversal directions. This is called 
semi-ballistic transport. It is discussed for disordered waveguides, quantum wires, films, 
Fabry-Perot interferometers and double barrier quantum wells. 

I. Introduction 

Propagation of sunlight in a clear sky is a long understood phenomenon. When waves 

freely propagate in a confined geometry, such as a waveguide, only certain 'cavity modes' can 

occur. In a semi-classical picture this can be interpreted as 'bouncing' against the walls, and 

is therefore termed 'ballistic' transport. 

The opposite regime is a cloudy sky, in which the sunlight diffuses. Diffusive wave transport 

has many applications, such as light propagation through fog, white paint, milky liquids, human 

tissues, propagation of acoustic waves, and propagation of electrons in dirty metals at low 

temperatures. 

There is also a less known intermediate regime, where transport is partly diffusive and partly 

ballistic l) .  Think of propagation of electromagnetic waves through a disordered waveguide or 

a dirty Fabry-Perot interferometer, or propagation of electrons through a long but narrow 

channel or through a disordered double barrier quantum well. When in these systems a modest 

amount of disorder is present, the transversal cavity modes are still well defined. However, 

when the system is long in the other direction(s) , it may have diffusive behavior as well. This 

combination of ballistic and diffusive transport has been called 'semi-ballistic' transport. 

We discuss here results presented in ref. l) and to be presented in ref. 2l .  
II. Transmission of  a waveguide and a quantum wire 

We consider an infinitely long waveguide confined by four conducting plates at x = 0, 
x = di, y = 0 and y = d2• In the section 0 ::; z ::; d3 a small density of isotropic, elastic point 
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scatterers is present. We assume that the scattering mean free path, £, is much larger than the 

transverse sizes d1 , d2, so that the cavity modes are hardly influenced. On the other hand, we 

assume that the system is optically thick, that is to say, we assume that d3 » £, which implies 

diffusive transport in the z-direction. In the scalar wave approximation the system is described 

by 

( 1 )  

Here u is the bare scattering length and R; are the random positions of the scatterers, dis­

tributed according to a density n( r) = n( x, y) for 0 < z < d3 while n( r) = 0 elsewhere. The 

guide has discrete transversal eigenmodes Wp(p), where p = (x, y) , 

(2) 

where p1,2 = m1 ,27r/d1,2 with positive integer m1,2. These modes have a Green's function 

(3) 

where q is the momentum in the z-direction and where E is the self-energy. 

Second order Born approximation: beyond or not beyond? 

For electronic systems it is customary to consider isotropic scattering in the second order 

Born approximation. The reason is that scattering is weak and dominated by s-wave scattering. 

Instead of point scatterers one often assumes an uncorrelated Gaussian disorder potential. This 

is an equivalent approach. In cavities it is at forehand not clear whether for realistic multiple 

scattering the presence of the walls is compatible with weak enough scattering. 

In the second order Born approximation one approximates the self-energy by 

where the width satisfies the self-consistent equation 

rg =: L Upp'Vp' 
p' 

Re l · 

2Jk'f, - p2 + irp ' 

(4) 

(5) 

(6) 

Vp is the density of states in the mode, U is a mode-mode coupling matrix. From this equation 

it is seen that when a new mode p' opens (vp' » l/k0), the width of all other modes increases. 
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Physically it stands for scattering back into the old mode p of waves that entered the new 

mode p'. As this mainly happens in a destructive way, the width of the already open modes 

will increase. 

Let Tab denote the average transmission coefficient for transport from incoming mode a 

(with wavevector Pa) into outgoing mode b (with wavevector Pb) · It can be solved from the 

Bethe-Salpeter equation. For an optically thick system this leads to 

(7) 

Here the "injection depth" z0 is a small shift, Cp are certain coefficients that satisfy the sum 

rule Lp Cpvp = 2 and £p is the mean free path of mode p. 

From Tab we get the average conductance of a quantum wire via the Landauer formula. 

Due to the 1 /d3 dependence in eq. (7), the average conductivity is well defined and reads 

(8) 

Let us consider the lD constriction of a 2D electron gas. We are interested in the behavior 

of the average conductivity when new modes are opened. This may happen when one enlarges 

the width d1 • As is seen from figure 1 ,  the behavior is far from monotonic. This is due to the 

line broadening discussed above. In this figure we also present this behavior for a film of which 

the number of open modes its z-direction is varied. Here there is a universal behavior for weak 

scattering: 

a =  a {� _ N ( N  + 1 ) } 
B 2N + 1 2x2 N = int(x) (9) 

Here N is the number of open transverse modes of the film and a8 = 2e2k}£/37rh is the 

Boltzmann conductivity of the bulk system. This represents universal drops in the conductivity 

of disordered films, as opposed to the universal steps in the conductance of clean quantum wires. 

Beyond second order Born 

In optical systems scatterer sizes are often of the order of the wavelength so that one must 

go beyond the second order Born approximation. For electron scattering in narrow cavities one 

has to do the same if the scatterers are not very weak. 

For an isotropic point scatterer it is simple to sum the full Born series. The t-matrix reads 

t(r) = t(p) = 1 - u�(r, r) 
( 10) 



386 

1 .0 

1 2 3 4 5 
d/d* 

6 7 8 9 10 

Figure 1 . Conductivity of semi-ballistic devices with very low disorder. Solid line: a 

disordered film of width d as it goes through multiples of the resonant width d*. Dashed 

line: a lD constriction of a 2D electron gas of function of its width. 

However, for D 2". 2 the real part of the return Greens function diverges. A simple regularization 

was proposed in ref. 3) .  Here it is more appropriate 2J to use a momentum cutoff factor A 2 / (p2 + 

q2 + A2) ,  where A can be seen as the inverse radius of the scatterer. In this approach an 

attractive scatterer in a waveguide will always have a bound state before the opening of the 

cavity modes z). The self-energy now reads 

(11) 

Since in eq. (10) the return Green's function depends on Ep, this is a self-consistent equation. 

The vertex is now 

(12) 

With these modifications eqs. (7) and (8) remain true. Numerical simulations for a lattice 

model with 1500 * 11 sites with 5% attractive impurities having u = 1 have been performed by 

C. Barnes. His result for the average conductivity have been reproduced in figure 2. They are 

in good agreement with the full curve. The latter shows equation (8), adapted to the lattice 

model and evaluated beyond second order Born. No adjustable parameter occurs. 

It can be seen from figure 2 that the average conductivity is quite large in the second and 

higher sub bands. This arises because of a phenomenon called sub band bottom transparency 5) , B) . 
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Figure 2.  Conductivity of a semi-ballistic llx500 quantum wire with 5 3 attractive 

scatterers. Data points, obtained for one realization of disorder, have been smoothed over 

13 neighboring points. Full line: Eqn. (8) 
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When at lea.st one mode is already open, the new mode causes a small t-matrix because the 

return Green's function has a square-root divergency due to the lD character of the problem. 

It is a resonance effect that leads to less (!!) scattering. It is not contained in the second-order 

Born approximation. 

III. Fabry-Perot interferometer with dust 

Another problem of interest is the transversal transport through a system with semi-ballistic 

transport. An example is a Fabry-Perot interferometer. Its mirrors acts as penetrable barriers. 

In a practical situation disorder may be caused by dust on the mirrors. The multiple scattering 

problem in the second order Born approximation, for the case of one open mode away from 

resonance, was considered in ref. 4). We present here a more general result. 

We assume that waves coming from x = -oo can tunnel through the mirrors at x = 0 and 

x = di . The average transmission coefficient from incoming mode a to outgoing mode b is 

T _ 2(p�)2 TfralGal2 TNrblGbl2 ab 
- d1d3 L,p(Tf,' + Tfi.' + Al',' +  Ajt)Pl vp ( 13) 

Here Tf:n and Al',',n are the transmission and absorption coefficients of the mirrors at x = 0 

and x = di, respectively. The Green's functions Ga,b are given in eq. (3). Their selfenergy is 

Ep = Eg + E�, where Eg is given in (11)  and where E� � ip1 (Tf,' + T"k' + Al',' + Ajt )/2d1 

describes transmission through and absorption by the mirrors. 
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From this formula, we see scattering occurring into all free cavity modes b, with resonance 

line shapes IGbl2 .  For an incoming plane wave, scattering inside the barrier region causes an 

equal distribution over all directions. Therefore, the transmitted intensity does not depend 

on the angle of incidence in the (y, z) plane. It does depend on the angle with respect to the 

x-axis, as the mode quantization implies that only certain angles are transmitted. This causes 

the well known appearance of fringes in the transmission pattern. 

IV. Conductivity of a disordered double barrier quantum well 

The conductivity of a double barrier quantum well can be obtained from previous transmis-

sion coefficients. For symmetric barriers one finds 

2e2 
'°' TP' 17 = hd L..J L P1Vp 

2 p 
( 14) 

The influence of disorder is strongly felt in the onset of the resonance lines. Far from resonance 

eq. (14) is the same as without scattering. Indeed, the flux entering the barrier is hardly 

altered by the presence of scatterers; due to symmetry, half of this flux should be transmitted, 

no matter how it was distributed over the modes. However, when the barriers are not symmetric 

and when more than one mode is resonant, there is a disorder enhanced conductivity. 

In ref. I) the above result was used to explain the large resonance lineshape of GaAs-AlGaAs 

double barrier quantum wells observed by Gueret et al. 7) . In that situation multiple scattering 

is caused by irregularities of the barrier interfaces. It causes a large increase of the line width. 

Acknowledgements 

The author thanks Allard Mosk and Crispin Barnes for allowing presentation of common 

results. This research was made possible by the Royal Netherlands Aca.demy of Arts and 

Sciences (KNAW) . It was also supported by NATO (Grant nr. CRG 921399). 

References 

1. Th. M. Nieuwenhuizen, Europhys. Lett, 24 (1993) 269 

2. A. Mosk, Th.M. Nieuwenhuizen, and C. P. Barnes, to appear 

3. Th.M. Nieuwenhuizen, A. Lagendijk, and B .A.  van Tiggelen, Phys. Lett. A 169 (1992) 

191 

4. R. Berkovits and S. Feng, Phys. Rev. B 45 (1992) 97 

5. C.S. Chu and R.S. Sorbello, Phys. Rev. B 40 (1989) 5941 

6. P.F. Bagwell, Phys. Rev. B 41 (1990) 10354 

7. P. Gueret, C. Rossel, E.  Marclay, and H. Meier, J .  Appl. Phys. 66 (1989) 278 



QUANTUM CONDUCTANCE FLUCTUATIONS 
IN 3D BALLISTIC ADIABATIC WIRES 

Vladimir I. Fal'koa,b) and G.B. Lesovikb) 
a) Max-Planck-Institut fur Festkorperforschung, Stuttgart, Germany 

b) Institute of Solid State Physics, Chernogolovka, 142432 Russia 

389 

During recent years the transport properties of ballistic adiabatic conduc­
tors were extensively studied. The most of the interest in this field has been 
attracted by the 2D semiconductor devices, so that the features of a quantum 
transport in a ballistic adiabatic wire prepared of a bulk metal or semimetal has 
not been discussed. In the present paper we study the quantum conductance 
of three dimensional ballistic wires with idealy fiat boundaries and show that it 
obeys fluctuations with the properties quite distinguishable from those of the 
universal conductance fluctuations (UCF, [1] ) :  both the fluctuations amplitude 
and the sensitivity of the conductance to the magnetic field flux iI> = HS pene­
trated into the sample cross-sectional area S are different and depend on details 
of the shape of a wire. When the wire has the cross section with the shape of 
an integrable billiard, conductance fluctuations have the enlarged amplitude 
8G "" [ ( e2 / h )3G] 114 and the universal correlation magnetic field He "" <Po/ S. 
When the cross-sectional shape of a wire is non-integrable, the irregular part of 
a conductance has the e2 / h scale whereas the correlation field is reduced to the 
value of Hs "" (>..F/VB)112(<I>0/S) and the correlation voltage of the nonlinear 
conductance fluctuations has the scale of eVc "" n2/mS "" EF/(S/>..F ) ,  where 
AF = 1/PF is the Fermi wavelength. 

