
Aspects of (quantum) field theory on curved

spacetimes, particularly in the presence of

boundaries

Umberto Lupo

Doctor of Philosophy

University of York

Mathematics

September 2015





Abstract

This thesis has two main themes: on the one hand, in Chapters 3 and 5 we study some

effects of the presence of timelike boundaries on linear classical and quantum field the-

ories; the second theme is the analysis of technical issues with the 1991 paper [KW91],

which is carried out in parts of Chapter 2 and in Chapter 4. Chapter 2 contains a novel

result on the characteristic initial value problem on globally hyperbolic spacetimes. In

Chapter 3, we conjecture that (when the notion of a Hadamard state is suitably adapted

to spacetimes with timelike boundaries) there is no isometry-invariant Hadamard state

for the Klein–Gordon equation defined on the region of the Kruskal spacetime ‘to the

left of’ a surface of constant Schwarzschild radius in the right Schwarzschild wedge, if

Dirichlet boundary conditions are imposed there. We also prove that, under a suitable

notion for ‘boost-invariant Hadamard state’ which also takes into account the special

infra-red pathology of massless fields in 1+1 dimensions, there is no such state for the

massless 1+1 wave equation on the region of Minkowski space to the left of an eter-

nally uniformly accelerating mirror – with Dirichlet boundary conditions at the mirror.

Chapter 5 collects and extends results of Solis [Sol06] about the causal structure of

spacetimes with timelike boundaries, and deals with algebraic aspects of the interplay

between Green hyperbolicity and boundary conditions in classical field theory. It also

outlines a plan for generalizing the established work on wave-like equations from glob-

ally hyperbolic spacetimes to ‘globally hyperbolic spacetimes-with-timelike-boundaries’.

Appendix B contains a non-existence result for boost-invariant Hadamard states of a

massless scalar field in (1+1)-dimensional Minkowski spacetime.
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Chapter 1

Introduction and Motivation

Modern fundamental physics can be confidently said to rest on the two building blocks of

Einstein’s general relativity (GR) and quantum (field) theory [Q(F)T], in the sense that

both theories have by now been extensively tested, and vindicated, on their respective

domains of applicability.

To wit, GR makes correct (so far) predictions about the large scale structure of the

universe, and in particular on the medium-to-long-range interactions of its constituents

due to gravity. When complemented with suitable assumptions,1 it also provides a sat-

isfactory understanding of the universe’s past state of affairs, provided at least that one

does not attempt to reconstruct the latter’s very early history. GR interprets gravity

geometrically by positing that gravitational interactions are compound effects of the

local curvature of spacetime (i.e., of the universe including its past and future history).

By means of Einstein’s field equations, it describes and constrains where, when and how

geometry is curved in relation to where, when and how matter is localised. Thus, geom-

etry in GR is a dynamical entity which cannot be prescribed a priori : in the words of J.

A. Wheeler, “Spacetime tells matter how to move; matter tells spacetime how to curve”.

It is perhaps curious that a theory with such spectacular predictions of large-scale phe-

nomena should be mathematically formulated in terms of the infinitesimal (differential)

properties of a continuum. In analogy with the example of fluid mechanics, it is tempt-

ing to conclude that the existence of a successful continuum description is just a ‘lucky’

coincidence, and that one should perhaps be willing to accept that a more complete

theory, in which GR would be embedded, may well describe the universe in different

terms. One does not, in fact, need to leave the realm of GR to obtain indications that

this expectation is well-founded: rigorous singularity theorems in cosmology prove that

GR leads to the occurrence of spacetime singularities – i.e. of ‘places’ at which relevant

physical quantities blow-up preventing further predictability – in a generic way [HP70].

1For instance, with initial conditions as the ones used in the Lambda-CDM model [EMM12, Pla16].

13



Introduction and Motivation 14

Ordinary Q(F)T, on the other hand, describes matter and its non-gravitational interac-

tions in regimes in which gravity can be safely ignored and in terms of the behaviour

of its fundamental, microscopic, constituents. The strong and weak nuclear forces, as

well as the electromagnetic force, can all be described2 in terms of appropriate quantum

(field) theories. Furthermore, QFT fully and unproblematically embraces the principles

of Einstein’s Special Relativity, so that processes involving relative speeds close to the

speed of light also fit in the theoretical framework. No experimental disagreements with

the predictions of the Standard Model of particle physics, which is based on QFT, have

so far been identified. Now, any quantum-mechanical theory radically departs from the

classical point of view on physics according to which natural phenomena should admit

a deterministic description – that is, one in which the only limitations to our ability to

predict the future, given the present, have their origin in the practical impossibility to

attain complete knowledge of the present itself. In quantum mechanics, the evolution

of physical entities is governed by probabilistic laws whose status is that of fundamen-

tal axioms and not simply of ‘effective’ descriptions. By contrast, the mathematical

formalism of GR is that of a classical, deterministic theory.

Now suppose that an ultimate theory of physics can in principle be found which is valid

in all possible regimes and is able to reproduce the already established predictions of

GR and QFT. It is hardly believable that, in such a theory, gravitational phenomena

and the geometry of space-time would still be described by deterministic laws while

non-gravitational ones would remain fundamentally probabilistic, if the evolution of

spacetime (geometry) is to be inextricably linked to the evolution of matter. Since, of the

two building blocks we described, only Q(F)T makes any claim about the character of

microscopic phenomena, the most conservative approach towards obtaining the ultimate

theory seems to be to reformulate GR in a quantum mechanical language – that is, to

obtain a quantum theory of gravity (and presumably, if one of the fundamental tenets of

GR is to be kept, of geometry). Aside from technical difficulties which arise in näıvely

trying to do so [GS86], there is then another issue: Although QFT makes probabilistic

statements about nature’s constituents, its probabilistic laws are formulated in terms

of a known spacetime ‘stage’ which, traditionally, is modelled by a continuum. So

if the geometric spacetime stage is to be replaced, in a theory of quantum gravity,

by something entirely different, then the rules governing the behaviour of the matter

‘actors’ will require substantial modification as a result. Currently, experiments provide

no obvious hints as to how to proceed.

The quest for a full theory of quantum gravity thus remains open. But it is possible

and fruitful to seek a mathematical formulation of, and to then extract physical pre-

dictions from, an intermediate model of the interaction between gravitation/geometry

2Sometimes, e.g. in the case of the electroweak model, in a unified manner.
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and the quantum mechanical matter fields. The starting point is the observation that

the geometric setup of Special Relativity (the Minkowski spacetime), in which ordi-

nary QFT is formulated, is just a particular instance of the class of geometries which

can be described by GR. In this intermediate model, commonly referred to as QFT on

curved spacetime, one views spacetime as a fixed background, classically described in

the language of GR, and formulates a suitable generalisation of the laws of propagation

of quantum matter fields from Minkowski spacetime to more general, possibly curved,

geometries. No attempt is made to quantize gravity/geometry itself or even to account

for the back-reaction of quantum matter fields on the geometric fabric of spacetime, i.e.

quantum fields are treated as ‘test’ objects and only the first half of Wheeler’s slogan is

implemented, replacing ‘matter’ by ‘quantum matter’.

In the absence of a unified quantum treatment of gravity together with matter, one of

course ought to ask the question of what the expected range of applicability of this hybrid

approximate theory might be. We certainly should not expect QFT on curved spacetimes

to produce accurate predictions when the spacetime curvature approaches Planck scales,

i.e. when it is of the order of `−2
P ∼ 1069 m−2. This presumed range of validity is, however,

sufficiently large not to preclude meaningful applications of the theory to many relevant

cosmological and astrophysical phenomena. In this context, a basic physical prediction

of QFT on curved spacetimes is that strong gravitational fields (i.e., in GR, the metric

of the spacetime under consideration) can ‘polarize’ the vacuum of a quantum matter

field in a way analogous to the way in which the vacuum of the electron-positron field is

polarised under an external time-dependent electromagnetic field in conventional QFT.

A related prediction is that, when the gravitational field is time-dependent in a precise

sense, the theory predicts pair creation of particles associated to the quantum field.

As a result, QFT on popular cosmological models such as the Friedman–Lemâıtre–

Robertson–Walker (FLRW) spacetime was quickly recognised [TU57, Par68] to predict

particle creation as a result of the expansion of the universe.

The most surprising prediction of QFT on curved spacetimes to this date, however, is

undoubtedly the Hawking effect [Haw75], according to which a classical black hole of

mass M arising from gravitational collapse will emit thermal radiation at the Hawking

temperature given (in units in which G, c, ~ and Boltzmann’s constant kB are all taken

to be 1), for a spherically symmetric (Schwarzschild) black hole, by

TH =
1

8πM
=

1

4πR
=

1√
4πA

where R = 2M is the Schwarzschild radius of the black hole, and A = 4πR2 is the surface

area of the black hole’s event horizon. The existence of such a counterintuitive prediction

already at this level of approximation thus provides a strong reason for studying related
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effects in QFT on curved spacetimes in idealised situations. Surprises arise as a result

of doing so, such as the famous discovery by Unruh (the Unruh effect [Unr76], but see

also the previous related work by Fulling and Davies [Ful73, Dav75]) that a uniformly

accelerated detector in Minkowski space will detect a thermal spectrum of particles when

the global state of the quantum field is the Minkowski vacuum.3

The discovery of the Hawking and Unruh effects catalysed research in the field, leading

to a vast number of research programs. The work in this thesis is related to, and sheds

some light on, at least three such programs, which we now recall.

Black hole thermodynamics. Hawking’s discovery that black holes behave exactly like

thermodynamic objects possessing a temperature related in a simple way to their mass,

and therefore also to their geometry, was of course tantalising. Prior to Hawking’s

derivation, Bekenstein [Bek73] had already argued, on general grounds not specifically

tied to QFT on curved spacetimes, that black holes should possess an entropy and that

this entropy ought in fact to be proportional to the area of the event horizon. Hawking’s

result shed light on the origin of this entropy in the context of simple quantum-field-

theoretic models, and revealed the exact value of the constant of proportionality. The

Bekenstein–Hawking entropy of a Schwarzschild black hole (in units as above) is

SBH =
1

4
A = 4πM2 = πR2.

Further clarifying the origin of this entropy naturally led to investigating idealised sit-

uations in which Schwarzschild black holes are imagined to be placed in a spherical

container – a ‘box’ – situated beyond the event horizon [Haw76]. In these models, black

holes are surrounded by black-body radiation – a so-called ‘thermal atmosphere’ – at the

Hawking temperature, with which the black hole (viewed as a gravitational object) is in

thermal equilibrium [GP76, Haw76, GH93]. A natural question is whether a black hole

in equilibrium in such a box4 has a semi-classical description in terms of a fixed classical

spacetime together with a suitable state of a quantum field defined on it – with equi-

librium between the two systems being modelled by both the classical spacetime metric

and the quantum state being invariant under the appropriate groups of transformations

describing time-invariance.

Curved spacetime generalisations of the Unruh effect; QFT on spacetimes with bifurcate

Killing horizons. Analogs of the Unruh effect were soon recognised to occur on more

3The Unruh effect is actually a result in ordinary Minkowski spacetime QFT. That it was discovered
as a result of an effort to better understand the Hawking effect for black holes is, we believe, an indication
that the challenge to generalise Minkowski spacetime QFT to the curved spacetime scenario can actually
help to clarify which physical notions and mathematical structures are really important in QFT and
which are merely convenient assumptions.

4Here we leave aside the issue that a Schwarzschild black hole in equilibrium in a box is believed to
be thermodynamically unstable [Haw76].
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complicated geometries than the Minkowski spacetime. Notable examples were: (i) the

maximal extension of the Schwarzschild spacetime (i.e. the Kruskal spacetime), with

the rôle of the Minkowski vacuum played by the Hartle–Hawking–Israel state [HH76,

Isr76]; (ii) the de Sitter spacetime modelling an isotropic, homogeneous, closed and

expanding universe, with the rôle of the Minkowski vacuum played by a quantum state

first constructed by Chernikov and Tagirov in [CT68] (but nowadays known as the

Bunch–Davies vacuum after [BD78]), as discussed e.g. in [Isr76, GH77]. It was soon

understood, thanks both to the aforementioned explicit investigations and to general

abstract reasoning involving conventional (axiomatic) QFT [Sew82], that the core of

the argument leading to the Unruh effect both on Minkowski spacetime and on such

other geometries lay in the fact that in all cases there exists a one-parameter group of

metric-preserving transformations (i.e. of isometries), acting as ‘time’ translations5 on

a double-wedge portion of the spacetime [Kay85]. The culmination of this program, in

the case of linear spin-0 quantum fields, was a seminal 1991 paper by Kay and Wald

[KW91] – but see also [Kay93] for some technical refinements – in which, amongst other

major achievements:

• It was shown that a double-wedge structure naturally arises on a large class of

spacetimes comprising many of the spacetimes of interest in quantum field theory

on curved spacetimes, including in particular the Minkowski, Kruskal and de Sitter

spacetimes on which the Unruh effect was already known to occur. Spacetimes in

this class are required to enjoy ‘good’ causal properties (specifically global hyper-

bolicity), and to admit a one-parameter family of isometries yielding a bifurcate

Killing horizon structure (most of Chapter 2 in this work will be concerned with

reviewing this geometric background).

? Under some technical caveats, it was ‘proved’ that quantized (real, spin-0) linear

fields on such spacetimes admit a unique state which is both invariant under the

spacetime isometries and exhibits unpathological short-distance behaviour (respec-

tively, the state is isometry-invariant and Hadamard).

• It was shown that, when restricted to either one of the two ‘wedge regions’, this

unique state is necessarily a thermal state (technically, a KMS state) with respect

to the isometries restricted to that wedge, and at a temperature which, in the

case of the Kruskal spacetime and when the isometries are rescaled ‘at infinity’ in

a natural way, coincides with the Hawking temperature TH. In the case of more

general spacetimes with a bifurcate Killing horizon structure, this temperature is

obtained by replacing the area A of the event horizon in Hawking’s formula by

5‘Time’ here is meant in a sense which generalises the usual global time translation of Minkowski
spacetime. In more mathematical language, the requirement is that the flow resulting from the isometries
occurs in a timelike direction.
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the quantity π/κ2, where κ is a constant of geometric origin, determined solely by

the bifurcate Killing horizon structure and called the surface gravity. That is, this

general temperature is given in terms of κ by the simple formula

T =
κ

2π
.

? For some notable cases, such as appropriate portions of the maximal extensions of

the Kerr spacetime (which models an isolated, electrically neutral, rotating black

hole in an open universe) and of the Schwarzschild–de Sitter spacetime (which

models a nonrotating, electrically neutral black hole in an otherwise de Sitter uni-

verse), the authors claimed to provide rigorous proofs that there is no such state.

As a result, in particular, analogs of the Unruh effect for linear, real, spin-0 quan-

tum fields cannot exist on such spacetimes. In the case of the Kerr spacetime,

the argument for non-existence was based on the fact that some of the rotational

kinetic energy of a rotating black hole can be extracted by scattering into it waves

of sufficiently low frequency and high angular momentum [Zel72] – a phenomenon

called superradiance. For Schwarzschild–de Sitter, one argument for the no-go

result was based on the fact that, should such a state exist, it would simultane-

ously have two different Hawking temperatures, one associated with the black hole

horizon and the other with the de Sitter cosmological horizon. Another argument

relied on what, in quantum information theory, is now known as ‘monogamy’ of

entanglement (although this notion had not yet been coined at the time).

Quantization in the presence of moving mirrors. As a result of yet another struggle

to capture the essence of Hawking’s original argument for particle creation by black

holes [Haw75], by separating it from the technical clutter associated with curvature and

four-dimensionality, and by reducing the prominence of global considerations, some au-

thors (see [DF77] and references therein) studied radiation processes for quantum fields

in simplified models which, they argued, simulate most of the important features of

spherically symmetric gravitational collapse models as the ones considered by Hawking.

Specifically, in these models the quantum fields were linear, massless and of spin 0, and

the kind of backwards-in-time wave scattering which, in the case of four-dimensional

collapse models, was at the heart of Hawking’s derivation via a somewhat mysterious

application of the geometric optics approximation, was achieved in the context of a flat

and two-dimensional spacetime by introducing a spatial boundary and reflecting condi-

tions for the field at that boundary – that is, by introducing a mirror. What was an

overall effect of non-trivial ‘bulk’ geometry in Hawking’s derivation was now the result

of a disturbance concentrated along the trajectory of the mirror.

Aside from the motivation coming from the Hawking effect in the manner just recalled,

these low-dimensional mirror scenarios were extensively studied as worthwhile models
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in their own right. For instance, the discovery of the Casimir effect [Cas48] had already

shown that the presence of reflecting mirrors can produce non-zero and physically sig-

nificant energy density and pressure associated with the vacuum state. In [FD76, DF77]

(see also [BD84, Sec. 4.4 and Sec. 7.1] for an overview), it was pointed out that a mir-

ror which starts out inertial – with the state of the field the initial vacuum state –

and later undergoes uniform acceleration does not radiate during the period of uniform

acceleration.

1.1 Relation with previous work and main results

The work in this thesis was initially motivated by the first of the three research programs

described above. Specifically, we sought an answer to the already mentioned natural

question of whether or not regular quantum field theory on curved spacetimes might

reasonably ‘simulate’ black holes in boxes when these are supposed to be in thermal

equilibrium with a thermal atmosphere described by ordinary quantum-field–theoretic

matter. Insofar as such systems can ever have a semi-classical description in which the

geometry is described by an ordinary general-relativistic spacetime with a boundary

describing the ‘box’, what might this spacetime look like?

As far as the treatment of the matter quantum fields is concerned, it seemed natural to

begin our investigation with quantized, linear, spin-0 fields (i.e., Klein–Gordon fields)

and to model their being ‘confined’ to a box by prescribing boundary conditions at

the classical level – i.e., before quantization. The choice of boundary conditions must

be, ultimately, physically motivated. And there must be an understanding that ‘sharp’

boundary conditions are perhaps never too physical – for instance, while the effect of

some real physical devices (e.g., mirrors) on fields may be described very well by a ‘sharp’

boundary condition if the incident fields carry low energy, this description typically fails

to be an accurate one at very high energies (e.g., in the case of mirrors, absorption

inevitably begins to occur then). We will not touch on this inherent limiting aspect of

our model any further in this thesis. We opted for Dirichlet boundary conditions as

they are elementary to treat, but with a view towards allowing more general boundary

conditions (and, concurrently, more general fields) in future research.

In this context, the work of B. S. Kay in [Kay15] suggested that, in the case of a

Schwarzschild black hole, a description of such thermal equilibrium in which the ge-

ometry is modelled by the Kruskal spacetime with portions of the two exterior regions

(symmetrically) removed, as in the Penrose diagram of Figure 1.1, runs into serious

difficulties.
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Figure 1.1: Penrose diagram for the region of the Kruskal spacetime considered in
[Kay15]. See also Figure 3.3.

We therefore decided to examine the viability of another possible geometry, obtained by

‘cutting off’ the maximally extended Kruskal spacetime only in the right wedge. More

precisely, as in [Kay15] we remove a portion of the spacetime in which the Schwarzschild

radial coordinate exceeds some fiducial value larger than the Schwarzschild radius. But

this time we only do so on the right exterior wedge, leaving the left one intact. The

result is a spacetime which possesses a timelike boundary defining the surface of the

imagined ‘confining box’ – see Section 3.1.

Unlike in the case of globally hyperbolic spacetimes without boundaries, a general, math-

ematically rigorous, theory of classical and quantum fields in spacetimes with timelike

boundaries, and in the presence of boundary conditions, is still missing. In order to

be able to produce physical arguments despite the lack of such a theory, we initially

proceeded under the assumption that a certain minimal set of desiderata for classical

fields still hold true in the context of certain spacetimes with timelike boundaries, and

in particular in the context of our portion of the Kruskal spacetime. These requirements

are minimal in the sense that they are analogous versions of properties which are known

to hold for physically relevant fields on globally hyperbolic spacetimes and which are

essential ingredients for carrying out rigorous quantization procedures there.

Making these assumptions allowed us to argue for and thus conjecture a non-existence

result for regular (i.e. of ‘Hadamard’ type in a sense which we will clarify) quantum states

which are additionally invariant under the isometries of our spacetime. Supporting

evidence for the validity of our conjecture is provided by means of a no-go theorem,

Theorem 3.4.7, which we are able to rigorously establish, for an analog toy model in

1+1 dimensions. This latter theorem is interesting in its own right as it sheds some
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further light on the analysis of quantization in the presence of moving mirrors, see our

brief review on p. 18.

The content of the above paragraph, and a discussion of the physical significance of the

conjectures and results there, is the topic of Chapter 3. Both our no-go conjecture and

our no-go theorem may be regarded as non-existence results in the style of those proved

by Kay and Wald in [KW91] – see the last item in the list beginning on p. 17. Yet

another non-existence result in that style – for the wave equation on (1+1)-dimensional

Minkowski spacetime – is proved in Appendix B.

In view of the close connection of our work with the setup and techniques in [KW91], we

decided to clarify some technical aspects of the analysis in [KW91]. Chapter 2, as well

as introducing necessary mathematical background, provides some such clarifications.

Specifically: in Section 2.2 we deal with purely Lorentzian-geometric aspects, while in

Section 2.5 we rigorously prove some significant results in hyperbolic PDE theory which

were assumed true, without proof, in [KW91].

Another, more severe, issue with the analysis in [KW91] was also discovered in the

process of tackling the problems in Chapter 3. Namely, an important gap was discovered

which affected in particular the arguments for the items labelled ‘?’ in the list beginning

on p. 17. We attempted, achieving partial success, to fill this gap and thus repair the

affected arguments in [KW91]. Chapter 4 presents the results of our investigation and

highlights the situations in which we were not able to fill the gap.

Finally, in Chapter 5 we initiate the treatment in earnest of the classical theory of fields

and boundary-value problems on spacetimes possessing timelike boundaries, with a view

to eventually establishing, as rigorous results in PDE theory, the desiderata mentioned

five paragraphs above the current one. Some preliminary results are obtained, and a

suggested road map for a complete resolution is provided in Section 5.4.





Chapter 2

Mathematical Background and

Preliminaries

2.1 Review of relevant Lorentzian geometry

2.1.1 Differential topology generalities

Our main reference for definitions and results in differential topology is [Lee13]. In par-

ticular, the underlying topological space of a smooth or topological manifold will always

be required to be Hausdorff and second-countable. However, unlike that reference, we

will use the notation Tpφ : TpM → TpN for the differential (or ‘tangent map’) of a map

φ : M → N at a point p ∈ M ; the bundle map resulting from the collection {Tpφ}p∈M
will be denoted by Tφ : TM → TN . For brevity, from now on we will often simply write

‘manifold’ to mean ‘smooth manifold’. In general, we adopt the convention that terms

such as ‘map (of manifolds)’, ‘chart’, ‘immersion’, ‘submersion’, ‘embedding’, ‘subman-

ifold’, ‘metric’, ‘vector/covector/tensor field’, ‘(vector) (sub)bundle (map/morphism)’,

‘local/global trivialisation’, ‘section’, ‘local/global basis’ etc., if used without further

qualifiers, will refer to their smooth versions. One notable exception to this practice will

be the fact that the word ‘curve’, if unqualified, will simply refer to what is sometimes

called a ‘continuous parametrised curve’ or a ‘path’, i.e. a continuous function γ : J →M

where J ⊆ R is an interval with non-empty interior.

We will write A = B ] C to mean that A = B ∪ C and B ∩ C = ∅. N will denote

the non-zero natural numbers, while N0 := N ∪ {0}. The topological closure, interior

and boundary of a subset A of a topological space X will be denoted by A,
◦
A and Ȧ

respectively, while for a smooth manifold with boundary M we reserve the notations ∂M

and IntM to the boundary and interior of M in the sense of manifolds with boundary.

23
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Throughout, if M is a manifold then Ck(M) for k ∈ N0∪{∞} will denote the space of k

times continuously differentiable real-valued functions on M – with ‘0 times continuously

differentiable’ meaning continuous. If N is another manifold, Ck(M ;N) will denote the

space of k times continuously differentiable functions from M to N . If E → M is

a smooth fiber bundle, then Γk(E) for k ∈ N0 ∪ {∞} will denote the space of k times

continuously differentiable sections of E →M , so that in particular Ck(M) = Γk(M×R)

where M × R → M is the trivial vector bundle. We may occasionally use the notation

X(M) for the set Γ∞(TM) of smooth vector fields on M . If M and N are real analytic

manifolds and E → M is a real analytic fiber bundle, then we can define Cω(M),

Cω(M ;N) and Γω(E) as above, with ‘ω times continuously differentiable’ meaning real

analytic. Finally, if E → M is a vector bundle then Γk0(E) denotes the subspace of

Γk(E) consisting of sections φ : M → E whose support, defined by

suppφ := {x ∈M | φ(x) 6= 0} ⊆M,

is compact. Thus, in particular, Ck0 (M) is the space of k times differentiable real-valued

functions on M with compact support. Appendix C reviews some other notable function

spaces which will be of use to us.

Since the technical distinction between immersed and embedded submanifolds will be-

come important later, we recall these definitions below.

Definition 2.1.1 ([Topological] immersions and embeddings). Let P and M be manifolds,

and i : P →M be a map. Then i is an immersion if all its differentials are injective linear

maps; it is an embedding if it is an immersion and also a topological embedding, i.e. a

homeomorphism onto its image i(P ) ⊆M in the subspace topology. It P and M are just

topological spaces, then i : P →M is a topological embedding if it is a homeomorphism

onto its image equipped with the subspace topology, and a topological immersion if every

x ∈ P has a neighbourhood U such that i�U is a topological embedding.

Definition 2.1.2 (Immersed and embedded [topological] submanifolds). (i) We say that

a subset S ⊆ M can be given the structure of an immersed submanifold of M if there

exists an injective immersion i : P → M whose image is S. There exists then a unique

choice of topology and smooth structure on S, depending on i, turning S into a manifold

and i : P → S into a diffeomorphism. However, if an i exists such that i : P → S is

also a homeomorphism when S is equipped with the subspace topology, then all choices

of injective immersion yield the same topology (i.e. the subspace topology) and smooth

structure, relative to which the inclusion map of S into M is an embedding [Lee13, Thm.

5.31]. We then say that S is an embedded submanifold of M . (ii) Stripping M of its

smooth structure and viewing M as a topological manifold, we say that S can be given

the structure of an immersed topological submanifold if there is a topology on S (not
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necessarily the subspace topology) which makes it into a topological manifold such that

the inclusion is a topological immersion. If the inclusion map is a topological embedding

then S is an embedded topological submanifold of M .

Definition 2.1.3. Throughout this thesis, by a hypersurface in a manifold M we will

mean a codimension-1 embedded submanifold of M according to Definition 2.1.2. A

codimension-1 embedded topological submanifold of M will be called a topological hy-

persurface.

2.1.2 Lorentzian manifolds and elements of causal theory

We set the scene for semi-Riemannian and, in particular, Lorentzian geometry. Our

principal reference is [O’N83]. Doing this will allow us to give the general definition of

a spacetime (without boundary) which will be adhered to throughout this thesis.

Definition 2.1.4. Let V be a finite-dimensional real vector space, and b : V × V → R
be a symmetric bilinear form. We call the index of b the largest integer which is the

dimension of a subspace W ⊆ V on which b�W is positive definite.

Definition 2.1.5 (Semi-Riemannian and Lorentzian manifolds). Given a manifold M , a

metric tensor – or simply a ‘metric’ – is a smooth tensor field of type (0, 2) – that is,

an element of Γ∞(T ∗M ⊗ T ∗M) – which is everywhere symmetric and non-degenerate

and has constant index throughout M . By a semi-Riemannian manifold we mean a pair

(M, g) where M is a manifold and g is a metric tensor. If, in addition, dimM ≥ 2 and

g has index equal to 1 then (M, g) is a Lorentzian manifold.

Whenever convenient, we will adopt the standard summation convention and abstract

index notation for tensor indices. As is customary, we will denote the covariant derivative

arising from g by ∇ and, for any smooth function f , the vector field ∇af by grad f . Our

convention for the Riemann curvature tensor is

(∇a∇b −∇b∇a)vc = R c
abd v

d,

the Ricci tensor is Rab := Rcacb, and the Ricci scalar curvature is R := Raa. For us, a

geodesic is always what some authors refer to as an ‘affinely parametrised geodesic’; i.e.,

a (necessarily smooth) curve γ : I → M satisfying the geodesic equation ∇γ̇ γ̇ = 0. We

will instead refer to curves γ : I →M parametrised so that ∇γ̇ γ̇ ∝ γ̇ as pregeodesics.

Definition 2.1.6 (Types of submanifolds of Lorentzian manifolds). If (M, g) is a Lorentzian

manifold, P is a manifold, and i : P → M is an injective immersion, the resulting im-

mersed submanifold S = i(P ) is called spacelike (resp. timelike) if the pullback i∗g
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defines a Riemannian (resp. Lorentzian) metric on P . If i∗g is everywhere degenerate

then S is said to be null.

Definition 2.1.7 (Normal bundle of a submanifold). Given an arbitrary embedded sub-

manifold S
i
↪−→M of a Lorentzian manifold (M, g), the normal bundle of S, denoted by

NS, is the vector subbundle of the pullback bundle TM |S = i∗TM consisting of vectors

normal to S using the metric g. I.e., as a set and viewing TS as a subset of TM ,

NS = {n ∈ TM |S | g(n,X) = 0 ∀ X ∈ TS} .

The standard Riemannian exponential map will be used in the sequel. For a proof of

its smoothness on the maximal domain D defined below, we refer to [Lee97, Prop. 5.7].

Here and throughout this thesis, given V ∈ TM we will denote by γV the (unique)

maximally extended geodesic with initial tangent vector V – whose domain of definition

is then necessarily an open interval containing 0 ∈ R and depending on V .

Proposition 2.1.8. Let (M, g) be a semi-Riemannian manifold, and let

D := {V ∈ TM : the maximal geodesic γV is defined on an interval containing [0, 1]}.
Then D is an open subset of TM and the exponential map of (M, g), exp : D → M

defined by exp(V ) = γV (1), is smooth.

Note that, if f : (M1, g1) → (M2, g2) is a local isometry, then Tf(D1) ⊆ D2 where D1

(resp. D2) denotes the domain of the exponential map on (M1, g1) [resp. (M2, g2)]. This

will be used in the proof of Theorem 2.2.6. If S is an embedded submanifold then the

normal exponential map exp⊥S is defined as the restriction of exp to the normal bundle

NS; it immediately follows that exp⊥S is defined and smooth on an open submanifold

D⊥S of NS. The following stronger result is Lemma 7.25 in [O’N83].

Proposition 2.1.9. If (M, g) is a semi-Riemannian manifold and S is an embedded sub-

manifold such that the pullback of g to S is everywhere non-degenerate, then S has a

normal neighbourhood U in M . This means that there exists an open neighbourhood W
of the set of zero vectors in NS, with W ⊆ D⊥S , such that exp⊥S carries W diffeomorphi-

cally onto U .

If S = {p} is a one-point subset, then NS is just TpM and Proposition 2.1.9 adapts

in the following sense. Letting expp := exp �TpM∩D, a normal neighbourhood of p is, by

definition, an open neighbourhood U 3 p such that there exists an open neighbourhood

W ⊆ TpM , starshaped about the zero vector in TpM , such that expp : W → U is a

diffeomorphism. With these definitions, any point in a semi-Riemannian manifold has

a normal neighbourhood. Indeed, more is true. We call a neighbourhood of p convex or

geodesically convex if it is a normal neighbourhood of each of its points.

Lemma 2.1.10 (Existence of convex neighbourhoods). A semi-Riemannian manifold has

arbitrarily small convex neighbourhoods of any of its points.
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We now review some aspects of the causal theory of Lorentzian manifolds. That is,

we concern ourselves with relations between points in Lorentzian manifolds which arise

from the causal character of vectors and curves there.

Definition 2.1.11 (Causal character of vectors). The causal character of a vector X ∈
TpM in a Lorentzian manifold (M, g) is defined as follows: X is called timelike if

gp(X,X) > 0, spacelike if X = 0 or gp(X,X) < 0, null or lightlike if gp(X,X) = 0

but X 6= 0, and causal (or nonspacelike) if either timelike or null.

If (M, g) is a Lorentzian manifold and p ∈ M , the subset of TpM consisting of timelike

vectors forms an open cone in TpM
1 with two connected components. The same is true

– minus the openness property – of the subset consisting of null vectors, and of the one

consisting of causal vectors. In all these cases, a timelike vector X at p selects one of the

two connected components by intersecting with the set {Y ∈ TpM | gp(X,Y ) > 0} – in

particular, in the timelike or causal case, X is contained in this connected component –

and any other timelike vector in the same connected component would select the same

connected component. Therefore, any (everywhere) timelike vector field on M , even a

discontinuous one, induces a global assignment, to each point in M , of one of the two

connected components of the set of timelike/null/causal vectors at that point.

Definition 2.1.12 (Time-orientability). A Lorentzian manifold (M, g) for which there

exists a global continuous (but see the remark below) timelike vector field is called time-

orientable2, and the resulting global choice of connected components of the sets of causal

vectors is called a time orientation. If a choice of time orientation is made, a causal vector

at p ∈ M belonging to the connected component selected at p is called future-directed,

while one belonging to the remaining connected component is called past-directed.

Remark. Some authors would impose, in Definition 2.1.12, the seemingly stricter re-

quirement that there exist a global smooth timelike vector field. It is perhaps rarely

explicitly pointed out that this is in fact not a restriction at all in the following sense:

If a continuous timelike vector field T0 on M exists then there exists a smooth timelike

vector field T which is everywhere future-directed according to T0. The proof is simple

using a fact which can be easily extracted from much more general results given in e.g.

[Hir76] [see in particular Exercise 3(b) on p. 56 there]: If M,N are smooth manifolds,

p : N → M is a submersion, and there exists a continuous f0 : M → N such that

p ◦ f0 = idM , then there exists a smooth f : M → N with p ◦ f = idM . Our claim then

follows by applying this fact to our Lorentzian manifold M , defining

N := {X ∈ TM | g(X,X) > 0} ∩ {Y ∈ TM | g(T0, Y ) > 0} ,
1A cone in a vector space is a set invariant under multiplication by positive real numbers.
2We also say that g is a time-orientable metric for M .
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which is an open subset of TM , and letting p : N → M be the restriction to N of the

standard bundle projection TM →M . Incidentally, these considerations also apply if g

is merely a continuous metric.

Definition 2.1.13 (Spacetime). By a spacetime we mean a triple M = (M, g, t), in which

(M, g) is a connected3 and time-orientable Lorentzian manifold, and t is a choice of time

orientation.

Definition 2.1.14 (Causal character of curves). A C1 curve γ : I → M in a Lorentzian

manifold is called timelike if all its tangent vectors are timelike, null if all its tangent

vectors are null, and spacelike if they are all spacelike.4 Finally, it is called causal or

sometimes nonspacelike5 if all its tangent vectors are causal. If the Lorentzian manifold

is given a time orientation, then γ is said to be future/past-directed if all its tangent

vectors are future/past-directed in the chosen time orientation. A timelike/null/causal

curve γ : [a, b]→M with −∞ < a < b < +∞ such that γ(a) = p and γ(b) = q is called

a (timelike/null/causal curve) curve from p to q.

We can easily extend Definition 2.1.14 to curves which are merely piecewise-C1 provided

that the following holds: at any break point of the curve, the left-sided and right-sided

tangents to the curve at that point belong to the same connected component of the set of

causal vectors. We can even extend it to continuous curves which are only differentiable

on a dense subset of their interval of definition I ⊆ R, provided that the Lorentzian

manifold is time-orientable: in that case, the tangent vectors to the curve, whenever

they exist, are required to be either always future-directed or always past-directed once

a choice of time orientation is made. This will become important below.

Definition 2.1.15 (Causal relations between points in a spacetime). Let M = (M, g, t)

be a time-oriented Lorentzian manifold, and p, q ∈M . (1) We say that p chronologically

precedes q in M [equivalently, that q chronologically follows p in M ], and write p�M q

[equivalently, q �M p], if there exists a future-directed and piecewise-smooth timelike

curve from p to q [equivalently, a past-directed and piecewise-smooth timelike curve from

q to p]. We then call

I+
M (p) := {q ∈M | p�M q} and, for an arbitrary A ⊆M , I+

M (A) :=
⋃
p∈A

I±M (p)

the chronological future of p and A, respectively. The chronological past of p or of A,

denoted by I−M (p) and I−M (A) respectively, can be defined dually by using �M instead

of �M . (2) We say that p causally precedes q in M [equivalently, that q causally

follows p in M ], and write p ≤M q [equivalently, q ≥M p], if either p = q or there

3It is well-known [Ger68, Mar72] that if a locally Euclidean, connected, Hausdorff topological space
equipped with a smooth structure admits a (smooth) Lorentzian metric, then it is automatically para-
compact. By connectedness, it is then also second-countable.

4In particular, under this convention the constant curves are always spacelike.
5But we will prefer the word ‘causal’ as we find it less ambiguous.
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exists a future-directed and piecewise-smooth causal curve from p to q [equivalently, a

past-directed and piecewise-smooth causal curve from q to p]. We then call

J+
M (p) := {q ∈M | p ≤M q} and, for an arbitrary A ⊆M , J+

M (A) :=
⋃
p∈A

J±M (p)

the causal future of p and A, respectively, and use ≥M instead of ≤M to define the

causal past of p or of A, denoted by J−M (p) and J−M (A) respectively. Finally, for A ⊆M ,

we write

JM (A) := J+
M (A) ∪ J−M (A).

Remark. We will often drop references to M in e.g. the subscripts in Definition 2.1.15

whenever this is unlikely to cause confusion.

It is well-known that, for any p ∈ M , I±M (p) is an open set, and thus that so is I±M (A)

for any A ⊆ M . In Chapter 5, we will explicitly prove a generalisation of this result in

the case in which M is allowed to be a manifold with (smooth) boundary.

The reader will have noticed that we used curves which were piecewise-smooth, and not

just (piecewise-)C1, in Definition 2.1.15. One naturally wonders if the resulting relations

and sets would change upon using piecewise-C1 curves instead. Fortunately, this is not

the case and, actually, it is well-known that more is true, as we now explain. Recall

that, if (X1, d1) and (X2, d2) are metric spaces, then a function f : X1 → X2 is called

locally Lipschitz if for every compact subset K of X1 there exists a constant CK ≥ 0

such that

d2(f(x), f(y)) ≤ CKd1(x, y) ∀ x, y ∈ K.

If we are given two connected Riemannian manifolds (M1, h1) and (M2, h2) we can

therefore speak of a locally Lipschitz map between them, meaning one which is locally

Lipschitz with respect to the associated distance functions dh1 and dh2 . Then, we have

the important theorem of Rademacher , which states that (amongst other things, see

e.g. [Chr11, Thm. 2.3.2] and references therein) any such map has a classical derivative

almost everywhere with respect to the Lebesgue measure in local coordinates on M1 –

in particular, it has a classical derivative on a dense subset of M1.

Rademacher’s theorem allows us to considerably extend the class of curves which might

deserve to be called timelike/causal/null, whenever the underlying Lorentzian manifold

is time-orientable. After a preliminary result, which is stated and proved as Proposition

2.3.1 in [Chr11], we will be able to provide this extended definition.

Proposition 2.1.16. Let h1 and h2 be two complete Riemannian metrics on M . Then a

curve γ : I →M – with I ⊆ R equipped with the standard Euclidean distance – is locally

Lipschitz with respect to h1 if and only if it is locally Lipschitz with respect to h2.
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Definition 2.1.17 (Locally Lipschitz causal curves). Let (M, g, t) be a time-oriented

Lorentzian manifold. Then a curve γ : I → M which is locally Lipschitz with respect

to one (and therefore any other) complete Riemannian metric is called future-directed

causal [resp. past-directed causal ] if, whenever it exists, γ̇ is a causal and future-directed

[resp. past-directed] vector. Replacing ‘causal’ with ‘timelike’ or ‘null’ yields the notion

of future- or past-directed timelike or null locally Lipschitz curves.

Thus, at least in the case of time-oriented Lorentzian manifolds, a much wider class of

causal/timelike/null curves is potentially available than that defined by requiring either

piecewise-C1 or piecewise-C∞ regularity. The main reason for practitioners in Lorentzian

geometry to require enlargements of the notion of causal and timelike curves, such as

this one or the one reviewed below, is that piecewise-C1 or piecewise-C∞ curves do not

form a class which is ‘closed’ under limiting procedures which often arise in applications,

see Subsection 2.1.3. It is however useful to know that such enlargements do not also

enlarge the causal relations and sets introduced in Definition 2.1.15. The following result

is (itself a corollary of) Corollary 2.4.11 in [Chr11] – we refer also to [KSSV14, Cor. 3.10]

for an even stronger statement.

Theorem 2.1.18. Let M = (M, g, t) be a time-oriented Lorentzian manifold, and suppose

that the expression ‘locally Lipschitz’ were to be used everywhere in Definition 2.1.15 in

place of ‘piecewise-smooth’. Then the ‘new’ resulting causal relations �M and ≤M are

the same as the original ones. Therefore, the sets I±M (A) and J±M (A) do not change.

More concretely: if there exists a locally Lipschitz future-directed timelike [resp. causal]

curve from p to q then there exists a piecewise-smooth future-directed timelike [resp.

causal] curve from p to q.

The rather weak notion of timelike and causal curve we just described is not universally

used in the literature on Lorentzian geometry; an example of a remarkable application

of this definition is the work in [FS12, Fat15]. An alternative way to extend the notion

of causal curve dates back at least to the monograph [HE73, p. 184] and has been

extensively used since. One obtains an enlargement of the class of piecewise-C1 causal

curves which, as we shall see, is strictly contained in the locally Lipschitz enlargement

which we reviewed above.

Definition 2.1.19 (Continuous causal curves). Let (M, g) be a Lorentzian manifold. A

curve γ : I → M is a continuous causal curve if it is continuous and, for every convex

set U and any two t1, t2 ∈ I with t1 < t2 and γ[t1, t2] ⊂ U , it is the case that there

is a piecewise-C1 causal curve6 from γ(t1) to γ(t2) which is entirely contained in U . If

(M, g, t) is time-oriented, then we can define future- or past-directed continuous causal

curves in the obvious way.

6But, of course, piecewise-smooth would do just as well!
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As was already noted in [Pen72, Rk. 2.26] and [BEE96, Eq. (3.14)], the local chart

expressions of continuous causal curves must satisfy local Lipschitz conditions. The topic

of the exact degree of regularity of continuous causal curves according to the definition

above is discussed in [CFS08, App. A, particularly Rk. A.4], and some of the results

there are generalised in [Min15b, Thm. 7]. In particular, it holds that every future-

directed [resp. past-directed] continuous causal curve γ : I → M , when reparametrised

with respect to the arc-length of an arbitrary Riemannian metric on M , becomes a

future-directed locally Lipschitz causal curve. It follows at once from Theorem 2.1.18

that the causal precedence relation ≤ and notion of causal future/past of a set is not

changed by using continuous causal curves instead of piecewise-smooth ones.

We shall therefore not have to worry, in what follows, about exactly what (extended)

notion of causal or timelike curve is used. But it is healthy to keep in mind that most of

the literature which we will cite adopts the notion in Definition 2.1.19 for causal curves.

The following result, which is Corollary 14.1 in [O’N83] and which can be established

rigorously using variational methods [O’N83, Prop. 10.46], is of the utmost importance.

Lemma 2.1.20 (‘Push-up Lemma’). If either x � y ≤ z or x ≤ y � z, then x � z. As

a result, I+(J+(A)) = I+(A) for any subset A ⊆M .

An important consequence of this lemma will be used at various point in this thesis. It

may also be proved by different methods, as done for instance in [BEE96, Cor. 4.14].

O’Neill’s version of this result [O’N83, Cor. 14.5] also contains a statement about con-

jugate points which we will omit here.

Corollary 2.1.21. Let (M, g, t) be a time-oriented Lorentzian manifold, and A ⊆ M

be an arbitrary subset. If γ is a future-pointing causal curve from A to a point q ∈
J+(A) \ I+(A), then, up to reparametrisation, γ is a (smooth) null geodesic entirely

contained in J+(A) \ I+(A). A similar statement holds for J−(A) and I−(A).

With the setup of Corollary 2.1.21, since im γ ⊆ J+(A) then I+(im γ) ⊆ I+(J+(A)) =

I+(A). But then im γ ∩ I+(im γ) ⊆ im γ ∩ I+(A) which is empty. That is, im γ is an

achronal (sub)set as in the following definition.

Definition 2.1.22 (Achronal sets). A subset A ⊆ M is achronal if, equivalently, A ∩
I+(A) = ∅ or A ∩ I−(A) = ∅. That is, there are no timelike curves from A to itself.

There is an obvious modification of this definition which uses J± instead of I±. The

result is the notion of an acausal (sub)set.

Definition 2.1.23 (Acausal sets). A subset A ⊆M is acausal if, equivalently, A∩J+(A) =

∅ or A ∩ J−(A) = ∅. That is, there are no causal curves from A to itself.
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We would now like to review some of the most notable conditions in the causal hierarchy

of spacetimes [MS08], the strongest of which (‘global hyperbolicity’) will play a pivotal

role throughout this thesis. Only one preliminary definition is still required.

Definition 2.1.24 (Causally convex subsets). Let (M, g) be a Lorentzian manifold and

U, V be open subsets of M with U ⊆ V . U is said to be causally convex in V if any

causal curve between two points in U is entirely contained in V if and only if it is entirely

contained in U . When V = M we just say that U is causally convex.

The first is a mild condition which prevents ‘back in time travel’ via causal curves.

Definition 2.1.25 (Causality). A spacetime is said to be causal if it admits no closed

causal loops. Equivalently, if J+(p) ∩ J−(p) = {p} for any point p.

Further up on the ‘causal ladder’, a (strictly) stronger condition also rules out the

existence of ‘almost closed’ causal loops.

Definition 2.1.26 (Strong causality). A spacetime is said to be strongly causal if any of

its points has an arbitrarily small causally convex neighbourhood.

Remark. Lemma 3.21 in [MS08] provides an equivalent definition of strong causality not

explicitly phrased in terms of causally convex sets.

The definitions so far come with no guarantees as to whether they still hold if the

spacetime metric is perturbed, even very slightly, in such a way as to ‘widen’ the cones

of causal vectors in some places. The notion of ‘stable causality’ is (strictly) stronger

than the previous two and enjoys this stability property. We let Con(M) be the set of

conformal equivalence classes of Lorentzian metrics on M : two Lorentzian metrics g1

and g2 on M are conformally equivalent if there exists a smooth Ω : M → (0,+∞) such

that g2 = Ωg1. We denote the conformal equivalence class of g by g. Then the partial

ordering

g ≺ g′ if and only if all the causal vectors for g are timelike for g′

descends to a partial ordering on Con(M) which we still denote by ≺. We can then

define stable causality in a number of equivalent ways – the equivalence between some

of these definitions being a major recent achievement – we refer to [MS08] for further

details. In fact, we will omit another definition given in terms of a topology on Con(M)

(the quotient C0 or interval topology) which can be characterised in a several natural

ways [MS08, pp. 334–335].

Definition 2.1.27 (Stable causality). A spacetime (M, g, t) is said to be stably causal if,

equivalently:

(i) there exists a g′ ∈ Con(M) such that g ≺ g′ and g′ is causal;
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(ii) it admits a continuous function t : M → R which is strictly increasing along any

future-directed (continuous, locally Lipschitz) causal curve;

(iii) it admits a smooth function t̃ : M → R whose gradient is future-directed and

timelike.

Definition 2.1.28 (Time and temporal functions). Given a spacetime, a time function

is one with the properties described in item (ii) of Definition 2.1.27, while a temporal

function is one with the properties described in item (iii) of Definition 2.1.27.

Remark. Note that a smooth time function need not be a temporal function, while a

temporal function is necessarily a time function. Since a spacetime is connected, the

image of a time function is an interval in R, and since we can always travel slightly to the

causal future or past of any point, this interval must be open in R. By composing with

an orientation-preserving diffeomorphism onto R, given a time or temporal function we

can obtain another one whose image is R.

Definition 2.1.29 (Causal simplicity). A spacetime (M, g, t) is said to be causally simple

if it is causal and if any of the following equivalent properties [MS08, Lem. 3.67] holds:

(i) J±(p) is closed for every p ∈M ;

(ii) J±(K) is closed for every compact set K.

Causal simplicity is stronger than stable causality in the category of spacetimes – which

have no manifold boundary – which we are going to deal with in this chapter. We

finally give the strongest causal condition of all – which is also the most useful one for

applications to quantum field theory on curved spacetimes (see Section 2.4).

Definition 2.1.30 (Global hyperbolicity). A spacetime (M, g, t) is globally hyperbolic if it

is causal and, for any two p, q ∈M , the causal diamond J+(p) ∩ J−(q) is compact.

Remark. Until recently, strong causality was used in place of causality in this definition.

It is a recent observation [BS07] that, since causality and compactness of the causal

diamonds implies strong causality, one in fact obtains the same notion by using the

definition given above. Clearly then, we could also have used stable (!) causality instead

of just causality; while this would make no sense in the current context, it is often what

needs to be done when attempting to generalise the notion of global hyperbolicity to

make it an attribute of structures generalising the field of causal cones on a Lorentzian

manifold, as was done in [FS12, Fat15].

One of the main reasons for the usefulness of global hyperbolicity is its equivalence with

the existence of a Cauchy surface.

Definition 2.1.31 (Inextendible curves). Let M be a topological space and I ⊆ R be an

interval with extremes a and b, −∞ ≤ a < b ≤ +∞. Let γ : I → M be a continuous

curve. Then p ∈M is a left endpoint of γ if limt→a γ(t) = p, and a right endpoint of γ if
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limt→b γ(t) = p. γ is right-inextendible if it has no right endpoint, and left-inextendible if

it has no left endpoint. If (M, g, t) is a time-oriented Lorentzian manifold and γ : I →M

is a future-directed causal curve, then a right (resp. left) endpoint of γ is called a future

(resp. past) endpoint of γ, and γ is said to be future (resp. past) inextendible if it has no

future future (resp. past) endpoint. A curve which is both future and past inextendible

is simply called inextendible.7

Remark. Another notion of (in)extendibility is that of geodesic (in)extendibility. A

geodesic c : (a, b)→M is right (resp. left) geodesically inextendible if it has no extension

to a geodesic c̃ : (c, d)→ M with (c, d) ⊃ (a, b) and d > b (resp. c < a). One can prove

[O’N83, Lem. 5.8] that c is right (resp. left) geodesically inextendible if and only if it is

right (resp. left) inextendible as a continuous curve.

Definition 2.1.32 (Cauchy [hyper]surfaces). If (M, g, t) is a spacetime then a subset C ⊂
M is a Cauchy surface if any inextendible (continuous, locally Lipschitz) timelike curve

intersects C exactly once.

Proposition 2.1.33 (Some properties of Cauchy surfaces). The following hold for a Cauchy

surfaces C of a spacetime (M, g, t), whenever it exists:

(i) C is achronal, closed and an embedded topological hypersurface in M ;

(ii) J±(K) ∩ C is compact whenever K ⊆M is compact;

(iii) M = I−(C ) ] C ] I+(C );

(iv) any inextendible (continuous, locally Lipschitz) causal curve intersects C ;

(v) if C is a C1 spacelike submanifold, then it is acausal.

Definition 2.1.34 (Cauchy [time or temporal] functions). A function t : M → R is called a

Cauchy function if all its level sets are Cauchy surfaces. A time (resp. temporal) function

(see Definition 2.1.28) which is Cauchy is called a Cauchy time (resp. temporal) function.

Theorem 2.1.35 (Global hyperbolicity in terms of Cauchy surfaces and Cauchy func-

tions). For a spacetime M = (M, g, t), the following are equivalent:

(a) M is globally hyperbolic according to Definition 2.1.30;

(b) M admits a Cauchy surface C ;

(c) M admits a Cauchy time function;

(d) M admits a smooth and spacelike Cauchy surface C̃ ;

(e) M admits a Cauchy temporal function τ onto R.

In case (b), it also follows that any other Cauchy surface is homeomorphic to C and

that M is homeomorphic to R × C . In case (d), it also follows that any other smooth

Cauchy surface (spacelike or not) is diffeomorphic8 to C̃ , and that there exists a Cauchy

temporal function such that C̃ is one of its level sets. In case (e), it also follows that,

7The word ‘endless’ is sometimes used in the literature in place of ‘inextendible’.
8If the spacetime is orientable, even oriented-diffeomorphic.
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with the notation Ct := τ−1{t} ∀ t ∈ R, there exists an isometry φ0 : R× C0 →M such

that T := τ ◦ φ0 : R×C0 → R is just the natural projection, and the pullback metric has

the form

(φ0)∗g = dT 2 − gτ

where β : R × C0 → R is a positive smooth function, and gτ is a smooth symmetric

(0, 2)-tensor field on R × C0 whose radical at each point is precisely the span of ∂T at

that point, and whose pullback under each inclusion T −1{t} ↪→ R×C0 is a Riemannian

metric on T −1{t} = φ−1(Ct).

Causal completeness and past/future compactness

We shall make use of the following notion of (future/past) causal completeness of a

subset, formally introduced in [Gal86].

Definition 2.1.36. A subset A ⊆ M in a time-oriented Lorentzian manifold (M, g, t) is

called future causally complete if, for each q ∈ J+(A), the closure of J−(q) ∩ A in A

is compact. We define past causal completeness by exchanging the roles of + and −.

A subset that is both future and past causally complete will simply be called causally

complete.

