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Abstract

Geometry from Algebra: The Holographic Emergence of Spacetime in String Theory

by

Surya Ganguli

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Petr Hořava, Chair

In the quest for the unification of gravity with quantum mechanics, a new idea has

emerged called the holographic principle which states that gravitational physics in D space-

time dimensions can be described by a dual nongravitational theory in D − 1 dimensions.

Thus spacetime geometry is not fundamental but rather emerges holographically from a

theory obeying the algebraic laws of quantum mechanics. In this thesis we explore the

interplay between geometry and algebra implied by this principle in several new contexts.

Using the techniques of general relativity, we extend the holographic principle to Gödel

spacetimes, where we discover a possible holographic protection of chronology. Then we

study matrix models which provide a simplified toy model of holography and apply these

models to find new relations between gauge theories in six dimensions and integrable dy-

namical systems. Finally we view the geometry of M-theory orbifolds from the algebraic

perspective of infinite dimensional Lie algebras and find simple conditions obeyed by the

twisted sectors of these orbifolds.

Professor Petr Hořava
Dissertation Committee Chair
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scalar and fermion fields Φαα̇ and ψȧα̇ pick up phases when translated along
cycles of T 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 The genus-2 Riemann surface Σ2 can be represented as: (a) T 2 cut and glued
along two parallel segments at a distance α from each other; (b) holomorphic
curve inside T 4; (c) hyperelliptic curve on the x-plane, with branch points at
e1, e2, e3, e4, e5,∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 The ill-defined expression (3.37) is regularized in (3.39) by splitting the de-
nominator into little pieces, each being an integral over a T 2 centered around
the lattice point m+ nτ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 The Dynkin diagram of E10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 The Dynkin diagram of DE10. . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 The Dynkin diagram of the Z2-invariant subalgebra DE10 ⊂ E10 that is

associated with the T 5/Z2 orbifold. . . . . . . . . . . . . . . . . . . . . . . . 93
4.4 The Dynkin diagram of the D̂8 subalgebra. . . . . . . . . . . . . . . . . . . 94
4.5 The Dynkin diagram of DE18 and its subdiagrams D̂16 and D16. . . . . . . 101
4.6 The Dynkin diagram of the real form DE18(10) of DE18. The black and white

nodes determine the real form. . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7 We split the Dynkin diagram of Figure 4.6 into two sub-diagrams. The

Dynkin sub-diagrams are E10 and D8. . . . . . . . . . . . . . . . . . . . . . 105
4.8 The Dynkin diagram of the subalgebra g′ ⊂ DE18. . . . . . . . . . . . . . . 106
4.9 The Dynkin diagram of the Z2-invariant subalgebra DE10 ⊂ E10 that is

associated with the type-IA orbifold. . . . . . . . . . . . . . . . . . . . . . . 120
4.10 The Dynkin diagram of the (Z2 × Z2)-invariant subalgebra of E10 that is

associated with the (T 4/Z2) × (T 4/Z2) orbifold. . . . . . . . . . . . . . . . . 123



vii

Acknowledgments

First and foremost, I would like to thank my parents Shyam and Karobi for their

wonderful love and support throughout out my life. I am continually awed by the long and

incredible journey they have made, starting from tiny villages outside Kolkata, all the way

around the world to Singapore, England, and finally America. My dad told me once that

when I was less than a year old, he sailed on an Indian merchant marine vessel through

the Golden Gate into the San Francisco Bay, holding me in his arms. He decided then and

there that for my sake we would come to America. Little did he know then that his son

would pursue his studies years later within view of the same Golden Gate. I owe so much

to my parents for their strength and courage to make such a journey, and it is because of

their accomplishments, many made before I was even born, that I have been able to pursue

my dreams.

I am also very grateful that my advisor, Petr Hořava, decided to come to Berkeley.
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Chapter 1

Introduction

1.1 General Relativity, Quantum Mechanics, and Perturba-

tive String Theory

Our current, experimentally verified, understanding of the fundamental physical laws

underlying processes occuring in our universe rests on the twin pillars of general relativ-

ity [1]-[4] and quantum mechanics [5, 6]. Each of these theories employs very different

mathematical formalisms. While general relativity is written in the language of Lorentzian

geometry, quantum mechanics, with its Hilbert spaces and self-adjoint operator observables,

is written in the language of algebra. Straightforward attempts to unify these two theories

have failed in the past.

More specifically, the usual methods of perturbative quantum field theory, which are

adequate for the field theories of the standard model, lead to a nonrenormalizable theory

when applied to gravity. The perturbation parameter in quantum gravity is Newton’s

constant GN with dimensions of inverse energy squared. Thus the dimensionless coupling

for a process of characteristic energy scale E is GNE
2 and diverges quadratically at high

energy. Physically this means as one approaches the Plank mass MP = G
−1/2
N = 1.22×1019

Gev, or equivalently probes down to the plank length lp = M−1
P = 1.6 × 10−33 cm, a

perturbative quantum field theory of gravity will yield divergent answers.

Historically such ultraviolet divergences have signalled that the current theory is in-

complete, and new physics must emerge at small distances to soften these divergences. For

example, in the Fermi theory of weak interations, the four fermi vertex also had an in-
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verse energy squared coupling GF . At energy scales where GFE
2 ≈ 1, this divergence was

resolved by the appearance of the electroweak gauge bosons, which mediate the contact

interaction present in the four-fermi vertex. When these gauge bosons are included in the

theory, the full theory becomes renormalizable.

Given our experience with the Fermi theory, it is natural to ask if there is any modi-

fication to the perturbation expansions of both the standard model and gravity that can

both introduce new physics at short distances to soften the divergences of gravity and

unify the two theories. Remarkably, many efforts to answer this question have produced

only one consistent modification: replace the point particles of quantum field theory with

one-dimensional extended objects, or strings. This is the fundamental idea underlying

perturbative string theory [7]-[9], and this simplification almost automatically leads to con-

sistent finite perturbative quantum gravity amplitudes, as well as several other appealing

consequences including grand unified gauge groups, extra dimensions, supersymmetry, and

chiral gauge couplings.

