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Abstract

Optimization of a neutrino beam for the study of CP violation with the LENA
and JUNO detectors

Neutrino beams are nowadays a commonly used and well investigated tool to study neutrino
oscillations, e.g. T2K, NOνA experiments. Beam neutrinos are produced by the decays of
properly focused particles - mostly pions and kaons - generated by the collisions of accelerated
protons with a target. The shape and composition of the obtained neutrino fluxes depend on
the properties of the neutrino production apparatus. Primary beam, target, focusing system
and decay tunnel must be optimized relatively to the neutrino detector, in order to achieve the
highest possible sensitivity to oscillation parameters such as the CP-violating phase δCP .

This work focuses on the use of genetic algorithm for the optimization of simulated neutrino
beams to the liquid scintillator neutrino detectors LENA (50kt), proposed in the Pyhäsalmi
mine in Finland, and JUNO (20kt), under construction in Jiangmen, China, respectively from
the European Spallation Source (ESS) in Lund, Sweden, and from the China Spallation Neut-
ron Source in Dongguan, China.

As a result of the neutrino beam simulation and optimization, δCP = 0 or δCP = π could
be excluded by LENA with a 3σ sensitivity for ∼ 56% of the whole δCP range at the chosen
baseline; for JUNO the maximum value reached by the test statistics would be around ∆χ2 ∼
6.





Zusammenfassung

Optimierung eines Neutrinostrahls zur Untersuchung der CP-Verletzung mit den
LENA- und JUNO-Detektoren

Neutrinostrahlen sind heutzutage ein übliches und gut verstandenes Werkzeug zu Studien von
Neutrino-Oszillationen, z.B. in den T2K, NOνA Experimenten. Strahlneutrinos werden in
den Zerfällen von den fokussierten Teilchen - meist Pionen und Kaonen - durch die Kolli-
sionen der beschleunigten Protonen an einem Targetmaterial produziert. Die Form und die
Zusammensetzung des resultierenden Neutrinoflusses sind abhängig von den Eigenschaften des
Neutrino-Erzeugungsapparats. Der Primärstrahl, das Target, das Fokussystem und der Zer-
fallstunnel müssen relativ zu dem Neutrino-Detektor optimiert werden, um eine möglichst
hohe Sensitivität gegenüber den Oszillationsparametern, wie der CP-Verletzungsphase δCP ,
zu erreichen.

Diese Arbeit konzentriert sich auf die Nutzung eines genetischen Algorithmus für die Optimier-
ung der simulierten Neutrinostrahlen zu zwei Flüssigszintillator-Neutrino-Detektoren. Low-
Energy-Neutrino-Astronomy (LENA) ist ein Detektor mit 50kt Szintillatormasse, vorgesehen
in der Pyhäsalmi-Mine in Finnland. Jiangmen-Underground-Neutrino-Observatory (JUNO) ist
ein Detektor mit 20kt Szintillatormasse, gegenwärtig im Bau in Jiangmen, China. Als jeweili-
gen Neutrinostrahlquellen werden die European-Spallation-Source (ESS) in Lund, Schweden,
und die China-Spallation-Neutron-Source in Dongguan, China, angenommen.

Als Ergebnis der Neutrinostrahl-Simulation und -Optimierung, kann δCP = 0, π durch LENA
mit einer 3σ-Sensitivität für ∼ 56% des gesamten δCP -Bereichs ausgeschlossen werden. Für
JUNO wird der von der Teststatistik erreichte Maximum ∆χ2 ∼ 6 betragen.
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Chapter 1

Introduction

The aim of this work is to assess the sensitivity to CP violation of the LENA and JUNO
experiments with an optimized neutrino beam at a given baseline.

CP violation, i.e. the violation of the product of charge conjugation symmetry (C) and parity
symmetry (P), is an urgent topic in modern physics since it could be a key to the explanation of
one of the most important unsolved puzzles: the matter-antimatter asymmetry in the Universe.

Neutrinos are electrically neutral particles with small masses; they carry information about
their sources and for this reason they are used in neutrino experiments to probe many terrestrial
and extraterrestrial phenomena. The small interaction cross-sections, though, make neutrino
detection extremely difficult and only possible with large detector masses.

Liquid-scintillator detectors have proven to be very efficient since the beginning of experi-
mental neutrino physics and are used today in several experiments with target masses ranging
from the order of one ton (Double Chooz) to one kiloton (KamLAND). The next-generation
liquid-scintillator detectors will have target mass of tens of kilotons and be able to address a
multitude of physics questions; two examples of such a large-volume detector are the detect-
ors considered in this study: the Low Energy Neutrino Astronomy (LENA), a proposed 50kt
European observatory, and the Jiangmen Underground Neutrino Observatory (JUNO), a 20kt
detector currently under construction in Jiangmen, China.

Muon neutrino beams can be produced by proton accelerators in the direction of neutrino
detectors to investigate intrinsic properties of neutrinos and could provide information on
leptonic CP violation thanks to the phenomenon known as neutrino oscillation. The properties
of the beam (energy spectrum, contamination) are decisive for the experiment’s sensitivity to
the studied oscillation parameters.

In this study two beam setups are optimized for LENA and JUNO to be used as neutrino
accelerator experiments to research leptonic CP violation; the optimization procedure follows
the principles of the so-called genetic algorithm, that allows to effectively explore the parameter
space of a beam setup.
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Chapter 1. Introduction

This thesis is structured as follows:

• chapter 2 reviews the fundamental aspects of neutrino physics that are most relevant to
this work, including neutrino interactions and neutrino oscillations with the influence of
CP violation and matter effects;

• in chapter 3 the basic components and features of the setup for the production of a
neutrino beam are outlined.

• chapter 4 describes the main properties of liquid-scintillator detectors in general and
provides more details on the LENA and JUNO detectors;

• chapter 5 illustrates the procedure to assess the sensitivity to CP violation of the two
experiments, from the simulation of a neutrino beam to the oscillation analysis;

• chapter 6 explains the functioning of the genetic algorithm used in this work to optimize
the neutrino beam parameters in order to obtain the highest sensitivity to CP violation;

• chapter 7 presents the results of the beam optimizations and gives an estimate for the
maximum sensitivity reached by LENA and JUNO with accelerator neutrinos;

• in chapter 8 the work is summarized and conclusions are given.

2



Chapter 2

Neutrino Physics

This chapter gives a short summary of the aspects of neutrino physics that are most relevant
to this work.

2.1 The neutrino
Neutrinos (ν) are elementary particles with no electric charge, only interacting through the
gravitational and weak force (and therefore difficult to detect). Their existence was first
suggested by Wolfgang Pauli in 1930 to explain the continuous electron energy spectrum in
the β decay [1] and confirmed in 1956 by Reines and Cowan [2].

Experiments at the Large Electron Positron Collider (LEP) on the decay width of the Z-boson
have proved the existence of three generations of active light neutrinos [3], associated with
the three lepton families (flavours): the particle discovered by Cowan and Reines was actually
an electron antineutrino (ν̄e), while muon neutrino νµ was discovered in 1962 at Brookhaven
National Laboratory [4] and tau neutrino ντ in 2001 at Fermilab [5].

According to the standard model of elementary particles, neutrinos are supposed to be massless;
this last assumption is in contrast with a now-established phenomenon, the so-called neutrino
oscillation.

2.2 Neutrino interactions
Neutrinos are detected in two main kinds of scattering processes that are here shortly presen-
ted (see [6]): non-elastic weak scattering on leptons and nuclei and neutrino-electron elastic
scattering.

2.2.1 Neutrino-electron elastic scattering

Neutrinos can elastically scatter off electrons in interactions like ν + e− → ν + e−; this inter-
action’s cross-section is proportional to the neutrino energy:

σ(Eν) ∼ σ0Eν
me

, σ0 ∼ 10−44cm2. (2.1)

3



Chapter 2. Neutrino Physics

This kind of process does not have an intrinsic threshold but a detection threshold in order to
have a signal above the background.

The scattering νe + e− → νe + e− has a charged current (mediated by the W boson) and a
neutral current (mediated by the Z boson) contributions, whose Feynman diagrams are shown
in 2.1, while the contributions for ν̄e + e− → ν̄e + e− are illustrated in 2.2.NEUTRINO–ELECTRON INTERACTIONS 137

W

νe e−

e− νe

+ Z

νe νe

e− e−

(a) (b)

Fig. 5.1. The two tree-level Feynman diagrams for the elastic scattering process
νe + e− → νe + e−: charged current (a) and neutral current (b).
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e− e−

(a) (b)

Fig. 5.2. The two tree-level Feynman diagrams for the elastic scattering process
ν̄e + e− → ν̄e + e−: charged current (a) and neutral current (b).

low-energy Lagrangian for the elastic scattering processes in eqns (5.6) and (5.7) is
given by

Leff(
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νee
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5
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, (5.9)

with the coefficients glV and glA given in Table 3.6 (page 78). The first term on
the right-hand side is the charged-current contribution. The second term is the
neutral-current contribution. The charged-current contribution can be rearranged
with the Fierz transformation in eqn (2.508), leading to an expression which has the
same form as the neutral-current contribution. This allows us to write the effective

Figure 2.1: Charged-current (left) and neutral-current (right) tree-level contributions to the
elastic scattering process νe + e− → νe + e−.
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The scattering ν(µ,τ) +e− → ν(µ,τ) +e− is a pure neutral current interaction and is represented
by the right part of Figure 2.1, with µ, τ replacing e.

2.2.2 Neutrino weak scattering

Neutrinos can interact with matter through charged current or neutral current scattering pro-
cesses of the type ν + A→∑

X X. This scattering can occur on a target particle A at rest if
the neutrino energy is greater than a threshold energy given by (see [6]):

Ethν =
(
∑

X mX)2

2mA
− mA

2
. (2.2)
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2.2. Neutrino interactions

Different kinds of scattering processes can be more prominent depending on the energy of the
neutrino: in the low-energy domain (Eν ≤ 100MeV) the main interactions are inverse beta
decay (IBD) and neutrino-nucleus interactions.

Inverse beta decay ν̄e + p→ e+ + n

The energy threshold for this reaction is Eth = 1.806MeV. It is the main detection channel in
liquid-scintillator detectors because it produces a characteristic signature, given by a prompt
signal from the annihilation of the positron and a delayed signal from the capture of the neutron.

In the high energy range, with Eν > 100MeV, the dominant interactions are (see [7]):

• elastic and quasi-elastic scattering: neutrinos can elastically scatter off an entire
nucleon, freeing a nucleon (or multiple nucleons) from the interaction target. The elastic
scattering is a neutral-current process, while the so-called “quasi-elastic scattering” is a
charged-current interaction.

• Resonance production: Neutrinos excite the target nucleon to a resonance state; the
resulting baryonic resonance (e.g. ∆) can then decay to a several possible mesonic final
states and produce combinations of nucleons and mesons (pions).

• Deep inelastic scattering: if the neutrino energy is high enough, the interaction
can resolve the individual quarks in a nucleon. This process involves the creation of
a hadronic shower. The Feynman diagrams of the charged-current ν` + N→ `+ X and
neutral-current ν` + N→ ν` + X DIS process at lowest order are illustrated in Figure 2.3.

168 NEUTRINO INTERACTIONS

W+(q)

N(pN)

ν	(pν)

X(pX)

�−(p	)

d(pi)

W+(q)

N(pN )

ν	(pν)

u(pf)

�−(p	)

(a) (b)

Fig. 5.12. (a) Diagram of the ν	(pν)+N(pN ) → �−(p	)+X(pX) charged-current
DIS process at lowest order in the weak interaction perturbation expansion.
(b) Diagram of the same process in the quark–parton model, with elementary
W+(q) + d(pi) → u(pf) transition (see eqn (5.215)).

The neutrino and antineutrino DIS differential cross-sections are given by (see
Refs. [902, 227, 720])

d2σ
(−)
ν N

CC

dxdy
= σ0

CC

[
x y2 FW±N

1 + (1− y)FW±N
2 ± x y

(
1− y

2

)
FW±N
3

]
, (5.202)

with

σ0
CC =

G2
F

2π
s

(
1 +

Q2

m2
W

)−2
. (5.203)

The plus and minus signs in eqn (5.202) refer, respectively, to ν	 and ν̄	 scattering,
in which the vector boson absorbed by the nucleon are, respectively, a W+ and
a W−, as indicated by the superscripts of the structure functions FW±N

i . These
are real functions of two independent kinematical variables which depend on the
four-momentum transfer q. It is common to choose FW±N

i = FW±N
i (x,Q2). Isospin

symmetry implies that (see Ref. [227])

FW+p
i = FW−n

i , FW+n
i = FW−p

i . (5.204)

Many experiments use so-called isoscalar targets, composed of nuclei with an equal
number of protons and neutrons. In this case, the average neutrino and antineutrino
cross-sections are given by

d2σ
(−)
ν

CC

dxdy
=

1

2

⎛
⎝d2σ

(−)
ν p

CC

dxdy
+

d2σ
(−)
ν n

CC

dxdy

⎞
⎠

= σ0
CC

[
x y2 FW±

1 + (1− y)FW±
2 ± x y

(
1− y

2

)
FW±
3

]
, (5.205)
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Z(q)

N(pN)

(−)

ν	(pνi)

X(pX)

(−)

ν	(pνf)

u(pi)

Z(q)

N(pN )

(−)

ν	(pνi)

u(pf)

(−)

ν	(pνf)

(a) (b)

Fig. 5.14. (a) Diagram of the
(−)

ν	(pνi)+N(pN ) →(−)

ν	(pνf)+X(pX) neutral-current
DIS process at lowest order in the weak interaction perturbation expansion.
(b) Diagram of the same process in the quark–parton model, with elementary
Z(q) + u(pi) → u(pf) transition (see eqn (5.255)).