Remark. The subtly different notion of future/past compactness of a subset A was first

introduced by Leray in [Ler53], and used extensively in subsequent work, e.g. in [Fri75,

BGP07]. Namely, A ⊆ M is future [resp. past] compact if J+(p) ∩ A [resp. J−(p) ∩
A] is compact for all p ∈ M . A is temporally compact if it is both future and past

compact. In general, future [resp. past] causal completeness as per Definition 2.1.36 is a

weaker condition than past [resp. future] compactness. However, if (M, g, t) is globally

hyperbolic, a set is future [resp. past] causally complete if and only if it is past [resp.

future] compact, and thus is causally complete if and only if it is temporally compact.

Clearly, the union and intersection of two future (resp. past) causally complete subsets

is future (resp. past) causally complete. Compact sets are always causally complete.

More interestingly, as already remarked in [Gal86], Cauchy surfaces (when they exist)

are also causally complete [Tre11, p. 114], and thus so are their closed subsets. For

future reference, we also record some useful results the (simple) proofs of which can be

found in [GV14, Sec. 3.1] or in [Bär15, Sec. 1.2]. In all three statements, (M, g, t) is a

time-oriented Lorentzian manifold.

Lemma 2.1.37. If A ⊆M is either past or future causally complete, then it is closed.

Lemma 2.1.38. Suppose that (M, g, t) is globally hyperbolic. If A ⊆M is future causally

complete, then J+(A) is closed and thus J+(A) = I+(A). Furthermore, J+(A) too is
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future causally complete (and so is any of its closed subsets). Analogous statements hold

for J−(A) if A is past causally complete.

If (M, g, t) is globally hyperbolic, we can describe the future/past causal completeness

of closed sets using Cauchy surfaces. A subset A ⊆ M is said to be future [resp. past]

bounded if there exists a Cauchy surface C + [resp. C−] such that A ⊆ J−(C +) [resp.

A ⊆ J+(C−)].

Lemma 2.1.39. Suppose that (M, g, t) is globally hyperbolic, and that A ⊆ M is closed.

Then A is future (resp. past) causally complete if and only if it is past (resp. future)

bounded.

Having introduced future and past causally complete subsets of a generic time-oriented

Lorentzian manifold (M, g, t), given a vector bundle F → M we may define subspaces

of Γ∞(F ), or even of the space Γ−∞(F ) := [Γ∞0 (F ∗)]′ of distributional sections of F

(denoted D ′(M,F ) in [BGP07, Bär15]), with causally restricted supports.

Definition 2.1.40. If (M, g, t) is a time-oriented Lorentzian manifold and F → M is a

vector bundle, we call

Γ∞ret(F ) :=
{
u ∈ Γ∞(F )

∣∣ suppu ⊆ J+(K) for a compact K ⊆M
}

the space of smooth sections with retarded support,

Γ∞adv(F ) :=
{
u ∈ Γ∞(F )

∣∣ suppu ⊆ J−(K) for a compact K ⊆M
}

the space of smooth sections with advanced support,

Γ∞sc (F ) := {u ∈ Γ∞(F ) | suppu ⊆ J(K) for a compact K ⊆M} ⊇ Γ∞ret(F ) ∪ Γ∞adv(F )

the space of smooth sections with spatially compact support,

Γ∞fcc(F ) := {u ∈ Γ∞(F ) | suppu is future causally complete}

the space of smooth sections with future causally complete support,

Γ∞pcc(F ) := {u ∈ Γ∞(F ) | suppu is past causally complete}

the space of smooth sections with past causally complete support,

Γ∞cc (F ) := {u ∈ Γ∞(F ) | suppu is causally complete} = Γ∞fcc(F ) ∩ Γ∞pcc(F )

the space of smooth sections with causally complete support. We define and denote cor-

responding subspaces of distributional sections (cf. Appendix C) analogously. If (M, g, t)

is globally hyperbolic we may say that sections in Γ∞fcc(F )/Γ∞pcc(F )/Γ∞cc (F ) have past/fu-

ture/temporally compact support, and use the alternative notations Γ∞pc(F )/Γ∞fc (F )/Γ∞tc (F ).

Corollary 2.1.41. The following hold in the presence of global hyperbolicity:

(i) Γ∞ret(F ) ∩ Γ∞adv(F ) = Γ∞0 (F );

(ii) Γ∞ret(F ) ⊆ Γ∞fcc(F ) and Γ∞adv(F ) ⊆ Γ∞pcc(F ).
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2.1.3 Limit curve theorems

We now wish to record a general result, commonly referred to as the Limit Curve Lemma,

which is an essential analytical tool of Lorentzian geometry. A corollary thereof (Corol-

lary 2.1.46), which holds in the presence of global hyperbolicity, will be used in the

proof of Theorem 2.2.9. Although several different versions of the Limit Curve Lemma

exist in the literature, we will recall the formulation given in [Gal86] (see also [BEE96,

Lem. 14.2] and the recent review [Min08a]), which best suits our purposes. We first

define the notion of h-uniform convergence (on compact subsets) for sequences of curves

in a Riemannian manifold (M,h) [Min08a, Def. 2.1], as it plays a central role in the

statement of our version of the Limit Curve Lemma. Then, we will recall a certain ‘se-

quential closedness’ property of the space of continuous causal curves under this notion

of convergence [Min08a, Lem. 2.7]. This will be enough background to state our version

of the Limit Curve Lemma, i.e. Theorem 2.1.44.

Definition 2.1.42. Let (M,h) be a Riemannian manifold and dh : M ×M → R be the

associated Riemannian distance function. Let I1 and I2 be intervals in R; given two

curves γ1 : I1 →M and γ2 : I2 →M , we write

dh∞(γ1, γ2) := sup{dh(γ1(t), γ2(t)) | t ∈ I1 ∩ I2}.

Given a sequence of intervals In ⊆ R, we write In → I to mean that the boundary points

of the In converge to the boundary points of I.

Let γn : In → R be a sequence of curves. We say that the sequence converges h-uniformly

to the curve γ : I → R if In → I and limn→∞ d
h
∞(γn, γ) = 0. We say that the sequence

converges h-uniformly on compact subsets to the curve γ : I → R if for every compact

interval J ⊆ I there exist intervals Jn ⊆ In such that the sequence given by the curves

γn�Jn converges h-uniformly to γ�J .

Since, when a time-oriented Lorentzian manifold (M, g, t) is equipped with an arbitrary

Riemannian metric h, any continuous causal curve can be shown to satisfy a local Lip-

schitz condition with respect to the resulting distance function dh [BEE96, Eq. (3.14)],

it straightforwardly follows that any continuous causal curve admits an h–arc-length

reparametrisation.

Lemma 2.1.43. Let (M, g, t) be a time-oriented Lorentzian manifold and let h be a Rie-

mannian metric on M . In the following, In, I ⊆ R are intervals with non-empty interior.

If γn : In → M is a sequence of continuous causal curves parametrised with respect to

h–arc-length, which converges h-uniformly on compact subsets to γ : I → M , then γ is

a continuous causal curve.
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A judicious application of the Arzelà-Ascoli Theorem, together with Lemma 2.1.43, lead

to our version of the Limit Curve Lemma.

Theorem 2.1.44 (Limit Curve Lemma). Let (M, g, t) be a time-oriented Lorentzian man-

ifold of arbitrary dimension, and h be a complete Riemannian metric on M with asso-

ciated distance function dh : M ×M → R. Further let γn : R → M be a sequence of

continuous causal curves, parametrised with respect to h–arc-length. If p ∈M is an accu-

mulation point of the sequence γn(0), then there is a continuous causal curve γ : R→M

(not necessarily parametrised with respect to h–arc-length) such that γ(0) = p, and a

subsequence γnk which converges h-uniformly on compact subsets to γ.

As shown in [Min08a, Thm. 3.1], although Theorem 2.1.44 is stated only for sequences

parametrised (with respect to h–arc-length) over the entire real line,9 it is in fact pos-

sible to generalise the Limit Curve Lemma to obtain analogous statements concerning

sequences of causal curves parametrised (with respect to h–arc-length) over generic in-

tervals, even allowing for up to countably many limit points.

In proving Theorem 2.2.9 in the next section, we will be faced with the following issue:

Issue. For a generic time-oriented Lorentzian manifold (M, g, t), a complete Riemannian

metric h, and a sequence γn : [0, bn] → R of h–arc-length–parametrised, continuous,

future-directed, causal curves with future and past endpoints, if γn(0) → p ∈ M and

γn(bn)→ q ∈M then, in the instance where the sequence does not collapse to the single

point p = q,10 there exist two continuous, future-directed, causal curves which (in a

sense made precise in statement (2) of Theorem 3.1 in [Min08a]) deserve to be called

‘limit curves’ for our sequence. There are two possibilities: (a) both curves have future

and past endpoints p and q respectively, in which case they are reparametrisations of

each other; (b) one curve has past endpoint at p but no future endpoint, while the other

has future endpoint at q but no past endpoint.

Only by providing additional assumptions can possibility (b) be ruled out. One such

assumption can be given straightforwardly, and was indeed provided in [Min08a, Thm.

3.1 (2)]: Suppose that (M, g, t) is nontotally (future and past) imprisoning : I.e. that

given any compact setK ⊆M and any continuous future-directed causal curve γ : I → R
with no future (resp. past) endpoint, if γ(t) ∈ K for some t ∈ I then there exist t′ ∈ I
with t′ > t (resp. t′ < t) such that γ(t′) /∈ K. Then, clearly, possibility (b) is ruled

out if it is also known that the curves γn are contained in a common compact set. The

following Lemma demonstrates a situation in which this is guaranteed to be the case.

9In particular, since h is assumed complete, these curves are necessarily past and future inextendible,
i.e. they don’t have future or past endpoints [Min08a, Lem. 2.6].

10More precisely, if there exists a subsequence of curves whose h–arc-lengths tend to a positive number.
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Lemma 2.1.45. Let (M, g, t) be a time-oriented Lorentzian manifold such that, for all

p, q ∈ M , the causal diamonds J+(p) ∩ J−(q) are (empty or) compact. Further let

there be sequences pn → p and qn → q. Then
⋃
n∈N[J+(pn) ∩ J−(qn)] (is empty or) has

compact closure.

Proof. Pick p′ ∈ I−(p) and q′ ∈ I+(q). Then I+(p′) is an open neighbourhood of p, so

it contains all but a finite number of the pn. Therefore, J+(pn) ⊆ I+(p′) for all but

finitely many pn. Similarly, I−(q′) is an open neighbourhood of q, and contains all but

a finite number of the qn, so that J−(qn) ⊆ I−(p′) for all but finitely many qn. Hence

there exists N ∈ N such that

⋃
n∈N

[J+(pn) ∩ J−(qn)] ⊆
⋃
n<N

[J+(pn) ∩ J−(qn)] ∪ [I+(p′) ∩ I−(q′)]

⊆
⋃
n<N

[J+(pn) ∩ J−(qn)] ∪ [J+(p′) ∩ J−(q′)],

and the result follows since the last line is the union of finitely many compact sets.

Hence, if a time-orientable Lorentzian manifold is nontotally imprisoning and has com-

pact causal diamonds, we can rule out possibility (b) in our Issue above. Now, the prop-

erty of being nontotally imprisoning trivially implies causality since any closed causal

path can be periodically extended, thus yielding an inextendible causal curve which

lies entirely on a compact set (for further discussion, see [Min08b]). Since causality

together with compactness of the causal diamonds implies global hyperbolicity [BS07],

any Lorentzian manifold as described in the first sentence of this paragraph is therefore

necessarily globally hyperbolic. Conversely, global hyperbolicity is a stronger condition

than being nontotally imprisoning – and of course has compactness of the causal dia-

monds as part of its definition. Therefore, this resolution of our Issue is tantamount to

requiring global hyperbolicity. We record this conclusion for future reference, and note

that this result was previously stated and proved (in a more direct way without relying

on the results in [Min08a]) as Theorem 3.2.11 in [Tre11].

Corollary 2.1.46. Let (M, g, t) be a globally hyperbolic Lorentzian manifold and h a com-

plete Riemannian metric on M . Let γn : [0, bn]→M be a sequence of continuous, future-

directed, causal curves parametrised with respect to h–arc-length. If γn(0)→ p ∈M and

γn(bn) → q ∈ M and the sequence of curves does not collapse to the point p = q, there

exists b ∈ (0,∞) and a subsequence γnk which converges h-uniformly to a future-directed

causal curve γ : [0, b]→M from p to q. An analogous statement holds for past-directed

causal curves.
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2.2 Spacetimes with bifurcate Killing horizons

The geometry of embedded, two-dimensional, orientable and spacelike submanifolds of

a given (orientable) spacetime will play a special role in this section. A starting point is

provided by the following (well-known) fact.

Proposition 2.2.1. Let Σ
ι
↪−→ M be an embedded, codimension-2, orientable, spacelike

submanifold of an orientable spacetime M = (M, g, t, o). Then the normal bundle NΣ

is (smoothly) trivial and admits a global basis {l, n} of future-directed null vectors.

Proof. Since Σ has codimension 2, NΣ is a rank-2 vector bundle; since Σ is spacelike, the

fiberwise restrictions of g to NΣ define a (symmetric and non-degenerate) vector bundle

metric on NΣ, which we will denote by ĝ. Since both M and Σ are orientable, NΣ

is orientable [O’N83, p. 214]. Therefore, there exists a nowhere vanishing section ω of

the line bundle
∧2NΣ∗ =

∐
x∈Σ

∧2NxΣ∗. On the other hand, time-orientability of M

implies that there exists a global future directed and timelike vector field Θ ∈ Γ(TM).

For all x ∈ Σ, the metric g allows us to project each vector Θ|x to NxΣ. Since Θ is never

tangent to Σ, the result is a non-vanishing global section Θ̂ of NΣ such that each Θ̂|x is

future-directed and timelike. Using the musical isomorphism [̂ : NΣ∗ → NΣ provided

by ĝ, we can define another global nowhere vanishing section of NΣ by

Ξ|x := [ωx(Θ̂|x, ·)][̂ =⇒ ĝx(Ξ|x, Θ̂|x) = ωx(Θ̂|x, Θ̂|x) = 0.

It follows that {Θ̂,Ξ} is a global basis of NΣ, and that each Ξ|x is a spacelike vector.

Letting

l :=
Θ̂

ĝ(Θ̂, Θ̂)
− Ξ

ĝ(Ξ,Ξ)
and n :=

Θ̂

ĝ(Θ̂, Θ̂)
+

Ξ

ĝ(Ξ,Ξ)

yields the desired global null basis of NΣ.

The null basis in Proposition 2.2.1 is not unique: it can be partially fixed by the re-

quirement that g(l, n) = f for a specified smooth f : S → (0,+∞),11 leaving a residual

freedom consisting of the transformations l 7→ Fl, n 7→ F−1n where F ∈ C∞(S,R+).

Specialising further, we now assume that (A1) M possesses a non-trivial Killing vector

field ξ whose set of zeros contains a spacelike, two-dimensional embedded submanifold

Σ ⊂M . It follows that each point of Σ is a fixed point under the maximal flow generated

by ξ. Below, we will discuss in depth how this setup, together with some additional mild

assumptions, gives rise to a ‘bifurcate Killing horizon’ structure around the set Σ.

Remark. It is well-known that, if a four-dimensional spacetime possesses a non-trivial

Killing vector field, then any connected component of the set of zeros of the field is either

a singleton set or a closed, embedded, 2-codimensional and totally geodesic submanifold

11A typical choice, with our metric convention, would be f ≡ 2.
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of M with normals everywhere of the same causal type. See e.g. [Kob58], [Boy69],

[Hal90, Sec. III C] or [Hal04, Sec. 10.3]; see also [KN63, Ex. 8.1] for a result in a more

general context.

Henceforth, we will also assume that (A2) the surface Σ is orientable, and that (A3) the

Killing field ξ is complete, so that it generates a global one-parameter group of isometries

which we denote by βτ (τ ∈ R). Let l and n be null, future directed vector fields along

Σ, and normal to Σ, constructed as explained above. For every x ∈ Σ, the isometries

βτ leave x fixed. Thus, the respective tangent maps Txβτ are Lorentz transformations

of TxM , and leave NxΣ ⊂ TxM invariant. Since they are continuously connected to the

identity via the group parameter τ , they are actually proper and orthochronous. It then

immediately follows that Txβτ acts on the line generated by lx as a scaling by µ(x, τ),

and on the line generated by nx as a scaling by µ(x, τ)−1, where µ(x, τ) is positive and

smoothly varying in x and τ . In fact, we can say more: by the group properties of

{βτ}τ∈R, µ(x, 0) = 1 and µ(x, τ1 + τ2) = µ(x, τ1)µ(x, τ2) ∀ τ1, τ2 ∈ R. I.e., for any x ∈ Σ

µ(x, ·) is a homomorphism from the additive group R to the multiplicative group R+.

Since it is continuous, it must equal eκ(x)τ for some κ(x) ∈ R smoothly varying in x; i.e.

(Txβτ )lx = eκ(x)τ lx and (Txβτ )nx = e−κ(x)τnx. (2.1)

As a result of this scaling property, the images of the maximally extended geodesics γlx

and γnx with initial tangent vectors lx and nx respectively (see the paragraph above

Proposition 2.1.8) must be invariant under each βτ . This in turn implies that ξ is

everywhere tangent to γlx and γnx . That is, denoting by Ilx (resp. Inx) the interval of

definition of γlx (resp. γnx), there exist functions flx ∈ C∞(Ilx) and gnx ∈ C∞(Inx) such

that

ξ ◦ γlx = flx γ̇lx and ξ ◦ γnx = gnx γ̇nx . (2.2)

The dot denotes differentiation with respect to the affine parameter chosen so that

γlx(0) = γnx(0) = x, and therefore also γ̇lx(0) = lx, γ̇nx(0) = nx, and flx(0) = gnx(0) = 0.

Our notation for the functions flx and gnx may appear heavy-handed: we keep the

subscripts to emphasise that different choices of the vectors lx and nx lead to different

functions. The effect of making a new choice of vectors is, however, a simple one to

describe: if l′x = clx for some c > 0, then fl′x(U) = c−1flx(cU), whence ˙fl′x(U) = ˙flx(cU).

The functions gnx behave analogously under scalings of nx. In particular, the values of

˙flx(0) and ˙gnx(0) are independent of the choices of lx and nx. This is also true of the

value of κ(x) in Equation (2.1), and the following Lemma illustrates that this is not a

coincidence.
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Lemma 2.2.2. Assume that A1, A2 and A3 hold. Then the map κ : Σ→ R in (2.1) and

the functions flx and gnx in (2.2) are related by

κ(x) = ḟlx(0) = −ġnx(0).

Proof. Let x ∈ Σ. We pick a basis (eµ) of TxM such that e0 = lx, and use it to

construct a geodesic normal coordinate chart (U , xµ) centred at x. In these coordinates,

the Christoffel symbols of the metric g vanish at x, and the geodesic with the initial

condition v = aµeµ is expressed by xµ(t) = aµt [KN63, Prop. 8.3]. Applied to v = lx,

and indicating γlx simply by γ, this readily implies that

γ̇(s) =
∂

∂x0

∣∣∣∣
γ(s)

for small enough s,

which in turn, by (2.2), also yields

ξ|γ(s) = ξ0(γ(s))
∂

∂x0

∣∣∣∣
γ(s)

= f(s)
∂

∂x0

∣∣∣∣
γ(s)

for small enough s.

The ODE system describing the integral curve of ξ starting at an arbitrary point γ(s) ∈ U
reduces in these coordinates to the single differential equation

dθγ(s)

dτ
(τ) = f(θγ(s)(τ)) for small enough s and τ,

together with the initial condition θγ(s)(0) = x0(γ(s)) = s. Using (2.1), and interchang-

ing τ and s derivatives as is certainly allowed by the joint smoothness of the flow of ξ

[Lee13, Ch. 9], we can now compute

κ(x)lx =
d

dτ

∣∣∣∣
τ=0

[(Tβτ )lx] =
d

dτ

∣∣∣∣
τ=0

[
d

ds

∣∣∣∣
s=0

(βτ ◦ γ)(s)

]
=

{
d

ds

∣∣∣∣
s=0

[
d

dτ

∣∣∣∣
τ=0

θγ(s)(τ)

]}
lx

=

{
d

ds

∣∣∣∣
s=0

f(θγ(s)(0))

}
lx

= ḟ(0)lx,

and the result follows. The second equality in the statement of the Lemma follows by

exchanging the roles of the vectors lx and nx, and using Equation (2.1).

The following is a simple but important corollary of the equations in (2.2).
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Lemma 2.2.3. Denoting by U ∈ Ilx the affine parameter of γlx, and by DU the covariant

derivative along γlx defined to act on vector fields along γlx,

DU (ξ ◦ γlx) = ∇γ̇lx ξ = ˙flx γ̇lx . (2.3)

In particular, ∇lxξ = ˙flx(0)lx = κ(x)lx. Furthermore,

− 1

2
grad g(ξ, ξ) |γlx (U) = ∇ξξ |γlx (U) = ˙flx(U) ξ|γlx (U). (2.4)

Analogous results hold in the case of γnx.

Proof. We give the proof in the case of γlx . The geodesic equation is DU γ̇lx = 0. By

(2.2) and the Leibniz rule then

DU (ξ ◦ γlx) = DU (flx γ̇lx) = ˙flx γ̇lx + flxDU γ̇lx = ˙flx γ̇lx ,

giving (2.3). The second equality in (2.4) then follows by multiplying the second equality

in (2.3) by flx and making use of (2.2) again, while the first equality there follows by a

well-known and straightforward property of Killing fields: namely,

∇a(ξbξb) = ξb∇aξb + ξb∇aξb

= 2ξb∇aξb
= −2ξb∇bξa,

and the result follows by index raising.

Killing’s equation ∇(aξb) = 0 implies that at each p ∈ M the endomorphism (∇aξb)p
of TpM is represented, in an orthonormal basis of TpM , by an antisymmetric matrix.

Therefore, its kernel has even codimension. Since ξ vanishes identically on Σ which has

codimension 2, and since a non-trivial Killing vector field in a (connected) spacetime

may never vanish together with its first (covariant) derivative, it follows that, at any

x ∈ Σ, ker(∇aξb)x = TxΣ. As l and n are linearly independent and transverse to Σ,

0 6= (∇aξb)lb = −lb∇bξa and 0 6= (∇aξb)nb = −nb∇bξa everywhere on Σ. By Lemma

2.2.3 and Lemma 2.2.2, it follows that

0 6= ˙flx(0) = κ(x) = − ˙gnx(0). (2.5)

Thus, at least locally around any x ∈ Σ, ξ cannot vanish along either γlx or γnx except at

x, and the functions fx and gx in Equation (2.2) change sign at 0. A more careful analysis

of the eigenvector-eigenvalue problem for the tensor ∇aξb actually shows that under our

assumptions – and in particular since Σ is spacelike – if fx is positive immediately after 0

(i.e., if ξ is future-directed along γlx immediately to the future of x) then gx is negative
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there, and vice-versa. Details can be found in the references [Boy69, Hal90, Hal04]

already given in the remark above. In fact, the conclusion that ξ is non-zero locally

along γlx and γnx is also an immediate corollary of the results mentioned in that Remark.

This is not a real surprise, since we have in effect reproduced some of the arguments

entering the proofs of those results.

We now turn to global considerations. Specifically, we will show that the geodesics γlx

and γnx (for any x ∈ Σ) are future/past geodesically complete (Proposition 2.2.5). We

will also establish that the sets

HA :=
⋃
x∈Σ

im γlx and HB :=
⋃
x∈Σ

im γnx , (2.6)

are always codimension-1 null immersed submanifolds of M under the minimal require-

ments A1, A2 and A3 (Theorem 2.2.6). Later, we will provide a reasonable set of

additional topological and causal requirements on M and Σ under which we are able

to rigorously prove that these sets are actually embedded submanifolds of M , i.e. null

hypersurfaces in M (Theorem 2.2.9).12 Under these more restrictive hypotheses, it will

follow that HA and HB are even achronal ; this observation will be of crucial impor-

tance in view of our applications to the characteristic initial value problem for linear

hyperbolic PDEs in Section 2.5.

We begin by returning to (2.4). All the following arguments apply with obvious small

modifications to the case of the geodesics γnx . To stress this, and to simplify notation, we

drop all subscript lx from the calculations below. We may act on (2.4) with the derivative

(bundle) maps Tβτ : TM → TM (for each τ ∈ R). Since βτ is an isometry, and using

the fact that any vector field is invariant under its own flow, βτ∗∇ξξ = ∇βτ∗ξ(βτ∗ξ) =

∇ξξ where, for any diffeomorphism F , F∗ denotes the pushforward operator on vector

fields, related to TF by F∗X = TF ◦ X ◦ F−1 ∀ X ∈ Γ(TM). Recalling further that

im γ is invariant under βτ , we conclude that for any U ∈ I and any Ũ ∈ I such that

βτ (γ(U)) = γ(Ũ),

Tβτ
(
∇ξξ |γ(U)

)
= ∇ξξ |βτ (γ(U)) = ∇ξξ |γ(Ũ) = ḟ(Ũ) ξ|γ(Ũ),

where (2.4) was used in the last step. On the other hand,

Tβτ

(
ḟ(U) ξ|γ(U)

)
= ḟ(U)ξ|γ(Ũ)

12Note that, while all of the hypotheses in Theorem 2.2.9 make an appearance in [KW91], some of
our global arguments were left implicit there, or claimed without proof. We leave open the question of
whether the hypotheses in our Theorem 2.2.9 can in fact be weakened.
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by linearity. Combining this with the previous line, and observing that βτ may not map

a point at which ξ 6= 0 to one at which ξ = 0, it follows that ḟ(U) = ḟ(Ũ) whenever

U ∈ J \ {0} with J a suitable interval – which always exists as shown above – such

that ξ ◦ γ�J\{0} never vanishes. Clearly then, ḟ is locally constant on J \ {0} and, by

smoothness, it is actually constant on J . We record the (obvious) global version of this

result, and its immediate consequences, below.

Lemma 2.2.4. Assume that A1, A2 and A3 hold. Let x ∈ Σ and define

U+ := sup{U > 0 | U ∈ Ilx , ξ(γlx(U)) 6= 0 ∀ U ∈ (0, U+)}
and U− := inf{U < 0 | U ∈ Ilx , ξ(γlx(U)) 6= 0 ∀ U ∈ (U−, 0)}.

Then ˙flx is constant and equal to κ(x) on (U−, U+), so that flx(U) = κ(x)U ∀ U ∈
(U−, U+). Furthermore,

DU (ξ ◦ γlx) = ∇γ̇lx ξ = κ(x)γ̇lx (2.7)

−1

2
grad g(ξ, ξ) |γlx (U) = ∇ξξ |γlx (U) = κ(x) ξ|γlx (U). (2.8)

Analogous statements hold for the geodesics γnx.

Proof. That the constant value of ˙flx must equal κ(x) follows from Lemma 2.2.2. (2.7)

and (2.8) then follow immediately from (2.3) and (2.4).

Now suppose that γ – which is future and past geodesically inextendible by assumption

– is future or past geodesically incomplete. Then γ is not periodic, and by Equation

(2.2) it may only intersect itself at points where the Killing field ξ vanishes. It follows

that γ�(U−,U+) is a regular injective curve, with either U+ or U− finite. Without loss of

generality, assume U+ <∞. We may pull back ξ along γ�(0, U+) to define a vector field

ξ̂ on (0, U+), with

ξ̂(U) = f(U)
∂

∂U
= κ(x)U

∂

∂U

by Lemma 2.2.4. The completeness assumption A3 on ξ implies that ξ̂ too is complete.

Thus, picking a U0 ∈ (0, U+), the unique integral curve θ0 of ξ̂ through U0 is defined on

all R:

θ0 : R→ (0, U+) solving
dθ0

dτ
(τ) = ξ̂U (θ0(τ)) = κ(x)θ0(τ)

with θ0(0) = U0.

The solution is

θ0(τ) = U0e
κ(x)τ ∀ τ ∈ R,
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whose image [since κ(x) 6= 0] is (0,+∞), contradicting the assumed finiteness of U+. A

similar argument shows that U− cannot be finite. Furthermore, obvious modifications

extend these results to the geodesics emanating from Σ in the direction of the vectors

nx. We thus conclude:

Proposition 2.2.5. Assume that A1, A2 and A3 hold. For all x ∈ Σ, the maximal

geodesics γlx and γnx are future and past geodesically complete. The Killing field ξ never

vanishes along these geodesics, except on Σ. Each geodesic never intersects itself, nor

does it intersect any other geodesic in the collection {γlx , γnx}x∈Σ, except possibly at zero

affine parameter.

By Proposition 2.2.5, for any x ∈ Σ the one-dimensional subspaces 〈lx〉 and 〈nx〉 of NxΣ,

generated by lx and nx respectively, are contained in the maximal domain D⊥Σ of the

normal exponential map exp⊥Σ . The total spaces of the line bundles

〈l〉 :=
∐
x∈Σ

〈lx〉 and 〈n〉 :=
∐
x∈Σ

〈nx〉 (2.9)

are therefore embedded submanifolds ofD⊥Σ . It is clear that exp⊥Σ〈l〉 = HA and exp⊥Σ〈n〉 =

HB, with HA and HB defined as in (2.6). Similarly, we let 〈lx〉± := {ρlx | ρ ≷ 0},
〈nx〉± := {ρnx | ρ ≷ 0},

〈l〉± :=
∐
x∈Σ

〈lx〉± and 〈n〉± :=
∐
x∈Σ

〈nx〉±.

Then 〈l〉± and 〈n〉± are also embedded submanifolds of D⊥Σ , and we define

HR/LA := exp⊥Σ〈l〉± and HL/RB := exp⊥Σ〈n〉±. (2.10)

Clearly, HA = HLA]Σ]HRA and HB = HLB ]Σ]HRB. We are now in a position to study

the submanifold properties of HA and HB, as anticipated in the paragraph below (2.6).

In what follows, if c is a smooth curve in M whose parameter is denoted by σ, then Dσ

will denote the operator of covariant differentiation along c acting on arbitrary tensor

fields along c, and acting on c itself as Dσc = ċ = Tc.

Theorem 2.2.6. Assume that A1, A2 and A3 hold.

(a) The restrictions of exp⊥Σ to the line bundles 〈l〉 and 〈n〉 defined in (2.9) provide

HA and HB (respectively) with the structure of immersed, codimension-1 and null

submanifolds of M .

(b) All of the subsets HR/LA , HL/RB , HA \Σ, HB \Σ, and (HA∪HB)\Σ, are embedded,

null, codimension-1 submanifolds of M , i.e. null hypersurfaces in M .
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Proof of Theorem 2.2.6. (a) Let expA and expB denote the (clearly, smooth) restrictions

of exp⊥Σ to 〈l〉 and 〈n〉 respectively. By Proposition 2.2.5, they are also injective. It

therefore remains to show that they are immersions. To this end, note first that, since Σ

is spacelike, Proposition 2.1.9 may be applied to our situation, yielding an open subset

W of NΣ containing the image of the zero section, and an open subset U of M , such that

exp⊥Σ �W : W → U is a diffeomorphism. In particular, it follows by the inverse function

theorem that the differentials of exp⊥Σ at any point inW are isomorphisms. This already

tells us that expA and expB are immersions at points (i.e. vectors) sufficiently close to

the zero section of NΣ. We now use the isometries to ‘transport’ the result that exp⊥Σ

is a local diffeomorphism to all other vectors in 〈l〉 and 〈n〉. Namely, since the one-

parameter group elements βτ are isometries, they ‘commute’ with the exponential map

in the sense that

exp ◦Tβτ = βτ ◦ exp on D.

(Indeed, an analogous equation holds true in the context of more general affine maps

of manifolds equipped with linear connections [KN63, Ch. 6].) Restricting to D⊥Σ , using

the fact that each Tβτ maps NΣ (diffeomorphically) to itself, and taking differentials,

it follows that

[TTβτ (V ) exp⊥Σ ] ◦ [TV (Tβτ �D⊥Σ )] = [Texp(V )βτ ] ◦ [TV exp⊥Σ ] ∀ V ∈ D⊥Σ .

Since Tβτ �D⊥Σ : D⊥Σ → NΣ is a diffeomorphism onto its image, its differentials TV (Tβτ �D⊥Σ )

are isomorphisms for any V ∈ D⊥Σ . Hence, for all τ ∈ R, TV exp⊥Σ is an isomorphism

if and only if TTβτ (V ) exp⊥Σ is. By Equation (2.1) and the fact that κ : Σ → R never

vanishes, for any V ∈ 〈l〉 or 〈n〉 it is possible to find a τ ∈ R such that Tβτ (V ) is

arbitrarily close to the zero vector, and in particular such that Tβτ (V ) ∈ W. This

completes the proof that expA and expB give HA and HB (respectively) the structure

of immersed submanifolds of M . We next show that these immersed submanifolds are

null, considering for definiteness and without loss of generality the case of HA. The

argument is a straightforward and well-known extension of the methods used in e.g. the

proof of Proposition 8.6 in [O’N83]. Any p ∈ HA is of the form p = γlx(s) = expA(slx)

for some x ∈ Σ and s ∈ R. If p ∈ HA \ Σ then, by rescaling lx and/or changing the

time orientation if necessary, we can assume without loss of generality that s = 1. By

continuity, it suffices to prove that (expA)∗g is degenerate at all such points. We will do

so by showing that the preimage X, under Tlx expA, of γ̇lx(1) ∈ TpHA is orthogonal to

every vector in the tangent space Tlx〈l〉. I.e. we aim to show that, for any Y ∈ Tlx〈l〉,

[expA
∗g](X,Y ) = g(Tlx expA(X), Tlx expA(Y )) = g(γ̇lx(1), Tlx expA(Y )) = 0. (2.11)
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Let I ⊆ R be an open interval around 0 and α : I 3 z 7→ α(z) ∈ 〈l〉 be a smooth curve

with α(0) = lx and Dzα(0) = Y . Then the two-parameter map

[0, 1]× I 3 (t, z) 7→ x(t, z) = expA(tα(z))

is a variation through null geodesics, i.e. each x(·, z) : [0, 1] → M is a null geodesic. It

follows that the vector field Υ along γlx�[0,1] defined by

Υ(t) = Dzx(t, 0)

is a Jacobi vector field [O’N83, Ch. 8]. The reason for introducing these objects is given

by the fact that

Υ(1) = Dzx(1, z)
∣∣
z=0

= [Dz(expA ◦α)](0) = (Tlx expA ◦Dzα)(0) = Tlx expA(Y ).

To wit, we will show that Υ(t) is orthogonal to γlx for all t ∈ [0, 1], so that, in particular,

(2.11) holds. Letting π : 〈l〉 → Σ denote the bundle projection, Υ(0) = Tπ ◦ αz(0) is

tangent to Σ, and thus normal to γlx . By [O’N83, Prop. 4.44], covariant derivatives

commute when acting on two-parameter maps such as x. Therefore,

DtΥ(0) = DtDzx(0, 0) = DzT (0),

where T (z) = Dtx(0, z) defines a vector field along the curve π ◦α on Σ. For all z, T (z)

is null as it is tangent to the null curve t 7→ expA(tα(z)). In particular, T (0) = γ̇lx(0).

It follows that

g(γ̇lx(0), DtΥ(0)) = g(T (0), DtΥ(0)) = g(T (0), DzT (0)) =
1

2
Dzg(T, T )

∣∣
z=0

= 0. (2.12)

So far we have shown that both Υ(0) and DtΥ(0) are orthogonal to the geodesic γlx .

Consider the function

h(t) := g(γ̇lx(t),Υ(t)).

Then h(0) = 0 and, since ḣ(t) = g(γ̇lx(t), DtΥ(t)) by the geodesic equation, we also

know that ḣ(0) = 0. But for Jacobi vector fields along geodesics, as argued in [O’N83,

Lem. 8.7], it also holds that ḧ(t) = 0 ∀ t. So it follows that h(t) = 0 ∀ t ∈ [0, 1], and

(2.11) is proved.

(b) The proof of this part is identical for any of the subsets given, so let S denote any

one of these subsets. It is clear that analogous arguments as the ones used to prove

(a) show that suitable restrictions of exp⊥Σ provide S with the structure of an immersed,

codimension-1 and null submanifold of M . To prove that S is actually embedded we will

show that any p ∈ S has an open neighbourhood U in M such that U∩S = h−1{0}, where
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h : U → R is smooth and 0 is a regular value of h. Recall that any immersion is locally

an embedding [Lee13, Prop. 4.25]: this implies that there is a subset T of S, containing

p, which is an embedded submanifold of M . We pick a slice chart (V, ϕ = (xµ)) for T

around p, such that T ′ := T ∩ V = (x0)−1{0}, and the coordinate vector field ∂/∂x0 is

transverse to T ′. Without loss of generality, we may assume that T ′ is connected. Now

define f : V → R to be the pseudo-norm of the Killing field, i.e.

f(q) := gq(ξ|q, ξ|q) ∀ q ∈ V.

ξ is null on S, so f vanishes on T ′. Since ξ is non-zero everywhere on S, (2.4) implies

that df is non-zero and parallel to ξ[ := g(ξ, ·) on T ′. As we saw in in the proof of

part (a) of this theorem, ξ[ is (co)normal to S. Therefore, df(X) 6= 0 for any vector X

transverse to T ′. Applying this to X = ∂/∂x0, we see that

df

(
∂

∂x0

)
=

∂f

∂x0
6= 0 on T ′.

Since T ′ was assumed connected, actually either ∂f/∂x0 > 0 or ∂f/∂x0 < 0 everywhere

on T ′. We will assume for definiteness that the first of these options occurs – the other

one can be treated similarly. We now let

V ′ :=
{
q ∈ V

∣∣∣∣ ∂f∂x0
(q) > 0

}
.

Then V ′ is open and T ′ ⊂ V ′. By the flowout theorem [Lee13, Thm. 9.20] applied to the

manifold V ′, codimension-1 embedded submanifold T ′ and vector field V := ∂/∂x0�V ′ ,
the maximal flow domain of V can be used to define an open submanifold U of V ′

containing T ′ and with the property that each point in U can be reached from T ′ by

following an integral curve of V . In particular, on U , f – that is, the pseudo-norm of

the Killing field ξ – can only vanish on T ′. It follows that U ∩ S = T ′. Thus, letting

h := f�U , h is defined on an open neighbourhood U of p in M , it is smooth, has 0 as a

regular value, and satisfies U ∩ S = h−1{0}. This completes the proof of (b).

In passing, we present a remarkable result which was already proved in [KW91] (see

also [Heu96]). When Σ is connected, it implies that κ : Σ → R is actually a non-zero

constant, in which case it is called the surface gravity of the structure (M , ξ,Σ). We

provide a (to the best of our knowledge) new, direct proof of this result. Our proof

avoids, in particular, the need to first obtain an explicit expression for κ2 – as is done

e.g. in the literature just mentioned.

Theorem 2.2.7. Assume that A1, A2 and A3 hold. Then κ : Σ→ R is locally constant,

and so constant on each connected component of Σ.



Mathematical Background and Preliminaries 50

Proof. We begin by observing that, taking covariant derivatives of (2.8) (omitting lx

subscripts for simplicity), and using (2.7), one obtains

DU (∇ξξ ◦ γ) = κ(x)DU (ξ ◦ γ) = κ(x)2γ̇. (2.13)

As explained in the remark on p. 40, Σ is totally geodesic, and thus is autoparallel –

meaning that parallel transport along curves in Σ preserves tangency to Σ [KN69, Sec.

VII.8]. Together with the fact that, for any curve δ : I → M contained in Σ and with

δ(0) = x, the parallel transport maps δP z0 : TxM → Tδ(z)M are linear isometries, it

follows that the vector field along δ defined by parallely translating lx along δ, viz.

l̃(z) := δP z0 (lx),

always lies in 〈l〉. By construction, it satisfies

Dz l̃ = 0. (2.14)

We can now define a two-parameter map y by

y(t, z) = γl̃(z)(t), (t, z) ∈ [0, 1]× I,

where γl̃(z) : [0, 1]→M is (a portion of) the unique geodesic with initial tangent vector

l̃(z). In terms of y and its variables (t, z), and letting κ̃ := κ ◦ δ, (2.13) becomes

Dt[∇ξξ ◦ y](t, z) = κ̃(z)2Dty(t, z). (2.15)

We first examine the right-hand side of Equation (2.15). Upon evaluating at t = 0, it

is clearly equal to κ̃(z)2 l̃(z). Further taking z-covariant derivatives, and using Equation

(2.14), we obtain

Dz(κ̃
2 l̃) = (Dzκ̃

2)l̃ + κ̃2Dz l̃ = (Dzκ̃
2)l̃. (2.16)

We now turn to the left-hand side of Equation (2.15). First we observe that, using the

fact that Killing vector fields satisfy the ‘integrability condition’ ∇a∇bξc = R c
b adξ

d (see

e.g. [O’N83, p. 259]), one calculates

∇a(ξc∇cξb) = (∇aξc)(∇cξb) + ξc∇a∇cξb = (∇aξc)(∇cξb) + ξcR b
c adξ

d

=⇒ ∇e∇a(ξc∇cξb) = (∇e∇aξc)(∇cξb) + (∇aξc)(∇e∇cξb) +R b
c ad[(∇eξc)ξd + (∇eξd)ξc]

+ (∇eR b
c ad)ξ

cξd

= ξd[R c
a ed(∇cξb) +R b

c ed(∇aξc)] +R b
c ad[(∇eξc)ξd + (∇eξd)ξc]

+ (∇eR b
c ad)ξ

cξd.
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This result, in particular, implies that whenever ξ vanishes, so must the second covariant

derivative of ∇ξξ. But then, using the identity [∇X∇Y Z]c = XaY b∇a∇bZc− [∇∇XY Z]a

for vector fields X,Y, Z, and Equation (2.14) again, we have

DzDt[∇ξξ ◦ y](0, ·) =

[
dδ

dz

]a
l̃b∇a∇b(∇ξξ)−∇Dz l̃(∇ξξ) = 0.

Combining this result with Equation (2.16) yields that Dzκ̃
2 = 0. Since x ∈ Σ and the

curve δ were arbitrary, the claim that κ is locally constant on Σ follows.

The proof of Theorem 2.2.9 below will make use of the following result (which is ele-

mentary, but to which we were unable to find a reference in the existing literature).

Lemma 2.2.8. Let M be a manifold and S1, . . . , SN be embedded submanifolds of codi-

mension m in M . Let S :=
⋃N
i=1 Si. If

S \ Si ∩ Si = ∅ ∀ i = 1, . . . , N (2.17)

then S is an embedded submanifold of codimension m in M .

Proof. Recall that an arbitrary subset N of a manifold M is an embedded submanifold

of codimension m in M if and only if it satisfies the following local slice condition [Lee13,

Thm. 5.8]: each point in N is contained in the domain U of a coordinate map ϕ = (xµ)

for M such that, for some constants c0, . . . , cm−1 ∈ R,

N ∩ U = {p ∈ U | x0(p) = c1, . . . , xm−1(p) = cm}.

We call the pair (U , ϕ) a slice chart for N (in M) around p. It follows that each Si

(i = 1, . . . , N) in the statement of this lemma satisfies the local slice condition. Pick

a p ∈ S; then p ∈ Si for some i, and there is a slice chart (Ui, ϕi) for Si around p.

Now, Equation (2.17) guarantees that there exists an open neighbourhood V of p such

that S ∩ V = Si ∩ V. To see why, suppose instead that this were not the case. Then,

by constructing a sequence (Vn)n∈N of open neighbourhoods of p with
⋂∞
n=1 Vn = {p},

we would be able to find a sequence (pn)n∈N of points in S \ Si which converges to p.

Thus p would simultaneously belong to the closure of S \Si and to Si, contradicting our

hypothesis. The proof of the lemma is complete since if Vi := Ui∩V then S∩Vi = Si∩Vi
and thus (Vi, ϕi�Vi) is a slice chart for S around p.

Theorem 2.2.9. Assume that A1, A2 and A3 hold. Further assume that M is globally

hyperbolic and that Σ is acausal and causally complete (Definition 2.1.36). Then HA
and HB are embedded null submanifolds of M , i.e. null hypersurfaces.

Proof. We prove this statement in the case ofHA, the arguments forHB being analogous.

LetW be the open subset of NΣ used in the proof of part (a), andWA :=W∩〈l〉. Then
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the image of WA under exp⊥Σ is an embedded submanifold of M containing Σ, which we

denote by HΣ
A. It is clear that

HA = HLA ∪HΣ
A ∪HRA.

In virtue of part (b) of Theorem 2.2.6, this expresses HA as a union of embedded,

codimension-1 submanifolds. We now show that, under our hypotheses,

∅ = HA \ HLA ∩HLA (2.18)

= HA \ HRA ∩HRA (2.19)

= HA \ HΣ
A ∩HΣ

A. (2.20)

By Lemma 2.2.8, it will then follow that HA is a hypersurface. The arguments proving

Equation (2.18) and Equation (2.19) are identical up to a change in time orientation, so

we will focus on Equations (2.19) and (2.20). We will make use of the fact that, since Σ

is causally complete, it is closed by Lemma 2.1.37.

(2.19) HA \HRA = HLA ]Σ so that, since Σ is closed, HA \ HRA = HLA ∪Σ, and we need

only check that

HLA ∩HRA = ∅.

Since HRA and HLA are disjoint subsets of HA \Σ which are open in the subspace

topology of HA \Σ, this follows immediately from the following general fact: If

M is a manifold, S is an embedded submanifold of codimension at least 1, and

S1, S2 ⊆ S are disjoint and open in the subspace topology of S, then there exist

disjoint open sets U1 and U2 in M containing S1 and S2 respectively. (Proof:

By the tubular neighbourhood theorem [Hir76, Sec. 4.5], there exists a vector

bundle E
π−→ S, and an embedding f : E →M , such that (i) f composed with

the zero section of E is the inclusion of S into M , and (ii) f(E) is open in

M . Then the sets U1 := f [π−1(S1)] and U2 := f [π−1(S2)] have the properties

required.)

(2.20) We prove this in two parts, by first showing that (a) HA \ HΣ
A is disjoint from

HΣ
A \ Σ, and then that (b) HA \ HΣ

A ∩ Σ = ∅. Global hyperbolicity of M and

the causal assumptions on Σ will only be used in proving (b).

(a) For an arbitrary subset T of a topological space X, the following holds:

if (pn)n∈N ⊆ T converges to p ∈ T with respect to the topology of X, then

it does so also with respect to the subspace topology of T . So suppose that

(pn)n∈N ⊂ HA \ HΣ
A converges to p ∈ HΣ

A \ Σ in the topology of M . Letting

X := M and T := HA\Σ, we are in the general situation just described, so that

(pn)n∈N converges with respect to the subspace topology of HA \Σ, to a point
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assumed to be in HΣ
A \Σ. But this contradicts the fact that (clearly) HΣ

A \Σ is

an open subset of HA \ Σ in the subspace topology of the latter.

(b) Suppose that (pn)n∈N ⊂ HA \ HΣ
A tends to p ∈ Σ. By passing to a subse-

quence if necessary, we may additionally assume that (pn)n∈N is entirely con-

tained in either HRA \ HΣ
A or HLA \ HΣ

A. We illustrate the first of these cases,

as the second can be treated very similarly. Each pn is the future endpoint of

a future-directed null geodesic segment starting at a point xn ∈ Σ. We pick a

complete Riemannian metric h on M , whose distance function we denote by

dh, and let γn : [0, bn] → M denote the h–arc-length reparametrisation of this

null geodesic segment. Let p′ ∈ I+(p), then I−(p′) is a neighbourhood of p

and we can assume without loss of generality that it contains all of the pn,

and thus also that xn ∈ J−(pn) ⊆ I−(p′). Hence xn ∈ J−(p′) ∩ Σ which, by

our hypotheses on Σ and by the global hyperbolicity of M (see the remark

under Definition 2.1.36), is a compact set. We can therefore extract a sub-

sequence13 xk which converges to a point x ∈ Σ. Associated with it is the

subsequence γk : [0, bk]→M , which now has the property that γk(0)→ x ∈ Σ

and γk(bk) → p ∈ Σ. Since our Lorentzian manifold is assumed to be globally

hyperbolic, according to Corollary 2.1.46 it follows that, unless the curves γk

collapse, we can obtain a future-directed causal curve γ which connects two

points of Σ. This contradicts the assumed acausality of Σ. Therefore, the

proof is complete if we can argue that the curves γk do not collapse. Indeed, a

(slightly) stronger property is already true of the original sequence γn. Namely,

the h–arc-lengths bn of the γn are bounded from below and away from zero.

Indeed, if this were not the case, then we could find a subsequence γi such that

the respective h–arc-lengths bi tend to zero. We would then have

dh(xi, pi) ≤ bi → 0 as i→∞

which in particular, by the triangle inequality, would imply that xi → p and

thus that K := {xi | i ∈ N} ∪ {p} is a compact subset of Σ. But this cannot be

the case due to the way in which HΣ
A was defined: Indeed, denoting by γhlx (for

any x ∈ Σ) the reparametrisation by h–arc-length of γlx�[0,+∞), it is clear that,

for any compact subset K of Σ, there is a uniform strictly positive lower bound

to the h–arc-lengths of the portions of the γhlx which remain entirely inside HΣ
A.

More precisely, it holds that

inf
x∈K

sup{` | γhlx(t) ∈ HΣ
A ∀ t ∈ [0, `]} > 0.

13Abusing notation, passage to a subsequence of a sequence yn will be denoted here and below simply
by yk and not by the more correct ynk .
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Thus we have demonstrated that bn > c > 0 for some c, ruling out collapse of

the (sub)sequence γk above.

This completes the demonstration that HA and HB are hypersurfaces under the hy-

potheses of the Theorem. We already proved that they are null in Theorem 2.2.6.

Kay and Wald prove [KW91, pp. 60–61] that, under all the assumptions in Theorem

2.2.9, HRA ∪Σ∪HLA = J̇+(Σ), and similarly HLB ∪Σ∪HRB = J̇−(Σ). Since both of these

sets are achronal boundaries, if one could show that there can be no timelike curve from

HLA to HRA then it would immediately follow that HA is achronal. Similar reasoning is

of course applicable to HB. But that this is the case is proved in detail in [KW91] – the

proof begins in the last paragraph of p. 60 there and we shall not repeat it here.

Finally, one can see that HA and HB are closed subsets of M . Indeed, since J̇+(Σ) ∪
J̇−(Σ) is closed, this reduces to checking that sequences in HRA ∪HLA cannot have limit

points in HRB∪HLB (and vice-versa). But this holds by essentially the same arguments in

the proof of statement (b) in Theorem 2.2.6: sufficiently near HR/LA/B, any point at which

the Killing vector is null must belong to HR/LA/B. Summarising, here and above we have

shown:

Theorem 2.2.10. Assume the hypotheses of Theorem 2.2.9 hold. Then HA and HB are

achronal and closed.

This completes our detailed study of the geometric setup introduced by Kay and Wald.

Actually, for various technical reasons those authors ended up needing to make some

further assumptions on the Killing vector. We now give the full definition of a bifurcate

Killing horizon structure as it appeared in [KW91], which will be adhered to in the rest

of this thesis.

Definition 2.2.11. By spacetime with a bifurcate Killing horizon in the sense of [KW91]

we will mean the data (M , ξ,Σ), satisfying

• M = (M, g, t, o) is an oriented, time-oriented four-dimensional globally hyperbolic

spacetime;

• ξ is a non-trivial (smooth and) complete Killing vector field on M ;

• Σ ⊂ M is a closed, orientable two-dimensional (possibly disconnected) embedded

submanifold of M on which ξ = 0;

• there exists a smooth spacelike Cauchy surface C for M such that Σ ⊂ C and ξ

is timelike on C \ Σ.

The submanifold Σ in Definition 2.2.11 is referred to as the bifurcation surface. The

reason for this name is of course the fact that, as we have seen in this section, Σ
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generates in a natural way the two transverse hypersurfaces HA and HB, which we will

henceforth refer to as the A-horizon and B-horizon respectively, and whose intersection

is precisely Σ.

2.3 Null hypersurfaces and Gaussian null coordinates

As was shown in Section 2.2, null hypersurfaces occur naturally in the context of space-

times with a bifurcate Killing horizon (Definition 2.2.11). Following [KW91], in view

of applications to quantum field theory, we will later be concerned with solving initial

value problems for linear (normally) hyperbolic partial differential equations when initial

data is prescribed on the null hypersurfaces HA and HB. As we will show, actually not

all the properties enjoyed by these hypersurfaces will be relevant in deriving the basic

PDE existence and uniqueness results needed. Indeed, we will be able to derive such

results quite generically, if the ambient Lorentzian manifold is globally hyperbolic, for

any hypersurface which is, null, achronal, and satisfies a certain completeness condition

on the null geodesics tangent to it. This will be the topic of Section 2.5.

2.3.1 General properties of null hypersurfaces

It is therefore appropriate, at this stage, to collect a relevant selection of general facts

about null hypersurfaces in Lorentzian manifolds. We follow the discussion in Kupeli

[Kup87], which actually covers the more general case of null embedded submanifolds of

any codimension. Unlike that reference, we don’t require our submanifolds or hypersur-

faces to be connected.

Let N be a null hypersurface in a Lorentzian manifold (M, g). Then [O’N83, Lem.

5.28], for any p ∈ N a vector in the tangent space TpN is either spacelike or null, and

the orthogonal (with respect to g) space TpN
⊥ ⊆ TpM is actually a one-dimensional

null subspace of TpN containing all null vectors in TpN . There is therefore a canonical

line bundle on N , i.e. the null line bundle KN of N , viz.

KN :=
∐
p∈N

TpN
⊥ π−→ N .

