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1. Introduction

Strongly coupled systems are realized in a variety of physical situations. From superconduc-
tors, ultra cold quantum gases and neutron stars to heavy-ion collisions and the quark-gluon
plasma, strong correlations between the respective degrees of freedom play a crucial rôle
in understanding these scenarios. They give rise to nonperturbative phenomena such as for
instance the dynamical generation of mass or the condensation of particles into bound states.

The tools for this analysis are nonperturbative methods such as the lattice gauge theory
framework, functional methods, effective models or AdS/CFT approaches. Each of these ap-
proaches has its advantages and at the same time struggles with its characteristic drawbacks.
As an example, lattice gauge theory has the great advantage to deal with the elementary de-
grees of freedom without loss of information. However, QCD investigations are limited to
small baryon chemical potentials due to the notorious sign problem. QED3 investigations
are hampered because of the large separation of scales that needs large simulation volumes
and is technically difficult at large numbers of fermion flavors. The Dyson–Schwinger ap-
proach also deals with the elementary degrees of freedom but suffers from the necessity to
truncate the tower of coupled equations. Similar pros and cons also hold for other func-
tional methods as the functional renormalization group method (FRG) or effective models
such as the (Polyakov-)quark-meson model or the Nambu–Jona-Lasinio model. AdS/CFT
approaches perturbatively investigate the weakly coupled limit of dual theory to QCD, re-
spectively QED3 . Altogether, it is desirable to attack problems from different perspectives
and to obtain the bigger picture from complementary information. In the following, we will
employ the Dyson–Schwinger method for our investigations. For an overview of Dyson–
Schwinger equations and their application to strongly coupled theories, see [1–5].

This work concentrates on two strongly coupled quantum field theories: QCD and QED3 .
QCD is an integral constituent of the Standard Model and widely believed to be the under-
lying theory to the strong interaction between quarks and gluons. QED in two spatial and
one temporal dimension, QED3 , on the other hand was seen for a long time as a toy model
for higher dimensional, ’more realistic’ theories. However, the application as a low-energy
effective theory for condensed matter systems helped to accentuate the variety of interesting
properties of this theory for its own sake.

QED3 and QCD might be considered rather diverse at the first glance, not least because of
their Abelian, respectively non-Abelian nature. A closer look shows however that they share
several features in common. The first is the displaying of chiral symmetry breaking by the
dynamical generation of a fermionic mass. This mass serves as an order parameter to analyze
the transition from chirally symmetric to the chirally broken phase under the variation of ex-
ternal parameters. Furthermore, both theories are asymptotically free. This feature of QCD
is well-known since Gross, Politzer and Wilczek [6, 7] and allows access to QCD at high
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Chapter 1. Introduction

energies via perturbative calculations. Although QED3 has an a priori dimensionful cou-
pling, it is asymptotically free in an RG sense, since it is possible to define a dimensionless
(decreasing) running coupling with help of the gauge boson vacuum polarization. Speaking
of the running coupling and asymptotic freedom, it is well known that QCD loses its asymp-
totic freedom when the number of fermion flavors is increased up to a critical number Na. f .

f , cr.
However, before this critical number is reached, there have been many arguments that QCD
passes a conformal phase. This phase is separated by another critical number of fermion
flavors Ncon f .

f , cr from the chirally broken phase. The range Ncon f .
f , cr < N f < Na. f .

f , cr was coined the
’conformal window’ and is in itself a phase of high interest. On the one hand this interest
arises due to the sensitivity of the conformal window to beyond standard model physics [8].
On the other hand, the lower transition from the chirally broken to the conformal phase gives
rise to quantum critical scaling and has been analyzed in a number of works. Considering
QED3 under variation of the number of fermion flavors, several authors [9–11] argued that
QED3 displays an analogous behavior: Before losing asymptotic freedom, a so-called pseudo
conformal phase emerges (’pseudo’ due to the dimensionful coupling).
A third feature in common is confinement in the quenched approximation (neglect of quark
loops in the gauge sector). However, the confinement in QED3 is purely an issue of dimen-
sionality (a heuristic argument can be found in e.g. [12]). In contrast, the mechanisms of
confinement in QCD are suspected to have their origin in the topological structure of the
theory (confinement by instantons, for a review see [13]) and are intensely debated.
Finally, we would like to point out that the experimental situation motivates the investiga-
tion of both theories under the aspect of inherent anisotropies. In the case of QED3 , these
anisotropies are motivated from condensed matter systems, in this case high temperature su-
perconductors (HTSs). They arise from the anisotropic crystalline structure surrounding the
superconducting plane. This results in an effective modification of the underlying spacetime.
In QCD, the anisotropy is of a different nature and arises from external magnetic fields, re-
alized for instance in heavy-ion collisions. The presence of the magnetic field destroys the
translational invariance of the quark propagator. However, in this case, this does not mean
that the spacetime itself is modified.

This thesis is naturally divided into two parts. These are organized as follows. Part I deals
with QED3 in an anisotropic spacetime as an effective low-energy theory for high tempera-
ture superconducting materials. We analyze the chiral phase transition at zero temperature
under the influence of finite anisotropies of arbitrary sizes. At finite temperatures, we addi-
tionally investigate the scaling behavior close to the merger of the thermal phase transition
line and the quantum critical point at zero temperature. The discussion of QED3 can be found
in chapter 3.
Part II reports about the investigations of three-color QCD under the influence of strong
external magnetic fields. We perform our analysis under two main aspects: Firstly, we em-
ploy extremely strong magnetic fields as a probe for the string tension between two static
quarks. We therefore strive to access a new observable for confinement in the framework
of Dyson–Schwinger equations. Secondly, we study the effects of strong, but physically
realized magnetic fields on chiral symmetry breaking at zero and finite temperatures. We
present these investigations in chapter 4. In order to review the most important basic aspects
of strongly coupled gauge theories, we prepend an introductory chapter to the two parts of
this thesis.
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Chapter 1. Introduction

Through this thesis, we will provide more introductory notes on the subject in focus. Further-
more, we will present only the most essential details of the investigated frameworks in chap-
ter 3 and 4 and rather allow the presentation of our results to be in the center. Detailed
derivations are collected in the appendices A and B.
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2. Basic aspects of strongly coupled
theories

In this chapter, we review some selected basic quantities and concepts that are essential to the
following discussion. More aspects follow in a suited position in chapters 3 and 4. For more
general information on basic quantities, we refer the reader to textbooks such as [14–18].

2.1. Functional integral formalism in a nutshell

The central quantity of quantum statistical field theory is the generating functional Z. It
represents the analogous quantity to the classical partition function and contains the complete
information of a given theory. The generating functional depends on the sources and is in
Euclidean spacetime given by

Z[J(x)] =

∫
DΦ(x) exp

(
−S (Φ(x)) +

∫
dd x′ J(x′) · Φ(x′)

)
, (2.1)

in d-dimensional spacetime. Here, we employ the compact superfield notation for the sources
J and the field variables Φ, i.e. the superfields are generalized field variables containing all
fields and their associated source fields of a theory. For instance for QED, the superfield
is given by Φ = (ψ̄, ψ, Aµ)T with the fermion (antifermion) spinors ψ (ψ̄) and the Abelian
gauge field Aµ and J = (η, η̄, jµ)T with the Grassmannian source fields η and η̄ for the
spinor fields and the source j for the gauge field. The path integral measure in the super-
field notation is accordingly given by DΦ(x) = Dψ̄DψDA.... Furthermore, S (Φ) denotes
the classical action and is given by the d-dimensional spacetime integral over the Lagrangian,
S (Φ) =

∫
dd xL(Φ).

We will specify the field content and the form of the classical action separately for QED3 and
QCD below. In general, it is possible to compute the n-point functions of a theory from the
generating functional, via functional derivatives with respect to the source fields,

δnZ[J]
δJi1(x1)...δJin(xn)

= 〈Φi1(x1)....Φin(xn)〉J, (2.2)

However, the n-point function on the right hand side of Eq. (2.2) contains redundant infor-
mation in form of vacuum bubbles, and reducible diagrams. For practical purposes, it is
helpful to define the Schwinger functional,

W[J] = ln Z[J]. (2.3)

that generates only the connected Green’s functions. A further reduction of redundancies is
obtained by a Legendre transform of the Schwinger functional, finally leading to the gener-
ating functional of the 1PI-connected Green’s functions [19]: the quantum effective action.
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Chapter 2. Basic aspects of strongly coupled theories

It is given by

Γ[φ] = supJ

{∫
d d x J(x) φ(x) −W[J]

}
, (2.4)

with the classical (super)field Φcl(x) = 〈Φ(x)〉 := (〈ψ̄〉, 〈ψ〉, ....)T . From the quantum effective
action, 1PI-connected n-point functions can be obtained via functional derivatives with re-
spect to the classical fields Φcl(x) and subsequently setting the sources to zero. For instance,
the propagator of the fields Φi and Φ j is derived from the quantum effective action by

G−1
i j (x, y) =

δ2 Γ[Φ]
δΦcl,i(x)Φcl, j(y)

∣∣∣∣∣∣
J=0

. (2.5)

We will come back to this point in section 2.5, when discussing the Dyson–Schwinger equa-
tions.

Generating functional of QED3

The Lagrangian for isotropic QED in (2+1) dimensional Euclidean spacetime is given by

LQED3 = N f ψ̄

 2∑
µ=0

γµ
(
∂µ + i e aµ

)ψ − 1
4

F2
µν, (2.6)

where ψ and ψ̄ denote spin-1/2 four spinors, aµ the gauge boson fields and γµ the Dirac
matrices. The field strength tensor is given by Fµν = ∂µaν − ∂νaµ, with µ, ν ∈ {0, 1, 2}. We
will come back to the discussion of the fermionic and the gauge boson fields in chapter 3.
For now, we need to clarify the representation of the Dirac γ-matrices. We therefore consider
the underlying Clifford algebra, {

γµ, γν
}

= 2δµν14×4. (2.7)

With the minimum number of matrices, one can find a two dimensional representation which
is given by the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.8)

However, in the minimal representation, there is no way to realize chiral symmetry, since
there is no other matrix anticommuting with the Pauli-matrices above (except for the (triv-
ial) unity matrix). We therefore need the next higher dimensional representation of the γ-
matrices for the investigations of chapter 3. The four dimensional matrices are given by:

γ0 =

(
σ3 0
0 −σ3

)
γ1 = −i

(
σ1 0
0 −σ1

)
γ2 = −i

(
σ2 0
0 −σ2

)
. (2.9)

Now, two additional matrices can be found that anticommute with γ0, γ1, γ2 and with each
other. They are denoted by γ3 and γ5 and read

γ3 = i
(

0 1

1 0

)
4×4

γ5 = i
(

0 −1

1 0

)
4×4

, (2.10)
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Finally, the commutator [γ3, γ5]=γ35 defines another matrix that commutes with γ3 and
with γ5, but anticommutes with all other matrices. However, the associated mass term,
m ψ̄ (x)

[
γ3, γ5

]
ψ (x), does not respect parity invariance. Therefore, we will neglect this term

in the further discussions. Nevertheless, these additional commutation relations define the
Lie algebra [

γl, γm
]

= i εlmnγn with l,m, n ∈ {3, 5, 35}, (2.11)

that forms a SU(2) gauge group, when including a factor of 1
2 into the definition of the ma-

trices given in eq. (2.10). Thus, γ35 has to be taken into account at this point. Notice that the
choice of the Clifford algebra that is imposed on the γ-matrices is not necessarily defined as
in eq. (2.7). For example in [20], a different algebra is used.

With the Lagrangian fully defined, we proceed with the generating functional for QED3 which
is given by

ZQED3[η̄, η, j] =

∫
D[ψ̄ψa] exp

(
−S (ψ̄ψ, a) +

∫
d3x′ (ψ̄ · η + η̄ · ψ + j · a)

)
. (2.12)

We introduced the Grassmann-valued sources η̄, η for the fermions, and the source j for the
gauge bosons. The classical action S (ψ̄, ψ, a) is given by

∫
d3x′LQED3, with LQED3 defined

in Eq. (2.6).

The generating functional in the form of 2.12 is plagued by a divergent functional integral
that has its origin in the presence of gauge-equivalent modes on the gauge orbits defined
by aµ → aµ + 1

e∂µα(x). The divergences can be removed with the help of the Faddeev-
Popov gauge fixing procedure [21], that selects only the physical subspace of all gauge gauge
configurations by allowing one gauge configuration per gauge orbit. This procedure leads to
the gauge-fixed generating functional in the form of

Zg f
QED3[η̄, η, j] = N(ξ) det

(
1
e
∂2

) ∫
DαZQED3[η̄, η, j] exp

(∫
d3x

1
2ξ

(∂µaµ)2
)
, (2.13)

with a gauge dependent normalization N(ξ) and the Faddeev–Popov determinant1
(

1
e∂

2
)
.

Remember that in the actual calculation of correlation functions, the additional constant fac-
tors cancel with the normalization in the denominator. The remainder of the gauge fixing
procedure is the gauge parameter ξ. We will further specify our choice of gauge in section
3.1.3.

Speaking of divergences, one last point remains to be discussed: the renormalized La-
grangian. Since QED3 is a superrenormalizable theory and there are no UV divergences
present. It is nevertheless possible to introduce renormalization constants for the fermion
wave function Z2 and for the gauge boson Z3, without changing the physical information
of the theory. For completeness, the vertex renormalization constant Z1 = Z2 by means
of the Ward-Takahashi identity. We will come back to the renormalization constants when
discussing our truncation schemes for the Dyson–Schwinger equations.

1for linear covariant gauge conditions G(a) = ∂µaµ − α̃(x), with any scalar function α̃(x).
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Generating functional of QCD

The generating functional for QCD4 in Euclidean spacetime is given by

ZQCD[J , η, η̄] =

∫
D[ψψ̄A]exp

{
−

∫
d4x

[
ψ̄( /D + m)ψ +

1
4
F 2
µν

]
+

∫
d4x

(
Aa

µJ
a
µ + η̄ψ + ψ̄η

)}
,(2.14)

with the four-spinors ψ and ψ̄ representing the quarks in fundamental representation. The
non-Abelian gauge field Aa

µ is given in adjoint representation and describes the gluonic de-
grees of freedom. The color indices are restricted to a, b, c ∈ 1, 2, .., 8. We further introduced
Grassmann valued sources η and η̄ for the quarks and the source Jµ for the gluons. The
covariant derivative in the fundamental representation is given by /D = γµ(∂µ + igAµ), with
the gauge coupling g and the gluon field Aµ = Aa

µt
a. The generators ta of the gauge group

SU(Nc = 3) form the Lie algebra [ta, tb] = i f abctc, with the structure constants of SU(Nc)
denoted by f abc. Furthermore, the field strength tensor of the gluons reads

F a
µν = ∂µA

a
ν − ∂νA

a
µ − g f abcAb

µA
c
ν. (2.15)

Finally, the Dirac γ matrices obey the Clifford algebra{
γµ, γν

}
= 2δµν14×4. (2.16)

Similar to QED3 , the path integral over all gauge field configurations in the generating func-
tional in Eq. (2.15) contains an infinite number of gauge equivalent field configurations that
need to be accounted for. However, in contrast to QED3 , the Faddeev–Popov gauge fix-
ing prescription no longer cures this problem entirely. Gribov [22] firstly noticed that for
non-Abelian fields, the gauge fixing condition is not unique due to topology of the gauge
field configuration space. In consequence, multiple gauge configurations per gauge orbit
remain also after the Faddeev-Popov gauge fixing procedure, the so-called Gribov copies.
Since there is an arbitrary number of Gribov copies per gauge orbit, the original problem of
divergences is not completely resolved2. However, we know from lattice calculations that
only deep infrared results are affected by Gribov copies3 [24], which is not relevant for the
energy range we will investigate. We therefore retreat to the Faddeeev–Popov gauge-fixed
generating functional, which is given by

ZQCD[J , η, η̄, σ, σ̄] =

∫
D[ψψ̄Acc̄]exp

{
−

∫
d4x

[
ψ̄( /D + m)ψ +

1
4
F 2
µν

+
(∂µAµ)2

2ξ
− i∂µ c̄ Dµc

]
(2.17)

+

∫
d4x

(
Aa

µJ
a
µ + η̄ψ + ψ̄η + σ̄c + c̄σ

)}
,

where ξ again denotes the gauge parameter. In the gauge fixing procedure, the Faddeev–
Popov determinant was rewritten in terms of a functional integral over the ghost fields c and

2For a pedagogical discussion of Gribov copies in a toy model, the interested reader is referred to [23].
3Since we will work in Landau gauge that is not a Gribov-copy free gauge.
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c̄ with the sources σ̄ and σ. The QCD investigations presented in chapter 4 are performed in
Landau gauge, i.e. ξ = 0.
Furthermore, to obtain the renormalized QCD Lagrangian, we introduce the renormalization
’constants’,

Zm : m→ Zmm for the mass renormalization,
Z2 : ψ→

√
Z2ψ for the fermion wave function renormalization,

Z3 : Aa
µ →

√
Z3A

a
µ for the gluon renormalization,

Z̃3 : c, c̄→
√

Z̃3c, c̄ for the ghost renormalization,
Zg : g→ Zgg for the coupling renormalization.

Additional renormalization constants are needed for the vertices. However, these are re-
lated to the above introduced renormalization constants via Slavnov-Taylor identities for the
vertices:

Z1 = ZgZ3/2
3 for the three gluon vertex

Z4 = Z2
gZ2

3 for the four gluon vertex

Z̃1 = ZgZ̃3
√

Z3 for the ghost gluon vertex
Z1F = ZgZ2

√
Z3 for the quark gluon vertex.

Not all of these will play a rôle in the following investigations, as will become clear when
specifying our truncation scheme in chapter 4.1.

2.2. Chiral Symmetry

From the physical point of view, symmetries are the governing concepts of nature. By anal-
ysis of manifest, hidden or broken symmetries, we categorize and understand a broad range
of problems.

Chiral symmetry is the invariance under a set of U(N f ) transformations that distinguish be-
tween left- and right handed particles. It is broken by the presence of fermionic mass terms,
explicitly inserted or dynamically generated, or by anomalies. The dynamical generation
of a mass term depends on numerous conditions, for instance on temperature (in QED3 and
QCD) and baryon chemical potential (in QCD). Besides these, one can think of a number of
other parameters that could influence the breaking of chiral symmetry. In this thesis, besides
the ’classical’ parameters such as temperature, we focus on external conditions such as an
external magnetic field in QCD and a material’s anisotropy in QED3 .
We shortly introduce the realization of chiral symmetry in both theories.

Chiral symmetry in QED3

In general, QED3 contains N f fermion flavors (N f kinds of spinors, see Eq. (2.6)), leading to
an overall symmetry of the Lagrangian in four dimensional spinor representation given by

U(N f ) × SU(2N f ) ' U(2N f ), (2.18)

15
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with the U(N f ) symmetry generated by the unity matrix. In section 2.1, we made sure to
chose a representation of the Dirac matrices that allow for the presence of chiral symmetry
and its breaking. The associated chiral-like transformations are given by

ψ → eiγ5αψ (2.19)

ψ → eiγ3αψ, (2.20)

with the matrices γ3 and γ5 defined in Eq. (2.10). The transformations are chiral-like as they
each have a related Noether current that is conserved if the ψ-associated mass term vanishes.
This can easily be seen considering for example the current

j µ3(x) = ψ̄(x)γµγ3ψ(x) for µ = 0,1,2. (2.21)

Since the matrices γ3 and γµ anticommute, the derivative of the current is given by

∂µ jµ =
(
∂µψ̄(x)

)
γµγ3ψ(x) − ψ̄(x)γ3γµ

(
∂µψ(x)

)
= mψ̄(x)γ3ψ(x) + mψ̄(x)γ3ψ

= 2mψ̄(x)γ3ψ(x), (2.22)

and thus the current is only conserved if m = 0. Any mass term in the theory, no matter if
introduced explicitly or dynamically generated, necessarily breaks the Lagrangian’s chiral
symmetry

U(2N f ) → U(N f ) × U(N f ) × SU(N f ) × SU(N f ). (2.23)

Chiral symmetry in QCD

The fermionic part of the four dimensional QCD Lagrangian without explicit mass terms
separates in left- and right handed particles. Considering only the two lightest quarks, up (u)
and down (d), the underlying

U(N f = 2)L × U(2)R (2.24)

symmetry is isomorphic to

SU(2)L × SU(2)R × U(1)V × U(1)A. (2.25)

However, since the U(1)V is associated with baryon number conservation and the U(1)A is
anomalously broken, the SU(2)L× SU(2)R symmetry represents the relevant part of the U(2)×
U(2) symmetry for the following discussion.