[599, 601] and an experiment at Fermilab [207], together with the observation of ν̄µ+
e− → ν̄µ+e

− reactions in the Gargamelle experiment [600], led to the experimental
confirmation of the existence of the neutral-current interactions predicted by the
SM.

The kinematical variables are the same as in the charged-current DIS processes
discussed in section 5.3.3, with the obvious replacements pν → pνi , p	 → pνf , where
pνi and pνf are, respectively, the four-momenta of the initial and final neutrinos. The
NC DIS processes are mediated by exchange of a Z-boson, as shown in Fig. 5.14a,
with differential cross-sections given by

d2σ
(−)
ν N

NC

dxdy
= σ0

NC

[
x y2 FZN

1 + (1− y)FZN
2 ± x y

(
1− y

2

)
FZN
3

]
, (5.253)

where

σ0
NC =

G2
F

2π
s

(
1 +

Q2

m2
Z

)−2
. (5.254)

The plus and minus signs in eqn (5.253) refer, respectively, to ν	 and ν̄	 scattering.
For Q2 � m2

Z , we have σ0
NC � σ0

CC (see eqn (5.203)).
In the quark–parton model, the elementary Z-quark and Z-antiquark processes

which contribute to NC neutrino–nucleon DIS are

Z + q → q , Z + q̄ → q̄ . (5.255)

The elementary Z-u process is illustrated in Fig. 5.14b. The quark and antiquark
contributions to the structure functions are given by

FZN
1,Q =

1

2

[
(gqV )

2 + (gqA)
2
]
fN
q (x) , FZN

1,q̄ =
1

2

[
(gqV )

2 + (gqA)
2
]
fN
q̄ (x) ,

(5.256)

Figure 2.3: Charged-current (left) and neutral-current (right) deep inelastic scattering pro-
cesses at lowest order. Diagrams taken from [6].
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Chapter 2. Neutrino Physics

2.3 Neutrino mixing
Neutrino flavour eigenstates να(α = e, µ, τ) do not coincide with the mass eigenstates, which
are solutions to the Schrödinger’s equation that describes neutrinos’ propagation in space, but
are a linear superposition of them; the two sets are related through a mixing matrix:

|να〉 =
∑

i

Uαi|νi〉 and |νi〉 =
∑

α

U∗αi|να〉 (2.3)

For antineutrinos the U matrix is replaced by its conjugate U∗.

Current data on neutrino oscillations can be described by 3-flavour neutrino mixing with at
least 3 light neutrinos with different masses (m1,2,3 < 1eV , m1 6= m2 6= m3); experimental
data hint at the existence of sterile neutrinos (e.g. [8, 9]), but their role will not be discussed
here.

At present it is not possible to determine whether neutrinos are Dirac (ν 6= ν̄) or Majorana
(ν ≡ ν̄) particles.

The neutrino mixing matrix is called the Pontecorvo-Maki-Nakagawa-Sakata matrix UPMNS

and it is unitary if there are no sterile neutrinos, so that:

U †U = 1
∑

i

UαiU
∗
βi = δαβ

∑

α

UαiU
∗
αjδij (2.4)

In the 3-flavour mixing frame, with n = 3 massive neutrinos, it can be parameterized by 3
mixing angles and CP-violation phases:

UPMNS =




c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13


×




1 0 0

0 ei
α1
2 0

0 0 ei
α2
2




In the definition of the matrix element Uαi sij = sin θij and cij = cos θij , where (i, j = 1, 2, 3),
with θij = [0, π/2] [3]. δCP is the Dirac CP violation phase, while α1 and α2 are only non-zero
if neutrinos are Majorana particles and do not influence the oscillation mechanism. Neglecting
the Majorana phases the mixing matrix can be also parameterized as in 2.5:



νe
νµ
ντ


 =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13





c12 s12 0
−s12 c12 0

0 0 1





ν1

ν2

ν3


 (2.5)

2.4 Neutrino oscillation
The phenomenon of neutrino oscillation consists in the change of neutrino flavour during
propagation in space as a direct consequence of neutrino mixing and non-zero neutrino masses.

It was first suggested by Bruno Pontecorvo in 1967 [10] and has since been confirmed by many
evidences from different experiments: first by Super-Kamiokande [11] and Sudbury Neutrino
Observatory [12], then MACRO [13], Soudan [14], K2K [15], MINOS [16], T2K [17] and more
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2.4. Neutrino oscillation

recently ANTARES [18], IceCube [19] and OPERA [20]. Neutrino oscillation is now an estab-
lished explanation for the so-called ”solar neutrino problem“ deriving from the neutrino deficit
recorded first by the Homestake experiment [21].

The probability of transition να → νβ in vacuum is given by the square of the transition
amplitude:

P (α→ β) = |A(α→ β)|2 = |〈νβ|να(x, t)〉| (2.6)

Using a plane wave description we can write the time evolution of the eigenstates as:

|νi(x,t)〉 = e−iEit|νi(x,0)〉. (2.7)

|νı(x,0)〉 is a neutrino emitted at time t = 0 in a position x with momentum p:

|νi(x,0)〉 = eipx|νi〉. (2.8)

From 2.3, 2.7 and 2.8 we can derive, for a neutrino emitted with flavour α after a time t:

|ν(x,t)〉 =
∑

i

Uαie
−iEit|νi(x,0)〉 =

∑

i

Uαie
−i(Eit−px)|νi〉 =

∑

i

∑

β

UαiU
∗
βie
−i(Eit−px)|νβ〉 (2.9)

Considering the relativistic nature of neutrinos, for p� mi and E ≈ p as neutrino energy we
can write Ei ' E + m2

i
2E and L = x = ct as the distance between the neutrino source and the

detector. The oscillation probability over a distance L 2.6 can now be written as [22]:

P (α→ β) =
∑

i

∑

j

UαiU
∗
αjU

∗
βiUβje

−i(Ei−Ej)t =
∑

i

|UαiU∗βi|2+2<
∑

i>j

UαiU
∗
αjU

∗
βiUβje

−i(
∆m2

ij
2

)L
E

(2.10)

In 2.10 ∆m2
ij = m2

i −m2
i ; the first term is an average transition probability, while the second

term is time-(space-)dependent.

Equation 2.10 shows that neutrino oscillations are only possible if at least one mass eigenstate
is non-zero and if there is neutrino mixing (i.e. if there are non-diagonal terms in the PMNS
matrix).

2.4.1 Oscillation parameters and mass hierarchy

Since the phenomenon of oscillation has been established, a large part of neutrino research
has aimed to determine the values of the oscillation parameters: mixing angles, CP-violating
phase and mass differences.

θ12 and ∆m2
12 are called ”solar parameters” because they are better constrained by experiments

on solar neutrinos; in fact, they were measured from a combined analysis of solar data with
KamLAND data [23].

θ23 and ∆m2
23 are called ”atmospheric parameters”. θ13 was only proved to be non-zero in

7



Chapter 2. Neutrino Physics

2012 by the Daya Bay experiment [24].

The absolute values of neutrino masses have not been determined yet, nor has the sign of
∆m2

23: this raises the problem of the so called ”neutrino mass hierarchy”, that is whether the
mass eigenstates are ordered as m3 > m2 > m1 (normal hierarchy) or as m2 > m1 > m3

(inverted hierarchy).

Figure 2.4 illustrates the problem of mass hierarchy and shows the flavour content of the three
neutrino mass eigenstates, depending on the value of cosδcp.

Figure 2.4: Flavour fraction of the three mass eigenstates as a function of δcp (δ) [25].

The present knowledge on the values of the oscillation parameters and their uncertainties is
summarized in table 2.1.

Parameter value

sin2(2θ12) 0.846± 0.021

sin2(2θ23) 0.999+0.001
−0.018 (NH)

1.000+0.000
−0.017 (IH)

sin2(2θ13) (9.3± 0.8) · 10−2

∆m2
21 (7.53± 0.18) · 10−5eV 2

∆m2
32 (2.44± 0.06) · 10−3eV 2 (NH)

(2.52± 0.07) · 10−3eV 2 (IH)

Table 2.1: Current values of neutrino oscillation parameters from [3]. NH = normal hierarchy,
IH = inverted hierarchy.

2.4.2 Matter effects

While propagating in matter electron neutrinos have one interaction mode that is not available
to νµ and ντ , that is elastic scattering off electrons by charged current reactions νee→ νee. This

8



2.4. Neutrino oscillation

extra interaction mode makes electron neutrinos’ cross section larger, introducing an additional
potential V ≡ ±

√
2GFne to the Hamiltonian of the system, so that H0 → H = H0 +V , where

H0 is the Hamiltonian in vacuum [26].

After diagonalization in the flavour base the Hamiltonian is:

H(ne) =
1

2E
U




0 0 0
0 ∆m2

21 0
0 0 ∆m2

31


U † +



±
√

2GFne 0 0
0 0 0
0 0 0


 (2.11)

In 2.11 GF is the Fermi coupling constant and ne is the electron density; the latter is related
to the matter density ρ by ne ' 0.5ρmN , mN being the nucleon mass [27].

The positive sign applies to neutrinos while the negative sign applies to antineutrinos; this dif-
ference in the sign of the additional potential ensures that the changes in eigenstates and mixing
parameters that follow from the change in the Hamiltonian are also different for neutrinos and
antineutrinos.

The oscillation probability νµ → νe in constant density matter at a distance L can be written
to the leading order as [28]:

P (νµ → νe) = sin2 θ23 sin2 2θ13
sin2(∆31 − aL)

(∆31 − aL)2
∆2

31

+ sin 2θ23 sin 2θ13 sin 2θ12
sin(∆31 − aL)

∆31 − aL
∆31

sin(aL)

aL
∆21 cos(∆31 − δcp)

+ cos2
23 sin2 2θ12

sin2(aL)

(aL)2
∆2

21. (2.12)

where a ≡ GFne/
√

2 and ∆ij ≡ ∆m2
ijL/4E. This is valid for normal and inverted hierarchy.

For the CP conjugate process, ν̄µ → ν̄e a and δCP must be replaced with −a and −δCP .

2.4.3 CP violation

CP violation in neutrino oscillation is a pure three - or more - flavour effect: it can be observed
when at least two different ∆m2 and three mixing angles are involved in an interference between
flavour oscillations.

Using the unitarity condition for the PMNS matrix, U = U∗, equation 2.10 can be rewritten
for neutrinos and antineutrinos:

P (να → νβ) = δαβ−4
∑

i>j

<[UαiU
∗
αjU

∗
βiUβj ]sin

2(∆ij)−2
∑

i>j

=[UαiU
∗
αjU

∗
βiUβj ]sin(2∆ij) (2.13)

P (ν̄α → ν̄β) = δαβ − 4
∑

i>j

<[UαiU
∗
αjU

∗
βiUβj ]sin

2(∆ij) + 2
∑

i>j

=[UαiU
∗
αjU

∗
βiUβj ]sin(2∆ij)

(2.14)

The difference between oscillation probabilities of neutrinos and antineutrinos provides the
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Chapter 2. Neutrino Physics

simplest measure of CP violation [28]:

∆Pνναβ ≡ P (να → νβ)− P (να → νβ) = −16Jαβsin∆12sin∆23sin∆31 (2.15)

Jαβ ≡ =(Uα1U
∗
α2U

∗
β1Uβ2) = ±J, J ≡ s12c12s23c23s13c

2
13sinδCP (2.16)

with positive (negative) sign for (anti-)cyclic permutation of the flavour indices.

From 2.15 we can see that it is impossible to observe CP violation if δCP = 0 or π or if two or
more masses are degenerate.

The expression also shows that CP violation cannot be observed in disappearance channels
(α = β) because να → να and να → να are related by CPT.

The main oscillation channel in this study is between muon and electron neutrino, for which
we can summarize the CP and T relations in table 2.2.

CP
νµ → νe ⇔ ν̄µ → ν̄e

T m m T
νe → νµ ⇔ ν̄e → ν̄µ

CP

Table 2.2: CP and T relations for the νµ → νe channel.

The horizontal processes are related by CP, the vertical processes are related by T and the
diagonal processes are related through CPT, so that:

P (νµ → νe, δ) = P (ν̄µ → ν̄e,−δ) = P (νe → νµ,−δ) = P (ν̄e → ν̄µ, δ). (2.17)

Figure 2.5 shows the νµ and ν̄µ oscillation probabilities in matter as a function of energy for
different values of δCP .

Matter effects must be taken into account since they can mimic a fake CP violating effect,
making ∆P as defined in 2.15 different from zero even for δCP = 0, π, as illustrated in figure
2.6. The CP-invariant factor in matter J(m) is related to the value in vacuum by [28]:

J(m) =
∆m2

21∆m2
32∆m2

31

∆m2
21(m)∆m2

32(m)∆m2
31(m)

J. (2.18)
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Figure 2.5: Oscillation probability for νµ as a function of energy for different values of δCP
(left: LENA, right:JUNO).
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significantly different

sin2∆N

∆2
N

6= sin2 ∆0

∆2
0

. (86)

That is, matter must significantly alter the ∆m2 so that ∆m2
N 6= ∆m2

0 and the baseline of the experiment

must be a significant fraction of the oscillation length in matter or vacuum whichever is shorter so that

either sin∆N 6= ∆N and/or sin∆0 6= ∆0.

For the three neutrino case, nature has chosen two small parameters, sin2 θ13 ≤ 0.04 and ∆m2
21/∆m2

31 ≈
0.03 [12]; this allows us to factorize the three neutrino case into a product of two neutrino cases and

therefore the individual ∆m2 in matter become

∆m2
31|N ≈ ∆m2

31 − 2
√
2GFNeE

∆m2
21|N ≈ −2

√
2GFNeE (87)

∆m2
32|N ≈ ∆m2

32.