The following analysis is based on the application of the Landauer-Buttiker 
approach. That is, the two-terminal conductance G can be written as G = t;.Tr(ii+) ,  where i is the scattering matrix [2] . In the limit of a ballistic trans­
port in long wires, tnm = Dnm X (0 or 1)  and the separation of variables of the 
electron motion along and across wire axis reduces the conductance formula to 
the form [3] 
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which includes now the number of reflectionless quasi-one-dimensional channels 
N(EF ) .  The latter quantity is equal to the number of size-quantized energy lev­
els in a 2D box (with the shape of a wire cross section) below the Fermi level 
in the system. The main contribution to N(EF) is determined by the average 
density of states and depends only on the area S independently of the shape: 
No(EF) ,...., EF/(27rn2/2mS). Next, one can distinguish the term which mani­
fests the features of the boundary conditions of the electron wave function along 
the surcomference L ,...., V'S of the wire surface. When those are 'ljJ = 0, a strip 
L x >.F should be excluded from the cross-sectional area of a sample and, which 

reduces No by the number N1 = B (EF/(n2/2mL2)) 112 [4] . These two terms give 
us the waveguide analogue to the Sharvin resistance formula [5] . Finally, the 
exact number of states N(EF) depends on the Fermi energy irregularly, and its 
deviation, 5N(EF ) , from the best smoothed approximation gives a subject for a 
statistical consideration. Altogether, these three contributions can be combined 
into the conductance 

(1)  

A randomly varying part of a conductance, 5G will be subject of the following 
analysis. In Ref. [6] these fluctuations have been called geometrical conduc­
tance fluctuations in order to distinguish them from the UCF [1] . 

As we know from the quantum billiards theory, the statistics of fluctuations 
5N(EF) depend on the integrability of the particle motion in a quantum box. 
According to [7 , 8] ,  the fluctuations of the number of states below the Fermi level 
are the strongest in integrable quantum systems: the systems which possess 
an additional integral of motion besides the energy. The following reasoning 
gives a handwaving estimation of this effect. The spectrum E(I, n) of a particle 
confined in the integrable box can be imagined as a set of independent level 
series marked by different values of a quantum number I, so that at energies 
E � h2/mS higher than the mean level spacing the total spectrum is locally 
composed of uncorrelated contributions from different rigid staircases of levels 
derived from separate one-dimensional Hamiltonians (each corresponding to 
some value of I) . This means that at the short energy range E the spectra of 
integrable systems obey the Poisson type of statistics, ((5 [N(E + E) - N(E)])2) 
� f5(N(E + E) - N(E)) [8] , while the width of a spectral interval E is small 
enough to consider all levels E(J, n) inside as taken independently from different 
series I. Otherwise, the mean square ((5[N(E + E) - N(E)])2) is restricted 
by the number Imax of independent level series contributing to the spectrum 
formation, since each of them has a strong internal rigidity. In the case of a free 
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particle moving in a 2D box, E(I, n) ex (I2, n2) ,  so that the above-mentioned 
Poisson law is applicable only if E < Emax ,...., EF/�. Beyond this scale, 
the amplitude of spectral fluctuations is saturated, what can be estimated as 
((8[N(EF + E) - N(EF)])2) = (8N(EF)2) ,...., N(EF) 112• It is amusing to note 
that the problem of calculation of 8N(EF) in rectangular billiards is familiar 
to the number-theory as a problem of an accuracy of the best smoothed series 
approximation of a number of square lattice vortices inside an ellipse. One 
of the best number-theory results [9] has predicted (8N2) ex (N(E))8 ,  where 
0.6416 2: () 2: 1/2 ,  which agrees with the above qualitative reasoning. 

All this gives an estimation of the mean square value of the conductance 
fluctuations 8G in the wire with an integrable cross sectional shape, 

(2) 

The scale of these fluctuations can exceed the quantum f. Here, o: is a spe­
cific geometrical factor (for instance, o: = 0.095 in a rectangle with practically 
equal sides) and (3 accounts for the symmetry induced degeneracy of states. 

The spectra of non-integrable systems are much more rigid, and the fluctua­
tions in them are rather weak. In terms of the interaction of levels, this results 
from the repulsion between all of them (not only within each spectral series, as 
in the case of integrable billiards) . The limiting case of shuc levels statistics is 
given by that of chaotic billiards [8] , i .e. , the quantity 8N (EF) obeys some kind 
of a saturated Wigner-Dyson law [10] . Therefore, the amplitude of geometrical 
conductance fluctuations in wires of an arbitrary shape can be estimated as 

(3) 

Fluctuations of nonlinear conductance. Since neither the shape nor 
the Fermi level can be easily varied in 3D metallic wires, the most natural 
possibility to observe the spectral fluctuations of the transverse motion in an 
adiabatic wire consists in the studies of its diferential (nolinear) conductance 
dI(V)/dV. In the adiabatic regime, this quantity can be expressed in terms of 
a number of transmitted waveguide modes [11] as 

d��) 
= ;� [N (EF + e�) + N (EF - e�)] . 

One can see from this equation that the voltage dependence of dI(V)/dV just 
follows the local (in energy) fluctuations of the number of size-quantized states 
in the interval e V near the Fermi level. In a constriction with the cross section 
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presenting completely integrable billiard, this value undergoes fluctuations with 
the Poisson statistics at low voltages V < Vc = Emax/e. When V � v;,, the 
amplitude of fluctuations saturates at the value described by Eq. (2) and then 
Ve plays the role of the correlation voltage of these fluctuations. Therefore, in 
the adaibatic contact with an integrable cross-sectional shape 

( [ d��) - Gr) = { f< (;!,;:, :G, ,y «�, 
'YV(h) G, eV > Emax 

(4) 

In non-integrable (i.e . ,  chaotic) systems the spectral fluctuations are weaker 
[8, 10] , 

( rd��) - Gr) = 3� 
( :� r { In ( �i;: . , v < ,�, (5) 

ln (ln ( �)) , eV > Emax 
The correlation voltage which one could assign to these fluctuations is deter­
mined by the mean level spacing n 2 I mS and has the form 

1 EF Ve = ;_  S/>..} ° (6) 

It is interesting to note that this result differs from the time-of-flight estimation 
which one could get after replacing the mean free path by the sample length in 
the formulae valid for diffusive conductors [12] .  

Magnetoconductance fluctuations. Another possibility to observe the 
geometrical conductance fluctuation consists in an application of a magnetric 
field oriented along the axis of a wire. In what follows, we distinguish three 
cases of different cross-sectional shapes of a wire. 

Let us first consider the system which is integrable and retains this prop­
erty also in an applied magnetic field (the disk obviously belongs to this class) . 
The external magnetic field shifts series of levels marked by different value 
of the angular momentum I, one with respect to another. When this shift, 

!�HI rv H!�JEF/(n2/2mS) , becomes comparable to the mean intra-series 

level spacing, J EFn2 /2mS, the statistical configuration of the Poisson dis­
tribution of levels is renewed, which produces a random magnetoconductance 
variation of the order of what is represented in Eq. (2) (� = 1 ) .  The char­
acteristic scale of a sufficient magnetic field is determined by the flux quan­
tum penetrated through the sample cross-sectional area, HcS "' he/ e ,  which 
means that the important physical quantity - the correlation magnetic field 
of fluctuations [1] - is similar to that in UCF. The visual difference between 
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UCF and geometrical fluctuations is only in their amplitudes. The geomet­
rical fluctuations are enlarged parametrically in thick cylindrical wires, what 
has been observed in [13] in numerical simulations. On the other hand, these 
fluctuations can be viewed (even inside the correlation field He) as a series of 
randomly distributed e2 / h conductance steps with the characteristic spacing of 

1 
<I> � if>o/,fo � <I> [ 2e2/h] 4 

S •...jN(EF) 0 a'G 
Of course, one should realize that the wires with the cross-sectional shape 

which is integrable at any magnetic field gives us an exclusive example. Magne­
toconductance fluctuations in wires with a non-integrable cross-sectional shape 
(see Eq. (3)) have a much lower amplitude what makes them more similar to 
the UCF. Nevertheless, they still possess one feature specific to the ballistic 
adiabatic system. That is, the non-integrable quantum box spectrum is much 
more sensitive to the magnetic field variation that it takes place in open diffusive 
conductors, and the penetration of a flux 

(7) 

is already enough for renewing the realization of the levels configuration [14] . 
In a chaotic billard, all the classical electron trajectories are infinitely long and 
cover the whole fixed-energy thorus in the phase space. In semiclassics, the 
length of such trajectories is limited, since two point of the phase space which 
reach into the same unit volume dpidxi � h are indistinguishable. Therefore, 
the length of a semiclassical trajectory in a box of characteristic dimensions 
L � VS should be cut when the inverse time of flight along it, h VS/ v F will be 
comparable with the mean level spacing � � 1i2 / mS and characteristic traces 
in the real space contain � VS/).. F closed loops each encircling an area � S 
of a random sign. The oriented encircled area of a chaotic trajectory can be 
estimated as S312 /AF which produces the characteristic correlation magnetic 
field He � <I> s / S. It would be interesting to note in this connection that the 
features of the conductance fluctuations found in ballistic silver micro-contacts 
[15] are quite similar to those of wires with a non-itegrable shape described by 
Eqs. ( 6, 7) , though the observed amplitudes were much smaller than e2 / h scale. 

Finally, there exists a class of systems which are integrable (or partly inte­
grable [8] ) at H = 0 and loose this property after an application of a magnetic 
filed . Fot instance, we can mention the structures with a rectangular cross­
sectional shape where the first penetrated flux quantum drastically changes the 
level statistics: from the Poisson type at <I> = HS < <I>o to the Wigner-Dyson 
type at higher fields. This should induce a low-field magnetoconductance of a 
random sign with the amplitude estimated by Eq. (2), whereas the following 
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increase of a produces fluctuations with the amplitude t- and at the scale of 
«Ps (instead of «Po observed in the UCF) . The monocrystalline microwires with 
perfect facets (whiskers) grown of the semimetallic material would be the best 
candidates to show this kind of behavior. 

We are greateful to P. Wyder and A. Jansen for helpful discussions. 
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Abstract. Electron-electron pair scattering shows strong dependence on the electron spin: 
in two dimensions (2D) electron pair scattering is stronger for pairs of electrons in opposite 
spin subbands, than for pairs of electrons in the same subband. More dramatically, in one 
dimensional (lD) quantum wires, electron-electron scattering only exists for pairs of electrons 
in opposite spin subbands. In general , the spin subbands are expected to show a wave vector 
dependent splitting with terms proportional to k3 in the absence of inversion symmetry. We 
show that the wave vector dependent spin splitting gives rise to a strong asymmetry of the 
electron-electron pair scattering rates with respect to the spin subbands. One consequence 
of this asymmetry is a new physical effect: 'Spontaneous Spin Polarization' due to electron­
electron pair scattering. 

1 Introduction 

Intense effort is presently being spent by several groups to fabricate high quality lD quantum 
wires. Among the motivations for this work are the prediction of reduced remote impurity 
scattering, l) the prediction of quantum wire lasers with favorable properties,2l and the question 
about the many-body ground state of electrons in lD. The present work adds a further motivi­
tation: the prediction of spontaneous spin polarization effects in quantum wires. In particular, 
the construction of an electron spin polarizer based on a quantum wire is predicted. 
Dempsey et aJ.3l stated recently for the case of the Quantum Hall effect: ' . . .  most theoretical 
studies have developed a noninteracting picture of (Quantum Hall Effect) edge states, attention 
has recently shifted to the effects of electron-electron interactions on edge-state properties. 
Electron spin has played little role in theories of edge-states . . .  '. A similar statement could 
be made for the fields of mesoscopic devices and quantum wires. Most previous work in the 
area of mesoscopic devices and quantum wire transport used the model of free, non-interacting, 
spin-less electrons. 4J 
Recent work started to include spin and electron interaction effects in the picture of trans­
port in quantum wires, and lead to the simultaneous theoretical discovery of spontaneous 
spin polarization effects due to electron-electron interactions in the one-dimensional Quan­
tum Hall edge states by 1-Ialperin's grnup3l and in single mode quantum wires.5l A related 

*work in collaboration with Hiroyuki Sakaki, Research Center for Advanced Science and Technology 
(RCAST) , University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan. 
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magneto-electric spin polarization effect for the case of 2D electrons has been reported earlier 
by Edelstein.6l 
In our present work, following Hu et aJ.,7) we assume electrons that are well described by a 
conventional Fermi liquid picture. 

