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Abstract
Finite Unified Theories (FUTs) are N=1 supersymmetric Grand Uni-
fied Theories, which can be made all-loop finite, both in the dimen-
sionless (gauge and Yukawa couplings) and dimensionful (soft super-
symmetry breaking terms) sectors. This remarkable property, based
on the reduction of couplings at the quantum level, provides a dras-
tic reduction in the number of free parameters. By confronting the
predictions of SU(5) FUTs with the top and bottom quark masses
we are able to discriminate among different models, including further
low-energy phenomenology constraints, we derive predictions for the
lightest Higgs boson mass and the sparticle spectrum. Next we con-
sider gauge theories defined in higher dimensions, where the extra di-
mensions form a fuzzy space (a finite matrix manifold). We reinterpret
these gauge theories as four-dimensional theories with Kaluza-Klein
modes. We then perform a generalized à la Forgacs-Manton dimen-
sional reduction. We emphasize some striking features emerging such
as (i) the appearance of non-abelian gauge theories in four dimensions
starting from an abelian gauge theory in higher dimensions, (ii) the
fact that the spontaneous symmetry breaking of the theory takes place
entirely in the extra dimensions and (iii) the renormalizability of the
theory both in higher as well as in four dimensions. Then reversing the
above approach we present a renormalizable four dimensional SU(N)
gauge theory with a suitable multiplet of scalar fields, which via spon-
taneous symmetry breaking dynamically develops extra dimensions in
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the form of a fuzzy sphere S2
N . We explicitly find the tower of mas-

sive Kaluza-Klein modes consistent with an interpretation as gauge
theory on M4 × S2, the scalars being interpreted as gauge fields on
S2. Depending on the parameters of the model the low-energy gauge
group can be SU(n), or broken further to SU(n1) × SU(n2) × U(1).
Therefore the second picture justifies the first one in a renormalizable
framework but in addition has the potential to reveal new aspects of
the theory.

1. Introduction

The theoretical efforts to establish a deeper understanding of Nature have
led to very interesting frameworks such as String theories and Non-commu-
tative Geometry both of which aim to describe physics at the Planck scale.
Looking for the origin of the idea that coordinates might not commute we
might have to go back to the days of Heisenberg. In the recent years the
birth of such speculations can be found in refs. [1, 2]. In the spirit of Non-
commutative Geometry also particle models with non-commutative gauge
theory were explored [3] (see also [4]), [5, 6, 7, 8, 9]. On the other hand
the present intensive research has been triggered by the natural realization
of non-commutativity of space in the string theory context of D-branes in
the presence of a constant background antisymmetric field [10]. After the
work of Seiberg and Witten [11], where a map (SW map) between non-
commutative and commutative gauge theories has been described, there
has been a lot of activity also in the construction of non-commutative
phenomenological Lagrangians, for example various non-commutative stan-
dard model like Lagrangians have been proposed [12, 13]1. In particular in
ref. [13], following the SW map methods developed in refs. [16, 17, 18, 19], a
non-commutative standard model with SU(3)×SU(2)×U(1) gauge group
has been presented. These non-commutative models represent interesting
generalizations of the SM and hint at possible new physics. However they
do not address the usual problem of the SM, the presence of a plethora
of free parameters mostly related to the ad hoc introduction of the Higgs
and Yukawa sectors in the theory. At this stage it is worth recalling that
various schemes, with the Coset Space Dimensional Reduction (CSDR)
[20, 21, 22, 23, 24] being pioneer, were suggesting that a unification of the
gauge and Higgs sectors can be achieved in higher dimensions. Moreover
the addition of fermions in the higher-dimensional gauge theory leads natu-
rally after CSDR to Yukawa couplings in four dimensions. In the successes
of the CSDR scheme certainly should be added the possibility to obtain
chiral theories in four dimensions [25, 26, 27, 28, 29, 30, 31, 32] as well as
softly broken supersymmetric or non-supersymmetric theories starting from
a supersymmetric gauge theory defined in higher dimensions [33].

1These SM actions are mainly considered as effective actions because they are not
renormalizable. The effective action interpretation is consistent with the SM in [13]
being anomaly free [14]. Non-commutative phenomenology has been discussed in [15].
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The original plan of this paper was to present an overview covering the
following subjects:

a) Quantum Reduction of Couplings and Finite Unified Theories
b) Classical Reduction of Couplings and Coset Space Dimensional Reduc-

tion
c) Renormalizable Unified Theories from Fuzzy Higher Dimensions [34,

35, 36, 37]

The aim was to present an unified description of our current attempts to
reduce the free parameters of the Standard Model by using Finite Unifi-
cation and extra dimensions. However we will cover only the first and the
third subjects given the fact that there exists extensive reviews covering a
major part of the second one [21, 22]. These two topics represent different
attempts at reduction of couplings, on one hand the Finite Unified Theories
showing promising models with good phenomenology, on the other hand,
the Unified Theories from Fuzzy Higher Dimensions combining dimensional
reduction and reduction of couplings in a renormalizable theory.

2. Reduction of Couplings and Finiteness in N = 1 SUSY
Gauge Theories

Finite Unified Theories are N = 1 supersymmetric Grand Unified Theories
(GUTs) which can be made finite even to all-loop orders, including the soft
supersymmetry breaking sector. The method to construct GUTs with re-
duced independent parameters [38, 39, 40, 41, 42] consists of searching for
renormalization group invariant (RGI) relations holding below the Planck
scale, which in turn are preserved down to the GUT scale. Of particular in-
terest is the possibility to find RGI relations among couplings that guarantee
finiteness to all-orders in perturbation theory [43, 44, 45, 46, 47, 48]. In order
to achieve the latter it is enough to study the uniqueness of the solutions to
the one-loop finiteness conditions [43, 44, 45, 46, 47, 48]. The constructed fi-
nite unified N = 1 supersymmetric SU(5) GUTs, using the above tools, pre-
dicted correctly from the dimensionless sector (Gauge-Yukawa unification),
among others, the top quark mass [49, 50]. The search for RGI relations
and finiteness has been extended to the soft supersymmetry breaking sector
(SSB) of these theories [51, 52], which involves parameters of dimension one
and two. Eventually, the full theories can be made all-loop finite and their
predictive power is extended to the Higgs sector and the supersymmetric
spectrum (s-spectrum).
Here let us review the main points and ideas concerning the reduction of
couplings and finiteness in N = 1 supersymmetric theories. A RGI relation
among couplings gi, Φ(g1, · · · , gN ) = 0, has to satisfy the partial differen-
tial equation μ dΦ/dμ =

∑N
i=1 βi ∂Φ/∂gi = 0, where βi is the β-function

of gi. There exist (N − 1) independent Φ’s, and finding the complete set
of these solutions is equivalent to solve the so-called reduction equations
(REs) [39, 40, 41, 42], βg (dgi/dg) = βi , i = 1, · · · , N, where g and βg are
the primary coupling and its β-function. Using all the (N −1)Φ’s to impose
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RGI relations, one can in principle express all the couplings in terms of a
single coupling g. The complete reduction, which formally preserves per-
turbative renormalizability, can be achieved by demanding a power series
solution, whose uniqueness can be investigated at the one-loop level.
Finiteness can be understood by considering a chiral, anomaly free, N =
1 globally supersymmetric gauge theory based on a group G with gauge
coupling constant g. The superpotential of the theory is given by

W =
1
2

mij Φi Φj +
1
6

Cijk Φi Φj Φk , (1)

where mij (the mass terms) and Cijk (the Yukawa couplings) are gauge
invariant tensors and the matter field Φi transforms according to the irre-
ducible representation Ri of the gauge group G.
The one-loop β-function of the gauge coupling g is given by

β(1)
g =

dg

dt
=

g3

16π2
[
∑

i

T (Ri) − 3C2(G) ] , (2)

where T (Ri) is the Dynkin index of Ri and C2(G) is the quadratic Casimir
of the adjoint representation of the gauge group G. The β-functions of Cijk,
by virtue of the non-renormalization theorem, are related to the anomalous
dimension matrix γj

i of the matter fields Φi as:

βijk
C =

d

dt
Cijk = Cijp

∑
n=1

1
(16π2)n

γk(n)
p + (k ↔ i) + (k ↔ j) . (3)

At one-loop level γj
i is given by

γ
j(1)
i =

1
2
Cipq Cjpq − 2 g2 C2(Ri)δ

j
i , (4)

where C2(Ri) is the quadratic Casimir of the representation Ri, and Cijk =
C∗

ijk.