From now on in this section, we assume that (M, g) is time-orientable, and let the

global timelike vector field T define a time orientation t. View the metric as a map

g : TM ×M TM → R (where ×M denotes fiber product), and define θ : KN → R
by θ(n) = g(n, T |π(n)). Then θ is smooth, and θ(n) = 0 ⇐⇒ n ∈ 0 where 0 denotes

the image of the zero section of KN . Clearly, θ has no critical points on KN \ 0.
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Therefore, for any α ∈ R\0, the preimage θ−1{α} ⊆ KN is an embedded codimension-1

submanifold of KN and the bundle projection π : KN → N restricts to an injective

smooth map onto N . By e.g. expressing θ in a local trivialization of KN , it is also easy

to see that π�θ−1{α} : θ−1{α} → N is an immersion, and therefore a diffeomorphism.

Its inverse defines a global nowhere-vanishing section of KN . Choosing α to be positive,

we have proved the following result.

Proposition 2.3.1 ([Kup87, Prop. 4]). Let (M, g, t) be a time-oriented Lorentzian mani-

fold, and N a null hypersurface. There exists a global future-directed section of the null

line bundle KN of N . Any two such sections n, n′ are related by n′ = fn where f is a

smooth positive function on N . In particular, KN is orientable as a vector bundle.

Remark. In fact, generalising the notion of null line bundle to null submanifolds of

any codimension, so that the null line bundle consists of (the zero vectors and) null

vectors both tangent and normal to the submanifold, it can easily be shown [Kup87]

that Proposition 2.3.1 holds true verbatim if ‘hypersurface’ is replaced by ‘embedded

submanifold’.

Corollary 2.3.2 ([Kup87, Cor. 5]). Any null hypersurface N in an orientable and time-

orientable Lorentzian manifold (M, g) is orientable.

Proof. Choose a global timelike vector field T onM . Let ω be a global nowhere-vanishing

volume form on M . Since T is transverse to N , the contraction ιTω defines a nowhere-

vanishing top-degree form on N .

Definition 2.3.3. Let (M, g, t) be a time-oriented Lorentzian manifold, and N be a null

hypersurface with global future-directed tangent null vector field n as per Proposition

2.3.1. Any maximally extended integral curve of n is called a null generator of N .

Lemma 2.3.4. Let (M, g) be a Lorentzian manifold, and N be a null hypersurface. Then,

if n is a (local) tangent null vector field on N , ∇Xn ∈ TpN for any X ∈ TpN .

Proof. Since n is also normal to N , it suffices to show that g(n,∇Xn) = 0. Since

∇g = 0,

g(n,∇Xn) =
1

2
X(g(n, n))

and, since n is null, the result follows.

Proposition 2.3.5. Let (M, g) be a Lorentzian manifold, and N be a null hypersurface

with (local or global) tangent null vector field n. Then, on the subset of N on which

n is defined, there exists a smooth real-valued function f such that ∇nn = fn. That

is, the integral curves of n are null pregeodesics. In particular, the null generators of a

null hypersurface in a time-oriented Lorentzian manifold are null pregeodesics and can

be reparametrised to null geodesics.
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Proof. Since n is normal to N it suffices to show that, for any p in the domain of n,

and any X ∈ TpN , g(∇nn,X) = 0. Extend X to a local vector field X̂ defined in an

M -neighbourhood of p and tangent to N . Similarly extend n to a local vector field n̂

on M (defined w.l.o.g. on the same neighbourhood). Then the commutator vector field

[X̂, n̂] is also tangent to N . We thus calculate (omitting evaluations at p for notational

simplicity)

g(∇nn,X) = g(∇n̂n̂, X̂)

= n̂(g(n̂, X̂))− g(n̂,∇n̂X̂) (∇g = 0)

= −g(n̂,∇n̂X̂) (n is normal and tangent to N )

= −g(n̂,∇X̂ n̂)− g(n̂, [n̂, X̂]) (∇ is torsion-free)

= 0 (Lemma 2.3.4, and [n̂, X̂] ∈ TN ).

It is standard and a matter of simple verification that, if c : I →M is an integral curve

of a vector field n satisfying ∇nn ∝ n, c may be reparametrised to a curve c̃ : J 7→ M

satisfying D ˙̃c
˙̃c = 0.

We remark that something which Proposition 2.3.5 does not imply is that any global

future-directed null vector field n tangent to an arbitrary null hypersurface can be glob-

ally rescaled to yield a geodesic vector field ñ, i.e. one satisfying ∇ññ = 0. An obvious

obstruction arises if one of the null generators is a closed curve, and any of (and there-

fore all) its null geodesic reparametrisations returns to the same point with a different

velocity. So it is clear that, to ensure that no such obstructions occur, it is necessary

to inject some additional causal assumptions. While in [Kup87, Sec. 4] a number of

different sufficient conditions were derived, we will only focus on one of them as it is the

only one relevant for our purposes.

Definition 2.3.6. Let (M, g, t) be a time-oriented Lorentzian manifold, N be a null hyper-

surface and S be an embedded submanifold of N which is spacelike and of codimension

1 in N . Then we say that S is a cross-section of14 N if there exists a diffeomorphism

ψ : N → R×S such that the following hold:

• ψ(S ) = {0} ×S ;

• denoting by ∂/∂U the vector field on R × S induced from the standard d/dt

vector field on R by the identification T (R×S ) ∼= TR×TS , ψ∗(∂/∂U) is a null,

future-directed, vector field tangent to N . Equivalently, for any x ∈ S the curve

ψ−1(·, x) : R→ N is a null generator of N .

14Kupeli [Kup87, Def. 16] prefers to say that N is causally separated by S .
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We now show that a submanifold is a cross-section for a null hypersurface in the abstract

sense of Definition 2.3.6 if and only if any null generator ‘registers’ on it once and never

returns to it.

Lemma 2.3.7 ([Kup87, Lem. 17]). Let N be a null hypersurface in a time-oriented

Lorentzian manifold (M, g, t), and n be an arbitrary null, future-directed, vector field

tangent to N . Then a spacelike, codimension-1 embedded submanifold S of N is a

cross-section of N according to Definition 2.3.6 if and only if any maximal integral

curve of n intersects S at precisely one parameter value.

Proof. We begin by noting that, since S is spacelike, n is transverse to S .

(⇐) We can assume that n is complete. Indeed, if not then, picking a complete Rieman-

nian metric e on N , n/‖n‖e is complete and still satisfies all our requirements. By the

flowout theorem [Lee13, Thm. 9.20], the maximal flow of n, θ : R×N → N , restricts

to a diffeomorphism Φ : R ×S → N . Then, ψ := Φ−1 has the properties required by

Definition 2.3.6.

(⇒) This is obvious for the vector field ψ∗(∂/∂U) in Definition 2.3.6 by combining the

two defining properties of ψ there. But then it is also true for any positive rescaling of

this field, such as n.

The Lemma above allows to find a sufficient condition for the rescalability of a null

vector field, tangent to a null hypersurface, to a geodesic one.

Proposition 2.3.8 ([Kup87, Thm. 18]). Let N be a null hypersurface in a time-oriented

Lorentzian manifold (M, g, t), and n be a global future-directed null vector field on N .

If N admits a cross-section S then n can be globally rescaled to yield a future-directed

null vector field ñ on N satisfying ∇ññ = 0.

Proof. Without loss of generality, assume that n is complete – since we can always

rescale it as explained in the proof of Lemma 2.3.7 to obtain a complete vector field.

By Proposition 2.3.5, there exists a smooth function f : N → R such that ∇nn = fn.

Let Φ be the flow of n when restricted to S , as in the proof of Lemma 2.3.7, let fΦ :=

f ◦Φ : R×S → R, and let πR, πS denote the compositions of ψ = Φ−1 : N → R×S

with the projections onto the first and second factor in R×S (respectively). We verify

that the (clearly, smooth) vector field

ñ|p := exp

{
−
∫ πR(p)

0
fΦ(U ′, πS (p)) dU ′

}
n|p (2.21)

is geodesic. Indeed, since Φ is the (restricted) flow of n, letting P : N → R denote

minus the exponent in Equation (2.21), it follows from the Fundamental Theorem of
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Calculus that n(P ) = f , so that

∇ññ = e−P∇n(e−Pn) = e−2P∇nn+ e−Pn(e−P )n = e−2P fn− e−2Pn(P )n = 0.

Hence, ñ is geodesic and its integral curves are null geodesics contained in N .

If N admits a geodesic, future-directed, null, global tangent vector field n then we call

the maximally extended (in N ) integral curves of n the null geodesic generators of N .

Viewed as geodesics in the ambient manifold M , these may of course fail to be future

or past inextendible.

Proposition 2.3.9. Let (M, g, t) be globally hyperbolic. Then any null hypersurface N

whose null generators, when reparametrised as null geodesics entirely contained in N ,

are future and past inextendible as geodesics in (M, g), admits a cross-section.

Proof. Let C be a smooth spacelike Cauchy surface for (M, g, t). Then C and N

intersect transversely. Since C is a spacelike Cauchy surface, it is intersected precisely

once by any future and past inextendible causal curve in M . In particular, by our

hypothesis on the null generators of N , it is intersected exactly once by each null

generator of N . Therefore, S := C ∩ N is non-empty, and thus it is a spacelike,

codimension-1 embedded submanifold of N intersected at precisely one parameter value

by each null generator of N . The result follows from Lemma 2.3.7.

2.3.2 Gaussian null coordinates

We now wish to demonstrate the existence of coordinates adapted to a null hypersur-

face and defined in a way both natural and useful (Corollaries 2.3.13 and 2.3.14) for

our applications to hyperbolic PDE theory and field theory. The proof of this result,

i.e. Theorem 2.3.11 below, will require the following preliminary observation. We have

already recalled the definition of the normal exponential map exp⊥S : NS → M for a

submanifold S of a Lorentzian (or even semi-Riemannian) manifold (M, g), and we have

already recalled (Proposition 2.1.9 here, and Proposition 7.26 in [O’N83]) the important

existence result for normal neighbourhoods of S in the case where the induced met-

ric on S is non-degenerate. That normal neighbourhoods cannot exist in the sense of

Proposition 2.1.9 if the submanifold is null is clear by dimensional considerations alone,

since in that case the dimension of NS is strictly smaller than the dimension of M ,

and no open subsets of the two can be diffeomorphic (via exp⊥S or otherwise). However,

by examining the proofs of Lemma 25 and Proposition 7.26 in [O’N83], it is clear that

the only property of NS entering the arguments there is that NS is a complementary

vector subbundle to TS in TM |S. – i.e., that TqM = NqS ⊕ TqS for all q ∈ S. Thus,

Proposition 2.1.9 has the following generalisation.
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Proposition 2.3.10. Let (M, g) be a semi-Riemannian manifold and S be an embedded

submanifold of codimension greater than or equal to 1 in M . Let L
πL−−→ S be a com-

plementary vector subbundle to TS in TM |S. Then there exists an open neighbourhood

Z of the set of zero vectors in L such that exp �Z is a diffeomorphism onto an open

neighbourhood of S in M .

Remark. Restricting Z if necessary, we may in fact assume that each Zq := Z ∩ π−1
L {q}

is star-shaped with respect to the zero vector.

While the first treatment of the coordinates described in the theorem below is often

attributed to Moncrief and Isenberg [MI83] (see also [LR12, Sec. III]), they made earlier

appearances in e.g. [Pen72, p. 60] and in the proof of Theorem 3.3.2 in [Fri75].

Theorem 2.3.11 (Gaussian null coordinates). Let (M, g, t) be a time-oriented Lorentzian

manifold and N be a null hypersurface which admits a cross-section. Then, if Γ ⊆ N

is the image of a null geodesic generator of N , there exists a coordinate neighbourhood

U for M , containing Γ, and coordinates (v, u, xA) on U , such that U ∩N = {v = 0}
and the metric in these coordinates takes the form

g = vϕdu2 + 2 dudv + 2vζA dxA du+ hAB dxA dxB

for smooth functions ϕ, ζA, hAB.

Proof. Let S be a cross-section for N , and let n be a future-directed (geodesic or not)

tangent null vector field on N . Use S and the flow of n to construct a diffeomorphism

Φ : D → N where D is an open subset of R × S containing {0} × S (unlike in

the proof of Lemma 2.3.7, since n may be incomplete it is no longer guaranteed that

D = R×S ). Then, since S is a cross-section, there exists a x ∈ S such that, letting

Dx := D ∩ (R × {x}), Γ in the statement of the theorem is equal to Φ(Dx). Now, let

(W, (xA)) be a coordinate chart for S around x. Then, letting

V := Φ(D ∩ (R×W)) and χ = (u, xA) = [idR × (xA)] ◦ Φ−1�V ,

(V, χ) is a coordinate chart for N whose domain contains Γ together with the images

of all other null geodesic generators of N which intersect S in W. By construction,

∂/∂u = n�V , while the vectors ∂/∂xA are spacelike and normal to ∂/∂u, i.e.

g

(
∂

∂u
,
∂

∂u

)
= g

(
∂

∂u
,
∂

∂xA

)
= 0.

Next, let l be a null vector field along V, smooth as a section of the pullback bundle

TM |V , and satisfying

g(l, n) = α and g

(
l,

∂

∂xA

)
= 0, (2.22)
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for a strictly positive α ∈ C∞(V). That such an l exists (for any α), and is in fact

uniquely determined by these requirements, follows by a reasoning analogous to the

one used in the paragraph above Proposition 2.3.1. We will actually take for simplicity

α ≡ 1. It follows that l is (future-directed and) transverse to V, and thus generates

a complementary rank-1 vector subbundle L to the tangent bundle TV in TM |V . By

Proposition 2.3.10, there is an open neighbourhood Z in L of the set of zero vectors, and

an open neighbourhood U of V in M , such that exp �Z : Z → U is a diffeomorphism.

Let φ : L→ R× V denote the global trivialization of L induced by the global basis {l}.
Then exp ◦φ−1�φ(Z) is a diffeomorphism from an open set in R× V containing {0} × V
onto U . Its inverse ψ : U → φ(Z) can be then composed with idR × χ to yield a chart

(U , (v, χ)) = (U , (v, u, xA)).

By construction, ∂/∂v is a geodesic vector field on U which is null (as it is equal to l)

on V ⊂ U ; it follows then that it is null everywhere on U , i.e. that in this coordinate

system

gvv = g

(
∂

∂v
,
∂

∂v

)
≡ 0.

On the other hand, we already knew that guu = guA = gvA = guv− 1 = 0 on V ⊆ N . In

particular, since V is given, in this coordinate chart, by {v = 0}, there exist functions

ϕ, ζA ∈ C∞(U) such that

guu = vϕ and guA = vζA.

Finally, let the index a indicate either a u-component or an xA-component. We calculate

(using ∇g = 0 in the first step, and the torsion-free condition together with ∇∂v∂v = 0

in the second)

∂v(gva) = ∂v
(
g(∂v, ∂a)

)
= g(∇∂v∂v, ∂a) + g(∂v,∇∂v∂a) = g(∂v,∇∂a∂v)

=
1

2
∂a
(
g(∂v, ∂v)

)
= 0.

Together with the initial condition gvA = gvu− 1 = 0 on V, and by the remark following

Proposition 2.3.10, we conclude that actually gvA = 0 and gvu = 1 throughout U . The

claimed form of the metric follows.

Definition 2.3.12. We call the coordinate chart (U , (v, u, xA)) in Theorem 2.3.11 a Gaus-

sian null coordinate chart for N around Γ.

The reason for us defining Gaussian null coordinates for null hypersurfaces lies in the fact

that wave and wave-like equations in these coordinates take a special form, in which no

repeated derivatives in directions transverse to the hypersurface occur at the location of
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the hypersurface. Namely, let � : C∞(M)→ C∞(M) be the d’Alembert operator given

in abstract index notation and in a choice of local coordinates (respectively) by

�φ := ∇a∇aφ =
1√
−|g|

∂µ
(√
−|g|gµν∂νφ

)
. (2.23)

Then, a straightforward calculation leads to the following important result.

Corollary 2.3.13. Let (M, g) be a four-dimensional Lorentzian manifold. If there is a

coordinate chart for M such that g takes the form in Equation (2.22), then |g| = |h| :=
dethAB and there is a smooth function Ψ such that

� =v

(
v
h22[ζ1]2 − 2h12ζ1ζ2 + h11[ζ2]2)

|h| − ϕ
)
∂2

∂v2

− 2v
h22ζ1 − h12ζ2

|h|
∂2

∂v ∂x1
− 2v

h11ζ2 − h12ζ1

|h|
∂2

∂v ∂x2

+ 2
∂2

∂u ∂v
+ Ψ

∂

∂v

+ terms in ∂x1, ∂x2, ∂2
x1, ∂2

x2, ∂2
x1x2.

In the lower or higher dimensional cases, it still holds that there are no ∂u, ∂2
u, ∂2

uxA

terms, that the coefficients in front of ∂2
v and ∂2

vxA
vanish when v = 0, that the coefficient

in front of ∂2
uv is equal to 2, and that the coefficient in front of ∂v is a smooth function.

Corollary 2.3.14. Let (M, g, t) be a time-oriented Lorentzian manifold and N be a null

hypersurface which admits a cross-section. Let (U , (v, u, xA)) be a Gaussian null coordi-

nate chart for N as in Theorem 2.3.11. Then, for any vector field X on M and any two

q, F ∈ C∞(M), the equation (�+X + q)φ = F , when evaluated on N ∩ U = {v = 0},
takes the form

2
∂

∂u

(
∂φ

∂v

)
+
(
Ψ +Xv

)∂φ
∂v

= F +D
(1)
0 φ (2.24)

where Ψ ∈ C∞(U) is as in Corollary 2.3.13, and D
(1)
0 is a linear second-order differential

operator involving u- and xA–derivatives only, with coefficients independent of φ. In

general, letting

φ(n)
v :=

∂nφ

∂vn
�N ∩U ,

the differential consequence obtained by taking the n-th order (n ≥ 1) v-derivative of

(�+X + q)φ = F , evaluated on N ∩ U , takes the form

2
∂

∂u

[
φ(n)
v

]
+ Ω(n)φ(n)

v =
∂nF

∂vn
+

n−1∑
i=0

D
(n)
i φ(i)

v (2.25)
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where Ω(n) ∈ C∞(U) is independent of φ and each D
(n)
i is a linear differential operator

of order at most 2 involving u- and xA-derivatives only, with coefficients independent of

φ.

2.4 Generalities on Green hyperbolic and normally hyperbolic

differential operators

This section will quickly review some key results in the theory of a special class of second

order, linear, partial differential operators with smooth coefficients acting on section of

vector bundles over Lorentzian manifolds. The normally hyperbolic operators – also

sometimes called wave operators15 – which comprise this class, when acting on sections

of vector bundles over globally hyperbolic spacetimes, admit a well-posed initial value

formulation on (smooth) spacelike Cauchy surfaces. This means that, in considering the

equation

Pu = f, (2.26)

where P : Γ∞(F1) → Γ∞(F2) is the differential operator in question and f is a given

(sufficiently regular, e.g. smooth) section of F2 → M , given such a Cauchy surface C

and a pair u0, u1 of (sufficiently regular, e.g. smooth) sections of F1|C – called Cauchy

data – on such a Cauchy surface C , there exists a unique solution u of Equation (2.26)

whose restriction to C equals u0, and whose first (covariant) derivative in the direction

given by the global unit normal vector field along C equals u1. Notice that since C is

assumed spacelike, this vector is everywhere transverse to C – and indeed we could have

chosen any other smooth vector field along C and transverse to it. The regularity of

the solution u to this Cauchy problem depends on the regularity of u1, u2 and of the

‘inhomogeneity’ f , but (i) u is smooth if they all are, and (ii) it depends continuously

on them if they are allowed to vary within appropriately topologized spaces of sections

with given regularity.

2.4.1 Green hyperbolicity

Normally hyperbolic operators (to be defined formally below), which are always of second

order, when acting on sections of vector bundles over globally hyperbolic spacetimes

belong to the wider class of Green hyperbolic partial differential operators on Lorentzian

manifolds, which were studied in detail in [BG12, Kha14, Bär15] and which may be of

any order. Indeed, the fact that they are Green hyperbolic is often all that is needed to

15Not to be confused with the Hilbert space linear operators arising in scattering theory – the Møller
operators – sometimes indicated by the same name.
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construct well-behaved (particularly relative to the requirement of Einstein causality)

quantum field theories based on the classical ones which they define. Such operators

are axiomatically defined by the requirement that they (and their formal adjoints, see

Definition 2.4.2) admit advanced and retarded Green operators – often referred to as

advanced and retarded propagators of Green’s functions, particularly in the physics

literature. As we will see in the definition below, the latter are particular kinds of

‘inverses’ of the differential operator with special support properties relative to the causal

structure defined by the underlying Lorentzian metric.

Definition 2.4.1. Let M = (M, g, t) be a spacetime and P : Γ∞(F1) → Γ∞(F2) be

a linear differential operator (with smooth coefficients). A retarded (+) or advanced

(−) Green operator for P – relative to the causal structure on M – is a linear map

E± : Γ∞0 (F2)→ Γ∞(F1) such that

(i) E± ◦ P �Γ∞0 (F1) = idΓ∞0 (F1);

(ii) P ◦ E±�Γ∞0 (F2) = idΓ∞0 (F2);

(iii) supp(E±g) ⊆ J±(supp g) for all g ∈ Γ∞0 (F2).

Definition 2.4.2. Let (M, g) be a Lorentzian manifold and dµg be the associated volume

density. Let P : Γ∞(F1) → Γ∞(F2) be a differential operator between vector bundles

over a common field K. The formal adjoint or formally dual operator P ∗ of P (with

respect to dµg) is the differential operator P ∗ : Γ∞(F ∗2 )→ Γ∞(F ∗1 ) uniquely defined by∫
M
ψ(Pϕ) dµg =

∫
M

[P ∗ψ](ϕ) dµg

for all ψ ∈ Γ∞(F ∗2 ) and ϕ ∈ Γ∞(F ∗1 ) such that suppψ∩ suppϕ is compact. If F1 = F2 =

F and we have a preferred vector bundle isomorphism F → F ∗ covering the identity,

then P ∗ can be regarded as an operator Γ∞(F )→ Γ∞(F ), and P is formally self-adjoint

relative to this identification if P = P ∗. If the isomorphism F → F ∗ is realised by a

smooth, fiberwise non-degenerate bilinear pairing 〈·, ·〉 : F×MF → K, then P is formally

self-adjoint if and only if ∫
M
〈ψ, Pϕ〉 dµg =

∫
M
〈Pψ,ϕ〉 dµg

for all ψ,ϕ ∈ Γ∞(F ) such that suppψ ∩ suppϕ is compact.

P ∗ allows one to linearly extend the action of P to distributional sections. Recall (see also

Appendix C) that, in the presence of a preferred smooth volume density, Γ−∞(Fi) (for

i = 1, 2) can be defined as the continuous dual space of Γ∞0 (F ∗i ). Then, P : Γ−∞(F1)→
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Γ−∞(F2) is defined by

[Pτ ](ϕ) = τ(P ∗ϕ) ∀ ϕ ∈ Γ∞0 (F ∗2 ),

and is continuous in the standard (weak-∗) topology on distributional sections. We

can thus speak of distributional solutions of P , meaning elements in the kernel of this

extension of P .

Definition 2.4.3 (Green hyperbolic operators). If (M, g, t) is a spacetime and P :

Γ∞(F1) → Γ∞(F2) is a linear differential operator (with smooth coefficients) such that

both P and P ∗ have advanced and retarded Green operators, then P is said to be Green

hyperbolic. In particular, P is Green hyperbolic if and only if P ∗ is.

If P is a Green hyperbolic operator on a globally hyperbolic spacetime, we may use

its retarded Green operators to solve a ‘Cauchy problem’ of sorts in which, given an

inhomogeneity g ∈ Γ∞0 (F2), we seek a solution u to Pu = g which vanishes to infinite

order on a spacelike Cauchy surface C− such that supp g ⊆ J+(C−). Clearly, u := E+g

does the job. Similarly, E−g solves the analogous ‘homogeneous Cauchy problem’ posed

on a spacelike Cauchy surface C + with supp g ⊆ J−(C +).

Recall now the subspaces of (distributional) sections defined according to their support

properties in Definition 2.1.40. Recall that a differential operator is always support non-

increasing. The following theorem collects results proved in [Bär15], and we also refer

to that paper for careful definitions of all topologies involved.

Theorem 2.4.4. If P : Γ∞(F1) → Γ∞(F2) is a Green hyperbolic operator on a globally

hyperbolic spacetime, then it is bijective as a map Γ∞pc(F1) → Γ∞pc(F2) and as a map

Γ∞fc (F1) → Γ∞fc (F2). The resulting unique inverses are extensions, denoted by E±, of

E±, which still enjoy the support property supp(E±g) ⊆ J±(supp g) ∀ g ∈ Γ∞pc/fc(F2).

In particular, the original Green operators of P as in Definition 2.4.1 are unique. By

duality, similar statements hold when P acts on distributional sections. The original

Green operators and all such extensions are continuous.

We denote the extended Green operators on distributional sections by Ê+ : Γ−∞pc (F2)→
Γ−∞pc (F1) and Ê− : Γ−∞fc (F2)→ Γ−∞fc (F1).

If P is Green hyperbolic and the spacetime is globally hyperbolic then we can use

its (unique by Theorem 2.4.4) advanced and retarded Green operators to define the

important causal Green operator – also variously called causal propagator or (somewhat

improperly) causal Green’s function. If P is self-adjoint, the causal Green operator will

allow us to define a symplectic structure on the space of spatially compact solutions

S := kerP �Γ∞sc (F ), and this is important for quantization.
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Definition 2.4.5. Let (M, g, t) be a spacetime and P : Γ∞(F1) → Γ∞(F2) be a Green

hyperbolic operator. The causal propagator E : Γ∞0 (F2)→ Γ∞(F1) is defined by

E := E− − E+

and clearly satisfies E[Γ∞0 (F2)] ⊆ Γ∞sc (F1). If the spacetime is also globally hyperbolic,

using the extended Green operators E± we may also define

E := E− − E+ : Γ∞tc (F2)→ Γ∞(F1),

which is an extension of E.

If P is a Green hyperbolic operator on a globally hyperbolic spacetime, the (extended)

Green operators E± : Γ∞pc/fc(F2)→ Γ∞pc/fc(F1) for P , and (extended) Green operators for

P ∗ which we will denote by G± : Γ∞pc/fc(F
∗
1 )→ Γ∞pc/fc(F

∗
2 ), are in duality in the following

sense. Note that the roles of ‘advanced’ and ‘retarded’ get interchanged.

Proposition 2.4.6 (Duality between Green operators [Bär15, Lem. 3.21] and [Kha14]). Let

(M, g, t) be globally hyperbolic and P : Γ∞(F1) → Γ∞(F2) be a linear Green hyperbolic

operator. Then, with the notation in the paragraph above,∫
M

[
G+α

]
(β) dµg =

∫
M
α
(
E−β

)
dµg

for all α ∈ Γ∞pc(F
∗
1 ) and β ∈ Γ∞fc (F2) such that supp(G+α) ∩ supp(E−β) is compact.

Similarly, ∫
M

[
G−α

]
(β) dµg =

∫
M
α
(
E+β

)
dµg

for all α ∈ Γ∞fc (F ∗1 ) and β ∈ Γ∞pc(F2) such that supp(G−α) ∩ supp(E+β) is compact.

In particular, if F1 = F2 = F and P is formally self-adjoint with respect to a fiberwise

non-degenerate bilinear pairing 〈·, ·〉 : F ×M F → K, then G± = E± and the above

implies that ∫
M

〈
E±ψ,ϕ

〉
dµg =

∫
M

〈
ψ,E∓ϕ

〉
dµg

whenever ψ ∈ Γ∞pc/fc(F ) and ϕ ∈ Γ∞fc/pc(F ) are such that supp(E±ψ) ∩ supp(E∓ϕ) is

compact. In particular, in this latter case we have∫
M
〈Eψ,ϕ〉 dµg = −

∫
M
〈ψ,Eϕ〉 dµg

for all ψ,ϕ ∈ Γ∞0 (F ).

It is evident that E maps test sections to spatially compact solutions of Pu = 0, and

that supp(Eg) ⊆ J(supp g) for all g ∈ Γ∞0 (F2) – justifying the terminology. Actually, in

the presence of global hyperbolicity one can prove further statements about E which,

together with the ones just made, can be conveniently summarised by means of an exact

sequence as was done in [BGP07, Thm. 3.4.7] for normally hyperbolic operators, and
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generalised to Green operators and distributional sections in [Bär15, Thm. 3.22 & Thm.

4.3]. The last surjection in each sequence in Theorem 2.4.7 below was not explicitly

included in [Bär15], or even in [BGP07] in the special normally hyperbolic case. In the

case of normally hyperbolic operators, it is a result of Corollary 5 in [Gin09], while in

the case of general Green operators the (simple) proof is in [Kha14, Lem. 2.1 & Prop.

2.1], but we will repeat it below in the interest of being self-contained.

Theorem 2.4.7. If (M, g, t) is globally hyperbolic and P is a Green hyperbolic operator

then the sequence of vector spaces

{0} −→ Γ∞0 (F1)
P−→ Γ∞0 (F2)

E−→ Γ∞sc (F1)
P−→ Γ∞sc (F2) −→ {0} (2.27)

is exact, implying in particular that E is onto S := kerP �Γ∞sc (F1), that kerE = P [Γ∞0 (F1)]

and therefore also that S ∼= Γ∞0 (F2)/P [Γ∞0 (F1)]. With Ê := Ê− − Ê+ : Γ−∞0 (F2) →
Γ−∞sc (F1), the sequence

{0} −→ Γ−∞0 (F1)
P−→ Γ−∞0 (F2)

Ê−→ Γ−∞sc (F1)
P−→ Γ−∞sc (F2) −→ {0} (2.28)

is also exact.

Proof. We prove the last surjection. The argument is identical in the smooth and dis-

tributional case, but we show it in the smooth case for definiteness. Pick two Cauchy

surfaces C− and C + with C± ⊂ I±(C∓). Then {I+(C−), I−(C +)} is an open cover

of M , and we can pick a partition of unity {χ+, χ−} subordinate to this cover. Let

φ ∈ Γ∞sc (F2) so there is a compact set K such that suppφ ⊆ J(K). It follows that

supp(χ+φ) ⊆ J(K) ∩ J+(C−) = [J+(K) ∩ J+(C−)] ∪ [J−(K) ∩ J+(C−)]

⊆ J+(K) ∪ J+
(
J−(K) ∩ J+(C−)

)
= J+

(
K ∪ [J−(K) ∩ J+(C )−]

)
.

Since C− is a Cauchy surface and K is compact, the set in the last line is the causal

future of a compact set, therefore χ+φ belongs to Γ∞ret(F2). In a similar way one sees that

χ−φ ∈ Γ∞adv(F2). Therefore, E±(χ±φ) also belongs to Γ∞ret/adv(F2), the sum E+(χ+φ) +

E−(χ−φ) is in Γ∞sc (F2), and the claim follows from

φ = χ+φ+ χ−φ = PE+(χ+φ) + PE−(χ−φ) = P [E+(χ+φ) + E−(χ−φ)].

Finally, the results in Proposition 2.4.6 and the exactness of the sequence in Theorem

2.4.7 can be combined to equip the space of smooth, spatially compact solutions to a

Green hyperbolic operator with a symplectic structure, in the formally self-adjoint case.

Theorem 2.4.8 (Symplectic structure on spatially compact solutions of formally self-ad-

joint operators, [BG12, Prop. 3.4]). Let (M, g, t) be globally hyperbolic and let F → M
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be a vector bundle over a field K, endowed with a non-degenerate fiberwise inner product

〈·, ·〉. If P is formally self-adjoint relative to this inner product then the antisymmetric

K-bilinear map Γ∞0 (F )× Γ∞0 (F )→ K given by

(ψ,ϕ) 7→
∫
M
〈ψ,Eϕ〉 dµg

descends to a symplectic form on S := kerPΓ∞sc (F )
∼= Γ∞0 (F )/P [Γ∞0 (F )].

It is well-known that, in the smaller class of normally hyperbolic operators (see the next

subsection), the expression for the symplectic product between two spatially compact

solutions can be expressed as an integral over any smooth Cauchy surface involving the

value of the sections and of their (first, covariant relative to a ‘P -compatible’ connection)

normal derivatives on that Cauchy surface, see for instance [BGP07, Lem. 3.22 & Lem.

4.7.7]. It is perhaps less well-known that a generalisation of this result still holds true

in the Green hyperbolic case, but this time the ‘differential data’ of the two solutions

to be integrated along the Cauchy surface may contain higher-order derivatives. This is

because a general linear differential operator P : Γ∞(F1) → Γ∞(F2) and its formal ad-

joint P ∗ : Γ∞(F ∗2 )→ Γ∞(F ∗1 ) satisfy a relation which, assuming spacetime orientability

for simplicity, takes the form

[α(Pϕ)− (P ∗α)(ϕ)] volg = dG[α,ϕ], (2.29)

where, with dimM = n+ 1, G : Γ∞(F ∗2 )×Γ∞(F1)→ Ωn(M ;K) is a bilinear, bidifferen-

tial, form-valued operator. Equation (2.29) is the Green–Vinogradov formula, introduced

in a local sense in [Vin84a, Vin84b], and see Theorem 6.2 in [AB02] for a proof of the

global existence of such a G. The pullback of G[α,ϕ] to an arbitrary smooth Cauchy

surface C can be integrated and the remarkable result is that, if the Cauchy surface is

given the appropriate ‘future orientation’ and whenever α and ϕ are spatially compact

solutions of P ∗ and P respectively, the resulting integral,∫
C
ι∗G[α,ϕ], is always equal to

∫
M
β(ϕ) volg =

∫
M
α(ψ) volg

for any β ∈ Γ∞0 (F ∗1 ) such that Gβ = α and any ψ ∈ Γ∞0 (F2) such that Eψ = ϕ. In

particular, the integral in Theorem 2.4.8 defining the linear symplectic structure on S in

the formally self-adjoint case may be always re-expressed as an integral over a smooth

Cauchy surface involving only the values and derivatives of the solutions themselves –

and no test functions. We refer to Section 2.5 in [Kha14], and specifically to Lemma 2.5

there, for further details, and to the rest of that paper for a study of the ramifications

of this in the context of Lagrangian field theories.
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2.4.2 Normal hyperbolicity

As we already mentioned above, normally hyperbolic operators on Lorentzian manifolds

are particular kinds of second-order linear partial differential operators with smooth

coefficients which, when acting on sections of vector bundles over globally hyperbolic

spacetimes, are automatically Green hyperbolic. As a matter of fact, that this is the case

is a deep result the proof of which was a major achievement starting with the seminal

work of Leray [Ler53] (in which the notion of global hyperbolicity was first introduced),

and continuing with Lichnerowicz’ and Choquet-Bruhat’s contributions [Lic61, CB67]

and with Friedlander’s book [Fri75] in which local results are achieved by a different

method. The more recent textbooks [BGP07] and [Rin09] fill gaps in these earlier

presentations and give complete accounts of these results in a modern language.

A normally hyperbolic operator is, roughly speaking, a second-order differential operator

whose highest order coefficients in any choice of coordinates are the components of the

inverse metric tensor g−1 ∈ Γ∞(TM⊗TM). A more formal definition requires the notion

of the principal symbol of a general linear differential operator L : Γ∞(F1) → Γ∞(F2),

which we now give. For further details, and coordinate-free definitions, see e.g. [Nic07,

Ch. 10].

Definition 2.4.9 (Principal symbol). Let M be a smooth manifold of dimension d, let

F1 → M and F2 → M be vector bundles of rank N1 and N2 respectively and over the

same field K, and let L be a linear differential operator with smooth coefficients and of

order k ∈ N0. The principal symbol of L is the map

σL : T ∗M → HomK(F1, F2)

whose action we will now describe in terms of a local coordinate chart (U , x = (xµ) :

U → V) for M and local trivializations of F1 and F2 adapted to these coordinates.

Given such choices, there exists a unique collection of smooth, (N2×N1)-matrix–valued

functions Aα defined on U and such that the following holds: If s is an arbitrary local

section of F1 →M on U and we denote by s̃ : V → V×RN1 its expression in terms of the

chosen coordinates and of the trivialization of F1, and also denote by t̃ : V → V × RN2

the analogous expression of any local section of F2 →M on U , then

L̃s̃ =
∑
|α|≤k

(Aα ◦ x−1) · ∂αs̃.

The principal symbol is then defined on any covector ξ = ξµdxµ ∈ T ∗pU to be the element

of HomK(F1, F2) represented in the chosen trivializations by the matrix

σ̃L(ξ) =
∑
|α|=k

ξαAα(p)

where ξα := ξα1
1 · · · ξαdd .
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Remark. It follows immediately that the principal symbol of L is homogeneous of degree

k, i.e. that σL(λξ) = λkσL(ξ) for any covector ξ and any λ ∈ K.

Definition 2.4.10 (Normally hyperbolic operators). Let (M, g) be a Lorentzian manifold

and F →M be a vector bundle. A second-order linear differential operator P : Γ∞(F )→
Γ∞(F ) is said to be normally hyperbolic if

σP (ξ) = g−1(ξ, ξ) idF for all ξ ∈ T ∗M.

Although normally hyperbolic operators form a wide class, the only example which

we will treat with any detail in this thesis is the most general normally hyperbolic

operator acting on smooth real-valued functions, i.e. on sections of the trivial line bundle

F = M × R. This takes the form

P = �+X + q (2.30)

where � is the d’Alembert operator defined in Equation (2.23), X is a smooth vector

field, and q is a smooth real-valued function. When X vanishes and q is a constant, P

is called a Klein–Gordon operator.

Lemma 2.4.11. If (M, g) is a Lorentzian manifold and P : C∞(M)→ C∞(M) is of the

form in Equation (2.30), then P is formally self-adjoint relative to the obvious iden-

tification of F := M × R with its dual bundle F ∗ if, and only if, the vector field X

vanishes.

Proof. It is well-known and a straightforward exercise using the divergence theorem

that � : C∞(M) → C∞(M) is self-adjoint in the sense stated. It is obvious that

the multiplication operator q too is formally self-adjoint. Since the operation of taking

formal adjoints is linear, the ‘if’ direction is clear. For the ‘only if’ direction, by a similar

reasoning it follows that we must have X = X∗. This means that∫
M
ψXϕ dµg =

∫
M

(Xψ)ϕdµg

for all ϕ,ψ ∈ C∞0 (M). But ψXϕ = X(ψϕ)− (Xψ)ϕ by the Leibniz rule, and thus∫
M
ψXϕ dµg = −

∫
M

(Xψ)ϕdµg

by integration by parts since the functions have compact support and the manifold is

assumed without boundary. Thus, Xϕ vanishes for all ϕ ∈ C∞0 (M) in the sense of

distributions and, since it is actually smooth, it must vanish in the sense of functions.

Then X must be zero as a differential operator, and thus as a vector field.
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2.4.3 Characteristic initial value problems

Quite generically, the characteristic set of a linear partial differential operator P , denoted

by CharP , is the subset of T ∗M \0 on which σP fails to be an injective linear map [Tre80,

p. 80]. In particular, in the scalar case P : C∞(M)→ C∞(M),

CharP := {ξ ∈ T ∗M | ξ 6= 0 and σP (ξ) = 0} .

A characteristic hypersurface for P is then a hypersurface N whose conormal bundle is

entirely contained in CharP .

Characteristic hypersurfaces are problematic for the following reason: Let P be of order

k. Then, in local coordinates adapted to a characteristic hypersurface – i.e. such that the

hypersurface is locally defined by the vanishing of one of the coordinate functions – we

cannot rewrite the equation Pu = f in such a way as to express the k-th order transverse

derivatives of u in terms of the value of u and of its other derivatives up to order k. On the

other hand, Pu = f , when evaluated on N , reduces to compatibility conditions between

u�N , its derivatives along N , and derivatives along N of the transverse derivatives of

u up to order k − 1. Thus we cannot freely specify the value of u and of its transverse

derivatives up to order k − 1 and expect to obtain a solution in a neighbourhood of a

point in N . This is completely unlike the situation in the standard Cauchy problem.

The characteristic initial value problem, also called Goursat problem, is the problem of

finding solutions to a (linear) partial differential equation with prescribed values on a

characteristic hypersurface:

Pu = f with u�N = u0

for some function u0 defined on N . Existence and/or uniqueness of solutions are not

guaranteed, and one can only hope to establish them on a case-by-case basis. Our work

in the next section will be an example of one such endeavour.

2.5 The global characteristic initial value problem on achronal

hypersurfaces and the definition of SA and SB in [KW91]

The purpose of this section is to sketch the proof of existence and uniqueness results

pertaining characteristic initial value problems for linear wave-like equations on globally

hyperbolic Lorentzian manifolds, posed on null hypersurfaces with favourable causal

properties. While the precise statements of these results are, to the best of our knowl-

edge, novel, in essence they and their proofs are adaptations of ideas first presented by
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A. D. Rendall in the much more general context of quasilinear wave equations in an

influential 1990 paper [Ren90]. The nonlinear nature of such equations meant that Ren-

dall’s results were local in nature. Our main contribution will be to provide a geometric

framework in which Rendall’s arguments can be globalised in the linear case. A more

superficial difference with Rendall’s results is given by the fact that the characteristic

initial value surfaces in [Ren90] consist of two intersecting smooth null hypersurfaces;

morally speaking, the initial value surfaces which, in our work, play the role of Rendall’s

intersecting hypersurfaces are achronal boundaries of the form İ+(S) and İ−(S), for S

a subset of a null hypersurface with the causal properties discussed in Subsections 2.5.3

and 2.5.4.

2.5.1 Whitney’s Extension Theorem

At the heart of Rendall’s argument is an application of a version of the classical Whitney

extension theorem of differential topology [Whi34, Gla58, Mal66, Ste70, Tou72], see also

[Hör90a, Thm. 2.3.6]. Given an open set Ω ⊆ Rn, the latter deals with the problem of

extending, to a function in Cm(Ω) (with m finite or even infinite), a function originally

defined, together with its ‘derivative data’, only on a closed subset X of Ω. The col-

lection given by the function and its derivative data on X is required to satisfy certain

compatibility conditions which are described completely in terms of X and arise natu-

rally as necessary conditions that any suitable extension would have to satisfy by virtue

of Taylor’s formula. Then, the classical Whitney extension theorem states that smooth-

ness on X ⊆ Ω in the sense of Whitney is equivalent to the existence of an extension to

Ω that is Cm in the usual sense. To wit, call Whitney data on X a collection

{fα : X → R | |α| ≤ m} (2.31)

of continuous functions fα, where α denotes a multi-index and possibly m = ∞. If m

is finite then this data is said to be Cm-smooth in the sense of Whitney – or to define a

Cm-Whitney field – if, for each multi-index α with |α| ≤ m,

fα(x)−
∑

|β|≤m−|α|

fα+β(y)

β!
(x− y)β is o

(
‖x− y‖m−|α|

)
(2.32)

uniformly on compact subsets of X as ‖x− y‖ → 0. If m =∞ then the data is said to

be C∞-smooth in the sense of Whitney – or to define a C∞-Whitney field – if, for any

integer k, the subcollection {fα}|α|≤k is Ck-smooth in the sense of Whitney. It is clear

that, for any m ∈ N0∪{∞} and any closed subset X, the Whitney data collection on X

all of whose members equal the zero function on X defines a Cm-Whitney field on X.
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Theorem 2.5.1 (Classical Whitney Extension Theorem). Let X ⊆ Ω ⊆ Rn be as above,

and {fα}|α|≤m be Whitney data as in (2.31), with possibly m = ∞. There exists f ∈
Cm(Ω) such that Dαf�X = fα ∀ |α| ≤ m if and only if the data is Cm-smooth in the

sense of Whitney.

Jets and the global Whitney extension theorem

This deep result generalises easily to the case where the function is valued in a Euclidean

space Rd. It also generalises to the case where Rn is replaced by a smooth manifold

M , Ω = M and X ⊆ M is a closed subset; although this came as no surprise to

experts in differential topology, to the best of our knowledge such a generalisation was

first explicitly stated and proved in the published literature rather recently, namely

in Appendix A to the paper [BCFT07]. The idea of the proof of this generalisation,

which we will henceforth refer to as the global Whitney extension theorem and whose

statement we will reproduce below, is a standard game in differential topology: suppose

that, using the classical Whitney extension theorem on coordinate charts or otherwise,

one is able to obtain local Whitney extensions on sufficiently small neighbourhoods in

M ; a partition of unity argument then yields a global extension by gluing together these

local extensions. We will specialise our statement to the case of real-valued functions

for simplicity.

The jet bundle language provides arguably the most concise and elegant formulation of

the global Whitney extension theorem. The details of the jet bundle formalism are not

essential here, and can be found in several references ([Mic80, Sau89, KMS93] to mention

only a few). Suffice to say that, given two smooth manifolds M and N and m ∈ N0,

we can define the set Jm(M ;N) of m-jets of maps from M to N as follows: an element

of Jm(M ;N) is an equivalence classes of pairs (f, x), where x ∈ M and f is a smooth

map from an open set in M containing x to N , and two such pairs (f, x) and (f ′, x′)

are considered equivalent iff x = x′, f(x) = f ′(x′), and f and f ′ have equal partial

derivatives up to order m in one (and hence any other) coordinate chart for M and N

around x and f(x) respectively. That is, the local expressions for f and f ′ have equal

Taylor developments up to order m. Jm(M ;N) can be given the structure of a finite-

dimensional smooth manifold and even of a fiber bundle over M×N , and one can define

the infinite jet space J∞(M ;N) as a certain projective limit built from the Jm(M ;N)

[Mic80, Ch. 4]. As a set, J∞(M ;N) may also be defined as a set of equivalence classes

of (local) maps from M to N just as above, with m replaced by ∞. What’s more,

J∞(M ;N) can be given the structure of an infinite-dimensional manifold modelled on

a locally convex topological vector space [Mic80, p. 88]. For any m ∈ N0 ∪ {∞}, any
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smooth map f : M → N gives rise to a smooth map

jmf : M → Jm(M ;N), where jmf(x) := the equivalence class of (f, x) in Jm(M ;N)

called the (m-jet) prolongation or extension of f . Now, specialising to the case N = RN ,

of course a smooth map M → RN may be viewed as a smooth section of the trivial vector

bundle (M × RN , pr1,M,RN ). More generally, given a vector bundle π := (F, π,M, V )

and m ∈ N0, we can define Jm(π) to be the set of equivalence classes of smooth sections

of π in just the same way as above. Therefore, under our notation, in general Jm(π) ⊆
Jm(M ;F ). Jm(π) too is a finite-dimensional smooth manifold, and also the total space

of a vector bundle over M , called the m-jet bundle of π. Again by a projective limit

procedure, we may define the infinite jet bundle of π, J∞(π), and equip it with the

structure of an infinite-dimensional Fréchet manifold [Sau89, Ch. 7]. Prolongation of

a smooth section φ of π gives rise to a smooth section jmφ of Jm(π) → M , for any

m ∈ N0∪{∞}. We note that, if π is the trivial line bundle (M×R, pr1,M,R) then there

is a canonical vector bundle isomorphism (covering the identity map on M) between

J1(π) and (T ∗M × R, πT ∗M ◦ pr1,M,RdimM+1).

Theorem 2.5.2 (Global Whitney Extension Theorem, Thm. A.1 in [BCFT07]). Let M be

a smooth manifold, X ⊆M be a closed set, and m ∈ N0 ∪ {∞}. Let f : X → Jm(M ;R)

be a section of Jm(M ;R)
πm−−→ M along X, i.e. πm ◦ f = idX . Assume that f has local

Cm extensions, in the sense that for each x ∈ X there exist:

(1) open neighbourhoods Vx and Ux of x in M such that Vx ⊆ Vx ⊆ Ux;

(2) a compact subset Kx ⊆ X such that X ∩ Vx = Kx ∩ Vx and Kx ⊆ Ux;

(3) a Fx ∈ Cm(Ux;R) such that [jmFx](y) = f(y) for each y ∈ Kx.

Then, there exists a F ∈ Cm(M ;R) such that [jmF ](x) = f(x) for all x ∈ X. That is,

f admits a global Cm extension.

As pointed out in [BCFT07], the result actually extends in a straightforward way to

mappings M → RN and thereby directly even to sections of arbitrary vector bundles

over M .

Borel’s Lemma

An important corollary of the Whitney extension theorem is a generalised version

([GG73, Lem. 2.5], [Hör90a, Thm. 1.2.6 & Cor. 1.3.4]), which we will now enunciate, of

the classical Borel Lemma [Bor95].
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Corollary 2.5.3 (n-dimensional Borel’s Lemma). Let Λ ⊆ Rn be open and let (f0, f1, . . .)

be a sequence of functions in C∞(Ω). Then, for any open interval I ⊆ R such that 0 ∈ I,

there exists an F ∈ C∞(I × Λ) such that
∂kF

∂tk
(0, ·) = fk for all k ≥ 0.

Proof. While this result can be easily proved without recourse to Whitney’s extension

theorem, it is of interest to see that this is what the latter reduces to in the case of the

(closed) hyperplane X := {0} × Λ in the open subset Ω := I × Λ of Rn+1. We must

prescribe complete Whitney data on X which extends the sequence (fk)k≥0 of already

given ‘transverse derivatives’, and verify that just knowing that each fk is smooth suffices

to establish the estimates given by (2.32). To wit: Since we are looking for a smooth

extension having fk as the k-th order transverse derivative, for any multi-index ρ in Nn0
we are forced to prescribe the Whitney data functions as

f (k,ρ)(0, ·) = ∂ρfk ∀ k ≥ 0. (2.33)

Now consider two arbitrary points x := (0, z) and y := (0, w) belonging to X. If

β = (i, γ) ∈ Nn+1
0 is a multi-index then

(x− y)β = (0− 0)i · (z − w)γ .

Therefore, this quantity vanishes unless i = 0. The difference in (2.32) then becomes

fα(x)−
∑

|γ|≤m−|α|

fα+(0,γ)(0, w)

γ!
(z − w)γ .

If α = (k, ρ) with k ∈ N0 and ρ ∈ Nn0 then, using Equation (2.33), this reads

∂ρfk(z)−
∑

|γ|≤m−k−|ρ|

f (k,ρ+γ)(0, w)

γ!
(z − w)γ

= ∂ρfk(z)−
∑

|γ|≤m−k−|ρ|

∂γ [∂ρfk](w)

γ!
(z − w)γ .

Since ∂ρfk is smooth on Λ, by Taylor’s theorem this quantity is o(||z − w||m−k−|ρ|)
uniformly on compact subsets of Λ as ||z − w||m−k−|ρ| → 0. The result follows.

Remark. As is usual in differential topology, the above result is the essential local ingre-

dient (via a partition of unity argument) in proving a yet more general version of Borel’s

Lemma. Namely, we can replace Ω with a smooth manifold of dimension n+ 1, Λ ⊂ Ω

with a closed codimension-1 embedded submanifold, and ∂/∂t with a smooth vector

field on a neighbourhood of Λ which, on Λ, is everywhere (non-zero and) transverse to

Λ. There exists then a F ∈ C∞(Ω) such that T k(F )�Λ is equal, for any k ≥ 0, to a

prescribed fk ∈ C∞(Λ).
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‘Gluing’ Whitney fields and regularly separated sets

A natural problem often arises when trying to make use of Whitney’s extension theorem

in applications, and it will affect our discussion in the following subsections.16 The

problem – which has counterparts in the case of finite differentiability but which we will

only formulate in the C∞ case – is the following:

‘Gluing problem’ for C∞-Whitney fields. Let X, Y be two closed subsets of

Rn. Let F, G be arbitrary C∞-Whitney fields on X and Y respectively, which

agree on X ∩ Y . Under what conditions on X and Y does there always exist

a C∞-Whitney field on X ∪ Y whose restrictions to X and Y coincide with F

and G respectively?

This problem has a definite resolution, given as Theorem 5.5 in [Mal66] and recalled

below as Theorem 2.5.5. The latter relies on a fundamental definition first given in

a 1959 paper by  Lojasiewicz [ Loj59]. The exact variant which we present below as

Definition 2.5.4 is as in the paper [RSZ12, Prop. 4.3.6]. Recall that for a point p ∈ Rn

and any A ⊆ Rn, d(p,A) denotes the standard metric space distance between p and A.

Definition 2.5.4 (After [ Loj59, pp. 91–92]). Two subsets X, Y of Rn are said to be

regularly separated (or ‘regularly situated’ in [Mal66]) if either X ∩ Y = ∅ or one of the

following equivalent conditions is fulfilled:

i) for all x0 ∈ X ∩ Y , there exists a neighbourhood U of x0 and constants C > 0,

λ > 0, such that

d(x,X) + d(x, Y ) ≥ Cd(x,X ∩ Y )λ for all x ∈ U ;

ii) for all x0 ∈ X ∩ Y , there exists a neighbourhood U of x0 and constant, C ′ > 0,

λ > 0, such that

d(x, Y ) ≥ C ′d(x,X ∩ Y )λ for all x ∈ X ∩ U ;

iii) condition ii) holds when the roles of X and Y are interchanged.

If, in either case, λ can be chosen to be equal to 1, then we say that X and Y are simply

separated.

The resolution of the ‘gluing problem’ above can now be stated.

Theorem 2.5.5. Let X, Y be two closed subsets of Rn. Then the following are equivalent:

• the gluing problem for C∞-Whitney fields can be answered in the affirmative for

X and Y ;

• X and Y are regularly separated.