In perturbative string theory, as the string evolves through spacetime, it traces out a two

dimensional surface or world sheet. This evolution has a Lagrangian description and leads to

a two dimensional quantum field theory on the world sheet, which itself has a perturbation

expansion parameter α′ where the tension of the string is T = 1
α′ . 1 In the spacetime

picture, α′ sets a fundamental string length scale ls =
√
α′, which is the scale at which

effects due to the extended nature of the string are first seen. Furthermore in calculating

perturbative amplitudes, one must sum over all two dimensional surfaces, including those

of higher genus. Higher genus contributions are the analog of quantum field theory loop

corrections, and are suppressed by a factor of 1/g2N
s for closed, genus N surfaces. Here gs

is a the dimensionless string coupling constant, which is actually derived from a vacuum

expectation value in the theory. Given the fundamental string parameters ls and gs, after

matching string derived amplitudes to perturbative quantum gravity amplitudes, one finds

that they match as long as the Planck scale is lp = gsls.

The fact that the perturbation expansion of string theory recovers that of gravity (and

gauge theory for open strings) is at once exciting and unsatisfactory. In principle one would

like a nonperturbative and less ad hoc approach in which the perturbative expansion in ls

1Note that α′, like GN , also has dimensions of inverse energy squared but in two dimensions such a

coupling constant is marginal as opposed to irrelevant and so the worldsheet theory does not suffer from UV

divergences.
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and gs emerges naturally. In section 1.3 we will see how this might be accomplished.

1.2 The Holographic Principle from Gravity

A possible explanation for the failure of most traditional methods to unite the geom-

etry of general relativity with the algebra of quantum mechanics may lie in the recently

discovered holographic principle [10] (see [11] for reviews) which points to a radical mis-

understanding of the fundamental degrees of freedom underlying spacetime physics. The

origin of this holographic principle arises from a careful consideration of black hole thermo-

dynamics [12, 13], which we briefly review.

A non-rotating neutral black hole, as a solution of Einstein’s equations, is characterized

by its mass M . The black hole also has an event horizon with area A and these two

quantities obey the relation

dM =
1

8π
κdA (1.1)

where κ is the surface gravity, a measure of the strength of the gravitational field at the

horizon. Einstein’s equations also predict that in any classical gravitational process, the

event horizon grows: dA > 0. Equation (1.1) bears a resemblance to the first law of

thermodynamics dE = TdS while dA > 0 is analogous to the second law: dS > 0. Hawking

put these analogies on firmer footing when he used semiclassical gravity techniques to show

that black holes are actually hot and emit thermal radiation at a temperature T = κ
2π [14].

Equating M with E, we conclude that black holes are thermal objects with an entropy

S = A
4 . One of the great successes of string theory is a microscopic derivation of this black

hole entropy for certain supersymmetric black hole solutions [15].

Armed with a knowledge of black hole thermodynamics, the holographic principle follows

almost immediately. Consider the question of how much entropy a given region of space

of volume V can support. In principle one could keep throwing in matter into the region

to increase its entropy. This process however has a limit because the matter will backreact

on the geometry of the region. After a critical mass has been thrown in, the region will

gravitationally collapse, and a black hole whose event horizon subsumes the region will

form. The entropy of the black hole will be A/4. Any original matter that was in the region

before collapse must, by the second law of thermodynamics, have an entropy less than A/4.

Based on these arguments we are forced to conclude that no region of space of volume V
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can ever support an entropy greater than an amount proportional to its surface area A.

This is the statement of the holographic principle. Note that it is in distinct contradiction

with quantum field theory which posits the existence of local degrees of freedom assigned

to each plank volume of space, and therefore predicts a maximal entropy that scales with

the volume V of space.

One may object to this argument by saying that is it is not covariant; namely a specific

region of space V was singled out, and space alone has no coordinate invariant meaning

in general relativity. Nevertheless, the above simplified argument has an extension to a

covariant holographic principle discovered by Bousso [38]. Bousso considers light sheets

emanating from any initial surface. Using only classical general relativity, he shows that

the entropy flux across the light sheets is bounded from above by the initial surface area.

The basic idea is that if more entropy flows across the light sheet, the back reaction of the

matter contributing to this entropy will cause the light sheet to contract thereby limiting

the total amount that can flow across. This effect leads to the required bound.

Ultimately, regardless of the particular technical tools used to derive entropy bounds,

all such bounds rest on two eminently reasonable assumptions. The first is that entropy

cannot be increased without an energy contribution. The second is that energy contributes

to gravitational collapse. These two facts conspire to limit the total amount of entropy in

spacetime. The fundamental relations between entropy, energy, and geometry can only be

understood within a fully quantum mechanical theory of gravity, but it is fortunate that

all we needed to know about these quantites to discover the holographic principle could be

found in the classical limit of Einstein’s equations.

In the final analysis, a comparison of the holographic principle with local quantum field

theory tells us that our current local description of spacetime physics is highly redundant.

It is natural to ask if there exists a dual, nonredundant description of spacetime physics. In

particular, does the gravitational physics in a region R of spacetime have a nonperturbative

description in a holographically dual theory that lives in one lower dimension, possibly

involving degrees of freedom related to the boundary of R? Remarkably, in certain special

cases, this dual theory has been found as we see next.
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1.3 The Holographic Principle from Gauge Theory

One the one hand, In section 1.1 we have seen that quantum mechanics and gravity

can be united in a perturbative expansion involving strings moving through spacetime. On

the other hand in section 1.2 we have seen that any fundamental nonperturbative theory of

quantum gravity should involve degrees of freedom that are far removed from the classical

concepts of metric based spacetime. These two observations can be reconciled beautifully by

the correspondence between large N gauge theories and string theory proposed by t’Hooft.

