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1. Introduction

It is now clear that direct searches for new particles at the high-energy accelerators must be
complemented by low-energy high-precision measurements. One very promising observable is
the muon anomalous magnetic moment [1]. The persistent deviation of 3—4 standard deviations
between Standard Model (SM) predictions [2, 3] and the precision BNL experiment [4] has moti-
vated a new measurement at Fermilab with the 0.14 ppm accuracy [5]. With the new experiment
under way it is necessary to improve the SM prediction correspondingly. In order to uncover
effects from quantum fluctuations caused by new physics one needs to account for the quantum
fluctuations caused by the known particles. The most difficult to determine precisely is the contri-
bution from hadrons. At present the most reliable way to account for the hadronic contributions to
(g —2) is a data-driven approach based on dispersion theory. This first-principle approach connects
the hadronic quantum fluctuations that enter (g — 2) to other observables. The relevant hadronic
contributions to (g —2) come from the hadronic vacuum polarization (HVP) and from hadronic
light-by-light scattering (HLbL). For the HVP contribution the dispersion theory relates it directly
to the total cross section of e e~ — hadrons [1].

For the HLbL a much more complicated dispersive framework is needed [6, 7, 8]. The nu-
merically most important contributions to HLbL come from the neutral pion-pole diagram [9, 10],
poles of other light pseudoscalar mesons (P = 1,1’) and two pion contributions [11]. The nec-
essary input to calculate the pseudoscalar meson pole contribution to (g —2) are transition form
factors (TFF) of the corresponding pseudoscalar mesons: Fig. 1(left). In principle the TFFs could
be measured experimentally and the status of the recent experiments is presented in the next sec-
tion. Many of the recent experimental studies of the TFFs were initially motivated by the searches
for a dark photon [12]. Recent estimates of the 7°, 7 and i’ poles contribution to HLbL using
directly the experimental data on the TFFs are given in Refs. [10, 13, 14]. Alternatively the pseu-
doscalar meson pole contribution could be obtained from a selected data on hadronic processes
using the corresponding dispersive relations. For the 7° TFF such project has been just finished
[15, 16] and for 1 and 7’ it is in progress [17]. In the dispersive framework for HLbL [7] the next
contribution is from two pseudoscalar processes, where the most important new experimental input
comes from two photon production of charged pion pairs.

2. Transition Form Factors

A transition form factor .%, p(q%, q%) is a scalar function of the four-momentum transfer squared
of the virtual photons (q%g) describing the vertex in Fig. 1(left) and defined as [18, 19]:

(P =y Y)Y =g el g3 el eyvap Fo (4 BB @2.1)
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where I'(P — yy) is the radiative width of the meson P. The most precise measurements of the 7°
radiative decay width use Primakoff process, photoproduction of pseudoscalar mesons in electric
field of nucleus. The value from the PrimEx experiment is (7.82+£0.144+0.17) eV [20]. A new
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preliminary result with improved accuracy from PrimEXII was presented on this workshop. For the
711 meson the best result for I'(1] — yy) is determined from the cross section of the e*e™ — e*e™ P
process at center-of-mass (c.m.) energy of 1 GeV by the KLOE-2 experiment where the final
electrons escape the detector at low scattering angles. This cross section is dominated by the
contributions from photons with virtualities close to zero, leading to 4.6% accuracy for the n
radiative width: (520 £20+13) eV [21].
In the following a normalized transition form factor:
_ Irldt,93)
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will be used to study the dependence on the virtualities of the two photons. The photons could be
on the mass shell, spacelike or timelike. A quantity often considered in the context of transition
form factors is the form factor slope defined as

_ dInFp(¢*,0)

b
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For n¥ it is expressed using a dimensionless parameter: a; = b0 /mfro The best experimental
result for ay is from spacelike TFF measurement by CLEO: a; = (3.26 +0.26 +0.26) - 1072 [22].
This value can be compared to a; = (3.1540.09) - 10~2 from recent dispersive calculations based
only on hadronic data [15, 16]. The slope can be generalized to
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relevant for Dalitz decays of vector mesons like ¢ — n’¢*e~. Experimental data on the slope
parameters for the slopes by(q?) (for ¢> = m% and ¢* = mé) and the by(g*) (for ¢> = 0 and
q* = mé) are shown in Table 1.