16That this problem requires attention when trying to solve the characteristic initial value problem
for hyperbolic equations in Rendall’s approach was already implicitly recognised in [Ren90].
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In Subsection 2.5.4, we will require a more practical criterion to establish the regular

separateness of two sets. We recall below one which will suit our purposes and which

can be found in the existing literature, see e.g. Lemma 6 and its Corollary in [Paw02]

(but the germ of the idea can already be found in [ Loj59, Lem. 1 & Lem. 2]). In the

statement, if f : X → Y then Γ(f) ⊆ X × Y denotes the graph of f .

Lemma 2.5.6. Let Ω ⊆ Rk be non-empty and open, and θ : Ω→ Rm be a locally Lipschitz

map. Then Γ(θ) and any subset S of Rk+m \ (Ω× Rm) are simply separated.

Sketch of proof. We first prove the claim for S = Rk+m \ (Ω × Rm). Without loss of

generality, we may assume that θ is globally Lipschitz with Lipschitz constant L. Denote

the continuous extension of θ to Ω (which is Lipschitz with the same Lipschitz constant)

by θ. Given a ∈ Ω, let b ∈ Ω̇ be such that ‖a− b‖Rk = dRk(a, Ω̇). Then

dRk+m((a, θ(a)), S) = dRk(a, Ω̇) = ‖a− b‖Rk .

Now use

∥∥(a, θ(a))− (b, θ(b))
∥∥2

Rk+m = ‖a− b‖2Rk +
∥∥θ(a)− θ(b)

∥∥2

Rm ≤
(
1 + L2

)
‖a− b‖2Rk

to obtain the desired inequality.

dRk+m((a, θ(a)), S) ≥ 1√
L2 + 1

∥∥(a, θ(a))− (b, θ(b))
∥∥
Rk+m

≥ 1√
L2 + 1

dRk+m((a, θ(a)),Γ(θ) ∩ S).

The result then extends to any other subset (closed or not) of Rk+m \ (Ω × Rm) by an

application of Proposition 2 in [Paw02].

2.5.2 An illustrative example of Rendall’s method

Let M = R2 and q′ ∈ R, and consider the homogeneous Klein–Gordon equation

�φ(t, x) =

(
∂2

∂t2
− ∂2

∂x2

)
φ(t, x) = q′φ(t, x).17

In double null coordinates u = t − x, v = t + x, and denoting the expression for φ in

these coordinates by ψ, this equation reads as

∂2ψ

∂u∂v
(u, v) =

∂

∂u

(
∂ψ

∂v

)
(u, v) = qψ(u, v) (2.34)

17Normally, q′ here would be −m2 for some mass m ≥ 0. Avoiding minus signs in the right-hand side
of this equation will simplify our calculations.
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with q = q′/4. The (u, v) coordinate system is in fact a very simple example of a

Gaussian null coordinate system for the null hypersurface (in this case, the null line)

N = {(t, x) ∈M | v(t, x) = t+ x = 0}. Assume it be known that ψ is a solution of

Equation (2.34) with given data on Ñ :=
{

(u, v) ∈ R2
∣∣ v = 0

}
of compact support, i.e.

ψ(u, 0) = f(u), f ∈ C∞0 (R).18 (2.35)

Then it follows directly from Equation (2.34), and by taking its v-derivatives, that

∂

∂u

(
∂ψ

∂v

)
(u, 0) = qψ(u, 0) = qf(u) and

∂

∂u

(
∂nψ

∂vn

)
(u, 0) = q

∂n−1ψ

∂vn−1
(u, 0).

Defining ψ(n)
v (u) =

∂nψ

∂vn
(u, 0) for all n ≥ 0, these equations together with Equation

(2.35) are equivalent to the iterative system of ODEsψ
(0)
v = f

dψ
(n)
v

du = qψ
(n−1)
v for n ≥ 1.

(2.36)

Of course, initial conditions are required to uniquely solve this system. We impose

the following: let umin = inf supp f ; then we supplement system (2.36) with the initial

conditions ψ
(n)
v (umin) = 0 ∀ n ≥ 0, which are actually easily seen to be equivalent

to ψ
(n)
v (u) = 0 ∀ u ≤ umin ∀ n ≥ 0. Geometrically, thinking of M = R2 as being

equipped with the standard Minkowski metric dt2− dx2, this is saying that the original

function φ and all of its v-derivatives, restricted to N , have support to the causal future

of supp f (the latter being identified here with the obvious subset of N ). Then, the

unique solution to system (2.36) is easily seen to be given by the sequence of smooth

functions

ψ(n)
v = qn Inf where [Ig] (u) :=

∫ u

−∞
g(u′) du′. (2.37)

Conversely, let ψapp ∈ C∞(R2) be such that

∂nψapp

∂vn
(u, 0) = ψ(n)

v (u) = qn [Inf ](u) ∀ u ∈ R.

Then ψapp solves Equation (2.34), and all its differential consequences, on Ñ (i.e. it is an

‘approximate’ solution). That such a function exists is a result of the generalised Borel’s

Lemma, Corollary 2.5.3. Therefore, the Whitney data collection {ψα}α∈N2
0
, given by

ψ(i,j)(u, 0) :=
diψ

(j)
v

dui
(u) = qj

di

dui
[
Ijf

]
(u) ∀ i, j ∈ N0, (2.38)

18In what follows, we will occasionally abuse notation and freely identify f with the corresponding
smooth function defined on the submanifold N of M .
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defines a C∞-Whitney field on any subset of Ñ which is closed in R2. In particular,

the restriction Ψ1 := {ψα�
Ñ1
} of this field to the closed set Ñ1 := [umin,+∞)× {0} is a

C∞-Whitney field on Ñ1 which vanishes at the point (umin, 0).

Now, consider a second closed subset of R2, specifically Ñ2 := {umin} × [0,+∞). This

choice is geometrically motivated since then, upon changing back to (t, x) coordinates,

Ñ1∪ Ñ2 is mapped to the topological boundary of the causal future of the point (t, x) ∈
M with (u(t, x), v(t, x)) = (umin, 0) – that is, p = (t, x) = (umin/2,−umin/2). The

key observation at this point is that Ñ1 and Ñ2 are regularly separated – in fact,

simply separated – in R2, see Definition 2.5.4. Indeed, their intersection Ñ1 ∩ Ñ2 =

{(umin, 0)}, and the claimed property follows here simply from the fact that the sets

intersect orthogonally.19 It follows from Theorem 2.5.5, and by the observation directly

above the statement of Theorem 2.5.1, that the Whitney data {Ψα}α∈N2
0

on Ñ1 ∪ Ñ2,

defined by

Ψα =

Ψα
1 = ψα�

Ñ1
on Ñ1

0 on Ñ2,

defines a C∞-Whitney field on Ñ1 ∪ Ñ2.

2.5.2.1 Reduction to the Cauchy problem in this example

Returning to our original motivation coming from wanting to solve the Klein–Gordon

equation [‘in (t, x)-coordinates’] with data prescribed on the null hypersurface N , it

follows from the Whitney extension theorem that there exists a φapp ∈ C∞(R2) which,

by construction:

(a) solves the Klein–Gordon equation and all its differential consequences on J̇+(p),

with p = (umin/2,−umin/2) as above;

(b) attains the zeroth-order values on N given by f ∈ C∞0 (N );

(c) vanishes to infinite order on J̇+(p) \N .

Of course, φapp may not yet solve the Klein–Gordon equation on any open set in M . We

must therefore remove from it the ‘error’ preventing it from achieving this. This seems

like a delicate procedure as we do not want to spoil the fact that φapp does, at least,

solve the initial conditions on N . Thinking heuristically, assume such an error exists

19But notice that, by the cosine rule, the property would still hold if, say, Ñ2 were to be rotated
around Ñ1 ∩ Ñ2 so as to intersect Ñ1 at any other angle between 0 and π.
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and is smooth, and denote it by φerr. Then it must satisfy at the very least

φerr = 0 on N

P (φapp − φerr) = 0⇐⇒ Pφerr = Pφapp on some open set in M,

where P = �−q′ is the Klein–Gordon differential operator. Now, observe that it follows

from (a) that Pφapp vanishes to infinite order on J̇+(p). Therefore, letting

χ+
p := χJ+(p) =

1 on J+(p)

0 on M \ J+(p),

the function

f+ := χ+
p · Pφapp

is smooth on R2 and supported in J+(p). But we can solve

φerr = 0 on N (2.39)

Pφerr = f+ on M. (2.40)

Indeed, f+ is smooth and with retarded support; thus, as explained in Section 2.4, the

unique smooth solution, with retarded support, to the second equation alone is obtained

by acting on f+ with the retarded Green operator E+:

φerr = E+f+ solves Equation (2.40).

It then follows at once that Equation (2.39) is automatically satisfied. We can now

define

φ+ := φapp − φerr = φapp − E+f+ = φapp − E+[χ+
p · Pφapp],

and the construction is such that:

(i) φ+ ∈ C∞(M);

(ii) Pφ+ = 0 on J+(p) [which contains the open set I+(p)];

(iii) φ+�N = φapp�N is equal to the prescribed function f ∈ C∞0 (N ).

The procedure described in this section is the core of Rendall’s argument in [Ren90],

as applied to the linear Klein–Gordon equation on R2. As already pointed out, our

conclusions are global, while Rendall’s – being however applicable to vastly more general

PDE systems – were local.
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A completely analogous construction, which we will not repeat and amounts to a change

in time orientation, would yield a φ− ∈ C∞(M) also attaining the values prescribed by

f on N , but with Pφ− = 0 on J−(p) instead.

2.5.3 Our general geometric setup

While we have just illustrated all the main ideas of our adaptation of Rendall’s method,

by working out in full detail the example of the Klein–Gordon equation on M = R2,

we now wish to seek the most general setup to which the same ideas can carry over.

The (1+1)-dimensional Minkowski spacetime, and the null hypersurface (which was

just a line) considered in the example above, clearly enjoy several favourable local and

global geometric properties. As we will illustrate in this and the next subsection, the

most important ones which allow the arguments to survive generalisation are the global

hyperbolicity of the spacetime and the achronality of N .

Proposition 2.5.7. Let (M, g, t) be a time-oriented Lorentzian manifold, N be an

achronal null hypersurface in M , and S be a subset of N . Define20

S+ := {p ∈ N | ∃ q ∈ S s.t. p = q or p comes after q along the null generator through q}
[resp. define S− by replacing ‘after’ with ‘before’].

(a) It holds that S+ ⊆ N ∩ İ+(S) [resp. S− ⊆ N ∩ İ−(S)].

Suppose in addition that the null generators of N , when reparametrised as null geodesics

entirely contained in N , are future [resp. past] inextendible as geodesics in (M, g, t).

(b) J+(N ) \ I+(N ) = N [resp. J−(N ) \ I−(N ) = N ].

(c) In either case (‘future’ or ‘past’) J+(N ) ∩ J−(N ) = N and therefore J+(A) ∩
J−(A) ⊆ N for any A ⊆ N .

Finally, assume also, in addition to the above, that (M, g, t) is globally hyperbolic.

(d) If S is future [resp. past] causally complete in M then S+ = N ∩ İ+(S) = N ∩
J̇+(S) = N ∩ J+(S) [resp. S− = N ∩ İ−(S) = N ∩ J̇−(S) = N ∩ J−(S)].

(e) With S as in (c), if N is also closed then S+ is closed in M [resp. S− is closed

in M ].

Proof. We illustrate the arguments for (a) in the case of S+ and İ+(S), since the state-

ments involving the corresponding objects with + replaced by − then follow simply by

a change in time orientation. Similarly, we will prove (b), (c), (d) and (e) in the case

where the assumption on N holds with the word ‘future’.

20Recall that, according to our Definition 2.3.3, a null (geodesic) generator of a null hypersurface is
always future-directed and maximally extended.
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The generic inclusion S+ ⊆ N ∩ İ+(S) in (a) follows from the fact that, on the one

hand, S+ ⊆ J+(S) ⊆ I+(S) by construction and, on the other hand, S+ ∩ I+(S) = ∅
because N is achronal and S, S+ ⊆ N . Hence S+ ⊆ N ∩[I+(S)\I+(S)] = N ∩ İ+(S).

Let us now prove (b). Since N is achronal, the inclusion N ⊆ J+(N )\I+(N ) is obvi-

ous and we only need to show that J+(N )\ I+(N ) ⊆ N . So let p, x ∈M be such that

p ∈ N and: (i) there exists a future-directed causal curve γ1 from p to x; (ii) there do

not exist future-directed timelike curves from any point in N – in particular, from p – to

x. Then we want to argue that x ∈ N . By Corollary 2.1.21, γ1 can be reparametrised to

be a smooth null (and achronal) geodesic, so without loss of generality we assume that

it already had that parametrisation. Denote by ν : I → N a reparametrisation, as a

null geodesic with ν(0) = p, of the generator of N through p. Concatenating ν�I∩(−∞,0]

with γ1, we obtain a causal curve γ connecting points in N to x. By construction,

there seems to be the possibility of γ being a broken null geodesic. However, if γ were

not actually everywhere smooth, again by Corollary 2.1.21 there would exist a timelike

curve from any of the points in ν(I ∩ (−∞, 0)) ⊆ N to p, contradicting our assumption

that x /∈ I+(N ). The initial portion of γ is, by construction, a portion of the smooth

null geodesic ν; hence, by geodesic uniqueness this must also be the case for the entirety

of γ�[0,+∞), unless the latter is a proper extension of ν�I∩[0,+∞). But since ν�I∩[0,+∞) is

future inextendible by hypothesis, this cannot be the case. In particular, x belongs to

the image of a generator of N and is therefore in N as we wanted to show. (c) then

follows easily by the achronality of N and again by the general fact that if p ≤ x � q

then p� q:

J+(N ) ∩ J−(N ) =
{
I+(N ) ∩ J−(N )

}︸ ︷︷ ︸
=∅

∪
{

[J+(N ) \ I+(N )] ∩ J−(N )
}

= N .

Let us now turn to (d). One inclusion was already proved in (a), so one only needs to

prove that N ∩ İ+(S) ⊆ S+ under the additional assumption of global hyperbolicity of

(M, g, t) and of future causal completeness of S. By Lemma 2.1.38, in this case J+(S)

is equal to the closure of I+(S), whence İ+(S) = I+(S) \ I+(S) = J+(S) \ I+(S). It

follows that the points in N ∩ İ+(S) are precisely those points on N which cannot be

reached from S by following a future-directed timelike curve, but can be reached from S

by following a future-directed causal curve. That any such causal curve must be a null

geodesic entirely contained in N , and thus that such points must belong to S+, then

follows from an argument analogous to the one used in the above proof of part (b); we

omit the details. That N ∩ İ+(S) = N ∩ J̇+(S) is a result of the fact that, for any

subset V of an arbitrary time-oriented Lorentzian manifold, the interior of J±(V ) equals

I±(V ). Finally, N ∩ J̇+(S) = N ∩ J+(S) in this case follows from the closedness of

J+(S) together with the achronality of N .



Mathematical Background and Preliminaries 83

(e) then follows immediately since İ+(S) is closed.

2.5.4 Main result on the global characteristic initial value problem; solutions

‘falling entirely through’ a null hypersurface; Kay and Wald’s SA and SB

The material in this subsection is the culmination of much of the preparatory work done

in this chapter. We will draw on the discussion and general results from this and the

previous two sections in order to formulate general (and novel in the precise form we will

give) existence and uniqueness results concerning hyperbolic PDEs on manifolds with

initial values posed on suitable characteristic hypersurfaces. Finally, we will specialise

these results to the setting of spacetimes with bifurcate Killing horizons described in

Section 2.2. This will allow us to justify some claims, made without proof in [KW91]

and in the literature referencing that paper, whose validity is essential to the analysis

carried out there.

Let (M, g, t) be a globally hyperbolic Lorentzian manifold, and N be a null hypersurface

whose null generators, when reparametrised as null geodesics entirely contained in N ,

are future and past inextendible in (M, g). We proved in Proposition 2.3.9 that in this

case N admits a cross-section S . In turn, by Theorem 2.3.11 we can find a Gaussian

null coordinate chart (U , (v, u, xA)) for N around the image of any of its null geodesic

generators. Let P be a normally hyperbolic, scalar differential operator of the form in

Equation (2.30). In Corollary 2.3.14, we obtained the form, in the chosen Gaussian null

coordinate system, of the sequence of restrictions to N ∩ U of

Pφ = F for F ∈ C∞(M),

and of all its differential consequences obtained by taking derivatives of all orders with re-

spect to the coordinate vector transverse to N – namely, ∂/∂v in the notation used there

and also adopted in what follows.21 Generalising what we did in the low-dimensional

example covered in Subsection 2.5.2, we now notice that this sequence is actually equiv-

alent to a sequence of linear, first-order, inhomogeneous, ordinary differential equations

smoothly depending on parameters, with coefficients and inhomogeneities determined,

for each n ≥ 1, by X, q, F, φ
(n−1)
v and by smooth functions coming from the geometry

of (M, g). More precisely:

21Albeit not written out explicitly, these are referred to as ‘propagation equations’ in [Ren90].
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• for any given n ≥ 1 and each fixed value of the tuple of xA-coordinates in the

chosen Gaussian null coordinate system, we have a linear, first-order ODE in the

variable u, for the function u 7→ φ
(n)
v (u, xA);22

• the coefficients and inhomogeneities of the resulting families of ODEs, regarded as

being parametrised by (xA), depend smoothly on (xA).

We would like to solve this infinite tower of ODEs depending on parameters recursively,

augmenting it with and starting from the n = 0 case

φ(0)
v = f�U∩N ,

for a given f ∈ C∞(N ). Again as in Subsection 2.5.2, a corresponding sequence of (xA-

parametrised) initial conditions is also needed to single out unique sequences of (xA-

parametrised) solutions. We will restrict attention to two types of initial conditions,

which arise naturally and are related by a change in time orientation of the ambient

Lorentzian manifold. To motivate their definitions, we first observe that, if supp f and

suppF are both causally complete subsets of M as we assume from now on, then we

can pick smooth spacelike Cauchy surfaces C∓ such that supp f ∪ suppF ⊂ I±(C∓),

in which case J±(supp f ∪ suppF ) ⊂ I±(C∓) too. By construction and by the simple

recursive structure of our tower of equations, the following is then true of any sequence(
φ

(n)
v

)∞
n=0

of xA-parametrised solutions when seen as functions on N ∩ U , if we use the

notation introduced in Proposition 2.5.7 but denote (suppF ∩N )± more compactly by

(suppF )±:23

• φ(0)
v = 0 on (N ∩ U) \ supp f ⊇ (N ∩ U) \ [(supp f)± ∪ (suppF )±];

• for any n ≥ 1, if φ
(n−1)
v = 0 on (N ∩ U) \ [(supp f)± ∪ (suppF )±] then the same

is true of φ
(n)
v if it is also the case that φ

(n)
v = 0 on C∓ ∩ (N ∩ U).

We say that the sequence of xA-parametrised initial conditions, given by φ
(n)
v = 0 on

C−∩(N ∩U) for all n ≥ 1, is of type +; similarly, the sequence of xA-parametrised initial

conditions, given by φ
(n)
v = 0 on C + ∩ (N ∩U) for all n ≥ 1, will be referred to as being

of type −. It is clear that any two distinct Cauchy surfaces C−1 , C−2 with the properties

above yield the same sequence of xA-parametrised solutions if initial conditions of type

+ are imposed in both cases; similarly for two distinct C +
1 , C +

2 and initial conditions

of type −. Therefore, the notion just introduced is actually independent of the choice

of Cauchy surface(s); indeed, by virtue of what was noticed above we may characterise

the two types in more succinct and geometrical terms as follows:

22Here we are, of course, using the same notation for the coordinate-invariant object φ
(n)
v ∈ C∞(N ∩U)

and for its coordinate expression in (u, xA)-coordinates.
23Note: with this convention, in general (suppF )± is larger than (supp[F �N ])±.
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(+) φ
(n)
v = 0 on (N ∩ U) \ [(supp f)+ ∪ (suppF )+] for all n ≥ 1;

(−) φ
(n)
v = 0 on (N ∩ U) \ [(supp f)− ∪ (suppF )−] for all n ≥ 1.

Trivially, initial conditions belonging to either type depend smoothly on (xA). Standard

results on the smooth dependence of solutions of ODEs on parameters and initial con-

ditions (see e.g. [CL55, Sec. 1.7])24 then guarantee that, if φ
(n−1)
v is jointly smooth in

u and the xA-parameters, so is φ
(n)
v as determined by the n-th xA-parametrised family

of ODEs together with initial conditions of either type (+) or type (−). Therefore,

corresponding to either type of initial conditions, we obtain:

(+) a sequence
(
φ

(n)
v,+

)∞
n=0

of functions in C∞(N ∩ U) with suppφ
(n)
v,+ contained in the

closure in N ∩ U of U ∩ [(supp f)+ ∪ (suppF )+];

(−) a sequence
(
φ

(n)
v,−
)∞
n=0

of functions in C∞(N ∩ U) with suppφ
(n)
v,− contained in the

closure in N ∩ U of U ∩ [(supp f)− ∪ (suppF )−].

Since either sequence is uniquely determined by the functions F and f (provided their

supports are causally complete), we call it the (F, f)-sequence of transverse derivatives

of type + [resp. −] with respect to the chosen Gaussian null coordinate neighbourhood

U . By Borel’s Lemma, since N ∩ U = {v = 0} is closed in U , we can find a function

φU± ∈ C∞(U) whose sequence of v-derivatives restricted to N ∩U equals the the (F, f)-

sequence of transverse derivatives of type ±. The infinite-order jet j∞φU± of any such

function is uniquely determined, at any point in N ∩ U , by the pair (f, F ) – and

is obtained by differentiating the elements of
(
φ

(n)
v,±
)∞
n=0

in directions tangent to N ,

generalising what was done in (2.38) in Subsection 2.5.2. In particular, we obtain a

continuous section of J∞(M,R) → M along N ∩ U , which admits an extension to a

function in C∞(U).

The procedure just described can be repeated for all members of an open cover {Ui} of

N by Gaussian null coordinate charts, yielding for each i a continuous section Φi,± :

N ∩ Ui → J∞(M ;R) which admits an extension to a function in C∞(N ∩ Ui). The

differential operator P , the and the notion of initial condition of type ±, are defined in

coordinate-independent and geometric terms. It follows that, if i 6= j,

Φi,± = Φj,± on N ∩ Ui ∩ Uj .

Therefore, we can patch together all such sections to obtain a global continuous section

Φ± : N → J∞(M ;R) (2.41)

24These results are only local in the case of non-linear ODEs, but become global if the ODEs are
linear.
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which admits local C∞ extensions. If we now also assume that N is achronal and closed,

by Proposition 2.5.7 part (e), and the global Whitney extension theorem, Theorem 2.5.2,

we can obtain a global C∞ extension of Φ± to an element of C∞(M), i.e. Φ± is a C∞-

Whitney field on N . By construction then, under all the assumptions made so far:

i) supp Φ± ⊆ (supp f)± ∪ (suppF )±;

ii) the ‘zeroth-order part’ of Φ± equals f ;

iii) any smooth extension φapp of Φ± has Pφapp−F vanishing to infinite order on N .

Now, by part (d) of Proposition 2.5.7, under all the assumptions made so far

J̇±(supp f ∪ [suppF ∩N ]) ∩N = (supp f ∪ [suppF ∩N ])± = (supp f)± ∪ (suppF )±.

Unburdening the notation somewhat by denoting the first of the two sets on the leftmost

side by J̇±(f,F ), we can define the following two subsets of M :

X± := J̇±(f,F ) ∩N = (supp f)± ∪ (suppF )±,

Y± := J̇±(f,F ) \X± = J̇±(f,F ) \ [(supp f)± ∪ (suppF )±].

X± and Y± are closed and, since J̇±(f,F ) is closed, X± ∪ Y± = J̇±(f,F ) and we may regard

the closures in the definition of Y± as being taken in J̇±(f,F ) with the relative topology.

Then, denoting the set-theoretic operator of closure in a subset A of M equipped with

the relative topology as clA, and similarly the topological boundary operator in A as

bdA,

X± ∩ Y± = X± ∩ clJ̇±
(f,F )

[
J̇±(f,F ) \X±

]
= clJ̇±

(f,F )
X± ∩ clJ̇±

(f,F )

[
J̇±(f,F ) \X±

]
= bdJ̇±

(f,F )
X± (2.42)

(the fact that N is closed was used in obtaining the second equality). We now put to

use the fact that both N and J̇±(f,F ) are embedded topological submanifolds. This is

also a good time to recapitulate the assumptions made in the course of the discussion

so far.

Lemma 2.5.8. Let (M, g, t) be a globally hyperbolic Lorentzian manifold, and N be

a closed, achronal hypersurface whose null generators, when reparametrised as null

geodesics entirely contained in N , are future [resp. past] inextendible as geodesics in

(M, g). Further, let f ∈ C∞(N ) and F ∈ C∞(M) be such that supp f and suppF are
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causally complete. Then, with X±, Y± defined as above,

X± ∩ Y± ⊆ clN [N \X±] .

Proof. Let dimM = n + 1. By Equation (2.42), we need to show that bdJ̇±
(f,F )

X± ⊆
clN [N \X±]. We proceed by contradiction, assuming instead that we can find p /∈
clN [N \X±] such that p ∈ bdJ̇±

(f,F )
X±. Since p ∈ N \ clN [N \X±] which equals the

interior of X± in N , p belongs to a subset U , open in N , which is entirely contained

in X± and thus also in J̇±(f,F ). Since N has the subspace topology, there exists an open

set U in M such that U = U ∩N . Since N is an embedded hypersurface, without

loss of generality we may assume that there is a homeomorphism

ϕ : U → ϕ(U) open in Rn,

where U has the subspace topology inherited from, equivalently, M , N or J̇±(f,F ). But, by

well-known results [O’N83, Prop. 14.25], J̇±(f,F ) is too an embedded topological (indeed,

actually locally Lipschitz) hypersurface of M . It follows that there is an open set V in

M , containing p, and a homeomorphism

ψ : V ∩ J̇±(f,F ) =: V → ψ(V ) open in Rn,

where V has the subspace topology inherited from, equivalently, M or J̇±(f,F ). Now, since

U ⊆ J̇±(f,F ),

U ∩ V = U ∩ V

and is therefore open in U . It follows that ϕ(U ∩V ) is open in Rn, and the composition

Rn ⊇ ϕ(U ∩ V )
ϕ−1�ϕ(U∩V )−−−−−−−→ U ∩ V ψ�U∩V−−−−→ ψ(U ∩ V ) ⊆ Rn,

where the topology of the set in the middle is the subspace topology inherited from

J̇±(f,F ), is an injective continuous map. By invariance of domain, ψ(U ∩V ) is open in Rn

and this composition is a homeomorphism. This proves that U ∩ V is an open subset of

J̇±(f,F ), entirely contained in X±. Therefore it cannot belong to the boundary bdJ̇±
(f,F )

X±,

and the claim is proved.

The reason why Lemma 2.5.8 is relevant to the discussion that preceded it is that it

allows to formulate a natural ‘gluing problem’ as follows. By Property i) on p. 86

and by the definition of X±, the continuous section Φ± defined in (2.41) has support

contained in X±. Therefore, it vanishes on N \X± and, by continuity, it must actually
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vanish on clN [N \X±]. By Lemma 2.5.8 then,

Φ± = 0 on X± ∩ Y±. (2.43)

We have a natural gluing problem for C∞-Whitney fields on manifolds, generalising

the situation we already encountered in Subsection 2.5.2: Φ±, and the zero section 0Y±

of J∞(M,R) → M along Y±, are C∞-Whitney fields on the closed sets X± and Y±

respectively, and by Equation (2.43) they agree on X± ∩ Y±. Now, around any point in

J̇±(f,F ) we can find a diffeomorphism from an open set W in M – which has dimension

n+1 – to an open set in Ω′×R where Ω′ ⊆ Rn is open, such that the image ofW∩ J̇±(f,F )

under this diffeomorphism is the graph Γ(θ′) of a Lipschitz function θ′ : Ω′ → R. Then,

Lemma 2.5.6 may be applied around any point inX±∩Y± with the following assignments:

Ω is the graph projection of Γ(θ′) \ X̃±, where X̃± denotes the diffeomorphic image of

W ∩X±; θ : Ω→ R is θ′�Ω; the set S is Γ(θ′�Ω′\Ω) = X̃±. Globalising, we have proven:

Proposition 2.5.9. Under the same assumptions as in Lemma 2.5.8, X± and Y± are

simply separated. There exists a C∞-Whitney field Φ±(f,F ) on X± ∪ Y± = J̇±(f,F ) which

equals Φ± on X± and zero on Y±, and therefore there exists a function φ±app ∈ C∞(M)

whose Whitney data on J̇±(f,F ) is the one given by Φ±(f,F ).

We have terminated all the hard work needed to generalise the procedure described in

2.5.2.1. The remainder of the construction carries through in the same way, and as

in 2.5.2.1 we specialise to the homogeneous case F ≡ 0, so that J̇±(f,F ) = J̇±(supp f).

Namely, let φ±app be as in Proposition 2.5.9. Then:

• Pφ±app vanishes to infinite order on J̇±(supp f) by construction, so χJ±(supp f) ·
Pφ±app is smooth and has support in J±(supp f) which is past/future compact.

• E±[χJ±(supp f) ·Pφ±app] is smooth and has support still in J±(supp f). In particular,

it vanishes to infinite order on J̇±(supp f).

• φ±f := φ±app −E±[χJ±(supp f) · Pφ±app] is smooth on M , equals f on N , vanishes to

infinite order on J̇±(supp f) \N , and

Pφ±f = Pφ±app − χJ±(supp f) · Pφ±app = 0 on J±(supp f).

Now consider the function φf : M → R defined as follows:

φf (x) =


φ+
f (x) if x ∈ J+(supp f)

φ−f (x) if x ∈ J−(supp f)

0 if x /∈ J(supp f) = J+(supp f) ∪ J−(supp f).

(2.44)
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Part (c) of Proposition 2.5.7 guarantees that this is well-defined, since both φ+
f and

φ−f equal f on N . Together with the fact that φ±f vanishes (to infinite order) on

J̇±(supp f) \N , this guarantees that φf is globally continuous. However, it may fail to

be globally C2 and therefore it may not be a classical solution in general.

There remain at least three natural questions about our construction so far:

Q1 Is φf thus constructed at least a solution in a weak sense of the equation Pφf = 0?

Q2 Given f , is φf unique in some natural sense? Clearly, the auxiliary functions φ±app

used in constructing φf were not uniquely determined.

Q3 If Q2 can be answered in the affirmative, is the resulting (well-defined) assignment

f 7→ φf linear?

Q4 Is the assignment f 7→ φf continuous in some natural choice of function spaces

and topologies?

We will not touch on Q4 in this work, but we now proceed to address the other questions.

Answering Q1: Distributional solution property

Recall (see also Appendix C) that we can view (real-valued) functions on M which are

locally integrable with respect to the measure defined by dµg as distributions in a natural

way: if φ is such a function then the assignment

C∞0 (M) 3 ψ 7→
∫
M
φψ dµg

defines a (real) distribution.

Definition 2.5.10. Let (M, g, τ) be a time-oriented Lorentzian manifold, and P be a

normally hyperbolic differential operator with smooth coefficients acting on real-valued

functions, i.e. an operator of the form given in Equation (2.30). Given a closed null

hypersurface N and f ∈ C∞(N ), we will refer to a continuous function τ on M with

the following properties:

(a) τ is a distributional solution of P ,

(b) τ�N = f ,

(c) supp τ ⊆ I(supp f) := I+(supp f) ∪ I−(supp f),

as a solution which falls entirely through N with data f .
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With these definitions in place, Q1 is the question of whether or not φf as defined in

Equation (2.44) is a solution falling entirely through N with data f . The following

simple resolution was suggested to us by A. Strohmaier. It is based on a well-known

divergence identity, proved e.g. in [BGP07, Lem. 3.2.1] in greater generality, and which

we will also use in answering Q2.

Proposition 2.5.11. Let (M,g) be a Lorentzian manifold, and P be an operator of the

form given in Equation (2.30). Then, for every u, v ∈ C2(M),

uPv − [P ∗u]v = −div (j[u, v]) (2.45)

where j[u, v] is a C1 vector field uniquely defined by

g(j[u, v], Z) = [∇Zu]v − u[∇Zv] ∀ Z ∈ X(M),

i.e., in abstract index notation, by j[u, v]a = [∇au]v − u[∇av].

We now need to couple Proposition 2.5.11 with a version of the divergence theorem

[also known as the Gauss–Green(–Ostrogradsky) theorem] of differential calculus which

is sufficiently general for our purposes. A well-known elementary version in the context

of oriented Riemannian manifolds with smooth boundary is usually obtained from Stokes

Theorem, which states that ∫
M

dω =

∫
∂M

ω (2.46)

if ω is a differential form of degree equal to dimM − 1, sufficiently regular (say, C1) and

with compact support on M . In the case of Lorentzian manifolds with smooth boundary

it is often explained how to use Equation (2.46) to again obtain a simple version of the

divergence theorem which applies whenever ∂M is everywhere non-degenerate for the

metric g – that is, whenever ∂M is everywhere either spacelike or timelike.

We will however require a generalisation of the divergence theorem which accommodates

for both the possibility that the boundary of the integration region may be rougher than

C∞ or even than C1, and for the fact that portions of it may be null. Not requiring

orientability of the manifold would also be a bonus. We now briefly discuss how such a

generalisation can be extracted from the existing literature.

The discipline of geometric measure theory [Whi57, Fed69, Har93] allows to extend tools

from the classical differential geometry of smooth manifolds to a larger class of geometric

objects that are not necessarily smooth, in such a way that integration on these objects

retains a geometric significance. In particular, it allows for far-reaching and natural

generalisations of precisely the sort of theorems of differential calculus which we are now

discussing – such as Stokes’ Theorem and the divergence theorem. We will in fact not
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need anywhere near the full power of the results in modern geometric measure theory

here, but it is good to bear in mind that they are there, should one desire to further

sharpen the procedure we are outlining. We first recall how the divergence theorem can

be obtained independently of Stokes’ theorem, since it is really a statement involving

densities and not forms. In particular, no orientability assumptions are needed. We

follow [LS90, Secs. 10.5 & 10.6].

Namely, let M be a smooth manifold, with or without boundary, ρ be a smooth section

of the bundle |ΛM | → M of (n+1) densities on M , and Υ be a C1 vector field on M .

Then we may define the divergence of Υ relative to ρ to be the density

divρΥ = £Υρ

where £ denotes the Lie derivative. Now, in the case in which ∂M = ∅ we wish to define

a special class of domains in M .

Definition 2.5.12. If M is a smooth manifold of dimension n + 1 without boundary, an

open set D ⊆ M is called a domain with regular boundary in M if, for every p ∈ M ,

there is a chart (U,ϕ) about p such that one of the following three possibilities holds:

i) U ∩D = ∅;

ii) U ⊆ D;

iii) ϕ(U ∩D) = ϕ(U) ∩
{

(y0, . . . , yn) ∈ Rn+1
∣∣ yn > 0

}
.

If D is a domain with regular boundary, then as discussed in [LS90, p. 420], we may

give the topological boundary Ḋ of D the structure of a smooth manifold of dimension

n which is in particular an embedded hypersurface in the ambient manifold M . Now,

given any point p ∈ Ḋ, a vector ξ ∈ TpM \ TpḊ has the property that any differentiable

curve c : I →M with ċ(0) = ξ is either entirely contained in D or entirely contained in

M \D for sufficiently small positive t. In the first [resp. second] case, we say that ξ is

inward [resp. outward ] pointing with respect to D, or that it points towards [resp. away

from] D.

The final ingredient before we are able to state a preliminary version of the divergence

theorem comes from the following observation: let i be the embedding Ḋ → M . Then

the pointwise interior product of Υ with ρ at each point p ∈ Ḋ, defined by

ιΥρ(X0, . . . , Xn) = ρ(Tpi(X0), . . . , Tpi(Xn),Υ(p)) ∀ X0, . . . , Xn ∈ TpḊ, (2.47)

just as in the case of differential forms, defines a smooth density on Ḋ. We are now

ready to state the classical divergence theorem for densities, Theorem 6.1 in [LS90].
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Theorem 2.5.13. Let M be a smooth manifold (without boundary), Υ be a C1 vector field

with compact support on M and D be a domain with regular boundary in M . Defining

the function εΥ on Ḋ by

εΥ(x) =


1 if Υ(x) points away from D

−1 if Υ(x) points away from D

0 if Υ(x) is tangent to Ḋ

Then ∫
D

divρΥ =

∫
D

divρΥ =

∫
Ḋ
εΥ · ιΥρ.

Now, if (M, g) is a semi-Riemannian manifold, ∇ is the Levi-Civita connection associated

to g, and dµg is the volume density arising from g, it is standard that

divdµgΥ = div Υ dµg = Tr(∇Υ) dµg = (∇aΥa) dµg,

so that by Theorem 2.5.13 we have∫
D

div Υ dµg =

∫
Ḋ
εΥ · ιΥdµg. (2.48)

The important observation at this point is that although we stated Theorem 2.5.13 for

domains with regular boundary in the sense of Definition 2.5.12, this is an unnecessary

restriction. Indeed, the fact that Theorem 2.5.13 extends in a natural way to domains

with much rougher boundaries – and to vector fields of regularity lower than C1 – is one

of the great achievements of geometric measure theory. We will not attempt to lower

the regularity of our vector fields here.25 However, as shown in Appendix I in [Tay06]

(see also [EG15, Thm. 5.16]), Theorem 2.5.13 holds almost verbatim if D is merely an

open domain whose topological boundary can be locally represented as the graph of a

Lipschitz function – in other words, if Ḋ is an embedded locally Lipschitz hypersurface

in M . In that case, the integrand εΥ · ιΥρ is not defined everywhere on Ḋ, but is still

defined almost everywhere on Ḋ since, by Rademacher’s theorem on Lipschitz functions

(see p. 29), Ḋ has a tangent space at almost all of its points.

We now make some further pointwise considerations on the integrand εΥ · ιΥdµg in

Equation (2.48). Locally around any point p ∈ Ḋ (at which Ḋ is differentiable), M

is orientable and the metric volume density dµg and metric volume form volg – both

25In [BW15], for instance, a version of the divergence theorem involving vector fields which were
merely in the Sobolev space H1 – and for boundaries which were locally Lipschitz – was needed. Then,
the integrand in the integral over Ḋ is intended in the sense of the trace theorem for Sobolev spaces (see
e.g. [Alt16, A8.8] or [Tie15, Thm. 1.7.2]).
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restricted to a suitable open set around p – are related at p by dµg = |volg|, no matter

what local choice of orientation is made. It follows that, at any p ∈ Ḋ, ιΥdµg defined in

Equation (2.47), and the more customary interior product ιΥvolg, are related by

ιΥdµg = |i∗[ιΥvolg]|. (2.49)

Now, let 0 6= m ∈ T ∗pM be a (co)normal to Ḋ at p, i.e. a covector such that m(TpḊ) =

{0}.26 The relation

m ∧ σ = volg (2.50)

can be inverted to obtain a uniquely defined n-covector σ at p (where n = dimM − 1).

We calculate, using the fact that the interior product for forms is a derivation, and the

fact that i∗m = 0 for any conormal:

i∗[ιΥvolg] = i∗[ιΥ(m ∧ σ)] = i∗[(ιΥm) ∧ σ + (−1)degmm ∧ (ιΥσ)]

= m(Υ)i∗σ − i∗m ∧ i∗(ιΥσ)

= m(Υ)i∗σ at p. (2.51)

Now suppose that, at a differentiability point p of TpḊ, the tangent space TpḊ is null

with respect to the Lorentzian metric g. This means that, for any choice of conormal m

at p, the vector m] ∈ TpM obtained by index raising is null and belongs to TpḊ. Let Υ

be the vector field j[u, v] defined in Proposition 2.5.11. Then

m(Υ) = [∇m]u]v − u[∇m]v] (2.52)

and, by Equations (2.49) and (2.51),

εΥ · ιΥdµg = εΥ ·
∣∣[∇m]u]v − u[∇m]v]

∣∣ · |i∗σ| (2.53)

for any conormal m at p if σ is given by Equation (2.50). We are now ready to give our

resolution to Q1.

Theorem 2.5.14. Let φf be defined as in Equation (2.44). Then Pφf = 0 distributionally,

and thus φf is a solution which falls entirely through N .

Proof. We need to check that φf [P ∗ψ] = 0 for all ψ ∈ C∞0 (M). To unburden the

notation, we denote the smooth functions φ+
f and φ−f in Equation (2.44) simply by φ+

26We may say that m is inward pointing if m(Y ) > 0 for all vectors Y ∈ TpM \TpḊ which are inward
pointing with respect to D, and outward pointing if m(Y ) < 0 for all such vectors. But this distinction
will not be needed here.
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and φ− (respectively). Since suppφf ⊆ J+(supp f) ∪ J−(supp f), we have

φf [P ∗ψ] =

∫
M
φfP

∗ψ dµg =

∫
J+(supp f)

φfP
∗ψ dµg +

∫
J−(supp f)

φfP
∗ψ dµg

=

∫
I+(supp f)

φ+P ∗ψ dµg +

∫
I−(supp f)

φ−P ∗ψ dµg.

We may use Proposition 2.5.11 to convert the integrands in the last line to

{
[Pφ±]ψ + div(j[ψ, φ±])

}
dµg.

But on I±(supp f), Pφ± = 0. We are left with

φf [P ∗ψ] =
∑
±

∫
I±(supp f)

div(j[ψ, φ±]) dµg.

Since ψ ∈ C∞0 (M) and φ± ∈ C∞(M), the vector field Υ := j[ψ, φ±] is actually smooth

and compactly supported on M . Furthermore, I±(supp f) is open in M and, as we al-

ready discussed, İ±(supp f) = J̇±(supp f) is an embedded locally Lipschitz hypersurface

in M . We may thus apply the divergence theorem to each integral and obtain

φf [P ∗ψ] =
∑
±

∫
J̇±(supp f)

ε±
j[ψ,φ±]

· ιj[ψ,φ±]dµg.

But since φ± vanishes to infinite order on J̇±(supp f) \N , we have in fact

φf [P ∗ψ] =
∑
±

∫
J̇±(supp f)∩N

ε±
j[ψ,φ±]

· ιj[ψ,φ±]dµg =
∑
±

∫
(supp f)±

ε±
j[ψ,φ±]

· ιj[ψ,φ±]dµg.

(2.54)

The first crucial observation is now that, whenever p belongs to (supp f)+ [resp.

(supp f)−] and is a point at which J̇+(supp f) [resp. J̇−(supp f)] is differentiable, then

TpJ̇
+(supp f) = TpN [resp. TpJ̇

−(supp f) = TpN ] when both are regarded as sub-

spaces of TpM . Therefore, by the discussion preceding the statement of this theorem,

for any covector m ∈ T ∗pM which is (co)normal to J̇+(supp f) [resp. J̇−(supp f)] at p,

m] ∈ TpN and

m
(
j[ψ, φ±]

)
= [∇m]ψ]φ± − ψ[∇m]φ±] = [∇m]ψ]f − ψm](f), (2.55)

the last equality following from the fact that both φ+ and φ− are identically equal to f on

N , by construction. In particular, this quantity vanishes outside supp f and Equation

(2.54) becomes

φf [P ∗ψ] =
∑
±

∫
supp f

ε±
j[ψ,φ±]

· ιj[ψ,φ±]dµg,

where the integrand on the right-hand side is defined almost everywhere. The second
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observation is that, whenever p belongs to (supp f)+ ∩ (supp f)− ⊇ supp f , then any

vector in TpM which is outward pointing with respect to I+(supp f) is inward pointing

with respect to I−(supp f) (and vice-versa). Let m now be a field of covectors defined

at each point of supp f and everywhere normal to N – but otherwise unrestricted and

in particular not necessarily continuous. Define the corresponding field of n-covectors σ

by demanding that Equation (2.50) be satisfied at each point, i.e. that

m(p) ∧ σ(p) = volg(p) ∀ p ∈ supp f.

Then, by Equation (2.53), if i± is the embedding of J̇±(supp f) into M ,

φf [P ∗ψ] =
∑
±

∫
supp f

ε±
j[ψ,φ±]

·
∣∣[∇m]u]v − u[∇m]v]

∣∣ · |(i±)∗σ|.

But clearly, when viewed as forms on tangent spaces to N , (i+)∗σ and (i−)∗σ are

equal. Therefore, we can prove that φf [P ∗ψ] = Pφf [ψ] = 0 if we can argue that

ε+
j[ψ,φ+]

= −ε−
j[ψ,φ−]

on supp f . But this follows from Equation (2.55), which implies that

m(p)(j[ψ, φ+]) = m(p)(j[ψ, φ−]);

this, in turn, readily implies that if j[ψ, φ+] is tangent to TpJ̇
+(supp f) then j[ψ, φ−] is

tangent to TpJ̇
−(supp f), and that if j[ψ, φ+] is inward pointing relative to I+(supp f)

then j[ψ, φ−] is outward pointing relative to I−(supp f) (and vice-versa). But this

is precisely the statement that ε+
j[ψ,φ+]

= −ε−
j[ψ,φ−]

. This concludes the proof of the

theorem.

Answering Q2 & Q3: Uniqueness and Linear Dependence

Equation (2.55) is also at the heart of the argument for uniqueness, which is very simple,

provided we are more precise as to what exactly we mean by ‘uniqueness’. The following

Lemma will show us the way. In fact, a stronger version of the Lemma below was proved

as Theorem 23 in [BW15] for functions with lower regularity than we will prescribe, but

we do not go into the details of such a strengthening in the interest of keeping the

discussion concise.

Lemma 2.5.15. Let (M, g, t) be a time-oriented and globally hyperbolic Lorentzian man-

ifold. Let N be a closed, achronal and null hypersurface whose null generators, when

reparametrised as null geodesics entirely contained in N , are future and past inextendible

in (M, g). Let P be a differential operator of the form given in Equation (2.30). Let S

be a future [resp. past] causally complete subset of N , and ζ be a continuous real-valued

function with the following properties:
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• ζ is C2 on I+(S) [resp. on I−(S)];

• ζ�I+(S) [resp. ζ�I−(S)] can be extended to a function ζ+ [resp. ζ−] defined and C2

in a neighbourhood of J+(S) [resp. J−(S)];

• ζ+ [resp. ζ−] vanishes to first order on J̇+(S) \N [resp. J̇−(S) \N ];

• Pζ = 0 on I+(S) [resp. on I−(S)];

• ζ�J̇+(S) = 0 [resp. ζ�J̇−(S) = 0].

Then, ζ = 0 on J+(S) [resp. on J−(S)].

Proof. Viewing ζ as a distribution, and considering the case in which S is future causally

complete, we need to show that
∫
M ζψ dµg = 0 for all test functions ψ ∈ C∞0 (M) with

suppψ ⊆ J+(S). For such test functions, actually∫
M
ζψ dµg =

∫
J+(S)

ζ+ψ dµg

where ζ+ is the extension assumed to exist in the statement of the Lemma. Now, the

adjoint operator P ∗ is also normally hyperbolic on M , and thus admits causal Green

operators which we will denote by G±, while E± will denote the causal Green operators

for P . Therefore, for such a test function ψ, and using Proposition 2.5.11,∫
M
ζ+ψ dµg =

∫
J+(S)

ζ+P ∗G−ψ dµg =

∫
J+(S)

{
[G−ψ]Pζ+ + div(j[G−ψ, ζ+])

}
dµg

=

∫
J+(S)

div(j[G−ψ, ζ+]) dµg.

As was done in the proof of Theorem 2.5.14, we use the divergence theorem – which can

be done since G−ψ and ζ+ may be ‘cut off’ outside J+(S) in such a way that (using the

same letters to denote the result of this cutting off) supp j[G−ψ, ζ+] is compact – and

re-express the integrand of the resulting integral over J̇+(S) pointwise using an analog

of Equation (2.55). Since ζ+ vanishes to first order on J̇+(S) \N and it is C2, it does

so also on the closure of this set and we need only worry about the contribution coming

from J̇+(S)\ J̇+(S) \N , which is an open subset of J̇+(S) contained in N . But, in this

portion, the tangent spaces to J̇+(S) are null, and thus contain their normal vectors,

almost everywhere. Since ζ+ vanishes identically on J̇+(S), so too do its directional

derivatives in directions tangent to J̇+(S) (when the latter are available), in particular

on this portion. It follows that the boundary integrand vanishes pointwise on this

portion, and we have proved that ζ vanishes as a distribution on J+(S).

Remark. There is a sense that we could have asked less of ζ± in the hypotheses of Lemma

2.5.15, while still being able to draw the same conclusion. In particular, although we
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have not attempted to prove this, one might expect that, with S ⊆ N future [resp.

past] causally complete, J̇+(S) [resp. J̇−(S)] should have null tangent spaces whenever

they exist – i.e. it should be a characteristic locally Lipschitz hypersurface for P . If that

were the case, then assuming that ζ+ [resp. ζ−] vanishes everywhere on J̇+(S) [resp. on

J̇−(S)] would be sufficient without the additional assumption, which we have made in

the statement of the lemma to keep ourselves on the side of care, that it does so also

to first order on J̇+(S) \N [resp. on J̇−(S) \N ]. It is often stated without proof that

(specialising w.l.o.g to the ‘future’ case), in the case of a singleton S = {p}, J̇+(S) does

have the property we seek, but we are not aware of a location in the literature where

this is proven carefully. While it is obviously true that through any point in J+(p) \ {p}
there is a null geodesic γ : I →M with γ

( ◦
I
)
⊆ J̇+(p) \ {p}, this in itself is not sufficient

to prove that any tangent space to J̇+(p) \ {p} must be null – indeed, one may regard

several timelike hypersurfaces as being ‘ruled’ by null geodesics in a similar fashion! The

other assumption which must be used is the achronality of J̇+(p) \ {p}. If we knew that

J̇+(p)\{p} is C1, we could (as is done in [Kup87, Thm. 1]) prove that any tangent space

to it cannot contain timelike vectors – and thus really must be null – by arguing that

any C1 curve contained in J̇+(p) \ {p}, with an initial timelike tangent vector, would

have derivatives which, by continuity, would have to remain initially timelike. And this

would contradict the achronality of J̇+(p) \ {p}. But if we only knew that J̇+(p) \ {p} is

locally Lipschitz then we would run into difficulties. We could easily construct a locally

Lipschitz curve starting at a point of differentiability of J̇+(p) \ {p}, entirely contained

in J̇+(p) \ {p} and with initially timelike tangent vector in the sense of Rademacher’s

theorem. But it would not be immediately guaranteed that the derivatives would vary

continuously on their dense subset of definition (in the subspace topology inherited

from the interval of definition of the curve) at the initial point. It seems to us that

one has to dig into the finer differentiability properties of J̇+(p). We now sketch our

proposed resolution for the interested reader: J̇+(p) \ {p} is a locally achronal, closed,

past null geodesically ruled topological hypersurface in M .27 Now, Chrus̀ciel et al. have

shown ([CDGH01, Thm. 2.2], but we refer also to [Min15a]) that any such subsets are

better than just locally Lipschitz – they are semi-convex. This property implies that

they are almost everywhere twice-differentiable in the ‘Alexandrov’ sense (see [CDGH01,

Prop. 2.1]) – and they are so on the same set of full measure on which they are once-

differentiable. It seems to us that this would yield the desired continuity property of the

almost-everywhere–defined derivatives of our curve above, and the same argument as in

the C1 case would then carry through. If this strategy works in the case of a point, we

believe that it will also work for a more general future causally complete subset S ⊆ N .

We will leave the careful verification of these claims to future work. For a related result,

see also [Chr98].

27We are grateful to E. Minguzzi for clarifying a point to this effect made tacitly in [CGM16].
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We are now ready for our uniqueness theorem, which follows immediately from the

previous lemma and which could also be easily strengthened using Sobolev spaces as is

done in [BW15].

Theorem 2.5.16. Let (M, g, t) be a time-oriented and globally hyperbolic Lorentzian man-

ifold. Let N be a closed, achronal and null hypersurface whose null generators, when

reparametrised as null geodesics entirely contained in N , are future and past inextendible

in (M, g). Let P be a differential operator of the form given in Equation (2.30). Finally,

let f ∈ C∞(N ) have causally complete support. Then, the corresponding solution φf

falling entirely through N with data f , given by Equation (2.44), is unique among all

real-valued functions φ on M with the following properties:

• φ is C2 on I+(supp f) ∪ I−(supp f);

• φ�I±(supp f) can be extended to a function defined and C2 in a neighbourhood of

J±(supp f);

• Pφ = 0 on I+(supp f) ∪ I−(supp f);

• φ�N = f ;

• suppφ ⊆ J(supp f).

With the hypotheses and notation of Theorem 2.5.16, let

SN := {φf | f ∈ C∞(N ) and supp f is causally complete} ⊆ C0(M) ∩ kerP. (2.56)

We can use our uniqueness result, which shows that the assignment

C∞(N )→ C0(M) ∩ kerP, given by f 7→ φf ,

is well-defined (i.e. independent of all choices made in defining φf ), to also argue that

this assignment is linear, and hence that SN is a linear subspace of C0(M)∩kerP . This

will answer Q3 in the affirmative.

Proposition 2.5.17. Under the hypotheses of Theorem 2.5.16, for any α, β ∈ R and any

two f1, f2 ∈ C∞(N ) with causally compact support,

φαf1+βf2 = αφf1 + βφf2 .

Proof. With f := αφf1 + βφf2 , clearly both φf and αφf1 + βφf2 restrict to f on N .

αφf1 + βφf2 has support contained in J(supp f1) ∪ J(supp f2) = J(supp f1 ∪ supp f2).

On the other hand, supp f ⊆ supp f1 ∪ supp f2 and thus suppφf ⊆ J(supp f1 ∪ supp f2).
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Therefore, φf and αφf1 + βφf2 must be equal by uniqueness in the sense of Theorem

2.5.16.