In Fig. 25 we have plotted the exact mass squared differences in matter and the approximation given

in Eq. (87) and indeed the approximation is a good one.
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Figure 24: Examples of ∆P ≡ P (νe → νµ)− P (ν̄e → ν̄µ) (left panel) and the asymmetry ∆P/[P (νe →
νµ)+P (ν̄e → ν̄µ)] (right panel) in matter as a function of distance for fixed value of energy, E = 1 GeV

and sin2 2θ13 = 0.05. For simplicity, we assume a constant electron number density Ne = 1.5 mol/cc.

Thus the
√
Patm and

√
Psol in matter are simply given by

√
Patm = sin θ23 sin 2θ13

sin(∆31 − aL)

(∆31 − aL)
∆31,

√
Psol = cos θ23 sin 2θ12

sin(aL)

(aL)
∆21, (88)

44

Figure 2.6: ∆P ≡ P (νµ → νe) − P (ν̄µ → ν̄e) as a function of distance for E = 1 GeV for
different values of δCP . Figure taken from [28].
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Chapter 3

The source: neutrino beam setup

3.1 Introduction
Neutrino beams have been extensively used for decades now to investigate neutrino physics
issues.

The first accelerator based neutrino beam was produced in 1962 at BNL (Brookhaven National
Laboratory) from a 15 GeV proton beam shot into a beryllium target. That experiment led
to the discovery of the muon neutrino, awarded with the Nobel prize to Lederman, Schwartz
and Steinberger in 1988 [4].

Since then accelerator based neutrino experiments have studied neutrino oscillations, with
measurements of neutrino mixing parameters (Minos, T2K, Noνa, Opera - see [16, 17, 29, 20]),
and non-standard neutrino mixing (LSND [8], MiniBoone [9]). They have also been used
for electroweak tests and to investigate neutrino interactions (e.g. Minerva, MicroBOONE
[30, 31]).

The main components of the apparatus for the production of a neutrino beam are (see Fig-
ure 3.1):

• proton beam;

• target;

• focusing system;

• decay tunnel.

To obtain a conventional neutrino beam, protons of chosen energy are shot to interact with a
target, where they produce secondary particles - pions and kaons. These secondary particles
are focused by a magnetic horn system and decay in a decay region in the following main
leptonic modes (for negatively charged particles the decay modes are charge conjugates of the
modes below)[3]:
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linac

booster

proton
synchrotron

proton beam

ta
rg

e
t horn

reflector

π→μν

decay tunnel hadron 
absorber

detector

ν

Figure 3.1: The picture illustrates the basic components of the apparatus for the production
of a neutrino beam.

π+ →µ+νµ (99.98770± 0.00004)%

µ+νµγ (2.00± 0.25)× 10−4

e+νe (1.230± 0.004)× 10−4

K+ →µ+νµ (63.55± 0.11)%

π0e+νe (5.07± 0.04)%

π0µ+νµ (3.353± 0.034)%

The neutrino beam produced in this way is mainly composed of νµ (or νµ, depending on the
focusing mode), with a small contamination from νµ (νµ) plus νe and νe, as can be seen in
Figure 5.5.

Setups for the production of a neutrino beam usually contain also a beam dump at the end of
the decay region to absorb muons and undecayed secondaries; since the beam dump doesn’t
affect the produced neutrino flux, it was not simulated in this study.

The next paragraphs describe the elements of the neutrino beam setup as they are commonly
used.

3.2 The proton beam
The proton beam is the first ingredient for the production of a neutrino beam.

The beam power is defined as the product of the number of protons on target per year (p.o.t./y)
and the proton energy.

The number of produced neutrinos depends on the proton beam power; their energy depends
on the energy of the parent particles (pions and kaons), which in turn depends on the initial
proton energy. Proton energies can vary from less than 8GeV (FNAL Booster [32]) to 400GeV
(the CNGS beam from the CERN SPS proton driver [33]), while beam power ranges from
5 · 10−3MW (KEK [34]) to 5MW (planned for the European Spallation Source - ESS [35],
producing 1020p.o.t./y).

In this work the properties of the acceleration facility (LINAC or synchrotron, number of
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3.3. The target

protons per bunch, repetition rate) were not considered; only the number of p.o.t./y was
simulated, as a function of beam energy and beam power.

3.3 The target
The proton target is the second crucial component of a neutrino beam production setup.

The target material, its shape and size determine the amount of proton interactions and the
production of secondary particles, as well as their final direction and the probability to be
focused in a convenient direction.

The amount of proton interactions also influences the temperature of the target and the re-
quired cooling, but this issue is not addressed in this work.

The choice of the proton target must take into account several contrasting needs and correla-
tions with the other parts of the setup, like the focusing system.

3.3.1 Target material

In choosing the target material one should consider that in materials with a low atomic number
Z protons can interact without losing a large amount of energy. For this reason elements
like Beryllium, Aluminium and Carbon are usually preferred ([34]); nonetheless, an adequate
balancing of the target dimensions can give good results with high-Z materials, too.

3.3.2 Target shape and size

The most common shapes chosen for proton targets are cylinders or rulers, with the longest
dimension along the direction of the beam, so that protons have larger probability to interact
and more neutrinos can be produced. The length ltar of the target is normally chosen to
be lint < ltar < 2 · lint, where lint is the nuclear interaction length. For configurations with
high beam power more complex designs have been proposed (see [36]) with a granular target
composed of titanium spheres; this design would allow the coolant to flow between the spheres
and act more effectively in the high irradiation environment.

3.4 The focusing system
A proton striking a target with momentum p0 produces a secondary particle emerging at an
angle θ from the beam axis, with longitudinal momentum pz and transverse momentum pT
(see Fig. 3.2).

Figure 3.2: A secondary pion produced by a proton striking a segmented target. Picture
taken from [37].

The number of π+ produced in the interaction of protons with the target grows almost linearly
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with the momentum of the incident proton. The momentum of the pions also scales with the
energy of the protons (see [37]).

Production spectra in transverse momentum pT should be independent of xF ' pz/p0 - peak
transverse momentum is 250MeV for secondaries [37]. This is important because transverse
momentum controls the divergence of the secondary beam; the amount of pT to remove by
focusing does not grow rapidly with pion momentum.

The requested neutrino beam energy is achieved by focusing a particular secondary beam pion
momentum.

Neutrino beam setups are provided with a focusing system composed of one or more so-called
magnetic horns, devices designed to increase the flux of neutrinos by focusing the parent mesons
in the most convenient directions.

A magnetic horn, as first invented by Simon van der Meer [38], is made of two thin conductor
layers that, by circulating an electric current, produce a magnetic field to give a kick to
transverse momentum pT and deflect charged pions in the radial directions (see Fig. 3.3).

Figure 3.3: Trajectories of a π+ and a π− through a parabolic horn. In the picture θin indic-
ates the initial angle of the pion with respect to the beam axis before focusing,
while θout represents the final angle and ∆θ their difference. δ indicates the thick-

ness of the horn,
−→
B the induced magnetic field inside the horn, ` is the distance

traversed before focusing and x the pathlength through the horn. Figure taken
from [37].

In this work the simulated focusing system was composed by two different parabolic horns,
both 2.97 m long, at a 4.03 m distance from each other, as in Figure 5.3).

A parabolic horn focuses a given momentum for all possible entry angles. If the curve of the
inner conductor is described by z = ar2, the transverse momentum kick gives a change in the
direction ∆θ = Bx

p , with x = 2ar2 =pathlentgh through the horn.

Particles entering the horn at larger radii traverse a thick layer of material; for this reason
horns are often designed with tapered conductor thicknesses, where the neck region is the
thickest.
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Palmer first developed the idea of a multi-horn system (see Fig. 3.4) [39], with the second horn
collecting particles not properly focused by the first horn; the aperture of the second horn is
larger than that of the first horn so that the properly focused particles can travel unperturbed.

Horn 2
Horn 1

target
unfocused
Horn 1 only
Horn 2 only

underfocused

overfocused

Figure 3.4: Two-lens focusing system: the second horn, at a considerable distance from the
target, improves the collection of secondaries that are ill-focused by the first horn.
Figure taken from [37].

The position of the target with respect to the focusing system influences the focused momenta
and the final neutrino spectra: the peak energy of neutrinos increases when the target is closer
or inside the (see [37, 40]).

When the currents are circulating in the horns so that π+ and K+ are focused along the beam
axis, the beam is said to operate in positive focusing mode (PF) and will have νµ as its main
component; vice versa, when the direction of the currents is inverted π− and K− are focused:
the beam is in negative focusing mode (NF) and ν̄µ will be the principal component.

3.5 The decay tunnel
A long and broad pipe is placed next to the focusing system along the beam direction to allow
drift space for secondary particles to decay; for example, a 5GeV pion has γ = 35, that means
it travels γβcτπ ∼ 280m before decaying. Nonetheless, one must consider that a longer tunnel
also provides drift space for muon decay, that leads to a bigger νe contamination of the beam,
since π → µνµ → (eνeνµ)νµ.

The decay tunnel diameter is also not irrelevant to the produced neutrino flux because a wider
pipe allows for a larger divergence of underfocused low-energy secondaries.

Decay pipes are most commonly evacuated or filled with He gas as in T2K [17] to reduce
absorption and scattering probability for the secondary particles and avoid loss of neutrinos.
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Chapter 4

The detectors: LENA and JUNO

This chapter will illustrate the main features of the two neutrino detectors involved in this
study, after a short general description of liquid scintillator detectors.

4.1 Liquid scintillator neutrino detectors
The use of scintillating material is now an established technique for the detection of charged
particle radiation and of neutrinos (especially in the low energy region, up to the order of 10
MeV). Liquid scintillator was used in the experiment that led to the first confirmation of the
existence of neutrinos (ν̄e, see [2]) and it has been used since in many other detectors that
provided measurements on solar and geo-neutrinos (KamLAND [23] and Borexino [41], [42])
and constraints on oscillation parameters like θ13 (Daya Bay [24], Double Chooz [43]and RENO
[44]).

Liquid scintillator neutrino detectors can be called unsegmented detectors, since the target
material is homogeneously distributed in a single volume and belong to the category of real-
time detectors, because a time stamp can be assigned to each observed event.

4.1.1 Detection principle

A liquid scintillator for radiation detection is typically made up of two components:

• a solvent, i.e. the scintillating material that is the target of interactions: liquid scintillat-
ors are organic materials made of aromatic hydrocarbon compounds with benzene-ring
structures; among the most used solvents are LAB (linear alkylbenzene, C18H30) and
PXE (phenyl-o-xylylethane, C16H18).

Charged particle radiation or photons deposit energy in the scintillator material, exciting
the free valence electrons in the benzene rings; the deexcitation occurs with emission of
ultraviolet light in the phenomenon of luminescence(fluorescence if the time τ between
excitation and light emission is ∼ 10−9 − 10−8s or phosphorescence for τ & 10−4s), with
an energy spectrum characteristic of the material.

• a solute: since the emission and absorption spectra of the solvent often overlap at least
partially, a wavelength shifter (also called a fluor) is needed to prevent the solvent from
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Chapter 4. The detectors: LENA and JUNO

re-absorbing the scintillation light; the scintillator transfers the excitation energy to the
solute, which emits light in a different (usually higher) wavelength region, for which the
solvent is transparent. Examples of wavelength shifters, usually added to a scintillator
mixture in a concentration of a few g/l, are PPO (2,5-diphenyloxazole, C15H11NO) and
bis-MSB (1,4-Bis(2-methylstyryl)benzene, C24H22).

Light from the scintillator is then collected by a photosensor and converted in electric signal
that can be digitized and processed by the data acquisition system (DAQ).

The most common kind of photosensor is the photomultiplier tube (PMT), often combined
with a light concentrator to increase the light collection area. In a PMT photons incoming on
an evacuated tube are collected by a photocatode and converted through photoelectric effect
to photoelectrons; these are accelerated by an applied electric field to a series of electrodes
(dynodes), each of which multiplies the number of free electrons, leading to a cascade that
is finally collected at an anode as measurable current, amplifying the initial signal 103 − 108

times (see 4.1).

γ

e-

cathode
dynodes

anode

Figure 4.1: Schematical view of a photomultiplier tube.

4.1.2 Features and advantages of liquid scintillator detectors

The main advantages of liquid scintillator detectors are (see [45]):

• sensitivity to energy: the light emitted by the scintillator is directly proportional to
the exciting energy deposited by the incoming particle. The light yield of the scintillator is
defined as the number of photons emitted per amount of energy deposited by an ionizing
particle and it is directly related to the energy resolution and the energy threshold of the
detector.

• Fast time response: the decay time of liquid scintillators is of the order of 3-4ns.
This allows the detectors to accept high count rates and to perform real time neutrino
detection, attributing a time stamp to each event.

• Pulse shape discrimination. The radiative decay of the excited scintillator molecules
can be described by an exponential function with several components depending on the
population of the electron states and on the deexcitation processes involved:

n(t) =
∑

nie
− t
τi (4.1)
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4.1. Liquid scintillator neutrino detectors

where ni is the amplitude of a process and τi its decay constant. The amplitude of each
time component depends on the energy deposition per unit length, which is different for
particles with different ionizing power; so an analysis of the pulse shape can discriminate
incoming particles and improve background rejection.

• Track reconstruction: even though scintillation light emitted by low-energy events is
isotropically distributed and does not carry directional information, high-energy particles
create long ionization tracks; the superposition of spherical light waves along a track forms
a light front similar to a Cherenkov light cone, whose shape can be used to resolve energy
and momentum of the incident particle, as it was recently found out [46].

It is essential, when designing a liquid scintillator detector, to take into account the atten-
uation length L of the scintillator: this is defined as the length after which the number of
photons N(x) has dropped to 1/e of its initial value N0 because of the absorption and scattering
processes that occur in light propagation:

N(x) = N0e
− x
L (4.2)

1

L
=

1

lA
+

1

lS
(4.3)

where lA is the absorption length, accounting for the phenomena in which scintillation photons
are absorbed by molecules, and lS is the scattering length, accounting for Rayleigh scattering
off the bound electrons of molecules in the mixture, Mie scattering from dirt or dust particles
in the liquid and absorption-reemission processes that change the photons’ direction (see [47]).