All the one-loop β-functions of the theory vanish if the β-function of the
gauge coupling β

(1)
g , and the anomalous dimensions γ

j(1)
i , vanish, i.e.

∑
i

T (Ri) = 3C2(G) ,
1
2

CipqC
jpq = 2δj

i g
2C2(Ri) . (5)

The conditions for finiteness for N = 1 field theories with SU(N) gauge
symmetry are discussed in [53], and the analysis of the anomaly-free and
no-charge renormalization requirements for these theories can be found in
[54]. A very interesting result is that the conditions (5) are necessary and
sufficient for finiteness at the two-loop level [55, 56].
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The one- and two-loop finiteness conditions (5) restrict considerably the
possible choices of the irreducible representations Ri for a given group G as
well as the Yukawa couplings in the superpotential (1). Note in particular
that the finiteness conditions cannot be applied to the supersymmetric stan-
dard model (SSM), since the presence of a U(1) gauge group is incompatible
with the condition (5), due to C2[U(1)] = 0. This leads to the expectation
that finiteness should be attained at the grand unified level only, the SSM
being just the corresponding low-energy, effective theory.
The finiteness conditions impose relations between gauge and Yukawa cou-
plings. Therefore, we have to guarantee that such relations leading to a
reduction of the couplings hold at any renormalization point. The nec-
essary, but also sufficient, condition for this to happen is to require that
such relations are solutions to the reduction equations (REs) to all orders.
The all-loop order finiteness theorem of ref.[43, 44, 45, 46] is based on:
(a) the structure of the supercurrent in N = 1 SYM and on (b) the non-
renormalization properties of N = 1 chiral anomalies [43, 44, 45, 46]. Al-
ternatively, similar results can be obtained [47, 48, 57] using an analysis of
the all-loop NSVZ gauge beta-function [58, 59, 60].

3. Soft supersymmetry breaking and finiteness
The above described method of reducing the dimensionless couplings has
been extended [52, 51] to the soft supersymmetry breaking (SSB) dimen-
sionful parameters of N = 1 supersymmetric theories. Important results
have been made [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]
concerning the renormalization properties of the SSB parameters, based
conceptually and technically on the work of ref. [65]. In this work the
powerful supergraph method [68, 69, 70, 71] for studying supersymmetric
theories has been applied to the softly broken ones by using the “spurion”
external space-time independent superfields [72]. In the latter method a
softly broken supersymmetric gauge theory is considered as a supersym-
metric one in which the various parameters such as couplings and masses
have been promoted to external superfields that acquire “vacuum expec-
tation values”. Based on this method the relations among the soft term
renormalization and that of an unbroken supersymmetric theory have been
derived. In particular the β-functions of the parameters of the softly bro-
ken theory are expressed in terms of partial differential operators involving
the dimensionless parameters of the unbroken theory. The key point in the
strategy of refs. [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]
in solving the set of coupled differential equations so as to be able to express
all parameters in a RGI way, was to transform the partial differential oper-
ators involved to total derivative operators [61, 62]. It is indeed possible to
do this on the RGI surface which is defined by the solution of the reduction
equations. In addition it was found that RGI SSB scalar masses in Gauge-
Yukawa unified models satisfy a universal sum rule at one-loop [67]. This
result was generalized to two-loops for finite theories [74, 75, 76], and then
to all-loops for general Gauge-Yukawa and Finite Unified Theories [63, 64].
In order to obtain a feeling of some of the above results, consider the su-
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perpotential given by (1) along with the Lagrangian for SSB terms

−LSB =
1
6

hijk φiφjφk +
1
2

bij φiφj +
1
2

(m2)ji φ∗ iφj +
1
2

M λλ + H.c., (6)

where the φi are the scalar parts of the chiral superfields Φi , λ are the
gauginos and M their unified mass. Since only finite theories are considered
here, it is assumed that the gauge group is a simple group and the one-loop
β-function of the gauge coupling g vanishes. It is also assumed that the
reduction equations admit power series solutions of the form

Cijk = g
∑
n=0

ρijk
(n)g

2n . (7)

According to the finiteness theorem [43, 44, 45, 46], the theory is then
finite to all-orders in perturbation theory, if, among others, the one-loop
anomalous dimensions γ

j(1)
i vanish. The one- and two-loop finiteness for

hijk can be achieved by [77]

hijk = −MCijk + · · · = −Mρijk
(0) g + O(g5) . (8)

An additional constraint in the SSB sector up to two-loops [74, 75, 76],
concerns the soft scalar masses as follows

( m2
i + m2

j + m2
k )

MM † = 1 +
g2

16π2
Δ(2) + O(g4) (9)

for i, j, k with ρijk
(0) �= 0, where Δ(2) is the two-loop correction

Δ(2) = −2
∑

l

[(m2
l /MM †) − (1/3)] T (Rl), (10)

which vanishes for the universal choice [77], i.e. when all the soft scalar
masses are the same at the unification point.

If we know higher-loop β-functions explicitly, we can follow the same pro-
cedure and find higher-loop RGI relations among SSB terms. However, the
β-functions of the soft scalar masses are explicitly known only up to two
loops. In order to obtain higher-loop results, we need something else instead
of knowledge of explicit β-functions, e.g. some relations among β-functions.

By means of the spurion technique [68, 69, 70, 71, 72] it is possible to derive
the following all-loop relations among SSB β-functions, [61, 62, 63, 64, 65,
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66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]

βM = 2O
(

βg

g

)
, (11)

βijk
h = γi

lh
ljk + γj

lh
ilk + γk

lh
ijl − 2γi

1lC
ljk − 2γj

1 lC
ilk − 2γk

1 lC
ijl , (12)

(βm2)ij =
[
Δ + X

∂

∂g

]
γi

j , (13)

O =
(

Mg2 ∂

∂g2
− hlmn ∂

∂C lmn

)
, (14)

Δ = 2OO∗ + 2|M |2g2 ∂

∂g2
+ C̃lmn

∂

∂Clmn
+ C̃ lmn ∂

∂C lmn
, (15)

where (γ1)ij = Oγi
j, Clmn = (C lmn)∗, and

C̃ijk = (m2)ilC ljk + (m2)j lC
ilk + (m2)klC

ijl . (16)

It was also found [73] that the relation

hijk = −M(Cijk)′ ≡ −M
dCijk(g)

d ln g
, (17)

among couplings is all-loop RGI. Furthermore, using the all-loop gauge β-
function of Novikov et al. [58, 59, 60] given by

βNSVZ
g =

g3

16π2

[∑
l T (Rl)(1 − γl/2) − 3C(G)

1 − g2C(G)/8π2

]
, (18)

it was found the all-loop RGI sum rule [63, 64],

m2
i + m2

j + m2
k = |M |2{ 1

1 − g2C(G)/(8π2)
d ln Cijk

d ln g

+
1
2

d2 ln Cijk

d(ln g)2
} +

∑
l

m2
l T (Rl)

C(G) − 8π2/g2

d ln Cijk

d ln g
.