2.5.5 Bifurcate Killing horizons and spaces of solutions SA and SB

Our original motivation for the work done in Section 2.3 and in this section, which

eventually culminated in the general existence and uniqueness theorems just proved for

characteristic initial value problems on globally hyperbolic manifolds, was to put on more

rigorous grounds some claims and constructions made without proof by the authors of

[KW91].

In the presence of a bifurcate Killing horizon structure, we saw in Section 2.2 that two

null, closed and achronal hypersurfaces naturally arise, namely the two ‘horizons’ de-

noted by HA and HB there and in [KW91]. We also showed in detail how the assumed

completeness of the Killing field translated into the property that both HA and HB con-

tain all their maximally extended null generators. It follows that, if M = (M, g, t, o, ξ)

is a spacetime with a bifurcate Killing horizon in the sense of Definition 2.2.11, then

(M, g, t), together with either HA or HB, satisfy all of the hypotheses of our existence

and uniqueness theorems concerning characteristic initial value problems for (scalar)

normally hyperbolic differential operators, i.e. all of the hypotheses listed in Theorem

2.5.16. Therefore, we may define spaces

SHA , SHB ⊆ C0(M) ∩ kerP

of distributional solutions, falling entirely through HA and HB respectively, according to

Equation (2.56). If f in Equation (2.56) is further restricted to have compact support,

then we obtain further linear subspaces which we denote by SA and SB. It is precisely

the existence of these subspaces (and the fact that they indeed consist of distributional

solutions!) that the authors of [KW91] claimed without proof. But our analysis in this

section has remedied the problem. Therefore, the discussion on this point in [KW91]

does not require any modification. This is unlike some other problematic aspects of the

analysis in [KW91] which we will analyse in detail in Chapter 4.

2.6 Summary

The first four sections in this chapter introduced mathematical background on, broadly

speaking, the following topics: general Lorentzian geometry; the theory of spacetimes

with a bifurcate Killing horizon; the geometry of null hypersurfaces and the existence

of useful coordinate systems adapted to them (the ‘Gaussian null coordinate systems’



Mathematical Background and Preliminaries 100

of Theorem 2.3.11); the well-established theory of wave-like equations on globally hy-

perbolic Lorentzian manifolds. Sections 2.1 and 2.4 contained no original work. On the

other hand, some technical gaps were filled in the available treatments of the topic dealt

with in Section 2.2. In particular, we faced head-on the problem of determining under

what conditions the two ‘horizons’, naturally arising if a Killing horizon is present which

vanishes on a spacelike submanifold of a given spacetime, are well-behaved hypersur-

faces of the spacetime. To the best of our knowledge, detailed proofs as some of the ones

given in that section were not previously available. As an aside, we presented a new

proof of the constancy of the ‘surface gravity’ of a bifurcate Killing horizon (Theorem

2.2.7). Section 2.3 was heavily based, in the first instance, on work of Kupeli [Kup87],

with a minor addition being given by Proposition 2.3.9. We then reviewed the Gaussian

null coordinate systems which are vastly used when dealing with null hypersurfaces. In

doing so, we aimed to obtain an existence result which were as sharp as possible. This

was because such a result would then be of crucial importance in the arguments given

in Section 2.5.

Section 2.5 contains mostly original work, which was however heavily inspired by work

carried out by Rendall in [Ren90]. We expect that our final global existence and unique-

ness results, summarised in Theorem 2.5.16, can in fact also be obtained by different

methods – for example, by globalising some of the results in [Fri75], or by using ap-

proaches closer in spirit to the ones adopted in [MzH90] or in [Hör90b]. From the point

of view of the interplay with the rest of the work in this thesis, the general results in

Section 2.5, when specialised to the context of spacetimes with a bifurcate Killing hori-

zon, allowed us to fully vindicate some important claims made without proof in [KW91].

Since these claims were among the essential ingredients of the entire analysis carried out

there, and since our work in Chapters 3 and 4 will build on parts of that analysis, it was

important to reassure ourselves that these specific claims held true.



Chapter 3

Quantum no-go results

3.1 Introduction

Thanks to a number of results obtained in the 1990’s, it is known that (leaving aside some

technicalities) if one quantizes a linear scalar field on a globally hyperbolic spacetime

with a one-parameter group of isometries possessing a bifurcate Killing horizon, then

there is at most one1 state which is invariant under those isometries and which is (locally)

Hadamard.2 Furthermore, for some notable cases, such as Kerr and Schwarzschild–de

Sitter, it was proved in [KW91] that there is no such state.3 For Kerr, this was a

consequence of superradiance; for Schwarzschild–de Sitter, one argument for the no-go

result was based on the fact that, should such a state exist, the Hawking temperatures

associated with the black hole horizon and the cosmological horizon would be different.

Another argument relied on what, in quantum information theory, is now known as

monogamy (although this notion had not yet been coined at the time).

1In fact, such a uniqueness result was proven in [KW91] under the restriction that the state in question
be quasi-free (with vanishing one-point function) [KW91, Haa96, BR97] and with the local Hadamard
condition replaced by a certain global Hadamard condition (see next footnote). However, in [Kay93] a
general result was obtained which enabled one to drop the quasi-free restriction while, as conjectured
in [Kay88, GK89] and proved in [RV96, Rad96, Rad92] on any globally hyperbolic spacetime, locally
Hadamard states are necessarily globally Hadamard. See also Footnote 19 and Chapter 4.

2A (locally or globally) Hadamard state for a linear quantum field theory is a state whose two-point
function has the (local or global) Hadamard property – local Hadamard meaning roughly that its short
distance singularity should be the appropriate generalisation to a curved spacetime of the short-distance
singularity of the two-point function of the vacuum state and of other physically relevant states in
Minkowski space, while the global Hadamard condition on a globally hyperbolic spacetime also rules out
the possibility of singularities for spacelike separated pairs of points. For full definitions, see e.g. [KW91]
or the recent review [KM14]. See also the important microlocal reformulation of the global Hadamard
condition in [Rad96] and see [Mor03] for spacetime dimensions other than 1 + 3.

3We remark that, as pointed out in [KW91], to prove such a no-go result, it suffices to prove that
there is no such quasi-free state, since if there was such a state at all, the quasi-free state with the same
two-point function (and zero one-point function) – i.e. the ‘liberation’ in the sense of [Kay93] – would
also be such a state.

101
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Figure 3.1: This is a dual purpose figure. In one interpretation, it represents the
Kruskal spacetime bounded by a single box in the right wedge (region I) at r = R
(with r the Schwarzschild coordinate and each point representing a two-sphere). In
another interpretation, it represents (1+n)-dimensional Minkowski space to the left of
a hypersurface (referred to in the text as a ‘mirror’) at some constant Rindler spatial
coordinate r in the right Rindler wedge (in this case each point represents an (n-1)-
plane). The dotted lines are only relevant to the Kruskal interpretation, in which case
they portray the future and past singularities at r = 0.

In this chapter we conjecture, and give heuristic arguments for, a further such non-

existence result which concerns a massless or massive linear scalar field on a spacetime

which one might think would represent a spherically symmetric maximally extended

black hole in equilibrium in a spherical box. Namely, the region of the Kruskal spacetime

to the left of a stationary hypersurface at some fixed value R of the Schwarzschild radial

coordinate r, represented by the hyperbola in Figure 3.1 (where, as usual, each point

represents a two-sphere).4 I.e. we argue that, completing the specification of the system

by imposing (say) Dirichlet boundary conditions at the box, there is no Schwarzschild-

isometry invariant Hadamard state on this spacetime (when the notion of ‘Hadamard’,

usually applied to globally-hyperbolic spacetimes, is suitably adapted to the presence of

a timelike boundary).

The basic plausible expectations about the space of classical solutions, from which we

will argue for this no-go conjecture in the next section, are that, on the one hand,

(a) the reflection at the box in the right wedge will cause solutions which ‘fall entirely

through’ (see Section 3.2) the right A-horizon (HRA in the Penrose diagram, Figure

3.2) to coincide with solutions which ‘fall entirely through’ the right B-horizon

(HRB in Figure 3.2).

4Our no-go conjecture for Kruskal in a box applies equally to the part of the globally-hyperbolic
region of non-extremal Reissner-Nordström spacetime to the left of a similar stationary hypersurface at
fixed Schwarzschild radial coordinate r but, for simplicity we shall only refer to the Kruskal case in the
main text.
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Figure 3.2: Penrose diagram for the region of the Kruskal spacetime bounded by a
single box, cf. Figure 3.1. C is an initial-value surface on which the Cauchy-Dirichlet
problem for the Klein–Gordon equation is well-posed. The shaded area represents the
support of the solution φ discussed in Sections 3.1 and 3.2.

On the other hand,

(b) there exist solutions (one such suffices for our argument) which are non-vanishing

on the left B-horizon but which vanish on the entire A-horizon.

The plausibility of Property (b) is particularly easy to see for the massless case since,

in fact, any solution, φ, with non-zero Cauchy data on I − (see the Penrose diagram,

Figure 3.2) and zero Cauchy data on HA would be expected to have a non-zero value on

HB expressing the fact that not all the solution would be reflected back out to infinity,

but rather, some of it will fall through HLB into the black hole. (Whether or not this

property holds obviously doesn’t depend on whether or not the spacetime is cut off at a

box-wall in the right wedge.) For massless and massive fields, one can rely, instead, e.g.

on the existence of wave operators, Ω±0 and Ω±1
5 for the scattering theory on exterior

Schwarzschild demonstrated in [DK87, DK86] together with the expectation that the

S-matrix component (Ω+
1 )∗Ω−0 will not be zero. In fact this is now rigorously established

in the massless case in Theorem 10 of [DRSR14].6

We remark that if there is also an image box in the left wedge (located at the wedge-

reflected set of spacetime points to those occupied by the right-wedge box – below we

shall refer to this as the case of two boxes) we expect that there will exist an isometry-

invariant Hadamard state on the region between the two boxes. Indeed, we expect the

5Ω±0 maps solutions of the Klein–Gordon equation on Minkowski space into solutions on exterior
Schwarzschild (identified here with our Kruskal left wedge) which resemble them at late/early times
and Ω±1 maps solutions of the massless ‘wave equation’ in 1+1 Minkowski space times the bifurcation
2-sphere into solutions on exterior Schwarzschild and (as explained in [DK87]) effectively solves the
characteristic initial-value problem for data on the future/past horizon.

6We thank Mihalis Dafermos for drawing this to our attention.
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latter to be a counterpart to the Hartle–Hawking–Israel state [HH76, Isr76, San15] in

maximally extended Kruskal. Thus our no-go conjecture is reliant upon there being just

one box rather than two.

Geometrically, this setup appears analogous to Minkowski spacetime (of any dimension)

to the left of a hypersurface at some constant Rindler spatial coordinate in the right

wedge (see Figure 3.1), i.e. to the left of a uniformly accelerating mirror (assumed to be

‘planar’ and infinitely extended in the spatial dimensions suppressed in Figure 3.1). Here,

Schwarzschild-isometry invariance is replaced by boost invariance. One might therefore

think that a similar non-existence result would hold for boost-invariant Hadamard states

for Klein–Gordon fields on such spacetimes. And, in the absence of a rigorous proof of

our conjecture for Kruskal, it would obviously be of interest if one could more easily

give a rigorous proof of the non-existence of boost-invariant Hadamard states for some

such Minkowskian system. However, Property (b) above only holds for scalar fields

in Minkowski space when those fields are massless and the Minkowski space is 1+1

dimensional. This is because, except in this special case, a solution to the Klein–Gordon

equation in Minkowski space (say with compact support on spacelike Cauchy surfaces)

which vanishes on a single null plane, vanishes everywhere. This is proven for the case

of massless fields and spacetime dimension greater than 2 in e.g. [Wal94, pp. 109–110],

whereas in the case of massive fields in any spacetime dimension Ullrich [Ull07, Thm. 3]

proved an even more general result using Fourier analytic methods.7

In view of the above, and aside from making our above conjecture for the Kruskal case,

the main purpose of the present thesis is to prove a rigorous version of such a non-

existence result for this latter 1+1 massless system with Dirichlet boundary conditions.

Even for this much simpler problem, it will turn out that we have to deal with a number

of complications which arise from the well-known special infra-red pathology [Sch63,

Wig67, SW70, Kay85, FR87, DM06] of the 1+1 massless Klein–Gordon field as well as

with complications due to the presence of a boundary. In fact, even in the absence of

boundaries, because of that special infra-red pathology, there are several inequivalent

mathematical notions which could be regarded as making the phrase ‘boost-invariant

Hadamard state’ precise for the massless scalar field in 1+1 Minkowski space. What we

succeed in doing (with Theorem 3.4.7 in Section 3.4.3) is to prove that, with a particular

such notion, when suitably adapted to the presence of a single mirror – namely what

we call the ‘strongly boost-invariant globally-Hadamard’ property of Definition 3.4.6 in

Section 3.4.3 – then (in the presence of a single mirror) there is no state which has this

property.

7However, we point out that we believe that a more geometrically-flavoured argument can also be
produced by exploiting the fact that massive fields in Minkowski time exhibit dispersion, i.e. they decay
in time according to some well-known estimates.
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We believe this no-go theorem deserves to be regarded as a suitable counterpart to the

no-go result we conjecture for Kruskal because, as we will also point out in Section

3.4.3, there does exist a strongly boost-invariant globally-Hadamard state both in full

1+1 Minkowski space and in the case where there is a second mirror located at the

wedge-reflected set of spacetime points to those occupied by the right-wedge mirror

(which we shall call the case of two mirrors) – the boost-invariant Hadamard state in

the absence of mirrors being a suitably defined version of the usual Minkowski vacuum

state, while the state for two mirrors was constructed in [Kay15]. Also, we think that

the method of proof of this result should provide useful lessons towards a proof of our

conjecture about the Kruskal case. Note that our notion of ‘strongly boost-invariant

globally-Hadamard’ makes precise the notion of ‘boost-invariant global Hadamard state’

since, for reasons we will explain in Section 3.4.2, it is not obvious that a local-to-global

result (see Footnote 2) applies in the 1+1 massless case.

Our conjecture in the Kruskal case has an obvious application to understanding the

nature of the idealised black holes in boxes which play a basic role in black hole ther-

modynamics [Haw76, GH93]. A natural question is whether a black hole in equilibrium

in a box8 has a semiclassical description in terms of a fixed Lorentzian classical space-

time together with a Hadamard state of a quantum field defined on it – where both

the classical spacetime and the Hadamard state are isometry-invariant. Amongst the

various possibilities one can imagine for the background spacetime, and ignoring back

reaction, one might consider the following three: (A) the region of Kruskal to the left

of a single box as in Figures 3.1 and 3.2; (B) the region of Kruskal between two boxes

as in Figure 3.3; (C) the region of exterior Schwarzschild alone to the left of a single

box (i.e. the right wedge of any of the figures 3.1, 3.2 or 3.3). An earlier paper [Kay15]

argued that both (A) and (B) should be ruled out due to the existence of classical

and/or quantum small perturbations such that, as a consequence of reflection at the

box, their (renormalized) stress-energy grows arbitrarily large near the future horizon(s)

and/or near the bifurcation surface and argued in favour of (C) with the proviso that

the region near the horizon be considered to be essentially quantum-gravitational and

non-classically describable rather as envisaged in ‘t Hooft’s ‘brick wall’ model [tH85].

However the arguments against (A) in [Kay15] were less strong than the arguments

against (B). Our conjectured no-go theorem, if true, tells us that, on the background

(A), no isometry-invariant Hadamard state is possible and this reinforces our reasons

for rejecting (A).

It is also of interest to compare our no-go result for the massless scalar field in 1+1

Minkowski with claims made in the literature (see e.g. [FD76, DF77, BD84]) concerning

8Here we leave aside the issue that a Schwarzschild black hole in equilibrium in a box is believed to
be thermodynamically unstable [Haw76].
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Figure 3.3: Penrose diagram for the region of the Kruskal spacetime bounded by two
boxes, possibility (B) in Section 3.1. We conjecture that a ‘Hartle–Hawking–Israel–like’
state exists for the Klein–Gordon field on this spacetime when Dirichlet conditions are
imposed at the boundary.

radiation by accelerating mirrors in 1+1 dimensions. As pointed out in that work, a

mirror which starts out inertial – with the state of the field the initial vacuum state –

and later undergoes uniform acceleration doesn’t radiate during the period of uniform

acceleration. This might seem to suggest that there would be a quantum state of the

field such that an eternally accelerating mirror wouldn’t radiate at all and that might,

in its turn, seem to suggest that there would exist a boost-invariant Hadamard quantum

state. And one might think that there would in fact exist a strongly boost-invariant

globally-Hadamard state in the sense of the present thesis. But we prove that there

isn’t one; for there to be such a boost-invariant Hadamard state, it would seem to be

required for there to be a symmetrically placed uniformly decelerating image mirror in

the left wedge.

3.2 Basic idea of our argument for the no-go theorem

We next wish to explain the basic idea behind both our no-go conjecture for (massive

or massless) Klein–Gordon on Kruskal and our proof of our analogous no-go result for

the massless 1+1 Minkowski one-mirror system. In Kruskal we take our equation to be

Pφ = (�g +m2)φ = 0 (3.1)

where m is a non-negative mass. (Note that the often considered ξR term will anyway

vanish in Kruskal.) In our 1+1 Minkowskian theorem we insist that m be zero.
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In both cases, we rely on the well-posedness of the Cauchy problem for (3.1) when

supplemented by Dirichlet boundary conditions at the box/mirror. Of course, neither

the region of Kruskal to the left of our box, nor the region of 1+1 Minkowski space to the

left of our mirror are globally hyperbolic and thus neither have Cauchy surfaces in the

strict sense. However, with our boundary conditions on the box/mirror, one expects the

Cauchy problem to be well posed, at least in the sense of uniqueness, for data on initial-

value surfaces which are the restrictions, to the region to the left of the box/mirror, of

Cauchy surfaces for the whole of Kruskal/Minkowski. Indeed, this can easily be verified

in the 1+1 Minkowski case; for the Kruskal case we expect a suitable extension of known

results on the mixed Cauchy–Dirichlet problem (see e.g. Theorem 24.1.1 in [Hör94] or

the monograph [GV96]) to apply. And it will still to be possible to talk, in each case,

about the space S of smooth (real-valued) solutions of this mixed Cauchy–Dirichlet

problem whose restriction to all such initial-value surfaces9 has compact support, along

the lines of that discussed in [KW91]. And this space will be equipped with a manifestly

antisymmetric bilinear form σ defined, in terms of an arbitrary (possibly partially null)

smooth initial-value surface C , by

σ(φ1, φ2) :=

∫
C
naj

a[φ1, φ2] volC , (3.2)

where ja[φ1, φ2] := φ1∇aφ2−φ2∇aφ1, C is given the induced orientation as the boundary

of J−(C ),10 and the forms n and volC are such that, on C , n ∧ volC equals the volume

form volg induced by the spacetime metric. The independence of the right-hand side of

Equation (3.2) from the initial-value surface C is a consequence, using Gauss’ theorem,

of the fact that ∇aja[φ1, φ2] = 0 whenever φ1 and φ2 are solutions to Equation (3.1),

together with the fact that, due to the Dirichlet boundary conditions, no boundary

terms arise from integrating along the spacetime boundary. One expects that, once a

full characterisation for the allowed initial data for solutions in S is available, it will be

possible to show that σ is in fact non-degenerate on S, and therefore a symplectic form.

Similarly to in [KW91] – and proceeding, in the Kruskal-like variant, under the same

fiction explained in the Note Added in Proof at the end of [KW91] (see the discussion

at the end of this section) – an important role will be played by ‘subspaces’, SA and

SB, of S which we assume are nontrivial in the case of Kruskal, and which in both cases

consist of solutions of Equation (3.1) satisfying the Dirichlet boundary condition on ∂M

and which ‘fall entirely through’ the A- and B-horizons HA and HB respectively, in the

sense of our Definition 2.5.10 when adapted to the context of a spacetime with a smooth

9These initial-value surfaces should be understood to contain the relevant boundary points and there-
fore not as being entirely contained in the interior of the spacetime.

10I.e. the boundary orientation for which Stokes’ Theorem applies.
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boundary (see Section 5.1) and to the fact that we are imposing (Dirichlet) boundary

conditions. More precisely:

Definition 3.2.1. In both the Kruskal-like and Minkowski-like spacetimes-with-

boundaries which we are considering, φ will belong to SA if it is at least continuous,

it is a distributional solution of Equation (3.1) in IntM and even a C2 one on an open

neighbourhood of ∂M , it vanishes identically on ∂M , φ�HA is a smooth function on HA
whose support K := supp(φ�HA) is compact, and suppφ ⊆ J(K) = J+(K) ∪ J−(K).

We define SB analogously.

For a massless scalar field in 1+1 Minkowski space without any mirrors, SB would consist

of right-moving solutions and SA of left-moving solutions. When we have our mirror

in the right wedge, we can also fully characterise both spaces: SB consists of solutions

which are right-moving to the causal past of the B-horizon , and SA consists of solutions

which are left-moving to the causal future of the A-horizon. This is explained in more

detail in Section 3.4.1. On the other hand, we do not yet have a full characterisation of

SA and SB, or even a rigorous proof of their non-triviality, in the Kruskal-like setting

for any value of the mass. Nonetheless, we proceed under the assumption that, in the

Kruskal-like case, SA and SB are large enough for our purposes. We will also need to

define appropriate subspaces of SA and SB in both settings, and again proceed under

the assumption that they are large enough for our purposes in the Kruskal-like setting.

Definition 3.2.2. In both cases, SRA is to denote the subspace of SA consisting of solutions

whose restrictions to HA are compactly supported to the causal future of, and strictly

away from, the bifurcation surface. The ‘R’ superscript stands for ‘right’ as this is the

portion of HA to the right of the bifurcation surface in Figure 3.1. We define SLA, SRB

and SLB similarly with obvious changes.

In Appendix A, we will recall the general theory of the quantization of linear Bose sys-

tems via the so-called Weyl-algebra approach. In particular, we will review the standard

definitions for the notions of state, quasifree state and one-particle structures. In Section

3.3, we will recall how this theory is applied to the case of Klein–Gordon fields on gen-

eral globally hyperbolic spacetimes, where the class of Hadamard states plays a special

role, and we will sketch a strategy for adapting this theory to situations with timelike

boundaries so as to properly define the notion of ‘Hadamard state’ and, thereby, to be

able to formulate in a precise way our conjecture that there is no isometry invariant

Hadamard state on Kruskal in a box. Then Section 3.4 will show how to implement this

strategy for massless fields on 1+1 Minkowski with a mirror in a way which also copes

with the special infra-red pathology, thereby enabling us both to properly formulate and

prove our no-go theorem. For us to explain the basic idea behind our conjecture and
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theorem in the present section, however, all that we shall rely on are the following two

facts:

• First, just as in the globally hyperbolic case mentioned in Footnote 3, to show

that there is no isometry-invariant Hadamard state, it suffices to show there is no

isometry-invariant quasi-free Hadamard state (with zero one-point function), see

Appendix A.

• Second, as explained in Appendix A, to every quasi-free state of the theory there

corresponds a one-particle structure, (K,H ). That is a, Hilbert space (the one-

particle Hilbert space), H , and a real-linear map, K : S →H , such thatKS+iKS

is dense in H , which is symplectic in the sense that

2Im 〈Kφ1 | Kφ2〉 = σ(φ1, φ2) (3.3)

for all pairs of classical solutions, φ1, φ2 ∈ S.

Furthermore, and similarly to Kruskal without a box or (1+3)-dimensional Minkowski

without a mirror, we expect that the existence of an isometry-invariant Hadamard state

for Kruskal with our box implies, by similar arguments to those given in [KW91] the

following explicit formula for
〈
Kφ1

B

∣∣ Kφ2
B

〉
for any φ1

B, φ
2
B ∈ SB:

〈
Kφ1

B

∣∣ Kφ2
B

〉
= − 1

π
lim
ε→0+

∫
f1(u1, s)f2(u2, s)

(u1 − u2 − iε)2
du1du2d2s, (3.4)

where f1 is the restriction of φ1
B and f2 the restriction of φ2

B to the B-horizon, and this

is coordinatized in the usual way by affine parameter, u,11 and the usual set of ‘angular’

variables, denoted by s, and the integration can be thought of as over two copies of the

real line and one copy of the bifurcation sphere.

For our massless scalar field in 1+1 Minkowski with a mirror, it turns out that the

existence of an isometry-invariant state which is Hadamard in the precise sense we will

define (i.e. the ‘strongly boost-invariant globally-Hadamard’ property of Definition 3.4.6

in Section 3.4.3) entails a similar formula, with the dependence on s and the integration

over s removed. And of course there will be a similar formula, for φ1
A and φ2

A and the

A-horizon.

As discussed in [KW91] (cf. Equation (1.1) there; we refer also to Observation 6.1 and

Proposition 7.2 in [DK87]), Equation (3.4) tells us that the restriction of the two-point

function for the u derivative of the field to the B-horizon can be identified (up to a trivial

dependence on s) with the restriction of the two-point function for the u derivative of a

11Aside from having the opposite signature convention to [KW91], we differ from [KW91] by denoting
affine parameter on our horizons by u and v, rather than U and V .
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free massless real scalar field in 1+1 Minkowski space (without a mirror) to the null line

t = −x, where u is now identified with t−x, and where t and x are the usual Minkowski

coordinates. In view of this (or directly from the formula) one can conclude (see again

[KW91]) the following crucial facts12

(A) KSA and KSB are dense in complex-linear subspaces HA and HB of H (respec-

tively). As explained in Appendix A of [KW91], and reproduced in Appendix A to

the present thesis as Proposition A.0.4, this is equivalent to the fact that the state

restricted to fields ‘symplectically smeared’ with solutions in either SA or SB is a

pure state. In the special case of 1+1 Minkowski (without a mirror) it corresponds

to the fact that the Minkowski vacuum is a pure state when restricted to either

the left or right-moving sector.

(B) KSRA + iKSRA is dense in HA and KSRB + iKSRB is dense in HB. This corresponds

to the fact that the (massless) 1+1 Minkowski vacuum, restricted to sums of

products of (derivatives of) fields restricted to a single null line has the Reeh–

Schlieder property [SW00] for fields localised on a half null-line. Cf. Proposition

A.0.5 in Appendix A.

We are now in a position to explain the basic idea behind both our hoped-for proof of

our no-go conjecture for Kruskal in a box and our proof of our no-go theorem for our

massless field in 1+1 Minkowski with a mirror.

First we point out that, for the 1+1 Minkowski case, the ‘basic plausible expectations

about the space of classical solutions’ discussed in Section 3.1 may be reformulated in

terms of our subspaces of solutions as follows:

(a) SRA = SRB ;

(b) There exists a φ ∈ S such that σ(φ, φLB) 6= 0 for some φLB ∈ SLB, but for which

σ(φ, φA) = 0 for all φA ∈ SA.

Combining the (purely classical) statements in (a) and (b) with (A) and (B) above

quickly leads to a contradiction, as we will now explain. By the first part of (b) and

Equation (3.3), Kφ cannot be orthogonal (with orthogonality here and throughout this

this paragraph meant in the sense of the Hilbert space H ) to KSLB and hence, a fortiori

it cannot be orthogonal to KSB – so, by (A), it cannot be orthogonal to HB. On

the other hand, Equation (3.3) and the last part of (b), together with (A), imply that

Kφ is orthogonal to HA. To see this, we will use the following general observation: If

12Actually in our proof of our no-go theorem, i.e. of Theorem 3.4.7 in Section 3.4.3, facts (A) and
(B) about the one-particle structure (K,H ) are arrived at by directly relating it to the one-particle
structure (KM,HM) associated to the vacuum state, ωM, on the ‘physical’ Weyl algebra for the massless
wave equation in (1+1)-Minkowski space by a somewhat different version of the argument which doesn’t
(need to) refer to the formula (3.4).
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H is a complex Hilbert space, and K ⊆ H is a real-linear subspace whose closure is

complex -linear, then, for any Φ ∈H , 〈Φ | K 〉 = {0} if and only if Im 〈Φ | K 〉 = {0} if

and only if Re 〈Φ | K 〉 = {0}. [Proof of first ‘if’: Suppose that Im 〈Φ | K 〉 = {0}. Note

that Re 〈Φ | K 〉 = Im 〈Φ | iK 〉. Under the assumptions on K , iK ⊆ K , whereupon

a simple limit argument shows that Im 〈Φ | K 〉 = {0} =⇒ Im 〈Φ | iK 〉 = {0} and we

are done. The proof of the second ‘if’ is analogous.] By (B), to say that Kφ ⊥ KSA is

tantamount to saying that it is orthogonal to KSRA +iKSRA . But, by (a), this is the same

thing as saying that it is orthogonal to KSRB+iKSRB , which, by (B), has the same closure

as KSB, namely HB. Thus, on the assumption that there exists a stationary Hadamard

state, Kφ is both not orthogonal to HB and orthogonal to HB – a contradiction.

For Kruskal in a box, Property (a) above cannot strictly hold since we would expect a

solution which falls entirely through the right B-horizon to have a restriction to the right

A-horizon which fails to be supported away from the bifurcation point and moreover we

would expect it to fail to be compactly supported, but rather to have a tail at large v.

However, we conjecture that the closure in H of KSRA will equal the closure in H of

KSRB (or rather an appropriate substitute for this statement will hold when one removes

the fiction we referred to above and discuss further below). It is easy to see that this

‘closure conjecture’ would immediately lead to the same contradiction.

The fiction we referred to above concerns an error in the original version of [KW91]

which we have also (knowingly) made above. As was pointed out in the Note Added

in Proof in that paper, the notion of ‘C∞ solutions which fall entirely through one of

the horizons’, as in the apparent ‘definitions’ of SA etc. in that paper and above in the

Kruskal case, is problematic since a solution which actually falls entirely through one of

the horizons in the sense explained above cannot be C∞ – smoothness failing when one

crosses from one side of the horizon to the other. The Note Added in Proof of [KW91]

showed how one can repair this error while maintaining the spirit of the basic arguments

there by working with a certain class of solutions (which are everywhere C2) and end

up with rigorous results with essentially the same physical content as those originally

announced. In particular the no-go results in that paper continue to hold with thus-

corrected arguments. A new, improved way to deal with some of the technical issues in

the Note Added in Proof in [KW91] will be described in Chapter 4 of this thesis.

Clearly, in the case of Kruskal, what we have written above, while we find it highly plau-

sible, falls considerably short of being a rigorously stated theorem and proof. To have a

rigorously stated theorem one would need to show that the expectations mentioned in

Section 3.3.2 below hold so that the strategy we sketch there for defining what is meant

by a Hadamard state can be implemented. And then to turn the above-explained idea
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for a proof into a rigorous proof one would need to remove the above fiction, presum-

ably with similar methods to those introduced in the Note Added in Proof in [KW91],

prove the above ‘closure conjecture’ or some effective replacement for it, and justify in

detail the various statements made above which were described as ‘expectations’. As we

anticipated in the Introduction, in the absence of all that, what we can and do provide,

in Section 3.4, is a rigorous formulation and proof of our no-go result for a massless field

in 1+1 Minkowski with a mirror.

3.3 Quantization of Klein–Gordon quantum fields

3.3.1 Globally hyperbolic case

Let (M, g, t) be a time-oriented, globally hyperbolic spacetime of dimension 1 + n. We

adopt the ‘mostly minus’ signature convention for the metric, as we did throughout

Chapter 2. In Section 2.4, we recalled that the Klein–Gordon operator in Equation

(3.1) is Green hyperbolic (actually, even normally hyperbolic) and self-adjoint. We will

denote, as we did there, by S the space of ‘regular’ real-valued classical solutions to the

Klein–Gordon equation, i.e. of smooth and spatially compact functions in kerP .

As we also saw in greater generality in Section 2.4, S is naturally equipped with a linear

symplectic structure. Explicitly, the symplectic product of any two φ1, φ2 ∈ S is known

to be given by Equation (3.2), where C is any smooth Cauchy surface. Equivalently, it

is given by the ‘covariant’ expression

σ(φ1, φ2) =

∫
M
F1φ2 dµg =

∫
M
F1(EF2) dµg =: E(F1, F2), (3.5)

where E := E−−E+ : C∞0 (M)→ S is the causal propagator of P , and F1, F2 ∈ C∞0 (M)

are such that EF1 = φ1 and EF2 = φ2.

The Weyl algebra recipe for quantization of general linear systems outlined in Appendix

A can now be straightforwardly applied to (S, σ), thus yielding a Weyl algebra of canon-

ical commutation relations A = W (S, σ). In view of the existence of the causal propa-

gator E relating test functions to solutions, if ω is a C2 state on A , then its two-point

function λ2 (see Appendix A) induces a bidistribution13 on M defined for all test func-

tions F1, F2 by

Λ(F1, F2) = λ2(EF1, EF2). (3.6)

13Henceforth, for a manifold (without boundary) N , we use the word ‘bidistribution on N ’ to simply
indicate a bilinear functional C∞0 (N)× C∞0 (N)→ C, without any continuity requirements.
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We will henceforth refer to λ2 as the ‘symplectically smeared two-point function’ and

to Λ as the ‘spacetime smeared two-point function’. In view of the general properties

of C2 states listed in Appendix A, of the sequence (2.27) and of Equation (3.5), Λ will

satisfy for all F1, F2 ∈ C∞0 (M):

1. (Commutation relations) 2i Im[Λ(F1, F2)] = Λ(F1, F2)− Λ(F2, F1)] = iE(F1, F2);

2. (Positivity) ReΛ has analogous symmetry and positivity properties to (i)–(ii) in

Appendix A (with σ,Φ1,Φ2 replaced by E,F1, F2 respectively);

3. (Distributional bisolution property) Λ(PF1, F2) = Λ(F1, PF2) = 0.

For a state on A to be physically relevant, of course, not only must its spacetime

smeared two-point function, Equation (3.6), exist, but it must also satisfy the (local or

global) Hadamard condition. For general globally hyperbolic spacetimes, we refer to

the discussion and references in Footnote 2. In the present thesis, the only case we will

discuss in detail is the (1+1)-dimensional massless case, the correct formulation of which

will, in fact, be the focus of the next section.

3.3.2 Case of spacetimes with timelike boundaries

We would next like to sketch how we expect the quantization procedure for Klein–

Gordon fields outlined above could be adapted to the case of ‘spacetimes with boundary’

(M, g), where M is now a manifold with boundary whose boundary is timelike and

(IntM, g�IntM ) – where IntM denotes the interior of M – is extendible to a globally

hyperbolic spacetime. This class of course includes our Kruskal-in-a-box or Minkowski-

with-a-mirror spacetimes.

First, we expect that methods akin to those in [Hör94, GV96] will show that, with the

addition of suitable homogeneous boundary conditions on the timelike boundary, the

Cauchy problem is well-posed for suitable initial data on suitable initial-value surfaces,

as already discussed at the start of Section 3.2 for the case of Dirichlet boundary con-

ditions. In particular, such suitable initial data, when smooth and of compact support

(where it is to be understood that the support could include points on the timelike

boundary), should be in one-to-one correspondence with smooth spatially compact14

solutions to this mixed problem, and (once the class of ‘suitable’ initial-value surfaces

has been precisely identified) these should in turn be equivalently characterised as being

the smooth solutions whose restriction to all suitable initial-value surfaces has compact

support. Defining S as the space of spatially compact smooth solutions to this mixed

14Just as in the globally hyperbolic case, a spatially compact function φ on M is one such that
suppφ ⊆ J(K) for a compact set K, however in this case we allow K to contain points on the timelike
boundary.
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problem, we then expect, as discussed in Section 3.2, that Equation (3.2) will define a

symplectic form σ on S.

Furthermore, we expect that one will be able to construct retarded and advanced Green’s

operators E± which, in addition to satisfying the same requirements as the analogous

objects in the globally hyperbolic case – listed as (i)–(ii) in the previous section – are

such that E±F �∂M satisfies the given boundary conditions. The domain of E± here

should at least include F ∈ C∞0 (IntM). In the next section we will explicitly construct

such objects in the case of the massless wave equation in the region of (1+1)-dimensional

Minkowski spacetime to the left of a uniformly accelerating mirror. As we will observe

in that case, in general the analogous sequence to (2.27) will no longer be exact since

the kernel of E = E− − E+ will be strictly larger than the image of P . Furthermore,

both in that case and in the general case one doesn’t expect that E will be onto S.15

Assuming that the expectations in the previous paragraphs are fulfilled, we propose that

a state on the Weyl algebra W (S, σ) be called Hadamard if its symplectically smeared

two-point function exists and if its spacetime smeared two-point function, defined at

least on C∞0 (IntM)× C∞0 (IntM) by Equation (3.6), satisfies the following condition:

Definition 3.3.1. A bidistribution on IntM will be said to be globally Hadamard if, for

any causally convex open subset O of IntM which, when equipped with the restriction

of the metric to IntM , is a globally hyperbolic spacetime in its own right, the restriction

of Λ to smearings with test functions supported inside O is globally Hadamard in the

standard sense.

Here we recall that a subset U of a spacetime (N, g) is called causally convex if, whenever

two points x, y ∈ U can be connected by a causal curve γ in N , then the portion of γ

between x and y is entirely contained in U . Notice that, if O is a causally convex

globally hyperbolic subset of IntM , then denoting by E±O : C∞0 (O) → C∞(O) the

unique retarded/advanced Green operators for the Klein–Gordon equation on O, it is

easy to verify that, for all F ∈ C∞0 (O), we will have

[E±F ]�O = E±OF. (3.7)

Indeed, that this will be the case follows since, as it is easy to check, E± followed by

restriction toO will have, as an operator on C∞0 (O), the support properties and left/right

inverse properties which uniquely determine the retarded/advanced Green operators on

O.

15It is an interesting open question (as far as we know) – again both in the general case and in the
(1+1)-dimensional example we will study – whether the domains of E± can be suitably extended in such
a way that the resulting advanced-minus-retarded propagator is onto S.
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The above proposal would seem to fit nicely with the paradigm of locally covariant

(quantum) field theory proposed by Brunetti, Fredenhagen and Verch [BFV03] and in-

deed allow an extension of that paradigm to include spacetimes with (timelike) bound-

aries. Physically, since a spacetime boundary can only be detected by sending a signal to

it and receiving one in return, our requirement corresponds to saying that, if we localize

the quantum state by only performing measurements within globally hyperbolic regions

O which do not ‘causally intercommunicate’ with the boundary – i.e. such that there are

no future-directed piecewise smooth causal curves which begin in O, hit the boundary

and then return to O – we should not be able to tell whether our universe possesses a

real boundary, or whether we are witnessing an ‘unusual’ state on a different, unbounded

spacetime. A similar ideology was already contained in [Kay79], where it was pointed

out that such a view is necessary in order to clarify the conceptual issues underlying

the Casimir effect. It also appeared in [FOP07] in the context of the investigation of

quantum energy conditions for spacetimes with boundaries.

3.4 No-go result for massless fields in 1+1-dimensions with a mir-

ror

3.4.1 Classical theory

In this section we consider in detail the classical theory of a massless real scalar field on

the spacetime with boundary, (M,η), consisting of the portion M of (1+1)-dimensional

Minkowski spacetime ‘to the left of’ (and including) the worldline of a point-like mirror

on a timelike trajectory of uniform and eternal acceleration. Without loss of generality

we assume that the Minkowskian pseudo-norm of the 2-acceleration is always equal to

−1 (clearly our no-go result does not depend on the numerical value of this quantity).

Picking a global inertial frame (t, x) such that, when the proper time τ along the mirror’s

worldline equals 0, the mirror is located at (t = 0, x = 1) and dt/dτ |τ=0 = 1, we represent

(M,η) by M = R2 \
{

(t, x)
∣∣ x2 − t2 > 1, x > 0

}
and η = dt2 − dx2. The manifold M

is depicted in Figure 3.1, with (R = 1 and) the vertical (respectively horizontal) axis

representing the t-axis (respectively x-axis).

As already pointed out, this spacetime is not globally hyperbolic due to the presence

of the timelike boundary given by the mirror’s trajectory. It possesses a one-parameter

group βτ of isometries given by the flow of the Killing vector field k = x∂/∂t+ t∂/∂x16

16Explicitly, in global inertial coordinates, βτ (t, x) = (cosh(τ)t+ sinh(τ)x, sinh(τ)t+ cosh(τ)x) or, in
terms of the null coordinates (u, v) introduced below, βτ (u, v) = (e−τu, eτv)
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describing homogeneous Lorentz boosts in the x-direction. k has a bifurcate Killing

horizon given by HA ∪HB, where HA = {(t, x) | t = x} and HB = {(t, x) | t = −x}.

We immediately note that any real-valued, smooth solution φ on M to

�φ = 0, φ�∂M = 0, (3.8)

can be written globally as a sum φ(t, x) = f(t− x) + g(t+ x) for two smooth functions

f and g with g(v) = −f(−1/v) for all v > 0. This can be checked e.g. by writing

the above equation in the null coordinates u(t, x) = t − x and v(t, x) = t + x. It

is also easy to check that for any such solution φ which, in addition, has spatially

compact support (see Section 3.3), the functions f and g must have the additional

property that there exist u0 and v0 such that, for some a ∈ R, f(u) = a ∀ u ≥ u0

and g(v) = −a ∀ v ≤ v0. Thus we have complete knowledge of the vector space S of

spatially compact, smooth (and real-valued) solutions discussed in Section 3.3.2. And,

again as envisaged in that section and in Section 3.2, Equation (3.2) defines a manifestly

antisymmetric bilinear form σ : S × S → R, independent of the initial-value surface C

as explained in Section 3.2. Since it is easy to check that the Cauchy-Dirichlet problem

is well-posed (in the sense of both existence and uniqueness) for initial data of compact

support in the interior of the particular initial-value surface C = {(t, x) | t = 0} ∩M ,

one could prove the non-degeneracy of σ directly by picking, for any φ1 ∈ S, which

will have some initial data (ϕ1, π1) ∈ C∞0 (C ) ⊕ C∞0 (C ),17 φ2 to be the solution with

initial data (ϕ2, π2) ∈ C∞0 (Int C ) ⊕ C∞0 (Int C ) where (ϕ2, π2) approximate (−π1, ϕ1)

(respectively) ‘sufficiently well’ for σ(φ1, φ2) to be greater than 0. This can always be

done by picking ϕ2 = −ψπ1 and π2 = ψϕ1 where ψ ∈ C∞0 (Int C ) ⊂ C∞0 (C ) is such

that 0 < ψ < 1 and ψ = 1 everywhere but on a small enough neighbourhood of the

boundary point (t = 0, x = 1) of C . Indeed, we expect a generalisation of this strategy

to apply to the more general setup described in Section 3.3.2. We will also provide

another, independent, proof of the non-degeneracy of σ later in this section.

Thus we have endowed S with the structure of a symplectic vector space (S, σ). A simple

calculation, which e.g. starts with the expression for σ in terms of the t = 0 initial-value

surface mentioned above and then involves a change of variables, shows that, for any

17Note that, since C is a manifold with boundary, functions in C∞0 (C ) – which are by definition
smooth functions with compact support on C – need not be supported away from the boundary; indeed,
they needn’t even vanish at the boundary (although for this specific choice of C , both pieces of Cauchy
data will have to vanish at the boundary because of the Dirichlet boundary condition).
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φ1, φ2 ∈ S,

σ(φ1, φ2) = 2

∫ +∞

−∞
f1(u)f ′2(u) du+ 2

∫ 0

−∞
g1(v)g′2(v) dv (3.9)

= 2

∫ +∞

0
f1(u)f ′2(u) du+ 2

∫ +∞

−∞
g1(v)g′2(v) dv, (3.10)

where, f1, g1, f2, g2 are any smooth functions such that φ1(t, x) = f1(t − x) + g1(t + x)

and φ2(t, x) = f2(t− x) + g2(t+ x). These explicit expressions will be important in the

next paragraph.

Let SA and SB denote the linear subspaces of S consisting of those solutions which ‘fall

entirely through’ HA and HB respectively. A geometric definition of these was already

given in the third paragraph of Section 3.2. However, a more explicit characterisation is

also available here: φ ∈ SB (respectively φ ∈ SA) if and only if φ(t, x) = f(t−x)+g(t+x)

with the ‘right mover’ f belonging to C∞0 (R) and the ‘left mover’, g(v), being equal to

zero for all v ≤ 0, and to −f(−1/v) for all v > 0 (respectively the ‘left mover’ g belonging

to C∞0 (R) and the ‘right mover’, f(u), being equal to zero for all u ≥ 0, and to −g(−1/u)

for all u < 0). Thus, solutions in SB (respectively SA) are uniquely determined by their

restriction to HB (respectively HA). And indeed, the initial value problem is well-posed

on Cauchy surfaces which include portions of HB (respectively HA), for data supported

on those portions. For any pair φ1, φ2 of SB-solutions (respectively SA-solutions), the

second (respectively first) summand on the right-hand side of Equation (3.9) (respec-

tively Equation (3.10)) vanishes, and thus σ(φ1, φ2) can be interpreted as twice the

integral along HB (respectively HA) of φ1∂uφ2 (respectively φ1∂vφ2). Moreover, let

(SM, σM) denote the symplectic vector space of spatially compact, smooth, real-valued

solutions to the massless wave equation on (R2, η), and let Sr-mov and Sl-mov denote

the vector subspaces of SM consisting of right-moving and left moving (respectively)

solutions. Then, as is well known (or easy to show), (Sr-mov, σM) and (Sl-mov, σM)18 are

symplectic vector spaces in their own right and one has the following important result,

whose proof is immediate.

Proposition 3.4.1. The map TB : SB → Sr-mov, defined by sending φ ∈ SB to the

unique Minkowski-space right-moving solution with the same data as φ on HB, is a

presymplectic isomorphism between (SB, σ) and (Sr-mov, σM). Thus in particular (SB, σ)

is a symplectic space and the map is a symplectic isomorphism. (And similarly, with B

replaced by A and r-mov replaced by l-mov.)

18Throughout the text we adopt the convention that, if (S, σ) is a symplectic vector space and T is a
vector subspace of S, then the presymplectic vector space (T, σ�T×T ) is written simply as (T, σ).
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We can now also define a proper linear subspace S0 of S by S0 := SA+SB, and subspaces

SRA , S
L
A ⊂ SA, SRB , S

L
B ⊂ SB just as explained in Section 3.2, that is e.g.

S
L/R
A :=

{
φ ∈ SA

∣∣∣ supp(φ�HA) ⊂ HL/RA

}
,

with HLA and HRA the ‘left’ and ‘right’ portions of the A-horizon, i.e. HLA := HA ∩
{(t, x) | x < 0} and HRA := HA ∩ {(t, x) | x > 0} (and similarly with S

L/R
B and HL/RB ).

It is clear that (SA, σ), (SB, σ), (S
L/R
A , σ), (S

L/R
B , σ) are all symplectic spaces (indeed,

for (SA, σ), (SB, σ) this was already established in Proposition 3.4.1). It is also clear

that TB restricts to a symplectic isomorphism between (S
L/R
B , σ) and (S

L/R
r-mov, σM), where

(S
L/R
r-mov, σM) is the symplectic subspace of (Sr-mov, σM) consisting of purely right-moving

solutions in SM whose data on HB is supported strictly to the left/right of the origin

(and similarly, with B replaced by A and r-mov replaced by l-mov).

We wish next to show that the presymplectic space (S0, σ) is also actually a symplectic

space.19 In fact we will prove a stronger result. Note first that the formula on the

right-hand side of Equation (3.2) is still well-defined and antisymmetric when only one

of the solutions is spatially compact, and Equations (3.9)–(3.10) are still valid in that

case.

Proposition 3.4.2. Suppose φ is any (not necessarily spatially compact) smooth solution

to (3.8) on M which is symplectically orthogonal to both SA and SB, i.e. σ(φA, φ) = 0 =

σ(φB, φ) for all φA ∈ SA and φB ∈ SB. Then φ = 0.

Proof. Let f, g be smooth functions such that φ(t, x) = f(t− x) + g(t+ x). Solutions in

SB have the form φB(t, x) = h(t− x) + k(t+ x) where h is any function in C∞0 (R) and

k(v) = −ϑ(v)h(−1/v). Therefore, if φ is symplectically orthogonal to SB then Equation

(3.9) implies that ∫ +∞

−∞
h(u)f ′(u) du = 0

for all h ∈ C∞0 (R). This implies that f ′ is identically zero and thus that f equals a

constant. A similar argument shows that g equals a constant. Thus φ is also constant.

But then it must be zero since it is assumed to vanish on ∂M .

As already anticipated in the Introduction, two further important observations for the

purposes of this thesis are that, with the above definitions and using Equations (3.9)–

(3.10), it is clearly the case that

19While we were proving Proposition 3.4.2 we noticed that there seems to be a gap in the arguments
on a corresponding issue in [KW91]: While it was clear that the (SA, σ) and (SB , σ) of that paper are
symplectic spaces (and the same is also true for the spaces called (S̃A, σ̂) and (S̃B , σ̂), as we show in
Chapter 4) it was also tacitly assumed that (with our fiction) the space called (S0, σ) and (without our
fiction) the space called (S̃0, σ̂) are symplectic spaces. However this was never established there. The
entirety of Chapter 4 is dedicated to tackling this problem and describing possible ways of filling the
gap in some cases of physical interest.
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• SRA = SRB ,

• SLB is symplectically orthogonal to SA. Similarly, SLA is symplectically orthogonal

to SB.

As final ‘classical’ ingredients necessary to formulate and then to prove our no-go result

in the remainder of this section, we need to construct retarded/advanced Green operators

E± appropriate to our Cauchy-Dirichlet problem on M , as discussed in Section 3.3.2.

Namely, E± should be such that, for all F ∈ C∞0 (IntM),

�E±F = E±�F = F, (3.11)

E±F �∂M = 0, (3.12)

supp(E±F ) ⊆ J±(suppF ). (3.13)

The resulting causal propagator E = E−−E+ : C∞0 (IntM)→ C∞(M) will then clearly

map to S.

We will now argue that E± with the above properties can indeed be constructed. In

what follows, for each p ∈ M we denote by m+(p) [resp. m−(p)] the set of all future

[resp. past] endpoints on ∂M of (smoothly) inextendible null geodesics passing through

p. Equivalently, m±(p) is the intersection between ∂M and the topological boundary

(in M) of J±(p) = J±({p}). In particular, m±(p) is either empty or a singleton, and

m±(p) = {p} if p ∈ ∂M . See Figure 3.4.

It is well-known and easy to verify that the unique advanced and retarded Green opera-

tors for the scalar wave equation in full (1+1)-dimensional Minkowski spacetime, which

we denote by E±M, are given by

[E±MF ](p) =
1

2

∫
J∓M (p)

F dµη,

where p ∈ R2, F ∈ C∞0 (R2), J∓M(p) is the causal past/future of p in the full Minkowski

space, and dµη denotes the metric volume element. Consequently, the causal propagator

EM is given by

[EMF ](p) =
1

2

{∫
J+
M (p)
−
∫
J−M (p)

}
F dµη =

1

2

{∫
V (p)
−
∫
U(p)

}
F dµη (3.14)

where we have defined the sets V (p) := {p′ : v(p′) ≥ v(p)}, U(p) := {p′ : u(p′) ≤ u(p)},
with u and v the global null coordinates defined above. The first term in the rightmost

expression is a function of the v-coordinate of p only, while the second is a function of

the u-coordinate only. Thus one retrieves the expression of the solution as a sum of a

left mover and a right mover, which we denote by gM(v) and fM(u) respectively.
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u v
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suppF

p

m−(p)

2

Figure 3.4: Illustration of the definition of the retarded propagator E+ given in
Theorem 3.4.4. Integrating one half times the source F over the shaded region gives
[E+F ](p). The definition of E− can, of course, be illustrated similarly.

We next make a definition before finally being able to state the result on existence of

advanced and retarded Green operators in the presence of our mirror.

Definition 3.4.3. For any open subset X ⊂ R2, we denote the space of compactly sup-

ported smooth functions on X with vanishing integral with respect to the Minkowski

metric measure by C∞00 (X). That is,

C∞00 (X) :=

{
F ∈ C∞0 (X)

∣∣∣∣ ∫
X
F dµη = 0

}
.

Note that in what follows we will sometimes identify test functions defined on an open

subset X with test functions on the whole of Minkowski space (by extending them to

be zero outside of X). It is easy to see from Equation (3.14) that, in the full Minkowski

space theory, EM[C∞00 (R2)] consists of all solutions (to the massless wave equation) of

the form f(t − x) + g(t + x) with f, g ∈ C∞0 (R). That is, defining the subspaces SA,M,

SB,M and S0,M := SA,M +SB,M of SM, in a manner analogous to the way we defined SA,

SB and S0 = SA + SB, one has S0,M = EM[C∞00 (R2)].
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Theorem 3.4.4. The linear operators E± : C∞0 (IntM) → C∞(M) defined, for all F ∈
C∞0 (IntM) and p ∈M , by

[E±F ](p) =
1

2

{∫
J∓(p)

−
∫
J∓(m∓(p))

}
F dµη

= [E±MF ](p)− 1

2

∫
J∓(m∓(p))

F dµη, (3.15)

(see Figure 3.4) satisfy Equations (3.11)–(3.13). Furthermore, S0 = E[C∞00 (IntM)].

Remark. The second summand on the right-hand side of Equation (3.15) equals zero

(for any test function) at any point p for which m∓(p) = ∅ [whereupon the integration

domain J∓(m∓(p)) is also empty]. When m∓(p) consists of the point p∓, it equals

[E±MF ](p∓).