The left- and right handed quark doublet is obtained from the projection

QL =

(
1 − γ5

2

) (
u
d

)
QR =

(
1 + γ5

2

) (
u
d

)
. (2.26)

If chiral symmetry is present, they are invariant under transformations of the form

ψ→ eiγ5αψ. (2.27)
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The associated conserved axial currents with an implicit sum over left- and right handed
quarks are given by

jµ5 = Q̄ γµγ5 Q and jµ5a = Q̄ γµγ5 τa Q.

If one introduces fermionic mass terms into the Lagrangian, the SU(2)A part of the
SU(2)L× SU(2)R symmetry is broken. Thus, spontaneous chiral symmetry breaking is de-
scribed by

SU(2)L × SU(2)R → SU(2)V . (2.28)

Order parameters for chiral symmetry

In its general definition, an order parameter indicates the breaking of a symmetry, that is the
transition between two phases. In the strict sense, the order parameter vanishes in one phase
and has a finite value in the other.
An order parameter for chiral symmetry breaking is the dynamically generated fermion mass.
If no explicit fermion mass terms are present on the level of the Lagrangian, it is chirally
symmetric. As soon as fermion masses are generated dynamically, this symmetry is broken,
as discussed above for the cases of QED3 and QCD.
The dynamically generated fermion mass is a nonperturbative effect, resulting from the
fermion-gauge boson interactions, and will be discussed extensively in the following chap-
ters. For now, we consider the general form of a dressed fermion propagator in four dimen-
sions in an isotropic spacetime. The propagator is given by

S F(p) =
B(p) − iA(p)/p

B2(p) + A2(p)p2 , (2.29)

with the scalar fermion dressing function B(p) and the vectorial dressing function A(p).
The RG-invariant, momentum dependent fermion mass is given by the combination M(p) =

B(p)/A(p). However, already at this point it is obvious that the scalar fermion dressing
function can serve as an order parameter for chirally symmetry breaking: for vanishing B(p),
also the RG-invariant mass vanishes and the theory is in the chiral symmetric phase. For
finite B(p), also M(p) is finite and chiral symmetry is broken. We will investigate the scalar
fermion dressing function as an order parameter for chiral symmetry breaking in QED3 in
chapter 3.
Another order parameter is the chiral condensate, 〈ψ̄ψ〉, that is obtained from the Dirac trace
over the fermion propagator and describes the affinity of the vacuum to create a fermion-
antifermion pair. Since we will only employ the chiral condensate as an order parameter in
chapter 4, we will provide a more detailed discussion in chapter 4.1.2.

2.3. Aspects of phase transitions

Understanding the transition between strongly coupled phases of a given theory is a formidable
task. In general, one distinguishes first order phase transitions, that have a discontinuous
change in the order parameter. Another group is formed by the continuous phase transitions.
In this case, it is the nth derivative of the order parameter with respect to some critical quan-
tity that develops a discontinuity.
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An outstanding feature of continuous phase transitions is the behavior of the order parameters
near the critical point that allows the grouping into universality classes. It can be described
by power-laws with the same critical exponent for phase transitions belonging to the same
universality class.

We will come back to the behavior close to a quantum critical point in chapter 3.2. For now,
we turn our attention to a special group of continuous phase transitions, the conformal phase
transitions.

(Pseudo) conformal phase transitions

There has been the proposal that the chiral phase transition in N f in QED3 belongs to a
subclass of continuous phase transitions, the conformal phase transitions (CPTs). We will
summarize the most important points of such a phase transition and follow along the lines of
[9, 10].
CPTs are characterized by several remarkable features that clearly distinguish them from
other continuous phase transitions: The behavior of the order parameter in the critical region
and the kind of spectrum of light excitations in the symmetric and non-symmetric phase.
In more detail, the behavior of an order parameter X in the critical region can be described
by

X ∼ f (z), (2.30)

where z is the quantity that can become critical. For general second order phase transitions,
f is of the general form

f ∼ (z − zc)ν , (2.31)

where ν > 0.
For CPTs in contrast, the function f exhibits a different behaviour in the critical region,
namely

f ∼ exp
(

a
(zc − z)ν

)
, (2.32)

where again, ν > 0 and a is a constant.
The conditions for a CPT are now fulfilled, if the function f contains an essential singularity
in the way that

lim
z↘zc

f (z) = 0 (2.33)

lim
z↗zc

f (z) , 0, (2.34)

where z ↗ zc denotes that z approaches zc from the symmetric phase, while z ↘ zc means
that z is approaching from the non-symmetric phase. The continuity of the phase transition is
guaranteed since the limit from the non-symmetric side goes to zero, including a vanishing
order parameter. In the symmetric phase, the order parameter is zero anyway (remember e.g.
the chiral symmetric phase).
Notice, that the scaling behavior Eq. (2.32) has also been found in two dimensional models,
where it was coined the “Berezinskii–Kosterlitz–Thouless” (BKT) phase transition [25–27].
The underlying mechanism of the BKT phase transition was found to be the struggle be-
tween the entropy of a single vortex and the binding energy of a vortex pair that finally leads
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Figure 2.A: The β function for a toy model with coupling g and external parameter z. Critical
values have the subscript “∗“. The fixed points are indicated with a dot.

to a vortex condensation. In the derivation of the QED3 Lagrangian, it will become clear
that a similar competition is also responsible for the phase transition taking place in high
temperature superconductors.

As for the relevance of the conformal phase transitions for this work, we need to mention
that QED3 , similar to many-flavor QCD, is a candidate theory to contain a pseudo-CPT,
respectively a CPT. The prefix ’pseudo’ in the case of QED3 is in order as the conformal
symmetry is broken in both, the chirally symmetric and the chirally broken phase. In the
massive phase, conformal symmetry is broken anyway by the mass term. In the chirally
symmetric phase, the dimensionful coupling of QED3 breaks the conformal symmetry. With
respect to the second distinguishing feature of CPTs, the spectrum of light excitations, we
add that QED3 is super-renormalizable (contains only a finite number of divergent Feynman-
diagrams) and UV-divergences in principle can be removed. Nevertheless, one can observe
an abrupt change in the spectrum of light excitations at the critical point, as argued in [9, 10].

We will come back to the pseudo conformal nature of the chiral phase transition and the
scaling property close to the quantum critical point in chapter 3.2.

Phase transitions and fixed points

The critical points of second order phase transitions, e.g. of the previously discussed CPTs,
can be identified with fixed points of according RG-equations [28]. The analysis of flow
equations further helps not only to locate a critical point, but also to understand the quantum
critical behavior, i.e. the critical scaling in its vicinity. Critical scaling is characterized by
critical exponents. These allow to group theories into universality classes, that is, theories
with the same critical exponents and therefore the same critical behavior.

One of the outstanding features of (pseudo)conformal phase transitions is the scaling behav-
ior approaching the quantum critical point from the chirally broken phase. The exponential
Miransky- or generalized BKT scaling can be understood in terms of fixed point mergers, as
was argued by [29, 30].
We follow [30] in illustrating the emergence of BKT/Miransky scaling from the fixed point
dynamics in a simplistic toy model. For this, we assume a dimensionless coupling g for
convenience. The theory may depend on some external parameter z that can become critical.
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The β-function is of the form

β(g; z) =
∂g
∂t

= (z − z∗) − (g − g∗)2, (2.35)

with the critical values indicated by subscript “∗” and t = ln µ, where µ denotes the renor-
malization scale. One can calculate the fixed points of the coupling in the parameter range
(z − z∗) > 0 via the zeroes of the β function. This leads to an IR and a UV stable fixed point
marking the transition to a conformal phase. They are given by

g± = g∗ ±
√

(z − z∗). (2.36)

It is now clear from Eq. (2.36) that the appearance and the number of fixed points depends on
the value of the critical parameter z. With z → z∗, the two fixed points approach each other
until they merge at g∗ = g+ = g− for z = z∗. Further decreasing z, thus leading to complex
solutions for Eq. (2.36), results in the loss of the conformal phase.

To recover the exponential scaling, we consider the external parameter to be in the vicinity
of its critical value in the symmetric phase, z . z∗, and the coupling at some initial UV scale
gUV < g∗. We obtain the scaling relation from integrating the β function Eq. (2.35), leading
to

ΛIR

ΛUV
= exp


tIR∫

tUV

dt

 = exp


gIR∫

gUV

dg
β(g; z . z∗)

 (2.37)

≈ exp
(
−

π
√

(z∗ − z)

)
. (2.38)

The approximation in the last step includes the assumption that |gIR,UV − g∗| � |z − z∗|, for
which we can replace the arctan emerging from the integration by π/2.

Similar arguments as for this toy model also hold for many-flavor QCD and QED3 . Here, the
critical parameter is the number of fermion flavors. Before the critical number of fermions
for the loss of asymptotic freedom is reached, an infrared stable fixed point separates another
phase: the (pseudo)conformal window. This so-called Caswell-Banks-Zaks fixed point [31,
32] governs the conformal dynamics and is destabilized for smaller and smaller numbers
of fermion flavors by the onset of chiral symmetry breaking. This lower end of the pseudo
conformal window in QED3 will be analyzed in section 3.2.

2.4. Confinement

Besides chiral symmetry breaking, confinement is another central nonperturbative phenome-
non of QCD. However, in contrast to the above discussed clear definition of chiral symmetry,
confinement is a much more debated subject. There exist several notions of confinement in
the literature, that can basically be divided into the two scenarios of color confinement and
quark confinement. For the scenario of color confinement, the absence of free color charges
from the spectrum of physical particles is central. According criteria for color confinement
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Figure 2.B: Sketch of a quark-antiquark pair separated by a distance R (upper panel) con-
nected by a color flux tube and after string breaking with another quark-
antiquark pair generated (lower panel).

are the Kugo–Ojima [33] and the Gribov–Zwanziger [34] confinement criteria, that represent
constraints for the form of the gluon and ghost propagator in the deep infrared.

The scenario of quark confinement uses the presence of a linear rising potential between
an (infinitely) heavy quark-antiquark pair as a criterion. In this picture, the quarks are con-
nected by so-called color flux tubes, as indicated in the sketch of Fig. 2.B. With an increasing
distance R between quark and antiquark, the potential energy between the two particles in-
creases with a slope that defines the string tension. In a strict form of this criterion, a theory
is only confining if the potential between the quark-antiquark pair is infinitely rising with
increasing R. In QCD however, at some point the potential energy between quark and an-
tiquark will be large enough to create another qq̄-pair: the string, or flux tube breaks (see
lower panel of Fig. 2.B), which renders QCD, in a strict sense, not confining.

For this work however, we will consider the presence of a linear rising potential as a sufficient
criterion for confinement and investigate the associated string tension.

Wilson loop and string tension

The Wilson loop was originally defined as the spacetime area that is enclosed by the world-
line around the creation of a static quark-antiquark pair at some initial time ti and their
annihilation at a final time t f . In the Heisenberg picture, this reads

W(ti, t f ,∆r) = 〈0|ψ̄(ti, r1)ψ(t f , r2)|0〉. (2.39)

Switching to the Schrödinger picture and imaginary time formalism, we shift the time de-
pendence to the states. Thus, the Wilson loop is given by

W(ti, t f ,∆r) = 〈0| exp(H τi) ψ̄(r1) exp(−H τi) exp(H τ f )ψ(r2) exp(−H τ f ) |0〉. (2.40)

Inserting two trivial unit matrices in the eigenbasis of the Hamiltonian, we use the cooling
mechanism to recover the lowest energy contribution by sending β→ ∞,

W(ti, t f ,∆r) ∼ exp((E1 − E0)(τi − τ f )) (2.41)
W(∆t,∆r) ∼ exp(−V(∆r)∆τ), (2.42)

where the potential V(∆r) measures the excitation energy between the ground (vacuum) state
and the vacuum state plus two static charges separated by a distance ∆r. In a confining theory,

21



Chapter 2. Basic aspects of strongly coupled theories

Figure 2.C: Sketch of a Wilson loop winding around spacetime.

this potential is for large separation distances R given by

V(R) ∼ σR, (2.43)

with the proportionality constantσ, that describes the so-called string tension. If confinement
is present, thus the Wilson loop behaves like

W(T,R) = exp(−σTR), (2.44)

with a spacetime area in the argument of the exponential. Therefore the area-law fall-off of
the Wilson loop is an indicator of confinement.

In the following, the so-called spatial Wilson loop will be important. It is defined in an ana-
logous way to Eq. (2.44), except that the charges are created at a fixed position in one spatial
direction, propagate in another spatial direction before they are annihilated. The so-called
spatial string tension is equal to the spacetime string tension from Eq. (2.43) due to Lorentz
invariance.

2.5. Dyson–Schwinger Equations

Dyson–Schwinger equations (DSEs) are the quantum equations of motion. They come as an
infinite tower of coupled integral equations, interrelating a theory’s n-point functions with
each other. The DSEs are derived from the identity∫ [

dϕ
]
ren

δ

δϕ
e−S [ϕ]+

∫
d n x′ J(x′)ϕ(x′) = 0, (2.45)

with the action S , the source J and the dummy field variable ϕ, expressing the translational
invariance of the quantum effective action in the field ϕ. The identity Eq. (2.45) can be
transformed into

δΓ

δφ(x)
=

δS
δϕ(x)

[
ϕ =

∫
G
δ

δφ
+ φ

]
, (2.46)

with the help of general functional relations between the source field and the quantum ef-
fective action. In the master equation, Eq. (2.46), Γ denotes the quantum effective action as
defined in Eq. (2.4) of the theory in consideration. Already at this point, it is visible that the
one-point function on the left hand side of Eq. (2.46) depends on higher n-point functions on
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Figure 2.D: The pictorial representation of the Dyson–Schwinger equation for a fermion

propagator. The curly lines represent gauge boson propagators, straight ones
fermion propagators. We indicate dressed propagators by adding filled circles
to the basic lines. The dressed fermion-boson vertex is encoded by the empty
circle.

the right hand side. Further functional derivatives with respect to the fields and subsequently
setting the sources to zero yield n + 1-point, n + 2-point functions, etc..

The resulting infinite set of coupled equations still contains all information of the original
degrees of freedom of the theory as it is, without any expansion schemes involved. A di-
agrammatic representation of the fermion DSE is exemplarily displayed in Fig. 2.D. The
vertex, as well as the gauge boson, obey their own DSEs that are of a similar structure as the
fermion DSE.

Solving the complete system of equations therefore is equivalent to solving the theory itself.
For Landau gauge Yang–Mills theory, such an analytical solution for the deep infrared was
obtained in [35, 36]. Numerically, one has to truncate the equations to make them accessible.
The choice of the truncation scheme decides on the quality of the results and is therefore of
paramount importance. In any case, the scheme has to obey general constraints such as the
conservation of global and local symmetries, multiplicative renormalizability or the repro-
duction of perturbative results in the weak coupling limit.

It is common practice to truncate the equations by considering a more or less sophisticated
ansatz for the fermion-boson vertex function, since the vertex DSE involves the computation
of a four point function of which only very little is known to date4. The vertex ansatz is de-
signed such that it compensates for as many features of the omitted functions as possible. In
practice, this construction procedure is a formidable task as can be seen from the numerous
different types of vertex ansätze available [37–45].

For a complete derivation of the DSEs, we refer the interested reader to the works [1, 2]. In
the following parts, we will state the DSEs for the dressed propagators and then project onto
the dressing functions.

4for more information, see e.g.[37]
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3. QED3 in an anisotropic spacetime

Quantum electrodynamics in two spatial- and one temporal dimension, QED3 , is the most
simple elementary gauge theory that displays nontrivial nonperturbative dynamics. It fur-
thermore offers a rather agreeable environment for nonperturbative studies that is charac-
terized by several key features: firstly, due to its Abelian nature, it is free of gauge boson
self-interactions. Furthermore, the dimensionality guarantees its super renormalizability, i.e.
only a finite number of Feynman diagrams is divergent. Nevertheless the number of dimen-
sions still allows for a dynamical mass generation, that would be forbidden [46] in a lower
dimensional theory (→ the Schwinger model, see [47, 48]).

Over the decades, the investigation of QED3 received a lot of attention. Besides its function
as a potential toy model for QCD, the application of QED3 as a low-energy effective theory
for strongly correlated condensed matter systems catalyzed the interest in the theory for its
own sake.

In this first part of the work at hand, we report on the investigations of anisotropic QED3 from
a finite-volume Dyson–Schwinger perspective. We focus on an incarnation of QED3 that
could serve as a low-energy effective theory for high temperature superconductors (HTSs).
Our analysis concentrates on the phase transition between the chirally broken and symmetric
phase.

This chapter is organized as follows: section 3.1 reports on investigations of the phase dia-
gram for the critical number of fermion flavors for chiral symmetry breaking in dependence
on the anisotropies at vanishing temperature. The central questions are

• How large is the critical number of fermion flavors for chiral symmetry breaking?

• How is this number influenced by anisotropies of arbitrary size?

• Which consequences does that have for the physical number of fermion flavors
N f = 2?

Section 3.2 resumes the analysis of chiral symmetry breaking in anisotropic spacetime at
finite temperatures. Apart from approaching more realistic conditions for HTS materials, the
finite temperature scenario offers the possibility to study the generic scaling behavior of the
thermal phase transition line close to the quantum critical point. We consider the following
questions to be at the heart of our investigations:

• What is the effect of finite temperatures on the critical number of fermion flavors at
finite anisotropies?

• How does the thermal phase transition line merge with the quantum critical point?
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• Is the scaling behavior influenced by finite anisotropies?

The results of these chapters have been published in [49] and [50].
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3.1. QED3 at zero temperature

3.1.1. QED3 as an effective theory for high-temperature
superconductors

The application of QED3 as a low energy effective theory for condensed matter systems re-
ceived a respectable amount of interest over the last decades. The reinterpretation of the
fermions and gauge bosons as the low energy quasi-particles relevant for phase transitions
between the strongly coupled phases of e.g. superconducting materials opened up a com-
pletely new perspective on phenomena that are technically applied for years. Since there
is no such thing as confinement of the quasiparticles, the broad range of experimental input
permanently offers new interesting scenarios with an immediate relevance to applied physics.

The attention for QED3 was not least triggered by the Nobel Price of Novoselov and Geim for
their works on graphene in 2010, e.g. [51]. To summarize briefly, graphenes are made up of
two carbon sub-lattices. Close to the crossing points of the energy bands of the sub-lattices,
electrons and holes behave like massless relativistic quasiparticles with a linear dispersion
relation. As electrons and holes are not independent particles, they do not obey separate
Schrödinger-equations but are combined into a two component spinor wave function obey-
ing the massless Dirac-equation. These characteristics motivate the description of graphenes
with the help of Quantum Electrodynamics [52].

Another very prominent application of QED3 to condensed matter physics are high-tempera-
ture superconductors. Their description in terms of a QED3 -like theory was motivated from
several experimental (ARPES) findings, amongst others again the linear dispersion relation
of the quasiparticles relevant for HTSs. The works of [53–59] provided the necessary deriva-
tions for a form of QED3 that allows to capture the features of the so-called pseudo gap phase
of HTSs.

Though both condensed matter systems were shown to be describable by QED3 -theories,
there are important differences in these descriptions. For instance, both effective theories
have different fermion-boson couplings and neither are the velocities of the quasiparticles
close to the nodes of the energy-gap function equal. Furthermore, in HTSs, gauge bosons
are confined to the (2+1) dimensional setting from the very start, while the description of
graphene includes ’real’, four dimensional photons. In that sense, the critical behavior is
non-universal. In this work, we concentrate on the application of QED3 as an effective low-
energy theory for HTSs. We now summarize their key features as well as the most important
aspects of the deduction of the QED3 Lagrangian that is at the center of all subsequently
presented investigations.