(19)

In addition the exact-β-function for m2 in the NSVZ scheme has been ob-
tained [63, 64] for the first time and is given by

βNSVZ
m2

i
=
[
|M |2{ 1

1 − g2C(G)/(8π2)
d

d ln g
+

1
2

d2

d(ln g)2
}

+
∑

l

m2
l T (Rl)

C(G) − 8π2/g2

d

d ln g

]
γNSVZ

i .

(20)
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4. Finite Unified Theories

The first one- and two-loop SU(5) finite model was presented in [78]. Here
we will examine Finite Unified theories with SU(5) gauge group, where the
reduction of couplings has been applied to the third generation of quarks
and leptons. An extension to three families, and the generation of quark
mixing angles and masses in Finite Unified Theories has been addressed in
[79], where several examples are given. These extensions are not considered
here. Realistic Finite Unified Theories based on product gauge groups,
where the finiteness implies three generations of matter, have also been
studied [80].

A predictive Gauge-Yukawa unified SU(5) model which is finite to all orders,
in addition to the requirements mentioned already, should also have the
following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δj

i .

2. Three fermion generations, in the irreducible representations
5i,10i (i = 1, 2, 3), which obviously should not couple to the adjoint
24.

3. The two Higgs doublets of the MSSM should mostly be made out of
a pair of Higgs quintet and anti-quintet, which couple to the third
generation.

In the following we discuss two versions of the all-order finite model. The
model of ref. [49, 50], which will be labeled A, and a slight variation of this
model (labeled B), which can also be obtained from the class of the mod-
els suggested in ref. [61, 62] with a modification to suppress non-diagonal
anomalous dimensions.

The superpotential which describes the two models takes the form [49, 50,
74, 75, 76]

W =
3∑

i=1

[
1
2
gu
i 10i10iHi + gd

i 10i5i H i ] + gu
23 102103H4

+ gd
23 10253 H4 + gd

32 10352 H4 +
4∑

a=1

gf
a Ha 24Ha +

gλ

3
(24)3 , (21)

where Ha and Ha (a = 1, . . . , 4) stand for the Higgs quintets and anti-
quintets.

The non-degenerate and isolated solutions to γ
(1)
i = 0 for the models
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{A , B} are:

(gu
1 )2 = {8

5
,
8
5
}g2 , (gd

1)2 = {6
5
,
6
5
}g2 ,

(gu
2 )2 = (gu

3 )2 = {8
5
,
4
5
}g2 , (gd

2)2 = (gd
3)2 = {6

5
,
3
5
}g2 , (22)

(gu
23)

2 = {0, 4
5
}g2 , (gd

23)
2 = (gd

32)
2 = {0, 3

5
}g2 , (gλ)2 =

15
7

g2 ,

(gf
2 )2 = (gf

3 )2 = {0, 1
2
}g2 , (gf

1 )2 = 0 , (gf
4 )2 = {1, 0}g2 .

According to the theorem of ref. [43, 44, 45, 46] these models are finite to
all orders. After the reduction of couplings the symmetry of W is enhanced
[49, 74, 75].
The main difference of the models A and B is that two pairs of Higgs
quintets and anti-quintets couple to the 24 for B so that it is not necessary
to mix them with H4 and H4 in order to achieve the triplet-doublet splitting
after the symmetry breaking of SU(5). Therefore, the solutions of eq.(5)
for the Yukawa couplings are different, as can be seen from eq.(22), which
reflects in the phenomenology, as we will see in the next section.
In the dimensionful sector, the sum rule gives us the following boundary
conditions at the GUT scale [74, 75]:

m2
Hu

+ 2m2
10 = m2

Hd
+ m2

5
+ m2

10 = M2 for A ; (23)

m2
Hu

+ 2m2
10 = M2 , m2

Hd
− 2m2

10 = −M2

3
,

m2
5

+ 3m2
10 =

4M2

3
for B, (24)

where we use as free parameters m5 ≡ m53
and m10 ≡ m103 for the model

A, and m10 ≡ m103 for B, in addition to M .

5. Predictions of low energy parameters
Since the gauge symmetry is spontaneously broken below MGUT, the finite-
ness conditions do not restrict the renormalization properties at low ener-
gies, and all it remains are boundary conditions on the gauge and Yukawa
couplings (22), the h = −MC relation, and the soft scalar-mass sum rule
(9) at MGUT, as applied in the two models. Thus we examine the evolution
of these parameters according to their RGEs up to two-loops for dimen-
sionless parameters and at one-loop for dimensionful ones with the relevant
boundary conditions. Below MGUT their evolution is assumed to be gov-
erned by the MSSM. We further assume a unique supersymmetry breaking
scale Ms (which we define as the geometric mean of the stop masses) and
therefore below that scale the effective theory is just the SM.
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We now present the comparison of the predictions of the four models with
the experimental data, see ref. [81] for more details, starting with the heavy
quark masses. In fig.1 we show the FUTA and FUTB predictions for
Mtop and mbot(MZ) as a function of the unified gaugino mass M , for the
two cases μ < 0 and μ > 0. In the value of the bottom mass mbot, we have
included the corrections coming from bottom squark-gluino loops and top
squark-chargino loops [82]. We give the predictions for the running bottom
quark mass evaluated at MZ , mbot(MZ) = 2.825 ± 0.1 [83], to avoid the
large QCD uncertainties inherent for the pole mass. The value of mbot
depends strongly on the sign of μ due to the above mentioned radiative
corrections. For both models A and B the values for μ > 0 are above the
central experimental value, with mbot(MZ) ∼ 4.0 − 5.0 GeV. For μ < 0,
on the other hand, model B has overlap with the experimental allowed
values, mbot(MZ) ∼ 2.5 − 2.8 GeV, whereas for model A, mbot(MZ) ∼
1.5 − 2.6 GeV, there is only a small region of allowed parameter space at
two sigma level, and only for large values of M . This clearly selects the
negative sign of μ.

The predictions for the top quark mass Mtop are ∼ 183 and ∼ 172 GeV in the
models A and B respectively, as shown in the lower plot of fig. 1. Comparing
these predictions with the most recent experimental value Mexp

top = (170.9±
1.8) GeV [84], and recalling that the theoretical values for Mtop may suffer
from a correction of ∼ 4% [76], we see that clearly model B is singled out.
In addition the value of tan β is found to be tan β ∼ 54 and ∼ 48 for models
A and B, respectively. Thus from the comparison of the predictions of the
two models with experimental data only FUTB with μ < 0 survives.
We now analyze the impact of further low-energy observables on the model
FUTB with μ < 0. In the case where all the soft scalar masses are uni-
versal at the unification scale, there is no region of M below O(few TeV)
in which mτ̃ > mχ0 is satisfied (where mτ̃ is the lightest τ̃ mass, and mχ0

the lightest neutralino mass). But once the universality condition is relaxed
this problem can be solved naturally, thanks to the sum rule (9). Using
this equation and imposing the conditions of (a) successful radiative elec-
troweak symmetry breaking, (b) m2

τ̃ > 0 and (c) mτ̃ > mχ0 , a comfortable
parameter space is found for FUTB with μ < 0 (and also for FUTA and
both signs of μ).

As additional constraints we consider the following observables: the rare
b decays BR(b → sγ) and BR(Bs → μ+μ−), the lightest Higgs boson mass
as well as the density of cold dark matter in the Universe, assuming it
consists mainly of neutralinos. More details and a complete set of references
can be found in ref. [81].