Proof. That each E±F is smooth is obvious since our test functions have compact sup-

port. The boundary condition, Equation (3.12), and the support property, Equation

(3.13), also hold trivially.

We now turn to the equations in (3.11), i.e. to the two-sided inverse property, on the

domain C∞0 (IntM), of E± with respect to the d’Alembert operator �. We carry out the

proof explicitly in the case of E+; the arguments for E− are analogous. In view of the

fact that the corresponding object E+
M on full Minkowski space is already known to sat-

isfy the analogous two-sided inverse property for all test functions (and thus in particular

for those supported in IntM), we need to check that the operator D+ = E+−E+
M, whose

action is defined by the second summand on the right-hand side of Equation (3.15), is

such that D+�F = 0 = �D+F whenever F ∈ C∞0 (IntM). Using the remark above and,

again, the left-inverse property for E+
M, it is easy to see that the first of these identities

holds because any F ∈ C∞0 (IntM) vanishes on ∂M . To verify the second identity, we

first express D+F in terms of the null coordinates u and v. For any p ∈ M , m−(p) is

empty if v(p) ≤ 0, and contains only the point with null coordinates u− = −1/v(p) and

v− = v(p) if v(p) > 0. Therefore, one has

[D̃+F ](u, v) = −ϑ(v)

4

∫
u′≤−1/v

F̃ (u′, v′) du′ dv′, (3.16)

where the tilde indicates that one is dealing with the coordinate expression of a function

in the (u, v) coordinate system, and ϑ denotes the Heaviside step function. The right-

hand side of Equation (3.16) is clearly annihilated by ∂/∂u, and thus in particular by

� = 4∂2/∂u∂v. This completes the proof of the right-inverse property for E+.

In order to prove the second statement in the theorem, we first point out that it is

straightforward to check that, for any F ∈ C∞0 (IntM),

[ẼF ](u, v) = fM(u) + gM(v)− ϑ(−u)gM(−1/u)− ϑ(v)fM(−1/v), (3.17)
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where fM and gM denote the right- and left-moving parts of EMF obtained in the manner

described in the discussion under Equation (3.14). That is,

fM(u) = −1

4

∫
u′≤u

F̃ (u′, v′) du′ dv′ and gM(v) =
1

4

∫
v′≥v

F̃ (u′, v′) du′ dv′. (3.18)

Since fM and gM have compact support when F ∈ C∞00 (IntM), it follows that

E[C∞00 (IntM)] ⊆ S0. To prove the reverse inclusion, it clearly suffices to show that

SA and SB are individually contained in E[C∞00 (IntM)]. We give the argument for SB,

the one for SA being entirely analogous. If φ ∈ SB then φ̃(u, v) = h(u) + k(v) where

h ∈ C∞0 (R) and k(v) = −ϑ(v)h(−1/v). In view of Equation (3.17), it therefore suffices

to find an F ∈ C∞00 (IntM) such that fM and gM in Equation (3.18) equal h and 0 re-

spectively (i.e. F needs to integrate to zero, be supported in IntM and generate the

pure right-mover – in the full Minkowski space theory – described by h). This can be

done as follows: Pick any χ ∈ C∞0 (R) with the properties that suppχ ⊂ (−∞, 0) and∫
R χ(x) dx = 1. Then, the function F defined by

F̃ (u, v) = −4h′(u)χ(v) (3.19)

clearly fulfills the required properties.

To make contact with the general discussion in Section 3.3.2, we remark that we have

not proved that E : C∞0 (IntM) → C∞(M) is onto S. Indeed, as pointed out there,

we don’t expect this to be the case. Nor, as also anticipated there, is the kernel of the

causal propagator constructed in Theorem 3.4.4 equal to �[C∞0 (IntM)], as one can see

from Equation (3.17). Indeed, one need only pick a test function F ∈ C∞0 (IntM) which,

on the entire Minkowski space, would propagate to a non-zero solution with right- and

left-moving parts fM and gM respectively (obtained again in the manner described in

the discussion under Equation (3.14)), which are such that fM(u) = ϑ(−u)gM(−1/u)

and gM(v) = ϑ(v)fM(−1/v) for all u, v ∈ R. Then EF = 0 but F cannot equal �G for

any G ∈ C∞0 (IntM) since EMF 6= 0 in full Minkowski space. See Figure 3.5. In Section

5.2.1, we will tackle the general problem of deriving exact sequences analogous to (2.27)

for hyperbolic boundary-value problems. Those results suggest that to obtain an exact

sequence one should seek enlargements of the advanced and retarded Green operators

to include test functions which do not necessarily vanish at the boundary of M , and

also seek smooth functions with the properties enjoyed by χ− and χ− in the statement

of Theorem 5.2.3. While we believe this to be possible (see the discussion following the

proof of Theorem 5.2.3), we will not pursue it in detail in this section.

As another side remark, we note that, equipped with the above results, one can straight-

forwardly imitate an argument which is standard in the globally hyperbolic setup (see
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Figure 3.5: Illustration of the failure of kerE to be equal to �[C∞0 (IntM)]. The F
in the discussion in the main text (which in this illustration has disconnected support)
is to be identified with F1 − F2. Then EF = 0 but F cannot equal �G for any
G ∈ C∞0 (IntM) since EMF 6= 0 in full Minkowski space.

e.g. [BGP07, Lemma 3.2.2]) to show that, for any F ∈ C∞0 (IntM) and φ ∈ S,∫
M
Fφdµη = σ(EF, φ). (3.20)

Equation (3.20) provides the alternative way, promised above, to show the non-

degeneracy of σ. Indeed, for any given φ ∈ S it is clearly possible to find a test function

F ∈ C∞0 (IntM), not in the kernel of E (i.e. not generating the zero solution) and such

that
∫
M Fφdµη 6= 0 – any F which is everywhere non-zero and is sufficiently localised

around a point where φ attains a non-zero value will do.

We conclude this section by briefly discussing the action of Lorentz boost isometries on

elements of S. The one-parameter group (βτ )τ∈R of Lorentz-boost isometries yields a

one-parameter abelian group of linear symplectomorphisms Tτ : S → S via pullback by

the inverse maps, i.e. Tτφ := φ ◦ β−τ . Explicitly, if φ(t, x) = f(t − x) + g(t + x) then

[Tτφ](t, x) = fτ (t− x) + gτ (t+ x) where fτ (u) = f(eaτu) and gτ (v) = g(e−aτv).

3.4.2 The infra-red pathology and the Hadamard notion

We now wish to discuss the prospects for identifying an appropriate framework for the

quantization of the massless field on (M,η). We first recall some of the issues arising in

the quantization of massless fields in full (1+1)-dimensional Minkowski spacetime.
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As we mentioned in the Introduction and in Section 3.2, in attempting to define a ground

state representation there, one is faced with an infra-red pathology which has been

extensively discussed in the literature, starting from the foundational work in [Sch63]

and in [Wig67, pp. 204–215] (further aspects were discussed in e.g. [SW70, Kay85, FR87,

DM06]). To recall the issue: One might attempt to define the quantum field as a genuine

operator-valued distribution20 by proceeding in the usual way involving creation and

annihilation operators on the standard bosonic Fock space F =
⊕∞

n=0 L
2(R)�n. One

would then demand that the Fock vacuum vector Ω belong to a common invariant (and

dense) domain for all thus defined field operators. However, in general the resulting

one-particle vectors φ̂(F )Ω – generated by acting on the vacuum with the candidate

quantum field smeared with an arbitrary test function F on spacetime – might not be

square integrable. In fact, if F̃ (k) is the Fourier transform, (1/
√

2π)
∫
R2 F (x)e−ik·x d2x

of F , the vacuum belongs to the domain of φ̂(F ) if and only if F̃ (0) = 0. This problem

starkly manifests itself at the level of the tentative ‘two-point function’, which is formally

given by 〈
Ω
∣∣∣ φ̂(F )φ̂(G)Ω

〉
= π

∫ +∞

−∞
F̃ (|p|,−p)G̃(−|p|, p) dp

|p| . (3.21)

Indeed, the above clearly diverges (logarithmically) unless one of F̃ (0) or G̃(0) equals

zero.

Thus the usual quantization procedure fails to produce, via Equation (3.21), a bidistri-

bution, Λ, on R2 representing two-point correlators, because one can’t allow for generic

test functions. If, however, one restricts to smearings with elements of the linear sub-

space C∞00 (R2) of Definition 3.4.3, then both this ‘two-point functional’ exists and (by

construction via creation and annihilation operators) satisfies the positivity properties

Λ(F, F ) ≥ 0, EM(F,G)2 ≤ 4Λ(F, F )Λ(G,G)21 required for a probabilistic interpretation.

In the Weyl-algebraic approach to quantization which we adopt in this thesis (see Ap-

pendix A), what is problematic is the attempt to define a ground state with respect to

time translations on the Weyl algebra AM = W (SM, σM) generated by the symplectic

space (SM, σM) defined in Section 3.4.1. But we observe that, if we restrict to the Weyl

subalgebra A0,M = W (S0,M = EM[C∞00 (R2)], σM) then there is an unproblematic ground

state with respect to time translations, namely the state whose spacetime smeared two-

point function is precisely the ‘two-point functional’ of the previous paragraph. In

Section 3.4.3 we will refer to this state on A0,M – which, we remark in passing, is a

quasi-free state – as ωM, and to its symplectically smeared two-point function as λM. In

20It is irrelevant to this discussion whether the quantum field is to be smeared with test functions in
C∞0 (R2) or, say, test functions in Schwartz space S (R2;R). But we will work with the former space
because it’s technically more appropriate for our needs in this section.

21If we let D0(R2) denote the complexification of C∞00 (R2) then these positivity conditions can be
succinctly expressed as ΛC(F̄, F ) ≥ 0 ∀ F ∈ D0(R2), where ΛC denotes the extension by complex
bilinearity of Λ to a bilinear form on D0(R2).
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view of this, from now on we adopt the view (essentially what in [FR87] is termed the

‘liberal’ approach to dealing with the infra-red pathology) that our ‘physical algebra’ is

this Weyl subalgebra A0,M and ‘physical states’ are to be sought amongst positive linear

functionals on A0,M.

A price to pay for working in this framework is that the spacetime smeared two-point

functions of our thus-defined physical states are only defined as bilinear functionals

C∞00 (R2) × C∞00 (R2) → C, and therefore do not define true bidistributions on R2. As a

result, what one might mean by a globally (or even locally!) ‘Hadamard’ state becomes

problematic. We propose to overcome this by declaring that a state on A0,M be called

globally Hadamard if its spacetime smeared two-point function Λ : C∞00 (R2)×C∞00 (R2)→
C (exists and) admits an extension Λext : C∞0 (R2) × C∞0 (R2) → C which is globally

Hadamard (on R2). Note that this extension need not satisfy any positivity property

beyond positivity (in the above sense) when restricted to smearings in C∞00 (R2). The

(1+1)-dimensional version of the global Hadamard condition for bidistributions was writ-

ten down in [Mor03] (along with versions appropriate to all other spacetime dimensions).

For a massless theory in any globally hyperbolic open subset O of (1+1)-dimensional

Minkowski space, it simply amounts to the following.

Definition 3.4.5 (Global Hadamard condition on O, massless case). A bidistribution Λ on

O satisfies the global Hadamard condition if there exists a Cauchy surface C for (O, η),

a causal normal neighbourhood N ⊆ O of C , a ‘smoothing function’ χ ∈ C∞(N ×N ), a

global temporal function T on O increasing towards the future,22 and a smooth function

HN on N ×N such that, for all F,G ∈ C∞0 (N ),

Λ(F,G) = lim
ε→0+

∫
N×N

(
−χ(x, y)

4π
ln
−sε,T (x, y)

λ2
+HN (x, y)

)
F (x)G(y) dµη(x) dµη(y).

In the above, for all ε > 0,

sε,T (x, y) := s(x, y)− 2iε(T (x)− T (y))− ε2,

with s(x, y) = (x−y)2 and the branch-cut of the logarithm chosen to lie on the negative

real axis. Finally, λ is a length scale introduced for dimensional reasons, but clearly the

property being defined does not depend on it.

Clearly, the ground state on the physical algebra A0,M is a globally Hadamard state

in this sense. To prepare the ground for our discussion on the case of the spacetime

(M,η) we’re interested in, where the Lorentz boosts are the only continuous isometries,

we notice that actually more is true about this state on A0,M, namely that one can find

an extension of its spacetime smeared two-point function which, on its larger domain

22We refer to [KW91, Rad96] for complete definitions of N , χ and T .
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C∞0 (R2)×C∞0 (R2), is still boost-invariant, a weak bisolution of the wave equation, and

satisfies the canonical commutation relations. Indeed, ΛM defined by

ΛM(F,G) = − 1

4π
lim
ε→0+

∫
log[−(x− y)2 + iε(x0 − y0)]F (x)G(y) dµη(x) dµη(y) (3.22)

gives such an extension (and so does ‘ΛM(x, y) + c’ for any c ∈ C). It can be seen

that, indeed, no such extension can satisfy the necessary positivity conditions for all

test functions.

The arguments we made above in favour of taking the ‘physical algebra’ to be A0,M

privileged the role of the usual Minkowski ground state (i.e. the Poincaré invariant vac-

uum). One might nevertheless still want to explore what could be said about (globally)

Hadamard states on the ‘full’ Weyl algebra AM. Within the (technically inequivalent) ap-

proach to quantization based on the ‘full’ Borchers–Uhlmann algebra, Schubert [Sch13]

has recently shown that there are no time-translation–invariant Hadamard states; it

seems reasonable to expect that a similar result will hold within our Weyl-algebra frame-

work. And, as we prove in Appendix B, there is no C2 state on AM which is globally

Hadamard and boost-invariant, either. This is another reason to take the view that the

‘physical algebra’ is A0,M.

3.4.3 The non-existence theorem

Having carefully set up the classical theory for massless fields on our one-mirror space-

time (M,η), and having clarified our perspective on both the appropriate strategy to

deal with spacetimes with boundaries (in Section 3.3.2), and the status of the infra-

red pathology for massless fields on full (1+1)-dimensional Minkowski spacetime, we

now turn to the theory obtained by quantizing the classical system analysed in Section

3.4.1. For this theory, we are now in a position to rigorously define an appropriate

class of quantum states for which we are able to prove a non-existence theorem (Theo-

rem 3.4.7) which, arguably (see however Footnote 24) is analogous to the non-existence

result which we conjecture for Kruskal. Namely, the class of ‘strongly boost-invariant

globally-Hadamard’ states of Definition 3.4.6 below. Indeed, we will show that once our

definitions are in place, the strategy outlined in Section 3.2 becomes a rigorous proof of

this theorem once Equation (3.4) is established.

In the previous section we have argued that the ‘physical algebra’ for massless fields on

full (1+1)-dimensional Minkowski space is the Weyl subalgebra A0,M of AM generated

by Minkowski-space solutions in S0,M. Similarly, here we regard the ‘physical algebra’

for massless fields on (M,η), satisfying Dirichlet boundary conditions on ∂M , to be not
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A := W (S, σ), but rather its subalgebra A0 := W (S0, σ) generated by solutions in S0

[cf. Section 3.4.1 for definitions of the symplectic vector spaces (S, σ) and (S0, σ)].

Definition 3.4.6. A strongly boost-invariant globally-Hadamard state on A0 is a boost-

invariant state on A0 whose spacetime smeared two-point function Λ exists and admits

an extension Λext to a bidistribution on IntM which is (i) globally Hadamard in the

sense of Definition 3.3.1, (ii) boost-invariant and (iii) a weak bisolution of the wave

equation.23

We remark that one could contemplate replacing the word ‘global’ in this definition

by the word ‘local’ and thereby define a notion of ‘strongly boost-invariant locally-

Hadamard’. However, in view of the fact that no assumption of positivity is made for

the extension of the spacetime smeared two-point function, the local-to-global theorem

of Radzikowski [RV96, Rad92] will presumably not be available to conclude that the two

notions are equivalent and it is not clear whether we would be able to prove that there

is no state satisfying the local version of the definition.

We point out that, with IntM replaced by R2 and A0 replaced by A0,M in the above

definition, there obviously is a strongly boost-invariant globally-Hadamard state on

A0,M – namely ωM as we in fact pointed out at the end of the previous section. And

most importantly, with the obvious replacements, in the case with two mirrors (see the

Introduction) there is a strongly boost-invariant globally-Hadamard state, namely the

‘Hartle-Hawking-Israel-like state’ constructed in [Kay15] with two-point function given

by Equation (5) in that paper – as one may verify by inspection of that formula.

In contrast, however. . .

Theorem 3.4.7. There is no strongly boost-invariant globally-Hadamard state on A0.24

We first record and prove a preliminary lemma.

Lemma 3.4.8. For any two solutions φ1, φ2 in SB one can find a causally convex and

globally hyperbolic open subregion O of IntM , a pair of test functions F1, F2 ∈ C∞00 (O)

and a Cauchy surface C for O containing a portion of HB, such that

• the Cauchy data for φ1 and φ2 on C vanish outside C ∩HB;

23It is not assumed that this extension still satisfies the canonical commutation relations for all test
functions, i.e. that Λext(F,G) − Λext(G,F ) = iE(F,G) for all F,G ∈ C∞0 (IntM) [of course these are
satisfied for pairs of test functions belonging to the subspace C∞00 (IntM)].

24This theorem of course implies that there are no boost-invariant states on the ‘full’ Weyl algebra
A with globally Hadamard spacetime smeared two-point function (in the sense of Definitions 3.3.1
and 3.4.5), since the restriction to A0 of any such state would obviously be a strongly boost-invariant
globally-Hadamard state on A0. However, it does not imply that there is no state on A0 which is
boost-invariant and whose spacetime smeared two-point (exists and) admits an extension to a globally
Hadamard bidistribution on IntM , i.e. one satisfying (i) but not (ii) and/or (iii) in Definition 3.4.6.
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Figure 3.6: Illustration of the set O, Cauchy surface C and test functions F1, F2

constructed in Lemma 3.4.8 and used in the proof of Theorem 3.4.7.

• F1 and F2 have support in I−O(HB ∩ O) ∩ I−O(C ), EF1 = φ1 and EF2 = φ2 (here

I±O(S) denotes the chronological future/past of a subset S in O);

• EMF1 is the full Minkowski space solution which is purely right-moving and with

restriction to HB equal to φ1�HB , i.e. EMF1 = TBφ1 where TB is the linear sym-

plectomorphism of Proposition 3.4.1 (and a similar statement with F1 ↔ F2, and

φ1 ↔ φ2).

Moreover, O can be taken to be geodesically convex, and therefore a causal normal neigh-

bourhood of any of its Cauchy surfaces. All the above holds equally with HB ↔ HA and

TB ↔ TA.

Proof. Since φi ∈ SB (i = 1, 2), there exists a unique function fi ∈ C∞0 (R) such that

φ̃i(u, v) = fi(u)− ϑ(v)fi(−1/v) ∀ u, v. Pick um < 0 with supp f1 ∪ supp f2 ⊂ (um,+∞).

Then O := {(t, x) | u(t, x) > um, v(t, x) < −1/um} is clearly a causally and geodesically

convex, globally hyperbolic open subregion of IntM , and for |um| sufficiently large it

is clear that a Cauchy surface C for O can be found satisfying the requirements in the

statement of the Lemma, see Figure 3.6.

In order to prove the statements about F1, F2 one proceeds just as in the proof of

Theorem 3.4.4 (cf. in particular Equations (3.17)–(3.18) and the discussion following

these), namely picking any χ ∈ C∞0 (R) such that suppχ ⊂ (−∞, 0) and
∫
R χ(x) dx = 1,

and then defining F̃i(u, v) = −4χ(v)f ′(u).25

25Note that, defining ψ(s) =
∫ s
−∞ χ(s′) ds′ and ξi(t, x) = −ψ(v(t, x))φi(t, x), this amounts to setting

Fi = �ξi.
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Proof of Theorem 3.4.7. As already outlined in the Introduction and in Section 3.2, one

need only prove that there are no quasi-free strongly boost-invariant globally-Hadamard

states. Thus, suppose such a quasi-free state ω exists with spacetime smeared two-point

function Λ : C∞00 (IntM)×C∞00 (IntM)→ C, and let Λext be an extension of Λ satisfying

(i), (ii) and (iii) in Definition 3.4.6. Let φ1, φ2 ∈ SB and pick a causally and geodesically

convex, open, globally hyperbolic subset O of IntM , a Cauchy surface C for O and a

pair of test functions F1, F2 ∈ C∞00 (O), as in the statement and proof of Lemma 3.4.8.

Since Λext is a globally Hadamard bidistribution on O, results on the propagation of the

global Hadamard form contained in [FSW78, KW91] guarantee that we are free to choose

N = O, χ ≡ 1 and T (t, x) = t as the causal normal neighbourhood, ‘smoothing function’

and ‘global time function’ in Definition 3.4.5. In terms of these, the global Hadamard

condition for Λext simply reduces to the existence of a function HO ∈ C∞(O ×O) such

that

Λext(F,G)− ΛM(F,G) =

∫
O×O

HO(x, y)F (x)G(x) dµη(x) dµη(y) (3.23)

for all F,G ∈ C∞0 (O), where ΛM is as defined in Equation (3.22). We remark that, since

Λext and ΛM are both weak bisolutions of the wave equation, then HO is a (smooth)

bisolution of the wave equation. Also, since both Λext�C∞0 (O)×C∞0 (O) (by assumption) and

ΛM�C∞0 (O)×C∞0 (O) are invariant under the (local) one-parameter group of Lorentz boosts

applied to the two copies of C∞0 (O) simultaneously, it follows that HO is annihilated

by the formal adjoint X∗ of the infinitesimal generator X = X1 ⊕ X2 = (x1∂/∂t1 +

t1∂/∂x1) ⊕ (x2∂/∂t2 + t2∂/∂x2) (where, for i = 1, 2, ti and xi are inertial coordinates

on the i-th copy of O). Since X∗ = −X, it follows that HO is constant on the integral

curves of X on O×O. Together with global smoothness (and in particular smoothness at

the point (0, 0; 0, 0)), this clearly implies that HO is constant on the portion of HB×HB
contained within O ×O.

Now recall that the test functions F1 and F2 were chosen to both have support in

I−O(HB ∩O)∩ I−O(C ) (see again Figure 3.6). Let α ∈ C∞(O) and F be any test function

supported in I−O(C ). Then, proceeding similarly to Equations (B.12)–(B.13) in Appendix

B of [KW91], and noting that � = ∇a∇a,∫
O

αF dµη =

∫
I−O (C )

αF dµη

=

∫
I−O (C )

α�E+
OF dµη

=

∫
I−O (C )

[�α]E+
OF dµη +

∫
I−O (C )

∇a[α←→∇ aE
+
OF ] dµη
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=

∫
I−O (C )

[�α]E+
OF dµη +

∫
C

na[α
←→∇ aE+

OF ] dµC

=

∫
I−O (C )

[�α]E+F dµη −
∫
C

na[α
←→∇ aEF ] dµC , (3.24)

where E±O denotes the retarded/advanced Green operator for � on O, in the fourth step

Gauss’ law has been applied, and in the final step we used the fact that E−F vanishes

on a neighbourhood of C , together with Equation (3.7).

Recalling the fact that HO ∈ C∞(O × O) is a bisolution of the wave equation, and

applying Equation (3.24) twice, with first α interpreted as
∫
OHO(·, x2)F2(x2) dµη(x2)

and F interpreted as F1, and then with α interpreted as HO(x1, ·) for arbitrary fixed

x1 ∈ O and F interpreted as F2, yields∫
O×O

HO(x1, x2)F1(x1)F2(x2) dµη(x1) dµη(x2)

=

∫
C×C

HO(x1, x2)
←→∇ 1a←→∇ 2bφ1(x1)φ2(x2)na(x1)nb(x2) dµC (x1)dµC (x2)

= 4

∫
(HB×HB)∩(O×O)

[∇1a∇2bHO(x1, x2)]φ1(x1)φ2(x2)na(x1)nb(x2) dµHB (x1)dµHB (x2)

= 0.

In the second step, we have used the fact that the Cauchy data for φ1 and φ2 are

supported in C ∩ HB and performed two integrations by parts. The final equality is

a consequence of the constancy of HO on (HB × HB) ∩ (O × O). This proves that

Λ(F1, F2) = ΛM(F1, F2). In terms of the symplectically smeared two-point function λ2

of our state ω, this means that

λ2(φ1, φ2) = λM(EMF1, EMF2),

where we recall that λM denotes the symplectically smeared two-point function of the

(1+1)-dimensional Minkowski vacuum state ωM on A0,M discussed in Section 3.4.2. But

since F1 and F2 were chosen so that EMF1 = TBφ1 and EMF2 = TBφ2, and since

φ1, φ2 ∈ SB are arbitrary, we conclude that in fact

λ2(φ1, φ2) = λM(TBφ1, TBφ2) (3.25)

for all φ1, φ2 ∈ SB. Next, let (K,H ) be the one-particle structure associated to ω, and

let (KM,HM) be the one-particle structure associated to ωM (see Proposition A.0.2 in
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Appendix A), then Equation (3.25) implies that

〈Kφ1 | Kφ2〉H = 〈KMTBφ1 | KMTBφ2〉HM
(3.26)

(and similarly for φ1, φ2 ∈ SA and TA). Now it is known (cf. pages 89–90 in [KW91])

that

(AM) KMSr-mov and KMSl-mov are dense in complex-linear subspaces Hr-mov and Hl-mov

of HM (respectively);

(BM) KMS
R
r-mov + iKMS

R
r-mov is dense in Hr-mov and KMS

R
l-mov + iKMS

R
l-mov is dense in

Hl-mov.

But Equation (3.26) implies that the obvious corresponding properties, i.e. (A) and

(B) of Section 3.2, are inherited by (K,H ). In detail: define the complex Hilbert

spaces H1 and H2 by H1 := KMSr-mov + iKMSr-mov with the restriction of the inner

product in HM, and H2 := KSB + iKSB with the restriction of the inner product in

H ; define also the real-linear subspaces M1 := KMSr-mov ⊆H1 and M2 := KSB ⊆H2.

Then, clearly, M1 + iM1 is dense in H1 and M2 + iM2 is dense in H2. We recall that

both K : S0 → H and KM : S0,M → HM are symplectic maps of real symplectic

vector spaces (the symplectic forms on the respective codomains being given by twice

the imaginary part of the inner product), and therefore are injective. It follows that

(KM�Sr-mov
)−1 : M1 → Sr-mov exists, and that the map

m : M1 →M2 defined by m = K ◦ TB ◦ (KM�Sr-mov
)−1

is real-linear and bijective. In addition, Equation (3.26) entails precisely that m pre-

serves inner products. By Lemma A.0.3, m then extends uniquely to a complex-linear

isomorphism, which we call UB, from H1 to H2. That is, we have a unique Hilbert

space isomorphism

UB : KMSr-mov + iKMSr-mov → KSB + iKSB.

restricting to m : KMSr-mov → KSB. Therefore, any subset of the Hilbert space on the

right-hand side which corresponds, under U−1
B , to a dense subset of the Hilbert space

on the left-hand side, must itself be dense. Since U−1
B (KSB) = m−1(KSB) = KMSr-mov

and we know [see (AM) above] that KMSr-mov is dense in KMSr-mov + iKMSr-mov, it

follows that KSB is dense, i.e. we have proved property (A) of Section 3.2. The proof

with A↔ B, and the proof of property (B), are completely analogous.

The arguments leading to the final contradiction were already given in Section 3.2.
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We remark that the connection between the above proof and the heuristic discussion in

Section 3.2 is made clearer if we note that, for any pair φ1, φ2 ∈ Sr-mov,

〈KMφ1 | KMφ2〉HM
= − 1

π
lim
ε→0+

∫
f1(u1)f2(u2)

(u1 − u2 − iε)2
du1du2,

where φ1(t, x) = f1(t−x) and φ2(t, x) = f2(t−x) (see e.g. Observation 6.1 and Proposi-

tion 7.2 in [DK87]). Equivalently, f1, f2 can be thought of geometrically as the restric-

tions of φ1 and φ2 (respectively) to HB.

3.5 Conclusions and future directions

In this chapter, we proved that there is no ‘strongly boost-invariant globally-Hadamard’

state – a notion which we have introduced in Definition 3.4.6 – for the massless wave

equation to the left of an eternally uniformly accelerating mirror (with vanishing bound-

ary conditions on the mirror) in 1+1 Minkowski spacetime. This, we argued, lends sup-

port to our conjecture that there is no isometry-invariant Hadamard state (in the sense

which we have introduced in Section 3.3.2) for the Klein–Gordon equation defined on

the region of Kruskal to the left of a surface of constant Schwarzschild radial coordinate

in the right wedge (with vanishing boundary conditions on that box).

As was already suggested by Kay in [Kay15], the conjecture, if true, would suggest

that there may be fundamental difficulties in attempting to provide a semi-classical

description of a black hole confined to a spherical static box – a scenario which, as we

recalled in Chapter 1, is of basic importance in discussions of black hole thermodynamics

– by basing it on a portion of the Kruskal spacetime which includes the Killing horizons.

Indeed, the paper [Kay15] pointed out a number of senses in which the right wedge

horizons become (both classically and quantum mechanically) unstable for the our 1+1

model system with an accelerating mirror, and argued for a similar problem for our

Klein–Gordon Kruskal system confined to a box. The tentative conclusion there was

that any semi-classical description in the right wedge must break down at the right-

wedge horizons – and it was suggested that it makes no sense to consider the spacetime

as continuing to have any existence beyond these horizons.

One possible way around such a conclusion might be if there were one or more non-

stationary Hadamard states on the region of Kruskal to the left of the box which are

nevertheless stationary when restricted to the region of the right wedge to the left of the

box. If this could be shown to also be impossible it would strengthen the above conclusion

further, whereas if it would turn out to be possible it would perhaps undermine it. But it

would still be strange if an equilibrium state of a black hole in a box were to be modelled
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mathematically by a state whose domain of definition includes the left wedge but which

is not stationary when restricted to that left wedge. It would obviously be of interest to

try to settle this question – or the obvious counterpart question for the wave equation

in 1+1 Minkowski space to the left of an eternally uniformly accelerating mirror.

Converting our arguments in favour of the Kruskal conjecture into a rigorous proof would

be of considerable interest and we now comment on the main challenges which lie ahead.

First, one would need to gain full control over the relevant PDE theory in the presence

of Dirichlet (and possibly of even more general) boundary conditions – this will be more

thoroughly discussed in Section 5.4. Then, the validity of Property (b) on p. 103 and

of its ‘symplectic translation’ on p. 110 would need to be rigorously assessed. Finally,

the ‘closure conjecture’ on p. 111 would also need to be more precisely formulated and

proved.

On a more technical level, it would be of interest to determine whether the notion of

‘strongly boost-invariant globally-Hadamard’ state can be relaxed while maintaining in-

tact the conclusion of Theorem 3.4.7, particularly by dropping either of the requirements

(ii) and (iii) in Definition 3.4.6 – see our comments in Footnote 24.

A topic which, although we have not highlighted this so far, is related to our investiga-

tions in this chapter, is that of deciding on a more stringent notion of what it might mean

for a state to be (globally) Hadamard in quantised systems with boundary conditions.

Definition 3.3.1 avoided dealing with the timelike boundary and did not prescribe how

exactly the singularities of the two-point function ought to behave upon reaching the

boundary. To find a Hadamard notion which, given a boundary condition, appropriately

includes such a prescription, is an interesting and open problem. An investigation into

this issue was recently initiated in [DF16].





Chapter 4

Filling a gap in [KW91]

4.1 Introducing the problem

This chapter is dedicated to precisely pointing out, and attempting to fill, a technical

gap in some of the arguments of the paper [KW91]. We should stress that, while it

was consideration of Theorem 3.4.2 which naturally led us to notice this gap (see also

the Author’s Declaration and Footnote 19), the discussion in this chapter is logically

separate from the rest of the thesis – although it may well be that the methods used

here will turn out to be useful in the attempt to rigorously prove our no-go conjecture

of Sections 3.1 and 3.2 for Kruskal-in-a-box.

Our work in Chapter 2 (see in particular Section 2.5.5) has demonstrated that the spaces

called SA and SB by Kay and Wald are quite large [indeed, as large as C∞0 (HA) and

C∞0 (HB) respectively] and their elements do indeed have the properties claimed in that

paper. In particular, it follows that linear symplectic forms σA and σB may be defined

on SA and on SB (respectively), by using Equation (3.2) with C replaced by HA and

HB respectively, cf. Equation (4.4) in [KW91]. Given this, one would also like for it to

be the case that Equation (3.2), with C an arbitrary smooth Cauchy surface, defines an

extension σ0 of both σA and σB to the space S0 = SA + SB. This extension would be

bilinear and antisymmetric.

Assuming for a moment that this can be done, the gap to be filled in [KW91] is that

the authors of that paper do not prove that the a priori pre-symplectic space (S0 =

SA + SB, σ0) is actually symplectic, i.e. it is not proven there that σ0 (assumed defined

on S0) is non-degenerate. This gap needs to be filled, in particular, since the proof of

Theorem 4.2 in [KW91] (which, we recall, establishes certain important uniqueness and

KMS properties) relied on the presumed non-degeneracy of σ0 on S0, in the presence of

which Lemma 4.1 in the same paper could be applied to yield the desired results.

135
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As a matter of fact, Kay and Wald remarked, in the Note Added in Proof in [KW91] (cf.

the discussion in Section 3.2), that while (SA, σA) and (SB, σB) are indeed, individually,

well-defined linear symplectic spaces, elements of S0 may not be regular enough for

the extension σ0 above to be easily definable by Equation (3.2). Indeed, we saw in

great detail in Section 2.5.4 of this thesis that, while the elements of SA and of SB

(respectively) are continuous, solve the Klein–Gordon equation in a weak sense, and are

spatially compact, they are not guaranteed to be globally once differentiable as they

can exhibit jump discontinuities in their derivatives in directions transverse to HA and

HB (respectively). This creates awkwardness in defining σ0 on S0 by integration over

Cauchy surfaces and, even more crucially, means that SA, SB and S0 are not subspaces

of the space S of smooth spatially compact solutions. As explained in that Note Added

in Proof, the way to address this issue and its implications on the analysis in the main

body of [KW91] – which incorrectly assumed the inclusions SA, SB, S0 ⊆ S – is to

embed (S, σ) into a ‘suitably larger’ linear symplectic space (Ŝ, σ̂), while simultaneously

restricting attention to better behaved, but ‘large’ enough, proper subspaces S̃A, S̃B of

SA and SB (respectively) such that S̃A, S̃B and S̃0 := S̃A + S̃B are contained in Ŝ.

In view of these observations, the gap that’s really to be filled is an analogous one to

the one mentioned above: Is (S̃0, σ̂) a symplectic subspace of (Ŝ, σ̂)? Actually, Kay

and Wald do not give explicit arguments that even (S̃A, σ̂) and (S̃B, σ̂) are symplectic

(sub)spaces – but once all definitions are in place this is not difficult to establish and, in

Section 4.2, we will give a simple argument, which holds on the entire class of spacetimes

considered in [KW91], that (S̃A, σ̂) and (S̃B, σ̂) are indeed symplectic.

Concerning the ramifications onto the (linear, spin-0) quantum theory considered in

[KW91], filling this gap in full generality would allow to complete the proof of a certain

modification of Theorem 4.2 given in the Note Added in Proof in [KW91]. As argued

there, this modified theorem retains the physical significance of the (mathematically

incorrect) original statement, while still allowing to carry out proofs of the (unchanged)

uniqueness and non-existence theorems which are among the main achievements of that

work (see p. 17 in this thesis). The modified theorem in question involves the ‘nat-

ural extension’ to the Weyl algebra (see Appendix A) Â over (Ŝ, σ̂), of a quasifree,

isometry-invariant Hadamard state on the Weyl algebra A over (S, σ). Indeed, the ex-

istence of such a natural extension procedure is a requirement on any candidate choice

of symplectic extension of Ŝ, as we will illustrate in this chapter.

We will give two different lines of argument (the first of which applies to the mass-

less Klein–Gordon equation, the second to more general Klein–Gordon equations with

isometry-invariant potentials) each of which establishes that (S̃0, σ̂) is symplectic for

certain spacetimes with bifurcate Killing horizons, including the notable cases of the
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Minkowski and Kruskal spacetime. As explained in the next paragraph but one, both

lines of arguments rely in particular – but not only! – on the existence of isometry-

invariant Hadamard states for the Klein–Gordon field and spacetime under considera-

tion.

As we mentioned in the introduction to this thesis, and recalled two paragraphs above

the current one, it is argued in [KW91, Ch. 6] that, on the globally hyperbolic patches of

Schwarzschild–de Sitter (with non-zero Schwarzschild mass) and of sub-extremal Kerr,

there can be no isometry-invariant Hadamard state. The non-existence arguments there

use the ‘modified Theorem 4.2’ mentioned above and thus assume that the relevant

(S̃0, σ̂) are symplectic spaces. The situation is curious: on the one hand, these non-

existence proofs have gaps because it was not shown that (S̃0, σ̂) is symplectic in those

spacetimes; on the other hand, the two strategies known to us for establishing this rely on

the existence of precisely the kind of quantum states which we are trying (with [KW91])

to prove do not exist! It is of course still possible to repair the non-existence proofs

in [KW91], which were reductiones ad absurdum, under these circumstances: Assuming

instead that isometry-invariant Hadamard states did exist for those spacetimes, if their

existence can be shown to imply that (S̃0, σ̂) must be symplectic, then one would arrive

at the same contradictions as Kay and Wald did. For the Klein–Gordon equation on

both Kerr and of Schwarzschild–de Sitter (even allowing for isometry-invariant, but

sufficiently regular, potential terms in place of a constant m2 term), we will succeed in

proving that the implication

A : “There exists an isometry-invariant Hadamard state” =⇒ B : “(S̃0, σ̂) is symplectic”

is true, and as just explained this leads to establishing that statement A is, in fact, false,

but we will not be able to establish the truth value of statement B. When we refer,

below, to ‘filling the gap’ in the case of Kerr and Schwarzschild–de Sitter, it needs to be

borne in mind that this is the sense we intend.

The common starting point for both lines of argument is that, as we will show in Theorem

4.2.5 in Section 4.2, if

(i) there exists an isometry-invariant Hadamard state on A , and

(ii) the entire spacetime coincides with the ‘domain of Ck−3-determinacy’ (with integer

k ≥ 5) of the bifurcate Killing horizon HA ∪ HB (this notion will be introduced

in Definition 4.2.3),

then degenerate elements1 of (S̃0, σ̂) are necessarily ‘zero modes’, i.e. are invariant under

the isometries. Once this is established, it immediately follows that (S̃0, σ̂) is symplectic

1That is, elements whose pre-symplectic product with all other elements is zero.
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for all those choices of spacetime (with bifurcate Killing horizon) and of Klein–Gordon

operator such that (a) Conditions (i) and (ii) above are satisfied, and (b) there do not

exist non-zero isometry-invariant solutions in the resulting S̃0.2 Notice that, as will also

be explained in Section 4.2, our definitions of the spaces Ŝ, S̃A and S̃B (and therefore

also S̃0) will be slightly different from (and, morally speaking, more general than) the

ones originally presented in the Note Added in Proof in [KW91].

Sections 4.3 and 4.4 will present our two different lines of argument which allow to

establish the absence of ‘zero modes’ in the cases of interest listed above. We remark

that (a) our methods actually allow to prove a stronger statement, namely the absence

of zero modes amongst solutions of sufficient regularity and not just amongst solutions

in S̃0,
3 and that (b) since neither of our lines of argument will require that Conditions (i)

and (ii) hold, the ‘cases of interest’ include Schwarzschild–de Sitter and Kerr. However,

we have not succeeded in ascertaining whether or not there are zero modes in S̃0 in the

case of the de Sitter spacetime.

4.2 Preliminaries and the common starting point

We begin by reviewing the definitions of the ‘enlarged’ symplectic space (Ŝ, σ̂) and of its

subspaces S̃A, S̃B ⊂ Ŝ. Actually, the definition of (Ŝ, σ̂) given in [KW91] is not entirely

satisfactory: Ŝ is defined there to be the set of real-valued solutions to the Klein–Gordon

equation with C5
0 data on a Cauchy surface, C , which contains the entire bifurcation

surface Σ. It seems not totally clear whether, in this definition, C is a fixed Cauchy

surface, chosen once and for all, or whether it is allowed to depend on the solution.

Either way there would appear to be serious difficulties: If the Cauchy surface is allowed

to depend on the solution, then there is no reason why Ŝ should be a vector space. If it

is assumed to be fixed once and for all, then at least all solutions in the resulting Ŝ are

C2 on spacetime and have spatially compact support, so that a symplectic form σ̂ on Ŝ

can be defined in the obvious way – extending the symplectic form σ on S. However – a

2If one were to adopt the fiction explained in Section 3.2 that SA, SB and therefore S0 = SA + SB
are subspaces of S then there is a simple (though of course false) argument showing that solutions φ
in S which are symplectically orthogonal to the whole of S0 are isometry invariant – and therefore,
apparently, also that (S0, σ) is a symplectic space if there do not exist non-zero isometry-invariant
solutions in S0. This argument does not need to appeal to the existence of any particular quantum
state, and therefore Condition (ii) above is not needed. Namely, as explained on page 91 of [KW91]
in the paragraph preceding Lemma 4.1, and under Condition (i) above, in a first step one easily shows
that such a φ must be constant on each null generator of each horizon (we note that, in that passage of
[KW91], it is stated erroneously that such a solution must be constant on each horizon, but presumably
what was intended is what we wrote above). Then, in virtue of the fact that the isometries map solutions
to solutions, and by the very definition of the domain of determinacy, one can conclude that the solution
will be isometry-invariant.

3The term ‘regularity’ is here used informally to indicate conditions on both the differentiability and
the asymptotic behaviour of the solution. We will not attempt to precisely identify ‘minimal’ regularity
assumptions which are sufficient for ruling out zero modes.
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statement to the contrary in [KW91, p. 133] notwithstanding – there is no reason why

the action of the isometries on (S, σ) will extend to an action on (Ŝ, σ̂). This is because

the pullback by the isometries of a solution in the thus defined Ŝ may fail to have C5

Cauchy data on the chosen Cauchy surface C .

In order to overcome these difficulties we now give what we consider to be an improved

definition for (Ŝ, σ̂). It will also turn out that the resulting framework will allow us to

tackle the main problem dealt with in this chapter in a clean and precise fashion. We

begin by pointing out that the authors of [KW91] already suggested that an enlarged

symplectic space of solutions Ŝ could alternatively be defined by using Cauchy data on

C belonging to appropriate Sobolev spaces. In order to turn this idea into a rigorous

recipe we will draw upon constructions and results as presented in a recent paper [BW15]

by Bär and Wafo concerning the Cauchy and characteristic initial value problems for an

arbitrary second-order normally hyperbolic operator P acting on distributional sections

of a vector bundle over a globally hyperbolic spacetime. We refer to Section 2.4 of this

thesis for a review of the notion of normal hyperbolicity, and to Appendix C for a review

of Sobolev spaces on manifolds.

To wit, for any choice of foliation of the spacetime by smooth spacelike Cauchy surfaces,

Bär and Wafo define spaces of spatially compact solutions to the homogeneous ‘wave

equation’ which have ‘finite k-energy’ (k ∈ R) along the foliation, and then show that

these spaces do not actually depend on the choice of foliation. More precisely, given a

choice of (smooth) Cauchy temporal function t : M → R for the spacetime M , one can

first define, for each k ∈ R, spaces C`(t(M), Hk
loc(C•)) of `-times continuously differ-

entiable sections of the bundle {Hk
loc(Cs)}s∈t(M), where Hk

loc(Cs) is the space of locally

Sobolev sections of the restriction of the original vector bundle to the Cauchy surface

Cs = t−1{s}. As explained in [BW15], these spaces can then be straightforwardly em-

bedded as subspaces of distributional sections of the original vector bundle over M . It is

therefore legitimate to further restrict attention to elements of C`(t(M), Hk
loc(C•)) which

correspond to distributional sections with spatially compact support on M ; this way,

one obtains the spaces denoted by C`sc(t(M), Hk(C•)) in [BW15]. The space of finite

k-energy sections (with respect to t) is then defined by

FE k
sc(t) = C0

sc(t(M), Hk(C•)) ∩ C1
sc(t(M), Hk−1(C•))

(this is Definition 1 in [BW15], though we have suppressed some of the notation there).

The main result (which is Corollary 18 in [BW15]) for the purposes of the present chapter

is the fact that, for any two Cauchy temporal functions t, t′,

FE k
sc(t) ∩ kerP = FE k

sc(t
′) ∩ kerP (4.1)
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(having omitted an embedding into the space of distributional sections from both sides

in the interest of notational clarity). One can thus unambiguously speak of a space

FE k
sc(kerP ) of finite k-energy solutions of the ‘homogeneous wave equation’ for P –

with the property that FE k
sc(kerP ) = FE k

sc(t)∩kerP for all Cauchy temporal functions

t. Topologizing FE k
sc(kerP ) in the manner discussed in Section 2.7.6 of [BW15], one

has that the spatially compact smooth solutions of Pu = 0 form a dense subset of

FE k
sc(kerP ). Furthermore, in a four-dimensional spacetime, by Corollary 20 in [BW15]

and the Sobolev embedding theorem, if N 3 k ≥ 5 then FE k
sc(kerP ) ⊂ Ck−3(M) ⊂

C2(M).

In view of the above (and returning to the specific framework of [KW91]) we give our

alternative definition of the space Ŝ as one of the spaces Ŝk = FE k
sc(kerP ), with N 3

k ≥ 5 to be determined later. It is then to be understood that, unless stated otherwise,

any statement involving ‘Ŝk’ (and the later defined ‘S̃kA’, ‘S̃kB’ and ‘S̃k0 ’) in the remainder

of this chapter will hold for any choice of N 3 k ≥ 5. In the next Proposition we prove

that the ‘obvious’ antisymmetric bilinear form σ̂ (which we refrain from denoting instead

by the more cumbersome ‘σ̂k’) on Ŝk is indeed non-degenerate and thus a symplectic

form.4

Proposition 4.2.1. For any N 3 k ≥ 5, the antisymmetric bilinear form σ : Ŝk× Ŝk → R
defined, for any smooth spacelike Cauchy surface C with future-directed unit normal

vector field ν, by

σ̂(φ, ψ) =

∫
C

(φ∇νψ − ψ∇νφ) dµC (4.2)

(where dµC denotes the volume density on C coming from the pullback of the metric g

to C ) is non-degenerate. That is, (Ŝk, σ̂) is a (real) symplectic vector space.

Proof. We will actually prove the stronger statement that, for any N 3 k ≥ 5, every

φ ∈ Ŝk such that σ̂(φ, ψ) = 0 for all ψ in S = C∞sc (M)∩ kerP ⊂ Ŝk, must be identically

zero. Namely, suppose such a φ exists. Let t be a smooth Cauchy temporal function

adapted to C in the sense that C is one of its level sets, say C = t−1{τ} for some τ ∈ R.

We recall the isomorphism of topological vector spaces

Ŝk ∼= Hk
c (C )⊕Hk−1

c (C ) (4.3)

given by u 7→ (u�C , (∇νu)�C ) and proven as Corollary 14 in [BW15]. Under this isomor-

phism, the dense subspace S of Ŝk is identified with the dense subspace C∞0 (C )⊕C∞0 (C )

of Hk
c (C )⊕Hk−1

c (C ), and the form defined by Equation (4.2) can be written as

σ̂(φ, ψ) =

∫
C

(fp′ − pf ′) dµC (4.4)

4We remark that, presumably, a similar argument to the one we will make was implicitly assumed in
[KW91].
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where (f, p) and (f ′, p′) are the images of φ and ψ (respectively) under the isomorphism

(4.3). In turn, we may (and will) view the right-hand side of Equation (4.4) as

〈
f
∣∣ p′〉

C
−
〈
p
∣∣ f ′〉

C
(4.5)

where 〈· | ·〉C denotes the standard inner product on L2
C(C , dµC ) (though we could

equally well use, instead, the inner product on the corresponding L2 space of real-valued

functions). The original assumption about φ corresponds to the assumption that the

object in (4.5) vanishes for all f ′, p′ ∈ C∞0 (C ). Since the latter space is dense in

L2
C(C , dµC ), there exist sequences (fn)n and (pn)n which tend to −p and f in the L2

sense (respectively), and such that each fn, pn ∈ C∞0 (C ). Denoting by ψn the element

of S corresponding to the pair (fn, pn), we have

σ̂(φ, ψn) = 0 ∀ n ∈ N

and at the same time

σ̂(φ, ψn) = 〈f | pn〉C − 〈p | fn〉C −→ ‖f‖2C + ‖p‖2C as n→∞.

Together, these two facts clearly imply that f and p vanish identically, and therefore

that so does φ.

The ‘awkwardness’ mentioned above in naturally defining an action on Ŝ by the group

of isometries disappears when we use the thus defined Ŝk: Indeed, this follows from

Equation (4.1) together with the fact that the composition of a Cauchy temporal func-

tion with an isometry preserving the time orientation yields another Cauchy temporal

function. Finally a quasi-free Hadamard state on the Weyl algebra A over (S, σ) will

possess a natural quasi-free extension to the Weyl algebra Â k over (Ŝk, σ̂) by the same

reasoning as in [KW91]. Namely, one has the following result.

Proposition 4.2.2. Let ω be a quasi-free, globally5 Hadamard state on A = W (S, σ).

5The reader might wonder why we insist on adding the word ‘global’ at this point, in view of
Radzikowski’s resolution of Kay’s conjecture. This is because Radzikowski’s local-to-global theorem
for Hadamard stated of the Klein–Gordon field, Theorem 9.2 in [RV96], resolves Kay’s conjecture when-
ever it is also known that the spacetime smeared two-point function of the state defines a continuous
(bi)distribution (the adjective ‘continuous’ here and elsewhere is perhaps a pleonasm when referred to
a (bi)distribution, but we keep it for emphasis). However, we are working in the original framework
of [KW91] where no such continuity assumption was made. We are at present unaware of any explicit
result in the literature proving that the two-point functions of a globally Hadamard state, with ‘globally
Hadamard’ taken in the strict sense of [KW91], always defines a continuous bidistribution. Equation
(4.6) in the main text suggests a strategy for arriving at such a result: Namely, the two-point function
of a globally Hadamard state is given by a composition

C∞0 (M)× C∞0 (M)→ S × S → C

where the first arrow is given by applying the causal propagator E to each slot and the second arrow
is defined by the right-hand side of Equation (4.6). By virtue of the Schwartz kernel theorem (see e.g.
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Let (K,H ) be its associated one-particle structure. Then, for any sequence (φn)n in S

which tends to φ̂ ∈ Ŝk (for k ≥ 5) in the latter’s topology, the sequence (Kφn)n has a

limit which depends only on φ̂. We denote the resulting map

Ŝk →H , φ̂ 7→ lim
n→∞

Kφn

by K̂, so that the statement above is simply that K̂ is sequentially continuous. Fi-

nally, (K̂,H ) is the one-particle structure associated to a quasi-free state ω̂ on Â k =

W (Ŝk, σ̂), which (following [KW91]) we call the natural extension of ω from A to Â k.

Proof. (Sketch) It was proved in [BW15] (Corollary 20) that there is a continuous em-

bedding

Ŝk → Hk
loc(M)

into the Fréchet space of locally Sobolev functions on M . Therefore, any sequence

(φn)n in S which tends to φ̂ ∈ Ŝk in the topology of Ŝk does so also in the topology

of Hk
loc(M). Using the isomorphism (4.3) for any smooth spacelike Cauchy surface C ,

and since the spaces Hj
c (C ) are defined as strict inductive limits of spaces of Sobolev

functions supported in compact sets of C , it follows6 that the Cauchy data for the φn

have support contained in a common compact set K ⊆ C and therefore, by finite speed

of propagation for the Cauchy problem, that suppφn ⊆ J(K) for all n. Therefore, the

intersections

supp(φn) ∩ C1 and supp(φn) ∩ C2

are all contained in compact sets K1, K2 of C1 and C2 respectively. We now pick two

relatively compact open neighbourhoods A1, A2 (in M) of K1 and K2 (respectively),

and two smooth, compactly supported bump functions χ1, χ2 with χ1 ≡ 1 on A1 and

Theorem 5.2 in [Hör90a]), the two-point function (i.e, this composition) is representable by a (unique)
continuous bidistribution if and only if it is a separately continuous bilinear form. In turn (see e.g.
Theorem 2.1.4 in [Hör90a]), one need only check sequential continuity at zero of the maps given, for
fixed φ ∈ S, by the composition

C∞0 (M) 3 F 7→ (EF, φ) 7→ 〈KEF | Kφ〉H ∈ C

(notice that by the canonical commutation relations one does not need to also check continuity ‘in the
other slot’). By Definition 3.4.6 and Proposition 3.4.8 in [BGP07], if a sequence (Fn)n of test functions
converges to zero in the standard topology of C∞0 (M), then the sequence (EFn)n converges to the zero
function in the standard Frechét space topology of C∞(M) and there exists a compact set K ⊂M such
that each supp(EFn) ⊆ J(K). Thus if one can prove that, for any compact set K and sequence (ϕn)n in
C∞sc (M) such that supp(ϕn) ⊆ J(K) and (ϕn)n → 0 in C∞(M), the right-hand side of Equation (4.6),
with ϕn instead of φ1, tends to zero for any φ2 ∈ S, then indeed one has the result that there are no
globally Hadamard distributions in the Kay–Wald sense which do not define continuous bidistributions.
However, we shall not attempt to turn this strategy into a rigorous proof in this thesis.