The attenuation length is characteristic of the scintillator material and depends on the photon
energy.

The energy resolution of a particle detector is defined as the relative uncertainty ∆E on
the visible energy E (i.e. the energy of an incoming particle that is deposited in the detector,
without escaping it or being converted to an undetectable form).

For a liquid scintillator detector a model for the energy resolution is ([48]):

∆E

E
=

√
a2 +

b2

E
+
c2

E2
(4.4)

where the parameter a accounts for energy leakage and non-uniformity of the detector, b
depends on the statistics of detected photo-electrons and c takes into account systematic un-
certainties related to background and noise.

The energy resolution of a liquid scintillator detector is usually good and accompanied by the
absence of an intrinsic energy threshold.

Other important aspects in choosing and handling the scintillator mixture are its radiopurity
(i.e. the contamination with radionuclides as 238U , 232Th and 40K), that affects backgrounds,
and safety issues like flammability.
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4.2 The LENA detector
LENA (Low Energy Neutrino Astronomy) is a liquid scintillator neutrino detector that has
been proposed within the LAGUNA-LBNO design studies (see [49]) as a neutrino observatory
in order to address a variety of physics questions [50].

While Borexino (278t target mass) and KamLAND (1kt target mass) have proven the capabil-
ities of the liquid scintillator technology, a next-generation detector like LENA at a new mass
scale (50kt) would provide high statistics (hence high precision) neutrino measurements from
astrophysical and terrestrial sources.

4.2.1 LENA location in Finland

The LAGUNA studies investigated the possibility of building new large size neutrino observat-
ories in seven European locations. One of the favourite sites according to those studies would
be the Pyhäsalmi mine in Finland: this is a currentyl operational mine, situated ∼1450m be-
low ground at its deepest level, which would provide the detector with more than 4000m.w.e.
(meters water equivalent) shielding.

The closest nuclear power plant, that would be source of background reactor neutrinos, is
350km away from Pyhäsalmi.

The Pyhäsalmi mine already hosts the Centre for Underground Physics in Pyhäsalmi and would
allow the possibility to use the existing infrastructure to ease the excavation and construction
works.

A view of the LENA detector in the Pyhäsalmi mine is given in figure 4.2.

Figure 4.2: External view of the LENA detector at the Pyhäsalmi mine [50].

4.2.2 LENA detector setup

Figure 4.3 shows the planned design for the LENA detector in the Pyhäsalmi mine.

A ∼115m tall cavern hosts the detector: its walls are egg-shaped in order to better withstand
horizontal and vertical stresses from the surrounding rock.

A water-filled volume with radius greater than 2m separates the cavern walls from the
external side of a concrete tank containing the inner volumes of the detector; this volume acts
as a shield against external radioactivity and fast neutrons produced by incoming cosmic rays
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4.2. The LENA detector

and is planned to be equipped with about 2000 PMT so that it can be used as a Cherenkov
veto against incident muons.

The concrete tank has a height of 96m and an inner radius of 16m; its thickness ranges from
30cm to 60cm because of cylindrical cavities in the concrete allowing for installations (e.g. for
cooling or cables).

A muon veto system is placed on top of the concrete tank to track muons entering the
detector from above; this muon veto is right below the 15m height dome containing all the
electronics equipment necessary for data acquisition.

Inside the tank a buffer volume filled with liquid scintillator provides shielding against
radiation and contaminants from the concrete walls. The buffer volume also hosts a stainless
steel scaffolding structure holding the optical modules.

The detector will be equipped with ∼30000 optical modules (OM): each OM includes a
12 inches PMT and an attached light concentrator, both contained in a steel encapsulation
to resist pressure from liquid scintillator at the bottom of the tank. The space inside the
OM encapsulation is filled with non-scintillating mineral oil in order to absorb γ rays from
radioactivity in the PMT glass. The optical modules are placed so that their apertures are at
the edge of the target volume and an optical shielding is between them along the side of the
support structure prevents light detection from the buffer region. The total number of optical
modules would bring a 30% optical coverage of the detector’s inner surface; considering that
each OM has a 20% photo detection efficiency, the light detection efficiency in LENA would
be ∼6%.

The neutrino target volume is a 96m tall cylinder and with a 14m radius filled with ∼50kt
liquid scintillator; the chosen scintillator mixture is made of LAB as the solvent and concen-
trations of 3g/l PPO and 20mg/l bis-MSB for the fluors, resulting in a peak in the emission
spectrum at 430nm wavelength with a fast decay component of about 4.4ns. The LAB-PPO-
bis-MSB admixture satisfies the requirements for a large attenuation length (∼15m) and high
light yield (∼ 104 photons/MeV) due to the size of the detector, with the advantage of a high
number of free target protons, in addition to a wide experience in the use of LAB from other
experiments.

4.2.3 Physics program

LENA has been planned as a multi-purpose facility, focusing mainly but not exclusively on low-
energy neutrinos from astrophysical sources. Besides measurements of neutrinos from sources
like the Sun or galactic core-collapse supernovae, LENA could provide precious information on
the Diffuse Supernova Neutrino Background (DSNB), geoneutrinos and neutrino oscillation at
short distances with the use of a strongly radioactive probe placed close to the detector.

In the GeV energy range LENA could offer the possibility to lead research on proton decay or,
as investigated in this study, be used as a far detector for a long-baseline neutrino experiment.

The following paragraphs provide a short overview on the main topics of LENA’s physics pro-
gram.

Solar neutrinos LENA could perform measurements of neutrinos from the Sun from differ-
ent production mechanisms; detection of pep neutrinos would probe oscillations in the MSW
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Figure 4.3: Schematical view of the LENA detector [50].

transition region while CNO neutrinos would give insight on solar metallicity; these measure-
ments could be accomplished through the use of a a fiducial volume of 30kt, necessary to deal
with the gamma ray background from the photomultiplier tubes, that would also allow for the
detection of low-energy 8B neutrinos above 2MeV; above 3MeV a time and space cut would
suppress the cosmogenic 10C background. 7Be would be detected with a very high statistics
(104 events/day in a 35kt fiducial volume), making it possible to measure temporal variation
of the solar neutrino flux.

Supernova neutrinos If a supernova collapse occurred in the Milky Way at a 10kpc distance
LENA would detect around 104 events from the main channel (inverse beta decay), which,
thanks to the detector’s high energy resolution and flavour identification would give information
on oscillation effects that are sensitive to the neutrino mass hierarchy.

LENA would be able to measure the DSNB in the 9.5-25MeV energy range, because of indis-
tinguishable background from reactor and atmospheric neutrinos, as well as neutral current
interactions; the latter background can be reduced through pulse shape discrimination with a
loss of 60% of the signal. Detection of 20-40 events in 10 years would confirm the existence
of DSNB at a 3σ level, while observation of no signal would set an upper limit on the DSNB flux.
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Geoneutrinos Geoneutrinos are ν̄e produced in the beta decays of radioactive isotopes in
the Earth. LENA could measure the geoneutrino flux from the U and Th chains via inverse
beta decay (while detection of neutrinos from 40K is forbidden by the 1.8MeV threshold of
the IBD reaction). The main backgrounds for the geoneutrino detection would be given by
neutrons produced inside the target by alpha decays of 210Po causing 13C(α,n)16O reactions
and fast neutrons emitted in beta decays of 9Li and 8He produced by cosmic muons crossing
the detector; the latter background can be suppressed by applying a veto for a 2m radius
around each muon track, while the expected rate for the 13C(α,n)16O background is 10± 1
events per year if LENA reaches the same radiopurity levels as Borexino.

The geoneutrino flux could be measured with a 1% precision after 10 years, providing a test
for current geochemical models, while the abundance ratio U/Th could be determined with
6% precision in 10 years.

Proton decay can be investigated in liquid scintillator detectors through the favourite chan-
nel p→ K+ + ν. This decay mode has a clear signature, given by a prompt scintillation signal
from the kaon and a delayed signal from its decay products, that would allow for an efficient
rejection of the background from atmospheric muon neutrinos. If no event were detected in
LENA in 10 years the limit for the proton lifetime would be set to τp > 4 · 1034y at 90% CL.

4.3 The JUNO detector
JUNO (Jiangmen Underground Neutrino Observatory) [51] is a project currently under con-
struction in China with the main goal of determining neutrino mass hierarchy through the
detection of reactor ν̄e.

The data acquisition is planned to start in 2020.

4.3.1 JUNO location

The JUNO detector is presently being constructed near Kaiping in south China, at an equal
distance of 52.48km from the ten reactors distributed between the power plants of Yangjiang
(6 reactor cores) and Taishan (4 cores), whose combined thermal power will be 35.8GW (26.6
initially).

The Daya Bay nuclear power plant is situated 215km away from JUNO and will provide 2.8%
of the total ν̄e flux.

The laboratory will be built about 460m below ground level under a 286m tall hill (for a
total of ∼700m vertical overburden): this will provide a 2000m.w.e. shielding from cosmogenic
background.

4.3.2 JUNO detector setup

JUNO is designed as a spherical detector in order to provide a uniform photoelectron yield,
made of several concentric layers (see[52]).

A cylindrical water pool contains the whole detector and is equipped with ∼1600 PMTs,
serving, as for LENA, as a shielding and as a Cherenkov detector. 25% of the water pool’s upper
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surface is going to be covered with plastic scintillator strips (from the OPERA experiment)
that provide a muon tracker.

An inner acrylic sphere with an inner diameter of 35.4m and a thickness of about 12
cm contains 20kt of liquid scintillator. The chosen scintillator mixture is similar to the one
proposed for LENA, with LAB as a solvent and PPO and bis-MSB as solutes; it should ensure
the satisfaction of mandatory requirements as a high light yield and an attenuation length
greater than 20m at 430 nm.

A stainless-steel support structure surrounds and holds the inner sphere; a steel open truss
with a 40m inner diameter would provide a ready frame for the installation of the ∼17000
20” PMTs facing the target volume. An opaque layer is placed behind the PMTs to separate
the central detector from outside veto detector.

A schematic view of the layered structure of the JUNO detector is provided in fig. 4.4.

Figure 4.4: Schematic view of a vertical section of the JUNO detector (left) and of its exterior
part (right) [52].

4.3.3 JUNO physics goals

The determination of neutrino mass hierarchy is the main goal of the JUNO experiment but
it is accompanied by a rich pyhsics program similar to LENA’s program, including supernova
and solar neutrinos, geoneutrinos and investigations on nucleon decays (for details see [51]).

Neutrino mass hierarchy The JUNO detector can measure precisely the antineutrino
reactor spectrum at the medium baseline of 53km and probe the interference of two fast
oscillation modes.

The observation of the spectrum of inverse beta decay events could allow the determination of
|∆m2

31| and |∆m2
32| with a precision that would resolve the mass ordering.

After six years of operation, collecting 105 IBD events based on 36GW thermal power from
the reactors, JUNO’s sensitivity to neutrino mass hierarchy could reach the 3σ level. This
estimate for the sensitivity assumes the expected energy resolution for JUNO of 3% at 1MeV,
as well as 1% uncertainty on the energy scale (achievable with a comprehensive calibration of
the detector) and a 1% uncertainty on the shape of the reactors’ ν̄e spectra (see [51]).

Besides the study of reactor neutrino oscillations, JUNO could use other approaches to de-
termine the neutrino mass hierarchy:

• Matter effects influence the long-baseline (15km to 13000km) oscillations of atmo-
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spheric neutrinos: the Mikheyev-Smirnov-Wolfenstein resonance may enhance the
oscillation of neutrinos in the normal mass hierarchy (NH) and the oscillation of an-
tineutrinos in the inverted mass hierarchy (IH) [3].

• νe/ν̄e appearance searches with beam neutrinos.
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Chapter 5

Determination of sensitivity to CP
violation

This chapter describes the procedure to determine the sensitivity of the LENA and JUNO
detectors to CP violation for a given configuration of the neutrino beam setup at a chosen
baseline.

The first section focuses on the simulation of a neutrino beam setup while the second section
explains how to calculate sensitivity to CP violation considering the detectors’ properties and
the simulated muon neutrino and antineutrino fluxes.

5.1 Neutrino beam simulation
The setups considered in this study for the production of a conventional neutrino beam were
simulated using the Monte Carlo toolkit Geant4 (version 4.9.4, see [53, 54]) and the ROOT

framework for the output storage [55].

5.1.1 Beam setup

The general composition and features of the beam production apparatus follow the scheme
illustrated in chapter 3. The Geant4 toolkit is used to simulate the interaction of primary pro-
tons on the target, the production of secondary particles, their focusing in the beam direction
and their decay in the end tunnel (see Figure 5.1).

The details of the proton drivers and the end beam dump and muon monitors do not influence
the resulting neutrino flux and are neglected in the simulations presented here.

Many parameters of the setup are optimized in order to produce the neutrino flux that would
give the best sensitivity to CP violation (see chapter 6). A comprehensive summary of the
main beam parameters is given in Table 5.1.
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Figure 5.1: The picture illustrates the basic components of the apparatus for the production
of a neutrino beam.

Proton energy o.5-70GeV
Beam power 0.2-5MW

Target shape solid cylinder
Target material Aluminium, Beryllium, Graphite, Iron, Mercury,

Molybdenum, Tungsten, Zirconium
Target diameter 1-10mm
Target length 20-200cm
Target position -50/+50cm

Horn 1 shape parabolic
Horn 1 current 0-350 kA
Horn 2 shape parabolic
Horn 2 current 0-350 kA

Decay tunnel filling air at 0.001238atm
Decay tunnel shape cylinder
Decay tunnel radius 50-500cm
Decay tunnel length 10-500m

Table 5.1: Neutrino beam setup parameters.
The target position refers to the distance between the upstream edges of the target
and of the first horn.