2 Spin Dependence of Electron Pair Scattering in 2D 

In pioneering work, Quinn and Ferrell8) and Ritchie9l calculated electron pair scattering times 
for the three-dimensional (3D) electron gas. Several calculations for the two-dimensional 
(2D) electron gas10l-12l and multiple-layer 2D electron gas13) have been performed. However 
previous calculations are for the ideal case of an infinitely thin electron gas, ll) or obtain results 
for strictly zero temperature, JO), 12), 13) and do not include electron spin or exchange effects. 
In the course of the present work we have shown, that electron-electron scattering in 2D 
depends strongly on temperature, electron excess energy, electron gas width, exchange corre­
lation effects and in particular on electron spin. l4), 15) Fig. 1 demonstrates that we find much 
higher electron-electron pair scattering rates for pairs with electrons in opposite spin subbands 
as compared to pairs with electrons in the same spin subbands. We have calculated the pair 
scattering rates for a large range of temperatures, electron density, electron gas width, and for 
different exchange correlation terms. 14), 15) We include electron spin, electron gas width, and 
an exchange term in the Coulomb matrix element. Screening is included via a wave vector and 
frequency dependent dielectric function in random phase approximation (RPA). An exchange 
term is included beyond RPA. 15) 

Figure 1: Differential electron-electron pair 
scattering probability14) for 2D is lower for 
pairs of electrons with parallel spin. Insert 
shows schematic of electron pair scattering 
process in 2D.15) 

Figure 2: Electron-electron pair scatter­
ing process in lD, introduced by Faso! and 
Sakaki.5l This process has similarity with a 
spin flip process. 

3 The Electron-Electron Scattering Process in lD 

The fundamental electron-electron pair scattering process for electrons with spin i n  a ID 
quantum wire has been introduced by Faso! and Sakaki5) and is  demonstrated in Fig. 2. This 
process is very similar to a spin-flip process. After each scattering event shown in Fig. 2 
propagation of an electron of similar energy will continue in the opposite spin subband. 
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Figure 3: Electron-electron pair scattering rates in quantum wires can be dramatically different 
for the different spin sub bands: (a) An electron in the 'spin-up' band with wave vector p1 has 
lower scattering rate since the destination state at p1 + q1 has high thermal probability to be 
filled. (b) Scattering rate for electron p2 in the 'spin-down ' band is much higher, since the 
final state k2 - q2 has lower thermal occupation probability than the destination state in (a) 
at p1 + q1. (Intra-subband pair scattering in lD is only allowed with a partner electron of 
opposite spin.) 

4 Spontaneous Spin Polarization in lD Quantum Wires 

The 'Spontaneous Spin Polarization' effect is caused by the spin subband dependence of the 
electron-electron pair scattering rates. There are two keys to understand this new effect. The 
first key is the introduction of the fundamental electron-electron pair scattering process for 
quantum wires5l discussed above. The second key is the wavevector dependence of the spin­
splitting of the electron bands: in a 'single mode' lD quantum wire the conduction band has 
two spin subbands. The spin splitting is expected to have bulk terms cubic in wave vector k 
(there are also weaker terms linear in k) , and in lower dimensions also additional terms due 
to the confinement and in-built electric fields.22J. 23l 
Spin-splitting of electron bands in semiconductors lacking inversion symmetry is well known 
in the bulk19l-21l and for 2D systems.22J, 23l It has been measured in the bulk24l and for 2D 
systems25l-27l-similar splitting is of course also expected in quantum wires. Intrinsic spin 
splitting is on the order of lmeV at the Fermi edge under typical conditions.21J, 25l 
The basic principle of spin subband dependent pair scattering rates is demonstrated in Fig. 3. 
In Fig. 3(a) we look at pair scattering of an electron with wave vector p1 in the 'spin-up' 
band and in Fig. 3(b) of an electron at p2 in the spin-down band. For each case we show 
a typical pair scattering process with a partner electron near the Fermi surface. Once the 
electron at p1 or p2 and the partner electron at k1 and k2 have been chosen, energy and 
momentum conservation together with the band dispersion fix the final states. (Fig. 3 has 
been calculated using 'Mathematica' and a realistic dispersion relation for GaAs derived from 
a k.p calculation, which includes k3 spin splitting terms and non-parabolicity) . Note that 
there is a fundamental asymmetry of the electron-electron pair scattering with respect to the 
spin subbands: in the case of a test electron in the spin-up band the final states lie outside the 
energy range of the initial states, while for the case of a test electron in the spin-down band 
the final states lie within the energy range of the initial states. This asymmetry is a direct 
consequence of the wave vector dependent spin-splitting. 
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Figure 4: Spontaneous Spin Polarization in a lD Quantum Wire: (a) Spin-up electrons pass 
a lD wire without scattering; spin-down electrons undergo strong scattering, leading to rapid 
thermalization and the emission of additional spin-up electrons, which emerge. (b) Scattering 
with partner electrons at the opposite end of the Fermi sea is expected to have a weak influence. 

The scattering process shown in Fig. 3(b) has much higher probability than the process in 
Fig. 3(a) , since the Fermi population factors will be much more favorable for scattering. 
Thus Pl + qi in Fig. 3(a) has a high probability of being occupied, reducing the scattering 
probability of the process in Fig. 3(a) dramatically compared to Fig. 3(b). 
The spin subband dependence of the scattering rates can be used to polarize a ballistic electron 
beam, as demonstrated in Fig. 4. An electron injected into the 'spin-up' subband with an 
excess energy � in Fig. 4(a) passes the quantum wire with low scattering probability. An 
electron injected into the 'spin-down' subband on the other hand, has an increased scattering 
probability as demonstrated in Fig. 3(b). The 'spin-down' electron will thermalize rapidly, 
as shown in Fig. 4(a) and will emit a series of spin-up electrons during the thermalization 
process. The emitted spin-up electrons will have low scattering probability, and therefore will 
emerge from the quantum wire spin polarizer at the drain. Thus this structure acts as an 
active spin polarizer, converting ballistic spin-down electrons into ballistic spin-up electrons, 
while spin-down electrons are rapidly thermalized. Spin dependence of scattering rates also 
exists for scattering with partners at the opposite, -kF, end of the Fermi surface, but the 
effect is weaker. The effect of this type of scattering on the polarizer is shown in Fig. 4(b). 

5 Calculated Scattering Rates in lD 
To demonstrate the spin subband dependence of pair scattering we have calculated the dif­
ferential pair scattering rates as a function of wave vector k of the partner electron, and as a 
function of excess electronic energy �. 
Our calculations5l· 14l. 15l are based on Fermi's Golden Rule. The total scattering rate for an 
electron at wavevector p and in spin subband a is expressed as: 

( 1) 
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Figure 5: Calculated electron pair scattering rates for lD: (a) For electrons above the Fermi 
energy (!!. > 0), electron pair scattering rates may be many orders of magnitude larger for one 
particular spin orientation (here spin-down) than for the other. (Irregularities and divergences 
in the curves occur for scattering vectors extremely close to q = 0 and are partially eliminated 
from the Figure, they are not eliminated for the final integrations of total scattering rates 
however.) (b) Spin dependence for scattering with partners on the 'far-side' of the Fermi 
surface is m uch weaker. 

where /k,q' (1 - fk-q,q') (1 - fp+q,q) are the Fermi occupation factors and (k - p, p + q IVI k,p) 
is the appropriate Coulomb interaction matrix element. In the actual calculation, we use a 
Coulomb matrix element which takes account of spin, an exchange correlation term, and the 
width of the electron gas. For the dielectric function E (q, (Ep - Ep+q) /h), we use an RPA 
expression, which includes the finite temperature, the spin-split subband structure, and an 
exchange term. The 8-function on the right expresses the conservation of energy. Details of 
the calculations can be found in Faso! and Sakaki. 15) 
Fig. 5 shows typical results of the calculation, and demonstrates that the pair scattering rates 
can be many orders of magnitude different for the two spin subbands. The total scattering 
rates are the balance of scattering with partner electrons at the 'near side' (Fig. 3 and Fig. 5(a)) 
and the 'far side' (Fig. 5(b)) of the Fermi surface. The spin subband dependence is expected 
to be strongest for hot electrons, i.e. for electrons with an energy !!. on the order of 1 . . .  5mc V 
above the Fermi energy. 
Using Fig. 4 a quantum wire spin polarizer can be constructed.5) The actual orientation of 
'spin-up' and 'spin-down' is given by the orientation of the crystal structure, and also by the 
microscopic details of the quantum wire. In a real quantum wire 'spin-up' and 'spin-down' 
states will be mixed. 
Acoustic phonon scattering is expected to be weaker than electron scattering effects up to 
at least lOOK, while we expect that optical phonon scattering will destroy this effect above 
approximately lOOK. Sufficiently high mobility is required, so that impurity and roughness 
scattering are lower than electron-electron scattering. Since in-built microscopic electric fields 
affect the spin-splitting of the quantum wire, and since interface roughness can affect micro­
scopic electric fields, it could also negatively affect the spin polarization phenomena. Plasmon 
emission is a possible loss mechanism and when present, is expected to destroy the spin po­
larization effects. Fortunately there is a threshold excess energy for emission of plasmons: an 
electron can only emit a plasmon, if the electron's excess energy !!. is greater than a certain 
threshold energy. This threshold excess energy is much larger for typical lD systems than 
for corresponding 2D systems, and is on the order of 50 to 200 meV for typical conditions in 
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1D.15J Therefore, plasmon emission leaves a sufficient working range for our proposed electron 
spin polarization device. 
So far we have assumed that the background electron gas in the wire is sufficiently coupled to 
the environment, so that its distribution is not disturbed by the injected electron beam. The 
opposite limit is the case of weak coupling of the background electrons in a section of the wire 
to the surroundings. In this case the injected electron beam will flip background electrons 
between spin subbands with unequal probability, leading to unequal spin populations and a 
steady state spin polarization of the background electrons. This induced spin polarization 
effect is similar to the 2D magneto-electric effect predicted by Edelstein. 6l 
A further point to note is, that the spin orientation of the spin-split bands is inverted, when 
k is inverted, i.e. if for example the 'spin-up' subband is at higher energies for < 1, 1 ,  0 >, 
then it will be at lower energies for < -1,  -1, 0 >. This means, if a quantum wire spin 
polarizer device is constructed along a particular direction to produce 'spin-up' electrons, the 
same device, will produce 'spin-down' electrons, if the ballistic electron current is passed in 
the opposite direction. 

6 Summary 

The fundamental electron-electron pair scattering process for quantum wires has been intro­
duced. It has similarity with spin flip processes. We have shown that the naturally occuring 
wave vector dependence of the spin splitting of the electron bands in quantum wires can 
lead to an asymmetry of the electron-electron pair scattering rates with respect to the spin 
subbands. Electron-electron pair scattering rates in the different spin subbands can differ by 
many orders of magnitude. This effect can lead to 'spontaneous spin polarization effects' when 
ballistic electrons propagate through a quantum wire. No external magnetic field is needed 
for this effect. 
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EQUILIBRIUM AND SHOT NOISE IN MESOSCOPIC SYSTEMS 

Thierry Martin, Theory Division, CNLS, Los Alamos National Laboratory 

I. INTRODUCTION 

Within the last decade, there has been a resurgence of interest in the study of noise in 

Mesoscopic devices, both experimentally and theoretically1-27l . Noise in solid state devices can 

have different origins: there is 1 / f noise28l , which is believed to arise from fluctuations in the 

resistance of the sample due to the motion of impurities29l. On top of this contribution is a 

frequency independent component associated with the stochastic nature of electron transport, 

which will be the focus of this paper. 

If the sample considered is small enough that dephasing and inelastic effects can be ne­

glected, equilibrium (thermal) and excess noise can be completely described in terms of the 

elastic scattering properties of the sample. As mentioned above, noise arises as a consequence 

of random processes governing the transport of electrons. Here, there are two sources random­

ness: first, electrons incident on the sample occupy a given energy state with a probability 

given by the Fermi-Dirac distribution function. Secondly, electrons can be transmitted across 

the sample or reflected in the same reservoir where they came from with a probability given by 

the quantum mechanical transmission/ reflection coefficients. Equilibrium noise refers to the 

case where no bias voltage is applied between the leads connected to the sample, where thermal 

agitation alone allows the electrons close to the Fermi level to tunnel trough the sample23l. In 

general, equilibrium noise is related to the conductance of the sample via the Johnson-Nyquist 

formula30l. In the presence of a bias, in the classical regime, we expect to recover the full shot 

noise < .6. 2 I > = 2/ .6.µ as was observed a long time ago in vacuum diodes31) . In the Mesoscopic 

regime, however, excess noise is reduced below the shot noise level, as will be explained below. 