Concerning the lightest Higgs boson mass, Mh, the SM bound of 114.4
GeV [85, 86] can be used. For the prediction we use the code FeynHiggs
[87, 88, 89, 90].

The lightest supersymmetric particle (LSP) is an excellent candidate for
cold dark matter (CDM) [91, 92], with a density that falls naturally within
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Figure 1: The bottom quark mass at the Z boson scale (upper) and top
quark pole mass (lower plot) are shown as function of M for both models.
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the range

0.094 < ΩCDMh2 < 0.129 (25)

favored by a joint analysis of WMAP and other astrophysical and cosmo-
logical data [93, 94]. Assuming that the cold dark matter is composed
predominantly of LSPs, the determination of ΩCDMh2 imposes very strong
constraints on the MSSM parameter space, and we find that no FUT model
points fulfill the strict bound of (25). Therefore, in order to get an im-
pression of the possible impact of the CDM abundance on the collider phe-
nomenology in our model, we will analyze the case that the LSP does con-
tribute to the CDM density, and apply a more loose bound of

ΩCDMh2 < 0.3 . (26)

Notice that lower values than the ones permitted by (25) are naturally
allowed if another particle than the lightest neutralino constitutes CDM.
For our evaluation we have used the code MicroMegas [95, 96].
The prediction for Mh of FUTB with μ < 0 is shown in fig. ??. The
constraints from the two B physics observables are taken into account. In
addition the CDM constraint (evaluated with Micromegas [95, 96]) is ful-
filled for the lighter (green) points in the plot, see ref. [81] for details. The
lightest Higgs mass ranges in

Mh ∼ 121 − 126 GeV, (27)

where the uncertainty comes from variations of the soft scalar masses, and
from finite (i.e. not logarithmically divergent) corrections in changing renor-
malization scheme. To this value one has to add ±3 GeV coming from
unknown higher order corrections [89]. We have also included a small vari-
ation, due to threshold corrections at the GUT scale, of up to 5% of the FUT
boundary conditions. Thus, taking into account the B physics constraints
(and possibly the CDM constraints) results naturally in a light Higgs boson
that fulfills the LEP bounds [85, 86].

In the same way the whole SUSY particle spectrum can be derived. The
resulting SUSY masses for FUTB with μ < 0 are rather large. The lightest
SUSY particle starts around 500 GeV, with the rest of the spectrum being
very heavy. The observation of SUSY particles at the LHC or the ILC will
only be possible in very favorable parts of the parameter space. For most
parameter combination only a SM-like light Higgs boson in the range of
eq. (27) can be observed.

We note that with such a heavy SUSY spectrum the anomalous magnetic
moment of the muon, (g − 2)μ (with aμ ≡ (g−2)μ/2), gives only a negligible
correction to the SM prediction. However, since the SM is not regarded as
excluded by (g − 2)μ, we still see FUTB with μ < 0 as the only surviving
model. A more detailed analysis can be found in [81].



New Prospects in Unified Theories 273

6. Concluding remarks on the Realistic Finite
Unified Theories

The finiteness conditions in the supersymmetric part of the unbroken theory
lead to relations among the dimensionless couplings, i.e. gauge-Yukawa uni-
fication. In addition the finiteness conditions in the SUSY-breaking sector
of the theories lead to a tremendous reduction of the number of the indepen-
dent soft SUSY-breaking parameters leaving one model (A) with three and
another (B) with two free parameters. Therefore the finiteness-constrained
MSSM consists of the well known MSSM with boundary conditions at the
Grand Unification scale for its various dimensionless and dimensionful pa-
rameters inherited from the all-loop finiteness unbroken theories. Obviously
these lead to an extremely restricted and, consequently, very predictive pa-
rameter space of the MSSM.

7. Unified Theories from Fuzzy Higher Dimensions
Coset Space Dimensional Reduction (CSDR) [20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33] is a unification scheme for obtaining realistic particle
models from gauge theories on higher D-dimensional spaces MD. It suggests
that a unification of the gauge and Higgs sectors of the Standard Model
can be achieved in higher than four dimensions. Moreover the addition
of fermions in the higher-dimensional gauge theory leads naturally, after
CSDR, to Yukawa couplings in four dimensions. We present a study of the
CSDR in the non-commutative context which sets the rules for constructing
new particle models that might be phenomenologically interesting. One
could study CSDR with the whole parent space MD being non-commutative
or with just non-commutative Minkowski space or non-commutative internal
space. We specialize here to this last situation and therefore eventually we
obtain Lorentz covariant theories on commutative Minkowski space. We
further specialize to fuzzy non-commutativity, i.e. to matrix type non-
commutativity. Thus, following [34, 35, 36], we consider non-commutative
spaces like those studied in refs. [5, 6, 7, 8, 9, 2] and implementing the
CSDR principle on these spaces we obtain the rules for constructing new
particle models.
Next we reverse the above approach [37] and examine how a four dimen-
sional gauge theory dynamically develops higher dimensions. The very con-
cept of dimension therefore gets an extra, richer dynamical perspective. We
present a simple field-theoretical model which realizes the above ideas. It
is defined as a renormalizable SU(N) gauge theory on four dimensional
Minkowski space M4, containing 3 scalars in the adjoint of SU(N) that
transform as vectors under an additional global SO(3) symmetry with the
most general renormalizable potential. We then show that the model dy-
namically develops fuzzy extra dimensions, more precisely a fuzzy sphere
S2

N . The appropriate interpretation is therefore as gauge theory on M4×S2
N .

The low-energy effective action is that of a four dimensional gauge theory
on M4, whose gauge group and field content is dynamically determined by
compactification and dimensional reduction on the internal sphere S2

N . An
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interesting and rich pattern of spontaneous symmetry breaking appears,
breaking the original SU(N) gauge symmetry down to either SU(n) or
SU(n1) × SU(n2) × U(1). The latter case is the generic one, and implies
also a monopole flux induced on the fuzzy sphere. The values of n1 and n2
are determined dynamically.
We find moreover explicitly the tower of massive Kaluza-Klein modes cor-
responding to the effective geometry, which justifies the interpretation as a
compactified higher-dimensional gauge theory. Nevertheless, the model is
renormalizable.
A similar but different mechanism of dynamically generating extra dimen-
sions has been proposed some years ago in [97], known under the name of
“deconstruction”. In this context, renormalizable four dimensional asymp-
totically free gauge theories were considered, which develop a “lattice-like”
fifth dimension. This idea attracted considerable interest. Our model is
quite different, and very simple: The SU(N) gauge theory is shown to de-
velop fuzzy extra dimensions through a standard symmetry breaking mech-
anism.