Proton beam

The two main parameters considered in this study with respect to the first element of the setup
are the beam power and the kinetic energy of the protons. These two parameters are
related by the number of protons on target per year (p.o.t./y):

N(p.o.t.)/y =
P

Ep
, (5.1)

where P is the beam power and Ep is the proton kinetic energy; with the range boundaries
given in Table 5.1 the number of simulated p.o.t./y spans an interval from ∼ 1020 to ∼ 1032.
The number of simulated proton events is, for limitations due to computing time, usually
much smaller, of the order of 104, with the resulting flux being scaled to the number of desired
p.o.t./y.

30



5.1. Neutrino beam simulation

The upper limit of 5MW for the beam power was chosen according to current design and plans
for the European Spallation Source (ESS, [35].

Important construction and operation parameters for the proton driver, such as pulse length
and pulse rate, do not influence the result in terms of neutrino flux and are therefore not
considered in this simulation.

Proton target

The setup geometry simulated in this study includes one solid proton target in the shape of
a cylinder, as in the T2K experiment [17], though other configurations with multiple targets
have been proposed and are perhaps better suited to withstand the stress and heat coming
with high beam power [36].

Optimizable parameters in this work’s configuration are the target’s diameter, its length and
its material, as well as the target’s position d with respect to the first horn (see Figure 5.2).

Horn

dT

Target

Figure 5.2: Illustration of the possible relative distance between the target and the first
focusing horn.

The materials used for the simulation of the target in this study are listed in table 5.2; only pure
elements were considered for simplicity. Even though low-Z materials are usually preferred as
targets for neutrino beams, some elements with higher atomic number are studied in these
simulations to explore the effects of high values for the atomic masses and densities.

Material Symbol Z a (g/mol) ρ (g cm−3) Nuclear int. length (cm)

Beryllium Be 4 9.01 1.85 42.1

Graphite C 6 12.01 2.26 38.83

Aluminium Al 13 26.98 2.7 39.7

Iron Fe 26 55.85 7.874 16.77

Zirconium Zr 40 91.22 6.511 23.58

Molybdenum Mo 42 95.95 10.28 15.25

Tungsten W 74 183.84 19.25 9.946

Mercury Hg 80 200.59 13.54 14.58

Table 5.2: Materials considered in this study for the optimization of the target. Z is the
atomic number, a the atomic mass and ρ the density. The properties of the
materials are taken from [3] and [56].
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Focusing system

The focusing sytem in the setup presented here is made of two magnetic horns - or, better,
a horn and a reflector. The reflector is needed to focus the secondary particles that are not
focused or underfocused by the first horn (see chapter 3).

In this study the material of the conductors for both horns is Aluminium, while the para-
bolic shapes, sizes and positions of the two horns, as well as their relative distance, are not
optimized but kept fixed in the same configuration as in [40], illustrated in Figure 5.3. Each
current circulating in the horns is an open parameter changing in each configuration, varying
in a range from 100kA to 350kA; the lower limit is lowered to 0A for the optimization of the
JUNO beam, because of the lower proton energy needed.

Horn Reflector

l1
l2

dH

Figure 5.3: The focusing system used in this study, made by two parabolic horns. The horns
have a length l1 = l2 = 2.97m, while the distance between them is dH = 4m.

Decay tunnel

Taking into account the considerations in chapter 3, the decay pipe simulated in this work is
a cylinder with length ranging from 100m to 500m, diameter range from 50 cm to 5 m and
contains air at the very low pressure of 0.001238atm.

5.1.2 Determination of the neutrino flux

The simulation considers three sources for neutrino production from secondary particles and
calculates the corresponding probabilities for the neutrinos to reach a far detector, that is then
used as a weight factor for the neutrino energy spectrum (see [36]).

• Two-body decay of a charged pion or kaon

π+,K+ → l+νl

π−,K− → l−νl

where l = e, µ The probability for a decay neutrino to be emitted through a surface A at
a distance L is described in 5.2:

P2 =
A

4πL2

1− β2

(β cosα− 1)2
(5.2)

where β is a relativistic factor of the parent particle and α is the emission angle with
respect to the beam axis. Equation 5.2 works when considering the decay region as
point-like from the detector distance.
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5.1. Neutrino beam simulation

• Muon decay

µ+ → e+νeν̄µ

µ− → e−ν̄eνµ

The probability for neutrinos from µ decays to be emitted in a direction parallel to the
beam axis depends on their energy, so that

dP

dEν
=

2(f0 ∓ΠL
µ f1 cos θ∗)

mµγµ(1 + βµ cos θ∗)
· P2(µ) (5.3)

In Equation 5.3 we define:

f0(ν̄µ) = 2x2(3− 2x)

f1(ν̄µ) = 2x2(1− 2x)

f0(νe) = f1(νe) = 12x2(1− x)

with x = 2E∗ν/mµ, where E∗ν is the neutrino energy in the muon’s rest frame; θ∗ is the
angle between the muon’s direction and the neutrino’s direction, while ΠL

µ is the muon
longitudinal polarization:

ΠL
µ =

√
1−

(
γpβp
γµβµ

sin θ∗µ

)2

.

Here θ∗µ is the angle between the muon and the beam axis in the rest frame of the parent

particle (p = π,K). The sign in front of ΠL
µ is - for µ+ decays and + for µ− decays.

The differential probability is integrated sampling the neutrino energy in bins of 1MeV
width.

To compute the number of neutrinos obtained from muon decays, each produced muon
is weighted with its decay probability in the decay tunnel length.

• Three-body decay of kaons

K → πlνl

with l = µ, e and K = K±,K0. In this case the probability to reach a detector is

dP

dEν
=

2f(E∗ν)

(mK −mπ −ml)γK(1 + βK cos θ∗)
· P2(K) (5.4)

In Equation 5.4 θ∗ is the angle between the directions of the neutrino and the kaon in the
latter’s rest frame, while f(E∗ν) is a parametrization of the neutrino energy distribution
in the kaon’s rest frame.

33



Chapter 5. Determination of sensitivity to CP violation

In this case the differential probability is integrated in neutrino energy through 200
sampling points.

5.1.3 Test simulation

To ensure the correctness of the beam simulation with Geant4 and the reliability of the resulting
neutrino fluxes, a comparison was made with the neutrino fluxes produced by a simulation of a
neutrino beam from the accelerator complex at the Institute for High Energy Physics (IHEP)
in Protvino, Russia.

This facility, consisting in four accelerators connected in a cascade, hosts many physics studies,
e.g. research on rare kaon decays and hadron spectroscopy and produces a 70GeV proton beam.

The accelerator at IHEP is situated at a 1160Km distance from the Pyhäsalmi mine and has
been considered for a complementary neutrino beam in addition from a beam from CERN to
Pyhäsalmi in the LBNO studies [57].

The beam setup configuration used to simulate the Protvino beam is taken from [57] and it is
summarized in Table 5.3.

Proton energy 70GeV
Beam power 450kW

Target shape solid cylinder
Target material Graphite
Target diameter 4mm
Target length 100cm
Target position -30cm

Horn 1 shape parabolic
Horn 1 current 250 kA
Horn 2 shape parabolic
Horn 2 current 250 kA

Decay tunnel filling low-pressure air
Decay tunnel shape cylinder
Decay tunnel radius 150cm
Decay tunnel length 400m

Table 5.3: Setup parameters used in the IHEP neutrino beam simulation (see [57]).

Figure 5.5 shows a comparison between the simulation of neutrino fluxes from IHEP made with
the code used in this study and the simulated neutrino fluxes published in [57], renormalized
to a 100km distance on a 100m2 surface and 200MeV binning. The green line is the average
spectrum obtained from 38 simulations of 105 events, while the red lines that enclose it represent
the range of the 38 simulations.

The differences between the neutrino fluxes simulated in [57] and those simulated in this work
may be due to a non perfect matching of simulation parameters, e.g. the usage of a different
hadronic model or different specification of the properties of the target material. Especially
for the contamination components of the beam, discrepancies might also have a statistical
contribution because of a low number of simulated events.
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Figure 5.4: Comparison between simulations of neutrino fluxes from a IHEP beam with pos-
itive focusing mode. See also Figure 5.5
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Figure 5.5: Comparison between simulations of neutrino fluxes from a IHEP beam with neg-
ative focusing mode. The histograms with coloured background are renormalized
from [57], the green line is the average from 38 test simulations of 105 events per-
formed with the code used in this work. The range of the test simulations is
enclosed between the red lines.
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5.2 Determination of sensitivity to CP violation
Once the Geant4 simulation provides the neutrino fluxes from the chosen beam setup con-
figuration they can be used as input signal and backgrounds in the detector to calculate its
sensitivity to CP violation.

As explained in chapter 2, sensitiviy to CP violation in neutrino oscillation derives from the
difference in oscillation probabilities for νµ → νe and ν̄µ → ν̄e.

The oscillation study in the three-flavour frame is performed with the GLoBES package (General
Long Baseline Experiment Simulator, [58, 59]).

Given a set of “true”oscillation parameters and information on the detector’s properties and
efficiencies (see following sections), GLoBES computes the expected event rates (e.g. for νe
appearance and its backgrounds) for this set; it then calculates the event rates for a set of test
oscillation parameters and fits the result to the event rates for the true values, calculating the
goodness-of-fit as a χ2 function.

The χ2 that GLoBES minimizes in the parameters fit is described in Equation 5.5:

χ2 = χ2
app + χ2

dis + χ2
sys (5.5)

where χ2
app derives from the search for νe and ν̄e appearance, χ2

dis from the disappearance of
νµ and ν̄µ and χ2

sys comes from constraints on the oscillation parameters and systematics.

The minimization of χ2 is performed with respect to all non-fixed oscillation parameters (all
but δCP ), the global mass density scaling and the systematic parameters.

χ2
app is defined as in Equation 5.6 from logarithmic likelihood:

χ2
app ≡ −2lnλ(otest)

= 2
∑

PF/NF

∑

Erec

[
ne(Erec; otest, ftest)− ne(Erec; otrue, ftrue)

+ ne(Erec; otrue, ftrue)ln
ne(Erec; otrue, ftrue)

ne(Erec; otest, ftest)

]
. (5.6)

ne is the total number of electron-like events (see below).

The first sum in Equation 5.6 runs over the different polarities of the beam: positive polarity or
positive focusing (PF) produces a muon-neutrino beam, while negative focusing (NF), obtained
inverting the currents circulating in the horns, produces a beam with muon antineutrinos as
the main component. The second sum runs over the reconstructed energy bins in the chosen
analysis energy window.

The expression for χ2
dis is similar to Equation 5.6 but ne is replaced by nµ, the number of

muon-like events.

χ2
sys is given in Equation 5.7 by summing Gaussian penalties to the fit with the pull method :

χ2
sys =

∑

i

(o0,i − oi)
2

σ2
oi

+
∑

j

(1− fj)
2

σ2
fj

. (5.7)
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The first term refers to the oscillation parameters with their prior values o0,i and their uncer-
tainties σoi .

The second term in Equation 5.7 is relative to the systematic parameters fj . The systematic
uncertainties are the uncertainties deriving from a not precise knowledge of all the parameters
discussed above, e.g. neutrino fluxes and cross sections.

In this work the systematic uncertainties are considered as bin-to-bin correlated errors in the
energy spectra, so they do not influence the shape of the spectra but only their normalization;
they are considered uncorrelated between the single appearance and disappearance searches,
so that:

ne(Erec; o, f) = fsigne,sig(Erec; o) + fbkgne,bkg(Erec; o). (5.8)

The same formula applies to the number of muon-like events nµ. ne,sig is the number of
accepted signal events.

The values for the systematic parameters are given in Table 5.4 and are taken from [60].

Name Parameter Central value Relative error

Signal normalization fsig 1 ±5%

Background normalization fbkg 1 ±10%

Table 5.4: Values and 1σ errors for the systematic parameters.

The sensitivity of the experiment to CP violation is given by the test statistics S:

S = ∆χ2 = χ2
0,π − χ2

best, (5.9)

where χ2
0,π is the minimized χ2 for δCP fixed at a value δCP = 0, π and χ2

best is the global

minimum χ2 when the test value of δCP can vary over the whole range.

5.2.1 Asimov data sets and Monte Carlo simulations

In this study it was assumed that the test statistics S = ∆χ2 has a χ2 distribution with one
degree of freedom and the sensitivity to CP violation was calculated on one simulation of a
given experimental configuration (beam and detector’s properties), considered as an Asimov
data set, representative of the outcome of the experiment.

This procedure follows the established method for the determination of experimental sensitiv-
ities (see also [57]).

It was discussed in [61] that this assumption only holds if the experiment has a good sensitivity
to CP violation, because the cyclic nature of the variable δCP violates the premises of Wilk’s
theorem, on which the assumption is based.

In order to find the real distribution of the test statistics and evaluate the experiment’s sens-
itivity correctly, the same experiment should be simulated a large number of times (many
realizations of the experiment), calculating the test statistics S for each realization.

CP conservation is rejected at confidence level (CL) x if the measured value of S is among the
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1 − x fraction of largest values in the distribution of S. A critical value Sc(x) is defined such
that CP conservation is rejected at CL x if S > Sc(x). By construction, Sc(x) is the inverse of
the cumulative distribution function (CDF) of S under the CP conserving hypothesis.

The expected sensitivity of an experiment that does not have data yet is defined as the CL
obtained for the median of the distribution (median sensitivity) and is typically shown as a
function of the value of δCP (median sensitivity).

The median sensitivity does not necessarily coincide with the significance computed with the
Asimov data set, but the differences resulting from these two definitions are neglected in this
work.

5.2.2 Neutrino oscillation and density parameters

The values used here for the true neutrino oscillation parameters are obtained from the values
in Table 2.1 for normal mass hierarchy.

Since matter effects are also taken into account in GLoBES oscillation analysis, matter density
and the corresponding uncertainty constitute a prior involved in Equation 5.7. Here a constant
matter density was used along the baseline, equal to the average matter density from the PREM
onion shell model of the earth [62, 63].