6If X is the strict inductive limit of an sequence of spaces {Xn} with Xn closed in Xn+1 for each n,
then a sequence (xi)i∈N ⊂ X converges in X if and only there is an n so that (xi)i∈N ⊂ Xn and (xi)i∈N
converges in Xn.
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χ2 ≡ 1 on A2. Then the convergence of (φn)n in Hk
loc(M) implies that, for i = 1, 2,

(χiφn)n → χiφ̂ in Hk(supp(χi)).

By using a doubling procedure as described for instance in Section 2.6.2 of [BW15] (or

otherwise), one can satisfy the hypotheses of (a version of) the Sobolev embedding theo-

rem. Indeed, the doubling produces a compact Riemannian manifold without boundary

Mi = (Mi, ei) and a continuous embedding of Hk(supp(χi)) into the standard Sobolev

space Hk(Mi). Since we work in four spacetime dimensions and we are taking k ≥ 5,

it follows that the sequence (χiφn)n converges in the Banach space C2(Mi). Thus in

particular φn and its derivatives up to order 2 converge uniformly – to φ̂ and its corre-

sponding derivatives – on the compact sets K1 ⊆ C1 and K2 ⊆ C2.

The remainder of this proof (which will be more sketchy) is borrowed from [KW91], cf.

the last full paragraph in p. 133 there. Namely, as it was proved there (see p. 85 in

[KW91]), for ω,K,H as in the statement of the Theorem,

〈Kφ1 | Kφ2〉H = lim
ε→0+

∫
C1×C2

ΛT,nε (x1, x2)
←→∇ 1a

←→∇ 2bφ1(x1)φ2(x2) dSa1 dSb2 (4.6)

where φ1, φ2 ∈ S, C1, C2 are smooth spacelike Cauchy surfaces one of which lies entirely

in the chronological future of the other, and the kernel ΛT,nε (x1, x2) (with T a time

function and n ∈ N) is defined on a causal normal neighbourhood N of C1 such that

C2 ⊂ N . By an integration by parts argument presented in the first full paragraph under

Equation (B.11) in [KW91], the right-hand side of Equation (4.6) can be rewritten as an

integral over C1 × C2 of a sum of terms each involving a product of a locally integrable

function of x1 and x2 times φ1 and φ2 or their derivatives of order at most 2. By using

φm − φn instead of φ1 and φ2, we see that the fact that (φn)n is Cauchy in C2 norm, as

proved above, readily implies that

‖K(φm − φn)‖2H ≤ C ‖φm − φn‖C2(K1) ‖φm − φn‖C2(K2) (4.7)

for some C ≥ 0. Therefore, (Kφn)n is Cauchy and thus has a limit in H , as we wished

to prove. Independence of the limit from the choice of sequence (φn)n is easily seen by

consideration of the fact that if (φ′n)n is another sequence which tends to φ̂ then, if K ′1

and K ′2 are the compact sets of C1 and C2 corresponding to K1 and K2 above, then we

have ‖φn − φ′n‖C2(Ki∪K′i)
→ 0 as n → ∞ for i = 1, 2, which by a similar inequality to

(4.7) shows that K(φn − φ′n)→ 0 as n→∞.

It is a very easy verification that (K̂,H ) satisfies the requirements of a one-particle

structure over (Ŝk, σ̂). Finally, the natural extension ω̂ is defined by ω̂[W (φ̂)] =

exp(−1
2‖K̂φ̂‖2H ).
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Just as in [KW91], in the case of a Klein–Gordon equation with isometry-invariant

potential, spaces of solutions S̃kA and S̃kB can now be defined in such a way that they are

at the same time ‘large’ subspaces of SA and SB (respectively) and suitable subspaces of

Ŝk. Notice that our S̃5
A and S̃5

B coincide with the S̃A and S̃B in [KW91] (respectively).

The key observation is that any function in SA whose restriction to the A-horizon is of

the form ∂k(Ukg)/∂Uk, for some compactly supported and smooth function g on the

A-horizon, has Ck0 data on any Cauchy surface C containing the bifurcation surface. A

similar statement (with U replaced by V ) holds for functions in SB. Denoting the linear

spaces of such solutions by S̃kA and S̃kB, this means that, for k ≥ 5, S̃kA, S̃
k
B ⊂ Ŝk as

desired. We also let S̃k0 = S̃kA + S̃kB.

To show that the restriction of σ̂ to S̃kA is non-degenerate, recall that any solution in

S̃kA is smooth and of compact support when restricted to the A-horizon. Suppose φ is

a degenerate element in (S̃kA, σ̂), i.e. suppose that σ̂(φ, ψ) = 0 for all ψ ∈ S̃kA. Denote

by f the restriction of φ to the A-horizon. Starting from Equation (4.4) in [KW91] and

integrating by parts k + 1 times one readily sees that Uk ∂
k+1f

∂Uk+1 = 0. Therefore, since

f is smooth, ∂k+1f
∂Uk+1 = 0 everywhere on the horizon. So f is a polynomial of degree at

most k in the affine parameter U , whose coefficients are (compactly supported, smooth)

functions of the coordinates on the bifurcation surface. But no such polynomial can

have compact support on the A-horizon unless it’s zero. Thus there are no non-zero

degenerate elements and (S̃kA, σ̂) is a symplectic space. (S̃kB, σ̂) is also a symplectic space

by a similar argument.

We now turn to what we already called the ‘common starting point’ for both our strate-

gies: That is, we aim to show that, under Conditions (i)–(ii) above, any degenerate

element of (S̃k0 , σ̂) is necessarily isometry-invariant. Before giving a proof of this fact,

we must introduce the notion of domain of Cn-determinacy (with respect to the Klein–

Gordon operator) of a subset U ⊆ M , with n ∈ N ∪ {∞} ∪ {ω}, which appears in the

formulation of our Condition (ii).

Definition 4.2.3. The ‘domain of Cn-determinacy’ D (n)[U ] (with respect to the Klein–

Gordon operator) of U ⊆ M is the set of points p ∈ M such that every Cn solution

which vanishes on U must vanish at p.

Remark. Kay and Wald’s ‘domain of determinacy’ (cf. pages 64–65 in [KW91]) coincides

with what we would call the ‘domain of C∞-determinacy.’ It is also clear that the

inclusions D (l)[U ] ⊆ D (m)[U ] hold for l ≤ m.

The following Lemma will be used in the proof of the ‘common starting point’, Theorem

4.2.5 below.

Lemma 4.2.4. Let k ∈ N with k ≥ 5, and let ω be a quasi-free Hadamard state on A , with

associated one-particle structure (K,H ). Let K̂ : Ŝk → H be the ‘natural’ extension
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of K : S → H according to Proposition 4.2.2. Then the one-parameter unitary group

U(t) on the one-particle Hilbert space H for ω which implements the ‘time translations’

T (t) : S → S also implements the ‘time translations’ T̂ (t) : Ŝk → Ŝk, i.e.

U(t)K̂ = K̂T̂ (t). (4.8)

Proof. For any ψ̂ ∈ Ŝk, by definition

K̂ψ̂ = lim
n→∞

Kψn (4.9)

where (ψn)n∈N is a sequence of solutions in S which converges to ψ̂ in the topology for

Ŝk = FE k
sc(kerP ) given in [BW15] [and any such sequence yields the same limit on the

right-hand-side of Equation (4.9)]. Since U(t) is bounded,

U(t)K̂ψ̂ = U(t)
[

lim
n→∞

Kψn

]
= lim

n→∞
U(t)[Kψn]

= lim
n→∞

K[T (t)ψn].

The claim then follows since it is clear that (T (t)ψn)n∈N is a sequence in S which tends

to T̂ (t)ψ̂ in the topology of Ŝk.

We can now give the statement and proof of the ‘common starting point’ mentioned on

p. 137.7

Theorem 4.2.5. Let k ∈ N with k ≥ 5, and supposed the following conditions hold:

(i) there exists an isometry-invariant Hadamard state on A , and

(ii) the entire spacetime coincides with the domain of Ck−3-determinacy of the bifurcate

Killing horizon HA ∪HB according to Definition 4.2.3.

Then any solution in S̃k0 which is symplectically orthogonal to S̃k0 is isometry-invariant.

Proof. A proof was given in [KW91, p. 135] (under the unnecessary extra assumption

that k = 5) that if Condition (i) above holds and Condition (ii) is replaced by

(ii’) the entire spacetime coincides with the domain of C∞-determinacy of the bifurcate

Killing horizon HA ∪HB,

then any solution φ in S with the property that σ̂(φ, φ0) = 0 ∀ φ0 ∈ S̃0 must be

isometry-invariant on the entire spacetime. We now describe how those arguments can

7Note that it was perhaps suggested in [KW91] that an even stronger result than Theorem 4.2.5
should hold, namely that (under the same hypotheses) any solution in Ŝ (rather than just S̃0) which is
symplectically orthogonal to S̃0 is isometry-invariant. However, the integration by parts argument used
in the proof of Theorem 4.2.5 does not straightforwardly adapt in that case, due to the fact that the
restrictions of elements in Ŝk to either horizon are in general only in Ck−3.
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be adapted for our purposes. Let ψ0 ∈ S̃k0 be such that σ̂(ψ0, φ0) = 0 ∀ φ0 ∈ S̃k0 .

Then, in particular, ψ0 is symplectically orthogonal to the whole of S̃kA and to the

whole of S̃kB. We would like to apply an integration by parts argument similar to the

one used above in the proof that (S̃kA, σ̂) and (S̃kB, σ̂) are symplectic to conclude that

the restrictions of ψ0 to HA and HB are polynomials of degree at most k in U and V

respectively, whose coefficients in both cases are functions on the bifurcation surface.

However, the restriction of ψ0 to either horizon, while in Ck, may fail to be Ck+1 at the

bifurcation surface. To overcome this difficulty one can apply our integration by parts

argument separately, first to symplectic products of ψ0 with solutions in S̃L,kA and then

to symplectic products of ψ0 with solutions in S̃R,kA , where

S̃
L/R,k
A =

{
φ ∈ S̃kA

∣∣∣∣ φ’s data on HA is of the form
∂k(Ukg)

∂Uk
with g ∈ C∞0

(
HL/RA

)}

and we also define the spaces S̃
L/R,k
B in a similar fashion. Since the restrictions of ψ0

to HLA and to HRA are smooth, it indeed follows that each of them is a polynomial in U

of degree at most k whose coefficients are smooth functions on the bifurcation surface.

(The fact that ψ0 is Ck across the bifurcation surface will imply that the first k of these

coefficients agree.) Analogous results clearly hold with A replaced by B and U replaced

by V . Now let T̃ (t) denote the time translation operator on S̃k0 . We define a generalised

version of the operator Q(t) in Equation (N.4) in [KW91], namely

kQ(t) =
k∏

l=−k
[T̃ (t)− elκt] : S̃k0 → S̃k0 .

Just as in [KW91] one sees that since, for any j with 0 ≤ j ≤ k, U j is annihilated

by [T̃ (t) − ejκt], kQ(t)ψ0 vanishes on HA. Similarly, for any j with 0 ≤ j ≤ k, V j is

annihilated by [T̃ (t) − e−jκt], which implies that kQ(t)ψ0 vanishes on HB. Therefore

kQ(t)ψ0 = 0 on HA ∪ HB. Now, if ψ0 were smooth – as is φ in the corresponding

arguments in [KW91] – the very definition of the domain of (C∞-)determinacy of a set

would immediately imply that, under condition (ii’) above, kQ(t)ψ0 = 0 throughout

the spacetime. However, while ψ0 is certainly everywhere Ck−3, it could fail to be

everywhere smooth. Thus one cannot conclude that kQ(t)ψ0 = 0 if Condition (ii’) alone

holds. However, under the stronger Condition (ii) – namely under the assumption that

the entire spacetime coincides with the domain of Ck−3 determinacy of the bifurcate

Killing horizon – the vanishing of kQ(t)ψ0 on HA ∪HB does imply that kQ(t)ψ0 = 0 on

the entire spacetime.

At this point, again just as in [KW91], we invoke Condition (i), i.e. the existence of an

isometry-invariant Hadamard state on the Weyl algebra A over (S, σ). Without loss
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of generality, we can assume this state to be quasi-free and denote its associated one-

particle Hilbert space structure by (K,H ). Let K̂ : Ŝk →H be the ‘natural extension’

of K : S → H . By Lemma 4.2.4, an equation analogous to Equation (N.6) in [KW91]

holds. Namely:
kP (t)K̂ψ0 = 0 (4.10)

where

kP (t) =
k∏

l=−k
[U(t)− elκt].

The desired result that ψ0 is isometry-invariant then follows by straightforwardly adapt-

ing the arguments given in the first paragraph on page 136 in [KW91] – in particular,

using in the final step the fact that K̂ : Ŝk → H is injective, which in turn follows

from the property 2 Im〈K̂ψ̂|K̂φ̂〉 = σ̂(ψ̂, φ̂) ∀ ψ̂, φ̂ ∈ Ŝk and the nondegeneracy of σ̂

established in Proposition 4.2.1.

Corollary 4.2.6. For any N 3 k ≥ 5, (S̃k0 , σ̂) is a symplectic space if Conditions (i)–(ii)

are satisfied and there are no non-zero isometry-invariant solutions in S̃k0 .

We end this section by discussing for which cases of physical interest our Conditions

(i) and (ii) are known to hold. First of all, it is not hard to see that, for any Klein–

Gordon equation with isometry-invariant potential, there is no difficulty in adapting the

arguments given on pages 64-65 of [KW91] – which are based on the characteristic initial

value formulations for the sets J±(Σ) and on an application of Holmgren’s uniqueness

theorem – to our D (n)[HA∪HB] for any n ≥ 2 instead of Kay and Wald’s D [HA∪HB]. It

follows that, for any k ≥ 5, Condition (ii) holds, for example, on Minkowski spacetime,

on the Kruskal spacetime, on de Sitter spacetime, and on the globally hyperbolic patches

of Kerr and Schwarzschild–de Sitter considered in [KW91]. As for Condition (i), it is

known that isometry-invariant Hadamard states exist for the massive or massless Klein–

Gordon field on both Minkowski spacetime and [San15] Kruskal spacetime, and for

the massive or massless conformally coupled Klein–Gordon field on de Sitter spacetime

[CT68, BD78].8 On the other hand, the paper [KW91] contains proofs that no such

8The case of the massless minimally coupled Klein–Gordon field on de Sitter seems more subtle. While
it was proved in [All85] that no fully de Sitter invariant state (Hadamard or not) exists, Hadamard states
do exist [All85, AF87] which are invariant under the subgroups E(3) and O(4) of the de Sitter group
(and it is presumed [AF87] that O(1, 3)-invariant Hadamard states also exist). However, none of these
subgroups contain the ‘de Sitter boost’ isometries to which our analysis applies and we conjecture that
there is no boost-invariant Hadamard state. Our grounds for this conjecture are that, were there to
exist such a state, then it is plausible that its restriction to the ‘right-wedge’ (which is of course a static
spacetime when the time evolution is taken to be the restriction of the de Sitter boost isometries) would
be a KMS state. But it is known [Pol90] that (for reasons of bad infra-red behaviour) on the right-wedge,
no ground state exists for this time evolution. Also by Lemma 6.2 in [KW91], we know quite generally
that if a stationary linear Bose dynamical system admits a KMS state then it also admits a ground
state, and thus there would be a contradiction. There are a number of obstacles, however, to making
this argument rigorous: Even under the fiction explained in Section 3.2 we would only be able to rely on
Theorem 4.2 of [KW91] to prove the KMS property on the subalgebra of the Weyl algebra for the right
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states can exist in Kerr or Schwarzschild–de Sitter, although, as we explained in the

fourth paragraph of this Appendix, these proofs have a gap that needs filling and that

we will fill below by showing that (S̃0, σ̂) is symplectic under the (for these spacetimes,

counter-factual) assumption that an isometry invariant Hadamard state exists.

4.3 ‘Decay along the horizons’ strategy

Let us now present our first line of argument for showing the non-existence of isometry-

invariant solutions in S̃k0 . The idea is as follows: suppose (M, g) is a globally hyperbolic

spacetime with a bifurcate Killing horizon HA ∪ HB and bifurcation surface Σ, and

suppose that there exists a Cauchy surface C for M which contains Σ and such that

C = Σ ∪ (C ∩ L ) ∪ (C ∩ R), where L and R are the left and right wedge regions

(respectively) defined in Section 2 of [KW91]. Then, clearly (recall that the Killing

field is assumed to be complete), an isometry-invariant solution φ ∈ S̃k0 is identically

zero on M if and only if, for all p ∈ L ∪ R, φ(τt(p)) → 0 as t → +∞. Thus, in the

presence of appropriate ‘pointwise decay’ results for (sufficiently regular) solutions of

the Klein–Gordon equation in question, the result follows.

In the case of the massless wave equation, recent papers by Dafermos, Rodnianski and

Shlapentokh-Rothman [DR09, DRSR16, DR07] contain pointwise decay results which

are sufficient for our purposes in the case of Kruskal and of the globally hyperbolic

patches of Kerr and Schwarzschild–de Sitter considered in [KW91], provided that we

pick k ≥ 5 in the definition of S̃k0 large enough for the ‘higher order weighted energies’

defined in those papers to be finite. That this can always be done can be seen by

inspection of the relevant formulae in those papers: in the case of Kruskal, we refer to

the estimate (1.8) in Theorem 1.1 in [DR09]; for Kerr, we refer to the pointwise estimates

in Corollary 3.1 in [DRSR16]; for Schwarzschild–de Sitter, see Theorem 1.1 in [DR07].9

wedge corresponding to classical solutions in the subspace of solutions SR0 = SRA +SRB and, of course, we
don’t even know if that theorem is applicable since we don’t know if our symplectic form on S restricts
to a symplectic form on this subspace. We also mention, in passing, that since the massless minimally
coupled Klein–Gordon field on de Sitter has a classical zero mode (namely the constant solution) the
strengthened uniqueness theorem, Theorem 5.1 in Chapter 5 of [KW91], is also inapplicable for the
reasons explained in the introductory remarks in that Chapter. We are grateful to Atsushi Higuchi for
helpful conversation on the topic of this footnote.

9We also notice that, in the somewhat analogous case of our Proposition 3.4.2, it is the Dirichlet
boundary condition which provides the relevant ‘decay’ for our purposes there.
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4.4 Strategy based on analytic elliptic regularity

An alternative approach to showing the non-existence of ‘zero modes’ in S̃k0 in a number

of important cases, which requires less heavy machinery and is also more easily gener-

alised to the case where suitable potentials (including e.g. a mass term) are included,

is based on an application of analytic elliptic regularity [Joh55].10 Therefore, we must

assume the spacetime manifold and metric to be analytic in what follows.

First, we look at the case where the following two conditions hold:

(a) the restriction of the spacetime (M, g) and of the one-parameter group of isome-

tries to either the left or the right wedge is analytically isometric to a (globally

hyperbolic) standard static spacetime (see Section 3.2 of [San13] and references

therein) of form (R×C,αdt2− 3g) where α (the lapse function) is a positive func-

tion on C and 3g is a Riemannian metric on the connected manifold C (with C, α

and 3g analytic);

(b) for any compact set K ⊂ M , the open set M \ J(K) has non-empty intersection

both with the right and with the left wedge.

It is easy to see that the following spacetimes satisfy the above conditions: Minkowski

spacetime with Lorentz boosts as isometries; the Kruskal spacetime with standard ‘time

translation isometries’; suitable globally hyperbolic patches of the subextremal Reissner–

Nordström spacetime and of the Schwarzschild–de Sitter spacetime (with non-zero black

hole mass), again with their respective standard ‘time translation isometries’. Impor-

tantly, the case of de Sitter spacetime will not be covered by this strategy due to the

failure of condition (b) above.

Under condition (a), on (say) the right wedge, the Klein–Gordon equation with an an-

alytic potential term V will take the form
(
α−1 ∂2

∂t2
−D + V

)
φ = 0 where D is the

Laplace–Beltrami operator for 3g. For an isometry-invariant solution, ∂φ
∂t will be identi-

cally zero, and therefore so will be ∂2φ
∂t2

and φ will satisfy the manifestly elliptic equation

with analytic coefficients (
−α−1 ∂2

∂t2
−D + V

)
φ = 0

(and we notice that the operator −α−1 ∂2

∂t2
+D is of course nothing but minus the Laplace-

Beltrami operator for the Riemannian metric αdt + 3g). Therefore, by analytic elliptic

regularity, φ must be an analytic function on the right wedge. But, since φ ∈ S̃0 ⊂ Ŝ

has Cauchy data – on a Cauchy surface C for the full spacetime which contains the

bifurcation 2-sphere Σ, see [KW91] – of compact support, by finite propagation speed

10We would like to thank Robert Wald for suggesting this approach to us and for providing some
guidance on how to deal with the case of Kerr, see below.
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results it must vanish on M \J(K) where K = supp(φ�C )∪ supp(∇nφ�C ) and n denotes

the vector field of unit normals to C . Under condition (b) above, it must then vanish

in an open subset of the right wedge. By analyticity and connectedness, it must vanish

identically on the entire right wedge. A similar argument shows that it must vanish

identically on the left wedge. Finally, φmust vanish on the entire spacetime by continuity

at Σ.

An obvious local-to-global version of this argument also shows that the same conclu-

sion holds if we only require, in condition (a) above, that the spacetime in the left

and right wedges be simply static (with respect to the one-parameter group of isome-

tries) rather than ‘standard’ static. However, outside these circumstances the argument

won’t straightforwardly apply. Nonetheless, under some mild restrictions on the pos-

sible potential terms which we shall state, one can also fill the gap for the case of the

globally hyperbolic patch of (subextremal, maximally extended) Kerr defined on page

66 of [KW91] and denoted by M there, with Killing vector field ξ+ = ∂/∂t + Ω+∂/∂ϕ

in Boyer-Lindquist coordinates (t, r, θ, ϕ). Here, denoting the black hole’s angular mo-

mentum by a and its mass by M , Ω+ = a/(r2
+ + a2) is the angular velocity of the black

hole/Killing horizon situated at r = r+ = M +
√
M2 − a2 and we recall that there is

a cosmological horizon ‘at’ r = r− = M −
√
M2 − a2. In the right wedge where the

Boyer-Lindquist coordinates are regular, the Laplace-Beltrami operator associated with

the Kerr metric is

� =

[
a2 sin2 θ − (a2 + r2)2

∆(r)

]
∂2

∂t2
− a2

∆(r)

∂2

∂ϕ2
−2a[r2 + a2 −∆(r)]

∆(r)

∂2

∂ϕ∂t
+
∂

∂r

[
∆(r)

∂

∂r

]
+ /∆S2 ,

where ∆(r) = (r − r+)(r − r−) (so that ∆(r) > 0 everywhere in the right wedge) and

/∆S2 = 1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂ϕ2 is the Laplacian on the two-dimensional unit sphere.

Now, let u be a C2 function on M which is invariant under the isometries generated by

ξ+. Then, everywhere in the right wedge,

∂u

∂ϕ
= −Ω−1

+

∂u

∂t
and

∂2u

∂ϕ2
= Ω−2

+

∂2u

∂t2
. (4.11)

Thus, if u is an isometry-invariant solution to �u = 0 on M , belonging to S̃0, then we

can use the equations in (4.11) to ‘trade’ ϕ-derivatives for t-derivatives and obtain{
F (r, θ)

∂2

∂t2
+

∂

∂r

[
∆(r)

∂

∂r

]
+

1

sin θ

∂

∂θ

[
sin θ

∂

∂θ

]}
u = 0 (4.12)
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where F (r, θ) is an analytic function for (r, θ) ∈ (r+,∞) × (0, π). Clearly, the same

equation will be satisfied by the Fourier coefficients

ûm(t, r, θ) :=

∫ 2π

0
u(t, r, θ, ϕ)e−imϕ dϕ, m ∈ Z.

However, a simple calculation shows that, in virtue of the first equation in (4.11),

∂ûm
∂t

= imΩ+ûm and, consequently,
∂2ûm
∂t2

= −m2Ω2
+ûm

for all m ∈ Z. Pick a positive constant K and set G(r, θ) = −m2Ω2
+[F (r, θ)−K]; then

ûm solves Pûm = 0 where

P = K
∂2

∂t2
+ ∆(r)

∂2

∂r2
+

∂2

∂θ2
+

d∆

dr
(r)

∂

∂r
+ cot θ

∂

∂θ
+G(r, θ).

P is a differential operator with analytic coefficients. An inspection of the highest order

terms shows that it is elliptic on R × (r+,∞) × (0, π). Therefore, by analytic elliptic

regularity, ûm is analytic. But ûm must vanish in an open set because of the support

properties of u ∈ S̃0.11 Therefore ûm = 0 for all m ∈ Z. By the Fourier inversion

formula, this in turn implies that u = 0 in the right wedge. Similar reasoning shows

that u must vanish in the left wedge. Again, by continuity at the bifurcation surface

this means that u must vanish on M . For ease of presentation, we only showed the

proof explicitly in the case of the massless wave equation. However, it is clear that an

analytic potential term can be added with no change in the arguments, provided it is

independent of the coordinate ϕ – as would of course be the case for a constant mass

term or for a constant multiple of the Ricci scalar.

4.5 Conclusions and future directions

To conclude, the two lines of argument presented in this chapter have enabled us to

fill the gap in [KW91] in many cases of interest (however, see our discussion in the

introductory section of this Appendix for the meaning of ‘filling the gap’ in the cases of

Schwarzschild–de Sitter and Kerr).

11To quickly see this, the reader may wish to consider a projection diagram, in the sense of [COS12]
(see also Chapter 3 of [Chr15]), for the region of Kerr under consideration and denoted by M above. The
projection diagram in Fig. 3 of [COS12] appears to closely resemble the more commonly seen conformal
diagram for the submanifold corresponding to the axis of symmetry (θ = 0 or θ = π) of the Kerr solution.
However, unlike the latter, the former captures causal properties of the entire spacetime (in a precise
way discussed in Section 3 of [COS12]). In particular, since u above has spacelike compact support on
M , it follows that the projection of its support onto the (1+1)-dimensional diagram is spacelike compact
with respect to the (1+1)-dimensional Minkowski metric. The claimed result then easily follows upon
observing that the projection diagram is obtained by projecting out the Boyer-Lindquist coordinates θ
and ϕ.
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In the case of de Sitter spacetime, it is not obvious to us that there can be no non-

zero solutions in S̃0 which are invariant under the one-parameter group of isometries

generating the bifurcate Killing horizon. Clearly, for massless minimally coupled fields,

there are non-zero solutions in Ŝ ⊃ S̃0 which are invariant: namely, the constant (non-

zero) solutions. Therefore, in particular, one would need to show that no non-zero

constant solution can lie in S̃0. But this would still not suffice to fill the gap.

Another direction for extending our results is to decide whether or not (S̃0, σ̂) is symplec-

tic in the cases of Schwarzschild–de Sitter and Kerr. While the answer to this question

would have no impact on the quantum theory, any proof would presumably require con-

siderably different arguments to the ones, based on the existence of invariant Hadamard

states, which we have been using. And one may learn valuable lessons in trying to find

an alternative way to decide on the ‘symplecticity’ of (S̃0, σ̂) in general spacetimes with

bifurcate Killing horizons.



Chapter 5

Notes towards a theory of spacetimes

with timelike boundaries and

boundary value problems

5.1 Elements of causal theory in the presence of timelike bound-

aries

Motivated by our study of the quantum theory of fields on curved spacetimes possessing

boundaries, we would like to put on firmer ground the causal theory of such spacetimes.

We assume that the reader has familiarised herself with the contents of Section 2.1 in

this thesis, where general Lorentzian geometry and some elements of causal theory are

reviewed in the context of ordinary open spacetimes.

5.1.1 STT∂s

Definition 5.1.1. Let M be a (Hausdorff, second countable) non-empty smooth manifold

with (possibly empty) boundary and with dimM = n + 1 ≥ 2. If M is endowed

with a metric g of Lorentzian signature and with a time orientation t determined by

a global smooth timelike vector field, then M := (M, g, t) will be called a spacetime-

with-boundary. Letting g−1 ∈ Γ(TM ⊗ TM) denote the inverse metric to g, we will say

that M is a spacetime-with-timelike-boundary (STT∂) if the restriction of g−1 to the

conormal bundle of ∂M is negative-definite; equivalently, if the pullback of g under the

inclusion ι : ∂M → M defines a metric of Lorentzian signature on ∂M . In this case, t

induces a time orientation on (∂M, ι∗g), thus yielding a spacetime (without boundary)

which we denote by ∂M .

153
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For clarity, we fix some nomenclature. A continuous, piecewise-smooth regular (i.e. its

velocity vectors never vanish, including at break points) curve γ : I → M with finitely

many break points is said to be causal (resp. timelike) if its velocity vectors are timelike

or null (resp. timelike) and either all future-pointing or all past-pointing. Notice that,

with this definition, the constant curves are not causal. We write p ≤ q (resp. p � q)

in M if either p = q or there exists a future-directed causal (resp. timelike) curve in

M from p to q. Replacing ‘future-directed’ with ‘past-directed’ in the previous sentence

similarly defines the relation ≥ (resp.�). The causal future (+) and past (−) of a point

p in M is

J±M = {q | p ≤ q}

and the chronological future (+) and past (−) are

I±M = {q | p� q} .

Finally, for an arbitrary subset S ⊂ M , we define J±M (S) =
⋃
p∈S J

±
M (p), I±M (S) =⋃

p∈S I
±
M (p) and JM (S) = J+

M (S) ∪ J−M (S). In the context of spacetimes-with-timelike-

boundaries, the theorem below was proved as Proposition 3.5 in [Sol06]. We give an

alternative proof which is valid on any spacetime-with-boundary (and, in particular, on

one whose boundary is not everywhere timelike, or on one with empty boundary!).

Proposition 5.1.2. In a spacetime-with-boundary M , the chronological relation � is

open. That is, if p � q in M then there are neighbourhoods X and Y of p and q

respectively, such that p′ � q′ for all p′ ∈ X and q′ ∈ Y . A similar statement holds for

the chronological relation �.

Proof. Let γ : [0, 1]→ M be a timelike curve from p to q. Pick a chart (U,ϕ : U → V )

around p, with V ⊆ Rd+1 or V ⊆ Hd+1 depending on whether p is an interior or boundary

point (respectively).1 Without loss of generality we can assume that V = ϕ(U) is a

convex subset of Rd+1 or of Hd+1. Denote ϕ(p) ∈ V by x. Since γ is timelike and

piecewise smooth, it is a smooth immersion when restricted to the interval [0, a], where

a > 0 is the location of the first break point of γ. In particular, it is an embedding locally

around 0 [Lee13, Thm. 4.25], and, for small enough ε > 0, it is injective on I0 := [0, ε)

and γ(I0) ⊂ U . We now consider the curve γ̃ = ϕ ◦ γ�I0 : I0 → V . Equipping V with

the pushforward metric g̃ = ϕ∗g and pushforward time orientation t̃ = ϕ∗t, so that

(U, g�U , t) and (V, g̃, t̃) are time-oriented isometric, we will argue in the next paragraph

that there exists a τ ∈ I0\{0} for which a δ > 0 can be found such that (a) the open ball

(in either Rd+1 or Hd+1) Bδ(x) is entirely contained in V , and (b) straight line segments

in V between any y ∈ Bδ(x) and γ̃(τ) are everywhere timelike and future-directed with

respect to the geometry of (V, g̃). A completely analogous result will also hold, mutatis

1Here, Hd+1 denotes the standard closed half space in Rd+1.
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mutandis, for the final endpoint q. Finally, the claim in the statement of the theorem

clearly follows by pulling back these results to (M, g).

Suppose, instead, that no such τ can be found. Let (τn)n be a sequence in I0 \ {0} with

τn → 0 as n → ∞. Denoting xn = γ̃(τn), for each n we can find a δn > 0 such that

δn < ‖xn − x‖ and such that, for all y ∈ Bδn(x), the unit norm vectors

ln(y) =
xn − y
‖xn − y‖

are at Euclidean distance less than 1/n from the unit norm vector

ln =
xn − x
‖xn − x‖

.

[This just follows from the continuity of y 7→ ln(y) on the complement of the point xn.]

We then automatically also have δn → 0 as n → ∞. Since we are rejecting the claim,

for each n we obtain a pair (yn, zn) with yn ∈ Bδn(x), zn belonging to the straight line

segment between yn and xn, and the vector tn = (zn, ln(yn)) – which is of course tangent

to the straight line segment between yn and xn – not both timelike and future-directed.

It is clear that zn → x as n→∞. We show below that

ln(yn)→ γ̃′(0)

‖γ̃′(0)‖ as n→∞ (5.1)

so that the sequence (tn)n in the tangent bundle of V (trivialized as V × Rd+1) tends

to a tangent vector at x which is timelike and future directed by assumption. But since

the subset C of TV consisting of timelike and future directed tangent vectors is open,

any limit point of TV \ C must belong to TV \ C, and we get a contradiction.

The following steps are a proof of (5.1):∥∥∥∥ln(yn)− γ̃′(0)

‖γ̃′(0)‖

∥∥∥∥ ≤ ‖ln(yn)− ln‖+

∥∥∥∥ln − γ̃′(0)

‖γ̃′(0)‖

∥∥∥∥
≤ 1

n
+

∥∥∥∥ xn − x
‖xn − x‖

− γ̃′(0)

‖γ̃′(0)‖

∥∥∥∥ ;

as is elementary to check, the right-hand side of the last expression tends to zero as

n→∞, and the claim is established.

Consequently, for any S ⊂ M , the sets I±M (S) are always open. Note that, while in a

general spacetime-with-boundary M the sets I±M (p) are always non-empty when p is an

interior point, this might not be the case if p is a boundary point. On a spacetime-with-

timelike-boundary, on the other hand, if p ∈ ∂M we have I±M (p) ⊃ I±∂M (p) 6= ∅. It is

also obvious that, for any point p, I±M (p) ∩ U 6= ∅ for any neighbourhood U of p.
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The following key results were established by Solis (Proposition 3.6 and Proposition 3.7

in [Sol06]).

Proposition 5.1.3. On any STT∂ M = (M, g, t):

(i) if p� q ≤ r or p ≤ q � r then p� r;

(ii) J±M (S) ⊆ I
±
M (S) for any S ⊆ M (where the overline indicates the topological

closure of the corresponding set).

We supplement them with an easy corollary which will be useful later.

Corollary 5.1.4. On a STT∂ M = (M, g, t), and for any S ⊆ M , it holds that (a)

J
±
M (S) = I

±
M (S), (b) J̇±M (S) = İ±M (S), and (c)

◦
J±M (S) = I±M (S) (where the dots and

circles indicate topological boundaries and interiors of the corresponding sets, respec-

tively).

Proof. Equality (a) follows from item (ii) of Proposition 5.1.3 and the fact that J±M (S) ⊇
I±M (S). We can prove the left-to-right inclusion in Equality (b) in the following way:

J̇±M (S) = J
±
M (S) \

◦
J±M (S) = I

±
M (S) \

◦
J±M (S) ⊆ I±M (S) \

◦
I±M (S) = İ±M (S),

having used equality (a) and
◦
J±M (S) ⊇

◦
I±M (S). We now prove the other inclusion in

(b), considering the ‘+’ case for simplicity and without loss of generality. Consider an

arbitrary point p ∈ İ+
M (S). Then, since I+

M (S) is open, p ∈ M \ I+
M (S). Since p is

automatically in J
+
M (S), in order to conclude that p ∈ J̇+

M (S) it suffices to show that

p /∈
◦
J+

M (S). Suppose, instead, that p is an interior point of J+
M (S). Then there is an

open neighbourhood U 3 p entirely contained in J+
M (S). Picking q ∈ I−M (p)∩U , we then

have z ≤ q � p for some z ∈ S, and thus p ∈ I+
M (z) ⊆ I+

M (S) by item (i) in Proposition

5.1.3. Since this contradicts our hypothesis, we conclude that İ+
M (S) ⊆ J̇+

M (S). Finally,

equality (c) straightforwardly follows from the previous two.

A simple application of Proposition 5.1.3(i) yields the additional results below where,

just as in the case of spacetimes without boundary, an open subset X is defined to be

causally convex if any causal curve between any two of its points is entirely contained

in X.

Corollary 5.1.5. Let A,B ⊆ M be arbitrary subsets in a STT∂ M = (M, g, t). Then

I±M (A) and I+
M (A) ∩ I−M (B) are causally convex subsets. Whenever open, so are the

subsets M \ J±M (A) and M \ JM (A).

The theory of continuous causal and timelike curves was also studied in detail by Solis

(Chapter 3.1.3 in [Sol06]). One defines continuous timelike or causal curves, and their

future and past-inextendibility, in the same way as for spacetimes with empty boundary.



Notes towards a theory of spacetimes with timelike boundaries and boundary value
problems 157

Using continuous timelike or causal curves instead of piecewise smooth ones does not

enlarge the chronological (�) or causal (≤) relations.

5.1.2 Global hyperbolicity and Cauchy surfaces

Definition 5.1.6. Let M = (M, g, t) be a STT∂. Then:

(a) A topological hypersurface C will be said to be a Cauchy surface for M if every

future and past inextendible (continuous) timelike curve meets C precisely once.

(b) A C1 function t : M → R is said to be a temporal function if dt is timelike

and future-directed (with respect to g−1), and a Cauchy temporal function if in

addition all its level sets are Cauchy surfaces (which are then necessarily C1-

embedded spacelike submanifolds).

(c) M will be said to be globally hyperbolic if it is strongly causal and if for all p, q ∈M
the sets J+

M (p) ∩ J−M (q) are compact.

Note that, if M = (M, g, t) is a STT∂ with Cauchy surface C , then just as in the

case of spacetimes without boundary, we have M = I+
M (C ) ] C ] I−M (C ), implying in

particular that C is closed. Making use of Proposition 5.1.3(i), one similarly sees that

M = J±M (C ) ] I∓M (C ). Thus J±M (C ) is closed and its boundary [which, by virtue of

Corollary 5.1.4, is also the boundary of its interior I±M (C )] is C .

The results in the next Proposition are due to Solis (Proposition 3.17 and Proposition

3.18 in [Sol06], see also Section 2.2 in [CGS09]).

Proposition 5.1.7. Let M = (M, g, t) be a globally hyperbolic STT∂. Let A,B ⊆ M be

compact. Then:

(i) J±M (A) is closed, and thus also J±M (A) = I
±
M (A) (in particular, any globally hy-

perbolic STT∂ is causally simple);

(ii) J+
M (A) ∩ J−M (B) is compact;

(iii) if C is a Cauchy surface for M then J±M (A)∩J∓M (C ) and J±M (A)∩C are compact.

Just as in the case of spacetimes without boundaries, it is clear that any causally convex

subset of a globally hyperbolic STT∂ inherits the structure of a STT∂ which is itself

globally hyperbolic. The following result then follows immediately from Corollary 5.1.5.

Corollary 5.1.8. Let A,B ⊆ M be arbitrary subsets in a globally hyperbolic STT∂

M = (M, g, t). Then I±M (A) and I+
M (A) ∩ I−M (B) always yield causally convex globally
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hyperbolic sub-spacetimes of M . If A is compact, then so do M \J±M (A) and M \JM (A).

We conclude this section with a technical lemma which will be useful in the next section.

Lemma 5.1.9. Let M = (M, g, t) be a globally hyperbolic STT∂ with Cauchy surface

C , and A be a compact set (e.g. a one-point set). Then the interior of the closed set

D = J−M (A) ∩ J+
M (C ) is I−M (A) ∩ I+

M (C ). Furthermore, we have

D =
◦
D ∪ [J̇−M (A) ∩ C ] =

◦
D ∪ [J̇−M (A) ∩ C ]. (5.2)

Proof. The interior of the intersection of finitely many subsets of a topological space

always equals the intersection of the interiors. Together with the results collected so far

about the sets J−M (A) (when A is compact) and J+
M (C ), this immediately gives the first

part. For the second part notice that since D is closed and contains the closed subset

J̇−M (A) ∩ C , the only non-trivial inclusion is D ⊆
◦
D ∪ [J̇−M (A) ∩ C ]. We have

D = J−M (A) ∩ J+
M (C )

= [I−M (A) ∪ J̇−M (A)] ∩ [I+
M (C ) ∪ C ]

= [I−M (A) ∩ I+
M (C )] ∪ [J̇−M (A) ∩ I+

M (C )] ∪ [I−M (A) ∩ C ] ∪ [J̇−M (A) ∩ C ].

The result then follows since, as a moment’s reflection reveals, each of the first three

sets is contained in
◦
D. Notice that the second equality in Equation (5.2) is simply an

application of the fact that the union of the closures of finitely many sets always equals

the closure of the union of those sets.

5.2 Miscellaneous results on Green hyperbolic boundary value

problems

5.2.1 A ‘black-box’ exact sequence for general Green hyperbolic boundary

value problems

In this section we consider special kinds of linear differential operators acting on sections

of field bundles (i.e. vector bundles) over a manifold with boundary M . Namely, we look

at differential operators P : Γ∞(F )→ Γ∞(F̃ ) where F̃ →M is the densitized dual bundle

to F → M , i.e. F̃ := F ∗ ⊗M
∧n(T ∗M) with the obvious bundle projection. We do so

with a view to variational problems in which such operators arise naturally, as explained

e.g. in [Kha14]. What we have in mind is the following: we would like to generalise the

notion of Green hyperbolicity given in Section 2.4.1 to the context of globally hyperbolic
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STT∂s, accommodating for the possibility that boundary conditions may be imposed at

the boundary and under the assumption that the structural theorems on the existence

of smooth spacelike Cauchy surfaces and Cauchy temporal functions, which are well-

established in the boundaryless context, hold also in this category. A (homogeneous)

boundary condition will be tantamount to the selection of a particular linear subspace of

Γ – the subspace of sections satisfying the so far unspecified boundary condition. Then,

assuming that an operator is Green hyperbolic compatibly with the chosen boundary

condition in some sense, we would like to investigate whether or not a sequence of vector

spaces akin to that of Theorem 2.4.7 can be exact.

Let M be a STT∂. Abbreviating Γ∞(F ) and Γ∞0 (F ) by Γ and Γ0 respectively [and

similarly abbreviating Γ∞(F̃ ) and Γ∞0 (F̃ ) by Γ̃ and Γ̃0 respectively], we note that the

causal structure coming from the metric and time orientation of M allows one to intro-

duce some subspaces of Γ distinguished by their support properties just as was done (in

the case of spacetimes without boundaries) in Definition 2.1.40. Namely:

Γ± :=
{
φ ∈ Γ

∣∣ suppφ ⊆ J±(K) for some compact K
}
,

Γsc := {φ ∈ Γ | suppφ ⊆ J(K) for some compact K} ,

and corresponding subspaces Γ̃± and Γ̃sc of Γ̃ are defined similarly. Notice that Γ±

corresponds to what would have been denoted by Γ∞ret/adv(F ) in Definition 2.1.40.

Now let Γ∂ ⊆ Γ be a linear subspace of Γ, and define

Γ0,∂ = Γ0 ∩ Γ∂ , Γ±,∂ = Γ± ∩ Γ∂ , Γsc,∂ = Γsc ∩ Γ∂ .

Definition 5.2.1. The linear differential operator P : Γ→ Γ̃ is a Green hyperbolic operator

with respect to the causal structure of M and the domain Γ∂ ⊆ Γ if:

(a) there exists a unique φ± ∈ Γ±,∂ solving Pφ± = α̃± for any α̃± ∈ Γ̃±;

(b) this solution satisfies suppφ± ⊆ J±(supp α̃±).

More succinctly, in that case we will speak of a differential operator which is Green

hyperbolic with respect to (M ,Γ∂). The resulting linear maps G± : Γ̃± → Γ±,∂ (given by

sending α̃± to φ± above) are called the retarded (+) and advanced (−) Green operators

for the triple (M , P,Γ∂), and their difference G = G+ −G− : Γ̃0 → Γsc,∂ is termed the

causal propagator [for the triple (M , P,Γ∂)].

Remark. Notice that we are not imposing that similar properties hold for the adjoint

operator to P , contrary to what was done in Section 2.4. This is because the existence

of retarded/advanced Green operators for the adjoint operator will not be needed in the

proofs of the statements in this subsection.

The following result follows easily from Definition 5.2.1.
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Proposition 5.2.2. If P is Green hyperbolic with respect to (M ,Γ∂), then G± : Γ̃± → Γ±,∂

is an inverse to P �Γ±,∂ : Γ±,∂ → Γ̃±, i.e.

P ◦G± = idΓ̃± , (5.3)

G± ◦ P �Γ±,∂ = idΓ±,∂ . (5.4)

Consequently,

P ◦G = 0, (5.5)

G ◦ P �Γ0,∂
= 0. (5.6)

Now consider the sequence

{0} Γ0,∂ Γ̃0 Γsc,∂ Γ̃sc {0}.P G P (5.7)

By Proposition 5.2.2, this sequence is a complex. We thus turn to the following question:

what are sufficient conditions for (5.7) to be exact? A possible answer is given in the

following theorem.

Theorem 5.2.3. Suppose there exists a pair χ = {χ+, χ−} of functions in C∞(M) with

the following properties:

• χ+ + χ− ≡ 1;

• multiplication by χ± maps Γ̃sc → Γ̃±, Γsc → Γ±, Γsc,∂ → Γ±,∂ and Γ∓,∂ → Γ0,∂;

• P [χ+ψ]− χ+P [ψ] ∈ Γ̃0 whenever ψ ∈ Γsc,∂.

Then (5.7) is an exact sequence with witnessing contracting homotopy

{0} Γ0,∂ Γ̃0 Γsc,∂ Γ̃sc {0}

{0} Γ0,∂ Γ̃0 Γsc,∂ Γ̃sc {0}

P

id

G

id
χG

P

id
Pχ

id
Gχ

P G P

(5.8)

The cochain homotopy maps χG, Pχ and Gχ, are defined in terms of χ = {χ+, χ−} by

χG[α] = χ+G−[α] + χ−G+[α] (5.9)

Pχ[ψ] = P [χ+ψ]− χ+P [ψ] = −P [χ−ψ] + χ−P [ψ] (5.10)

Gχ[α] = G+[χ+α] + G−[χ−α] (5.11)



Notes towards a theory of spacetimes with timelike boundaries and boundary value
problems 161

Proof. It is clear that the requirements on χ = {χ+, χ−} ensure that the cochain homo-

topy maps are well-defined. The contracting homotopy identities are:

∀ ψ ∈ Γ0,∂ (χG ◦ P )[ψ] = χ+G−[Pψ] + χ−G+[Pψ]

= (χ+ + χ−)ψ

= ψ,

which holds by virtue of Equation (5.4);

∀ α ∈ Γ̃0 (P ◦ χG + Pχ ◦G)[α] = P [χ+G−α] + P [χ−G+α]

− P [χ−Gα] + χ−P [Gα]

= P [χ+G−α] + P [χ−G+α]

− P [χ−G+α] + P [χ−G−α]

= P [(χ+ + χ−)G−α]

= P [G−α]

= α,

where Equation (5.5) was used in the second step, and Equation (5.3) in the final step;

∀ ψ ∈ Γsc,∂ (G ◦ Pχ + Gχ ◦ P )[ψ] = G+[Pχψ]−G−[Pχψ]

+ G+[χ+Pψ] + G−[χ−Pψ]

= G+[P [χ+ψ]− χ+Pψ]−G−[−P [χ−ψ] + χ−Pψ]

+ G+[χ+Pψ] + G−[χ−Pψ]

= G+[P [χ+ψ]] + G−[P [χ−ψ]]

= χ+ψ + χ−ψ

= ψ,

where the assumptions made on χ = {χ+, χ−} were used at various points and Equation

(5.4) was used in the second to last step;

∀ α ∈ Γ̃sc (P ◦Gχ)[α] = P [G+[χ+α]] + P [G−[χ−α]]

= (χ+ + χ−)α

= α,

which again holds simply in virtue of Equation (5.3) together with the assumption that

χ± sends Γ̃sc → Γ̃±.

The significance of Theorem 5.2.3 is as follows: although we have not explicitly described,
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so far, the nature of the choice of domain Γ∂ , in practice what we have in mind here

is that this be determined by a choice of boundary conditions to be satisfied by the

field variables on the (non-empty) boundary of M . Now assume that M is a globally

hyperbolic STT∂ and that it admits two smooth spacelike Cauchy surfaces C1, C2 with

C2 ⊂ I+(C1). Then let χ+ ∈ C∞(M) be equal to 1 on J+(C2) and equal to 0 on

J−(C1). With χ− := 1 − χ+, the pair χ = {χ+, χ−} will automatically satisfy all

the hypotheses of Theorem 5.2.3, save possibly for the requirements that Γsc,∂ → Γ±,∂

and Γ∓,∂ → Γ0,∂ under multiplication by χ±. In the case of a Dirichlet boundary

condition for a scalar field, i.e. Γ∂ = {φ ∈ C∞(M) | φ�∂M = 0}, then actually the latter

requirements are also automatically satisfied. However, the situation is different already

in the still very simple case of the Neumann boundary condition for a scalar field, i.e.

Γ∂ = {φ ∈ C∞(M) | (∇νφ)�∂M = 0} where ν is the unit normal vector field along ∂M .

There, we see that χ+ needs to satisfy the additional requirement (∇νχ+)�∂M = 0.

Proving the existence of a χ+ satisfying this requirement while also being identically

equal to 1 on J+(C2) and to 0 on C1 seems to us to be a typical Whitney-type extension

problem (see Section 2.5.1). We leave its definitive resolution, and also the consideration

of more general boundary conditions, to future investigation.

5.2.2 A few words on adjoints

Definition 5.2.4. Two differential operators P, P † : Γ → Γ̃ are mutually adjoint if there

exists a bilinear bidifferential operator G : Γ×Γ→ Ωn(M), which we call a Green form,

such that

[Pφ]ψ − [P †ψ]φ = dG(φ, ψ) ∀ φ, ψ ∈ Γ. (5.12)

It can be shown that for any P there is a unique P † such that P and P † are mutually

adjoint. This is the Green–Vinogradov formula, as explained at the end of Section 2.4.1.

However, the form-valued operator G is not uniquely determined: it is only determined

up to the addition of a locally exact bilinear form.

Notice there is a bilinear pairing 〈·, ·〉± between Γ̃± and Γ∓,∂ , defined by

〈α, φ〉± =

∫
M
αφ, α ∈ Γ̃±, φ ∈ Γ∓,∂ .

If the pairing is weakly non-degenerate then we can use it to embed Γ̃± and Γ∓,∂ into

the algebraic dual spaces (Γ∓,∂)∗ and (Γ̃±)∗ respectively.

Now let P and P † be mutually adjoint differential operators, and assume both of them

to be Green hyperbolic with respect to (the same causal structure and) the same domain

Γ∂ . Denote the advanced (−) and retarded (+) Green operators of P and P † by G±
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and G†± respectively. Consider G± : Γ̃± → Γ±,∂ . Its transpose (G±)∗ is naturally a map

(Γ±,∂)∗ → (Γ̃±)∗. For α ∈ Γ̃∓ and β ∈ Γ̃±, one has

[(G±)∗〈α, ·〉∓]β = 〈α,G±β〉∓ =

∫
M
αG±β

=

∫
M

[P †G†∓α]G±β

=

∫
M

[PG±β]G†∓α−
∫
M

dG(G±β,G
†
∓α)

=

∫
M
βG†∓α−

∫
∂M
G(G±β,G

†
∓α)

= 〈β,G†∓α〉± −
∫
∂M
G(G±β,G

†
∓α) (5.13)

where, in the second to last step, both Stokes’ Theorem and Equation (5.12) – with

φ = G±β and ψ = G†∓α – were used. A similar result relates (G†±)∗ with G∓ and

contributions coming from boundary integrals.

5.3 Initial value problems for wave equations on globally hyper-

bolic STT∂s with Dirichlet boundary conditions

In this section, P : C∞(M)→ C∞(M) is a second order normally hyperbolic (see Section

2.4.2) partial differential operator with smooth coefficients on the STT∂ M = (M, g, t).

That is,

Pu = �gu+X[u] + Vu

where �g = gab∇a∇b is the d’Alembert operator associated with the metric, X is a

smooth vector field, and V is a smooth function.

Lemma 5.3.1. Let N be a smooth manifold with or without boundary and F
π−→ N be a

real or complex vector bundle. Suppose f and h are continuous real or complex-valued

functions on F which restrict to homogeneous functions of degree 2 (for example, but not

necessarily, to quadratic forms) on each fiber of F
π−→ N . Suppose h is positive-definite

on each fiber and let X ⊆ N be compact. Then there exists a constant C ′ > 0 such that

|f(Z)| ≤ C ′h(Z)

for all Z ∈ π−1X. If f is also positive-definite then there exists another constant C > 0

such that

f(Z) ≥ Ch(Z)

for all Z ∈ π−1X.
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Proof. This is a standard type of argument, notably used to prove that any two Rieman-

nian metrics on a compact manifold are Lipschitz equivalent. Pick a smooth fiberwise

Riemannian or Hermitian metric g on F and let

UF = {Z ∈ F : g(Z,Z) = 1}.

Consider the function k : UF → R defined by k(Z) = |f(Z)|/h(Z). Restricted to the

compact subspace π−1X ∩ UF , k is a continuous function (as h never vanishes there),

strictly positive if f is positive-definite. Therefore, it is bounded from above. If f is

positive-definite then k is also bounded from below by a positive constant. The result

follows.