[17]

Consider for example U(N) gauge theory when N is large. In addition to the Yang-Mills

coupling constant gYM , one can do perturbation theory in a new small parameter, namely

1/N . If one writes down the Feynman diagrams of the theory in the double line notation,

where each gluon propagator has two lines corresponding to two indices in the adjoint

representation of U(N), then the diagrams which contribute to order N2−2g are exactly

those diagrams that can be embedded into a genus g Riemann surface. More precisely, the

sum of all Feynman diagrams that contribute to the partition function ZYM of Yang-Mills

theory can be grouped together to yield

ZYM =
∞∑

g=0

N2−2gfg(λYM ) (1.2)

where λYM = g2
YMN is the t’Hooft coupling and fg(λYM ) is the sum of all Feynman

diagrams that can be drawn on a surface of genus g. This expansion looks remarkably like

the perturbation expansion of a string theory. Recall from section 1.1 that each successive

surface in the genus expansion of string theory is suppressed by a factor of g2
s . Thus in

(1.2) 1
N plays the role of the string coupling gs. Then the t’Hooft coupling λYM must be

related to ls, and fg(λYM ) can be interpreted not as a sum of Feynman diagrams, but

as the partition function of a string theory on a genus g Riemann surface. So far, the

above observations are tantalizing but merely suggestive. What would be more exciting

is an independent identification of a string theory action which reproduces the amplitudes

fg(λYM ) without reference to the original gauge theory. In many cases this has now been

done.

The most famous concrete illustration of the above ideas is Maldacena’s AdS-CFT [18]

correspondence. In this case the gauge theory is N = 4 SU(N) superconformal Yang-Mills

theory living on S3×R and the string theory is the type IIB superstring living on AdS5×S5.
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The radius of curvature of AdS5 and S5 are both given by R. The precise mapping between

the string theory parameters gs, ls, and R and the gauge theory parameters λYM and N

are given by

R4

l4s
= λYM (1.3)

4πgs = λY M

N . (1.4)

Note that there is no limit of parameter space in which both these theories are weakly

coupled. When the physics of the string theory reduces to classical (gs ≪ 1) nonstringy

(ls ≪ R) spacetime physics well described by Einstein’s equations, the gauge theory is

strongly coupled (λYM ≫ 1) with many colours (N ≫ 1). Conversely, when the gauge

theory is weakly coupled (λYM ≪ 1), the AdS5 × S5 space is substring scale and all the

fluctuations of the string worldsheet must be summed over, destroying the semiclassical

spacetime picture. Also, reducing the number of colours of the gauge theory makes gs

larger, in essence making quantum effects stronger on the string theory side. Thus it is

hard to prove this duality directly. Nevertheless the AdS-CFT correspondence has passed

numerous checks and is generally believed to be correct. Indeed many now view N = 4

SU(N) superconformal Yang Mills theory as the nonperturbative definition of quantum

supergravity on AdS5 × S5.

Assuming the validity of the AdS-CFT conjecture, one might draw several lessons about

the structure of spacetime at small distances. It seems that spacetime, general relativity,

and even perturbative string theory are not fundamental in any sense, but rather represent

emergent properties of the strongly coupled dynamics of a large number of partons which

all obey the laws of quantum mechanics. From (1.4) we learn that because there are many

partons, our world at low energies is very classical as opposed to quantum mechanical. From

(1.3) we learn that because these partons are very strongly coupled, we do not see stringy

effects in our classical world. However if we could probe spacetime down to the string scale ls,

we would start seeing new states corresponding to the fluctuations of an effective, spherical

string worldsheet. But even these string quanta would not be fundamental. Rather they

would be effective quanta derived from the sum of a large number of Feynman diagrams in

the theory describing the partons. If furthermore we could probe down to lp, we would be

able to tease apart the now weakly coupled partons into groups with small numbers. In this

regime, our original spacetime language would be meaningless and the physics would best
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be described in terms of the quantum mechanics of this small number of weakly coupled

partons. Finally these partons do not even live on the original spacetime, which instead

emerges holographically from their dynamics.

1.4 Overview

The moral of the story we have seen so far is that in the battle for fundamental physics at

small distances, algebra wins over geometry; the geometry of spacetime is a derived concept

and emerges holographically from a dual theory obeying the algebraic laws of quantum

mechanics. The fact that spacetime is not fundamental can be seen from both within the

formalism of general relativity as well as through a microscopic formulation involving large

N gauge theory. In this thesis we explore the above interplay between geometry and algebra

in the context of three concerete systems.

In chapter 2 we explore the physics of holography in the Gödel universe. The main mo-

tivation for doing so is that while the AdS-CFT correspondence illustrates how holography

could work in spaces with negative cosmological constant, little is known about holography

in flat space, or deSitter spaces. With so few examples of holography at work, every addi-

tional example is precious and the geometry of the Gödel universe presents some interesting

considerations for holography. At the face of it, the Gödel universe appears inconsistent,

with closed-timelike curves going through every point, and no asymptotic infinity with which

to define S-matrices. However, taking the view point that strict geometry is misleading, we

conduct a phenomenological analysis of holography in the Gödel universe. By employing the

same light sheet technology used by Buosso to derive the holographic bound, we calculate

the location of holographic screens in the Gödel universe. We find that similar to deSitter

space, the holographic screen is observer dependent. Furthermore the screen surrounds the

observer and any closed timelike curve that starts within the vicinity of the observer must

pierce the screen before returning to the starting point. Thus holography suggests that

the spacetime geometry of the Gödel universe is not fundamental and perhaps there is a

holographic mechanism for chronology protection at work. Furthermore we show that the

Gödel universe is T-dual to a pp-wave which is in turn holographically dual to a large R

charge limit of a CFT, thus placing for the first time Gödel universes within the duality

web of string theory.
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Having shown that holography can radically reinterpret the geometry of these Gödel

spacetimes, we move on in chapter 3 to studying extremely simplified models for the holo-

graphic emergence of geometry from algebraic objects, within the context of matrix models.