5.2.3 Detector mass and baseline

The first detector parameters to be taken into account in the oscillation analysis are its target
mass and the baseline, i.e. the distance between the neutrino source and the detector.

Detector mass As mentioned in chapter 4, the designed detector mass for LENA is 50kt
and 20kt for JUNO. It is assumed in this work that the liquid scintillator in both detectors is
made of pure LAB; the molecular weight of LAB is 241g/mol, so considering a LAB molecule
as a neutrino/antineutrino target we obtain 2.5 · 1030/kt target molecules. This means a total
of 1.25 · 1032 target molecules for LENA and 5 · 1031 for JUNO.

ESS-LENA baseline The assumed origin of the neutrino beam to LENA in this work is
the European Spallation Source (ESS, [35]) in Lund, Sweden, at a distance of 1134km from the
proposed site for LENA in Pyhäsalmi.

The European Spallation Source is a multi-disciplinary research facility currently under con-
struction based on a powerful neutron source. It is planned to be fully operational in 2025 and
will allow research in life science topics, materials science, physics and chemistry.

ESS will be equipped with a proton linear accelerator, providing a 2GeV proton beam at 5MW
by 2022. This configuration was the basis of this work; the results of the optimization of a
neutrino beam from the planned ESS accelerator to LENA and the corresponding sensitivity
to CP violation are shown in chapter 7.

CSNS-JUNO baseline The facility considered in this study as a possible source for a
neutrino beam to JUNO is the China Spallation Neutron Source (CSNS, [64]), operated by
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the Institute of High Energy Physics. This structure is, like ESS, an accelerator-based neutron
source, currently under construction in Dongguan, in the Guangdong province, 150km from
the JUNO location.

The main accelerator in CSNS will have at first a beam power of 120kW in the first phase
(CSNS-I ) and of 240kW in a second phase (CSNS-II ), with the potential for further upgrade
to 500kW [65]. The detector mass and baseline parameters for LENA and for JUNO are sum-
marized in Table 5.5.

detector mass (kton) target molecules baseline (km)

LENA 50 1.25 · 1032 1134

JUNO 20 5 · 1031 150

Table 5.5: Detector mass and baseline of the neutrino beam for LENA and JUNO.

Another important parameter for the oscillation analysis is the experiment’s running time (in
years) for both the positive focusing and the negative focusing modes; while the total running
time is set to 10 years for both LENA and JUNO, the time allocation for PF and NF is a
variable in the optimization procedure (see chapter 6).

5.2.4 Cross-sections

In both studies of LENA and JUNO detection, the used neutrino and antineutrino cross-
sections for CC and NC interactions on LAB molecules (C18H30) are taken from [60] and
shown in Figure 5.6.

Figure 5.6: Neutrino and antineutrino cross-sections per nucleon for charged-current interac-
tions (left) and neutral-current interactions (right) on a LAB molecule (C18H30)
from [60].
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5.2.5 Energy reconstruction

Event reconstruction based on the photoelectron distribution at the PMTs does not allow to
determine the true energy of the incoming neutrino but an estimate Erec, given by the sum of
the estimate for the visible energy Evis and the estimate for the leakage Einv; when it is not
possible to recover the missing energy Erec ≡ Evis is assumed.
The reconstructed energy Erec enters the neutrino oscillation analysis and it is determined
through so-called energy migration matrices, tabulating the probability distribution P(Erec|Etrue)
as a function of the true energy of the neutrino.

Energy migration matrices for LENA The energy migration matrices for the LENA
detector used in this study are shown in Figure 5.7. They are taken from [66] and were
compiled following a simulation of the detector, assuming no recovery of missing energy. The
binning is not uniform throughout the 0-10GeV but is 0.2GeV for energies below 5GeV and
0.5GeV for higher energies to take into account the deterioration on energy resolution with
energy.

The νµ − CC matrix was built considering only events having the primary muon fully contained
in the active volume of the detector.

The loss of statistics due to the rejection of not contained events is taken into account in the
GLoBES analysis through the use of energy-dependent containment efficiencies as pre-smearing
efficiencies from [60].
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Figure 5.7: Energy migration matrices for LENA from [66]. They are obtained from the
simulation of fully contained events.
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Energy migration matrices for JUNO The energy migration matrices for JUNO, shown
in Figure 5.8 are obtained from a detector simulation presented in [67].

They do not consider the containment of the neutrino events in the detector so no pre-smearing
efficiencies were applied. As for the migration matrices for LENA, the binning is not uni-
form but roughly follows the deterioration of the energy resolution with increasing energy:
the bin width is 25MeV for Etrue ≤ 1GeV, 50MeV for 1GeV < Etrue ≤ 2GeV, 150MeV for
2GeV < Etrue ≤ 5GeV and finally 250MeV for Etrue > 5GeV.

Figure 5.8: Energy migration matrices for JUNO adapted from [67].

The analysis energy windows were set to [0.01-7]GeV for LENA and [0.1-5]GeV for JUNO.

5.2.6 Signal and background channels and efficiencies

As explained in chapter 2, CP violation is investigated through the appearance search of νe

(ν̄e) in the oscillation νµ → νe (ν̄µ → ν̄e) of muon (anti-)neutrinos from a conventional neutrino
beam.
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The appearance of νe (ν̄e) and the disappearance of νµ (ν̄µ), which allows to constrain the
oscillation parameters in the fit, are called rules in the GLoBES AEDL language; the signal
and background contributions to these rules are called channels.

For each channel a selection efficiency ε is defined as the fraction of events that enter the oscil-
lation analysis. The same values are used in this work for the selection efficiencies of LENA and
JUNO; they follow the assumptions and investigations in [60] for the LENA detector and could
improve with the improvement of topological reconstruction techniques. The present analysis
considers only beam-related backgrounds and takes into account the detector’s inability to
distinguish a lepton from its corresponding antilepton.

νe (ν̄e) appearance The wanted signal for this rule is a so-called e-like event, defined by
the electromagnetic shower generated by the outgoing e−(e+) in a νe (ν̄e) charged current
interaction.

The backgrounds for this channel, which produce a similar signature, are:

• νe → νe, ν̄e → ν̄e: intrinsic beam contamination with electron neutrinos and electron
antineutrinos.

• Neutrino and antineutrino neutral-current interactions: they can mimic an e-like event,
for example with the production of a π0.

• ν̄e (νe) events from oscillation during PF (NF) beam mode.

• Misidentified muons.

• ντ and ν̄τ charged-current interactions with τ± decay into e± or hadrons.

We have from [3]:

τ− → e− + ν̄e + ντ (τ→e+ + νe + ν̄τ ) (electronic decay): branching ratio (BR) ∼ 17.8%

τ− → ντ + hadrons (τ+ → ν̄τ + hadrons) (hadronic decay): BR ∼ 64.8%.

It is assumed here that electronic decays produce e-like events and hadronic decays pro-
duce NC-like events.

νµ (ν̄µ) disappearance The signal signature for this rule is given by the long track of a
muon or antimuon produced by a νµ (ν̄µ) charged-current interaction (µ-like event).

The events that constitute background for this disappearance search are:

• Neutrino and antineutrino neutral-current interactions that can mimic a µ-like event.

• ν̄µ (νµ) from beam contamination in PF (NF) mode.

• ντ and ν̄τ charged-current interactions with production of µ± (branching ratio ∼ 17.4%,
assumed to produce µ− like signatures) or hadrons.

Table 5.6 summarizes the channels involved in this oscillation analysis and the corresponding
values of the selection efficiencies (multiplied by the branching ratios for the tau decays).
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Rule Channel Selection efficiency

signal νµ → νe εapp
CC 0.27

beam contamination εapp
CC 0.27

ν̄µ → ν̄e εapp
CC 0.27

neutral current εapp
NC 0.11

hadronic τ decay 0.648× εapp
NC 0.07

electronic τ decay 0.178× εapp
CC 0.05

νe appearance
background

misidentified µ-like events εapp
µ 0.01

signal νµ → νµ εdis
CC 0.90

ν̄µ → ν̄µ εapp
CC 0.90

neutral current εdis
NC 0.10

hadronic τ decay 0.648× εdis
NC 0.06

νµ disappearance
background

muonic τ decay 0.178× εdis
CC 0.16

Table 5.6: Selection efficiencies for the νe appearance and νµ disappearance channels and
backgrounds from [60]. Efficiencies for ν̄e appearance and ν̄µ disappearance are
obtained bay interchanging neutrinos and antineutrinos.
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Chapter 6

Genetic Algorithm

6.1 Introduction
Genetic algorithms (GA) are methods used to solve optimization problems by mimicking the
processes leading to biological evolution, namely natural selection, mutation and recombination
of the genes.

The main principles of genetic algorithms were first described by Holland in 1975 [68] but the
techniques and operators used to implement them are still subject of ongoing research and
there is no universal consensus over the best and most effective practices [69].

In this study an implementation of genetic algorithm has been used to find the beam setup
leading to the highest sensitivity of the LENA and JUNO detectors to CP violation. This
algorithm was chosen for this study because of the multitude of optimization parameters and
their manifold correlations.

Each candidate solution to the problem represents an individual and has a unique string of
values (chromosome) for the considered parameters (genes); the fitness of the individuals is
the value to be optimized and is evaluated simultaneously for a population of N individuals.

The first generation is composed of randomly generated individuals; their fitness is evaluated
and three main operators are applied to produce offspring and obtain a new generation:

selection: the individuals that will pass their genes to the next generation are selected, with
a probability proportional to their fitness;

crossover: it is the operator corresponding to the natural recombination of genes from parents
in reproduction;

mutation: casual alteration of one of more genes in the offspring individuals within their
range of variation.

By iterating this procedure, illustrated in Fig. 6.1, the population of individuals should be
able to evolve generation by generation towards the optimal fitness: the algorithm is said to
converge when the maximum fitness does not improve anymore (or improves very slowly).

The key to a successful implementation of the genetic algorithm lies in the balance between
the exploration of the parameters space and the exploitation of the fittest individuals [70].
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The next paragraphs will describe the definitions and the operators used in this study for the
implementation of the genetic algorithm.

Start

Initialization Evaluation
meet 

stopping 
criteria

Stop

Selection Crossover Mutation

          YES

NO 

Figure 6.1: Flow chart of the genetic algorithm.

6.2 Definition of individuals
Each individual was defined by the properties described in table 6.1. For proton energy and
beam power the top value refers to the algorithm applied to the LENA detector, while the
bottom value refers to the GA applied to JUNO. The table 6.2 shows an example of a string
representing an individual.

Parameter Unit Range Step

Proton energy E(GeV ) 1-70 1
0.5-20 0.1

Beam power P (MW ) 0.2-5 0.1
Target material Mattar Aluminium, Beryllium, Graphite, Iron, Mercury,

Molybdenum, Tungsten, Zirconium
Target diameter Dtar(mm) 1-10 0.5
Target length Ltar(cm) 20-200 1
Target position Postar(cm) -50/+50 1
Current Horn 1 I1(kA) 100-350 10

0-350
Current Horn 2 I2(kA) 100-350 10

0-350
Decay tunnel radius Rtun(cm) 50-500 10
Decay tunnel length Ltun(m) 10-500 10
Positive focussing time PHF (y) 1-9 1

Table 6.1: Parameters defining the individuals and their range of variation for LENA and
JUNO

ID Gen E P Mattar Dtar Ltar Postar I1 I2 Rtun Ltun PHF fitness

3334395 3 25 4.4 Zirconium 5.5 100 1 130 230 390 360 9 0.0097

Table 6.2: Example of an individual’s representation.The elements to the right of the double
line are called the genes and constitute the chromosome of the individual.
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Each generation was populated with 50 individuals; the first generation was created by picking
for each gene a random value within the intervals shown in 6.1.

6.3 Fitness evaluation
To evaluate the fitness of an individual, its genes are used as parameters of a beam setup
in a Monte Carlo simulation performed with the package Geant4. The obtained fluxes for
electron- and muon- neutrinos and antineutrinos are then used as inputs in the calculation of
the sensitivity to CP violation performed with GLoBES (see. chapter 5).

The value of the individuals’ fitness function is directly depending on the ∆χ2 as defined in
chapter 5. For the optimization of the beam for LENA the definition of fitness is given by
Equation 6.2.

T (δCP ,∆χ
2
T ) =





1, if ∆χ2(δCP ) > ∆χ2
T

0, else
(6.1)

f(nσ) = f(n2) =
1

2π

∫ 2π

0
T (δCP , n

2)dδCP . (6.2)

f(nσ) is here defined as the fraction of δCP values for which the no-CP-violation hypothesis
can be excluded with a nσ confidence level. An example of T (δCP ,∆χ

2
T ) with χ2

T = 9 is
illustrated in Figure 6.2.

The exclusion fraction at 3σ, i.e.f(3σ) is applied to the fitness definition for the LENA beam
optimization.

Using f(3σ) as an individual’s fitness value would give a direct connection to the relevant
goal of the study but would not allow to distinguish between individuals for which f(3σ) is
very small: for this reason, f(3σ) is used as the fitness value for an individual only if it is
f(3σ) > 0.1; otherwise the fitness value is defined as the maximum ∆χ2 multiplied by 0.01, as
in 6.3:

fitness = F =





f(3σ), if f(3σ) > 0.1

0.01 ·∆χ2
max, else

(6.3)

6.4 Selection method
The step following the fitness evaluation for a generation n is the selection of the individuals
for reproduction, so that a new generation n+ 1 of individuals can be created.

The selection method adopted in this work is a combination of the classical methods truncation
selection [71] and proportional selection method, also known as roulette wheel selection [72]:
all the invididuals are sorted according to their fitness value; a number of individuals is then
selected to generate the next population, so that their fitness values add up to 90% of the total
fitness of the population (as in the truncation selection method). The reproduction rate for
each selected individual is proportional to the ratio between the individual’s fitness and the
total fitness of the selected individuals (as in the roulette wheel selection).
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Figure 6.2: Definition of f(3σ). The red line represents T (δCP ,∆χ
2
T ) with ∆χ2

T ) = 9.