If the sample is to be described quantum mechanically, a calculation of the noise should in­

clude the Pauli principle: an electron which is successfully transmitted cannot occupy the same 

state as another electron incident from the opposite side, which is reflected by the potential 

barrier. The importance of the statistics of the charge carriers is somehow a novelty in Meso­

scopic physics. After all, many experiments in Mesoscopic physics can have a direct analog if 

we interchange the carriers with bosonic particles. The conductance steps experiment32l which 
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shows the transverse quantization of the electron wave function is an example: this experiment 

has been successfully completed with photons33l . The measurement of universal conductance 

fluctuations in Mesoscopic wires and rings34•35l also has an analog when one shines a laser in 

white paint and studies the speckle pattern generated in this way36l . The Aharonov-Bohm 

effect was successfully observed for electrons in disordered rings35l : nothing tells us that we 

could not repeat the experiment for bosonic particles. In contrast to these examples, a noise 

measurement makes a distinction between electrons and photons if we look and the correlations 

between two detectors collecting the carriers. 

Several approaches have been proposed to calculate noise. Some are quasi-classical, as they 

rely on the concept of trajectory. Others use a formulation of non equilibrium thermodynamics 

which is based on the concept of reservoirs, introduced for the conductance formula37l. The 

reservoir picture can be cast in a systematic way to calculate the current current correlations 

in time for a multi-terminal conductor38l . Below we will refer to this treatment as the "poor 

man's" Keldysh39l approach. In contrast to this point of view, we will introduce a more intuitive 

picture4•14•15l, where the current passing through the device is a superposition of pulses, or 

electrons wave packets, which can be transmitted or reflected. 

II. HISTORY 

I will start with an historical overview: the list which appears below is by no means ex­

haustive, and I apologize for the contributions which have been left out. 

In 1984, came the first printed suspicion that excess noise could be reduced below shot noise 

by quantum mechanical effects1l. It was observed that by varying the voltage bias applied 

on a point contact, coherent stimulated phonon emission processes reduce the excess noise 

contribution in a point contact. A theoretical confirmation of this experiment followed soon 

after2l . The noise is reduced by a factor d/ l, where d is the diameter of the point contact and l 

is the mean free path associated with the phonons ( d < < l). The second derivative of the noise 

with respect to the bias can be related to the electron phonon interaction function. Noise in 

normal metal-metal and metal-superconducting junctions was analyzed using a semiclassical 

Keldysh approach3l , with an identification of the thermal and non-equilibrium contributions. 

For a junction between normal metal and superconductor, an additional contribution to noise 

comes from Andreev reflection processes40l . In 1989, the wave packet approach was introduced 

to calculate thermal equilibrium noise4l : the calculation was done for a sample connected 

to two leads each carrying one channel. Around the same time, the noise in the presence 

of a bias was calculated using the "poor man's" Keldysh approach5l ,  for an adiabatic point 

contact (no mixing between the different transverse modes). Momentum noise was investigated 

in single and multiple barrier geometries6l. Two experiments measuring low frequency noise 

were performed by the Princeton group. The first one considered a point contact 7) , as in the 

conductance step experiment32l and measured the noise as a function of the gate voltage of 

the contact, and the second used a resonant tunneling geometry8ll The noise was measured 



407 

at a frequency of the order of lOKHz, which is sufficiently low that the 1/f contribution 
to the noise still has to be subtracted out to determine the white noise contribution we are 
interested in. Both experiments showed qualitatively that in the case of poor transmission, 
the noise level corresponds to full shot noise, while highly transmissive samples give a level 
which is lower than shot noise. In the point contact experiment, a new channel is opened 
up by varying the gate voltage, while for the resonant tunneling experiment, the transmission 
of electrons depends on the proximity of the incident energy to the quasi level in the center 
region. The result of Ref. 5 was then generalized to samples connected to an arbitrary number 
of leads9l, where the noise was expressed directly in terms of the general S-matrix describing the 
scattering properties of the sample, in analogy with the earlier work on multi-probe current 
measurements38l. Noise was measured in the quantum Hall regime10•11l: noise arises when 
electrons are backscattered from one edge of the sample to the other. Noise plateaus were 
detected10l at the same location as the resistance plateaus associated with the (fractional) 
quantum Hall regime. A semiclassical approach to the calculation of noise which used phase 
space trajectories12l showed once again that the noise vanishes for ideal transmission. The 
wave packet approach introduced for thermal equilibrium in Ref. 4 was extended to treat the 
non- equilibrium situation14, and then generalized to the case of multi-channel, multi-terminal 
samples to discuss noise correlations15l. The probability distribution for charge transfer in a 
Mesoscopic sample was found to be close to a binomial distribution16), suggesting that the 
current is indeed emitted in "bursts" . It was pointed out17l that in a four terminal geometry, 
noise correlations can yield flux sensitive information. Recently, an interference effect similar to 
that of Ref. 17 was pointed out for a two terminal geometry26l, where there the sample is bent in 
the form of a loop and an alternating flux passes through the loop. Frequency dependent noise 
has been studied by several authors3•5•18). Noise was proposed19) as a diagnostic of tunneling 
mechanism: in a resonant tunneling geometry, the noise power exhibits sharp variations where a 
current measurement fails to give similar information. The effect of dephasing and dissipation 
on the quantum noise has been analyzed20l with the conclusion that dephasing alone is not 
sufficient to recover the macroscopic regime. Electron-electron interactions were included for 
a geometry where two ideal leads are connected by a central interacting region22l . Electron 
correlations where also considered recently in the fractional quantum Hall regime27l. Sample 
averaging was introduced13) to study the suppression of shot noise in diffusive conductors, and 
later on in a study of the Mesoscopic fluctuations in the shot noise power of metals25l Shot 
noise was computed in the semiclassical regime for a metallic conductor23l, and it was found to 
be reduced by a factor equal to the ratio of the mean free path divided by the sample length. 

III. THE WAVE PACKET APPROACH 

We consider first a one dimensional sample connected to a source and a drain. The quantity 
we wish to calculate is the time correlation in the current: 

C(t) = � j dt' < I(t + t')I(t') > (1)  
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The spectral density of noise W(w) is related to the above quantity by a simple Fourier trans­

form. The measurement frequencies which we consider here are low enough compared to the 

inverse of the time associated with the transfer of an electron from source to drain41) and allow 

to neglect the self inductance of the sample. Using the Fourier representation for the current, 

this yields: 

W(w) = J�(� < IJ(w)l 2 >) (2) 

where the angular backets denote some kind of average over electrons occupation factors. In 

the "poor man's" Keldysh approach, this is equivalent to taking a thermodynamic average with 

a generalized grand canonical weight exp(-(3(H - �i µ;N;)), where N; is the number operator 

counting the scattering states incident from a given lead i. The nonequilibrium situation is met 

when all chemical potentials µ; are not equal. A justification of this choice of thermal weight 

has been provided in Ref. 42. If we assume the different reservoirs to be disconnected at a 

time t = - oo, and adiabatically turn on the coupling between the reservoirs to its full value 

at t = 0, the Lipman-Schwinger equation " transforms" the creation/ anihilation operators for 

each reservoir into operators describing scattering states. As long as the difference between 

chemical potentials is sufficiently small so that we can neglect the charge pileup in the sample 

connecting the reservoirs, this approach provides useful answers, and constitutes a systematic 

way to calculate current current correlations from the S-matrix. 

The wave packet approach views the current passing across the sample as a superposition 

of clocked pulses4•14•14l: 

I(t) = l:j(t - m)gn (3) 

In this expression j ( t) is the current associated with a given pulse and 9n is an occupation factor 

which takes a value 1 if an electron has been transferred from the left hand side to the right 

hand side of the sample, -1  if the electron was transferred from right to left , and 0 when no 

electron is transferred at all. The quantum mechanics necessary to calculate the noise is hidden 

in 9n· The wave packets representing the electrons are separated in time, but can overlap in 

space. This view of electron transport is somewhat supported in Ref. 16, where the probability 

distribution of charge transfer is found to be close to a binomial Bernouilli distribution with 

an average number of attempts in the time t equal to 2eV/ht. An example of wave packet 

construction can be obtained if we consider states limited to a small energy interval /lE: 

,p(n)(z t) = {E+AE 
dE' [_!_�] l/2 eik(E')z-iE'(t+nT)/� ' JE-AE flE 271" dE' 

' (4) 

by choosing r = h/ llE, we insure that successive pulses are orthogonal to each other. With the 

above definitions, the calculation of the noise contribution coming from the frequency interval 

[v, v + ov] and the energy interval [E - !lE/2, E + /lE/2] reduces to the calculation of the 

fluctuation in the occupation factors: 
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(5) 

where we have dropped the index n in 9n because all pulses contribute to the noise in the same 

fashion. Also, note that we have subtracted the average current in order to describe the effect of 

the applied bias on the sample. The calculation of the spectral density of noise is thus directly 

related to the statistics of the current pulses. 

To obtain the correlator < g2- < g >2> ,  we consider all possible pulse histories: first 

consider the case where two electrons are incident on the sample from opposite sides. In this 

situation g = 0, because there will be no current if both electrons are reflected or transmitted, 

and the situation where one electron is reflected and the other is transmitted is forbidden by 

the Pauli principle; two electrons (with the same spin) cannot occupy the same wave packet 

state. Secondly, there is the straightforward situation where both incident states are empty, 

with g = 0. The other possibilities where g = 0 follow if an electron is reflected from one side, 

when no electron was incident from the other side. In fact the only possibilities where a current 

passes trough the sample are when an electron incident from the right (left) is transmitted while 

no electron was present on the other side, giving the result g = 1 (g = -1) with respective 

weight fi(l - 12)T (!2(1 - f1 )T). f1 (!2) is the Fermi-Dirac distribution associated with the 

left (right) reservoir, and T is the transmission probability. We therefore obtain: 

Summing now over all energy intervals, we thus obtain the total excess noise: 

4e28v j 
< f;,,/2 >&> = 

---:;f; 
dET(E)f2( l  - Ji ) 

2e28v j 
+---:;r; dET(E)(f1 - 12)[1 - T(E)(f1 - 12)] . 

(6) 

(7) 
In the absence of bias or at high temperatures ( lµ1 - µ2 1 << kB0), the first term on the right 

hand side dominates, and we recover the Johnson Nyquist30l formula for thermal equilibrium 

noise4l : 

2 4e28v 
< !::.I >&>= 

�
kB0T . (8) 

In the opposite limit, lµ1 - µ2 1 >> kB0, we get a contribution which looks like shot noise, 

except that it is reduced by a factor 1 - T: 

< t::.1
2 

>&>= 2e8v < I >  (1 - T) . (9) 
The reduced shot noise is also called partition noise. In the limit of poor transmission, T < < 1 ,  

and we recover the full shot noise. For highly transmissive channels , T � 1 ,  and we can think of 

the deduction of shot noise as being the noise contribution associated with the poor transmission 

of holes across the sample. Because of the Pauli principle, a full steam of electrons which is 

transmitted with unit probability does not contribute to noise. Note that this is the effect seen 

qualitatively in the Princeton experiment10•11. In the intermediate regime lµ1 - µ2 1 � kB0, 

there is no clear separation between the thermal and the reduced shot noise contribution. 
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IV. GENERALIZATION TO MULTI-CHANNEL CASE 

We now turn to the more complex situation where each lead connected to the sample has 

several channels. Our concern in this case is the role of channel mixing: a receiving channel on 

the right hand side collects electrons from all incoming channels transmitted from the left and 

all reflected channels on the right. We therefore expect that wave packets from these different 

incoming channel will interfere with each other. To avoid the issue of interference between 

channels and treat the system as a superposition of one dimensional contributions, we must 

find a. wave packet representation where the mixing between channels is absent. 