These matrix models, or integrals, can be thought of as 0+0 dimensional quantum mechan-

ics, and are specified by an integral over the space of NxN matrices. Whereas in the

AdS-CFT correspondence it is very hard to evaluate the partition function of the gauge

theory, and therefore to understand the emergence of geometry, the matrix model has the

advantage that it can be solved exactly in the large N limit using a saddle point method.

In this solution one can explicitly understand how the geometry arises in the large N limit.

Basically in the saddle point approximation, the large number of eigenvalues of the matrix

fall along an interval in the complex plane in the vicinity of a critical point of the matrix

energy functional. This interval on which the eigenvalues condense can be interpreted as a

branch cut of a Riemann surface Σ, called the spectral curve. Indeed the effective force on

a probe eigenvalue in the presence of the condensed eigenvalues is a multivalued function

on the complex plane, branched over the cut and Σ is the Riemann surface for this func-

tion. If one allows fluctuations in the condensed eigenvalues away from the saddlepoint, the

Riemann surface will see this as fluctuations of effective fields living on its surface.

In particular in chapter 3 we use matrix models after the Dijkgraaf-Vafa technique [19] to

study massive vacua of 6D U(N) super Yang-Mills theories with R-symmetry twists. In this

case the geometry emerging from the matrix model is not that of spacetime, but rather that

of a Seiberg-Witten curve which encodes the physics of the 6D gauge theory. The particular

matrix models we study live on tori and as a consequence have a genus two spectral curve.

The Jacobian of this curve is closely related to a twisted four torus T in which the Seiberg-

Witten curves of the theory are embedded. We also analyze R-symmetry twists in a bundle

with nontrivial first Chern class which yields intrinsically 6D SUSY breaking and a novel

matrix integral whose eigenvalues float in a sea of background charge. Next we analyze the

underlying integrable system of the theory, whose phase space we show to be a system of

N-1 points on T . We write down an explicit set of Poisson commuting Hamiltonians for this

system for arbitrary N and use them to prove that equilibrium configurations with respect

to all Hamiltonians correspond to points in moduli space where the Seiberg-Witten curve

maximally degenerates to genus 2, thereby recovering the matrix model spectral curve. We

also write down a conjecture for a dual set of Poisson commuting variables which could
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shed light on a particle-like interpretation of the system.

After considering this simple algebraic toy model for the emergence of geometry (albeit

Seiberg-Witten geometry and not spacetime geometry), we return to the full problem of

trying to understand a possible fundamental algebraic structure underlying toroidal com-

pactifications of M-theory. Again, the hope is to understand the algebraic, holographic

description of toroidial compactifications of M-theory. M-theory [20] unifies the 5 string

theories and has eleven dimensional supergravity as its low energy limit, but beyond that

we know very little about the theory. In the absence of a detailed dynamical understanding

of M-theory, we use the next most powerful tool we have at our disposal, namely its sym-

metry properties. In the same way that isometries of AdS5 × S5 were a clue to identifying

the gauge theory dual, a detailed manifestly symmetric formulation of M theory would be

instrumental in identifying its holographic dual.

In contrast to the relatively simple case of AdS5 × S5, toroidial compactifications of

M-theory have a host of perturbative as well as nonperturbative symmetries called the U-

duality group which includes various T-dualities and S-dualities. These groups act on the

nonperturbative objects of the theory, permuting various branes and fluxes. In the fully

compactified theory on T 10, it would be useful to have a single algebraic structure which

represented all the branes and fluxes at once. Then all the duality transformations could

be understood simply as automorphisms of this structure, and various brane actions could

be written in a manifestly duality invariant form. In a recent publication [21] it was posited

that E10 provides exactly this structure. Zero modes of supergravity fields correspond to

the cartan subalgebra of E10. Fluxes correspond to real roots of E10. Branes correspond

to certain imaginary roots of E10. The U-duality group corresponds to the Weyl group of

the root lattice of E10. The masses of the branes are simply related to the norm of the

corresponding root and interactions between branes and fluxes can be classified in a duality

invariant manner by the inner product of the associated roots.

In chapter 4 we build upon this work by analyzing orbifolds of M-theory on T 10 in the

algebraic formulation. Traditionally orbifolds of string and M-theories by a symmetry group

involve truncating the spectrum of the theory to invariant states. This truncated spectrum

is often inconsistent, and through a thorough analysis of all possible quantum anomalies,

one finds that one must add a twisted sector to complete the theory. Although there is

no general principle to discover the twisted sector, we find that when these orbifolds are
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reanalyzed from the algebraic perspective of E10 they can be understood simply. Basically,

in every case a simple relation exists between the action of the orbifold group on the E10

root lattice and the root corresponding to the branes that need to be added in the twisted

sector. Indeed this relation can be used to predict the twisted sector. Furthermore the

famous Z2 orbifold of Horava-Witten [22, 23] is dual to heterotic string theory, which has

been conjectured to be related to DE18. The subalgebra of E10 invariant under this Z2

orbifold is the untwisted sector and contains, but is larger than, the algebra DE10, which is

also a subalgebra of DE18. We elucidate the relationships between the untwisted sector of

E10, DE10 and DE18. Furthermore by decomposing roots of DE18 under its DE10×SO(16)

subalgebra we arrive at a physical interpretation of some of the roots of DE18 in terms of

states of the heterotic string. Roots that fall into nontrivial reps of SO(16) correspond

to heterotic states that are in the twisted sector from the point of view of the M-theory

orbifold.