This selection method is illustrated in Fig. 6.3.

0.706 a

→

a

→

a
0.392 b b a
0.333 c c a
0.235 d d a
0.196 e e b
0.078 f 1.863 b
0.059 g 90% c
0.041 h c
0.020 i d
0.010 j e

Figure 6.3: Example of selection from a 10 individuals population: individuals (letters) are
sorted by fitness (numbers) and selected up to 90% of total fitness. The number
of copies for each selected individuals is proportional to their weighted fitness.

In the selection process the principle of elitism was applied to accomplish survival of the fittest
i.e. exploitation of the best individual: in each iteration the best individual of its generation
was kept unchanged once in the next generation, not undergoing either crossover or mutation.

6.5 Crossover
Crossover is the operator that recombines the parents’ genes to generate the offspring. In the
traditional single point crossover two individuals are chosen as a couple of parents; a crossover
point in their string of genes is chosen and their genes are swapped in the offspring from that
point (see Fig. 6.4)

In this work a different approach was used: for each gene in the chromosome, the values for all
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a 1 3 1 2 1 3
b 1 1 2 1 1 2

↓

c 1 3 1 1 1 2
d 1 1 2 2 1 3

Figure 6.4: Principle of single point crossover: the individuals ”a” and ”b” are selected as a
pair of individuals and a crossover point is chosen; the offsping individuals ”c”
and ”d” will inherit part of their chromosome from parent ”a” and the other
from parent ”b”.

of the individuals were part of a gene pool, where they were shuffled and randomly reassigned
to the individuals in the population (see Fig. 6.5). With increasing generation number the
gene pool is more and more closely related to the most successful individuals, abiding by the
exploitation principle.
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a 1 3 1 2 1 3
a 1 3 1 2 1 3 3 2 k 1 2 . . . .
a 1 3 1 2 1 3 3 3 a 1 3 . . . .
a 1 3 1 2 1 3 3 1 i 2 1 . . . .
b 1 1 2 1 1 2 1 3 l 3 3 . . . .
b 1 1 2 1 1 2 1 3 m 1 3 . . . .
c 3 2 3 3 1 1 2 2 c 3 2 . . . .
c 3 2 3 3 1 1 2 1 n 1 1 . . . .
d 2 1 3 2 2 1 1 1 o 3 1 . . . .
e 2 2 1 1 3 3 2 2 e 2 2 . . . .

Figure 6.5: Principle of shuffling crossover. In agreement with the elitism principle the indi-
vidual ”a” is not subject to crossover.The individuals identified by an italic letter
are temporary and will change with crossover and mutation.

6.6 Mutation
The mutation operator is used to enable exploration of the parameter space and ensure diversity
in the population.

At least ten individuals in each generation were subject to the mutation of three genes.

After the crossover operation it is still possible to have some number of identical individuals in
the population, from the initial replication of the best individuals of the previous generation;
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in this study all the identical individuals (but one copy of the fittest, according to elitism)
were subject to mutation; if there were less then i < 10 identical individuals from crossover,
10− i more individuals were chosen for mutation.

All the non-identical individual to be mutated, the three mutated genes and the new values
assigned to them were randomly chosen. The process of mutation is illustrated in Fig. 6.6

a 1 3 1 2 1 3

→

a 1 3 1 2 1 3
k 1 2 1 2 1 3 k 1 2 1 2 1 3
a 1 3 1 2 1 3 s 2 3 1 2 3 3
i 2 1 1 3 1 1 i 2 1 1 3 1 1
l 3 3 2 1 2 1 l 3 3 2 1 2 1

m 1 3 2 3 1 3 t 1 3 3 2 1 3
q 3 2 3 2 1 2 q 3 2 3 2 1 2
n 1 1 3 1 3 1 u 1 1 2 1 2 1
o 3 1 1 2 1 3 v 3 3 1 2 1 1
r 2 2 3 1 1 2 r 2 2 3 1 1 2

Figure 6.6: Example of mutation: The individual a is mutated because identical to ”a”. Two
random genes are mutated from a and from the randomly chosen individuals m,
n, o.

In the end of an iteration of the algorithm a new population was generated which, if the
algorithm was successful, had a better average fitness than the previous generation, as in
Figure 6.7.

Gen  n Gen  n+1

0.706 a

→

u 0.799

0.392 b t 0.750

0.333 c a 0.704

0.235 d l 0.427

0.196 e k 0.383

0.078 f s 0.339

0.059 g v 0.251

0.041 h i 0.216

0.020 i r 0.121

0.010 j q 0.061

Figure 6.7: A comparison is shown between the generation n and the generation n+1, ob-
tained after one complete iteration of the algorithm through the steps shown in
Figg. 6.3, 6.5, 6.6.
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6.7 Behaviour of the algorithm

6.7.1 Effects of statistical fluctuations

Statistical fluctuations of the simulations conflict sometimes with the elitism principle: ree-
valuation of the fittest individual of the previous generation could result in a worse fitness -
this explains occasional setbacks in the maximum population fitness.

Figure 6.8 shows two examples of runs of GA on simulations whose outcomes have different
standard deviations of the fitness (deriving for example from a different number of simulated
events).

Figure 6.8: Examples of GA runs eith small (Run x) and large (Run y) statistical fluctuations
of the fitness.

For each run four individuals of the same generation are shown, with their actual fitness drawn
from the respetctive probability distribution. In the Run x example, considering the mean
values of the distributions, the fitness ranking would be 1 (〈F〉 = 5), 2 (〈F〉 = 5), 3 (〈F〉 = 4),
4 (〈F〉 = 3); the values drawn by the simulations, represented in the picture by the dots, lead
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to the ranking 3 (F = 5.4), 1 (F = 5.0), 4 (F = 4.8), 2 (F = 4.5). In the next generation the
winner, Individual 3, would be reevaluated, with a high probability of performing worse and
yielding a fitness F < 5.4.

The individuals from Run y have wider underlying fitness distributions, making larger fluc-
tuations more probable; this causes a decrease in the algorithm’s sensitivity to small fitness
differences.

Since the algorithm is set to favour the highest fitness values, overperforming individuals
(delivering a fitness F > 〈F〉) are more likely to be selected for the next generation, making
GA less efficient.

Moreover, the selection of overperforming individuals leads to a bias in the winner fitness values
correlated with the width of the probability distribution (see chapter 7).

6.7.2 Local optimization maxima

Despite GA being a generally effective algorithm, there is no guarantee for it to reach the true
global fitness maximum: given the complexity of the parameter landscape it is not surprising
for a run to dwell around a local fitness maximum, as it is not surprising for it to suddenly
proceed towards the global best as a consequence of a fortunate mutation (see Figure 6.9 for
an example).
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Figure 6.9: Example of GA iteration running into a local maximum: the black markers
indicate the evolution of a run normally reaching the maximum fitness; the red
markers belong to a run dwelling in a local maximum until a sudden mutation
leads it to the best configuration.
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6.8 Implementation
The simulation of the neutrino fluxes and the calculation of the sensitivity to CP violation were
performed as a single process of fitness evaluation, lead simultaneously for all the individuals
in a generation with parallel computing in the Condor [73] cluster of RWTH Physics Institute.

Each individual is identified by a number obtained as the md5 hash of the parameter string
(see Table 6.2).

In order to avoid heavy slowing down of the algorithm performance due to computing time
fluctuations (e.g. suspended cluster jobs), the population size was set to 50 individuals and
the selection process was allowed to start when at least 48 of the individuals’ fitnesses were
evaluated. In this way the slowest individuals were discarded in the process, in spite of the
possibility for them to be the fittest individuals in the generation.

Due to limitations of the computing time, each run of the algorithm was set to end after
Generation 100; this number seemed to be sufficient in most cases to reach convergence to the
maximum fitness.
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Chapter 7

Results

This chapter describes the results of the search for the best neutrino beam setup configurations
for CP violation studies with LENA and JUNO at the considered baselines.

7.1 Optimization of the ESS-LENA neutrino beam
The initial idea for this work was to assess LENA’s sensitivity to CP violation using a neutrino
beam from the ESS proton accelerator, optimizing all the parameters but proton energy and
beam power, fixed by ESS design to Ep = 2GeV,P = 5MW.

The results of this optimization are shown in Figure 7.1 for two iterations of genetic algorithm.
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Figure 7.1: Fitness of each generation’s best individual (beam configuration) for two runs of
genetic algorithm for the optimization of a neutrino beam for LENA from ESS;
Ep = 2GeV,P = 5MW.

The definition of fitness in this case is not the definition given in section 6.3 but it is simply
given by the maximum of the test statistics: F = max(∆χ2).

The extremely small values of f reached by the simulations indicate that LENA would have no
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sensitivity to CP violation with a neutrino beam as the one obtained with the proton energy
and beam power set by the ESS design, independently of the optimization of the other beam
parameters. For this reason we have in the next step discarded the ESS beam design and tried
to estimate the sensitivity to CP violation with an optimization of all the parameters, including
proton energy and beam power, for the same baseline ESS-LENA (Lund-Pyhäsalmi).

7.2 Beam optimization for the LENA detector
Since genetic algorithm is not always able to find the best solution(s) but may converge on a
local maximum of fitness (see chapter 6), ten iterations (runs) of the algorithm were performed,
each evolving for 100 generations.

Because of limitations on computing time, the number Nsim of simulated events was not the
same for all the runs but went from 2 · 103 to 2 · 104 , as described in Table 7.1.

Run 1, 2, 3 4, 5, 6 7, 8 9, 10

Nsim 2000 5000 10000 20000

Table 7.1: Number of simulated events for each iteration (run) of genetic algorithm for LENA.

Figure 7.2 Shows the evolution of the beam optimization with increasing fitness values for the
ten runs, while Figure 7.3 focuses on the last 30 generations of each run; the lines indicate the
three runs with the lowest and the two runs with the highest number of simulated events.
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Figure 7.2: Fitness of each generation’s best individual (beam configuration) for ten runs
of genetic algorithm for the optimization of a neutrino beam for LENA. Fitness
here is defined as in Equation 6.3.
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Figure 7.3: Zoom of Figure 7.2 for the last 30 generations of each run of the optimization
for LENA. The lines indicate the runs with the lowest and the highest number of
simulated events. The colours here correspond to the colour scheme in Figure 7.2

.

It can be seen from the figures that all the runs except for Run 7 converge on similar values
for the maximum exclusion fraction at 3σ.

Figure 7.3 also shows that runs with the lower Nsim have wider fluctuations, as expected
according to the mechanism explained in section 6.7.

The average fitness (sensitivity) value reached by the best individuals (winners) in generations
71 to 100 are summarized by the blue markers in Figure 7.4, with the error bars indicating
the corresponding standard deviation. The red markers indicate the average fitness out of
10 simulations of the fittest individual (same beam setup configuration) of generation 100
(corresponding to the last point on the right in Figure 7.2) and the relative standard deviation
in the error bars; the error for these measurements goes from ∼ 4% for Runs 1, 2, 3, with 2000
simulated events, to ∼ 1% for Runs 9, 10, with 20000 simulated events.

The algorithm’s behaviour in section 6.7 can also explain why the blue markers look higher
than the red markers: the genetic algorithm pushes by nature towards high values of the
fitness figure, whether they come from a real goodness of the configuration or from a casual
fluctuation towards the high end of the fitness distribution; blue markers are given by an
average of ”winners” (of real or ”fictitious” good beam configurations), that are always pushed
towards the upper limits of the distribution given by the red markers. This also causes the high-
statistics runs to have lower average fitnesses in the blue graph, since for them the individuals’
fitness distribution is narrower (smaller error bars in the red graph).

For this reason, in order to have a true more reliable estimate of the maximum sensitivity, it
was chosen to consider individuals in the last generations of Runs 9, 10.
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Figure 7.4: The blue markers indicate the average fitness and standard deviation of the best
individuals (configurations) in the generations from 71 to 100. The red markers
indicate the average fitness and standard deviation of ten simulations of the best
individual in Generation 100.

7.2.1 Best beam setup configurations for LENA

The histograms in Figure 7.5 and Figure 7.6 show the distribution of the LENA beam configur-
ation parameters for the winner individuals in Generation 100 for every run. See Appendix A
for the same histograms for Generation 71 to Generation 100. The colour scheme is the same
as in Figure 7.2.

It can be noted that the histograms relative to Run 7 are for many parameters (proton energy,
target material and target diameter) quite displaced from the bulk of the distributions for the
other runs: this is consistent with the generally worse sensitivity resulting from this run (see
Figure 7.2).

The most favourable solutions also have a very large tunnel, both in length and radius: to
verify the impact of these parameters one might perform a scan on them leaving the other
parameters unchanged to determine the resulting variation of fitness.

The most favourable values for the proton energy and the beam power are close to the upper
limits of the allowed ranges, with mean values around 50GeV and 4.9MW respectively.
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Figure 7.5: Distribution of the LENA beam configuration parameters for the winner individu-
als in generation 100 for each run (see also Figure 7.6). Here the distribution of
proton energy, beam power and target-related parameters is illustrated.
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Figure 7.6: Distribution of the LENA beam configuration parameters for the winner indi-
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The favourite target material seems to be Molybdenum, not a low-Z element, with a diameter
of about 4mm; the target’s distance to the first horn is distributed from -40cm to -20cm: the
negative distance indicates that the target should be inside the first horn.
The first horn would require a current of about 300kA to perform an effective focusing, together
with a ∼200kA current circulating in the reflector.
The recommended size of the decay tunnel according to this optimization would be quite large
both in radius (4.5m) and in length (450m).
With a running time distribution of 4y for PF mode and 6y for the NF mode, sensitivity to
CP violation at 3σ level would be reached by the optimization here presented for 57% of the
δCP range.