An illustration of the 7° and 1 TFFs is provided in Fig. 1 based on a simplified hadronic phe-
nomenological model [19]. In principle the necessary information could be provided by precision
data on the TFFs for arbitrary pairs of photon virtualities. The separate kinematical regions for
TFFs shown in Fig. 1 are probed by the following processes:

1. The space like region with ¢2,¢3 < 0 (virtualities of both photons are zero or spacelike) is
probed by Primakoff effect or e e~ — e~ P where two photons fuse to form a pseudoscalar
meson. Analyses to extract single off shell TFF (q% < 0 and q% = 0) for 7¥ are underway
by BESIII with preliminary results shown in Ref. [32] and by KLOE-2 [33]. Recently the
BaBar Collaboration has presented recently the first measurement of the doubly off-shell i)’
TFF [34].

2. P—yete covers4md > g2 >4m2, g5 = O region. For 1° — ye™e™ this process was studied
by NA62 [35] — ay = (3.68 £0.514+0.25)- 1072 and A2 [36] —a; = (3+1)-1072. The n
meson single Dalitz decays were recently studied by the A2 Collaboration (n — ete™y)
[26] and the NA60 Collaboration [25] (1 — u™u~y). The corresponding results for the
by (0) slope parameter are in Table. 1. The first observation of n” — ye*e™ was reported by
BESIII [37].
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bp(¢?) [GeV 2]

bgo(m2) 24402 Lepton-G [23]
bpo(m2) 22440064002 NA60 [24]
byo(m2) 2.22340.02640.037 NAG60 [25]
bpo(m2) 1.9940.21 A2 [26]
bn(q°) [GeV~?]
by (0) 1.9+04 Lepton-G [27]
by (0) 1.42 +0.21 CELLO [22]
by (0) 1.95+0.17 £0.05  NA60 [24]
by (0) 1924+ 0.35+0.13  CB/TAPS [28]
by (0) 1.934-£0.0670.050  NA60 [25]
by (0) 1.9740.11 A2 [26]
by(mg) 38+ 1.8 SND [29]
by(m3)  1.17+0.10+0.07 KLOE-2 [30]
bao(mg)  2.0240.11 KLOE-2 [31]

Table 1: Summary of the experimental data on by, (¢*) and b0 (¢%).

3. P — 2¢"2e¢ happens in the hardly visible tiny region between the positive axes and the

. e

. e

hyperbola. The process corresponds to the case when the real photons are replaced by two
dileptons and one explores the doubly virtual case with both virtualities timelike. In Ref. [38]
KLOE-2 has reported first observation of 1 — 2e*2e.

Te~ — Pycovers q% > dm?, q% = O region. In principle this process is a part of the hadronic

cross section contributing to HVP. In particular e* e~ — 7%y represents HVP process with the
lowest threshold at the c.m. energy of m . However, the cross section is low and therefore
the process is mainly of importance for the HLbL contribution. So far the it was studied
only in the scan experiments where the collider c.m. energy is tuned to a specific ¢ value to
measure the cross section. In the most relevant/important region for the muon (g — 2) this is
only possible at the Novosibirsk VEPP-2000 collider. The most recent results are from SND
detector in the 0.60 — 1.38 GeV [39] and 1.075 — 2 GeV [40] ranges.