Superconductors are generally divided into two subclasses: conventional (type I) and un-
conventional (type II) ones. While conventional superconductors are known since 1911,
unconventional ones were discovered rather recently, in 1986 [60]. However, while the type
I and also the low-temperature type II superconductors can be described very precisely by
Bardeen–Cooper–Schrieffer (BCS) theory [61, 62], no such matching description is known
for a subgroup of type II materials, the high-temperature superconductors.
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Figure 3.A: Left panel: The phase diagram of cuprate superconductors, dependent on the
doping x and temperature T . Indicated are the anti-ferromagnetic phase (AF),
the pseudo-gap phase (described by QED3 ) and the superconducting phase with
d-wave-symmetric order parameter (dSC). The shaded area indicates that the
course of the phase transition lines are not clear. The temperature T ∗ is the Néel
temperature. Right panel: The sketch of the Fermi surface of HTS materials.
Indicated by dots are the pairwise related nodes of the energy gap function that
happen to lie on the Fermi surface. We further suggest the rotation into a coor-
dinate system located at the node(s). It is in the vicinity of the nodes where the
QED3 derivation holds.

There are several reasons for this. One is that in conventional superconductors, the ’normal’
phase displays a metallic behavior, which can be modeled in a reliable way. Furthermore, the
order parameter of the transition to the superconducting phase, the energy gap function has
s-wave symmetry and therefore no zeroes. The energy gap function describes the energy gap
between the valence and the conduction band. The non-vanishing gap implies that there are
no fermionic excited states. In contrast, an attractive phonon-mediated pairing interaction
between electrons leads to the formation of bosonic Cooper pairs. They obey Bose–Einstein
statistics and occupy an energetically favorable state protected by the energy gap. Since the
bosonic quasiparticles can occupy the same state at the same time, it is additionally possible
to describe them by an overall wave function that extends over the entire crystal.

HTS materials however form a subgroup of the unconventional superconductors. They are
distinguished by their high critical temperature Tc > 77 K and made up by ceramic com-
pounds, the cuprates. Their outstanding feature are copper-oxide planes in the crystalline
lattice. These planes are embedded in insulating layers and provide the necessary condi-
tions for superconduction if a critical doping is guaranteed1. Furthermore, unconventional
superconductors display the Meissner–Ochsenfeld effect for magnetic field strengths in the
region Hcr1 � H � Hcr2. For magnetic field strengths below Hcr1 the field is completely
expelled from the superconductor, as for conventional superconductors. For larger fields, up

1Doping means that an atom of one sort is replaced by one of another sort. This replacement has to be done
in a certain ratio in order to provide the environment for superconduction.
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to a second critical value, Hc2, the magnetic field penetrates the material, but is confined to
so-called flux tubes (or vortices) [58]. These create topological defects that become relevant
in turn of the derivation of the QED3 Lagrangian. Above the second critical field strengths,
superconductivity beaks down.

Coming back to the missing overall theory to describe the HTS materials, a first important
difference to conventional superconductors is the anti-ferromagnetic (AF) non-superconduc-
ting phase (see the phase diagram in Fig. 3.A). The Mott-insulator itself is a strongly corre-
lated system [63] and hard to describe in terms of microscopic degrees of freedom. Further,
the energy gap function, that governs the phase transition from superconducting to insulating
phase was shown experimentally to have dx2−y2-wave symmetry [64]. The different symme-
try gives rise to profound changes. On the one hand, the quasiparticles’ spectral properties
[54] are changed. On the other hand, the d-wave symmetry energy gap has zeroes that were
shown to lie on the quasiparticles Fermi surface (see right panel of Fig. 3.A). This leads to
quasiparticles, i.e. fermionic excitations, of arbitrary low energies that can exist near the
nodes of the energy gap function. These quasiparticles were found to have a linear disper-
sion relation, thus behaving like massless Dirac particles. Furthermore, the speeds of the
quasiparticles were measured to be different in direction parallel and orthogonal to the Fermi
surface. The ratio of these two speeds turned out to be in the order of 10, thus not at all
negligibly small. Thus, in comparison to pure BCS superconductors, fermionic excitations
exceedingly complicate the interactions and dynamics of HTSs.

It turned out that a description of unconventional superconductors is best approached in an
inverted way, as applied [65]. ’Inverted’ refers to starting with the description of the super-
conducting phase and the investigation of the mechanisms that drive the system to the anti-
ferromagnetic phase (in contrast to the approach of conventional superconductors). The rea-
son for this is the antiferromagnetic phase, a Mott insulator, that represents itself a strongly
coupled system. This approach lead to the finding of another phase, in between the super-
conducting and the antiferromagnetic phase, the so called pseudo gap. This phase is limited
by the Néel temperature T ∗ (see again Fig. 3.A, left panel), above which any magnetic or-
dering is destroyed and the materials become paramagnetic. The distinguishing features of
the pseudo-gap phase is a non-zero energy gap amplitude, as in the superconducting phase
while at the same time the phase coherence of the gap function is lost (as in the AF phase)
[20]. The destruction of phase coherence results from vortex fluctuations.

The shaded borders of the pseudo-gap phase in the phase diagram of Fig. 3.A indicate that
it is not clear how it behaves exactly. In particular, it is not certain if there is a pseudo-
gap phase at vanishing temperature for critical doping, or if the antiferromagnetic and the
superconducting phases meet. With a QED3 description of the pseudo-gap phase, we will
study the course of the phase borders. In the frame of the QED3 description of the pseudo-
gap phase, the transition to the antiferromagnetic phase is identified with the breakdown of
chiral symmetry. Therefore, we analyze the chiral phase transition at vanishing and finite
temperatures under the influence of an anisotropic spacetime.
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3.1.2. QED3 Lagrangian for HTSs

In this chapter, we wish to state the Lagrangian for anisotropic QED3 as it was derived by [20,
56, 66]. A more detailed summary on the derivation procedure from a BCS-like Hamiltonian
to the actual Lagrangian QED3 formulation can be found in App. A.1.

In the following, we apply the notation as it was introduced by [56]. We chose the four
dimensional spinor representation of the (2+1) dimensional fermions, as discussed in chap-
ter 2.1. These obey the Clifford algebra {γµ, γν} = 2 δµν. We allow for general N f fermion
flavors, since we wish to study the influence of the anisotropic velocities on the criticality of
N f . Furthermore, we introduce the anisotropic fermionic velocities v f and v∆ as they arise
during the derivation procedure. They describe the quasiparticles’ speed orthogonal and per-
pendicular to the Fermi surface of the HTS materials and are distinct from the characteristic
speed for the vortex-antivortex excitations, cs. This includes the fact, that both v f and v∆ may
be larger than cs, as discussed in Ref. [59].

The anisotropic velocities enter the theory via the metric-like structure gi,µν. The ’metric’ has
an additional index i that denotes the node under description. The nodes in HTS materials
are zeroes of the quasiparticles energy-gap function that were shown to lie on the Fermi sur-
face of the electrons and holes [64]. Due to symmetry reasons, only two out of four zeroes
need to be considered separately [63] (see also right panel of Fig. 3.A). For convenience, we
chose the anisotropic velocities relative to cs which we normalize to 1. Thus, the metric is
given in form of

(
gµν1

)
=


1 0 0
0 v2

f 0
0 0 v2

∆

 (
gµν2

)
=


1 0 0
0 v2

∆
0

0 0 v2
f

 . (3.1)

With the necessary building blocks, the fermionic part of the Lagrangian is given by

Laniso =
N f

2

∑
j=1,2

Ψ̄ j

 2∑
µ=0

γν
√

g j,νµ

(
∂µ + i aµ

) Ψ j. (3.2)

In contrast to the more familiar isotropic QED3 Lagrangian, we now have the additional
metric-like factors and the sum over the nodal index j included.

We can now proceed to derive the Dyson–Schwinger equations in momentum space from
the quantum effective action as described in chapter 2.5.

3.1.3. Dyson–Schwinger equations for anisotropic spacetime

The spacetime anisotropies introduced via the metric-like tensor gµν do not influence the
functional form of the DSEs. Diagrammatically, they are represented in the standard way as
displayed in Fig. 3.B. Nevertheless, the influence of the anisotropies becomes obvious when
considering the propagator DSEs, here given in Euclidean spacetime.
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= +
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Figure 3.B: The Dyson–Schwinger equations in their diagrammatic form. The upper panel
displays the fermion, the lower panel the gauge boson DSE. The straight lines
with indicate fermion-, the wiggly lines gauge boson propagators. The dressed
propagators are furthermore distinguished by filled blobs, while the bare propa-
gators have dots. The open circle represents a dressed fermion-boson vertex.

S −1
F,i(~p ) = S −1

0 ( ~p ) + Z1 e2
∫

d3q
(2π)3 (

√
gi,µαγ

α S F,i( ~q )
√

gi,νβΓ
β( ~q, ~p ) Dµν(~k )), (3.3)

D−1
µν (~p ) = D−1

0,µν( ~p ) − Z1 e2 N f

2

∑
i=1,2

∫
d3q

(2π)3 Tr
[√

gi,µαγ
α S F,i( ~q )

√
gi,νβΓ

β( ~p, ~q ) S F,i(~k ))
]
.

(3.4)

The gauge boson hereby depends on the difference of the momenta of the fermions, thus
~p−~q = ~k . The nodal index is denoted by i and sums again over the two nodes of the energy-
gap functions on the Fermi surface. Furthermore, the equations include the fermion-boson
vertex renormalization constant Z1. The vertex itself is denoted by Γβ( ~p, ~q ).
The number of ’metric’ insertions in Eq. (3.3) and Eq. (3.4) already hint at the more complex
structure of the DSEs for the dressing functions. In order to simplify keeping track of the
equations, we define two shorthands.
Firstly, we introduce

p2
i := pµ gµνi pν (3.5)

whenever two quantities are contracted in a similar way. Recall that the nodes of the (energy)
gap function on the Fermi surface of the electrons each demanded its own metric tensor.
The bar-momentum squared thus represents a typical quantity that naturally arises out of
the structure of the equations. Notice also that the bar-momentum squared reduces to the
ordinary squared momentum if the isotropic limit is carried out.
Secondly, we define

p̃µ,i := Aµ,i
(
~p

)
pµ, (no summation convention !), (3.6)

where Aµ,i denotes the vectorial fermionic dressing function at node i. It affects only the
combination of the fermion vector dressing function Aµ(~p) and an arbitrary momentum pµ
above. In the isotropic limit, Eq. (3.6) will reduce to A(p2)~p, as there is only one vectorial
dressing function for all momentum components in the isotropic case.
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= +

Figure 3.C: The diagrammatic representation of the vertex DSE. Wiggly lines denote gauge
gauge boson propagators, straight lines fermion propagators. The dressed ver-
tices are indicated by black dots, dressed propagators by gray dots.

With these abbreviations, we write down the general form for dressed fermion propagator in
the anisotropic spacetime,

S −1
F,i

(
~p

)
= Bi

(
~p

)
+ i
√

gi
µνγν p̃µ,i, (3.7)

The scalar fermion dressing function at node i is denoted as Bi. In contrast to isotropic
spacetime, the function depends on every momentum component, not only on the squared
vector. The full gauge boson propagator is decomposed into the bare contribution and the
self-energy Πµν

(
~p

)
,

Dµν

(
~p

)−1
= p2

(
δµν − (1 − ξ)

pµpν
p2

)
+ Πµν

(
~p

)
. (3.8)

Notice, that the bare part of the gauge boson propagator is still the isotropic bare propagator.
Since we work in Landau gauge in the following, the gauge parameter is given by ξ = 0.

Vertex Specification

As a next step, we need to define the input for the fermion-boson vertex Γβ. The vertex in
principle has its own DSE that has to be solved. However, the endeavor of solving the vertex
DSE is rather involved. The reason for this is can be found in the structure of the DSEs: the
equation for the n-point function involves m-point functions, with m > n. In the case of the
vertex DSE, the fermion four-point function appears on the right hand side of the equation
(see Fig. 3.C). To date, only very little information is available on this function.

An alternative is the application of a vertex ansatz. Though there are a rather large number of
vertex ansätze available [41, 67, 68], studies in isotropic spacetime [11] have shown that the
critical number of fermion flavors for chiral symmetry breaking is only slightly sensitive to
the more elaborate structures of the vertex. In fact, the deviation of the critical number for a
bare vertex (i.e. Γµ ∼ γµ) and very sophisticated vertex constructions remained smaller than
five percent. For the investigations presented in this work, we already increased the complex-
ity of the DSEs enormously when considering a maximally anisotropic spacetime. To keep
the computational effort in reasonable limits, we uphold the findings in isotropic spacetime
to apply the simplest available vertex construction that is consistent with our approximations
in the gauge boson sector. In particular, we use the leading term of the Ball-Chiu (MinBC
or 1BC) vertex construction [69] transferred to an anisotropic spacetime as an ansatz for the
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−1 −1

= −

Figure 3.D: Diagrammatic form of the leading order large-N f vacuum polarization of the
gauge bosons. Wiggly lines represent gauge boson propagators, straight lines
fermions. Small dots indicate bare quantities, filled blobs dressed ones.

fermion-boson vertex,

Γ
β
i (~p, ~q) = γβ

Aβ
i (~p) + Aβ

i (~q)
2

, (3.9)

where we did not apply the summation convention. The momenta p, q denote the in- and
outgoing fermionic momenta at the vertex. As was shown by [70], the MinBC vertex rep-
resents a reasonable approximation to the full Ball-Chiu vertex that is constructed to satisfy
the Ward identity exactly. Besides the MinBC vertex, we will employ the bare vertex in the
context of the large-N f or the Pisarski approximation [71]

Gauge boson specification - scheme 1

In this work, we investigate two different approximation schemes for the dressed gauge bo-
son. In particular, we firstly analyze the large-N f approximation. From this analysis we hope
to obtain a first rough idea of the influence of anisotropy onto the transition from the chirally
symmetric to the chirally broken phase. As a next step, we proceed to a more elaborate
model, that includes the anomalous dimension of the fermion vector dressing function. In
this sense, our model builds on the results obtained in [11].

The large-N f approximation for isotropic QED3 was investigated in great detail in [72, 73].
The results of these investigations qualitatively still hold in comparison with less approxi-
mated studies [11].

Considering anisotropic spacetime, investigations of small anisotropic velocities in leading
order large-N f were performed by [20, 56]. One objective of this work is to overcome
these limitations, especially the restriction to small anisotropies. We consider the maximal
influence of anisotropies, that is to say all three velocities (cs, v f , v∆), whereas we normalize
the velocities such that cs = 1. The analytically integrated vacuum polarization reads [20, 56]

Πµν (~p )
=

∑
i

√
p2

i

gµνi −
gµαi pα gνδi pδ

p2
i

 Πi
(
~p

)
,

Πi
(
~p

)
=

e2 N f

16 vFv∆

1√
p2

i

. (3.10)

The diagrammatic representation of the large-N f vacuum polarization is displayed in Fig. 3.D.
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Gauge boson specification - scheme 2

The large-N f approximation is a very rewarding approximation scheme to obtain a first idea
of the effects of new parameters, considering the balance between complexity of the equa-
tions and obtained results. Nevertheless, the large-N f scheme is clearly an approximation
that needs improvement.
A main reason for this is the fact that the fermionic vector dressing functions are Ai = 1 for
the complete range of momenta. This is a severe limitation, since isotropic investigations
have shown the fermion vector dressing function and the boson vacuum polarization both
develop power laws in the infrared region in the chirally symmetric phase [11].
Additionally, the values of the A-functions at zero momenta in anisotropic spacetime enter
the definition of renormalized anisotropic velocities (cR

s , v
R
f , v

R
∆
). It is questionable, if there

exists a nontrivial definition of the renormalized velocities in the large-N f scheme.

In order to account for these shortcomings, our first steps beyond large-N f are built on the
findings of [11]. In [11], the authors derived, amongst others, power-law solutions for the
gauge boson vacuum polarization Π(k2) and the fermion vector dressing function A(p2) in
Landau gauge from a self-consistent infrared analysis of the DSEs in the chirally symmetric
phase. For the vertex, the minimal Ball-Chiu ansatz (see Eq. (3.9)) was chosen. In particular,
they found the power-law solutions given by

A(p2) ∼ p2κ, (3.11)
Π1BC(k2) ∼ k−1−2κ, (3.12)

with the fermionic momentum p, the bosonic momentum k and the anomalous dimension of
the fermionic vector dressing function, κ. The infrared exponent is sensitive to the employed
vertex ansatz. From a numerical study of the fermion wave function and the gauge boson
DSE, including the 1BC-vertex (Eq. (3.9)), the anomalous dimension for a was determined
as

κ1BC =
0.115

N f
+

0.044
N2

f

+ O(1/N3
f ). (3.13)

Based on these findings, we can formulate the isotropic approximation of the vacuum polar-
ization in the chirally symmetric phase, including the infrared exponent κ,

Π(k) =
e2N f

8

(
1
k

k2

k2 + e2 +
1

k1+2κ

e2

k2 + e2

)
. (3.14)

For the vertex ansatz (3.9) and the model for the vacuum polarization, Eq. (3.14), the anoma-
lous dimension was determined from Nc,model

f as κ = 0.0358 in isotropic spacetime (see
discussion in chapter 3.1.4). We employ this value of κ for our calculations although the
anomalous dimension may, in principle, be a function of the anisotropic velocities κ(v f , v∆)
as well. However, at this point we cannot calculate this dependence and therefore assume
κ to be constant in the following investigations. Notice that for κ = 0, this approximation
reduces to the large-N f limit.

Generalized to an anisotropic spacetime with a constant anomalous dimension, the isotropic
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model for the vacuum polarization (3.14) transforms into

Πi
(
~p

)
=

e2N f

16 vFv∆

 1√
p2

i

p2
i

p2
i + e2

+
1

p1+2κ
i

e2

pi
2

+ e2

 . (3.15)

Here, we used the shorthand p2
i that we introduced in Eq. (3.5).

We conclude the introduction of our approximation schemes with some words on the com-
bination of the vertex and gauge boson schemes.
Therefore, we wish to point out in the first place that when truncating the equations, it is
important to define a set of consistent approximation and truncation schemes for the vertex
and the gauge boson. An inconsistent combination of approximations would be to employ
the vertex ansatz (3.9) in the fermionic DSEs and at the same time work in the large-N f ap-
proximation for the gauge boson. As a consequence, the critical number of fermion flavors
would go to infinity, Nc

f → ∞, and the fermions remain massive in all cases. This finding is
in contrast to the findings in the pure 1/N f approximation in both DSEs, where Nc

f ≈ 3.24
[72] and to the improved MinBC/boson model results, where Nc

f ≈ 3.56 [11]. Therefore, we
will concentrate our investigations of anisotropic spacetime on two approximation schemes:
the large-N f /bare vertex and the MinBC/boson model approximation scheme. The results
are presented in chapter 3.1.4.

DSEs for dressing functions

With the truncation of the vertex and the approximations in the gauge boson sector intro-
duced, we return to the DSEs for the fermionic dressing functions. We obtain these DSEs
from Eq. (3.3) by projecting onto the scalar, respectively the components of the vector dress-
ing function and tracing.
The resulting equations are given by

Bi
(
~p

)
= Z2

2 e2
∫

d3q
(2π)3

Bi
(
~q

)
gµνi Dµν(~k )

Bi
(
~q

)2
+ (̃~qi )2

, (3.16)

Aµ,i
(
~p

)
= Z2 −

Z2
2 e2

pµ

∫
d3q

(2π)3

2
(̃
qλ,i gλνi Dµν(~k )

)
− q̃µ,i gλνi Dλν(~k )

Bi
(
~q

)2
+ ( ~̃qi )2

 Aµ,i(~p) + Aµ,i(~q)
2

.