8. The Fuzzy Sphere
8.1. Ordinary and Fuzzy spherical harmonics
Let us start by recalling how to describe fields on the 2-sphere. The 2-sphere
is a two-dimensional manifold embedded in R3, with a global SO(3) ∼
SU(2) isometry group, defined by the equation

x2
1 + x2

2 + x2
3 = R2 (28)

for a coordinate basis xâ in R3. We define the coordinates xâ in terms of
the spherical coordinates ya = (θ, φ) and radius R by,

x1 = R sin θ cos φ, (29)
x2 = R sin θ sinφ, (30)
x3 = R cos θ, (31)

which dictates the metric of the 2-sphere,

ds2 = R2 dθ2 + R2 sin2θ dφ2. (32)
The generators of SU(2) ∼ SO(3) are the angular momentum operators Li,

Lâ = −iεâb̂ĉxb̂∂ĉ (33)

In terms of spherical coordinates the angular momentum operators are

L1 = i sinφ
∂

∂θ
+ i cos φ cot θ

∂

∂φ
, (34)

L2 = −i cos φ
∂

∂θ
+ i sin φ cot θ

∂

∂φ
, (35)

L3 = −i
∂

∂φ
, (36)
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which we can summarize as

Lâ = −ika
â∂a (37)

The metric tensor can also be expressed in terms of the Killing vectors ka
â

(defined by the above equations) as

gab =
1

R2
ka

âkb
â. (38)

We can expand any function on the 2-sphere in terms of the eigenfunctions
of the 2-sphere,

a(θ, φ) =
∞∑
l=0

l∑
m=−l

almYlm(θ, φ), (39)

where alm is a complex coefficient and Ylm(θ, φ) are the spherical harmonics,
which satisfy the equation

L2Ylm = −R2ΔS2Ylm = l(l + 1)Ylm, (40)

where ΔS2 is the scalar Laplacian on the 2-sphere

ΔS2 =
1
√

g
∂a(gab√g ∂b). (41)

The spherical harmonics have an eigenvalue μ ∼ l(l+1) for integer l = 0, 1, . . . ,
with degeneracy 2l + 1. The orthogonality condition of the spherical har-
monics is ∫

dΩ Y †
lmYl′m′ = δll′ δmm′ , (42)

where dΩ = sin θ dθdφ.
The spherical harmonics can be expressed in terms of the cartesian coordi-
nates xâ (with â = 1, 2, 3) of a unit vector in R3,

Ylm(θ, φ) =
∑
�a

f
(lm)
â1...âl

xâ1 . . . xâl (43)

where f
(lm)
â1...âl

is a traceless symmetric tensor of SO(3) with rank l.

Similarly we can expand N × N matrices on a sphere as,

â =
N−1∑
l=0

l∑
m=−l

almŶlm (44)

Ŷlm = R−l
∑
�a

f
(lm)
â1...âl

x̂â1 . . . x̂âl , (45)
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where x̂â = 2R√
N2−1

X
(N)
â are the generators of SU(2) in the N -dimensional

representation and f
(lm)
â1...âl

is the same tensor as in (43). The matrices Ŷlm

are known as fuzzy spherical harmonics for reasons explained in the next
subsection. They obey the orthonormality condition

TrN

(
Ŷ †

lmŶl′m′

)
= δll′ δmm′ . (46)

There is an obvious relation between equations (39) and (44), namely

â =
N−1∑
l=0

l∑
m=−l

almŶlm → a(θ, φ) =
N−1∑
l=0

l∑
m=−l

almYlm(θ, φ). (47)

Notice that the expansion in spherical harmonics is truncated at N − 1
reflecting the finite number of degrees of freedom in the matrix â. This
allows the consistent definition of a matrix approximation of the sphere
known as fuzzy sphere.

8.2. The Matrix Geometry of the fuzzy sphere
According to the above discussion the fuzzy sphere [98, 2] is a matrix approx-
imation of the usual sphere S2. The algebra of functions on S2 (for example
spanned by the spherical harmonics) as explained in the previous section is
truncated at a given frequency and thus becomes finite dimensional. The
truncation has to be consistent with the associativity of the algebra and
this can be nicely achieved relaxing the commutativity property of the al-
gebra. The fuzzy sphere is the “space” described by this non-commutative
algebra. The algebra itself is that of N × N matrices. More precisely, the
algebra of functions on the ordinary sphere can be generated by the coor-
dinates of R3 modulo the relation

∑3
â=1 xâxâ = r2. The fuzzy sphere S2

N
at fuzziness level N − 1 is the non-commutative manifold whose coordinate
functions iXâ are N ×N hermitian matrices proportional to the generators
of the N -dimensional representation of SU(2). They satisfy the condition∑3

â=1 XâXâ = αr2 and the commutation relations

[Xâ,Xb̂] = Câb̂ĉXĉ , (48)

where Câb̂ĉ = εâb̂ĉ/r while the proportionality factor α goes as N2 for N
large. Indeed it can be proven that for N → ∞ one obtains the usual
commutative sphere.
On the fuzzy sphere there is a natural SU(2) covariant differential calculus.
This calculus is three-dimensional and the derivations eâ along Xâ of a
function f are given by eâ(f) = [Xâ, f ] . Accordingly the action of the Lie
derivatives on functions is given by

Lâf = [Xâ, f ] ; (49)
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these Lie derivatives satisfy the Leibniz rule and the SU(2) Lie algebra
relation

[Lâ,Lb̂] = Câb̂ĉLĉ. (50)

In the N → ∞ limit the derivations eâ become eâ = Câb̂ĉx
b̂∂ ĉ and only in

this commutative limit the tangent space becomes two-dimensional. The
exterior derivative is given by

df = [Xâ, f ]θâ (51)

with θâ the one-forms dual to the vector fields eâ, < eâ, θ
b̂ >= δb̂

â. The
space of one-forms is generated by the θâ’s in the sense that for any one-form
ω =

∑
i fidhi ti we can always write ω =

∑3
â=1 ωâθ

â with given functions ωâ
depending on the functions fi, hi and ti. The action of the Lie derivatives
Lâ on the one-forms θb̂ explicitly reads

Lâ(θb̂) = Câb̂ĉθ
ĉ . (52)

On a general one-form ω = ωâθ
â we have Lb̂ω = Lb̂(ωâθ

â) =
[
Xb̂, ωâ

]
θâ −

ωâC
â
b̂ĉ

θĉ and therefore

(Lb̂ω)â =
[
Xb̂, ωâ

]
− ωĉC

ĉ
b̂â

; (53)

this formula will be fundamental for formulating the CSDR principle on
fuzzy cosets.
The differential geometry on the product space Minkowski times fuzzy
sphere, M4 × S2

N , is easily obtained from that on M4 and on S2
N . For

example a one-form A defined on M4 × S2
N is written as

A = Aμdxμ + Aâθ
â (54)

with Aμ = Aμ(xμ,Xâ) and Aâ = Aâ(xμ,Xâ).
One can also introduce spinors on the fuzzy sphere and study the Lie deriva-
tive on these spinors. Although here we have sketched the differential ge-
ometry on the fuzzy sphere, one can study other (higher-dimensional) fuzzy
spaces (e.g. fuzzy CPM ) and with similar techniques their differential ge-
ometry.

9. Dimensional Reduction of Fuzzy Extra Dimensions
9.1. Actions in higher dimensions seen as four-dimensional

actions (Expansion in Kaluza-Klein modes)

First we consider on M4 × (S/R)F a non-commutative gauge theory with
gauge group G = U(P ) and examine its four-dimensional interpretation.
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(S/R)F is a fuzzy coset, for example the fuzzy sphere S2
N . The action is

AY M =
1

4g2

∫
d4x kTr trG FMNFMN , (55)

where kTr denotes integration over the fuzzy coset (S/R)F described by
N × N matrices; here the parameter k is related to the size of the fuzzy
coset space. For example for the fuzzy sphere we have r2 =

√
N2 − 1πk

[2]. In the N → ∞ limit kTr becomes the usual integral on the coset
space. For finite N , Tr is a good integral because it has the cyclic property
Tr(f1 . . . fp−1fp) = Tr(fpf1 . . . fp−1). It is also invariant under the action of
the group S, that is infinitesimally given by the Lie derivative. In the action
(55) trG is the gauge group G trace. The higher-dimensional field strength
FMN , decomposed in four-dimensional space-time and extra-dimensional
components, reads as follows (Fμν , Fμb̂, Fâb̂) ; explicitly the various compo-
nents of the field strength are given by

Fμν = ∂μAν − ∂νAμ + [Aμ, Aν ], (56)

Fμâ = ∂μAâ − [Xâ, Aμ] + [Aμ, Aâ],

Fâb̂ = [Xâ, Ab̂] − [Xb̂, Aâ] + [Aâ, Ab̂] − C ĉ
âb̂

Aĉ. (57)