Again, the simplification of M-theory orbifolds when viewed from an algebraic perspec-

tive provides yet another example of the supremacy of algebra over geometry that is a

recurring theme in this thesis. Although a complete understanding of a nonperturbative

holographic dual of M-theory is not yet at hand (although see [24]), it is likely that a du-

ality invariant formulation of the theory and its orbifolds will be important preliminary

work towards such a goal. The further elucidation of this algebraic structure, as well as

the search for other examples of gauge/string correspondences present exciting short-term

avenues for research on the way toward the long term goal of a detailed understanding of

the emergent properties of the spacetime in which we live. It would also be interesting to

study the emergent properties of the brains that study branes.
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Appendix A

The Algebraic Geometry of Elliptic

Curves

A.1 Meromorphic functions on T
2

Consider a torus T 2 with complex structure τ (Im τ > 0). A theta function ϑ on the

torus is a quasi-periodic function, with the following periodicity conditions:

ϑ

[
a

b

]
(z + 1|τ) = e2πiaϑ

[
a

b

]
(z|τ) (A.1.1)

ϑ

[
a

b

]
(z + τ |τ) = e−πiτ−2πi(z+b)ϑ

[
a

b

]
(z|τ) (A.1.2)

An explicit formula for ϑ is

ϑ

[
a

b

]
(z|τ) =

∞∑

n=−∞

exp[πi(n + a)2τ + 2πi(n + a)(z + b)]. (A.1.3)

We can use three methods to construct meromorphic functions on T 2 from theta functions.

The first is to form ratios. ∏n
i=1 ϑ

[
ai

bi

]
(z|τ)

∏n
i=1 ϑ

[
a′

i

b′
i

]
(z|τ)

is a meromorphic function on T 2 provided
∑
ai ≡

∑
a′i,
∑
bi ≡

∑
b′imod Z. Another method

is the derivative of the logarithm of a ratio of theta function.

∂zi
ln
ϑ
[a
b

]
(z|τ)

ϑ
[
a′

b′

]
(z|τ)
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The last is the second derivative of the logarithm of a theta function.

∂zi
∂zj

lnϑ

[
a

b

]
(z|τ)

Using the transformation properties above, these can be shown to be periodic in both

directions.

Another method of constructing meromorphic functions on a T 2 involves the Weierstrass

℘-function, and its derivative ℘′. We define it as

℘(z) =
1

z2
+

∑

λ∈Λ,λ6=0

(
1

(z − λ)2
− 1

λ2

)
, (A.1.4)

where Λ = Z + τZ is the lattice defining the torus. This is even, (doubly) periodic in Λ,

analytic on C\Λ, and has a pole of order two at the points on Λ. ℘ and ℘′ satisfy the

differential equation

℘2 = 4℘3 − g2℘− g3, (A.1.5)

where g2 and g3 are constants determined by the lattice Λ (and therefore τ). Note that as

℘ is even and doubly periodic, ℘′ is odd and doubly periodic. It turns out that any doubly

periodic function F can be written as

F (z) = R1(℘) + ℘′R2(℘), (A.1.6)

with R1 and R2 rational functions. Morally one decomposes F into odd and even parts.

Two other Weierstrass functions deserve mention: the Weierstrass σ function and the

Weierstrass ζ function, the latter not to be confused with the Riemann ζ function. We

define them as

σ(z) = z
∏

λ∈Λ,λ6=0

(
1 − z

λ

)
exp

[
z

w
+

1

2

(
z

λ

)2
]

(A.1.7)

ζ(z) =
1

z
+

∑

λ∈Λ,λ6=0

(
1

z − λ
+

1

λ
+

z

λ2

)
. (A.1.8)

ζ has a simple pole with residue 1 at every point in Λ, and is analytic on C\Λ. Lastly, we
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note the relations between these various functions and their periodicity properties.

ζ(z) =
d

dz
log σ(z) (A.1.9)

℘(z) = − d

dz
ζ(z) (A.1.10)

ζ(z + n+mτ) = ζ(z) + nη1 +mη2 (A.1.11)

σ(z + n+mτ) = (−1)nm+n+mσ(z) exp

[
(nη1 +mη2)(z +

1

2
(n +mτ))

]
(A.1.12)

η1τ − η2 = 2πi. (A.1.13)

A.2 Higher dimensional Theta functions

For a higher dimensional complex torus C
g/Λ, where Λ is a lattice of rank 2g, the

analogy of the complex structure τ is a g× g complex matrix Ω. Ω must be symmetric, and

Im Ω must be positive definite. Then the higher dimensional ϑ functions are defined on C
g

as

ϑ

[
~a
~b

]
(~z|Ω) =

∑

~n∈Λ

exp[πi(~n + ~a) · Ω · (~n+ ~a) + 2πi(~n + ~a) · (~z +~b)]. (A.2.1)

Similar to the T 2 case, where we could holomorphically transform the lattice to Z + τZ, in

the g-complex dimensional case, we can view the lattice as Λ = Z
g + ΩZ

g. The periodicity

properties are also analogous. Let ~m ∈ Z
g.

ϑ

[
~a
~b

]
(~z + ~m|Ω) = e2πi~a·~mϑ

[
~a
~b

]
(~z|Ω), (A.2.2)

ϑ

[
~a
~b

]
(~z + Ω~m|Ω) = e−πi~m·Ω~m−2πi~m·(~z+~b)ϑ

[
~a
~b

]
(~z|Ω). (A.2.3)

We can use the same three methods as before to construct meromorphic functions on

T 2g = C
g/Λ using theta functions. We repeat them here in the multi-dimensional notation

for appendectical completeness.
∏n
i=1 ϑ

[
~ai

~bi

]
(~z|Ω)

∏n
i=1 ϑ

[
~ai′
~bi′

]
(~z|Ω)

(A.2.4)

is a meromorphic function on T 2g provided
∑
ai ≡

∑
a′i,
∑
bi ≡

∑
b′imod Z

g.

So are ∂zi
ln
ϑ
[
~a
~b

]
(~z|Ω)

ϑ
[
~a′
~b′

]
(~z|Ω)

and ∂zi
∂zj

lnϑ

[
~a
~b

]
(~z|Ω), (A.2.5)



A.2. HIGHER DIMENSIONAL THETA FUNCTIONS 143

for any choice of characters. Again, using the above transformation properties, these can

be shown to be periodic in all 2g directions.

These functions can be used to define functions on genus g Riemannian surfaces. Con-

sider such a Σg. There are g holomorphic 1-forms on Σg, call them ωi. Denote the canonical

basis ofH1(Σg,Z) by the 2g cycles Ai and Bi, where Ai∩Aj = Bi∩Bj = 0, and Ai∩Bj = δij .