This representation is obtained by using a decomposition of the S- matrix describing the 

sample43l. Let us assume for simplicity that both leads have the same number of channels 

M. The S-matrix is then a block matrix containing four M by M submatrices describing the 

reflection from the right (left) hand side, s22 ( s11 ) , and the transmission from left to right (right 

to left) ,  s12 ( s21 ) : 

(10) 

From the unitarity of the S-matrix, which follows from current conservation, it is possible to 

write the submatrices in terms of two diagonal matrices and four unitary matrices, as long as 

s\1 has no eigenvalue equal to 0 or 1: 

sn = -iV1R1t2u: 
s12 = V1T112u� 
s21 = V2T112u: 
s22 = -iV 2R 1t2u � 

( I la) 

(llb) 

(l lc) 

(l ld) 

where R 112 and T112 are real diagonal matrices with diagonal elements Ri12 and T,112 such that 

their square R. and T; are the eigenvalues of the matrices s\1 sn and s!1 s21. T; and R. satisfy 

the identity T; + R. = 1 ,  and U1, U2, V1 , V2 are unitary transformations. This decomposition 

of the S-matrix has been implicitly pointed out44) in the context of random matrix theory, 

where the transfer matrix is in general the quantity of interest. 

Using the unitary transformations, we can now choose a new basis of incoming and outgoing 

states on the left and the right side of the sample: U1 (V1) is the unitary transformation 

used to represent the incoming (outgoing) states on the left side, while U2 (V2 ) is the unitary 

transformation used to represent the incoming (outgoing) states on the right side of the sample. 

The effective S-matrix thus obtained in this new basis is a block matrix of four diagonal 

matrices: 



411 

-iR�/2 • • •  0 Ti/2 1 0 

S =  
0 . . .  -iR�2 0 Tif2 

(12) 
Ti1/2 0 -iR�/2 . • •  0 

0 Ti/2 M 0 . . .  -iR�2 

Note that S corresponds to a situation where no mixing between channels occurs, effectively a 

superposition of one dimensional (2 x 2) S-matrices which are totally decoupled (see Fig. 1). 

Fig. 1 

: � :  
: � :  
: � =  

In fact this is precisely the form which was assumed by Lesovik5l for the adiabatic point contact. 

The absence of correlations between the different incoming and outgoing wave packets allows 

us to write the noise as a superposition of M one dimensional contributions: 

(13) 

This expression can be cast in terms of the block elements of the initial S-matrix using the 

properties of the trace, 'E; T[' = Tr[(s�1s21rJ . 
The above decomposition was based on the fact that none of the T;'s are 0 or 1. We can 

escape these pathological cases by arguing that we can choose T; # 0, 1 but arbitrarily close 

to these values. But this is not even necessary; a decomposition similar to Eq. (lld) can still 

be found such that the effective S-matrix still has the four diagonal block structure. The case 

where the number of channels on each side is different can be handled in a similar manner: we 

can simply add a number of passive channels which are totally reflected on the side with fewer 

channels in order to come back to the case where there are M channels on both sides. Because 
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they correspond to states which are totally reflected, passive channels do not contribute to 

noise. 

We make the following remarks: First, a number of experiments have studied the effect of 

backscattering in the Integer Quantum hall regime in a confined geometry where the electrons 

propagate along the edges the sample, a reminiscence of the classical skipping orbits45l . In a 

typical experiment on a GaAs heterostructure, the backscattering of electrons from one edge 

to the other can be controlled by varying the voltage on a metallic gate placed across the Hall 

bar46l . As the gate voltage depletes the electrons underneath, the innermost edge state is the 

first to experience backscattering, while the other ones are fully transmitted. In the theorist 

mind, assuming that there are no irregularities in the lateral confinement potential, and in 

the absence of impurities, neighboring edge states do not mix47l, and the S-matrix associated 

with this situation has precisely the four diagonal structure discussed above. That is to say, 

there is some grain of physical reality in the decomposition of the S-matrix. Secondly, we note 

that in the presence of time reversal symmetry, we get additional constraints on the unitary 

transformations, the transformation used to describe the incident states on a given side of the 

sample must coincide with the transformation associated with the outgoing states on the same 

side: U1 = Vi and U2 = v; . In the presence of a magnetic field B, U1(B) = Vi(-B) and 

U2(B) = v;(-B).  Similar constraints appear if the sample is a Mesoscopic ring: a ring can be 

viewed as a black box with incoming and outgoing states connected on two opposite sides of 

the box. To form a ring, an incoming lead on one side has to be connected to an outgoing lead 

on the other side. This imposes the constraint U1 = V2 and U2 = V1 . In general, the unitary 

transformations determine which universality class, in the random matrix theory language44l , 

the sample belongs to. 

V. MULTITERMINAL CASE AND NOISE CORRELATIONS 

The case where the sample is connected to several leads provides another challenge for 

the wave packet approach. Here, we will not get into the details of this situation, but rather 

give the essential ingredients of the approach15l . Also, the discussion is restricted to the zero 

temperature (8 = 0) case. 

We consider a multiterminal sample connected to p leads, and propose to calculate the 

noise in a given lead a. To each lead we associate a chemical potential, and we label each lead 

with decreasing chemical potential, µ1 > . . .  > µa > . . .  > µP. For i < a, in the energy range 

[µ; + 1, µ;] , reservoirs 1 to i are injecting electrons in lead a. For i > a, reservoirs i + 1 to 

p inject holes in a. In both cases, it is straightforward to determine the transmission matrix 

associated with each energy interval. In turn, the transmission matrix associated with these 

intervals yields the eigenvalues (the T; 's) which enter the noise formula. Note that the basic 

idea of this approach is to reduce the discussion to the two lead case, which we know how to 

handle. The calculation of the noise in lead a therefore sums up the contribution of each energy 

interval, and the final result can be expressed in terms of a trace on the block elements of the 
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S-matrix: 

( 14) 

To calculate the noise correlations between two leads a and (3, we consider a fictitious lead 

(a + (3). We then proceed as in the previous paragraph to calculate the noise in (a + (3). 

The noise in this lead is equal to the noise in a, the noise in (3, plus the interference term 

which represents the correlations between a and (3: 2 < t:i.Ia.t:i.If3 >6v· We then obtain, at zero 

temperature: 

(15) 

Admittedly, the generalization of the wave packet approach to multiprobe, multiterminal sam­

ples requires some thinking, and is so far limited to 0 = 0. For 0 # 0, Ref. 21 finds it 

convenient to decompose the noise into equilibrium-like and transport fluctuations: the trans­

port fluctuations bear a negative (positive) sign as in Eq. 15 when the carrier obey the Fermi 

(Bose) statistics. 

VI. NOISE CORRELATIONS IN A Y-SHAPED STRUCTURE 

In 1953, Hanbury-Brown and Twiss performed an experiment48l where two detectors at 

different locations collected photons emitted from an incoherent light source. The correlations 

between the two detectors where measured as a function of the distance separating the detectors, 

and where found to be always positive. This measurement can be viewed as a check that photons 

are indistinguishable particles which obey Bose-Einstein statistics. Nevertheless, it can also 

be fully understood in terms of classical electromagnetism49l: the photon bunching effect is a 

consequence of the superposition principle for light applied to noisy sources. 

,.., 

Fig. 2 

It has been suggested15•50 that a similar experiment be performed for fermions. A natural 

"battle field" for this experiment would be to study the noise correlations for electrons injected 
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in a Mesoscopic device from one lead, and collected by two other leads: a Y shaped device 

etched in a GaAs/ AlGaAs heterostructure, for example (Fig. 2). We associate the injecting 

lead with a chemical potential µi, and fix the chemical potential in lead 2 and 3 at an equal 
value /L2 < /Ll · For simplicity, we also assume e < <  l/L1 - /L2I so as to ignore thermal effects. 
Using the results of the previous section, the noise correlations between the collecting leads 2 

and 3 is given by: 

(16) 

which shows that the correlations are always negative, a direct consequence of the fact that 
electrons obey Fermi statistics. Ref. 21 also proved that the reverse is true if the carriers are 
bosons. As the noise correlations measure the likelyhood to detect an electron at a time t + t' in 

lead 3 knowing that an electron was detected in 2 at time t, we therefore have a direct analog 
of the Hanbury- Brown experiment for electrons. In the simplest case, where only one channel 
propagates in each lead, the effect will be maximal (compared to the noise contributions in each 
receiving lead) if we construct the Mesoscopic sample so as to minimize the backscattering of 
the electrons coming from the injecting lead. 

VII. EXCHANGE INTERFERENCE IN A FOUR TERMINAL GEOMETRY 

An interesting application of the result for the noise correlations in multiprobe geometries 
has been pointed out by Biittiker17l . For a sample connected to four (or more) probes, Eq. (15) 

contains products of the block elements of the S-matrix which cannot be written as a matrix 

multiplied by its hermitian conjugate. Biittiker suggested that this opens the possibility for 
observing interference effects in a four terminal geometry despite the fact that no coherence 
exist between different reservoirs. 

4 

v 

1=:>- -c3 

n 
2 

Fig. 3 

Biittiker21l proposes a gedanken experiment in the integer quantum Hall regime where four 
leads, each containing one edge state, communicate with each other via a quantum dot which 
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in this case is a circulating edge state. The leads are labeled from 1 to 4 as one goes around 

the central island (Fig. 3, taken from Ref. 21). Attention is focused on the noise correlation 

between leads 2 and 4. In a first step (a) electrons are injected from lead 1: µ = µ1 and 
µ0 = µ2 = µ3 = µ4 (µo < µ), in a second step (b) electrons are injected from lead 3: µ = µ3 
and µ0 = µ1 = µ2 = µ4, and finally (c) electrons are injected from both 1 and 3: µ = µi = µa 

and µ2 = µ4• Evaluating the noise correlations in these three cases, Buttiker finds the relation: 

< b.lv!j.]4 >c = < b.J2b.J4 >a + < b.J2b.J4 >b 

-2Sv(e2/h) j dE (! - /o)[Tr(s�1s2asl3s41) + Tr(s�3s21sl1s4a)] , (17) 

where < b.121:!>.14 >a,b are the noise correlations associated with steps (a) and (b), which do 

not contain any phase information, and f (!0) is the Fermi factor associated with the chemical 

potential µ (µ0). In contrast to the two first contributions, the last term in Eq. (17) can carry 

phase information. This is seen by determining the S-matrix associated with this geometry 

in terms of the transmission/reflection probabilities and the phase shifts associated with the 

transfer from one reservoir to another. The end result is that: 

(18) 

where x is the total phase accumulated in one cycle around the central island. It would then 

be possible to observe Aharonov-Bohm type oscillations when measuring noise correlations 

in the appropriate way. This is quite a surprising result, because unlike in the traditional 

Aharonov-Bohm effect, here there is no single electron trajectory which traps a magnetic flux. 

Biittiker17•21) argues that the interference predicted from the noise correlation experiment rep­

resents a new type of interference, which arises from exchange effects. In the (different) context 

of particle physics, a similar phenomenon was pointed out51) 30 years ago: the intensity cross 

correlation between two detectors analyzing the scattering of particles off a target illuminated 

by two incoherent sources can yield phase information. Indeed, the wave function associated 

with a system of two particles has to be written as an antisymmetrized product of single particle 

wave functions. As a consequence, the probability density contains terms which are sensitive 

to an external flux. 

VIII. NON STATIONARY AHARONOV-BOHM EFFECT 

A somehow similar effect has been predicted by Lesovik and Levitov26l for a simple, two 

lead geometry. The sample is bent in the shape of a loop, but the source and drain do not touch 

eacli other, so that there is no single electron trajectory which can trap flux. An alternating 

flux </>(t) = </>asin(nt) is imposed through the loop. The frequency n is assumed to be small 

compared to the traversal time of an electron in the sample, and the Fermi energy is assumed 

to be much larger than the applied bias, as well as the quantum nn. 

If the field is weak, the essential role played by the magnetic field is to give a phase f A.dl 

to an electron transmitted from the source to the drain. The current predicted in this situation 

is constant, and has no dependence on flux. 



416 

The central point of this gedanken experiment is that it is possible to observe an oscillatory 

behavior in the low frequency noise. The derivative of the noise with respect to the applied 

bias as; av is found to have a staircase-like structure: 

as 2e2 

- = - L; An0(eV - n1iJ!) 
av 7r n (19) 

where 0(a:) is here the Heavyside function, and the height of the steps is given by 

(20) 

where T is the transmission probability, ¢0 is the flux quantum, and Jn is the Bessel function 

of order n. By varying the amplitude of the oscillatory flux, the height of the steps oscillates, 

and decays for large amplitudes. The noise power measurement yields phase information where 

a simple current measurement fails to do so. The non-stationary Aharonov-Bohm effect is 

believed to arise from exchange interference between states incident on the sample from the 

source and the drain, which energies shifted by an amount finD.: the presence of the alternating 

flux allows these states to "communicate". 