(3.17)

Remember that there is no summation over the index µ in the vectorial fermion dressing
function. In fact, Eq. (3.17) encodes three DSEs for the dressing functions of each momen-
tum component. Together with the nodal index i, this would result in eight DSEs for the
fermionic dressing functions alone. However, a closer look at the symmetries of the metric-
like tensor gµν shows that this number can be reduced by interchanging the arguments of the
fermionic functions,

B1 ( p0, p1, p2) = B2 ( p0, p2, p1) , (3.18)
Aµ,1 ( p0, p1, p2) = Aµ,2 ( p0, p2, p1) . (3.19)
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This reduces the number of equations to solve to four. Similar symmetries can also be
identified for the vacuum polarization, which reduces the number of components to compute
from six to four,

Π11 ( p0, p1, p2) = Π22 ( p0, p2, p1) , (3.20)
Π10 ( p0, p1, p2) = Π20 ( p0, p2, p1) . (3.21)

Notice that if we wanted to solve the full boson DSE, we needed to find the self-consistent
solution for the DSEs of four components of the anisotropic gauge boson vacuum polariza-
tion. In contrast, there are only four DSEs to solve in total (fermionic and bosonic) in an
isotropic spacetime.
For our investigations of Eq. (3.16) and Eq. (3.17), we will furthermore set the fermion wave
function renormalization constant Z2 = 1 which is convenient in continuum calculations2.
This corresponds to a renormalization point that is far enough in the UV, such that the dress-
ing functions are insensitive to the exact choice.

Finite volume DSEs

As the previous section explained, the introduction of finite anisotropies leads to a consider-
able increase in complexity and computational demand of the DSEs. Any possible simplifi-
cation on the numerical side is therefore highly welcome.
One possibility to preserve computational resources is by choosing a problem-suited un-
derlying manifold and coordinates. In our case, this corresponds to a three dimensional
compactified Euclidean manifold, a three torus. Solving Dyson–Schwinger equations on a
three torus was studied in great detail in e.g. [74, 75], where the interested reader can find
an extended discussion of the transition from infinite to finite volume. In the following, we
only state the most important points of the finite volume formalism.
The compactification is performed by confining the quarks into a ’box’ of finite size and im-
posing (anti)periodic boundary conditions onto the (fermionic) bosonic wave functions. The
box length in direction µ is denoted by Lµ, the volume by V = L0 · L1 · L2. In principle, only
the time direction of the particles has restrictions on periodicity due to the Kubo–Martin–
Schwinger (KMS) relation (see e.g. [15]). We are free to choose the boundary conditions for
the spatial directions3. However, for convenience, we impose the same boundary conditions
in temporal and spatial directions. In consequence, the fermionic momenta are discretized
and denoted by

kµ = 2π
L nµ for bosons, (3.22)

kµ = 2π
L

(
nµ + 1

2

)
for fermions, (3.23)

with the integer numbers nµ ∈ Z. The discretized momentum spacetime leads to a summation
over Matsubara modes instead of previous continuous integration.∫

d3q
(2π)3 (· · · ) −→

1
L3

∑
n1,n2,n3

(· · · ) . (3.24)

2A study of the renormalization point dependence can be found in App. A.2
3Earlier investigations of periodic spatial boundary conditions have shown that the results change only

marginally.
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In isotropic spacetime, the O(3) symmetry would now allow the transformation 4 of Cartesian
to hyperspherical coordinates that saves a respectable amount of computational resources.
For anisotropic spacetime however, this is no longer possible since the sphere would be de-
formed into a triaxial ellipsoid. At maximum, we can find a cylindrical symmetry in the
case of finite temperatures and equal anisotropic velocities v f = v∆, that will be discussed
in chapter 3.2. Therefore the Cartesian summation, as it emerges automatically in the torus
formulation, is the most ’natural’ way to attack the anisotropic DSEs. The solution process
itself is the same as for isotropic spacetime. A detailed discussion thereof can be found in
Ref. [75].

However, speaking of the advantages of the torus formulation in anisotropic spacetime, we
need to mention its drawbacks for completeness. Similar to lattice gauge theory calculations,
we have to deal with finite volume, and potentially finite size effects. In isotropic spacetime,
finite volume effects were investigated in great detail in [75]. Unfortunately, a comparable
study in anisotropic spacetime is out of reach, due to the enormous increase in computational
demand. We will come back to this point when discussing the numerical results in sections
3.1.4 and 3.2.3. However, our volumes are large compared to lattice settings. This is the
reason why we are not restricted to certain ranges of anisotropy as the lattice calculations
[66, 78, 79]. Finite size effects on the other hand are expected to be small in our calculations.

4applied in e.g. [75–77]
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3.1.4. Numerical Results: The phase diagram of HTS at zero
temperatures

We now proceed to the discussion of our numerical results. To this end, we solved the
Dyson–Schwinger equations in a finite volume as described in the previous section. We
employed three different approximation schemes including more and more sophisticated an-
sätze.
To set our results into context with earlier studies, we firstly summarize some main findings
in isotropic spacetime. Subsequently, we start the discussion of our results for an anisotropic
spacetime with the Pisarski approximation scheme, originally introduced in [71]. Secondly,
we present a first phase diagram for leading order large-N f expansion (and bare vertices).
Finally, we present the phase diagram for the boson model/MinBC approximation scheme,
specified in Eq. (3.9) and Eq. (3.15).
To complete this numerical results chapter, we add the discussion of finite volume effects
and possible locations of physically realized HTS materials.

The critical Nc
f in the isotropic case

Pisarski’s approximation scheme [71] includes a bare vertex as an ansatz for the fermion-
boson vertex and a scalar fermion dressing function for all momenta, B(~p) = B(0) = m. Due
to these approximations, it is possible to solve the Dyson–Schwinger equation for the scalar
fermion dressing function analytically,

m = B(0) = cα e−π
2N f /8. (3.25)

Hereby c is a positive constant and the coupling constant is given by α = e2 N f . As can be
seen from this expression, chiral symmetry always remains broken, regardless of the number
of fermion flavors N f .
However, Nc

f → ∞ is in conflict with results from less restrictive approximations, that find
a finite number of critical fermion flavors. In consequence, we can conclude that Pisarski’s
scheme in isotropic spacetime is not suited to extract any information on chiral dynamics,
since it forbids the restoration of chiral symmetry.
More elaborate approximation schemes that allow to study chiral dynamics, are the above
mentioned large-N f /bare vertex, the fully self-consistent DSE solution with the MinBC ver-
tex and the boson model/MinBC vertex scheme. For isotropic spacetime, continuum studies
of the second approximation scheme as well as for more complex vertex ansätze were per-
formed in [11].
Building on these results, we can evaluate the new gauge boson model in its isotropic form
3.14 and compare the scalar fermion dressing functions in both approximation schemes. The
results are shown in Fig. 3.E
The three approximation schemes all lead to an exponentially decreasing order parameter in
dependence on the number of fermion flavors. This behavior is known as Miransky scaling
[80] and will play a major rôle in chapter ?? (finite temperature QED3 ). However, despite
this common behavior, the critical number of fermion flavors differs for the three truncation
schemes. While analytic 1/N f calculations yield Nc,1/N f

f ≈ 3.24 [72], the self-consistent DSE
calculation including the more elaborate 1BC-vertex leads to Nc,1BC

f ≈ 3.56. Judging from

Fig. 3.E, Nc,model
f is smaller than Nc,1/N f

f but still Nc,model
f ≈ 3.
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Figure 3.E: The scalar fermionic dressing function evaluated at zero momentum for three
different approximation schemes: The large-N f /bare vertex-, large-N f /1BC ver-
tex and the boson model/MinBC vertex approximation. The scalar fermion
dressing function serves as an order parameter for chiral symmetry breaking.
Figure courtesy of Christian Fischer.

The reason for this smallness can be understood by comparing the gauge boson in the self-
consistent MinBC calculation and in the new model. While the gauge boson is constant in
the deep infrared for N f < Nc

f and decays with a power law only for N f > Nc
f the model is

designed such that the power-law decay is realized also for N f < Nc
f . We therefore suppress

the gauge boson’s influence in this region, which results in a smaller Nc
f in total. Since this

is only a quantitative change, we expect the boson model/MinBC approximation to be a
reliable scheme for our qualitative investigation of chiral symmetry breaking in anisotropic
spacetime.

The critical Nc
f in the anisotropic case

Before we discuss any results, we specify the chosen finite volume setting. Both phase
diagrams discussed in this section were obtained by solving the DSEs on a torus with
L = 600/e2 and 203 momentum points.

We begin our discussion of the effects of maximal finite anisotropies with the investigation
of Pisarski’s scheme. Although Pisarski’s scheme is based on an assumption that was found
to be insufficient [72, 73] it was used recently by [59] for several general arguments.

With Pisarski’s assumptions, it is possible to analytically derive an expression for the scalar
fermion dressing function, that is to say the fermionic mass in this scheme. We obtain
the analytic expression for equal anisotropic velocities v f = v∆, with the details given in
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App. A.3. Our derivation yields

m = B(0) = cα exp
[(
−π2N f

√
v2

f − 1
)
/ (3.26)(

2
√

v2
f − 1 + 2(2 + v2

f ) arctan(
√

v2
f − 1)

)]
.

This result is clearly different from the result presented [59] that we consider erroneous since
it does not reduce to the expected isotropic limit as discussed by Pisarski [71]. In contrast,
when examining our formula (Eq. (3.26), we find that it indeed reduces to the expected
isotropic limit. Furthermore, it implies that chiral symmetry is always broken in Pisarski’s
scheme in three dimensions, since Nc

f → ∞.

We therefore consider Eq. (3.26) to be a reasonable generalization of the isotropic approxi-
mation. Consequently, we consider this approximation inappropriate for any further analysis
of the quantitative behavior of Nc

f with (cs, v f , v∆).
This conclusion leads us to the investigation of the more sophisticated approximation schemes.
The next improvement would be to consider the 1/N f -approximation/bare vertex scheme.
The resulting phase diagram for the critical number of fermion flavors in dependence on the
anisotropic velocities is shown in Fig. 3.F. We encode the critical N f in a colored density
plot, including contour lines to guide the eye. Notice that the coarseness of the contour lines
results from the interpolation between the evaluated points. If evaluated at infinitely many
points, we would expect the contour lines to smoothen.
As remarkable points, we find a plateau around the isotropic point at v f = v∆ = 1 with a criti-
cal number of fermion flavors of Nc,1/N f

f ≈ 1.0. Compared to the isotropic continuum results,
we obtain an estimate of the size of our finite volume effects. The comparison yields roughly
a factor of three difference between the continuum and our finite volume calculations. This
estimate is, strictly speaking, only valid at the isotropic point in the phase diagram since
the finite volume effects could depend on the anisotropic velocities, too. This needs to be
investigated in a separate study that we will discuss in the next section.
Changing the anisotropic velocities beyond the plateau around the isotropic point, we find an
increasing critical number of fermion flavors. This finding remains no matter if v f and v∆ are
varied simultaneously or independently. Comparing this result to earlier Dyson–Schwinger
studies in the 1/N f -expansion under the constraint of small anisotropies of Lee and Her-
but, we confirm the results of [20]. In addition, our studies demonstrate that the findings
remain also valid for large anisotropies within the frame of the 1/N f -approximation/bare
vertex scheme.

We proceed to investigate the validity of these results in an improved approximation scheme,
in particular because of the above discussed concerns with respect to the 1/N f -approximation.
Our last and most elaborate approximation scheme investigated in this work is the boson
model Eq. (3.15)/MinBC Eq. (3.9) scheme. The phase diagram obtained from this scheme is
depicted in Fig. 3.G. The critical number of fermion flavors is color-coded and additionally
indicated by contour lines, same as in the previous phase diagram. Already at first glance,
we find a widely changed behavior of the critical number of fermion flavors compared to the
previous approximation scheme.
We firstly focus on the isotropic point and find a critical value for the fermion flavors
of Nc,model

f ≈ 1.1. This value is only slightly deviating from the findings in the 1/N f -
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Figure 3.F: The phase diagram for the critical number of fermion flavors Nc
f in dependence

on the fermionic anisotropic velocities (v f , v∆). To obtain this diagram, we
solved the DSEs as given in Eq. (3.16) and Eq. (3.17) self-consistently in the
1/N f -approximation/bare vertex approximation scheme. The contours serve to
guide the eye.
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Figure 3.G: The phase diagram for the critical number of fermion flavors Nc
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on the fermionic anisotropic velocities (v f , v∆). To obtain this diagram, we
solved the DSEs as given in Eq. (3.16) and Eq. (3.17) self-consistently in the
boson model Eq. (3.15)/MinBC vertex Eq. (3.9) approximation scheme. The
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approximation/bare vertex scheme. Consequently, the comparison with the continuum re-
sults yields the same estimate of finite volume effects. However, as far as remarkable points
in the phase diagram are concerned, the isotropic point is no longer featured. In fact, we find
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instead a small plateau around (v f , v∆) = (0.4, 0.4) with a critical number of fermion flavors
of Nc,model

f ≈ 2. The plateau around this value furthermore represents a region of maxima - a
variation of the anisotropic velocities yields a decreasing critical number of fermion flavors.
Varying the anisotropic velocities, the critical number of fermion flavors now decreases.
However, it never vanishes for v f and v∆ smaller than cs = 1. In contrast, if one of the ve-
locities v f or v∆ ≈ 2 the critical number of fermion flavors vanishes and the theory always
remains in the chirally symmetric phase. On a qualitative level, our findings are in accor-
dance with other, complementary approaches.

On the one hand, a corresponding investigation was conducted by [59]. The authors analyzed
the strength of a one-boson exchange between two fermions in order to access the critical
number of fermions. Their underlying assumption is the so-called ’Lindemann-criterion’ for
QED3 , that does not claim to be exact but in general provides an accurate description. It
states that a fermion mass will be dynamically generated as soon as the photon exchange
interaction between two fermions is stronger than some threshold value Ac. This threshold
value, and the related critical number of fermion flavors is obtained from an analysis of the
according S-matrix up to second order perturbation theory with another assumption: that this
threshold value is not influenced by anisotropy. The framework of [59] represents a rather
different perspective on the problems considered in this chapter. Although our results agree
with the findings in the one-boson exchange model, the advantage of the DSE formalism can
be seen in the fact that there is no need for assumptions as strong as in [59], no matter how
plausible they may be.

On the other hand, our findings from Fig. 3.G are in agreement with lattice calculations of
Hands et al. [66, 79] that provide results at only few distinct points of the phase diagram.
While the setting of lattice gauge theory and our finite volume DSE approach are very sim-
ilar at the first sight, the lattice gauge theory approach struggles with the large separation of
scales in QED3 . As we discussed above, this scale separation requires large volumes, that
are hardly accessible on the lattice. Employing smaller lattices however has the drawback
that the infrared and UV cutoff influence the results considerably. On the torus, in contrast,
the effects of the infrared cutoff can be removed by an appropriate choice of the lattice spac-
ing L, i.e. larger box volumes. However, we should remark again that the critical numbers in
Fig. 3.G nevertheless suffer from rather large finite volume effects, reducing their absolute
value. In summary, we consider our finite volume DSE approach to be better suited than the
lattice to investigate the anisotropic phase diagram, since our approach is not restricted to
certain values of anisotropy.

We conclude the presentation of the phase diagrams with a comment on the large-N f /bare
vertex approximation scheme. It ignores essential features regarding the criticality of N f

in dependence on the anisotropic velocities. The results in this approximation scheme are
conflictive with findings in more elaborate approximation schemes. Therefore, to our mind,
the large-N f /bare vertex scheme should not be used for further analysis in HTS-QED3 .
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Figure 3.H: We show the critical number of fermion flavors obtained from two different tori
with N = 203 and N = 303 corresponding to box lengths of Le2 = 600 and
Le2 = 900, for four selected points on the v f = v∆-axis.

Volume effects

From the comparison with the isotropic continuum results, we already found a sizable dif-
ference in the critical number of fermion flavors. At the isotropic point v f = v∆ = cs = 1,
the finite volume reduced the critical number of fermion flavors by about a factor of three.
So far, we stated that we assume these differences to finite volume effects without further
investigations. We now come back this issue.
For isotropic spacetime, a detailed volume study with torus sizes up to N = 5123 was
discussed in [75]. Although it would be preferable to perform an analogous analysis in
anisotropic spacetime, the enormously increased demand of CPU time renders this an im-
possible endeavor. In anisotropic spacetime, already the solution of the equations on a torus
with N = 203 consumes a considerable amount of time. Since it is nevertheless desirable to
have at least a first estimate of the dependence of the finite volume effects on the anisotropic
velocities, we picked four points on the v f = v∆ axis and solved the DSEs on a torus of
N = 303 points. The results of this study is displayed in Fig. 3.H.
Firstly, we find a larger value of Nc

f for all four values of v f = v∆ in the larger volume.
This was expected from the comparison at the isotropic point. However, we also find that
the amount by which the critical number of fermion flavors is shifted, is rather similar at
v f = v∆ = 1 and v f = v∆ = 1.5. We therefore do not expect qualitative changes concerning
the overall behavior of Nc

f in the phase diagram that was discussed above. Furthermore, we
observe that the vanishing of Nc

f shifts to anisotropies v f = v∆ > 2.2 for the larger volume.
This strong volume behavior supports the necessity of further, more detailed volume studies
as they were presented in [75]. Finally, it would be even more desirable to have a comparison
with continuum results. A detailed continuum study of the case v f = v∆ is under way.
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Figure 3.I: Selected results for the critical number of fermion flavors at (v f , v∆) = (10v∆, v∆)
from a torus with Le2 = 600. The error bars correspond to our step size when
searching for Nc

f .

The ’physical’ case v f /v∆ ∼ 10

Finally, we return to the experimental motivation behind this QED3 study in an anisotropic
spacetime, the HTS materials. As we mentioned earlier, experiments find an intrinsic anisotro-
py, that is the ratio λ = v f /v∆, in the range of 10 - 20 for different HTS materials. For in-
stance, ref. [81] reports λ = 14 for optimally doped YBa2Cu3O7 and λ = 19 for
Bi2Sr2CaCu2O8 compounds. Unfortunately, only the ratios of the anisotropic velocities seem
to be accessible for the experiment up to now.
It is therefore impossible to identify the exact location of a certain material in the anisotropic
phase diagram. Nevertheless, one can highlight the regions in the phase diagram, where the
measured anisotropy ratios could be located. We chose (10v∆, v∆) to represent a possible
set of anisotropies and evaluated the region of the phase diagram that is accessible for our
model. The results are shown in Fig. 3.I, with the calculated points indicated by circles. The
black line represents a linear fit to our data, that approximates the points in an adequate way.

As we already discussed above, the critical numbers of fermion flavors are affected by finite
volume artifacts. However, as we have seen from Fig. 3.H, these artifacts are only mildly
depending on the anisotropic velocities for finite numbers of fermion flavors. In a first vol-
ume extrapolation, we therefore make use of the results obtained in isotropic spacetime (see
[75]). In this work, a functional form of the linearly extrapolated critical number of fermion
flavors for infinite volumes was given by

Nc
f = a −

b
(Le2)1/3 . (3.27)
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Figure 3.J: Volume extrapolated critical numbers of fermion flavors at (v f , v∆) = (10v∆, v∆),
originally obtained from a torus of Le2=600. The error bars correspond to our
step size when searching for Nc

f .

With the help of the isotropic point in the phase diagram 3.G and the isotropic critical number
of fermion flavors Nc,isovol

f = 3.24, we determine the parameter b = 17.97. It is then possible
to compute the volume extrapolated critical numbers of fermion flavors (in Eq. (3.27) de-
noted by a) from the finite volume critical numbers of fermion flavors displayed in Fig. 3.I.
The results are shown in Fig. 3.J.

Nevertheless, one has to keep in mind that this linear behavior might be changed in the
infinite volume limit. This clearly represents a next point that needs to be studied carefully
in future investigations.

3.1.5. Summary

This chapter reported on the investigations of finite anisotropies of in principle arbitrary size
in QED3 in a Dyson–Schwinger framework. To obtain these results, we introduced a consis-
tent approximation scheme beyond the leading order large-N f expansion and analyzed the
criticality of the number of fermion flavors for chiral symmetry breaking.