7.2.2 A good beam setup: an example

The best setup from Generation 100 of Run 10 can be taken as an example of good configur-
ation; its parameters are shown in Table 7.2.

ID Gen E P Mattar Dtar Ltar Postar I1 I2 Rtun Ltun PF fitness

GeV MW mm cm cm kA kA cm m y f(3σ)

1694905 100 44.0 4.9 Molybdenum 4.0 158.0 -31.0 290 190 460 470 3 0.570592

Table 7.2: Example of a good configuration for the LENA beam.

A peculiarity of this setup configuration is a very long Mo target (158cm), positioned deeply
inside the horn.

The beam neutrino spectra produced with this setup are shown in Figure 7.7, while Table 7.3
gives the total number of neutrinos produced by the setup configuration #1694905, with
6.95077 · 1021p.o.t./y. The flux is normalized to 1MeV binning on a 100m2 surface at a distance
of 100km.
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Figure 7.7: Spectra of the neutrinos produced in the beam configuration #1694905 in positive
focusing mode (left) and negative focusing mode (right). The flux is normalized
to 1MeV binning on a 100m2 surface at a distance of 100km.
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PF NF

νµ 9.19314e+ 15 93.8372% 4.44964e+14 5.03408%

ν̄µ 4.5714e+ 14 4.66617% 8.29717e+15 93.8697%

νe 1.36765e+ 14 1.39601% 1.06481e+13 0.120467%

ν̄e 9.85528e+ 12 0.100596% 8.62434e+13 0.975711%

Table 7.3: Total number of ν produced in the beam configuration #1694905.

Figure 7.8 shows the reconstructed energy spectra for the selected configuration for the νe
appearance search in the positive focusing mode and for the ν̄e appearance in the negative
focusing mode.
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Figure 7.8: Reconstructed energy spectra for the νe appearance search (PF mode, left) and
for the ν̄e appearance (NF mode right). The bin width corresponds to the bin
width in the energy migration matrices.

7.2.3 Effect of beam contamination

In order to test the influence of the focusing system on the total sensitivity, a test was performed
by artificially removing the ν̄µ (νµ), νe ν̄e background components from the neutrino fluxes
obtained from the simulation of configuration #1694905.

The results of this test are shown in Figure 7.9 and Figure 7.10: the former illustrates the
test statistics ∆χ2 for each possible true δCP , while the latter shows the Fraction of the δCP
interval that would exclude CP violation as a function of the confidence level for the exclusion
of the no-violation hypothesis.

It can be seen from that Figure 7.9 that in the case of a pure νµ/ν̄µ flux the peak value for
∆χ2 would have a 20% increase relative to the default configuration with normal backgrounds.
Consequently, the δCP exclusion fraction at 3σ level would increase from 57% to almost 62%
with the pure beam.
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Figure 7.9: Value of the test statistics ∆χ2 for each possible true δCP for the configuration
#1694905 (see Table 7.2) from Run 10, generation 100 of the LENA beam op-
timization. The red curve refers to the configuration as simulated in the run,
while the green curve refers to the ideal scenario of a pure νµ beam (ν̄µ in NF
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7.3 Beam optimization for the JUNO detector
The optimization of the beam to JUNO was performed by taking 11 runs of the genetic
algorithm, here too evolving for 100 generations (see Figure 7.11).

Since the sensitivity to CP violation reached in this optimization was so small, the fitness value
was not defined according to the definition in chapter 6 but was set to coincide with the peak
value of the test statistics: F ≡ max(∆χ2).

In the case of the optimization for JUNO, Run 10 was not able to perform to the best fitness
in the given number of generations, while Run 4 and Run 6 exhibit a sudden ”jump” from a
local maximum to the global maximum.

In this case the number of simulated events was set to Nsim = 2 · 104 for every run; this causes
the fluctuations of the fitness values to be more homogeneous across the runs, as can be seen
in Figure 7.12. Figure 7.13 shows that σF

F ∼ 4% for the JUNO beam with Nsim = 2 · 104.

Figure 7.11: Fitness of each generation’s best individual (beam configuration) for 11 runs of
genetic algorithm for the optimization of a neutrino beam for JUNO. Fitness is
here defined as F ≡ max(∆χ2).
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Figure 7.12: Zoom of Figure 7.11 for the last 30 generations of each run. The lines indicate
here the runs with the lowest and the highest average fitness values.
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Figure 7.13: The blue markers indicate the average fitness and standard deviation of the
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markers indicate the average fitness and standard deviation of ten simulations
of the best individual in Generation 100.
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7.3.1 Best beam setup configurations for JUNO

The histograms in Figure 7.14 and Figure 7.15 show the distribution of the JUNO beam
configuration parameters for the winner individuals in Generation 100 for all the runs. See
Appendix A for the same histograms for Generation 71 to Generation 100.

In this case, too, the non-effective GA run, Run 10, differs from the higher-fitness runs in
almost all of the parameters: its proton energy at 11GeV is one order of magnitude higher
than the most favourable 1GeV.

The beam power is pushed to the border of the optimization interval, indicating that an ever
bigger power would maybe lead to better results; the same can be noted for the current in the
first horn.

The most favourable target material for this low-energy beam is graphite and the distance
between the target and the first horn is negative, indicating that the target is at least partially
inside the horn.

The running time is 9y (out of 10y total) in the positive focusing mode, indicating a preference
for the νµ beam.

7.3.2 A “good” beam setup: an example

The best setup from Generation 100 of Run 3 can be taken as an example of good configuration;
its parameters are shown in Table 7.4.

ID Gen E P Mattar Dtar Ltar Postar I1 I2 Rtun Ltun PF fitness

GeV MW mm cm cm kA kA cm m y max(∆χ2)

12838477 100 1.2 4.9 Graphite 8.5 159.0 -40.5 340 120 360 240 9 6.06883

Table 7.4: Example of a good configuration for the JUNO beam.

Figure 7.16 and Table 7.5 illustrate the neutrino spectra produced from CSNS in the simulation
with the beam setup #12838477 and the integrals of the neutrino fluxes, respectively.

PF NF

νµ 4.27641e+ 14 95.3454% 2.0943e+ 13 28.8894%

ν̄µ 1.15574e+ 13 2.57681% 5.06908e+ 13 69.9242%

νe 9.29506e+ 12 2.07239% 1.59976e+ 11 0.220676%

ν̄e 2.42693e+ 10 0.005411% 7.00145e+ 11 0.965799%

Table 7.5: Total number of ν produced in the beam configuration #12838477.

Figure 7.17 shows the reconstructed energy spectra for the selected configuration for the νe
appearance search in the positive focusing mode and for the ν̄e appearance in the negative
focusing mode.
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Figure 7.14: Distribution of the JUNO beam configuration parameters for the winner indi-
viduals in generation 100 for each run (see also Figure 7.15). Here the distribu-
tion of proton energy, beam power and target-related parameters is illustrated.
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Figure 7.15: Distribution of the JUNO beam configuration parameters for the winner indi-
viduals in generation 100 for each run. Here the distribution of horn currents,
tunnel-related parameters, positive focusing time and resulting fitnesses values
is illustrated.
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Figure 7.16: Spectra of the neutrinos produced in the beam configuration #12838477 in
positive focusing mode (left) and negative focusing mode (right). The flux is
normalized to 1MeV binning on a 100m2 surface at a distance of 100km.
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Figure 7.17: Reconstructed energy spectra for the νe appearance search (PF mode, left) and
for the ν̄e appearance (NF mode right). The bin width corresponds to the bin
width in the energy migration matrices.

7.3.3 Effect of beam contamination

The results of this test are shown in Figure 7.18 and Figure 7.19: as in subsection 7.2.3, the
former illustrates the test statistics ∆χ2 for each possible true δCP , while the latter shows the
fraction of the δCP interval that would exclude CP violation as a function of the confidence
level for the exclusion of the no-violation hypothesis. It can be seen from that Figure 7.18 that
in the case of a pure νµ/ν̄µ) flux the peak value for ∆χ2 would have a 20% increase relative to
the default configuration with normal backgrounds. Consequently, the δCP exclusion fraction
at 2σ level would increase from 30% to almost 37% with the pure beam.
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Figure 7.18: Value of the test statistics ∆χ2 for each possible true δCP for the configuration
#112838477 (see Table 7.4) from Run 3, generation 100 of the JUNO beam
optimization. The red curve refers to the configuration as simulated in the run,
while the blue curve refers to the ideal scenario of a pure νµ beam (ν̄µ in NF
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σN
0 1 2 3 4 5

=
0 

ex
cl

us
io

n 
fr

ac
tio

n
C

P
δ

0

0.2

0.4

0.6

0.8

1
#12838477 pure beam

#12838477

Figure 7.19: Fraction of the δCP interval that would exclude CP violation as a function of
the confidence level for the exclusion of the no-violation hypothesis. The red
curve refers to the configuration #12838477 as simulated in the run, while the
green curve represents the ideal case of a pure νµ/ν̄µ beam.

70



Chapter 8

Conclusions

Neutrino physics is an important topic in present research because of the great interest in
both the intrinsic properties of these elementary particles and in their role as messengers from
terrestrial and extraterrestrial sources.

Among the intrinsic properties of neutrinos the phenomenon of flavour oscillation is the subject
of many experimental investigations that try to perform precise measurements of its many
parameters: among them, the value of the CP-violating phase δCP and the neutrino mass
hierarchy are still unknown.

This thesis focused on the determination of CP violation in neutrino oscillation with the use of
neutrino beams to the liquid-scintillator neutrino detectors LENA (50kt detector in Pyhäsalmi,
Finland) and JUNO (20 kt detector in Jiangmen, China).

In the first part a simulation of a neutrino beam was built and the sensitivity to CP violation
evaluated for a given beam configuration on the basis of the detectors’ properties. The beam
simulation was tested by the reproduction of neutrino fluxes from Institute of High Energy
Physics (IHEP) (Protvino, Russia); the comparison of the results with previously published
simulation results of the same beam setup configuration [57] confirmed the reliability of the
simulation tools used in this work.

In the second part of the thesis a genetic algorithm was implemented in order to optimize the
beam configuration so to reach the highest sensitivity to CP violation for LENA and JUNO at
the chosen baselines. The optimization parameters were the proton energy and beam power,
the target material and size, the current circulating in the focusing elements, the decay tunnel
size and the time of operation in the positive focusing mode (producing a νµ beam) on a total
of 10y running time. The geometry of the focusing system was not considered for optimization.

Due to statistical fluctuations and the (unknown) intrinsic topology of the parameter space,
the optimization algorithm cannot pinpoint ONE optimal configuration of the beam setup but
can only suggest more or less narrow ranges for each parameter.
The results of the simulations indicate that:

• a neutrino beam from the designed European Spallation Source (ESS, in Lund, Sweden)
proton accelerator (with 2GeV proton energy, 5MW beam power) to the LENA detector
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would give as a limit value for the test statistics max(∆χ2) ≤ 0.009, meaning no signi-
ficant sensitivity to CP violation.

• A neutrino beam to LENA from the same distance as ESS (1134km) would reject the
no-CP-violation values of δCP at a 3σ level for ∼ 57% of the range if produced by
protons with an energy of ∼ 50GeV and a beam power close to 5MW. The total 10y
running time of the experiment should be distributed in 3y in the positive focusing
mode (main νµ beam) and 7y in the negative focusing mode (main ν̄µ beam). The
preferred target material among the examined choices was shown to be molybdenum
(Z = 42, a = 95.95g/mol).

• A 150km accelerator-detector baseline was investigated for a beam to the JUNO detector,
equal to the distance from the China Spallation Neutron Source (CSNS in Dongguan,
China) to Jiangmen. A neutrino beam to JUNO optimized for this distance would yield
a peak value for the test statistics max(∆χ2) ∼ 6, giving a 2σ rejection of the no-CP
hypothesis for 30% of the whole δCP interval.

In this case the most favourable proton energy indicated by the algorithm is 1GeV and
the best target material is graphite.

The effect of beam contamination from background neutrino flavours was explored for both
the LENA and JUNO cases by considering a beam configuration indicated by the optimization
as one of the most favourable for the experiment’s sensitivity and artificially setting to zero
the background components of the beam, i.e. using the pure νµ flux (ν̄µ in negative focusing
mode); the 3σ exclusion fraction for LENA would increase from 57% to almost 62%, while the
2σ exclusion fraction for JUNO would increase from 30% to ∼ 37%.

Outlook

In the light of the improvements in sensitivity shown by the ”pure-beam scenario“ investigation,
a new and more detailed optimization of the neutrino beam setup should include the geometry
of the focusing system, in order to achieve an actual sensitivity closer to the aforementioned
values.

More possibilities for the target material shape could be explored, including different config-
urations for segmented targets. Technical limitations and cost/effectiveness ratios should be
considered in a realistic feasibility study; the algorithm employed in the optimization could
be implemented so as to take these factors into account in the search for the real best beam
setup.

New optimizations and studies of LENA and JUNO as far detectors for long baseline neut-
rino experiments could be performed in the future in the light of new event reconstruction
algorithms currently being elaborated, that could significantly improve the performance of
liquid-scintillator neutrino detectors in the GeV energy domain.
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Appendix A

Beam parameters distributions for
30 generations

Figure A.1 and Figure A.2 show the distribution of the LENA beam configuration parameters
for the winner individuals in generations 71 to 100 for each run.

Figure A.3 and Figure A.4 show the distribution of the JUNO beam configuration parameters
for the winner individuals in generations 71 to 100 for each run.

The colour scheme is the same as in Figure 7.2.
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Figure A.1: Distribution of the LENA beam configuration parameters for the winner indi-
viduals in generations 70 to 100 for each run (see also Figure 7.6). Here the
distribution of proton energy, beam power and target-related parameters is il-
lustrated.
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