IX. NOISE IN CORRELATED ELECTRONS SYSTEMS 

A calculation of noise in the presence of Coulomb repulsion has been proposed by 

Hershfield22l . In this work, the Mesoscopic sample consists of two ideal leads (non interacting 

electrons) connected by a central island where interactions are taken into account. Later on, the 

central region is taken to be an Anderson impurity site. Also, it is assumed that the tunneling 

rates on each side of the island are independent of the energy. The calculation is performed us­

ing the Keldysh approach, and the lowest order vertex corrections are computed in perturbation 

theory, using the Hartree approximation. By comparison with the non-interacting case, Hersh­

field identifies the different contributions. A first term resembles the non interacting result. A 

second term arises because the electron distribution function at the impurity site is modified by 

the interaction. A third term is associated with inelastic scattering processes. Finally, the last 

contribution cannot be identified with corrections to the noninteracting case, and is believed 

to contain memory effects associated with the interaction: in general, the resulting noise power 

at low frequencies cannot be written in terms of an effective transmission probability. 

Another specific situation allows an effective treatment of the correlations between electrons. 

Such is the case of Ref. 27, which deals with the non equilibrium noise in the fractional quantum 

Hall regime for a constriction. The constriction renders the problem one dimensional, and one 

can then make use of the bosonization methods developed for one dimensional interacting 

electron systems52l In a constricted quantum Hall geometry, transport is believed to occur 

primarily at the edges. For a fractional filling factor v = l/m, the edge excitations form 

a single channel chiral Luttinger liquid53l [53] , characterized by a dimensionless conductance 

g = l/m. Kane and Fisher27l The noise in this situation arises from the backscattering of 

Laughlin quasi particles54, which are composed of a fraction g of an electron bound to one 
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vortex. As a consequence of this binding, current and voltage fluctuations are locked together 

at low temperatures. 

In the limit of strong backscattering, Fisher and Kane find that the noise reduces to the 

classical (Poissonian) case. The noise is due to uncorrelated tunneling of electrons through the 

constriction from source to drain: 

with V.d the source to drain voltage. 

( eV.d ) 
S = e coth 2k8e (21) 

In the opposite limit of weak backscattering, noise arises from the tunneling of Laughlin 

quasiparticles from one edge to the other. Since the transmission at the constriction is good, 

this tunneling can also be considered as a Poissonian process. This time, the voltage fluctuations 

satisfy a classical shot noise form, where the charge of the electron is replaced by the charge 

of a Laughlin particle ge. Relating the voltage fluctuations to the current fluctuations yields a 

shot noise formula: 

S = ge(lmax- < I >) (22) 
with I max = g( e2 / h) V.d the current associated with perfect transmission. Because of the pref­

actor ge in Eq. (22), a noise experiment in this regime would yield a direct observation of 

fractional charge! In the case of a resonance, where two constrictions isolate a central region27l 

it is possible to suppress the contribution from single quasiparticle tunneling. The dominant 

process is then the tunneling of pairs of quasiparticles, so that the noise contribution of Eq. 

(22) has to be multiplied by 2. 

X. CONCLUSION 

This contribution has attempted to review the work on noise in the last decade, focusing 

on a few specific topics which were chosen because of their importance in the author's opinion, 

and/or because they represent a nontrivial generalization of the elastic case. Among the first 

category is the reduction of shot noise for highly transmissive samples. While this effect has 

been qualitatively seen in several experiments, it would be useful to repeat these experiments 

in order to obtain more quantitative results. The role of the statistics of the charge carriers 

has been emphasized throughout the paper. Noise correlations in a Y-shaped structure and 

the "new" exchange interference effect were discussed mainly with the goal of motivating an 

experimental effort in this direction. 

The inclusion of interactions22•27) has opened a new direction of research, which will hope­

fully lead to a better understanding of the constraints imposed by the Coulomb repulsion on 

the transport of electrons. At this point, it is not clear whether the Coulomb interaction be­

tween electrons will further reduce the shot noise power below the level obtained for the single 

electron result. Our intuition leads us to the belief that this will be the case, simply because 

in a narrow sample with few transverse channels, the Coulomb interaction will restrict the flow 

of electrons further than the constraints imposed by the Pauli principle. 
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We have omitted a discussion of the calculation of noise at finite frequencies, although 

there has been some effort in this direction in recent years18l . Frankly, we are somewhat 

uncomfortable with these results because they no not treat the electrons in a self consistent 

manner. Ideally, when discussing frequency dependent phenomena, one should take into account 

self inductance effects arising due to the magnetic field created by current flow, as well as 

capacitive effects55l associated with the electric fields in the circuitry. Capacitive effects are 

understood to be at the origin of the Coulomb blockade56l , [?] , but have been vastly neglected 

in theories of quantum transport at finite frequencies. To be fair, a self consistent treatment 

of current current correlations at finite frequencies has been proposed recently24 but in our 

opinion, it fails to describe the self consistent screening of electrons at the microscopic level. 

In conclusion, there are still many issues in this field which need more attention, and the field 

clearly suffers from a low experiment to theory ratio; this will hopefully change in the near 

future. 
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DYNAMIC ADMITTANCE OF A MES O S COPIC CAPACITOR 
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We •tudy a mCBOscopic capacitor with plates connected via lcadt. to electron reservoirs, and invctJ­

tigatc the current response under time-oscillating electro-chemical potential. in the reaervoir1 [1]. In 
our model the piled-up charges and induced elcctro1tatic potential. on the two plates arc related by 
a conventional electrostatic capacitance Ce which take. the Coulomb coupling into account. Each 
arm is treated as a one-lead system with a corresponding scattering matrix. 

Because of the amail number of acccuiblc states at a :mcaoscopic plate it is important to W..... 
tinguis.h carefully between the electrostatic potential difference and the clcctrcrchemical potential 
difference. We find that the experimentally relevant capacitance CIA, which governs the leading or­
der of the frequency-dependent admittance, may strongly deviate Crom Ce : it formally loob like 
the electrostatic capacitance Ge in aeries with two capacitances rcprcscntcd by the plate densities 
of states at the Fermi energies in units of e-2; only in the limit where the latter arc much larger 
than Ce would the difference between Cµ. and Ce disappear. In quadratic order in frequency, the 
rcall.tance factor is given by a charge relaxation rcall.tance R,,. Thia novd resistance differs from the 

dc�rcsi.sta.ncc which one would measure if the lead imtcad of being connected to the capacitor plate 
at one aide would be connected to another dectron reservoir. 

We briefly allude to cxtCIW.ona of the theory which treat the microscopic potential landscape [2]. 

I. INTRODUCTION 

The experimental devices studied at nanoscale usually consist of several metallic regions 
and doping layers, let us call them conductors, separated by insulators: some of them are 
designed to "form the sample of interest", others (gates) to "define its characteristics"; all of 
them are coupled by long-range Coulomb forces. 

Capacitance spectroscopy has already raised the question of how far the standard descrip­
tion of a capacitor holds in mesoscopics [3]. What is the analogon to the conventional electro­
static capacitances Cmn = dQm/ dVn relating charges and voltages? Let us consider a mesoscopic 
assembly of conductors, each connected to a contact, i.e., to an electron reservoir whose electro­
chemical potential can be experimentally controlled (see Fig. la). In contrast to the macro­
scopic case, here the electro-chemical contact potential cannot be identified with the effective 
potential on the corresponding mesoscopic conductor. We will calculate the change of charge 
on conductor m under electro-chemical potential variation at reservoir n, Cmn = edQm/dµ,, . 

The system exhibits no de-transport between the conductors since we exclude any cross­
tunnelling. Under time-oscillating electro-chemical potentials ac-transport can take place: we 
discuss the frequency-dependent admittance 9mn(w) = edlm(w)/dµn(w), where Im is the current 
flowing from reservoir m to conductor m. The capacitances are determined by the leading order 
in w, 9mn = edQm/dµn = -iwCmn + O(w2). 

In previous work the contact-lead currents in a multi-probe sample have been calculated 
in response to perturbations which act only on the carriers in the leads [4,5]. In this first step 
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the electrons a.re treated as non-interacting. At finite frequencies charge accumulate& in the 
sample and the leads. As a consequence the current is not conserved. In contrast for interacting 
electrons the total current (particle plus displacement currenq is conserved. Therefore, it is 
crucial to include the long-range Coulomb interaction. In a second step, we thus evaluate the 
potential generated by the unscreened charge& and include its effect on the current response. 
We treat this second step in a number of different ways: i) In a discrete potential model we 
assign to the sample an effective capacitance cenv with respect to its environment, associating 
an induced potential to the charge piled up in the sample (5] , and obtain the response self­
consistently by requiring invariance under an overall-shift of the contact potentials and of the 
effective sample potential (which is an alternative way to state the current-conservation law). 
ii) Alternatively, restricted to the case of overall charge neutrality on the conducting sample 
(cp. with cenv = 0 above), we calculate the spatial landscape of the induced potential in a 
Thomas-Fermi approximation appropriate for metals (6]. iii) For semiconductors both short­
range screening and long-range screening is important. A discussion based on a microscopic 
potential landscape is given in Ref. (2]. 

Our purpose here is to deal with the long-range Coulomb interactions: Our system includes 
all conductors on which charge is mutually induced. We consider a volume with a surface S 
which intersects the macroscopic reservoirs connected to the conductors at such large distance 
that there are no unbalanced charges in its interior, and we calculate the currents on the cross 
sections defined by the cuts of S with the reservoirs (see Fig. 1). The current response is 
expressed as a sum of an external response to the bare external chemical potentials, which is 
typical of non-interacting carriers; and an internal response to the internally induced effective 
potential, which requires additional specifications in the material description of the conductors. 
To find the internal response it is crucial to assume that S contains zero total charge. 

Fi g .  l a  - - - - - Fig. l b  - - - - - -
/ 

f'/'i+dj-{u I \ 
f'1 +d1'1 I ;;;121 dj1(2) 
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l-'3+ df'3 ;J,J�gµ:J) 

Fig. 1. Assembly of eonduclors inleracling via long-range Coulomb forces; inside lhe surface S the total 
cha.rge vanishes. The configuration of Fig. la permits no de-transport, whereas the configuration of Fig. lb 
does. 

II. THE TWO-PLATE CAPACITANCE: MESOSCOPIC VERSUS MACROSCOPIC 

The two-plate capacitor is sketched in Fig. 2a. We want to discuss the voltage distribution 
on the capacitor plates, the leads and the reservoirs as function of the chemical potentials of 
the reservoirs. If the reservoir potentials /La deviate from an equilibrium reference potential 
µ';:I , /J.o = µ.';:! + dµ.a , the potential landscape changes (see Fig. 2b). Away from the capacitor 
plates the bottom of the electron conduction band changes by an amount edU0 = dµ.0 to 
maintain the conductor in a locally charge-neutral state. On the capacitor plates the potential 
landscape changes to accommodate the charge induced by Coulomb coupling between the two 
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conductors. On a macroscopic conductor the change in potential landscape is entirely confined 
to the surface of the conductor. The conduction band bottom follows the chemical potential 
except near a small region of the surface of the conductor, where the induced charge changes 
the way in which the conduction band rises. In a mesoscopic conductor the induced charge 
cannot be accommodated by a change in the confinement potential alone. Instead near the 
capacitor plates the induced charge will cause the conduction band bottom to rise (or fall). 
On the capacitor plates edU0 generally deviates from dµ0• To avoid unnecessary complexity we 
assume that the entire effect of the potential change on the capacitor plate can be described 
by a change in the bottom of the conduction band edU0• Indicating by dN0/dE the density of 
states of plate a which can be accessed by carriers injected by reservoir a, we can express the 
total charge on the capacitor plate a as 

dQ0 = e(dN0/dE)(dµ0 - edU0). (1) 

As a consequence of the Coulomb coupling, a charge dQ0 on one plate induces a countercharge 
-dQ0 on the other plate. We assume the dependence of the mutually induced charge on the 
electrostatic potential difference between the two conductors to be linear, determined by an 
electrostatic-like capacitance C •. The very notion of this concept may be questioned in the case 
of nanostructures where electric field lines can considerably penetrate into the sample instead 
of ending near the surface. However, here C. should be understood as a phenomenological 
parameter which, under quite general assumptions, is mainly sensitive to the geometry. The 
induced charge is thus given by 

dQ0 = C0(dU0 - dU�). 