Our findings include an increasing critical number of fermion flavors with increasing anisotro-
pic velocities as long as v f < 1 and v∆ < 1 are both satisfied. For v f or v∆ > 1, we find the
opposite behavior, that is a decreasing Nc

f . These results agree with both results from lat-
tice gauge theory [66, 79] and from continuum analysis of the fermion-photon interaction
strength [59] on a qualitative level.
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However, we found that our results are affected quantitatively by considerable finite volume
artifacts. Due to the large demand of computational effort, a detailed volume study as done
in isotropic spacetime [75] is not possible to date. First steps towards larger volumes in
anisotropic spacetime showed only a small qualitative impact of the anisotropic velocities
on finite volume effects. Therefore, we consider it a reasonable approximation to neglect
this possible dependence and hence to employ the finite-volume correction deduced from
detailed studies at the isotropic point to the anisotropic case. We employed the linear ex-
trapolation of the critical number of fermion flavors to formulate predictive critical numbers
of fermion flavors for ’physical’ regions of the anisotropic phase diagram. Nevertheless, a
detailed finite volume study is desirable to quantify the finite volume effects beyond this ap-
proximation.

Additionally, future investigations should address two more central aspects of our investiga-
tions. Firstly, it is desirable to perform an analysis of different fermion-boson vertex ansätze.
Though we know from isotropic investigations [11] that our vertex truncation errors should
be moderate, a detailed study for anisotropic spacetime is pending and could overcome any
doubts. A second point concerns the gauge boson approximation. Although our model for
the gauge boson vacuum polarization includes important features of the infrared behavior of
the full function, more elaboration on the self-consistent solution of the gauge boson DSE is
necessary.

Despite these important points for future investigations, we consider our results to be a fur-
ther, qualitatively reliable step towards an understanding of QED3 with respect to its appli-
cation to high temperature superconductors.
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3.2. QED3 at finite temperature

Introducing finite temperatures to QED3 is interesting for several reasons. On the one hand,
considering finite temperatures clearly is a step towards a more realistic description of HTS
materials and therefore a reasoned extension of the investigations presented in the previous
chapter.
On the other hand, QED3 is a strongly coupled and asymptotically free theory. Several works
argued for the existence of a pseudo conformal window, in analogy to many flavor QCD that
received a lot of attention recently, especially in the frame of renormalization group studies
[29, 82–86]. An aspect of great interest in these studies was the scaling close to the quantum
critical point of chiral symmetry breaking. It was argued, that pure exponential Miransky
scaling is only valid in certain limits of a more general, universal scaling law [86]. The
assumptions under which this universal scaling was derived, are also fulfilled by QED3 and
a closer investigation of the scaling region is in order.
To perform this analysis, we generalize the boson model/MinBC approximation scheme that
was already employed in zero temperature calculations (see previous chapter and also [49]).
The results of these investigations agreed with corresponding ones in complementary ap-
proaches [59, 79] on a qualitative level. With the feasibility at vanishing temperatures shown,
we dare to firstly tackle the combined problem of finite anisotropies and finite temperatures
in our approach. To our knowledge, this problem has not been approached either in a Dyson–
Schwinger framework or in any other approach.

The employed finite volume setting was introduced in section 3.1.3. In this framework, the
consideration of finite temperatures is comparably easy: Since the finite box lengths leads
to sums over discrete Matsubara frequencies, the setting more or less lends itself for the
intended investigations. However, we need to take care to guarantee a large enough aspect
ratio between the number of modes in temporal and spatial direction for the temperature
interpretation to hold.
This chapter is organized as follows: in section 3.2.1, we will introduce the DSEs at finite
temperature as they are employed for all following investigations in this chapter. As a next
step, we will summarize the most important aspects of the universal scaling law introduced
by [84, 86] in section 3.2.2. Finally, we will present our numerical results in section 3.2.3
regarding the chiral phase transition in finite temperature QED3 in an anisotropic spacetime.
Here, we first discuss the finite temperature phase diagram for the critical number of fermion
flavors depending on the anisotropic velocities. Next, we address the investigations of the
scaling behavior of the critical temperature in dependence on the number of fermion flavors.

3.2.1. Finite temperature DSEs

Since we work in the identical approximation scheme as for vanishing temperature, the
Dyson–Schwinger equation formulation in the finite volume does not change. However,
the introduction of finite temperatures slightly changes the continuum formulation of the
equations that represents our starting point. We therefore shortly discuss the equations for
completeness.
Finite temperature is introduced by compactifying the time direction. In Euclidean space-
time, the DSE for the quark propagator is then explicitly given by
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S −1
F, j(ωp, ~p) = S −1

0, j(ωp, ~p ) + Z1 e2 T
∑

nt

∫
d2q

(2π)2 (
√

g j,µαγ
αS F, j(ωq, ~q )

×
√

g j,νβΓ
β(ωq, ~q, ωp, ~p ) Dµν(ωk,~k )), (3.28)

D−1
µν (ωp, ~p) = D−1

0,µν(ωp, ~p ) −
Z1e2T N f

2

∑
j = 1, 2;

nt

∫
d2q

(2π)2 Tr
[√

g j,µαγ
αS F, j(ωq, ~q )

×
√

g j,νβΓ
β(ωp, ~p, ωq, ~q )S F, j(ωk~k )

]
. (3.29)

Here, the bosonic momentum kµ is defined by the difference of the external and the internal
fermion momenta pµ − qµ. The nodal index is denoted by i = 1, 2.
S −1

0, j(p) = Z2iγν
√

g j,νµ pµ denotes the inverse bare fermion propagator that depends on the
momenta p = (ωp, ~p) with the Matsubara frequency ωp. The inverse bare gauge boson
propagator reads D−1

0,µν(p) = Z3 p2PT
µν(p), with the transverse projector denoted by PT .

The dressed fermion-boson vertex is denoted by Γβ( pµ, qµ ) and will be replaced by the
ansatz Eq. (3.9). Furthermore, the equations Eq. (3.28) and Eq. (3.29) include the renormal-
ization constants Z1, Z2 and Z3 of the vertex, fermion and gauge boson. They are defined
by the ratio between renormalized to unrenormalized dressing function of the corresponding
one-particle irreducible Green’s function. However, due to the UV-finiteness of QED3 , we
can set the renormalization constants to one. Notice that the Ward identity Z1 = Z2 is then
trivially satisfied. The dressed fermion and gauge boson propagator read

S −1
F,i

(
ωp, ~p

)
= Bi

(
ωp, ~p

)
+ i
√

gi
µνγν p̃µ,i, (3.30)

Dµν

(
ωp, ~p

)−1

= p2
(
δµν −

pµpν
p2

)
+ Πµν

(
ωp, ~p

)
, (3.31)

where we inserted the explicit form of the transverse projector PT and made use of the
shorthand notation introduced in Eq. (3.5) and Eq. (3.6).
We conclude the collection of finite temperature DSEs by stating the projected and traced
DSEs for the fermionic dressing functions. They are given by

Bi

(
ωp, ~p

)
= Te2

∑
nt

∫
d2q

(2π)2

Bi

(
ωq, ~q

)
gµνi Dµν(ωk,~k )

Bi

(
ωq, ~q

)2
+ (̃qi,µ )2

, (3.32)

Aµ,i

(
ωp, ~p

)
= 1 −

Te2

pµ

∑
nt

∫
d2q

(2π)2

2
(̃
qλ,i gλνi Dµν(ωk,~k )

)
− q̃µ,i gλνi Dλν(ωk,~k )

Bi

(
ωq, ~q

)2
+ ( q̃i,µ )2


×

Aµ,i(ωp, ~p) + Aµ,i(ωq, ~q)
2

. (3.33)

Notice that the above equations still do not include the summation over the external index µ.
For the gauge boson vacuum polarization, we employ our model ansatz Eq. (3.15). For more
information on this ansatz, see section 3.1.3. We proceed with the evaluation of Eq. (3.32)
and Eq. (3.33) for equal fermionic velocities v f = v∆. This choice reduces the number of
vectorial fermion dressing functions, since A0(ωp, ~p) , A1(ωp, ~p) = A2(ωp, ~p). Furthermore,
the nodes are no longer distinguishable and we can drop the nodal index i.
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3.2.2. Critical Scaling

Critical scaling in the vicinity of quantum critical points allows the definition of universal-
ity classes. A distinguishing feature of pseudo conformal phase transitions is the so-called
Miransky scaling that can be seen as a higher dimensional generalization of BKT scaling.
A candidate for such a phase transition are the chiral phase transitions in QED3 and QCD,
triggered by an increase in the number of fermion flavors. Discussions thereof can be found
in several works, e.g. [9–11, 30, 80].
The derivation of Miransky-type scaling is based on rather general assumptions, including
the fixed point structure of a gauge theory, as we shortly discussed in sec. 2.3 with the help
of a toy model. In close analogy to this toy model, Miransky scaling is derived from the β
function of the four fermion coupling in e.g. QED3 . In the gauge theory, one assumes a
constant gauge coupling g,

∂tg2 = 0. (3.34)

This can be seen as a reasonable approach close to an IR fixed point of the gauge coupling.
From the flow equation of the four fermion coupling, one can then derive the scaling behavior
of the symmetry breaking scale, which we denote by kS B,

kM
S B ∼ Λ θ(g2 − g2

cr) exp

− π

2ε
√

g2 − g2
cr

 . (3.35)

The coupling gcr is the critical value for the fixed point merger that we discussed briefly
in sec. 2.3. The constant ε has to be determined from the actual theory in consideration.
The scaling behavior of the critical scale can be transferred to the scaling behavior of IR
observables, that was found in e.g. isotropic QED3 [11].
However, a more careful analysis of the dependence of the symmetry breaking scale on the
number of fermion flavors has been performed in [84, 86]. In this work, the RG flow of the
running coupling has been taken into account. To leading order the scaling of the symmetry
breaking scale is then given by

kS B ∼ k0 θ(Nc
f − N f ) |Nc

f ,0 − N f |
− 1

Θ0 exp

 π

2ε
√
|Nc

f − N f |

 . (3.36)

The constant k0 serves to fix the scale and the critical number of fermion flavors for chiral
symmetry breaking is denoted by Nc

f . The exponent Θ0 is the leading order term in a Taylor
expansion of the critical exponent Θ in N f and further, the theory dependent parameter ε (see
Ref. [86] for details). It is furthermore possible to relate the scaling behavior of the symmetry
breaking scale to the scaling behavior of observables as e.g. the critical temperature. This
leads to

Tcr ∼ k0 |Nc
f ,0 − N f |

− 1
Θ0 exp

− π

2ε
√
|Nc

f ,0 − N f |

 , (3.37)

with a scale k0 and the critical value Nc
f ,0 of fermion flavors at zero temperature. More details

on the parameters and their dependence on the theory in question can be found in Ref. [86].
In leading order, this yields a power law decay

Tcr = k0 |Nc
f ,0 − N f |

− 1
Θ0 . (3.38)
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Figure 3.K: The generic thermal transition lines for the cases |Θ0| < 1 and |Θ0| > 1. The
quantum critical points for zero temperature are marked with filled circles.

This relation (Eq. (3.38)) only represents an upper bound for the chiral critical temperature,
as it is insensitive to deep infrared behavior of the [86, 87]. Especially fluctuations of Gold-
stone modes can affect the chiral condensate in the deep IR and consequently the critical
temperature. In general, it is a very challenging task to investigate the full scaling law as
introduced in Eq. (3.36) in a finite volume setting, as e.g. our three torus5. The reason for
this challenge are the scales present in QED3 : The scale set by the dimensionful coupling
α = N f e2/4π and that of the dynamically generated fermion mass. Close to the critical
number of fermion flavors at vanishing temperature, Nc

f ,0, these two scales differ largely. In
principle one therefore needs large volumes, respectively a DSE continuum formulation [75],
in order to fully analyze the scaling features.

However, even though we cannot resolve the exponential Miransky scaling that dominates
only in the close vicinity of Nc

f ,0 (see Table 2 in Ref. [88] for an estimate of the size of
this region) in our torus setting, we can concentrate on the ’intermediate’ scaling behavior.
That is, we strive to find and analyze the power law part of the scaling relation Eq. (3.36)
that dominates further away from Nc

f ,0 before the end of the scaling region around Nc
f ,0 is

reached. In consequence, we consider (Eq. (3.38)) as a reasonable approximation for our
investigations. Considering Eq. (3.38) there are two possible generic scaling scenarios. They
emerge from the absolute value of the critical exponent |Θ0| < 1 or |Θ0| > 1. Both scenarios
are illustrates in Fig. 3.K. In the case of |Θ0| > 1 the thermal phase transition line approaches
the quantum critical point with an infinite slope. For |Θ0| < 1 the slope vanishes at the
quantum critical point, which corresponds to large power law corrections to the exponential
Miransky scaling.

5or Lattice gauge theory
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Figure 3.L: The phase diagram for the critical number of fermion flavors Nc
f in dependence

on the anisotropic velocities v f = v∆ and temperature T . The left panel shows
the planar phase diagram with Nc

f highlighted in different colors and separated
by contour lines. Dots indicate the actually evaluated parameter sets. The right
panel shows the same phase diagram with N f as vertical axis. The slope of
decreasing Nc

f with increasing T clearly is larger for v f = v∆ ≥ 1 than for
v f = v∆ ≤ 1

3.2.3. Numerical Results

This section presents our numerical results of the investigation of QED3 at finite temperatures
and anisotropies. We will mainly discuss the case v f = v∆ and cs = 1, which correspond to
the diagonal of the anisotropy phase diagrams presented in chapter 3.1.4. We chose this
cut through the phase diagram to make our results better presentable. It is no problem to
compute finite temperature phase diagrams for any off-diagonal anisotropy v f , v∆. We will
start with the discussion of the generalized phase diagram for the critical number of fermion
flavors depending on temperature and anisotropic velocities. Next, we proceed with a closer
analysis of ’slices’ of the computed phase diagram: We are interested in the critical behavior
of the thermal phase transition line in the vicinity of the quantum critical point.

The critical Nc
f in the anisotropic case v f = v∆

We start our discussion with the phase diagram for the critical number of fermion flavors
depending on the anisotropies v f = v∆ (with cs = 1) and the temperature T . The results
are obtained from solving the DSEs (Eq. (3.16)) and (Eq. (3.17)) on a three torus of (N2

X =

392) × (NT = 23) points and a box length of e2LX = 600. By introducing finite temperatures
on the torus, we have to take care to guarantee a reasonable aspect ratio between the temporal
and the spatial number of lattice points. The choice of NT = 23 satisfies this demand.
We are interested in the influence of temperature and anisotropy on the restoration of chiral
symmetry. As we discussed in chapter 2, a natural order parameter sensitive to the break-
ing/restoration of this symmetry would be the chiral condensate, with trD indicating the trace

51



Chapter 3. QED3 in an anisotropic spacetime

Figure 3.M: Fit to the critical temperature for chiral symmetry breaking in dependence on
the number of fermion flavors for a fixed anisotropy v f = v∆ = 0.8. The blue
dots represent our data that is fitted by a power law (3.38) (straight line). The
fit region encompasses the region close to the quantum critical point, for this
case N f > 1.25.

over Dirac indices,

〈Ψ̄Ψ〉 = T
∑

nt

∫
d2q

(2π)2 trDS F(ωq, ~q). (3.39)

In close connection to the chiral condensate, the scalar fermion dressing function at any
momentum serves equally well as an order parameter. We chose to analyze the behavior of
B(ωq, ~q) at the lowest Matsubara frequency and two-momentum in order to determine the
critical number of fermion flavors. The results of this analysis are shown in Fig. 3.L.
The phase diagram displays the critical number of fermion flavors, distinguishable by color
and by contour lines, depending on temperature and anisotropic velocities v f = v∆. The
grid of evaluated points is indicated by dots and the contour lines serve to guide the eye.
Their edged structure results from the (Mathematica) interpolation of the coarse grid and is
assumed to smoothen for a finer and finer grid. In the white regions of the phase diagram,
the convergence criterion of the iterative solution process is not matched for any nontrivial
number of fermion flavors.
For effectively vanishing temperature, we find a decreasing Nc

f for increasing anisotropies.
This is in accordance with the findings discussed in chapter 3.1.4. However, the actual values
for Nc

f differ slightly since we used similar but not identical torus sizes. At fixed anisotropy,
the critical number of fermion flavors also decreases with an increasing temperature. This
behavior generally holds for any studied degree of anisotropy. However, for v f = v∆ ≥ 1
the slope of the decrease is considerably smaller than for v f = v∆ ≤ 1 (see right panel in
Fig. 3.L).

Critical Scaling

We now proceed to analyze the critical scaling of the temperature in dependence on the
number of fermion flavors. As we discussed above, we do not expect to see the full scaling
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Figure 3.N: The critical temperature in dependence on the number of fermion flavors for
anisotropic velocities from v f = v∆ = 1.0 to v f = v∆ = 1.4. The connect-
ing lines between the dots are added for clarity, they do not represent a fitting
function. We concentrated on this velocity range since the curves are nicely
distinguishable. It could be extended to larger anisotropic velocities without
any problems, however the clarity of demonstration would suffer. It is clearly
visible that the size of the region of power law scaling decreases. Compare also
the transition between the two generic scaling scenarios in Fig. 3.K.

behavior of Eq. (3.36) in our three torus setting, since we are limited in volume and lattice
size. We therefore focus on an analysis of the intermediate scaling region. To this end, we
need to identify the region where the power law scaling

Tcr ∼ k0|Nc
f ,0 − N f |

− 1
Θ0 (3.40)

provides a valid description, separately for all anisotropic velocities v f = v∆. For instance,
we consider the case v f = v∆ = 0.8. Figure 3.M displays the calculated critical temperatures
depending on the number of fermion flavors (the blue dots). The straight line shows a power
law fit of the form Eq. (3.38) in the region 1.25 < N f < 1.75. While this N f range is well
matched by the fit function, the region N f < 0.9 clearly lies outside the scaling region. The
value of N f ≈ 0.9 marks its lower end. Furthermore, we do not find the critical region where
Miranksy scaling dominates the power law scaling. As we discussed above, this is expected
due to the limited resolution in the finite volume. However, this region can be located at
N f > 1.75, somewhere close to Nc

f ,0. A more thorough investigation of this scaling region is
a possible subject for a future investigation, based on a continuum formulation of the DSEs.
The fit of the data points in Fig. 3.M yields the value for the critical exponent |Θ0| = 0.5
and for the critical number of fermion flavors at zero temperature, Nc

f ,0 = 2.2. We proceed
with the same analysis of the critical temperatures for anisotropic velocities in the range of
v f = v∆ = 0.6 − 1.5. A first finding is that the extent of the region where we can identify
the power law scaling is correlated with the amount of anisotropy. While the intermediate
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Figure 3.O: The critical exponent Θ0 plotted as a function of the fermionic velocities v f =

v∆. Shown are results for the self-consistent photon model Eq. (3.15) and the
1BC-vertex, in the fermion-DSE.

scaling region is large for v f = v∆ < 1, it decreases significantly for v f = v∆ > 1. An il-
lustration of this decrease in the size of the power law scaling region can be found in Fig. 3.N.

The complete set of critical exponents |Θ0| and critical numbers of fermion flavors for van-
ishing temperatures, Nc

f ,0 (right panel ), can be found in Fig. 3.O. The behavior of the critical
exponents (left panel) depending on the anisotropies shows that the fermionic velocities pro-
vide an external parameter that allows to tune the generic scaling behavior in the vicinity of
the quantum critical point (compare Fig. 3.K and also Fig. 3.N). The red dots indicate the
results obtained from a torus of (N2

X = 392) × (NT = 23) points, with a spatial box length of
e2LX = 600.
The critical exponent peaks at the isotropic point, with a significantly larger value than for
smaller or larger anisotropies. While the decrease of |Θ0| is rather rapid for 0.5 < v f = v∆ <
0.9, it decays more slowly with larger anisotropies, 1.1 < v f = v∆ < 1.5.