Under an infinitesimal G gauge transformation λ = λ(xμ,X â) we have

δAâ = −[Xâ, λ] + [λ,Aâ] , (58)

thus FMN is covariant under local G gauge transformations: FMN →
FMN + [λ, FMN ]. This is an infinitesimal abelian U(1) gauge transforma-
tion if λ is just an antihermitian function of the coordinates xμ,X â while it
is an infinitesimal non-abelian U(P ) gauge transformation if λ is valued in
Lie(U(P )), the Lie algebra of hermitian P × P matrices. In the following
we will always assume Lie(U(P )) elements to commute with the coordi-
nates X â. In fuzzy/non-commutative gauge theory and in Fuzzy-CSDR a
fundamental role is played by the covariant coordinate,

ϕâ ≡ Xâ + Aâ . (59)

This field transforms indeed covariantly under a gauge transformation, δ(ϕâ) =
[λ,ϕâ] . In terms of ϕ the field strength in the non-commutative directions
reads,

Fμâ = ∂μϕâ + [Aμ, ϕâ] = Dμϕâ, (60)

Fâb̂ = [ϕâ, ϕb̂] − C ĉ
âb̂

ϕĉ ; (61)

and using these expressions the action reads

AY M =
∫

d4xTr trG

(
k

4g2
F 2

μν +
k

2g2
(Dμϕâ)2 − V (ϕ)

)
, (62)
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where the potential term V (ϕ) is the Fâb̂ kinetic term (in our conventions
Fâb̂ is antihermitian so that V (ϕ) is hermitian and non-negative)

V (ϕ) = − k

4g2
Tr trG

∑
âb̂

Fâb̂Fâb̂

= − k

4g2
Tr trG

(
[ϕâ, ϕb̂][ϕ

â, ϕb̂] − 4Câb̂ĉϕ
âϕb̂ϕĉ + 2r−2ϕ2

)
. (63)

The action (62) is naturally interpreted as an action in four dimensions.
The infinitesimal G gauge transformation with gauge parameter λ(xμ,X â)
can indeed be interpreted just as an M4 gauge transformation. We write

λ(xμ,X â) = λα(xμ,X â)T α = λh,α(xμ)T hT α , (64)

where T α are hermitian generators of U(P ), λα(xμ,X â) are n × n anti-
hermitian matrices and thus are expressible as λ(xμ)α,hT h, where T h are
antihermitian generators of U(n). The fields λ(xμ)α,h, with h = 1, . . . n2,
are the Kaluza-Klein modes of λ(xμ,X â)α. We now consider on equal foot-
ing the indices h and α and interpret the fields on the r.h.s. of (64) as
one field valued in the tensor product Lie algebra Lie(U(n)) ⊗ Lie(U(P )).
This Lie algebra is indeed Lie(U(nP )) (the (nP )2 generators T hT α being
nP ×nP antihermitian matrices that are linear independent). Similarly we
rewrite the gauge field Aν as

Aν(xμ,X â) = Aα
ν (xμ,X â)T α = Ah,α

ν (xμ)T hT α, (65)

and interpret it as a Lie(U(nP )) valued gauge field on M4, and similarly
for ϕâ. Finally Tr trG is the trace over U(nP ) matrices in the fundamental
representation.
Up to now we have just performed a ordinary fuzzy dimensional reduction.
Indeed in the commutative case the expression (62) corresponds to rewriting
the initial lagrangian on M4 × S2 using spherical harmonics on S2. Here
the space of functions is finite dimensional and therefore the infinite tower
of modes reduces to the finite sum given by Tr.

9.2. Non-trivial Dimensional reduction in the case of
Fuzzy Extra Dimensions

Next we reduce the number of gauge fields and scalars in the action (62) by
applying the Coset Space Dimensional Reduction (CSDR) scheme. Since
SU(2) acts on the fuzzy sphere (SU(2)/U(1))F , and more in general the
group S acts on the fuzzy coset (S/R)F , we can state the CSDR principle
in the same way as in the continuum case, i.e. the fields in the theory must
be invariant under the infinitesimal SU(2), respectively S, action up to an
infinitesimal gauge transformation

Lb̂φ = δW
b̂
φ = Wb̂φ, (66)
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Lb̂A = δW
b̂
A = −DWb̂, (67)

where A is the one-form gauge potential A = Aμdxμ+Aâθ
â, and Wb̂ depends

only on the coset coordinates X â and (like Aμ, Aa) is antihermitian. We
thus write Wb̂ = W α

b̂
T α, α = 1, 2 . . . P 2, where T i are hermitian generators

of U(P ) and (W i
b )

† = −W i
b , here † is hermitian conjugation on the X â’s.

In terms of the covariant coordinate ϕd̂ = Xd̂ + Ad̂ and of

ωâ ≡ Xâ − Wâ , (68)

the CSDR constraints assume a particularly simple form, namely

[ωb̂, Aμ] = 0, (69)

Cb̂d̂êϕ
ê = [ωb̂, ϕd̂]. (70)

In addition we have a consistency condition following from the relation
[Lâ,Lb̂] = C ĉ

âb̂
Lĉ:

[ωâ, ωb̂] = C ĉ
âb̂

ωc, (71)

where ωâ transforms as ωâ → ω′
â = gωâg

−1. One proceeds in a similar way
for the spinor fields [34, 35, 36].

9.2.1. Solving the CSDR constraints for the fuzzy sphere
We consider (S/R)F = S2

N , i.e. the fuzzy sphere, and to be definite at
fuzziness level N − 1 (N × N matrices). We study here the basic example
where the gauge group is G = U(1). In this case the ωâ = ωâ(X b̂) appearing
in the consistency condition (71) are N × N antihermitian matrices and
therefore can be interpreted as elements of Lie(U(N)). On the other hand
the ωâ satisfy the commutation relations (71) of Lie(SU(2)). Therefore in
order to satisfy the consistency condition (71) we have to embed Lie(SU(2))
in Lie(U(N)). Let T h with h = 1, . . . , (N)2 be the generators of Lie(U(N))
in the fundamental representation, we can always use the convention h =
(â, u) with â = 1, 2, 3 and u = 4, 5, . . . , N2 where the T â satisfy the SU(2)
Lie algebra,

[T â, T b̂] = C âb̂
ĉT

ĉ . (72)

Then we define an embedding by identifying

ωâ = Tâ. (73)

The constraint (69), [ωb̂, Aμ] = 0, then implies that the four-dimensional
gauge group K is the centralizer of the image of SU(2) in U(N), i.e.

K = CU(N)(SU((2))) = SU(N − 2) × U(1) × U(1) ,
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where the last U(1) is the U(1) of U(N) � SU(N) × U(1). The functions
Aμ(x,X) are arbitrary functions of x but the X dependence is such that
Aμ(x,X) is Lie(K) valued instead of Lie(U(N)), i.e. eventually we have a
four-dimensional gauge potential Aμ(x) with values in Lie(K). Concerning
the constraint (70), it is satisfied by choosing

ϕâ = rϕ(x)ωâ , (74)

i.e. the unconstrained degrees of freedom correspond to the scalar field ϕ(x)
which is a singlet under the four-dimensional gauge group K.
The choice (73) defines one of the possible embedding of Lie(SU(2)) in
Lie(U(N)). For example, we could also embed Lie(SU(2)) in Lie(U(N))
using the irreducible N -dimensional rep. of SU(2), i.e. we could identify
ωâ = Xâ. The constraint (69) in this case implies that the four-dimensional
gauge group is U(1) so that Aμ(x) is U(1) valued. The constraint (70) leads
again to the scalar singlet ϕ(x).