Fig. 2a 

'w�w. d V -'wl ,,, • •• v,.- �,·• ,• ed 1e-'"'1 edU2e�wt 

Fig. 2 b  

(2) 

Fig. 2c 

c 

RES 

Fig. 2a. Nanostructured two-plate capacitor. Fig. 2b. Bottom of the conduction band and electro-chemical 
potentials for the reference applied voltage (solid lines) and for an additional infinitesimal applied voltage. Fig. 
2c. Macroscopic two-plate capacitor. 
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Equalizing the RHS of Eqs. (1) and (2), for a =  1,2, gives two coupled linear equations, 
from which we find the potentials dU1 and dU2• Then the charges are expressed as dQa = 
C,,(dµa - dµp), where the electro-chemical capacitance C,, turns out to be a series connection 
of the electrostatic capacitance C, and two quantum capacitances determined by the injected 
density of states on the plates: 

(3) 

Note that dNif dE and dN2f dE are not exactly intrinsic features of the plates, but depend on 
the scattering properties of the whole reservoir-to-plate arm, thermodynamically averaged at 
the reservoir, as can be seen from Eq. (8) below. The distinction of electrostatic capacitance 
and electro-chemical capacitance becomes irrelevant if both densities of states to the left and 
to the right are large compared to C,. 

ill. DYNAMIC ADMITTANCE WITH COULOMB INTERACTION 

Here we present a discrete potential approach to get the admittance of an assembly of 
conductors (labelled by Roman superscripts). Each conductor may be connected to several 
reservoirs (labelled by greek subscripts) thus allowing for de transport. Each conductor m is 

characterized by a non-interacting admittance matrix g:�(m)(w) calculated in Ref. [4] , and 
it is assumed that no tunnelling occurs between different conductors. In our formulation the 
Coulomb interaction enters solely via the long-range part between conductor pairs: it is taken 
into account by introduction of a discrete set of internal potentials dU(m) and of electrostatic 
capacitances Cmn, which relate the charges to the internal potentials: 

with and LCmn = 0. (4) 

The above sum rule for C is a consequence of charge conservation inside the considered surface 
S. To proceed we must find the relationship between the internal potentials and the electro-­
chemical potentials. 

The current at contact a in conductor m is the sum of the response of non-interacting 
carriers to the oscillating external potentials dµ�m)(w) = edVjm)(w) and to the oscillating 

internal potential dU(m) , 

I�m)(w) = L g:�(m)(w) dVr)(w) + g!nt(m)(w) dU(m) (w) 
p 

= L 9:�(m)(w) ( dVri(w) - dU(ml (w) ) . 
p 

(5) 

The last step in Eq. (5) is a key step: the current response of an interacting system is 
invariant under an overall potential shift. We emphasize that this invariance holds actually 
separately in each single conductor, since the wave functions of carriers of one conductor vanish 
in all other conductors and do not feel any effect of the potential beyond their own conductor. 
Note that at this stage the current Jim) only sees the potentials on its own conductor m. 
However dU(m) depends via Coulomb long-range forces on the external potentials at the other 
conductors. The self-consistent condition for it is given by the time derivative of Eq. ( 4) 

L dJ�m) = -iw L Cmn ( dU(n) (w) - dU(m)(w) ) . 
o: n#m 

(6) 
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Substituting Eq. (5) into each of the Eqs. (6) we obtain an inhomogeneous linear system with a 
dimension equal to the number of conductors, which supplies { dU(m)} in terms of { dV(nJ}. From 
Eq. (5) we then find the individual currents in the form diiml(w) = I:n/3 u!�mn)(w)dVJ"l(w), 
where u!�mn) is the admittance matrix of the interacting system. 

If the system under consideration does not permit de transport as in Fig. la, then the first 
order of the conductances yields the mesoscopic capacitances, g1(mnl(w) = -iwCµ,mn + O(w2).  

Next we give explicitly the result for the two-plate mesoscopic capacitor. How would things 
look in the macroscopic regime? The classical analogon (see Fig. 2c) consists of a capacitor 
characterized by a capacitance C, and of two pieces of wire characterized by resistances R1 
and R2, which connect the capacitor to a battery. Under ac bias the current response is 
di = {-iCw + RC2w2 + 0(w3)} dV, with R = R1 + R2, where the three parameters, C, R1 and 
R2, express features which are specific to the separate constituents of the macroscopic system. 
In this respect, the situation for a nanostructured device is very different. 

For non-interacting carriers the current at arm m in response to an oscillating external 
potential edVm(w) = dµ.m(w) [4] , when properly expanded at kT fixed [1], is 

on . 2 dNm 4 (dNm) 2 
2 3 Umm(w) = -ie dE w + e  dE f4m w + O(w ). 

Here (dNm/dE) is the reservoir-to-plate injected density of states 

dNm = _1 j dE(- df )T [ t(ml(E)8sCml(E)] 
dE 211'i dE r 8 8E ' 

and R.im has the dimension of a. resistance, 

h J dE(-dfm/dE)Tr [stCml(E)8sCml(E)/8EJ2 
R.im = 2e2 { dNm/dE }2 

(7) 

(8) 

(9) 

The sca.ttering ma.trix sCml(E) relates the incoming to the outgoing current amplitudes in arm 
m. 

Then the solution of Eqs. (5 and 6) for the two-pla.te capacitor yields, for the intera.cting 
admittance, 

(10) 

where dI1 = -dl2 = g1(dVi. - dV2). 
The thermodyna.mic character of g1 is evident from Eqs.(3, 8 and 9): statistical avera.ges 

over the grand-canonical reservoir ensembles are present in both C,. and Rq. 
Let us try to give a meaning to the charge relaxation resistance Rq. The first factor in Rq is 

half the resistance quantum, the Sharvin-lmry [7] lea.d-reservoir interface resistance of a single 
quantum channel. This resistance is multiplied by the ra.tio (r'JJ )/ (rv )2 , where Tv is the time 
ca.rriers incident from the leads dwell [8] on the capa.citor pla.tes, 

The brackets ( )  denote both a quantum-mecha.nical avera.ge and a statistical average. R.im can 
be directly expressed in terms of energy deriva.tives of the eigenvalues si-:;l = ezp(i<f>iml) .  The 
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presence of such a ratio in the current response is the hallmark of a non-self-averaging system. 
For a small number of channels Mm the resistance Il.qm scales usually as 1/Mm . For large Mm, 
on the other hand, Pendry et al. [9] have shown that in the diffusive regime the probability 
distribution of the conductance makes extreme excursions, or "maximal fluctuations". We 
might expect this non-self-averaging system to react to an energy change with ma.ximal changes 
of the phase q, for a minimum number of eigenchannels, whereas in the other eigenchannels no 
phase changes take place. Thus a non-self-averaging system is likely to exhibit a larger charge 
relaxation resistance than a usual system. The charge distribution of localized states in the 
insulator between the capacitor plates is likely to be another important source of mesoscopic 
fluctuations [10]. To study this effect an approach is required which treats the microscopic 
potential landscape. 

IV. FROM THE DISCRETE-PARAMETER MODEL TO SPATIAL DEPENDENCE 

For a system as in Fig. la, capacitances Ck1 can be more accurately found by means of 
space-dependent induced potentials: this requires the tools of the spatially resolved response, 
like the characteristic potential functions u1( r') and the Lindhard response functions Ilk( r, i') 
appearing in the table below. In principle, however, the derivation proceeds in full analogy to 
the scheme of Sect. 2. Crucial are the roles of the surface S and of the invariance under an 
overall potential shift (OPS) of the electro-chemical and the induced potentials. The following 
table compares the differing approaches: 

Discrete-parameter model Microscopic model 
edUk = E1 ii.kidµ, 

� E1 ii.k1 = l  
E1 ClddU1 

edU ( [µ.i], r') = Ei u, (r'}dµ, 
OPS ==? E1 u1(r') = 1  

> - V2dU(r') = 4'lre E, dnk(r') 
e(dNk/dE)dµk - ftkedUk dnk(r') (dn(r, k)/dE)dµk + dnind,k(r') = 

(dn(r, k)/dE)dµk - I d3r'ITk(r, r1)edU(i') 
� J d3r'Ilk(r,i') = dn(r, k)/dE 

V. CONCLUSION 

A mesoscopic capacitance has been introduced for systems interacting via long-range 
Coulomb forces and the calculation of the dynamic admittance has been outlined. 

Focussing on a simple system for the results, we find that the "capacitance" and "resistance" 
governing the ac admittance of a nanostructured capacitor exhibit mesoscopic signatures: they 
are quantities which reflect the behavior of the system as a whole indivisible unit. In fact the 
charge relaxation resistance in each arm and the corrections to the standard classical capaci­
tance are determined by the scattering properties along either side of the capacitor averaged 
over the grand-canonical ensemble of the corresponding reservoir. 
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Abstract. - A review is given of the shot-noise properties of metallic, diffusive conduc­

tors. The shot noise is one third of the Poisson noise, due to the bimodal distribution 

of transmission eigenvalues. The same result can be obtained from a semiclassical cal­

culation. Starting from Oseledec's theorem it is shown that the bimodal distribution is 

required by Ohm's law. 

I. Introduction 

427 

Time-dependent fluctuations in the electrical current caused by the discreteness of the charge 

carriers are known as shot noise. These fluctuations are characterized by a white noise spec­

trum and persist down to zero temperature. The noise spectral density P (per unit frequency 

bandwidth) is a measure for the magnitude of these fluctuations. A well-known example is a 

saturated vacuum diode, for which Schottky found that P = 2e/ = PPoisson. with I the aver­

age current.1 )  This indicates that the electrons traverse the conductor as uncorrelated current 

pulses, i.e. are transmitted in time according to Poisson statistics. It is also known that a metal 

wire, of macroscopic length L, does not exhibit shot noise, because inelastic scattering reduces 

P by a factor I;/ L, which is much smaller than 1 in a macroscopic conductor (Ii is the inelastic 

scattering length) . In the last decade, the investigation of transport on smaller length scales 

has become accessible through the progress in microfabrication techniques. The physics on this 

mesoscopic scale displays a wealth of new phenomena.2•3) Theoretical analysis4-7) shows that 

the shot noise in mesoscopic conductors may be suppressed below PPoisson , due to correlated 

electron transmission as a consequence of the Pauli principle. This raises the question how large 

P is in a metallic, diffusive conductor of length L < Ii, but still longer than the elastic mean 

free path I!. It has been predicted theoreticallys-IO) that P = �?Poisson . This suppression of the 
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shot noise by a factor one third is universal, in the sense that it does not depend on the specific 

geometry nor on any intrinsic material parameter (such as JI). The purpose of this paper is to 

discuss the origin of the one-third suppression. First, we review the fully quantum-mechanical 

calculation, where the suppression originates from the bimodal distribution of transmission 

eigenvalues. Then, a semiclassical calculation is presented, which surprisingly yields the same 

suppression by one third. One might therefore ask whether there exists a semiclassical explana­

tion for the bimodal eigenvalue distribution. Indeed, we find that this distribution is required 

by Ohm's law. We conclude with a brief discussion of an experimental observation of suppressed 

shot noise in a disordered wire, which has recently been reported. 11) 

II.  Quantum-mechanical theory 

A scattering formula for the shot noise in a phase-coherent conductor has been derived 

by Biittiker. 7) It relates the zero-temperature, zero-frequency shot-noise power P of a spin­

degenerate, two-probe conductor to the transmission matrix t: 