Then we can define the g × 2g period matrix as




∫
A1
ω1 · · · ∫

Ag
ω1

∫
B1
ω1 · · · ∫

Bg
ω1

...
...

...
...

∫
A1
ωg · · · ∫

Ag
ωg

∫
B1
ωg · · · ∫

Bg
ωg



 . (A.2.6)

We can choose the ωi such that
∫
Aj
ωi = δij ; then the period matrix is in the form [I,Ω] for

the g× g identity matrix I and a g× g symmetric matrix Ω, where Im Ω is positive definite.

This similarity with the complex structure matrix in the beginning of this appendix, which

was cunningly also named Ω, is not coincidental, as we now show.

Now the columns of the period matrix are 2g vectors in C
g; these naturally form a

lattice Λ and thus induce a torus T 2g = C
g/Λ. This torus is called the Jacobian of Σg,

often denoted J (Σg). What is the relation between these two objects? The answer is given

by the Abel-Jacobi map.

Choose a p0 ∈ Σg, and consider the function µ : Σg → C
g/Λ, under which

p 7→
(∫ p

p0
ω1, . . . ,

∫ p

p0
ωg

)
. (A.2.7)

Note this is only defined up to Λ, since in choosing a contour from p0 to p we could go

around any combination of the cycles of the torus. In fact, we can generalize this as a map

from any degree 0 divisor to J . This is the Abel-Jacobi map, µ : Div0Σg → J (Σg), where

∑

i

(pi − qi) 7→
(
∑

i

∫ pi

qi
ω1, . . . ,

∑

i

∫ pi

qi
ωg

)

. (A.2.8)

As Σg is one-complex dimensional, and J is g-complex dimensional, in order to get

a surjective map we need to pick g points on Σg, say pi, i = 1, . . . , g. The Jacobi Inver-

sion Theorem states this explicitly: Given any λ ∈ J (Σg), there exist g points pi ∈ Σg

such that µ (
∑
i(pi − p0)) = λ. Moreover, these pi are generically unique. Finally, Abel’s

theorem states that if the divisor
∑

(pi − qi) is a divisor of some meromorphic function,

then µ (
∑

(pi − qi)) = 0. These two results mean the Abel-Jacobi map is an isomorphism

between the moduli space of line bundles of degree 0, Pic0(Σg), and the Jacobian J (Σg).
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As promised, this allows us to find meromorphic functions on Σg. The Abel-Jacobi

map gives us an embedding of Σg into J (Σg). By constructing meromorphic functions on

T 2g ∼= J (Σg), we can simply pull them back under the Abel-Jacobi map to get meromorphic

functions on Σg.

More complete expositions can be found in [94] and [82].
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Appendix B

Lie Algebraic Proofs

B.1 Proof that DE10 ⊂ g(inv)

We will now complete the details of the proof from S4.4.3. Using the map υ, defined in

(4.4.8), we can construct an injective homomorphism of Lie algebras,

υ̃ : DE10 → g(inv) ⊂ E10

such that

a. For any α ∈ ∆(DE10) we have υ̃(g(DE10)α) ⊂ gψ(α), and the restriction of υ̃ to g(DE10)α

is an injection. [Here g(E10)α and g(DE10)α are the root spaces of DE10 and E10, as

defined in (4.2.1).]

b. υ̃ is an isomorphism between the Cartan subalgebras h(DE10) and h(E10).

c. If α ∈ ∆Re(DE10) (a real root) then υ̃ is an isomorphism between the root spaces

g(DE10)α and gψ(α).

Proof. υ̃ can be defined naturally on the Cartan subalgebra h(DE10). Pick Chevalley gen-

erators e′i ∈ g(DE10)γi
(i = −1 . . . 8), and pick nonzero elements xi ∈ g(E10)υ(γi). Define

υ̃(e′i) = xi. The Serre relations among the e′i’s are satisfied by the xi’s. We can see this by

using the Weyl-group W (E10) to turn pairs of xi’s into simple roots. Using the invariant

bilinear forms on DE10 and on E10 we can find yi ∈ g(E10)−υ(γi) such that (xi|yj) = δij .

Pick Chevalley generators f ′i ∈ g(DE10)−γi
and set υ̃(f ′i) = yi.
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The map υ̃ is well-defined. To see that it is an injection, note that the kernel Ker υ̃ is

an ideal of DE10 that intersects h(DE10) trivially. Therefore, according to [119], Ker υ̃ = 0.

Parts (b) and (c) follow immediately from (a).

B.2 Proof that DE10 ⊂ g(com)

We now complete the missing details of Proposition 2. Set x± to be nonzero generators

of the root spaces g(DE18)±χ, and let g′ ⊂ DE18 be the smallest subalgebra that contains

the set

{e−1, f−1, · · · , e6, f6, e8, f8, x
+, x−} ⊂ DE18(10). (B.2-1)

We will now show that g′ ≃ DE10. Consider the set of positive real roots β−1, . . . , β6, β8, χ.

These roots all square to 2, and their intersection matrix is encoded in the Dynkin diagram

of Figure 4.8, which, as we saw, is the Dynkin diagram of DE10. We can therefore con-

struct a surjective map φ : DE10 → g′ that maps the Chevalley generators of DE10 to the

corresponding elements (B.2-1). We need to prove that φ is injective, i.e. that there are

no extra relations among the elements of (B.2-1) in addition to those of the Kac-Moody

algebra DE10. To see this note that {φ−1(h−1), . . . , φ
−1(h8)} generate the Cartan subalge-

bra h(DE10), and therefore the kernel of φ intersects h(DE10) trivially. But the kernel of

φ is an ideal of DE10 and a Kac-Moody algebra has no nontrivial ideals that intersect the

Cartan subalgebra trivially. (This follows from the construction in S1 of [119].) It follows

that φ is an isomorphism of algebras and DE10 ≃ g′.