In order to get a first intuition for the size of finite volume effects, we further included the
critical exponents for selected points obtained from a larger torus. This torus consisted of
(N2

X = 592)×(NT = 23) points and we assumed a box length of e2LX = 900. We concentrated
on these few points since the increase in volume represents an enormous increase in compu-
tational time. Thus, we picked representable points at, below and above the isotropic point.
The according values of the critical exponent are marked by crosses. As expected from the
results in the previous chapter 3.1.4, our critical values are sensitive to finite volume effects.
In the case of the critical exponent, these effects augment the actual value of |Θ0| at all three
anisotropies. We consider this behavior comparable to our findings at zero temperature, pre-
sented in the previous section, and conclude that the finite volume affects our critical values
mainly quantitatively. As far as finite size effects are concerned, we remind the reader that
the dimensionful coupling of QED3 acts as a UV cutoff for large momenta. In consequence,
we expect only mild influence of finite size effects as long as we keep the lattice spacing
smaller than this scale, which is true in our calculations. Altogether, we expect the qualita-
tive behavior of |Θ0|(v f ) to also hold for larger volumes.
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Speaking of the qualitative behavior in the critical region, we recall from [86] that the size of
Θ0 determines the size of power law corrections to exponential Miransky scaling in the close
vicinity of the quantum critical point. From the results in Fig. 3.O, we find small corrections
for |Θ0| � 1 and large corrections for |Θ0| � 1. |Θ0| ≈ 5 for the isotropic point therefore
leads us to expect dominant exponential Miransky-scaling, also in the intermediate scaling
region and only very small power law corrections. For large anisotropies and anisotropies
v f = v∆ < 0.9, the power law scaling dominates. More detailed statements on the scaling be-
havior are currently not possible due to our finite volume setting, respectively the smallness
of the region of exponential Miransky scaling.
However, we can comment on the size of the ’intermediate’ scaling region, further away
from Nc

f ,0. As we shortly mentioned above, the scaling region for |Θ0| ≤ 1 is rather large,
while it is much smaller for |Θ0| > 1 (compare also Fig. 3.N). This finding agrees with our
considerations above and in Ref. [86].

Finally, we address the zero-temperature critical number of fermion flavors that is shown
in the right panel of Fig. 3.O. Nc

f ,0 decreases for increasing anisotropies. This finding is in
accordance with earlier studies in a zero-temperature torus setting (see sec.3.1). We remark
again that the actual critical numbers differ slightly to our previous findings. The reason for
this is the usage of similar, but not identical tori as an underlying manifold.

3.2.4. Summary

Section 3.2 presented the results of our investigations of QED3 at finite temperatures in an
anisotropic spacetime. We were interested in the conditions for chiral symmetry breaking,
whereas we considered variations of the temperature, the anisotropic velocities and the num-
ber of fermion flavors. To carry out our analysis, we solved a coupled set of truncated DSEs
for the anisotropic fermion propagator together with model input for the photon self energy
determined from the isotropic case at T = 0.

Motivated by the application of QED3 as a low-energy effective theory for high temperature
superconductors, we firstly extended the zero temperature phase diagram presented in sec-
tion 3.1.4 to finite temperatures. We found an overall decreasing critical number of fermion
flavors with increasing temperature for all anisotropies. However, we also found that the
slope of the decrease in the critical number of fermion flavors depends on the amount of
anisotropy and is steeper for v f = v∆ < 1 than for v f = v∆ > 1.

Secondly, we concentrated on an analysis of the behavior of the critical temperature depend-
ing on the number of fermion flavors close to the merger of the thermal phase transition line
and the quantum critical point. Refs. [84, 86] suggested the presence of a universal scaling
law for strongly coupled asymptotically free gauge theories, if the running of the gauge cou-
pling is taken into consideration. Our results could verify the presence of such a universal
scaling law. Furthermore, we were able to extract the critical exponent |Θ0| for various values
of the anisotropic velocities. This led us to the finding that the anisotropic velocities provide
a parameter that changes the generic scaling scenario of QED3 from |Θ0| smaller than one to
a region with large values of the critical exponent |Θ0| � 1.
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Chapter 3. QED3 in an anisotropic spacetime

Concerning future investigations, it is desirable to improve our results by a fully self-consistent
treatment of the gauge boson sector.

The results discussed in the section above represent the very first exploratory study of the
effects of anisotropy in finite temperature QED3 . To our knowledge, there are no results
available from other approaches or from other DSE calculations analyzing a comparable
scenario.
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4. Quenched QCD under strong
external magnetic fields

Quantum chromodynamics (QCD) is widely accepted to be the appropriate description of the
strong interaction between the fundamental particles, the quarks. Besides the common fea-
tures with QED3 mentioned above (chap. 1), QCD distinguishes itself fundamentally by its
non-Abelian nature, including the presence of multiple gauge boson self-interaction vertices,
respectively (color)charged gauge bosons. At high energies or small distances, these lead to
the anti-screening property of the QCD vacuum, respectively a decrease of the running cou-
pling1. This asymptotic freedom allows to approach QCD with perturbative methods at large
energies in the first place. However, at low energies or large distances where the coupling
gets strong, nonperturbative phenomena become crucial ingredients to a full understanding
of QCD. Especially the mechanisms of confinement and chiral symmetry breaking in vac-
uum as well as under nontrivial external conditions are of paramount interest. In the case of
finite temperatures and baryonic densities, different states of matter emerge and the transi-
tions between the distinct phases still offer challenges for both, theory and experiment.

Theoretical investigations of the QCD phase diagram are performed in the frameworks of
lattice gauge theory, functional methods (such as Dyson–Schwinger equations and the func-
tional renormalization group) and effective model approaches (such as e.g. the (Polyakov)-
Nambu–Jona-Lasinio model, for a review see [91, 92] and the (Polyakov)-Quark-Meson
model, for reviews see e.g. [93–95]).

Based on insights from all of these methods, the structure of the QCD phase diagram became
more and more diverse over the decades (for a very early version see e.g. [96]), especially
under extreme conditions (see Fig. 4.A). Extreme conditions hereby mean e.g. high temper-
atures, high baryonic densities/chemical potential,but also strong external magnetic fields.
The effects of this third extreme condition are at the center of this work’s investigations.

Historically, Schwinger was the first to address the problem of a relativistic fermion in an
external magnetic field [97]. Since then, many debates on the influence and the realization
of strong magnetic fields arose, especially in the last two decades. Hereby, first approaches
including nonperturbative effects probed the QCD vacuum at zero temperature under the in-
fluence of magnetic fields. The investigations were performed in both lattice and effective
model calculations and agreed on an increasing chiral condensate with increasing magnetic
field. This enhancement of chiral symmetry breaking was coined ’magnetic catalysis’ [98–
104] by earlier studies. (For a pedagogical review see [105].)

1To be precise, this is true as long as the sign of the beta function stays negative. This is (for three color QCD)
the case as long as the number of quark flavors is smaller than 16.
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Chapter 4. Quenched QCD under strong external magnetic fields

Figure 4.A: A tentative version of the QCD phase diagram, extended with a third axis dis-
playing the magnetic field. The figure is a manipulation of the phase diagrams
of Fukushima [89] and Chernodub [90].

In recent years, the extension of the ’standard’ (T -µ)-phase diagram by a third, -the mag-
netic field- axis led to controversial results2. One of these was the possible increase of the
chiral phase transition temperature in the (T -(eB))plane. Findings from effective model cal-
culations [90, 101, 103, 104, 108–133] and lattice simulations in quenched approximation
[134, 135] and in QC2D with non-physical pion masses [136, 137] showed opposite behav-
ior to the results of the Budapest-Wuppertal collaboration [138]. The model calculations
still extracted the magnetic catalysis. As a consequence, the critical temperature for chiral
symmetry breaking increased. Contrary to this, the lattice results of [138] found a suppres-
sion of the chiral condensate, so called inverse magnetic catalysis and a decreasing critical
temperature. After several attempts [133, 139, 140], this controversy could be explained and
understood only very recently [141]: small (physical) quark masses and ordering effects in
the Polyakov loop3 were identified to play a crucial rôle for the lowest part of the spectrum
of the Dirac operator. Depending on the response of these modes at different temperatures,
magnetic catalysis or inverse magnetic catalysis is observable in the chiral condensate.

In principle, after the identification of the degrees of freedom that cause the inverse catalysis
in full QCD, the way is paved for further investigations at non-vanishing chemical potential
in the frame of functional methods or effective models 4.
Therefore, a first aspect of this work is to investigate the implementation of magnetic fields
in a Dyson–Schwinger framework. Furthermore we want to understand underlying mecha-

2General reviews on QCD under extreme conditions can be found in [89, 106, 107].
3More remarks will follow in sec. 4.2, for an exhausting discussion of the subject, refer to [141]
4Since they do not suffer from the fermion sign problem.
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Chapter 4. Quenched QCD under strong external magnetic fields

nisms of magnetic catalysis in light of the established, state of the art approximation schemes
[142]. In the longterm future, these first steps should lead to the possibility to contribute to
the research on the (T -µ-(eB)) phase diagram.

Besides the purely academic interest in understanding of the general structure of this three
dimensional QCD phase diagram, strong external magnetic fields are realized in at least three
physical systems. These are heavy ion collisions [143–145], magnetars [146] and the early
universe electroweak phase transition [147, 148]. For instance, in heavy-ion experiments at
RHIC, LHC (ALICE) and in future also at FAIR (CBM) nuclei collide with high enough
energies to produce a quark-gluon plasma [149, 150]. For non-central collisions, so called
spectator quarks produce fields |eB| of the order of Λ2

QCD that may influence especially the
nonperturbative dynamics. It was proposed that the additional magnetic field may lead to
e.g. the chiral magnetic effect [143, 151].

This brings us to another aspect of this work. We chose to work in a finite volume DSE
setting. One motivation for this setting arises from the strongly interacting system of fi-
nite size [152, 153] created in heavy ion collisions. Though this finite interaction volume
cannot be trivially matched with a simulated system in a box, due to e.g. differing bound-
ary conditions, such finite volume studies can clearly help to understand possible effects on
observables. While these effects are expected to alter the phase structure of QCD already
without external magnetic fields (compared to the thermodynamic limit), the amount and
kind of modification is not clear5.

Finally, there is one more aspect of strong external magnetic fields, that is central to the in-
vestigations presented in this chapter. Besides their presence in experimental situations and
the extension of the ’standard’ QCD phase diagram, they have a more technical application
in researching confinement. This connection was introduced in form of a dual condensate in
[156]. The dual condensate with respect to the magnetic fields, the dressed Wilson loop, is
an observable that is sensitive to confinement while at the same time derived from the chiral
condensate. It is equal to the conventional Wilson loop in the case of infinitely heavy quarks
and thus allows to probe the string tension between two static quarks. The conventional Wil-
son loop is in the first place defined on the lattice, and not directly accessible from functional
methods. In consequence, the dressed Wilson loop could be a very useful observable for
functional methods, due to its derivation from the chiral condensate. Nevertheless, there is
no work reporting on dressed Wilson loops from other approaches than from lattice gauge
theory. Therefore, we strive to investigate the possibility to recover the dressed Wilson loop
with the help of external magnetic fields in a Dyson–Schwinger framework.

This chapter is organized as follows: we will firstly reintroduce the Dyson–Schwinger equa-
tions for quenched QCD under the influence of external magnetic fields in section 4.1. To
this end, we discuss the implementation of the magnetic field in the quark propagator before

5Very recently, the relevance of magnetic fields in heavy ion collisions became an even more controversial
point of discussion. Estimates in [154] of the equilibration- and lifetime of the magnetic fields suggest that
the produced magnetic fields might decay too quickly to be of a relevant size to influence the quark-gluon
plasma, which was strictly denied by [155]. However, since there is no definite conclusion on this subject
yet.
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we write down the DSEs in quenched approximation. Hereafter we review the truncation
scheme for the gluonic and vertex input. Having specified the basic setting, we proceed to
a discussion of the most important points of our finite volume setting. The last step of this
formal section is the introduction of the order parameter for the subsequent sections: The
chiral condensate.
Section 4.2 deals with the results on the dual condensate or dressed Wilson loop, probed
with help of the external magnetic field. To this end, we summarize the concept of the
dressed Wilson loop as introduced in the lattice gauge theory framework and discuss the
main features of our finite volume approach compared to the lattice setting. We then present
the numerical results of the dual condensate from Dyson–Schwinger equations in varying
settings before we give a short summary. Section 4.3 presents first results for the chiral
condensate for physical magnetic field strengths at vanishing temperature. We close the
chapter with a summary of the advances and outlook on possible next steps concerning the
study of physical magnetic field strengths in a DSE approach.
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Chapter 4. Quenched QCD under strong external magnetic fields

4.1. Formalism

The bare propagator in an external field

We introduce a constant external magnetic field via the principle of minimal substitution,
∂µ → Dµ = ∂µ − ieAµ. For convenience, we choose the field pointing in z-direction, namely
A = (0,By, 0, 0)T , without loss of generality. The minimal substitution procedure introduces
an Abelian correction term Fµν to the non-Abelian field strength tensor

Fµν,ab,B = Fµν,ab + Fµν ⊗ 1ab. (4.1)

The Abelian field strength tensor is denoted by Fµν(x) = const = B[δµ3, δν1] and it is coupled
to the ’trivial’ unity matrix in color space, 1ab. The modified Lagrangian with suppressed
color indices is then denoted by

LB = ψ̄ (i /DB − m)ψ +
1
4
Fµν,B Fµν,B. (4.2)

To avoid confusion, let us emphasize that since only constant Abelian terms are considered,
there is no dynamical term for the magnetic field in our Lagrangian.
In a scenario without external magnetic field, we could in a next step deduce the DSE for
the quark propagator in coordinate space. This would be done along the lines of the standard
procedure described in section 2.5. Though, with the magnetic background field included,
the transformation of the propagator to momentum space is no longer done in a straightfor-
ward plane wave decomposition. The inadequacy of this procedure results from the fact that
the propagator now depends on two points in coordinate space, x and x′, and no longer only
on their difference. To circumvent this problem and nevertheless recover a diagonal prop-
agator, there exist several equivalent methods. These are specially tailored for the case of
constant fields and need to be reconsidered when dropping this constraint. The approaches,
namely the Fock–Schwinger eigentime, the Nikishov or the Ritus method were discussed
and shown to be connected by Ritus in [157].

In this work, we apply Ritus’ method and recover the diagonal quark propagator in a constant
magnetic background field along the lines of [157, 158]. This diagonalization finally enables
us to perform the Fourier transformation and to obtain the propagator in momentum space as
input for our DSEs. We now summarize the most important steps of Ritus’ diagonalization
procedure. The interested reader is referred to Appendix B.1 for a more detailed overview
of the derivation.
Ritus’ method is based on two main observations. First of all, the quark propagator can only
depend on maximally four independent Lorentz-scalar structures [159]

/D, σ · F, (F · D)2, γ5(F · F̃), (4.3)

or combinations thereof in order to preserve Lorentz- and gauge covariance as well as charge
conjugation symmetry. In Eq. (4.3), σµν = i

2 [γµ, γν] and F̃µν = 1
2εµναβFαβ denotes the dual

field strength tensor to Fµν as introduced above. Secondly, the Lorentz-scalar structures
in Eq. (4.3) commute with the operator /D2. In consequence, we can solve the eigenvalue
problem of /D2 and use its eigenfunctions in order to diagonalize the quark propagator. From
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Chapter 4. Quenched QCD under strong external magnetic fields

this diagonalization, we find that the bare quark propagator is of the same structure as the
bare propagator without external magnetic field.

S ( p̄) = (iγ · p̄ −m)−1.

However, the propagator now depends on a different subset of momenta p̄ that is restricted
by the solution of the eigenvalue equation of /D2. The momenta p̄ are denoted as

p̄ = (p0, 0, (p2)n,σ, p3)T . (4.4)

The momentum restriction is realized in the way that the momenta in the plane perpendic-
ular to the magnetic field now only take distinct, discrete values (p2)n,σ. These momentum
components encode the Landau level quantization with the index n ∈ Z+

0 and are given by

(p2)n,σ =
√
|eB|(2n + 1) + σ|eB|. (4.5)

The second index σ in Eq. (4.5) describes the spin projection eigenvalue and can take the
values σ = ±1. Considering the actual values of the momenta (p2)n,σ, we notice that the
momenta for the Landau levels n are spin degenerate, since (p2)n,1 = (p2)n+1,−1 for n , 0.
Only the energetically lowest momentum component (p2)n=0, the lowest Landau level (LLL),
is spin polarized as only the eigenvalue σ = −1 contributes. For further convenience, we
rearrange the momentum components p2 according to their overall magnitude and sum the
two indices n, σ in the overall quantum number κ, such that the momentum components now
read

(p2)κ =
√

2κ|eB|, (4.6)

with κ = 0, 1, 2.... In summary, Ritus’ diagonalization procedure results in a radial-like
discrete momentum in the momentum space plane perpendicular to the associated magnetic
field direction. With the diagonal bare propagator with the restricted momenta Eq. (4.6) at
hand, we need to reconsider the integration over p1 and p2 in the quark DSE. The integral
over the previously continuous momenta is now replaced by a sum over all Landau levels
and all spin projections, equivalently a sum over the new index κ, to account for all possible
momentum states in the p1-p2 plane:∫

dp1dp2

(2π)2 . . . −→
∑
kn,σ

d(n, σ) . . . �
∑
κ

d(κ) . . . . (4.7)

Upon the change from integration to summation over energy levels, the additional factor
d(κ) compensates for the degeneracy of the eigenenergies with respect to py. We encoun-
tered these degeneracies explicitly while solving the eigenequations for /D in App. B.1. The
degeneracy factor counts the number of momentum states per unit area and is denoted by

d(κ) =
|eB|
2π

for κ = 0, (4.8)

d(κ) =
|eB|
π

for κ > 1. (4.9)

The distinction of the degeneracy factors for κ = 0 and κ > 0 arises from the previously men-
tioned spin polarization of the LLL. Since only states with σ = −1 contribute, the number of
states per unit area has to differ from the higher Landau levels, respectively from higher κs,
too.
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The dressed propagator

With the bare quark propagator in an external magnetic field along the lines of Ritus’ method,
we can now write down the dressed propagator. To this end, we need to include -in principle-
all four Lorentz-scalar terms (according to in Eq. (4.3)) to account for the most general
structure of the propagator and allow for their dynamical generation in the evaluation process.
However, the immediate inclusion of all four terms with their dressing functions would result
in an immense computational effort (for a more detailed comment see App.B.2). Therefore,
we chose to start with the simplest form of the dressed propagator that neglects all non-
standard6 terms. The dressed propagator is given by

S F(p̄)−1 = B( p̄) + i (A0( p̄)γ0ωp + A2( p̄)γ2(p2)κ + A3( p̄)γ3 p3). (4.10)

The scalar dressing function is denoted by B( p̄), while the functions Ai( p̄) with i = 0, 2, 3
refer to the vectorial quark dressing functions. We have to include separate vectorial dress-
ing functions for different momentum components, as the magnetic field distinguishes the
dynamics in the p1-p2 plane from the p3-direction. The introduction of finite temperature
further requires additionally considering another dressing function A0 for the temporal di-
rection. For vanishing temperature, the dressing function in time direction and in the direc-
tion of the magnetic field are identical, A0( p̄) = A3( p̄). Note that we do not need another
dressed term for p1 since our diagonalization procedure in the previous section restricted the
momenta such that p1 vanishes (see Eq. (4.4)).

In any case, our approximation, Eq. (4.10), is certainly valid in the limit of small magnetic
fields. For the time being, it therefore represents the starting point for a following systematic
elaboration of the influence of higher spin structures in the quark propagator. The effects
of these terms and the shortcomings of our approximation in the range of intermediate and
large magnetic fields have to be investigated in a future work.

4.1.1. The Dyson–Schwinger equations of QCD with an external
magnetic field

In the following, we specify the underlying Dyson–Schwinger equations and the approxima-
tions for the results presented in the following chapters.