In general, we start with a U(1) gauge theory on M4 × S2
N . We solve

the CSDR constraint (71) by embedding SU(2) in U(N). There exist pN
embeddings, where pN is the number of ways one can partition the integer
N into a set of non-increasing positive integers [98]. Then the constraint
(69) gives the surviving four-dimensional gauge group. The constraint (70)
gives the surviving four-dimensional scalars and eq. (74) is always a solution
but in general not the only one. By setting φâ = ωâ we obtain always a
minimum of the potential. This minimum is given by the chosen embedding
of SU(2) in U(N).
An important point that we would like to stress here is the question of
the renormalizability of the gauge theory defined on M4 × (S/R)F . First
we notice that the theory exhibits certain features so similar to a higher-
dimensional gauge theory defined on M4 × S/R that naturally it could be
considered as a higher-dimensional theory too. For instance the isometries
of the spaces M4 ×S/R and M4 × (S/R)F are the same. It does not matter
if the compact space is fuzzy or not. For example in the case of the fuzzy
sphere, i.e. M4 × S2

N , the isometries are SO(3, 1) × SO(3) as in the case
of the continuous space, M4 × S2. Similarly the coupling of a gauge theory
defined on M4 ×S/R and on M4 × (S/R)F are both dimensionful and have
exactly the same dimensionality. On the other hand the first theory is
clearly non-renormalizable, while the latter is renormalizable (in the sense
that divergencies can be removed by a finite number of counterterms). So
from this point of view one finds a partial justification of the old hopes for
considering quantum field theories on non-commutative structures. If this
observation can lead to finite theories too, it remains as an open question.

10. Dynamical Generation of Extra Dimensions
Let us now discuss a further development [37] of these ideas, which addresses
in detail the questions of quantization and renormalization. This leads to a
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slightly modified model with an extra term in the potential, which dynam-
ically selects a unique (nontrivial) vacuum out of the many possible CSDR
solutions, and moreover generates a magnetic flux on the fuzzy sphere. It
also allows to show that the full tower of Kaluza-Klein modes is generated
on S2

N .

10.1. The four-dimensional action
We start with a SU(N) gauge theory on four dimensional Minkowski space
M4 with coordinates yμ, μ = 0, 1, 2, 3. The action under consideration is

SY M =
∫

d4y Tr

(
1

4g2
F †

μνFμν + (Dμφa)†Dμφa

)
− V (φ) (75)

where Aμ are SU(N)-valued gauge fields, Dμ = ∂μ + [Aμ, .], and

φa = −φ†
a , a = 1, 2, 3

are 3 antihermitian scalars in the adjoint of SU(N),

φa → U †φaU

where U = U(y) ∈ SU(N). Furthermore, the φa transform as vectors of an
additional global SO(3) symmetry. The potential V (φ) is taken to be the
most general renormalizable action invariant under the above symmetries,
which is

V (φ) = Tr (g1φaφaφbφb + g2φaφbφaφb − g3εabcφaφbφc + g4φaφa)

+
g5

N
Tr(φaφa)Tr(φbφb) +

g6

N
Tr(φaφb)Tr(φaφb) + g7. (76)

This may not look very transparent at first sight, however it can be written
in a very intuitive way. First, we make the scalars dimensionless by rescaling

φ′
a = R φa,

where R has dimension of length; we will usually suppress R since it can
immediately be reinserted, and drop the prime from now on. Now observe
that for a suitable choice of R,

R =
2g2

g3
,

the potential can be rewritten as

V (φ) = Tr

(
a2(φaφa + b̃ 1l)2 + c +

1
g̃2

F †
abFab

)
+

h

N
gabgab (77)
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for suitable constants a, b, c, g̃, h, where

Fab = [φa, φb] − εabcφc = εabcFc,

b̃ = b +
d

N
Tr(φaφa),

gab = Tr(φaφb). (78)

We will omit c from now. Notice that two couplings were reabsorbed in the
definitions of R and b̃. The potential is clearly positive definite provided

a2 = g1 + g2 > 0,
2
g̃2

= −g2 > 0, h ≥ 0,

which we assume from now on. Here b̃ = b̃(y) is a scalar, gab = gab(y) is
a symmetric tensor under the global SO(3), and Fab = Fab(y) is a su(N)-
valued antisymmetric tensor field which will be interpreted as field strength
in some dynamically generated extra dimensions below. In this form, V (φ)
looks like the action of Yang-Mills gauge theory on a fuzzy sphere in the
matrix formulation [99, 100, 101, 102]. It differs from the potential in (61)
only by the presence of the first term a2(φaφa + b̃)2, which is strongly
suggested by renormalization. In fact it is necessary for the interpretation
as pure YM action, and we will see that it is very welcome on physical
grounds since it dynamically determines and stabilizes a vacuum, which can
be interpreted as extra-dimensional fuzzy sphere. In particular, it removes
unwanted flat directions.

10.2. Emergence of extra dimensions and the fuzzy sphere
The vacuum of the above model is given by the minimum of the potential
(76). Finding the minimum of the potential is a rather nontrivial task,
and the answer depends crucially on the parameters in the potential [37].
The conditions for the global minimum imply that φa is a representation of
SU(2), with Casimir b̃ (where it was assumed for simplicity h = 0). Then,
it is easy to write down a large class of solutions to the minimum of the
potential, by noting that any decomposition of N = n1N1 + ... + nhNh into
irreps of SU(2) with multiplicities ni leads to a block-diagonal solution

φa = diag
(
α1 X(N1)

a , ..., αk X(Nk)
a

)
(79)

of the vacuum equations, where αi are suitable constants which will be
determined below.
It turns out [37] that there are essentially only 2 types of vacua:

1. Type I vacuum. It is plausible that the solution (79) with minimal
potential contains only representations whose Casimirs are close to
b̃. In particular, let M be the dimension of the irrep whose Casimir
C2(M) ≈ b̃ is closest to b̃. If furthermore the dimensions match as
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N = Mn, we expect that the vacuum is given by n copies of the irrep
(M), which can be written as φa = α X

(N)
a ⊗1n with low-energy gauge

group SU(n).
2. Type II vacuum. Consider again a solution (79) with ni blocks of size

Ni = Ñ + mi, where Ñ is defined by b̃ = 1
4 (Ñ2 − 1), and assume that

Ñ is large and mi

Ñ
� 1. The action is then given by

V (φ) = Tr
( 1

2g̃2

∑
i

ni m
2
i 1lNi + O(

1
Ni

)
)
≈ 1

2g̃2

N

k

∑
i

ni m
2
i (80)

where k =
∑

ni is the total number of irreps, and the solution can
be interpreted in terms of “instantons” (nonabelian monopoles) on the
internal fuzzy sphere [99]. Hence in order to determine the solution of
type (79) with minimal action, we simply have to minimize

∑
i ni m

2
i ,

where the mi ∈ Z − Ñ satisfy the constraint
∑

ni mi = N − kÑ . In
this case the the the solution with minimal potential among all possible
partitions (79) is given by

φa =

(
α1 X

(N1)
a ⊗ 1n1 0

0 α2 X
(N2)
a ⊗ 1n2

)
,

with low-energy gauge group SU(n1) × SU(n2) × U(1).