Te~ — y* — PeTe ™ corresponds to the colourful regions to the left and right of the hy-

perbolas. It was studied directly when the c.m. of the reaction was fixed to a narrow vector
meson mass such as @, ¢ or J/y resonances. Detailed analysis of the electron-positron in-
variant mass distribution in the ¢ — Pe™ e~ decay were performed at KLOE-2 [30, 31] and
J/w — Pete™ at BESIII [41]. The process can be studied in vector meson decays regardless
the production method: in photoproduction by the A2 Collaboration: @ — 7’¢*e™ [26] and
in hadronic processes by the NA60 Collaboration: @ — u*u~z° [25]. The n° TFF was
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Figure 1: From the left: Py*y* vertex — transition form factor; various kinematical regions of the pion and
eta TFF as function of the photon virtualities q%, q% [19]. The ridges are caused by the direct coupling of
photons to vector mesons. The greyish regions top left, bottom right and inside of the hyperbola are not
experimentally accessible.

extracted for g7 = m2 and 4m? < g3 < (me — myo)? including the b0 (m2) values given in
Table 1. The directly related process e*e™ — @n® allows to probe the (mg +mzp)? < g3
region with the most recent results from the SND Collaboration [42].

In addition the decays of the pseudoscalar mesons into lepton-antilepton pair, P — [T, in-
volve two photon intermediate state. The branching fraction values provide a sensitive test for
the TFFs with doubly virtual photons since the process involves a loop where q% and q% can take
arbitrary values. The decays into the electron-positron pair are additionally suppressed by the
(approximate) electron helicity conservation. The puzzle of the observed enhanced 70 — ete™
decay rate [43, 44] is most likely explained by the higher order radiative corrections [45]. The de-
cays n(,) — eTe” were not yet observed. The best upper limits come from formation experiments
ete” — y*y* — P at VEPP-2000. The 90% C.L. upper limits are B(n — eTe™) < 7-1077 [46]
and B(n' — ete™) <5.6-1077 [47].

3. Other relevant data

Both for the spacelike and timelike region it is unlikely to obtain doubly virtual data with
appropriate precision in the near future. The processes are suppressed by powers of ¢, and by
photon propagators that scale inversely with the photon virtualities. An alternative approach to
TFFs determination is given by dispersion theory [9, 15, 16]. The 7° TFF is related to pion vec-
tor form factor and to three-pion—photon amplitude. Such contribution could be represented by
isovector and isoscalar photons as illustrated in a simplified Vector Meson Dominance diagram
in Fig. 1(center). The three-pion—photon amplitude for arbitrary photon virtualities and arbitrary
values of the two-pion Mandelstam variables are needed. The dependence on the photon virtuality
must be determined from data whereas the dependence on the Mandelstam variables is dominated
by pion rescattering and can be predicted by dispersion theory based on the available very precise
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pion-pion phase shifts [48]. The experimental input for this approach to the pion TFF is given
by the studies of the e*e™ — 777~ ¥ reaction cross section and the dynamical variables in this
three body process. In addition to the cross section studies in the context of HVP, the analysis
of ®,¢ — ntn~n° decay dynamics provides a valuable cross check of the dispersive formalism.
Until recently, surprisingly little information had been available on the @ — 77~ z° Dalitz plot.
First observation of a deviation from P-wave phase space consistent with p meson contribution was
reported by WASA-at-COSY [49]. Recently high statistics result from BESIII was released [50],
with accuracy allowing to test dispersive calculations [51, 52].

For ) and 1’ the relation between radiative and Dalitz decays is obtained in a simple, model
independent way. The precision experimental data on the radiative decays 1 () - Yyt~ are used
to predict the form factors in in the region relevant to 1 () — yete™ [53, 54, 55]. The experimental
input for n — ynt 7~ is provided by WASA-at-COSY [56] and KLOE-2 [57] and for ' — yx 7~
by BESIII [58]. To extend the predictions to other kinematic regions of the 1 and 1’ TFFs, the data
for other processes are needed e.g. eTe™ — n()n*ﬂ:_ (recent measurements from SND [59] and
BaBar [60]) or decays n(/) — tw~ete (recent study of the 1 decay at WASA-at-COSY [61]).

For the yy*) — PP processes there is recent result from Belle for the 7°7° pair production
[62]. Two photon production of £ 7~ pairs is currently analyzed at BESIII [63].
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