The derivation of the Dyson–Schwinger equations from the generating functional follows the
procedure described in chapter 2.5. Since there are no source terms for the magnetic field,
we arrive at the ’standard’ QCD DSEs in coordinate space. However, the Fourier transfor-
mation to momentum space is more complicated than without an external field due to the
Ritus eigenfunctions. A summary of the most important steps of this Fourier transformation
can be found in App. B.3.

In a very first approach, we postpone a large part of these complications and retreat to solving
the ’standard’ DSE for the Ritus quark propagator Eq. (4.10). This corresponds to consider-
ing a spin-summed propagator in a bare vertex approximation, which includes the omission

6The expression ’standard’ refers to the spin-structure terms utilized for DSE investigations of QCD or
QED3 without external magnetic field
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Figure 4.B: The pictorial representation of the Dyson–Schwinger equation for the quark

propagator. The curly lines represent gluon propagators, straight ones fermion
propagators. We indicate dressed propagators by adding filled circles to the
basic lines. The dressed quark-gluon vertex is encoded by the empty circle.

of an exponential damping factor for the gluon momentum in the directions perpendicular to
the magnetic field (see App. B.3). The qualitative effects of this approximation clearly have
to be investigated in a future work. The quark propagator DSE is then given by

S −1
F ( p̄) = Z2 S −1(p̄) −CFg2 Z2

Z̃3

∫
dq0

2π

∑
κ

d(κ)
∫

dq3

2π

(
γµS F(q̄)Γν(q̄, p̄)Dµν( p̄ − q̄)

)
. (4.11)

The equation includes the renormalization constants Z2 for the quark wave function and Z̃3

for the ghost. The ghost renormalization constant in the dressed quark propagator will cancel
with another factor Z̃3 in the ghost-gluon vertex, respectively in our phenomenological vertex
ansatz (Eq. (4.12)). Furthermore we will chose Z2 = 1 for convenience. For a first, qualitative
study, this choice of the quark renormalization is sufficient7. The Casimir CF = (N2

c −1)/2Nc

stems from the trace over the color degrees of freedom that amounts to CF = 4/3 for SU(3)
QCD. In Eq. (4.11) we already replaced the integration over the loop momenta q1 and q2

with the summation over the Landau index κ as discussed in the previous section. Pictorially,
the equations are represented as displayed in Fig. 4.B. Introducing a finite temperature via
compactification of the time-direction in the Matsubara formalism (see e.g. [15]) leads to a
replacement of the integral over q0 by the sum over the Matsubara frequencies ωq = 2πTnt,

S −1
F ( p̄) = Z2 S −1( p̄) −CFg2 Z2

Z̃3

T
∑

nt

∑
κ

d(κ)
∫

dq3

2π

(
γµS F(q̄)Γν(q̄, p̄)Dµν( p̄ − q̄)

)
. (4.12)

In this work, we will solve the Dyson–Schwinger equations in quenched approximation, i.e.
we neglect quark loops in the gluon self-energy. This choice is on the one hand motivated
by the objective to calculate the dual condensate in chapter 4.2. This observable allows to
recover the string tension between a static quark-antiquark pair. It can be recovered from
the quenched system only, since the string tension is, in a strict sense, only defined for non-
dynamic quarks8. On the other hand, the quenched approximation clearly is a necessary
starting point for physical magnetic field strength calculations, too. We will explore this set-
ting in section 4.3 in order to estimate the quality of our approximations.

Furthermore, we will use a temperature dependent fit to lattice data as input for Dµν(k). The
fit function was firstly obtained by Ref.[42], and served as input for DSE calculations in the

7 In future, quantitative investigations of renormalization point dependent observables such as the chiral con-
densate, a proper fixing of the renormalization point has to be performed in order to obtain comparable
absolute values.

8Unquenched QCD is in a strict sense not confining since we expect string breaking at a finite distance.
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frame of various investigations, e.g. [142, 160]. The dressed gluon propagator is decomposed
as

Dµν(k) =
ZT (k)

k2 PT
µν(k) +

ZL(k)
k2 PL

µν(k), (4.13)

with the momentum k = p − q = (ωk,~k) . The propagator is decomposed into the transversal
and longitudinal contribution with respect to the heat bath. These components can be ad-
dressed by projection via PT

µν(k) onto the transversal and PL
µν(k) onto the longitudinal part.

The functions ZT (k), respectively ZL(k), denote the according dressing functions. We start
from the projector onto the gluon’s transverse degrees of freedom (with respect to its mo-
mentum k),

Pµν(k) =

(
δµν −

kµkν
k2

)
, (4.14)

with (µ, ν = 0, 1, 2, 3). For finite temperature calculations we then can define the transverse
and longitudinal projectors with respect to the heat bath as a next step. They are given by

PT
µν(k) =

(
δi j −

kik j

~k2

)
δiµδ jν ,

PL
µν(k) = Pµν(k) − PT

µν(k) (4.15)

with indices (i, j = 1, 2, 3). The dressing functions in transversal (T ) and longitudinal (L)
directions are fitted by the functions

ZT,L(k) =
k2Λ2

(k2 + Λ2)2


(

c
k2 + Λ2aT,L(T )

)bT,L(T )

+
k2

Λ2

(
β0α(µ) ln[k2/Λ2 + 1]

4π

)γ .(4.16)

The functions aT,L(T ) and bT,L(T ) are determined and tabled in [42], as are the remaining fit
parameters: The scale is given by Λ = 1.4GeV and the coupling constant at the renormaliza-
tion point by α(µ) = 0.3. The constant c equals 11.5GeV−2. Finally, β0 =

11Nc−2N f

3 = 11 and
the exponent γ = −

13Nc+4N f

22Nc−4N f
= −13/22, since Nc = 3 and due to the quenched approximation

the number of flavors is N f = 0. The anomalous dimension of the ghost and gluon propaga-
tor, δ and γ , obey the relation 2δ + γ = −1. This leads to δ = −9 Nc

44Nc−8N f
= −9/44.

In the case of vanishing temperature, the distinction between longitudinal and transversal
part of the gluon propagator vanishes. The gluon propagator Dµν only includes the projector
on the direction transverse to its momentum Eq. (4.14). The dressing function Eq. (4.16) is
now simply denoted by Z and reduces to

Z(k) =
k2Λ2

(k2 + Λ2)2

{( c
k2 + Λ2a

)b
+

k2

Λ2

(
β0α(µ) ln[k2/Λ2 + 1]

4π

)γ}
. (4.17)

Finally, we need to specify the input for the dressed vertex function in Eq. (4.12). The
solution of the full set of Dyson–Schwinger equations for the propagators and the vertex is
not feasible at the time. For this reason, we use a model for our vertex function including a
bare vertex, modified by a phenomenological fit function Γν(p, q, k),

Γν(q, k, p) = Z̃3γν

 d1

d2 + q2 +
q2

Λ2 + q2

(
β0α(µ) ln[q2/Λ2 + 1]

4π

)2δ , (4.18)
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fπ =

Figure 4.C: The pictorial representation of the Pagels–Stokar formula connecting the pion
decay constant with the quark propagator in the chiral limit. The dashed line
denotes the pion propagator, the straight lines quark propagators. The wiggly
line represents an axial vector current, ∼ γ5γµ. The dressings of the quark
propagators are indicated by black dots, the pion BSA by a gray blob.

It is tailored such that the first summand reproduces fπ = 88MeV in the infrared. To this
end, we fix the value of d2 = 0.5 GeV2 and then adjust d1 = 7.9 GeV2 to reproduce f 2

π for a
vanishing magnetic field9.
In practice, we follow the the work of [161], that provides a fully nonperturbative derivation
of the Pagels–Stokar formula [162], connecting the pion decay constant with the pion Bethe–
Salpeter amplitude (BSA) in terms of the quark propagator. This relation holds in the chiral
limit and is given by

Γπ(p, 0) = γ5
B(p2)

fπ
, (4.19)

where Γπ(k, 0) is the pion Bethe–Salpeter amplitude for a vanishing pion momentum and the
quark momentum k. One can firstly solve the DSE for the quark propagator and then use the
BSA according to Eq. (4.19) as an input for the Pagels-Stokar equation that is diagrammati-
cally given in Fig. 4.C.

The second term dominates in the perturbative limit and reproduces the behavior of the run-
ning coupling together with the gluon dressing function. It vanishes for small momenta. As
already indicated above, the ghost renormalization constant Z̃3 cancels with the Z̃3 provided
by the prefactor of the integrand in Eq. (4.12). We therefore do not need to fix its value in
the turn of the calculations.

With the input for the propagator DSE Eq. (4.12) specified, we obtain the actual equations
for the dressing functions A0( p̄), A2( p̄), A3(p̄) and B( p̄) after insertion of the propagator
Eq. (4.10) and projection on the dressing functions. We will solve the DSEs for the dressing
functions on a compact manifold and discuss the features of this setting in the following
section.

The Dyson–Schwinger equations in a finite volume

We solve the Dyson–Schwinger equations in the above described approximation scheme
(ch. 4.1.1) on a compact manifold. The choice of a finite volume setting for the QCD inves-
tigations is motivated by the calculation of the so-called dressed Wilson loop that we will

9Private Communication with J. Lücker.
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Figure 4.D: Sketch of the compactified x-y plane and the partial area Fsub.

discuss in detail in the next section. In a continuum approach, this observable is not accessi-
ble.

To this end, we confine the quarks into a four dimensional ’box’ in Euclidean coordinate
space. We denote the box length by Lµ in the directions µ = (0, 1, 2, 3). However, in
subsequent calculations, we will always choose an equal boxlength in spatial directions,
L1 = L2 = L3 = L. For vanishing temperature settings in torus calculations, the box lengths
in time- and space directions are equal, such that we have only one box parameter denoted
by L. For finite temperature calculations, we need to take care of the aspect ratio between
the box length in time direction L0 and in space direction L. In the following, we will only
point out the most important aspects of the finite volume setting for the QCD calculations.
We compactify the underlying Euclidean spacetime by application of antiperiodic/periodic
boundary conditions for quarks/gluons. These guarantee that we respect the KMS-relation
for the timelike momentum component. For the spacelike momentum components, we are
free to choose periodic boundary conditions for fermions as well as for bosons. This leads to
a replacement of the integral over the timelike momentum component q0 and of the momen-
tum component parallel to the magnetic field by Matsubara(-like) sums, i.e.∫

dq3dq0

(2π)2 (· · · ) −→
T
L

∑
nt ,n3

(· · · ) . (4.20)

In the plane perpendicular to the magnetic field direction, in our case the x − y plane, the
limited volume leads to a quantization of the magnetic field. This can be understood picturing
the magnetic flux through a partial area of our x−y-plane, Fsub, and through the complement
area, Fsub − L1 L2 = Fsub − L2. For an illustration, see Fig. 4.D.
A charged particle circling Fsub must pick up the same phase shift no matter if we consider
the magnetic flux though Fsub or through its complement, since it describes the same physical
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situation. Considering this constraint for the particles’ wave functions, we end up with

exp(ieBF) !
= exp(ieB(F − L2))

⇒ eB =
2π
L2 b, (4.21)

as quantization condition. Consequently, the magnetic field can only take distinct values with
the integer field ’quantum’ b = 0, 1, ..∞. The momenta, previously defined in continuous
momentum space by Eq. (4.4), are now counted by

p̄ =

2πT (n0 + 1/2), 0,

√
2κ

2π
eL2 b,

2π
L

n3

T

.

The magnetic field strength, as well as the Landau levels and the momenta p0 and p3 are
unbound from above. However, to perform the actual calculations we need to introduce
an artificial cutoff for each momentum component in order to make the sums finite and
numerically tractable. The particles’ wave functions in coordinate spacetime then become
coarser, since we encode the information obtained in momentum space in less Fourier modes
than necessary. However, the associated coordinate spacetime and the functions defined in
coordinate space are and stay continuous10. This fact distinguishes our setting from a lattice
gauge theory setting. The difference becomes crucial for some of the results presented in the
following sections.

10We emphasize this point since one might easily mistake the pure existence of a pmax as a sufficient indicator
for a discretization of coordinate space.
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4.1.2. Chiral condensate

The chiral condensate, 〈ψ̄ψ〉, is the order parameter associated with chiral symmetry break-
ing. It measures the affinity of the vacuum to create a quark-antiquark pair and is defined in
terms of the generating functional by

〈ψ̄ψ〉 = −
T
V

∂

∂m
ln Z.

It can equivalently be recovered by a Dirac trace over the full quark propagator,

〈ψ̄ψ〉 = Tr(S F(p)) (4.22)

Once we know the quarks’ dressing functions, and thus the full quark propagator Eq. (4.10),
we proceed to determine the chiral condensate with the help of Eq. (4.22). The four dimen-
sional chiral condensate then reads

〈ψ̄ψ〉(b) =
4Z2Nc

L2

∑
n0,n3,κ

d(κ) B( p̄)
B( p̄)2 +

∑
i(Ai( p̄) p̄i)2 , (4.23)

with the index i running over {0, 2, 3}. In the following sections, we will additionally calcu-
late the condensate from a quasi two dimensional setting. To this end, we will collapse the
temporal and the 3-component of our momenta in Eq. (4.11) by additional Dirac delta func-
tions δ(p0)δ(p3) in the integrand. We determine the solution to the previously four dimen-
sional equations and subsequently recover the chiral condensate in the plane perpendicular
to the magnetic field. This is done by tracing over the remaining momentum components
and yields

〈ψ̄ψ〉2d(b) =
4Z2Nc

L2

∑
κ

d(κ) B( p̄)
B( p̄)2 + (A⊥( p̄) p⊥)2 . (4.24)

The condensate in four- and also in two dimensions is divergent with the UV Cutoff Λ.
To remove these quadratic (4d), respectively logarithmic (2d) divergences, we define the
subtracted chiral condensate, that is recovered from the chiral condensate for a light and a
heavy bare quark mass,

〈ψ̄ψ〉(b)sub = 〈ψ̄ψ〉(b,mlight) −
mlight

mheavy
〈ψ̄ψ〉(b,mheavy). (4.25)

In general, the cutoff Λ is also depending on the magnetic field b. We compensate this depen-
dence by adjusting the number of included Landau levels for each field strength separately as
will be explained in more detail in the following section. The main point is that the momenta
obey the condition

(p2)2
κ ≤ Λ2 ↔ κmax ≤

bmax

b
,

that leads to more or less the same cutoff for every b. Small variations are caused by the fact
that we can only consider integer numbers of Landau levels (see e.g. Eq. (4.30)). However,
generally speaking the subtracted chiral condensate as defined in Eq. (4.25) should serve its
purpose and cancel the largest part of the UV divergences.
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4.2. The dual condensate from external magnetic fields

Understanding the mechanisms of dynamical mass generation and confinement are the cen-
tral objectives of research related to the QCD phase diagram. While dynamical mass gener-
ation is tied to the breaking of chiral symmetry, already the exact definition of confinement
is controversial. Respectively, there are several scenarios in discussion how to describe con-
finement from a fundamental point of view. One of these is motivated by a mutual order
parameter, the Polyakov loop. Its expectation value is sensitive to center symmetry breaking
and likewise indicates deconfinement [163]. Additionally, Gattringer [164] found that the
Polyakov loop can be related to the spectrum of the Dirac operator, if the boundary con-
ditions are generalized. This relation is important since it can be seen in analogy to the
Banks–Casher relation [165] that connects the chiral condensate to the infrared eigenvalues
of the Dirac operator. Thus, the eigenvalues of the Dirac operator could serve as the connect-
ing degrees of freedom between confinement and chiral symmetry breaking. In the course of
research for a better understanding of the contribution of the separate eigenvalues [166–169],
yet another observable connected to the Polyakov loop was discovered, the dressed Polyakov
loop [170, 171]. This observable can be pictured as a collection of loops winding once
around the temporal direction of the spacetime manifold. While the winding number is fixed
by projection, in principle all possible detours in spatial directions contribute11. In the limit
of infinitely heavy quarks, the dressed Polyakov loop reduces to the conventional, or ’thin’
Polyakov loop. Due to the connection to the Dirac operator’s eigenvalues, it can be computed
by Fourier transforming the chiral condensate with respect to generalized boundary condi-
tions. These boundary conditions are controlled with the angle ϕ. The expectation value of
the dressed Polyakov loop is equally well suited to investigate center symmetry breaking,
respectively confinement, as the expectation value of the thin Polyakov loop. However, the
(thin) Polyakov loop, identically to the Wilson loop, is an observable primarily defined on
the lattice. Since there is no straight forward connection between the Polyakov- or Wilson
loop and an n-point function, as there is one for e.g. the chiral condensate, there is no direct
way to address their expectation values in a functional methods framework. With the con-
nection to the chiral condensate however, the introduction of the dual condensate opened a
new way to obtain complementary results from the functional method approach12.
In analogy to the dressed Polyakov loop, Bruckmann and Endrödi [156] introduced a second
dual condensate, the dressed Wilson loop. The dual observable can be seen as a collection
of loops in a spatial plane, having the same area but different circumferences. The loops
of different areas can be distinguished from each other by their response to an external,
constant Abelian magnetic field. In the limit of infinitely heavy quarks, the authors of [156]
have shown that the dressed Wilson loop connects to the conventional Wilson loop. The
conventional Wilson loop is sensitive to confinement and decays with an area-law in the
confining phase. This connection allows to extract the string tension also from the dual
observable. For certain, the extraction of the string tension from the dressed Wilson loop is
an unnecessary effort for lattice calculations. Nevertheless, the dual condensate might once
again turn out to be a valuable observable for functional methods. Since there is no straight
forward relation between the Wilson loop and an n-point function, it is not possible to extract
the string tension from a Wilson loop, or a Wilson loop-like quantity in e.g. a Dyson–

11Although these are weighted according to their length and spatial detours therefore are suppressed.
12For more information on the dressed Polyakov loop from a DSE point of view, refer to [172, 173]
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Schwinger framework to date. After the successful study of the dressed Polyakov loop with
the Dyson–Schwinger method (e.g.[160]), the following section presents a feasibility study
to extract the string tension from the dressed Wilson loop.

The dressed Wilson loop from the lattice

The dual condensate associated with the dressed Wilson loop is the Fourier transform of the
chiral condensate. One of the dual variables is given by the area S (µν) that is enclosed by
a loop in the µ-ν-plane and pierced by the magnetic flux φB. The second is the magnetic
field strength B that is linked with the area by the magnetic flux. In a lattice gauge theory
framework as well as in our finite volume DSE setting, the magnetic field strength is dis-
cretized. The dual condensate is therefore obtained by a discrete Fourier transform of the
chiral condensate depending on B,

〈˜̄ψψ〉(S ) =
1

S (µν)

∑
b∈Z

〈ψ̄ψ〉(b) e−iB(b)S . (4.26)

For quenched QCD and in the limit of infinitely heavy quarks, this dual condensate is associ-
ated with the conventional Wilson loop. Therefore, we expect the dual condensate to follow
an area-law decay in the confined phase that allows to extract the string tension σs,

〈˜̄ψψ〉(s)m→∞ ∼ exp(−σsAs). (4.27)

The enclosed area is denoted by As. We would like to comment on the fact that the propor-
tionality factor σs describes the spatial string tension, while the common definition of the
Wilson loop includes a loop winding around one spatial and one temporal direction. First of
all, since we are working in a zero temperature setting, Lorentz-invariance guarantees that
we still extract the string tension in its strict sense. However, even if we consider finite tem-
perature, the spatial string tension still is an important quantity. Working with finite explicit
quark masses, we still expect to recover the area law from the dressed Wilson loop. However,
we have to account for the fact that this string tension can depend on the seed mass, σs(m).
Thus, a seed-mass study is mandatory in order to classify the obtained results.
Let us now proceed with some aspects of the simulation. In the lattice gauge theory frame-
work, coordinate space can be decomposed into smallest area units, the plaquettes. The
existence of the plaquette translates into a maximum representable magnetic flux and there-
fore into a maximum value for the dual variable, the magnetic field strength [137, 174]. The
connection can easily be seen from the additional phase caused by the external field and in-
troduced into the link variable via the shift in the vector potential. The plaquette should be
equal with and without the external field. This leads to the condition

ŪB(x) = Ū(x)

⇔ 1 = eiBxae−iB(x+a)a

2π = Bmaxa2,

that defines the maximum magnetic field strengthBmax = 2π/a2. a denotes the lattice spacing
and results from the ratio of the boxlength and the number of spacetime points Nµ/Lµ in a
certain direction µ. We rearrange the equation after plugging in the discretized form of Bmax
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from Eq. (4.21). Thus we obtain bmax = N(µν), with the maximum number of points in the µ-ν-
plane denoted by N(µν) = Nµ ·Nν. The quantized magnetic field strength Eq. (4.21) is therefore
limited to the interval b ∈ [0,N(µν)]. The restriction of the magnetic field automatically
leads to a periodicity of all b-depending observables, especially of the chiral condensate.
Furthermore, the dual condensate (Eq. (4.26)) is now obtained from a finite, discrete Fourier
transformation of the chiral condensate,

〈˜̄ψψ〉(s) =
1

S (µν)

bmax∑
b=0

e−2iπbs/Nµν〈ψ̄ψ〉(b). (4.28)

Here, we additionally replaced the previously continuous area S with the quantized area in
the µ-ν-plane, S = s L2

N(µν)
. This relation arises naturally due to the lattice spacing a in each

direction.
In the DSE framework, several of these definitions need to be adjusted to the basic setting of
our manifold in order to use a similar relation to obtain the dressed Wilson loop.