B.3 Proof of Proposition 3

Proposition 3 states that for

0 6= x ∈ gγ , γ =
8∑

i=−1

kiβi ∈ ∆(DE18),

U(so(16))x ≃ Lso(16)(|k7| ˜̃Λ9).

Proof. Let ei, fi, hi (i = −1, . . . , 16) be Chevalley generators for DE18. Suppose, without

loss of generality, that k7 < 0. The element x is a linear combination of multiple commuta-
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tors of f−1, . . . , f8 and f7 appears |k7| times. Consider a particular commutator

z:= [· · · [f7, · · · [f7, · · · · · · ]]]︸ ︷︷ ︸
|k7| times

, (B.3-1)

where the other generators that appear in · · · are from the list f−1, . . . , f6, f8. so(16) com-

mutes with all these generators, and

V :=U(so(16))f7 ≃ L(˜̃Λ9)

is isomorphic to the fundamental representation of so(16) [since e7, f7, h7, e9, . . . , h16 gener-

ate a finite so(18) Lie algebra]. Note that f7 ∈ V is a lowest-weight vector (a generator of

the weight-space of ˜̃Λ9). Let V ⊗|k7| be the tensor product of |k7| copies of the fundamental

representation 16. There is a surjective map g : V ⊗|k7| → U(so(16))z generated by

v1 ⊗ v2 ⊗ · · · ⊗ v|k7| 7→ [· · · [v1, · · · [v2, · · · · · · ]]],

where the various (· · · )’s are the same series of commutators as appear in the corresponding

expression (B.3-1). This map sends f7 ⊗ · · · ⊗ f7 to z. Now set

W :=U(so(16))(f7 ⊗ · · · ⊗ f7︸ ︷︷ ︸
|k7| times

) ≃ L(|k7| ˜̃Λ9).

W is isomorphic to the irreducible representation of rank-|k7| traceless symmetric tensors.

g induces a map g′ : W → U(so(16))z, since W ⊂ V ⊗|k7|. Also, f7 ⊗ · · · ⊗ f7 ∈ W, so g′

is surjective. Since W is irreducible, g′ is an isomorphism. This proves that U(so(16))z

is isomorphic to Lso(16)(|k7| ˜̃Λ9). It is easy to extend this proof to x, which is a linear

combination of expressions like (B.3-1).

B.4 Denominator Formula for g(inv)

In this section we will present a “denominator formula” that captures the multiplicities

of g(inv) roots. Recall the denominator identity (formula (10.4.4) of [119]),

∏

α∈∆+

(1 − e−α)multα =
∑

w∈W

(sgnw)ew(ρ)−ρ,

Here, as usual in character formulas, we expand each side in a formal power series in the

formal variables e−αi . The multiplication is according to the rule e−αe−β = e−α−β . The
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sum on the right-hand side is over all Weyl-group elements w, and sgnw is the “signature” of

w – (+1) if w is a product of an even number of simple reflections and (−1) otherwise. The

weight ρ is chosen such that (ρ|α) = 1 for all simple roots α. For E10, with the assignment

of simple roots as in the Figure 4.1, we have

ρ = −30α−1 − 61α0 − 93α1 − 126α2 − 160α3 − 195α4 − 231α5 − 153α6 − 76α7 − 115α8.

We now calculate

∏

α∈∆+

(1 − e−tα)multα =
∑

w∈W

(sgnw)etw(ρ)−tρ

and
∏

α∈∆+

(1 − (−1)(α|τ)e−α)multα =
∑

w∈W

(sgnw)(−1)(τ |w(ρ)−ρ)ew(ρ)−ρ

It follows that

∏

α∈∆
(inv)
+

(1 − e−α)multα
∏

α∈∆+\∆
(inv)
+

(1 + e−α)multα =
∑

w∈W

(sgnw)(−1)(τ |w(ρ)−ρ)ew(ρ)−ρ

Multiplying by the original denominator formula, we get

∏

α∈∆
(inv)
+

(1 − e−α)2multα
∏

α∈∆+\∆
(inv)
+

(1 − e−2α)multα

=

(
∑

w∈W

(sgnw)(−1)(τ |w(ρ)−ρ)ew(ρ)−ρ

)(
∑

w∈W

(sgnw)ew(ρ)−ρ

)

.

Finally, dividing by

∏

α∈∆+

(1 − e−2α)multα =
∑

w∈W

(sgnw)e2w(ρ)−2ρ

we obtain the requisite formula

∏

α∈∆
(inv)
+

(tanh
α

2
)multα =

(∑
w∈W (sgnw)(−1)(τ |w(ρ)−ρ)ew(ρ)−ρ

) (∑
w∈W (sgnw)ew(ρ)−ρ

)

∑
w∈W (sgnw)e2w(ρ)−2ρ

(B.4-1)

where we used

∏

α∈∆
(inv)
+

(tanh
α

2
)multα =

∏

α∈∆
(inv)
+

(
1 − e−α

1 + e−α

)multα

=
∏

α∈∆
(inv)
+

(1 − e−α)2multα

(1 − e−2α)multα
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Now we can compare (B.4-1) to a similar expression for DE10. Using similar manipulations

we find

∏

α∈∆
(inv)
+

(tanh
α

2
)mult′ α =

(∑
w′∈W (DE10)(sgnw

′)ew
′(ρ′)−ρ′

)2

∑
w′∈W (DE10)(sgnw

′)e2w
′(ρ′)−2ρ′

, ρ′ ≡ ρ(DE10), (B.4-2)

where mult′ denotes DE10 multiplicities, and we used the identification ∆
(inv)
+ = ∆+(DE10),

where h(DE10)
∗ is implicitly identified with h(E10)

∗ using (4.4.8).

Using (4.2.5) and (4.4.5) we can write

ρ′ = ρ+ 8τ ′,

where τ ′ is some root such that

τ − τ ′ ∈ 2Q(E10)

so that

(−1)(α|τ) = (−1)(α|τ
′) for all α ∈ Q(E10).