The following theorem is essentially an adaptation of Lemma 12.28 in [Rin09], aided by

considerations (specifically, the choice of vector field in the final part the proof) made

in [Hör94, p. 419]. The experienced PDE theorist would immediately recognise that,

aside from the (very important) Lorentzian-geometric aspects of the proof, the core of

the argument relies on obtaining an energy identity which, if coupled with a judicious

choice of vector field, can be used to obtain useful estimates on domains ‘swept out’

appropriately by spacelike hypersurfaces. The use of such energy estimates in solving

both linear and nonlinear hyperbolic PDEs has a very long and illustrious history, and

we refer to [G̊ar98] for a beautifully written review. The theorem we will prove is a local

uniqueness result for solutions of the mixed Cauchy–Dirichlet problem, which relies on

the existence of temporal functions with specific properties locally around a Cauchy

surface in a globally hyperbolic STT∂. More precisely: assuming the existence of such

temporal functions, the theorem establishes a precise domain of dependence property

which establishes the precise finite speed of propagation of solutions satisfying Dirichlet

boundary conditions. By ‘precise’ here, following [JMR05, Rau05], we mean that the

speed of propagation of the initial data is not only finite, but is further constrained by

the Lorentzian causal structure. This is of course well-known in the case of normally

hyperbolic operators on globally hyperbolic spacetimes without boundaries, and it is

the fundamental ingredient in proving that such operators are always Green hyperbolic.

Our initial motivation for seeking a result such as Theorem 5.3.2 came from wanting

to prove that normally hyperbolic differential operators are still Green hyperbolic –

in the sense of Section 5.2.1 – when a timelike boundary is present, provided that

the resulting spacetime is a globally hyperbolic STT∂ and that a variety of suitable

boundary conditions are imposed. Theorem 5.3.2 below is the only preliminary result

in this direction which we will prove here, and considers the case of Dirichlet boundary

conditions. We show that the latter conditions are (unsurprisingly!) ‘suitable’ for Green

hyperbolicity in the large, at least in principle.
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Unfortunately, we will not be able to fully complete the program just described, even

in the case of Dirichlet conditions. In the concluding section of this chapter, we will

illustrate what we believe to be the main (and, in fact, probably also the only) details

still to be worked out. In particular, we have not constructed temporal functions of the

kind we will assume exist in the statement of Theorem 5.3.2, or even abstractly proved

their existence, despite finding the latter very plausible.

Theorem 5.3.2 (Local uniqueness for wave equations on globally hyperbolic STT∂s with

Dirichlet boundary conditions). Let M = (M, g, t) be an (n+1)-dimensional globally

hyperbolic STT∂ with a smooth spacelike Cauchy hypersurface C . Let M̃ = (M̃, g̃, t̃)

be an extension of M to a spacetime without boundary, so that there is an isometric

time-orientation–preserving embedding i : M → M̃ such that i(M) is closed in M̃ .

Assume that p ∈ I+
M (C ) is such that there is a real-valued function t defined on an open

neighbourhood W of I−M (p) ∩ J+
M (C ) and satisfying the following properties:

1. t is smooth and temporal on W ;

2. letting D = J−M (p)∩J+
M (C ) so that

◦
D = I−M (p)∩I+

M (C ), if t(
◦
D) = (t1, t2)2 (where

we allow t2 =∞) then, for each τ ∈ (t1, t2) the level sets

Sτ := t−1{τ}

are contained in I−M (p);

3. there exists a t̃ ∈ (t1, t2) such that, for all τ ∈ (t̃, t2), the sets

Lτ = I−M (Sτ ) ∩ I+
M (C ) ⊆

◦
D,

viewed as embedded submanifolds with boundary of the extended spacetime M̃ , have

• (compact) closure entirely contained in I−M (p) ∩ J+
M (C );

• locally Lipschitz topological boundary which is the union of a set of zero mea-

sure with the following disjoint embedded hypersurfaces in M̃ : (a) a portion

Bτ of ∂M ⊂ M̃ ; (b) a portion Iτ of J−M (p)∩C ∩ IntM ; (c) a portion S ′
τ of

Sτ ∩ I+
M (C ) ∩ IntM .

Furthermore let V ⊇ J−M (p) ∩ J+
M (C ) be open. If u ∈ C2(V ) satisfies Pu = 0 on

I−M (p) ∩ I+
M (C ) with u = 0 on ∂M ∩ V , then u and du vanish on J−M (p) ∩ J+

M (C ) iff

they vanish on J−M (p) ∩ C .

Proof. Of course the ‘only if’ statement is automatic, and we proceed to prove the other

implication. In virtue of Lemma 5.1.9, and since u and du are continuous on V ⊇ D

2Notice that, under the previous assumptions, t(
◦
D) ⊂ R is necessarily an open interval bounded from

below.
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and vanish on J−M (p)∩C ⊇ J̇−M (p)∩C by hypothesis, we only need to prove that u and

du vanish in the interior
◦
D = I−M (p) ∩ I+

M (C ).

As preparation we prove that, under the hypotheses of the theorem, for any q ∈
◦
D and

any future-directed timelike curve γ : [0, 1]→M from q to p, we have

(t ◦ γ)[0, 1) = [t(q), t2). (5.14)

Since t is temporal on
◦
D and γ[0, 1) is entirely contained in

◦
D, it follows that t◦γ�[0,1) is

non-decreasing. Now let t(q) < τ < t2 and pick a point r ∈
◦
D such that t(r) = τ . Then

it is possible to find a neighbourhood U of p such that for any point z in U ∩ I−M (p)

there is a future-directed timelike curve ρ from r to z. In particular, we can pick z to

be γ(λ) for λ sufficiently close to 1. Since t is non-decreasing along ρ, we conclude that

τ = t(r) ≤ t(z) = t(γ(λ)). Thus we have found that (t◦γ)[0, 1) ⊇ [t(q), τ ] ∀ t(q) ≤ τ < t2,

which readily implies Equation (5.14).

We now argue, using Equation (5.14), that

◦
D =

⋃
n

Lτn (5.15)

where (τn)n is any sequence such that t1 < τn < t2 and τn → t2 as n→∞. The inclusion

⊇ is automatic. So let q ∈
◦
D. Then t1 < t(q) < t2 so there exists an integer n such that

t(q) < τn; but by Equation (5.14), there exists a future-directed timelike curve from q

to a point zn with t(zn) = τn, i.e. to a point zn ∈ Sτn . So q ∈ Lτn , which completes the

proof of Equation (5.15).

In particular, we can without loss of generality assume that the sequence (τn)n in Equa-

tion (5.15) has the property that t̃ < τn < t2 ∀ n, with t̃ as in the hypothesis of the

theorem. Then to prove the theorem it suffices to show that, for any τ with t̃ < τ < t2,

u and du vanish on Lτ . The idea behind the proof of this fact is to construct a suitable

vector field out of u and du, to integrate its divergence over Lτ , and to use the diver-

gence theorem together with the assumptions made on the structure of the topological

boundary of Lτ as a subset of the extended manifold (without boundary) M̃ . Define

the first-order, tensor-valued bilinear bidifferential operator

T [u, v] = T (j1u, j1v) = du⊗ dv − 1

2
g g−1(du,dv).

[We refer to Section 2.5.1 for notions of jet bundles and jet extensions of sections; in

particular, we are using here the isomorphism J1(M ×R) ∼= T ∗M ×R mentioned there.]

It holds that, for any point p and any two future-directed timelike vectors X,Y at p,

the quadratic form

T ∗pM 3 ω 7→ T (ω, ω)abX
aY b = ω(X)ω(Y )− 1

2
g(X,Y )g−1(ω, ω) (5.16)



Notes towards a theory of spacetimes with timelike boundaries and boundary value
problems 167

is positive-definite. I.e. we are defining Tab to be the stress-energy tensor of the massless

scalar field, and the positive-definiteness of (5.16) is simply a statement of the well-

known dominant energy condition which is enjoyed by this quantity, even ‘off-shell’. A

simple calculation shows that

∇aT [u, u]ab = (�gu)(du)b

so that, if Y is a vector field, then

∇a(T [u, u]abY
b) = Y (u)�gu+ T [u, u]ab∇aY b.

Now let ξ[u]a = e−λtT [u, u]abY
b where λ > 0 is a constant. Then

div ξ[u] = e−λt
{
Y [u]�gu+ T [u, u]ab∇aY b − λT [u, u]ab∇at Y b

}
.

Letting also η[u] = e−λtu2Y we have

div η[u] = e−λt
{
−λY [t]u2 + 2uY [u] + div Y u2

}
from which we obtain

div(ξ[u] + η[u]) + λe−λt
{
T [u, u]ab∇at Y b + Y [t]u2

}
= e−λtY [u]�gu+ e−λt

{
T [u, u]∇aY b + (div Y )u2 + 2uY [u]

}
(5.17)

and, in turn,

div(ξ[u] + η[u]) + λe−λt{
(I)︷ ︸︸ ︷

T [u, u]ab∇at Y b + Y [t]u2}
= −e−λtY [u]Pu+ e−λt{T [u, u]∇aY b + (div Y )u2 + Y [u](X[u] + Vu+ 2u)︸ ︷︷ ︸

(II)

}. (5.18)

The exact forms of the terms (I) and (II) above are not essential. What matters for

the analysis which will follow is that:

• If Y and ∇t are defined, continuous and future-directed timelike everywhere on

an open set U ⊆ V , and if additionally Y [t] = gabY
a∇bt is strictly positive on U ,

then (I) on U defines a pointwise positive-definite quadratic form in u and its first

derivatives, i.e. it is a pointwise positive-definite quadratic form on the first-order

jet bundle J1E → U of the trivial line bundle E = U × R→ U .

• (II) is too a (not necessarily positive definite or even semi-definite) quadratic form

on J1E → U .
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We now wish to use Lemma 5.3.1, with the vector bundle J1E → U playing the role

of F
π−→ N , the quadratic forms defined by either of the differential expressions (I) and

(II) playing the role of f , h being any auxiliary fiberwise positive-definite quadratic

form on J1E, and the closure of Lτ in U playing the role of the subset X. If U is an

open neighbourhood of I−M (p) ∩ J+
M (C ) then we know (by hypothesis) that this closure

is indeed contained in U . In particular, we may choose U to be the neighbourhood

W ⊂ I−M (p) ∩ J+
M (C ) on which t is known to be temporal. As far as the application

of Lemma 5.3.1 is concerned, it suffices to choose the vector field Y to be any other

future-directed timelike vector field on W – for then Y [t] = gabY
a∇bt is strictly positive

on W . However, the rest of the proof our theorem will dictate a more stringent choice

for Y , which will arise naturally below. For now, we conclude that there exist constants

C1, C2 > 0 such that, on Lτ ,

(I) ≥ C1h(j1u) and (II) ≤ C2h(j1u) (5.19)

and thus Equation (5.18) leads to the inequality

div(ξ[u] + η[u]) ≤ −e−λtY [u]Pu− [λC1 − C2]e−λth(j1u). (5.20)

on Lτ and for all λ > 0. In particular, we may pick λ large enough so that λC1 − C2 =

C3 > 0. Now if Pu = 0 throughout Lτ , as we are assuming, then this further reduces to

div(ξ[u] + η[u]) ≤ −C3e
−λth(j1u). (5.21)

The function on the right-hand side is continuous on Lτ , is either negative or zero, and

vanishes only at those points at which u and du are equal to zero, because h was chosen

positive-definite. Therefore,∫
Lτ

div(ξ[u] + η[u]) dµg ≤ 0 with equality iff u and du are identically zero on Lτ .

We now show, and it is at this point that we use the hypothesis that u and du vanish

on J−M (p) ∩ C and that u vanishes on ∂M ,3 that if Y is chosen appropriately then we

must also have ∫
Lτ

div(ξ[u] + η[u]) dµg ≥ 0. (5.22)

Namely, let Y be a vector field with the property that it is everywhere future-directed

and timelike, and that additionally, on ∂M , it is either tangent to ∂M or points towards

M when the latter is regarded as a submanifold of M̃ . Below, we will discuss how

one such vector field may be globally constructed, but for now we assume one is given.

3But not the fact that Pu = 0!
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Using the assumptions on the regularity of the boundary made in the statement of the

theorem, by the generalisation of Theorem 2.5.13 involving locally Lipschitz boundaries

we see that if it is the case that the vector field

ξ[u] + η[u] = e−λt
(
T [u, u]abY

b + u2Y a
)

is either outward pointing or tangent to each smooth portion Bτ , Iτ and S ′
τ , then

Inequality (5.22) follows.

(Bτ ) On ∂M ∩ V ⊇ Bτ , u vanishes. Therefore, on Bτ , du = ϕn where ϕ is real-valued

and n is an outward-directed conormal field along Bτ . There, we have as a result

ξ[u] + η[u] = e−λtϕ2

{
n(Y )n] − 1

2
g−1(n, n)Y

}
, (5.23)

and, since n(n]) = g−1(n, n), we see that

n(ξ[u] + η[u]) =
e−λtϕ2

2
g−1(n, n)n(Y ).

Now, n(Y ) ≤ 0 because n was assumed outward directed and Y tangent or inward

pointing, and g−1(n, n) < 0 because n is conormal to a timelike hypersurface. It

follows then that n(ξ[u] + η[u]) ≥ 0, i.e. that ξ[u] + η[u] is outward directed along

Bτ , or tangent to Bτ .

(Iτ ) This is clear, since u and du are both assumed to vanish on J−M (p) ∩ C ⊇ Iτ .

(S ′
τ ) Since S ′

τ is part of a level set of t and since dt never vanishes, (dt)�S ′τ is conormal

to S ′
τ . Since grad t is future-directed timelike and t increases strictly along future-

directed causal curves, it is actually an outward conormal. Then,

dt(ξ[u] + η[u]) = e−λt
{
T [u, u]ab(∇at)Y b + u2g(grad t, Y )

}
and all terms are positive due to the properties of T and to the fact that both

grad t and Y are future-directed and timelike.

We conclude by proving the global existence of Y with the properties claimed above.

Let Θ be a global, timelike, future-directed vector field on M – which exists since M is

time-orientable. Let f : M → R be a boundary-defining function for M [Lee13, p. 118],

assumed w.l.o.g. such that df is inward pointing on ∂M , and consider the open (in M)

set

O :=
{
p ∈M

∣∣ g−1(df(p),df(p)) < 0
}
.
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Then ∂M ⊆ O since ∂M is timelike. Now, consider the vector field Ξ defined on O by

Ξa = Θa − Θc∇cf
(∇df)(∇df)

∇af.

We calculate

ΞaΞa = ΘaΘa−2
(Θa∇af)2

(∇df)(∇df)
+

(Θc∇cf)2

[(∇df)(∇df)]2
(∇af)(∇af) = ΘaΘa−

(Θa∇af)2

(∇df)(∇df)
> 0,

so Ξ is also timelike. Furthermore,

ΞaΘa = ΘaΘa −
(Θa∇af)2

(∇df)(∇df)
= ΞaΞa > 0,

so Ξ is future-directed. Ξ is tangent to ∂M since

df(Ξ) = Ξa∇af = Θa∇af −
Θc∇cf

(∇df)(∇df)
(∇af)(∇af) = 0.

Consider the open cover of M given by {IntM,O}. Pick a (non-negative) partition of

unity {χ1, χ2} subordinate to this cover, and let

Y := χ1Θ + χ2Ξ ∈ X(M).

Then Y is future-directed timelike since it is the sum of two future-directed timelike

vector fields, and it is tangent to ∂M since it equals Ξ there. We can even tweak this

construction to obtain a future-directed timelike vector field which is inward pointing

on ∂M , by defining Y instead as

Y = χ1Θ + χ2Ξ′

with χ1, χ2,Θ as above, and

Ξ′a := Ξa − δ∇af

for any δ ∈ C∞(O) positive and such that

δ2 < − ΞaΞa
(∇af)(∇af)

.

With these definitions, it is easy to check that Ξ′a is future-directed and timelike on O,

and it is additionally inward pointing on ∂M . The claim on Y follows.
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5.4 Discussion and outlook

Suppose we could prove that any globally hyperbolic STT∂ M = (M, g, t) admits a

(surjective, smooth) Cauchy temporal function t : M → R, in which case let Cτ :=

t−1{τ}. What’s more, suppose that we could prove that, given any smooth spacelike

Cauchy surface C , there exists a Cauchy temporal function for which C is a level set.

Consider the notation of Section 5.2.1 and assume that Γ∂ is determined by homogeneous

boundary conditions, so that for any open subset O of M we can consider the smooth

sections of the field bundle restricted to O and satisfying the same boundary conditions,

and denote them by ΓO∂ – and the zero section of F |O always belongs to ΓO∂ . Finally,

suppose that we could prove following PDE result (to compare with Theorem 24.4.1 in

[Hör94]):

‘Theorema demonstrandum’. For any f ∈ Γ̃0, there exists a unique solution u± ∈ Γ∂ of

Pu = f such that u+ [resp. u−] vanishes on t−1(−∞, τ ] [resp. on t−1[τ,+∞)] whenever

τ ∈ R is such that supp f ⊂ I+(Cτ ) [resp. supp f ⊂ I−(Cτ )].

Remark. Notice that, under the other assumptions made in the first paragraph of this

section, it would then automatically follow that suppu± ⊆ J±M (supp f) by the following

argument:

M± := (M± = M \ J±M (supp f), g�M± , t�M±)

is also a globally hyperbolic STT∂ (by Corollary 5.1.8), and Cτ is entirely contained in

M+ [resp. in M−] whenever τ ∈ R is such that supp f ⊂ I+
M (Cτ ) [resp. supp f ⊂ I−M (Cτ )]

– since this implies that J+
M (supp f) ⊆ J+

M

(
I+
M (Cτ )

)
= I+

M (Cτ ). Hence, Cτ is a Cauchy

surface for M+ [resp. for M−]. Under the assumptions in the first paragraph of this

section, we can then find a Cauchy temporal function t+ [resp. t−] for M+ [resp. for

M−] such that Cτ = t−1
+ {τ} [resp. such that Cτ = t−1

− {τ}]. The zero section of the

field bundle restricted to M+ [resp. to M−] clearly solves Pu = 0 on M+ [resp. on

M−], belongs to Γ
M+

∂ [resp. to Γ
M−
∂ ], and vanishes on t−1

+ (−∞, τ ] [resp. on t−1
− [τ,+∞)],

and it is the unique such section. But u±�M± also satisfies those requirements (since

f�M± = 0). This immediately yields the claim on suppu±.

Assuming that our ‘Theorema demonstrandum’ holds as stated, i.e. for inhomogeneities

f with compact support, then we expect that actually, owing to global hyperbolicity, one

may extend it, and correspondingly also the statement on supports made in the Remark

above, to inhomogeneities with more general causally restricted supports. E.g. it should

be possible to adapt the proof of Theorem 3.8 in [Bär15] (see also the end of the proof of

Theorem 12.17 in [Rin09], or the proof of Corollary 5 in [Gin09]) to show that f can be

allowed to have retarded/advanced support, or even past/future compact support. So

at the very least, one could define retarded/advanced Green operators G± : Γ̃± → Γ±,∂
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in the sense of Definition 5.2.1, by setting

G±f = u± for all f ∈ Γ̃±.

These will be the inverses to P : Γ±,∂ → Γ̃± by Proposition 5.2.2. This in turn demon-

strates that using a different Cauchy temporal function in the original statement of our

‘Theorema demonstrandum’ must yield the same solution u±.

With G± as just constructed, one can then establish the exactness of sequence (5.7) as

was done in the proof of Theorem 5.2.3, provided the boundary conditions are such that

cutoff functions χ± can be found as required by the statement of that theorem – see

the discussion on this point at the end of Section 5.2.1. In turn, this would prepare the

ground for the rigorous quantization of linear systems with boundary conditions.

In view of these considerations, given a linear differential operator P on a globally

hyperbolic STT∂ and a choice of homogeneous boundary conditions, Green hyperbolicity

relative to the boundary conditions can be established if:

1.) Lorentzian-geometric results which are well-known in the boundaryless scenario

can be extended to globally hyperbolic STT∂s: at least, the existence of (smooth)

Cauchy temporal functions and additionally the existence of such functions

adapted to any smooth spacelike Cauchy surface;

2.) a ‘Theorema demonstrandum’ can be proved for the given choice of boundary

condition.

While we have separated the two issues for convenience, there is overlap as we now wish

to explain. Let us now specialise to the case of normally hyperbolic operators. One

approach for proving existence and uniqueness in the Cauchy problem in that case is

constructive, and essentially dates back to the work of M. Riesz [Rie49] (whose arguments

in turn built on Hadamard’s pioneering work [Had23]) in which explicit expressions

were given for the advanced and retarded fundamental solutions of the wave equation

in Minkowski spacetime. This approach was then extended to local regions in a curved

spacetime by Friedlander [Fri75] using geodesic normal coordinates. No energy identities

or inequalities need to be used at any step in this approach. Finally, global advanced

and retarded fundamental solutions on globally hyperbolic manifolds can be found by

patching up local ones (regardless of how the latter were found in the first place), as was

already sketched in [CB67] and was proved in full detail in [BGP07].

It seems to us that attempting to adapt Friedlander’s local constructions to the case with

timelike boundaries and boundary conditions would meet with important difficulties re-

lated to the unwieldy interplay between geodesics and boundaries. On the other hand,



Notes towards a theory of spacetimes with timelike boundaries and boundary value
problems 173

the approach to solving the Cauchy problem based on energy methods (see p. 164) seems

more promising. It would also, presumably, extend to other kinds of ‘hyperbolic’ PDEs,

and in particular to symmetric hyperbolic systems [Ger96]. In the boundaryless glob-

ally hyperbolic case, and for normally hyperbolic operators, Chapter 12 of Ringström’s

book [Rin09] presents a complete and rigorous account of how a global existence and

uniqueness result, which includes our ‘Theorema demonstrandum’ as a special case, can

be proved using energy methods. A rough outline of how this is achieved is as follows:

(a) Prove that, around any point p on a smooth spacelike Cauchy surface C , there is an

open neighbourhood U in M such that for any point in U ∩J+(C ) the hypotheses

of the equivalent of our local uniqueness/sharp finite speed of propagation result,

Theorem 5.3.2, are satisfied. In particular, the required temporal functions exist

[Rin09, Lem. 12.7 & Lem. 12.8].

(b) Use a Cauchy temporal function adapted to C and a connectedness argument to

promote the local finite speed of propagation result in (a) to a global result stating

that if the Cauchy data for the homogeneous problem has support in K ⊆ C , then

the support of any solution to the future of C is supported in J+(K) – dually, if the

Cauchy data vanishes on Ω ⊆ C then any solution to the homogeneous problem

vanishes on the future Cauchy development of Ω [Rin09, Cor. 12.12].

(c) Prove a global existence result for linear wave equations on Rn+1 with initial data

on on {0} × Rn [Rin09, Thm. 8.6].

(d) Prove global existence to the future of C by constructing local solutions in small

neighbourhoods of each point, using (b) and compactness arguments to argue that

the local solutions agree on overlaps and that any solution defined up to a given

finite Cauchy time can be extended to one defined up to a strictly later Cauchy

time [Rin09, Thm. 12.17].

(e) Similarly prove global existence to the past of C .

Our view is that what will require the most attention in generalising the above steps to

the case with boundary conditions are, in addition to point 1.) above, items (a) and

(d).

Actually, as we saw in the proof of Theorem 5.3.2, the Dirichlet boundary condition

is such that a vector field Y may be chosen to yield the necessary estimates when

the ‘energy form’ T [u, u] defined there is employed. Any other boundary condition to

be deemed suitable must share the same property, although possibly with respect to a

different choice of energy form. To the best of our understanding, this point is not always

tackled explicitly in the literature on hyperbolic mixed problems. Exceptions which we
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are aware of are the claimed characterisation of suitable oblique derivative conditions in

[G̊ar77] (see also [MS82, Sec. 6]), and the discussion on domain of dependence properties

in [Sak82, Sec. 3.6] for the class of boundary conditions considered there (see below).

We would therefore deem it a worthwhile future endeavour to revisit this literature and

to translate their results into appropriate analogs of Theorem 5.3.2.

Concerning (d), there already is, at this stage, a large literature on hyperbolic mixed

problems from which it should be possible to draw adequate local existence results

for a variety of boundary conditions. For example: [Hör94, Lem. 24.1.6] for the case of

Dirichlet boundary conditions, the aforementioned work in [G̊ar77] for oblique derivative

problems, [Kre75] for first-order systems, and [Sak82, GV96] for hyperbolic problems

satisfying the uniform Lopatinsky condition.

It remains therefore to discuss the purely Lorentzian-geometric issues, namely 1.) on p.

172 and (a) above. Concerning the latter, in [Rin09, Lem. 12.8] it is geodesic normal

coordinates which provide the desired temporal function on a neighbourhood of I−(q)∩
J+(C ) whenever q is sufficiently close to C . The required temporal function there is the

Lorentz norm of the displacement vector from q, which is defined on I−(q) ∩ V where

V is a geodesic normal coordinate neighbourhood such that J−(q) ∩ J+(C ) ⊆ V . If a

timelike boundary is present, this strategy would appear to be inadequate. While we

have not yet found an adequate substitute, a possibility may be as follows:

Since I−(q) is a globally hyperbolic sub-STT∂ of M , if 1.) can be solved in

full generality then a Cauchy temporal function for I−(q) may do the job of

satisfying the hypotheses of Theorem 5.3.2, at least when q is close enough to

the Cauchy surface C .

Since this strategy is strictly speaking not yet known to work even in the boundaryless

case, it would be of interest first to verify it there. At any rate, our reason for claiming

that there is overlap between the resolution of issues 1.) and 2.) on p. 172 should now

be clear: in the absence of convenient constructions such as geodesic normal coordinates

(at least when the point of interest lies on the boundary), we need more general ways of

‘sweeping out’ domains of the form I−(p)∩J+(C ), and tentatively propose that Cauchy

temporal functions may provide one such way.

It then appears to be of paramount importance, if one is to make progress in this

research project, to succeed in extending the purely Lorentz-geometric results on the

existence of Cauchy temporal functions (adapted to Cauchy surfaces) to the case of

globally hyperbolic STT∂s. Unfortunately, many of the available proofs, for instance the

ones in [BS05] or in [CGM16], seem to again rely on the fine properties of the exponential

map on Lorentzian manifolds without boundary! What we believe is needed is a family of

arguments based on more widely applicable methods of analysis or differential topology.
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Recently, Fathi and Siconolfi [FS12] (see also [Fat15]) have provided a proof of the ex-

istence of Cauchy temporal functions for general globally hyperbolic cone structures

on manifolds, using techniques imported from weak Kolmogorov–Arnold–Moser (KAM)

theory. We believe that, in principle, their proof has great potential to be adapted with

minimal modifications to the case of globally hyperbolic STT∂s. There are, however,

some subtleties: In the special case (which is what we’re interested in) of cone struc-

tures arising from the field of future-directed causal (or zero) vectors on a time-oriented

Lorentzian manifold, the definition of global hyperbolicity in [FS12] consists of stable

causality together with the requirement that the images of all causal curves connecting

two given points lie in a compact (possibly empty) subset. Additionally, those authors

define causal curves using the ‘locally Lipschitz’ view, i.e. according to an analog of

Definition 2.1.17. As we saw in Section 2.1.2 (see also [HE73, Prop. 6.6.2] or [FS12,

Lem. 4.4]), in the case of spacetimes without boundaries this definition of global hyper-

bolicity is no different from the one using (strong) causality together with compactness

of all causal diamonds, and similarly it makes no difference to adopt continuous or even

piecewise-smooth curves to define causal pasts and futures instead. But in the case of

STT∂s, all of this remains to be rigorously established. In particular, as we saw in

Section 5.1.1, Solis [Sol06] – and we with him – set up the causal theory of STT∂s using

continuous causal curves and not locally Lipschitz ones. This may not eventually be

a serious restriction to prove the existence of Cauchy temporal functions, but it would

still be of interest to provide an explicit proof that including all locally Lipschitz causal

curves does not in fact change causal futures and pasts of points, i.e. to prove an analog

of Theorem 2.1.18.4

Perhaps more seriously, stable causality plays a crucial role in the methods used in

[FS12], so it would need to be shown that Solis’ and our notion of global hyperbolicity

of STT∂s implies their stable causality. Should this not be the case, there may be an

argument that global hyperbolicity of STT∂ in the sense introduced by Solis is not the

appropriate notion, after all!

4Note that proving an analog of Theorem 2.1.18 when the spacetime has no boundary but the metric
is only assumed to be continuous is to this date an open problem in Lorentzian geometry, see [Säm16,
Sec. 7].





Appendix A

Weyl quantization of linear systems,

quasi-free states and one-particle

structures

We give here a brief overview of the standard Weyl-algebra approach to the quantization

of (real, bosonic) linear systems [Seg63, BR97]. The starting point is the realization that

the phase space of the classical theory is a (real) symplectic vector space (S, σ). The

first step is to construct the Weyl algebra [Sla72] over (S, σ), denoted here by W (S, σ).

This is the C∗-algebra generated by a unit element 1 and by Weyl operators W (Φ) (for

all Φ ∈ S) satisfying the relations

W (Φ1)W (Φ2) = e−iσ(Φ1,Φ2)/2W (Φ1 + Φ2), W (Φ)∗ = W (−Φ),

which are to be regarded as exponentiated versions of the standard canonical commuta-

tion relations (and in particular imply that each W (Φ) is unitary and that W (0) = 1).

The Weyl algebra construction is functorial in the sense that for any two linear symplectic

spaces (S1, σ1) and (S2, σ2) and for any linear symplectic map T : S1 → S2, one defines in

a natural way a *-homomorphism α : W (S1, σ1)→ W (S2, σ2) between the corresponding

Weyl algebras by setting

α(W1(Φ)) = W2(TΦ) ∀ Φ ∈ S1 (A.1)

(and extending by linearity and continuity). If a one-parameter subgroup (Tτ )τ∈R

of linear symplectomorphisms of (S, σ) is available, then, from the ‘linear dynami-

cal system’ (S, σ,Tτ ), one obtains, via Weyl algebra quantization, the ‘C∗ dynamical
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system’ (A , ατ ) where A = W (S, σ) and (ατ )τ∈R is the one-parameter group of *-

automorphisms of A induced from (Tτ )τ∈R in the manner described by Equation (A.1).

We recall that a state on the Weyl algebra A is a positive linear functional ω such that

ω(1) = 1. It is called pure if it cannot be expressed as a convex combination of any other

two states, and mixed otherwise. Finally, ω is said to be stationary or invariant with

respect to a one-parameter group (ατ )τ∈R of *-automorphisms of A if, for all τ ∈ R,

ω ◦ ατ = ω.

Correlation functions can be defined for sufficiently regular states; that is, one may

define the one- and two-point functions

λ1(Φ) =
d

dt
ω[W (tΦ)]

∣∣∣∣∣
t=0

(A.2)

λ2(Φ1,Φ2) = − ∂2

∂s∂t
ω[W (sΦ1 + tΦ2)]e−istσ(Φ1,Φ2)/2

∣∣∣∣∣
s,t=0

, (A.3)

and similarly define higher n-point correlation functions λn, if the state is regular enough

for the relevant derivatives to exist. Note that all correlation functions are multilinear

in their arguments.

Two-point functions play a special role in quantum field theory. For now, note that if a

state is C2 (see e.g. [Kay93] for a definition), so that the one- and two-point functions

exist, one may verify that λ2 automatically satisfies the following properties for all

Φ1,Φ2 ∈ S:

(i) Im[λ2(Φ1,Φ2)] = σ(Φ1,Φ2)/2;

(ii) Reλ2 =: µ is a symmetric, real-bilinear form on S satisfying

µ(Φ1,Φ1) ≥ 0, σ(Φ1,Φ2)2 ≤ 4µ(Φ1,Φ1)µ(Φ2,Φ2). (A.4)

Condition (i) encodes the canonical commutation relations, and Condition (ii) results

from positivity of the state.

The set of λ2 : S × S → C satisfying Conditions (i) and (ii) is in one-to-one correspon-

dence with the set of equivalence classes of one-particle structures over (S, σ), whose

definition appeared already in Section 3.2, but which we repeat here for convenience.

Definition A.0.1 (One-particle structures). These are pairs (K,H ), with H a complex

Hilbert space and K : S →H a real-linear map, such that for all Φ1,Φ2 ∈ S,

1. KS + iKS is dense in H ;
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2. Im 〈KΦ1 | KΦ2〉H = σ(Φ1,Φ2)/2.

Any two such pairs (K,H ) and (K ′,H ′) are said to be equivalent if there exists an

isomorphism U : H →H ′ of Hilbert spaces such that UK = K ′.

The correspondence works as follows. On the one hand, any one-particle struc-

ture (K,H ) over (S, σ) clearly yields a λ2 satisfying Conditions (i) and (ii), namely

λ2(Φ1,Φ2) = 〈KΦ1 | KΦ2〉H . Somewhat less trivially, the converse also holds.

Proposition A.0.2. Given a λ2 : S × S → C satisfying Conditions (i) and (ii), there

exists a one-particle structure (K,H ) which is associated to λ2 in the sense that

〈KΦ1 | KΦ2〉H = λ2(Φ1,Φ2) for all Φ1,Φ2 ∈ S. Furthermore, any two such one-particle

structures are equivalent in the sense of Definition A.0.1.

The result above is proved in Appendix A of [KW91]. There, and in the discussion

following Proposition 3.1 in Section 3.2, it was also pointed out that one may use this

result to prove that, for any λ2 : S×S → C satisfying Conditions (i) and (ii) above, the

prescription

ω[W (Φ)] = exp[−λ2(Φ,Φ)/2] ∀ Φ ∈ S (A.5)

(and extension by linearity and continuity) defines a state on A . Indeed, one may

realize the right-hand side of Equation (A.5) as the expectation value in the Fock space

vacuum, of the operator WF (KΦ) = exp[a†(KΦ)− (a†(KΦ))∗] on the Fock space over

H . Since W (Φ) 7→WF (KΦ) defines a *-representation of the Weyl algebra, the result

follows. One may then easily verify that ω has a two-point function and that this equals

λ2. Indeed, ω also has the following additional properties: (a) it is analytic (see e.g.

[BR97], p. 38) so that, in particular, it is Cm for all m and all correlation functions

exist; (b) the one-point function vanishes; (c) the ‘truncated’ n-point functions (see e.g.

[Haa96, BR97]) vanish for n > 2 (in particular, all odd correlation functions vanish).

Throughout the present thesis, and just as in [KW91], we will refer to states having

Properties (a)–(c) as ‘quasi-free’, but remark that more properly they should be referred

to as ‘quasi-free states with vanishing one-point function’. Since analytic states with the

same collections of n-point functions are identical, this also proves that any quasi-free

state on the Weyl algebra is in the form of Equation (A.5), for some λ2 satisfying

Conditions (i) and (ii).

We recall a technical lemma of Hilbert space analysis which is used in the proof of the

statement of uniqueness up to equivalence in Proposition A.0.2, and which we also invoke

in the proof of our no-go Theorem 3.4.7.

Lemma A.0.3. Let H1, H2 be complex Hilbert spaces and let M1 ⊆ H1, M2 ⊆ H2 be

real-linear subspaces such that M1 + iM1 is dense in H1 and M2 + iM2 is dense in H2.
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Let m : M1 → M2 be a bijective real-linear map such that 〈x | y〉H1
= 〈mx | my〉H2

.

Then m extends uniquely to a complex-linear isomorphism from H1 to H2.

So one concludes that quasi-free states over the Weyl algebra A are also in one-to-one

correspondence with equivalence classes of one-particle structures over (S, σ), and thus

we can freely speak of the (equivalence class of) one-particle structure(s) ‘associated

with’ a given quasi-free state. What’s more, a number of important properties which

could be possessed by a quasi-free state have a ‘translation’ at the level of the corre-

sponding one-particle structure(s). These ‘one-particle versions’ are often technically

convenient to work with, and indeed are what allowed us to conjecture/prove the results

in Chapter 3. We record below two such translations (for proofs, see Appendix A of

[KW91] and [Kay85]), which are invoked in Section 3.2.

Proposition A.0.4. A state ω is pure if and only if its associated one-particle structure

(Kω,Hω) is such that KωS alone is dense in Hω.

Proposition A.0.5. Let Ã denote the Weyl algebra over the symplectic vector space (S̃, σ̃)

and ω be a state on Ã with associated one-particle structure (Kω,Hω). Then the C∗-

subalgebra ÃR of Ã generated by the subspace R of S̃ has the Reeh-Schlieder property1

for (Ã , ω) iff KωR+ iKωR is dense in Hω.

1Let ω be a state on a C∗-algebra A with GNS-triple [BR87] (ρ,H,Ω). Then the C∗-subalgebra B
of A is said to have the Reeh-Schlieder property for (A , ω) if ρ(B)Ω is dense in H.



Appendix B

More on the infrared pathology of

massless fields in 1+1 dimensions

The purpose of this appendix is to show how the infrared pathology afflicting massless

fields in (1+1)-dimensional Minkowski spacetime, which was discussed in detail in Sec-

tion 3.4.2, manifests itself when considering the interplay between the global Hadamard

condition for such fields and invariance under Lorentz boosts. Namely, we will prove

the precise result stated below (where we recall that the notation C∞0 (M), for M an

arbitrary manifold, refers for us to the space of real-valued test functions on M). It is

worth noting that our proof of this result will use several techniques pioneered in [KW91]

– and indeed that the result itself may be morally regarded as complementing the list of

non-existence theorems proved in that paper (but recall that the analysis [KW91] was

restricted to models in four dimensions).

Theorem B.0.1. Let (SM, σM) be the real symplectic vector space of spatially compact

solutions to the massless wave equation �φ = 0 on R2. Let AM = W (SM, σM) be

the associated Weyl algebra of canonical commutation relations. Then there is no C2

state ω on AM which is invariant under the automorphisms of AM induced by the one-

parameter group of Lorentz boost isometries, and whose spacetime smeared two-point

function Λ : C∞0 (R2)× C∞0 (R2)→ C has the ‘global Hadamard form’ in the sense that

H = Λ− ΛM (B.1)

is representable by a function h ∈ C∞(R2 × R2).

Proof. Let us collect some easy facts about the bilinear functional H : C∞0 (R2) ×
C∞0 (R2) → C defined by Equation (B.1). Aside from the representability by a smooth
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function h, i.e.

H(F,G) =

∫
R2

h(x, y)F (x)G(y) d2x d2y ∀ F,G ∈ C∞0 (R2),

we have that

(a) H(TτF,TτG) = H(F,G) ∀ F,G ∈ C∞0 (R2), where (Tτ )τ∈R is the one-parameter

group of linear transformations on C∞0 (R2) given by pullback by (the inverse of)

the Lorentz boost isometries;

(b) h is a classical bisolution to the wave equation, i.e. [�xh](x, y) = [�yh](x, y) =

0 ∀ x, y ∈ R2;

(c) since Λ and ΛM individually satisfy the canonical commutation relations in the

sense that

2 Im Λ(M)(F,G) =
1

i

[
Λ(M)(F,G)− Λ(M)(G,F )

]
= EM(F,G) ∀ F,G ∈ C∞0 (R2),

it follows that

H(F,G)−H(G,F ) = [Λ(F,G)− ΛM(F,G)]− [Λ(G,F )− ΛM(G,F )]

= [Λ(F,G)− Λ(G,F )]− [ΛM(F,G)− ΛM(G,F )]

= 0 ∀ F,G ∈ C∞0 (R2),

i.e. h(x, y) = h(y, x) ∀ x, y ∈ R2.

Without loss of generality, we may assume from now on that the state ω is quasi-free,

since the existence of a merely C2 state on AM which is Lorentz-boost–invariant and

whose two-point function satisfies the hypotheses of the Theorem immediately implies

the existence of a quasi-free one with the same properties – i.e. the unique quasi-free

state (with vanishing one-point function) whose two-point function is the same as the

two-point function of the original state.

In a first step, we argue that ω must coincide with the ‘usual’ vacuum state ωM on the

Weyl subalgebra A0,M of AM generated by the subspace S0,M = Sr-mov+Sl-mov consisting

of sums of compactly supported left movers and compactly supported right movers. This

fact is proved by the following chain of reasoning: (1) by methods completely analogous

(and actually considerably simpler thanks to the absence of boundaries) to the methods

used by us in the proof of Theorem 3.4.7 (which are in turn based on methods presented

in Appendix B of [KW91]), one sees that the ‘symplectically smeared’ two-point function

λ : SM × SM → C of ω, restricted to either Sr-mov × Sr-mov or Sl-mov × Sl-mov, equals the

restriction to the same sets of the ‘symplectically smeared’ two-point function λM of the
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state ωM; (b) this implies in particular that the restriction of ω to the Weyl subalgebras

Ar-mov and Al-mov generated by Sr-mov and Sl-mov (respectively) equals the restriction to

the same subalgebras of the ‘usual’ vacuum state ωM; (c) since these restrictions are pure

and quasifree, by Lemma 4.1 in [KW91] it follows that the ω�A0,M is pure and uniquely

determined; (d) finally, since ωM is pure and quasi-free, this implies the sought-after

result that ω�A0,M = ωM.

Since S0,M = EM[C∞00 (R2)], the result in the above paragraph implies that

H(F,G) = 0 ∀ F, G ∈ C∞00 (R2) (B.2)

(we recall that C∞00 (R2) =
{
ψ ∈ C∞0 (R2)

∣∣ ∫
R2 ψ(x) d2x = 0

}
). So we now pick a χ ∈

C∞0 (R2) with
∫
R2 χ(x) d2x = 1. Then for any F ∈ C∞0 (R2) one has F−(

∫
F )χ ∈ C∞00 (R2)

(where we have abbreviated
∫
R2 F (x) d2x with

∫
F since no confusion should arise from

doing this), and therefore

0 = H

(
F −

(∫
F

)
χ,G−

(∫
G

)
χ

)
= H(F,G)−

(∫
F

)
H(χ,G)−

(∫
G

)
H(F, χ) +

(∫
F

)(∫
G

)
H(χ, χ) (B.3)

for all F, G ∈ C∞0 (R2). Now consider the last term in Equation (B.3) as a bilinear

map C∞0 (R2)× C∞0 (R2)→ C: this is simply the bidistribution defined by the constant

kernel c1 = H(χ, χ), which is obviously a bisolution of the wave equation and is boost-

invariant since Lorentz boosts are measure-preserving. Let us define τ ∈ C∞(R2;C)

by τ(y) =
∫
R2 h(x, y)χ(x) d2x, so that τ is the smooth kernel of the distribution Ψ 7→

H(χ,Ψ). Clearly τ is a solution to the wave equation. By the symmetry of h together

with Equation (B.3) we have

h(x, y) + c1 = τ(x) + τ(y) ∀ x, y ∈ R2. (B.4)

Since the left-hand-side of Equation (B.4) is boost-invariant, so must be the right-hand

side (seen as a function of both x and y). But then, by setting x = y, we see that this

implies that τ is boost-invariant. Since it is also a solution of the wave equation (and is

smooth), it must be equal to a constant c2. Thus we conclude that

h(x, y) = 2c2 − c1 =: c, (B.5)

i.e. h equals a complex constant. This in turn implies that Λ = ΛM + c. Since, as

proved in [Wig67, p. 204], for no choice of constant c can this quantity satisfy the

positivity properties of the (spacetime smeared) two-point function of a state, we reach

a contradiction. This completes the proof.





Appendix C

Sobolev Spaces on Manifolds

The purpose of this appendix is to introduce Sobolev spaces on smooth manifolds, and

in particular spaces of locally Sobolev sections of vector bundles. We follow [Hör90a,

Sec. 7.9], [Hör94, App. B], [Rin09, Ch. 5] and [BW15].

We begin by considering the case of the Euclidean space Rn and scalar functions/dis-

tributions. Throughout, S = S(Rn) denotes the space of complex-valued Schwartz

functions on Rn, and S ′ = S ′(Rn) denotes its continuous dual, the space of Schwartz

distributions. Recall that a Lebesgue measurable, complex-valued function u is said to

be locally L1, or to belong to L1
loc(Rn), if u · χK ∈ L1(Rn) for any compact set K ⊂ Rn.

The space L1
loc(Ω), of locally L1 functions on an open set Ω ⊆ Rn, is defined analogously.

Locally L1 functions with values in R and in any other finite-dimensional real or complex

vector space are defined by demanding that all components in a basis (and therefore in

any other basis) be locally L1.

Definition C.0.1. Let k ∈ N0 and Ω ⊆ Rn be open. Then a function u ∈ L1
loc(Ω) is said

to be k times weakly differentiable if for every multi-index α with |α| ≤ k there is a

locally L1 function uα on Ω such that the following equation holds for any ψ ∈ C∞0 (Ω):∫
Ω
u∂αψ dx = (−1)|α|

∫
Ω
uαψ dx.

If that is the case, the uα are referred to as the weak derivatives of u. A locally integrable

vector-valued function is said to be k times weakly differentiable if its components are.

Definition C.0.2. Let k ∈ N0, 1 ≤ p <∞, Ω ⊆ Rn be open, and V be a finite-dimensional

real or complex vector space with norm and inner product denoted by | · | and (·, ·)
respectively. Then Wk,p(Ω;V ) denotes the set of k times weakly differentiable functions

(valued in V ) such that all the weak derivatives are also in Lp(Ω;V ). Let now

W k,p(Ω;V ) :=Wk,p(Ω;V )/ ∼ where u1 ∼ u2 ⇔ u1 = u2 a.e.
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(with respect to the Lebesgue measure). Then W k,p(Ω;V ) is a Banach space with the

following (well-defined) norm

‖[u]‖Wk,p :=

∑
|α|≤k

∫
Ω
|∂αu|p dx

1/p

∀ u ∈ Wk,p(Ω;V ).

The special case p = 2 yields a Hilbert space denoted by Hk(Ω;V ) =Wk,2(Ω;V ), with

inner product

〈[u1] | [u2]〉Hk :=
∑
|α|≤k

∫
Ω

(∂αu1, ∂
αu2) dx ∀ u1, u2 ∈ Wk,2(Ω;V ).

Clearly, W 0,p(Ω;V ) = Lp(Ω;V ) so that in particular H0(Ω;V ) = L2(Ω;V ). The special

cases with V = C are denoted simply by W k,p(Ω) and Hk(Ω).

Definition C.0.3. Let s ∈ R. Then H(s)(Rn) denotes the space of all u ∈ S ′ such

that the Fourier transform û ∈ S ′ is (representable by) a measurable function and

û(ξ)(1+‖ξ‖2)s/2 is square-integrable. H(s)(Rn) is a Hilbert space with the inner product

〈u1 | u2〉(s) :=
1

(2π)n

∫
û1(ξ)û2(ξ)

(
1 + ‖ξ‖2

)s
dξ

and corresponding norm denoted by ‖·‖(s) . We can define H(s)(Rn;V ) for any finite-

dimensional real or complex vector space V by demanding that components be in

H(s)(Rn).

Proposition C.0.4. Under the standard embedding L1
loc(Rn) ↪−→ S ′, we have H(k)(Rn) =

Hk(Rn) for all k ∈ N0. The norms on H(k)(Rn) and on Hk(Rn) are equivalent.

Recall that, for any open subset Ω ⊆ Rn, the space D(Ω) is the locally convex topological

vector space of complex-valued functions which are defined, smooth, and with compact

support on Ω. In other words, D(Ω) = C∞0 (Ω;C) as a set; its standard inductive

limit (more precisely, LF-space) topology is defined e.g. in [Tre67, Ch. 13], and can be

equivalently characterised by using the seminorms in Theorem 2.1.5 in [Hör90a]. Its

continuous dual space is the space of distributions D ′(Ω). We now define local versions

of the spaces in Definition C.0.3 (local versions of the spaces in Definition C.0.2 may

also be defined, but we will not do so here). This will allow us to further extend the

definition to arbitrary smooth manifolds.

Definition C.0.5. Let s ∈ R and Ω ⊆ Rn be open. Then H loc
(s) (Ω) denotes the space of all

u ∈ D ′(Ω) such that ψu ∈ H(s)(Rn) for every ψ ∈ C∞0 (Ω). H loc
(s) (Ω;V ) can similarly be

defined when V is a real or complex vector space.
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If M is a smooth manifold, while there is only one possible definition of the space of

(scalar) test functions, i.e. D(M) := C∞0 (M ;C), there are at least two natural ways in

which one might wish to define a space of distributions D ′(M). A choice between the

two is determined to a large extent by whether what is cherished is the presence of a

canonically defined embedding from functions on M [say, from C0(M ;C)] to D ′(M),

or the convenience of defining spaces directly by duality. Namely, in the first approach

(used e.g. by Hörmander), one defines D ′(M) as

D ′(M) = [Γ∞0 (|ΛM | ⊗R C)]′,

where C denotes the bundle M × C→M and |ΛM | denotes the bundle of densities on

M , so that |ΛM | ⊗R C may be viewed as the bundle of complex-valued densities on M .

A function in C0(M ;C) [indeed, more generally one in L1
loc(M)] gives rise to a linear

form on Γ∞0 (|ΛM | ⊗R C) defined by

λ 7→
∫
M
fλ ∈ C,

since fλ is then a continuous [or locally L1] complex-valued density on M with compact

support, which can be integrated.

In the second approach, one directly defines

D ′(M) = [D(M)]′,

i.e. as the continuous dual of D(M). If a smooth density dµ ∈ Γ∞(|ΛM |) is given, then

functions on M can still be linearly embedded in the thus defined space of distributions,

since the assignment

D(M) 3 ψ 7→
∫
M
fψ dµ ∈ C

belongs to [D(M)]′.

In other words: every dµ ∈ Γ∞(|ΛM |) defines a linear isomorphism (indeed, a topological

vector space isomorphism) between the two versions of D ′(M) we have just defined.

We adopt the second approach in most of this thesis, since we will always be dealing

with smooth manifolds with a semi-Riemannian metric g and the latter yields a smooth

volume density dµg. However, for the purposes of this Appendix, and in particular of the

following definition, it is in fact more convenient to temporarily use the first definition

of D ′(M) we gave here.

Definition C.0.6 (Spaces of locally Sobolev functions on manifolds). Let M be a smooth

n-dimensional manifold and s ∈ R. Then H loc
(s) (M), denoted also by Hs

loc(M), is defined

to be the vector space of all u ∈ D ′(M) such that, for every smooth chart (U, κ : U → V )
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for M ,

uκ := (κ−1)∗u ∈ H loc
(s) (V )

where (κ−1)∗u ∈ D ′(V ) is defined by

[(κ−1)∗u](ϕ) = u[(κ−1)∗(ϕdλ)] ∀ ϕ ∈ D(V ).

In turn, dλ above denotes the restriction of the standard smooth Lebesgue density on

Rn to V , and the pushforward (κ−1)∗(dλ̃) of a compactly supported smooth density dλ̃

on V is the compactly supported smooth density on M defined by

(κ−1)∗(dλ̃) =

κ∗(dλ̃) on κ−1(supp dλ̃)

0 otherwise.

Definition C.0.7 (Topology on Hs
loc(M)). Hs

loc(M) is equipped with the locally convex

topology defined by the semi-norms

‖u‖κ,ϕ := ‖ϕuκ‖(s)

where κ : U → V is an arbitrary smooth coordinate system on M , and ϕ is an arbitrary

element of C∞0 (V ). In fact [Hör94, p. 475], the same topology is generated by any

countable subfamily {‖·‖κn,ϕn}n∈N with the property that {κn : Un → Vn} is an atlas

for M , ϕn ∈ C∞0 (Vn), and
⋃
n∈N {x ∈ Vn | ϕn(x) 6= 0} = M . Therefore, Hs

loc(M) is a

Fréchet space.

Recall that E ′(M) denotes the subspace of D ′(M) consisting of distributions with com-

pact support, while for a closed subset K of M , E ′(K) := {u ∈ D ′(M) | suppu ⊆ K}.

Definition C.0.8 (Spaces of locally Sobolev functions with fixed or arbitrary compact

support). Let M be a smooth manifold and Hs
loc(M) be defined as above. Then, for any

compact subset K of M , we define the space of locally Sobolev functions supported on

K, Hs
K(M), by

Hs
K(M) := Hs

loc(M) ∩ E ′(K).

Finally, we define the space of locally Sobolev functions with compact support, Hs
c (M),

by

Hs
c (M) := Hs

loc(M) ∩ E ′(M).

Both spaces are equipped with the subspace topology inherited from Hs
loc(M).

In giving definitions C.0.6, C.0.7 and C.0.8, we followed the route given in [Hör90a,

Sec. 7.9] and [Hör94, App. B]. Bär and Wafo [BW15] take a different but equivalent

path to those definitions (generalised to sections of arbitrary vector bundles). Their
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approach has the virtue of coordinate independence, but is perhaps less elementary.

Since their work plays an important role in Chapter 4, let us make some contact with

their viewpoint these definitions, when specialised to the scalar case. Essentially, we first

gave the definition of the largest of the spaces above, i.e. of Hs
loc(M), in a concrete way

by using the existence of the very large space of distributions on M ; then, we regarded

the other spaces as subspaces equipped with the relative topology. On the other hand,

Bär and Wafo begin by defining the smallest space, Hs
K(M) for a compact K, as a

Banach space by an abstract metric space completion procedure from C∞K (M ;C) =

{φ ∈ C∞(M ;C) | suppφ ⊆ K}. Then, Hs
c (M) is defined as the direct limit

Hs
c (M) :=

⋃
K⊆M

K compact

Hs
K(M)

of the direct system given by {Hs
K(M)}K and the inclusion maps, equipped with the

strict inductive limit topology. Finally, they notice that the thus abstractly defined

spaces Hs
K(M) and Hs

c (M) embed into D ′(M). This allows them to define Hs
loc(M) by

Hs
loc(M) :=

{
u ∈ D ′(M)

∣∣ χu ∈ Hs
c (M) ∀ χ ∈ C∞0 (M)

}
and equip it with a Fréchet space topology which is given by a countable family of

seminorms defined in terms of the Banach space norms on Hs
K(M) mentioned above.
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