N 
p = Po Tr [ttl (l - ul)] = Po L Tn(l - Tn) . ( 1 )  

n=l 

Here P0 = 2eV(2e2/h), with V the applied voltage, Tn denotes an eigenvalue of ttl, and N is 

the number of transverse modes at the Fermi energy EF· It follows from current conservation 

that the transmission eigenvalues Tn E [O, l] . Equation (1)  is the multi-channel generalization 

of single-channel formulas found earlier.4-6) Levitov and Lesovik have shown12) that Eq. ( 1 )  
follows from the fact that the electrons in each separate scattering channel are transmitted in 

time according to a binomial (Bernoulli) distribution (depending on Tn) ·  The Poisson noise is 

then just a result of the limiting distribution for small Tn. Using the Landauer formula for the 

conductance 
N 

G = GoTr tt1 = Go L:; Tn , (2) 
n=l 

with G0 = 2e2/h, one finds from Eq. ( 1 )  that indeed P = 2eVG = 2e/ = Pp0;,,0n if Tn « 1 
.for all n. However, if the transmission eigenvalues are not much smaller than 1 ,  the shot noise 

is suppressed below Pp0;,,on· As mentioned above, this suppression is a consequence of the 

electrons being fermions. In a scattering channel with Tn « 1 the electrons are transmitted in 

time in uncorrelated fashion. As Tn increases the electron transmission becomes more correlated 

because of the Pauli principle. In a scattering channel with Tn = 1 a constant current is flowing, 

so that its contribution to the shot noise is zero. 
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Let us now turn to transport through a diffusive conductor (L » J!), in the metallic regime 

(L « localization length). To compute the ensemble averages ( - · ·) of Eqs. (1 )  and (2) we 

need the density of transmission eigenvalues p(T) = (I:n b(T - Tn) ) .  The first moment of p(T) 

determines the conductance, 
1 

(G) = G0 j dTp(T) T ,  (3) 
0 

whereas the shot-noise power contains also the second moment 

1 
(P) = P0 j dTp(T) T(l - T) .  (4) 

0 

In the metallic regime, Ohm's law for the conductance holds to a good approximation, which 

implies that (G) ix 1/ L, up to small corrections of order e2 /h (due to weak localization). The 

Drude formula gives 
NC (G) = Go L ' (5) 

where l equals the mean free path J! times a numerical coefficient.13) From Eqs. (3) and (5) 

one might surmise that for a diffusive conductor all the transmission eigenvalues are of order 

C/ L, and hence much smaller than 1 .  This would imply the shot-noise power P = PPoiS<on of a 

Poisson process. 

However, the surmise Tn >::< l/ L for all n is completely incorrect for a metallic, diffusive 

conductor. This was first pointed out by Dorokhov, 14) and later by Imry15) and by Pendry et 
al.16) In reality, a fraction l/ L of the transmission eigenvalues is of order unity (open channels), 

the others being exponentially small (closed channels). The full distribution function is 

(T) - NC 1 8(T - T. )  P -
2L T� 0 ' (6) 

where T0 '.:-' 4 exp(-2L/C) « 1 is a cutoff at small T such that f01 dTp(T) = N (the function 

8(x) is the unit step function). One easily checks that Eq. (6) leads to the Drude conductance 

(5) . The function p(T) is plotted in Fig. 1 .  It is bimodal with peaks near unit and zero 

transmission . The distribution (6) follows from a scaling equation, which describes the evolution 

of p(T) on increasing L.17-19) A microscopic derivation of Eq. (6) has recently been given by 

N azarov. 20) 

The bimodal distribution (6) implies for the shot-noise power ( 4) the unexpected result8l 

1 NC 1 (P) = 3 Po L = 3 PPoiS<on . (7) 
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Figure 1. The bimodal distribution of transmission eigenvalues according to Eq. (6). 

The cutoff for T :S 4 exp( -2£/ f) is not shown. 

Corrections to Eq. (7) due to weak localization have also been computed,10) and are smaller by 

a factor L/Nl (which is « 1 in the metallic regime). 

III. Semiclassical calculation 

Since the Drude conductance (5) can be obtained semiclassically (without taking quantum­

interference effects into account) ,  one may wonder whether the sub-Poissonian shot noise (7) -
which follows from the same p(T) - might also be obtained from a semiclassical calculation. 

Such a calculation was presented by Nagaev,9) who independently from Refs. 8, 10 arrived at 

the result (7). Nagaev uses a Boltzmann-Langevin approach,21•22) which is a classical kinetic 

theory for the non-equilibrium fluctuations in a degenerate electron gas. We refer to this 

method as semiclassical, because the motion of the electrons is treated classically - without 

quantum-interference effects - whereas the Pauli principle is accounted for, through the use 

of Fermi-Dirac statistics. Nagaev's approach does not yield a formula with the same generality 

as Buttiker's formula (1 ) ,  but is only applicable for diffusive transport. 

To put the quantum-mechanical and the semiclassical theories of shot noise on equal terms, 

we have recently derived a scattering formula for P from the Boltzmann-Langevin approach. 

This formula is valid from the ballistic to the diffusive transport regime. A detailed description 

will be the subject of a forthcoming publication. Here, we merely present the result. For 

simplicity, we consider a two-dimensional wire (length L and width W), with a circular Fermi 
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surface. The geometry is shown in Fig. 2 (inset) . The scattering formula relates P to the 

classical transmission probabilities T(r, rp), which denote the probability that an electron at 

position r = (x, y) with velocity v = vF(cos rp, sin rp) (with vF the Fermi velocity) is transmitted 

into lead number 2. The result is 

N L W 2,,- 2,,-
P =  411':� j dx j dy j drp j drp' W"'"''(r) [T(r, rp) - T(r, rp')] 2 T(r, rp) [l - T(r, rp')] , (8) 

F 0 0 0 0 
where the number of channels N = WmvF/tm, and W"'"''(r) is the transition rate for (elas­

tic) impurity-scattering from rp to rp', which may in principle depend also on r. The time­

reversed probability T(r, rp) gives the probability that an electron at (r, rp) has originated 

from lead 2. From now on we assume time-reversal symmetry (zero magnetic field) , so that 

T(r, rp) = T(r, rp + 11') . Equation (8) corrects a previous result.23l In this notation, the conduc­

tance is given by 

NG w 2,,-
G = 2W

0 j dy j drp cos rp T(r, rp) . 
0 0 

(9) 

Eq. (9) is independent of x because of current conservation. The transmission probabilities 

obey a Boltzmann type of equation24l 

2,,-d I 

v · VT(r, rp) = j __'£_ W"'"'' (r) [T(r, rp) - T(r, rp')] , 
211' 0 

where V = (o/8x, 8/8y). 

(10) 

We now apply Eq. (8) to the case W"'"'' (r) = vF/f. of isotropic impurity scattering. Since the 

scattering is modeled by one parameter, the resulting P is the ensemble average. We assume 

specular boundary scattering, so that the transverse coordinate (y) becomes irrelevant. Let us 

first show that in the diffusive limit (f. « L) the result of Nagaev9l is recovered. For a diffusive 

wire the solution of Eq. (10) can be approximated by 

T( ) = x + f. cos <p r, 'P L . (11) 

Substitution into Eq. (9) yields the Drude conductance (G) = NG0 11'f./2L in accordance with 

Eq. (5). For the shot-noise power one obtains, neglecting terms of order (f./£)2 , 

11'f. L dx x ( x ) 1 (P) = NPo L J L L 1 - L  = 3PPoisson 1 
0 

in agreement with Eq. (7). 

(12) 

We can go beyond Ref. 9 and apply our method to quasi-ballistic wires, for which f. and L 
become comparable. In Ref. 24 it is shown how in this case the probabilities T(r, rp) can be 
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Figure 2. (a) The conductance (normalized by the Sharvin conductance Gs = NG0) 
and (b) the shot-noise power (in units of Pp0i,,on = 2el), as a function of the ratio 

L/C, computed from Eqs. (8) and (9) for isotropic impurity scattering. The inset shows 

schematically the wire and its coordinates. 

calculated numerically by solving Eq. (10) through Milne's equation. In Fig. 2 we show the 

result for both the conductance and the shot-noise power. The conductance crosses over from 

the Sharvin conductance (Gs = NG0) to the Drude conductance with increasing wire length.24) 

This crossover is accompanied by a rise in the shot noise, from zero to �PPoi,,on · 

IV. Bimodal eigenvalue distribution from Ohm's law 

Now that it is established that the quantum-mechanical calculation (Sec. II) and the semi­

classical approach (Sec. III) yield the one-third suppression of the shot noise, we would like to 

close the circle by showing how the bimodal distribution (6) of the transmission eigenvalues 

can be obtained semiclassically. 
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It is convenient to work with the parametrization 

n = 1 , 2 ,  . . .  N ,  (13) 

which relates the eigenvalues Tn of tt1 to the eigenvalues exp(±2oonL) of MM1 .  Here t is the 

N x N transmission matrix, M is the 2N x 2N transfer matrix of the conductor, and °'n E [O, oo) 
for all n. The eigenvalues of M Mt come in inverse pairs as a result of current conservation. 19l 

The °'n's are known as the inverse localization lengths of the conductor. Scattering channels 

for which the localization length is longer than the sample length (anL « 1) are open, if the 

sample length exceeds the localization length (cxnL » 1) the scattering channel is closed, as is 

clear from Eq. (13) .  The bimodal distribution (6) of the transmission eigenvalues is equivalent 

to a uniform distribution of the inverse localization lengths, 

p(a) = Nf8(a - 1/f) ,  (14) 

where p(a) = (l::n 6(00 - an)) .  Furthermore, the distribution of the a's implied by Eq. ( 14) is 

independent of the sample length L. We will argue that these two properties, £-independence 

and uniformity, of p(a) follow from Oseledec's theorem25l and Ohm's law, respectively. 

We recall19l that the transfer matrix has the multiplicative property that if two pieces of 

wire with matrices M1 and M2 are connected in series, the transfer matrix of the combined 

system is simply the product M1M2 . In this way the transfer matrix of a disordered wire can 

be constructed from the product of NL individual transfer matrices mi, 
NL 

M = II  mi , (15) 
i=l 

where NL = L / ,\ is a large number proportional to L. The mi's are assumed to be independently 

and identically distributed random matrices, each representing transport through a slice of 

conductor of small, but still macroscopic, length ,\. In the theory of random matrix products,26) 

the limits limL�oo °'n are known as the Lyapunov exponents. Oseledec's theorem25l is the 

statement that this limit exists. Numerical simulations19) indicate that the large-£ limit is 

essentially reached for L » £, and does not require L » N £. This explains the £-independence 

of the distribution of the inverse localization lengths in the metallic, diffusive regime ( £ « L « 
Ne). 

Oseledec 's theorem tells us that p( a) is independent of L, but it does not tell us how it 

depends on a. To deduce the uniformity of p(a) we invoke Ohm's law, (G) ex 1/L. This 

requires 

J
oo 

1 
L da p(a) 

cosh2 (00L) = 
C ' 0 

( 16) 
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where C is independent of L. It is clear that Eq. (16) implies the uniform distribution p(a) = C. 

A cutoff at large a is allowed, since 1/ cosh2(aL) vanishes anyway for aL » 1. From Drude's 

formula ( 4) we deduce C = NC, and normalization then implies a cutoff at a 2, 1 / C, in accordance 

with Eq. (14). 

V. Conclusion 

In summary, we have discussed the equivalence of the fully quantum-mechanical and the 

semiclassical theories of sub-Poissonian shot noise in a metallic, diffusive conductor. Both 

approaches yield a one-third suppression of P relative to Pp0i,,on · The bimodal distribution, 

which is at the heart of the quantum-mechanical explanation, can be understood semiclassically 

as a consequence of a mathematical theorem on eigenvalues (Oseledec) and a law of classical 

physics (Ohm's law). 

The fact that phase coherence is not essential for the one-third suppression of P suggests 

that this phenomenon is more robust than other mesoscopic phenomena, such as universal 

conductance fluctuations. This might explain the success of the recent attempt to measure the 

shot-noise suppression due to open scattering channels in a disordered wire defined in a 2D 

electron gas.11l In this experiment a rather large current was necessary to obtain a measurable 

shot noise, and it seems unlikely that phase coherence was maintained under such conditions. 

In both the quantum-mechanical and semiclassical theories discussed in this review, the 

effects of electron-electron interactions have been ignored. The Coulomb repulsion is known 

to have a strong effect on the noise in confined geometries with a small capacitance. 27) We 

would expect the interaction effects to be less important in open conductors. 28) While a fully 

quantum-mechanical theory of shot noise with electron-electron interactions seems difficult, the 

semiclassical Boltzmann-Langevin approach discussed here might well be extended to include 

electron-electron scattering and screening effects. 
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