Using (B.4-2) we get

∏

α∈∆
(inv)
+

(tanh
α

2
)mult′ α =

(∑
w′∈W (DE10)(sgnw

′)ew
′(ρ)−ρ+8w′(τ ′)−8τ ′

)2

∑
w′∈W (DE10)(sgnw

′)e2w′(ρ)−2ρ+16w′(τ ′)−16τ ′

∏

α∈∆
(inv)
+

(tanh
α

2
)multα =

(∑
w∈W (E10)(sgnw)(−1)〈τ

′,w(ρ)−ρ〉ew(ρ)−ρ
) (∑

w∈W (E10)(sgnw)ew(ρ)−ρ
)

∑
w∈W (E10)(sgnw)e2w(ρ)−2ρ

Let us now discuss the relation between the Weyl groups W (DE10) and W (E10). We

can identify both W (DE10) and W (E10) as subgroups of the isometry group of the dual of

the Cartan subalgebra h(DE10)
∗ ≃ h(E10)

∗.

Lemma 4. We have:

a. W (DE10) ⊂W (E10);

b. W (DE10) ≃ {w ∈W (E10): w(τ) − τ ∈ 2Q(E10)};

c. The coset W (DE10)/W (E10) is finite and has 527 elements.
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Proof. W (DE10) is generated by reflections around γ−1, . . . , γ8. Using (4.4.8), we can thus

identify W (DE10) with the subset of W (E10) that is generated by reflections around the

real roots υ(γ−1), . . . , υ(γ8). This proves part (a).

To prove (b), consider a fundamental Weyl reflection ri ∈W (DE10) around the simple

root γi. This maps to a reflection rυ(γi) ∈W (E10). We now calculate

rυ(γi)(τ) − τ = (τ |υ(γi))υ(γi) ∈ 2Q(E10),

since (τ |υ(γi)) is even. W (E10) is generated by the fundamental reflections ri, and it

therefore follows that W (DE10) ⊂ {w ∈W (E10): w(τ) − τ ∈ 2Q(E10)}.
To prove ⊃, take w ∈W (E10) such that

w(τ) − τ = 2β for some β ∈ Q(E10).

note first that

(τ |τ) = τ2 = 0 ≡ 0 (mod 2)

and therefore τ ∈ Q(inv) ≃ Q(DE10). According to Proposition 5.10b of [119], since both E10

and DE10 are hyperbolic, the Weyl groups W (DE10) and W (E10) are equivalent to a Z/2Z
1

quotient of the group of automorphisms of the respective root lattices Q(DE10) and Q(E10).

The Z/2Z quotient is the identification of the automorphisms φ,−φ ∈ Aut(Q). From part

(a) it follows that every automorphism of Q(DE10) can be extended to an automorphism

of Q(E10). Thus

q(w(α)) ≡ (w(α)|τ) = (α|w−1(τ)) = (α|τ − 2w−1(β)) ≡ (α|τ) ≡ q(α)

for any α ∈ Q(DE10) ≃ Q(inv) ⊂ Q(E10).

This proves that w preserves Q(inv) ≃ Q(DE10) and therefore

W (DE10) ⊃ {w ∈W (E10): w(τ) − τ ∈ 2Q(E10)}.

To prove (c), note that if w1, w2 ∈ W (E10) then w1(τ) − w2(τ) ∈ 2Q(E10), if and

only if w−1
1 w2(τ) − τ ∈ 2Q(E10), and so, by (b), w−1

1 w2 ∈ W (DE10). Therefore, the

map t : W (E10)/W (DE10) → Q(E10)/2Q(E10) that sends the equivalence class of w ∈
W (E10) to the equivalence class of w(τ) − τ is an injection. This proves the finiteness of

W (E10)/W (DE10).

1Here we use the notation Z/2Z ≃ Z2 to avoid any confusion with the Z2 orbifold group.
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To count the size of W (E10)/W (DE10) we need to calculate the size of the image of t.

This is most conveniently done in the basis (4.2.4). Define the set

S:={(n1, . . . , n10): ni ∈ Z,
10∑

i=1

ni ∈ 3Z,
10∑

i=1

(−1)ni ∈ {−8,−6, 0, 2, 8}}

Using (4.2.2), we see that S can be identified with a certain a subset of Q(E10). Using

(4.2.4), it is easy to check that the fundamental Weyl reflections preserve S ⊂ Q(E10). S

is therefore W (E10)-invariant. Using the explicit expressions found in S4.3, we see that

τ ∈ S. The coset S/2Q(E10) [where we use the explicit representation of Q(E10) as in

(4.2.4)] contains

(
10

9

)

+

(
10

8

)

+

(
10

5

)

+

(
10

4

)

+

(
10

1

)

= 527 elements.

Therefore, the image in Q(E10)/2Q(E10) of the map t contains at most 527 elements. To see

that it contains exactly 527 elements, recall that by Proposition 5.7 of [119] all positive prime

isotropic roots of E10 are W (E10)-equivalent to τ. Below is a list of such roots α = w(τ) [in

the basis (4.2.4)] such that t(w) = [α−τ ] (the equivalence class of α−τ in Q(E10)/2Q(E10))

exhaust all 527 possibilities.

(
10

9

)

= 10 distinct permutations of (0, 1, 1, 1, 1, 1, 1, 1, 1, 1),

(
10

8

)

= 45 distinct permutations of (2, 2, 1, 1, 1, 1, 1, 1, 1, 1) ≡ (0, 0, 1, 1, 1, 1, 1, 1, 1, 1),

(
10

5

)

= 252 distinct permutations of (2, 2, 2, 2, 2, 1, 1, 1, 1, 1) ≡ (0, 0, 0, 0, 0, 1, 1, 1, 1, 1),

(
10

4

)

= 210 distinct permutations of (2, 2, 2, 2, 2, 2, 1, 1, 1, 3) ≡ (0, 0, 0, 0, 0, 0, 1, 1, 1, 1),

(
10

1

)

= 10 distinct permutations of (2, 2, 2, 2, 2, 2, 2, 2, 4, 1) ≡ (0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

The ≡’s are (mod 2).