Again, the X
(N)
a are interpreted as coordinate functions of a fuzzy sphere

S2
N , and the “scalar” action

Sφ = TrV (φ) = Tr
(
a2(φaφa + b̃)2 +

1
g̃2

F †
abFab

)

for N ×N matrices φa is precisely the action for a U(n) Yang-Mills theory
on S2

N with coupling g̃, as shown in [99]. In fact, the new term (φaφa + b̃)2

is essential for this interpretation, since it stabilizes the vacuum φa = X
(N)
a

and gives a large mass to the extra “radial” scalar field which otherwise
arises. The fluctuations of φa = X

(N)
a +Aa then provide the components Aa

of a higher-dimensional gauge field AM = (Aμ, Aa), and the action can be
interpreted as YM theory on the 6-dimensional space M4 ×S2

N , with gauge
group depending on the particular vacuum. We therefore interpret the
vacuum as describing dynamically generated extra dimensions in the form of
a fuzzy sphere S2

N . This geometrical interpretation can be fully justified by
working out the spectrum of Kaluza-Klein modes. The effective low-energy
theory is then given by the zero modes on S2

N . This approach provides a
clear dynamical selection of the geometry due to the term (φaφa + b̃)2 in
the action.
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Perhaps the most remarkable aspect of this model is that the geometric
interpretation and the corresponding low-energy degrees of freedom depend
in a nontrivial way on the parameters of the model, which are running
under the RG group. Therefore the massless degrees of freedom and their
geometrical interpretation depend on the energy scale. In particular, the
low-energy gauge group generically turns out to be SU(n1)×SU(n2)×U(1)
or SU(n), while gauge groups which are products of more than two simple
components (apart from U(1)) do not seem to occur. The values of n1
and n2 are determined dynamically, and with the appropriate choice of
parameters it is possible to construct vacuum solutions where they are as
small, such as 2 and 3 [37].
It is interesting to examine the running of the coupling constants under
the RG. R turns out to run only logarithmically, implies that the scale of
the internal spheres is only mildly affected by the RG flow. However, b̃ is
running essentially quadratically, hence is generically large. This is quite
welcome here: starting with some large N , b̃ ≈ C2(Ñ) must indeed be large
in order to lead to the geometric interpretation discussed above. Hence the
problems of naturalness or fine-tuning appear to be rather mild here.
A somewhat similar model has been studied in [103, 104], which realizes
deconstruction and a “twisted” compactification of an extra fuzzy sphere
based on a supersymmetric gauge theory. Our model is different and does
not require supersymmetry, leading to a much richer pattern of symmetry
breaking and effective geometry. For other relevant work see e.g. [9].
The dynamical formation of fuzzy spaces found here is also related to recent
work studying the emergence of stable submanifolds in modified IIB matrix
models. In particular, previous studies based on actions for fuzzy gauge
theory different from ours generically only gave results corresponding to
U(1) or U(∞) gauge groups, see e.g. [105, 106, 107] and references therein.
The dynamical generation of a nontrivial index on noncommutative spaces
has also been observed in [108, 109] for different models.
Our mechanism may also be very interesting in the context of the recent
observation [110] that extra dimensions are very desirable for the application
of noncommutative field theory to particle physics. Other related recent
work discussing the implications of the higher-dimensional point of view on
symmetry breaking and Higgs masses can be found in [111, 112, 113, 114].
These issues could now be discussed within a renormalizable framework.

11. Concluding remarks on the use of Fuzzy
extra dimensions

Non-commutative Geometry has been regarded as a promising framework
for obtaining finite quantum field theories and for regularizing quantum
field theories. In general quantization of field theories on non-commutative
spaces has turned out to be much more difficult and with less attrac-
tive ultraviolet features than expected see however ref. [115], and ref.
[99, 116]. Recall also that non-commutativity is not the only suggested
tool for constructing finite field theories. Indeed four-dimensional finite



286 M. Mondragon, G. Zoupanos

gauge theories have been constructed in ordinary space-time and not only
those which are N = 4 and N = 2 supersymmetric, and most probably
phenomenologically uninteresting, but also chiral N = 1 gauge theories
[49, 50] which already have been successful in predicting the top quark
mass and have rich phenomenology that could be tested in future colliders
[49, 50, 38, 51, 74, 75, 76, 76, 117, 79]. In the present work we have not
addressed the finiteness of non-commutative quantum field theories, rather
we have used non-commutativity to produce, via Fuzzy-CSDR, new particle
models from particle models on M4 × (S/R)F .

A major difference between fuzzy and ordinary SCDR is that in the fuzzy
case one always embeds S in the gauge group G instead of embedding just
R in G. This is due to the fact that the differential calculus on the fuzzy
coset space is based on dimS derivations instead of the restricted dimS −
dimR used in the ordinary one. As a result the four-dimensional gauge
group H = CG(R) appearing in the ordinary CSDR after the geometrical
breaking and before the spontaneous symmetry breaking due to the four-
dimensional Higgs fields does not appear in the Fuzzy-CSDR. In Fuzzy-
CSDR the spontaneous symmetry breaking mechanism takes already place
by solving the Fuzzy-CSDR constraints. The four-dimensional potential
has the typical “mexican hat” shape, but it appears already spontaneously
broken. Therefore in four dimensions appears only the physical Higgs field
that survives after a spontaneous symmetry breaking. Correspondingly in
the Yukawa sector of the theory we have the results of the spontaneous
symmetry breaking, i.e. massive fermions and Yukawa interactions among
fermions and the physical Higgs field. Having massive fermions in the final
theory is a generic feature of CSDR when S is embedded in G [21]. We see
that if one would like to describe the spontaneous symmetry breaking of
the SM in the present framework, then one would be naturally led to large
extra dimensions.

A fundamental difference between the ordinary CSDR and its fuzzy version
is the fact that a non-abelian gauge group G is not really required in high
dimensions. Indeed the presence of a U(1) in the higher-dimensional theory
is enough to obtain non-abelian gauge theories in four dimensions.

In a further development, we have presented a renormalizable four dimen-
sional SU(N) gauge theory with a suitable multiplet of scalars, which
dynamically develops fuzzy extra dimensions that form a fuzzy sphere.
The model can then be interpreted as 6-dimensional gauge theory, with
gauge group and geometry depending on the parameters in the original
Lagrangian. We explicitly find the tower of massive Kaluza-Klein modes,
consistent with an interpretation as compactified higher-dimensional gauge
theory, and determine the effective compactified gauge theory. This model
has a unique vacuum, with associated geometry and low-energy gauge group
depending only on the parameters of the potential.

There are many remarkable aspects of this model. First, it provides an ex-
tremely simple and geometrical mechanism of dynamically generating extra
dimensions, without relying on subtle dynamics such as fermion conden-
sation and particular Moose- or Quiver-type arrays of gauge groups and
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couplings, such as in [97] and following work. Rather, our model is based
on a basic lesson from noncommutative gauge theory, namely that noncom-
mutative or fuzzy spaces can be obtained as solutions of matrix models.
The mechanism is quite generic, and does not require fine-tuning or super-
symmetry. This provides in particular a realization of the basic ideas of
compactification and dimensional reduction within the framework of renor-
malizable quantum field theory. Moreover, we are essentially considering a
large N gauge theory, which should allow to apply the analytical techniques
developed in this context.
In particular, it turns out that the generic low-energy gauge group is given
by SU(n1)×SU(n2)×U(1) or SU(n), while gauge groups which are prod-
ucts of more than two simple components (apart from U(1)) do not seem to
occur in this model. The values of n1 and n2 are determined dynamically.
Moreover, a magnetic flux is induced in the vacua with non-simple gauge
group, which is very interesting in the context of fermions, since internal
fluxes naturally lead to chiral massless fermions [118]. This will be studied
in detail elsewhere.
There is also an intriguing analogy between our toy model and string theory,
in the sense that as long as a = 0, there are a large number of possible vacua
(given by all possible partitions) corresponding to compactifications, with no
dynamical selection mechanism to choose one from the other. Remarkably
this analog of the “string vacuum problem” is simply solved by adding a
term to the action.
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