The dressed Wilson loop from DSEs

In the finite volume setting as introduced in section 4.1, we firstly solve the Dyson–Schwinger
equations with a finite UV momentum cutoff. This cutoff is chosen such that we fix a maxi-
mal momentum in the direction parallel to the magnetic field, Λ2

z = (2π/LNz)2. The momen-
tum cutoff in the direction perpendicular to the magnetic field is defined to be symmetric,
Λ2

z
!
= Λ2

xy. From the definition of the momenta p2 from Ritus’ method and the demand that
only the lowest Landau level should be inside the momentum cutoff, a maximum value for
the magnetic field strength is fixed:

bmax =
⌊
πN2

z

⌋
, (4.29)

with bc being the Gauss brackets, i.e. the floor function. However, this bmax is a technical
cutoff, introduced not by the formalism itself but by the necessity to make the equations
numerically manageable. By definition of our finite volume itself, the momenta pµ and
therefore also the magnetic field b are infinite. Thus, we do not expect observables to be
periodic in the magnetic field, as we do within the framework of lattice gauge theory. In
addition, this means that the maximum magnetic field in Eq. (4.29) does not imply that we
can lay hands on a minimum area. The area in coordinate space still is a continuous quantity
S ∈ [0, L2], limited only by the box area. In fact, the consequence of our momentum cutoffs
is that the functions we want to represent in coordinate space become somewhat unsharp
and ’noisy’. This is due to the fact that we use less modes in Fourier space than necessary
to preserve full information. With the cutoff prescription at hand, we proceed to solve the
DSEs for the dressing functions 4.12 for each magnetic field strength b ∈ [0, bmax]. For each
value of b, we determine the number of included Landau levels according to

p2(κ, b)2 ≤ Λ2
xy

κ(b) ≤
⌊
bmax

b

⌋
, (4.30)
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with bc again indicating the floor function. With the quark dressing functions and the chiral
condensate at hand, we will then determine the dual condensate with the help of

〈˜̄ψψ〉(s) =
1
L2

bmax∑
b=0

e−2iπbs/L2
〈ψ̄ψ〉(b), (4.31)

where s is now a continuous variable.

73



Chapter 4. Quenched QCD under strong external magnetic fields

Figure 4.E: The chiral condensate recovered from the four dimensional propagator as a
function of the magnetic field strength b and the number of included Landau
levels κ. The bare mass is given by m = 5 MeV at µ = 3.3 GeV.

4.2.1. Numerical Results

Four dimensional studies: fixed number of Landau levels

We start our investigations by considering a fixed number of Landau levels for all magnetic
field strengths. This implies a magnetic field dependent UV cutoff that complicates the com-
parison of observables. It is nevertheless instructive to study the influence of a subsequently
increasing number of Landau levels. For instance, the lowest Landau level is dominant for
low energies as long as the quark mass is smaller than the magnetic scale, m �

√
|eB| and

leads to a dimensional reduction of the theory describing the spectrum of low-energy excita-
tions. Beyond this lowest Landau level approximation (LLLA), we are interested in how the
chiral and the dual condensate behave for fixed numbers of Landau levels.

To this end we solve the Dyson–Schwinger equations, with the truncations and approxima-
tions specified in section 4.1, on a (NT = 8)×(Nz = 33) torus. The magnetic field takes values
b ∈ [1, 162] =̂ |eB| ≈ 2 GeV. The underlying box lengths is (6fm)4 and the bare quark mass
m = 5 MeV at the renormalization point µ = 3.3 GeV. From the quarks’ dressing functions,
we calculate the chiral condensate according to Eq. (4.23). Figure 4.E displays the renor-
malized chiral condensate for a varying maximum number of Landau levels κ as a function
of the magnetic field b. Notice that the chiral condensate is trivially zero at b = 0 due to
the (degeneracy) prefactor proportional to b (see Eq. (4.9)). We find that the lowest Landau
level monotonically increases with the magnetic field strengths. Including higher Landau
levels leads to a larger absolute value of the chiral condensate on the one hand. On the other
hand, the higher Landau levels lead to a non-monotonic behavior of the chiral condensate:
after a steep rise for low to intermediate magnetic fields, the condensate saturates and then
decreases before it increases again. It is remarkable that the chiral condensate converges for
strong magnetic fields with an increasing number of Landau levels, what is in accordance
with the expected dominance of the lowest Landau level at large magnetic fields. However,
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Figure 4.F: The dressed Wilson loop as a function of the enclosed area s and the number of
Landau levels κ.

for small and intermediate magnetic fields, the chiral condensate converges only very slowly,
if at all, with an increasing number of Landau levels.

From the chiral condensates in Fig. 4.E we compute the dual condensate by performing the
Fourier transformation defined in Eq. (4.31) for several chosen numbers of Landau levels.
The resulting dual condensates for κ = 20, 25 and 40 are displayed in Fig. 4.F. All dual con-
densates show a region at small to intermediate area units where we can identify an area-law
decay. This region increases with an increasing number of Landau levels. At the same time,
the slope of the decay gets smaller. Due to the finite number of summands in the Fourier

κ
√
σ [GeV]

1 1.02
10 0.47
20 0.35
25 0.31
40 0.31

Table 4.1: The string tension
√
σ for a different number of Landau levels κ extracted from

the dual condensates displayed in Fig. 4.F.

transformation, the dual condensate crosses zero at some area s. The size, for which this
zero crossing happens, is influenced by numerical artifacts. Scanning the dual condensates
for a larger range of Landau levels13, we find that the more Landau levels and the more mag-
netic fields b we include and thus the better the quality of the Fourier transformation, the
more the zero shifts to larger areas s. The slope of the linear fall-off can be identified with
13Not included in Fig. 4.F for reasons of clarity in presentation.
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Figure 4.G: The chiral condensate recovered from the four dimensional propagator de-
pending on the magnetic field strength b. It was recovered from a torus with
NT × NX = 20 × 20 points, a four volume of L0 × L3 = (6fm)4, a magnetic
field strengths b ≤ 314 =̂ |eB| ≈ 2.2 GeV2 and a seed mass of 5 MeV. The plot
displays the window up to 0 < |eB| . 1 GeV2.

the string tension of a static quark-antiquark pair, according to Eq. (4.27). The extracted
string tensions are listed in table 4.1. We find a decreasing string tension that converges to a
value of 0.31 GeV for approximately twenty Landau levels included.

Although this convergence is encouraging, we expect the results for the chiral and in conse-
quence also the dual condensate to be affected by the differing UV cutoffs per magnetic field
strength. We therefore improve our numerical setting in the way that we impose a magnetic
field independent cutoff. The results of these investigations are discussed in the following
sections.

Four dimensional studies: fixed UV cutoff

We begin our investigations with the solution of the four dimensional DSEs for the quark
dressing functions derived from Eq. (4.12). To this end, we confine our system into a box
of length L = 30GeV = 6fm in all four dimensions. In terms of a torus finite volume set-
ting, this effective zero temperature calculation corresponds to an absolute temperature of
T = 33 MeV. We choose the same number of points in temporal as in spatial direction, that
is NT = NX = 20 points. With the truncations and approximations specified in section 4.1,
we evaluate the chiral condensate according to Eq. (4.23). The first result for a bare quark
mass of m = 5 MeV is depicted in Fig. 4.G. The figure displays the (unrenormalized) chi-
ral condensate depending on the magnetic field quantum b. For lower to intermediate field
strengths, the chiral condensate shows an oscillatory behavior that changes into a stepwise
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linear increasing condensate with increasing b. This behavior resembles, to our best knowl-
edge, a quantum field analogon to the quantum mechanical De Haas–Van Alphen effect. The
De Haas–Van Alphen effect is originally defined for a quantum system in a finite volume
under an external magnetic field. It describes the oscillation of the free energy as a func-
tion of the external field until a distinct field strength where all particles occupy the lowest
energy state. The overall energy of the particles then increases linearly with the increasing
magnetic field. The oscillations in the free energy arise due to two competing effects: A par-
ticle ’living’ on a certain Landau level is pushed to higher energies, since the Landau level
energy is proportional to the increasing magnetic field (see Eq. (4.5)). Thus the overall free
energy increases. On the other hand, the next lower Landau level can contain more and more
particle states, since with an increasing magnetic field also the degeneracy per Landau level
increases (see Eq. (4.9)). So from a certain field strength on, it is energetically preferable
for the particle to occupy the next lower Landau level. This results in a decrease of the free
energy, when the particles change Landau levels from n to n − 1. As soon as all the particles
are assembled in the lowest Landau level, the free energy increases linearly as there is no
lower energy state available.

In the quantum field theoretic setting, we first of all deal with the chiral condensate instead
of the free energy. However, the quantum field theoretical analogue of the free energy is the
Schwinger functional,

F ↔ 1/β ln(Z),

with the inverse temperature β. The relation between chiral condensate and generating func-
tional is given by

〈ψ̄ψ〉 = −
∂

∂m
ln(Z).

Neither the inverse temperature nor the derivative with respect to the seed mass m changes
the dependence of the generating functional on the magnetic field. Therefore, we expect the
chiral condensate to depend on b in the same way as the generating functional and to show
an analogous behavior to the free energy.

However, the ray pattern at intermediate to high magnetic field strengths displays a peculiar
behavior: with every ’step’, the next ray starts at lower values for the chiral condensate. This
can be understood by going back to the way we set our finite volume and how we imposed
the momentum cutoff. In analogy to the quantum mechanical scenario, we see the competing
effects of occupation of higher energy states and the degeneracy of lower Landau levels for
lower to intermediate external field strengths. Since we assume a fixed momentum cutoff

also perpendicular to the magnetic field, the number of Landau levels still inside the plane
is adjusted for each b. We therefore reach the field strength b f ull, where all -in our finite
volume- available energy states are filled. The chiral condensate increases linearly until the
highest included (and fully occupied) Landau level increases beyond our energy limit. It
therefore drops out of the considered contributions for the chiral condensate: We see the
first decrease in the chiral condensate. Going to higher external field strengths, the total
amount of the chiral condensate increases again linearly, since still all available Landau lev-
els are occupied. The increase proceeds until the next Landau level is energetically pushed
beyond our momentum cutoff. In that way the ray pattern emerges until we have only one
-the lowest- Landau level inside our volume, what defines our maximum magnetic field bmax
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Figure 4.H: The figure shows the chiral condensate at fixed cutoff and volume, but with
varying bare quark masses. We only find a quantitative shift, but no obvious
qualitative changes in the chiral condensate.

(compare sec. 4.2). Going to larger fields, b > bmax, already the lowest energy state, respec-
tively the lowest Landau level, lies outside of the considered momentum space volume. It is
not available for our quarks and no dynamical mass is generated. In consequence, the chiral
condensate vanishes for magnetic fields with b > bmax by definition of our four torus.

Figure 4.H furthermore shows the chiral condensate for varying bare quark masses. There
are no qualitative changes for different quark masses. We find a simple shift to larger values
of the chiral condensate.

Let us now proceed to the discussion of the dual condensate. Considering Fig. 4.G and
Figs. 4.H, we anticipate that the calculation of the dual condensate according to Eq. (4.31)
will not be straight forward. The reason for this suspicion lies in the behavior of the chiral
condensate at bmax, which is physically well understandable and expected (discussion see
above), but problematic from the mathematical point of view. Let us discuss this point in
more detail: we used the hybrid Fourier transformation to change from finite, but continuous
coordinate space to an infinite, but discrete momentum space. We had to reduce momentum
space to make the sums appearing in our DSEs finite. This we did in the most convenient way
by cutting the modes outside of a symmetric cutoff in all four momentum components. This
procedure can be pictured as forcing the momentum states into an infinitely high potential
well, or mathematically speaking as the convolution of the dressing functions with a step
function. In the chiral condensate, this convolution leads to a jump at b = bmax, that is
clearly visible in Figs. 4.H. By calculating the dual condensate to the chiral condensate,
we change again to coordinate space. This time however, our setting resembles more that
of a discrete than a hybrid Fourier transformation, since we have only a finite number of
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Figure 4.I: The dressed Wilson loop recovered from a four dimensional chiral condensate
as a function of the continuous area s. We only show the dressed Wilson loop in
the range of small areas. Already these first results show that the loops around
the different areas are too noisy to be distinguishable in the current setting.

Fourier modes left. By definition of the momentum space box we additionally introduced
the leakage effect into our dual condensate14. We therefore expect the dual condensate to
behave like a modified sinc-function, hopefully with still strong enough signatures of the
contained physical information.
Figure 4.I shows that our expectations prove to be true. We find indeed a sinc-function with
slope, frequency and amount of undershooting depending on the underlying chiral conden-
sate. However, it is now not clear how or if we can extract the string tension from this dual
condensate. We therefore wish to include some investigations on the qualitative behavior of
this dual condensate under the variation of external parameters. Although we cannot imme-
diately identify a region with a well-defined area-law, we believe it to be interesting if and
how much the dual condensate responds to variations. We investigate the behavior of the
dual quark condensate with a variation of the bare quark mass, since the dual condensate is
supposed to make contact to the conventional Wilson loop for infinitely heavy quarks. Fig-
ure 4.J displays the results of our investigations, that is only minimal changes of the dual
condensate as a function of the bare quark mass. Still, there is hardly a region where the dual
condensate develops an area-law like behavior.
We conclude that although we are working in a finite volume with the above described sim-
ilarities to the lattice setting, it is not straightforward to extract the same information. One
possibility to improve the discrete Fourier transformation of the chiral condensate could be
a rethinking of the implementation of our momentum space cutoff. As described above, we
use a hard cutoff and assume all (dressing) functions to vanish outside of our momentum
space box. In analogy to e.g. signal processing theory, utilizing a window function instead
of a step function for the dressing function’s cutoff might improve the signal strength in our
dual condensate. Consequently, an encoded area-law might become more visible.
Besides this possibility, it is, on a more basic level, an open question if the dual condensate
with respect to the external magnetic field contains information on the string tension also in a
non-lattice setting. This is clearly an issue that needs further attention. However, this subject

14 The effect describes the modification of the Fourier transformed chiral condensate, compared to the ’origi-
nal’ dual condensate, due to a limited observation time, i.e. our limited number of momentum modes.
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Figure 4.J: The dressed Wilson loop recovered from a four dimensional chiral condensate
depending on the continuous area s for different values of the seed mass m. We
only show the dressed Wilson loop in the range of small areas.

of research lies beyond the scope of this work and is to be addressed in a future project. In the
following, we will stay in the above described setting and investigate the chiral condensate
in the two dimensional plane perpendicular to the magnetic field.
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Figure 4.K: The dressed Wilson loop (right panel) recovered from a two dimensional chiral
condensate (left panel) in dependence on the continuous area s. We only show
the dressed Wilson loop in the range of small areas.

Two dimensional study: Scenario I

In this section we will proceed to discuss a slightly different setting than described previ-
ously. In lattice gauge theory, the dual condensate is recovered in the two dimensional plane
perpendicular to the magnetic field only. In ref. [156], the authors state that the four dimen-
sional dual condensate is qualitatively the same as in two dimensions in lattice gauge theory
calculations. However, it is harder to recover the signal of the dressed Wilson loop, since
non-planar loop contributions worsen the signal-to-noise ratio significantly. In that sense we
would like to probe the two dimensional plane, as outlined in sec. 4.1.2, in order to compare
the results to our four dimensional findings (see above) and to lattice results.

It is important to note that this is an effective reduction of dimensions. We do not switch to a
theory defined in two dimensions but carry over features of the four dimensional setting. We
wish to emphasize this point, since otherwise, in two dimensions only, the theorem of Mer-
min, Wagner and Coleman [175, 176] would forbid chiral symmetry breaking right from the
start. With 〈ψ̄ψ〉2d, we then calculate the dual condensate according to Eq. (4.31). We solve
the DSEs in the compactified px − py plane for magnetic fields in the range of b ∈ [1,NX2].
Note that for the ’dimensionally reduced’ problem, we can solve the DSEs for much larger
UV cutoffs and volumes than in four dimensions. We can therefore use artificially large
strong magnetic fields to probe the chiral, respectively the dual condensate in two dimen-
sions in still reasonable CPU times. With the obtained quark dressing functions for bare
masses of mlight = 5 MeV and mheavy = 50 MeV, we compute the chiral condensate. From
these two condensates we calculate the subtracted chiral condensate according to Eq. (4.25).
The results for the subtracted chiral condensate are depicted in the left panel of Fig. 4.K.
The chiral condensate is monotonically increasing in the lower range of the computed mag-
netic field strengths. We do not observe the De Haas–Van Alphen oscillations at small mag-
netic field strengths. We assign this to the extremely large UV-cutoff that allows the inclusion
of an extremely large number of Landau levels at small b (O(κ) = 10000). Increasing the
magnetic field strengths, there are supposed to be transitions between different Landau lev-
els at practically all times. Thus on average, we do not expect to be able to resolve the
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Figure 4.L: The chiral condensate for varying effective couplings ge f f obtained from the two
dimensional setting.

oscillations on an integer magnetic field ’grid’. However, we still observe a ray-pattern as
soon as the number of Landau levels inside our UV cutoff is considerably reduced for very
large values of b. Thus, the chiral condensate in two dimensions is still overall an increasing
function of the magnetic field and thus qualitatively unchanged compared to the four dimen-
sional condensate. We therefore expect a similar behavior of the dual condensate, too. We
compute the (subtracted) dual condensate with the Fourier transformation Eq. (4.31) from
the subtracted chiral condensates. The results are displayed in the right panel of Fig. 4.K
and confirm our expectations, since we still see a modified sinc-function with no obvious
area-law decay as expected for the dressed Wilson loop.

Two dimensional study: Scenario II

It can be questioned if our two dimensional chiral condensate from the quenched DSEs is
really equivalent to the definition in the lattice framework. Firstly, there is the discussion
if ’quenched’ has the identical meaning in the lattice and the DSE framework. Though a
detailed study of this question is still pending, agreements in previous investigations [177]
suggest that the equivalence of definitions indeed holds. Secondly, it is not clear if our com-
putation of the two dimensional propagator is equivalent to the lattice calculation. Another
possibility to recover the two dimensional chiral condensate would be to e.g solve the full
set of the four dimensional DSEs and to only compute the chiral condensate in the plane
perpendicular to the magnetic field.

In the following, we address one last point that is related to different interpretations of the
two dimensional chiral condensate in the Dyson–Schwinger framework. That is, we’d like to
ask if the coupling between quarks and gluons stays unchanged in the dimensionally reduced
truncation/approximation scheme in use. We do not want to argue the general form of the
gluonic lattice input. However, when we evaluate our equations in the finite volume, only
distinct gluon momenta contribute due to the discrete quark momenta. The number of those
is again reduced when we solve the two dimensional system. It might therefore be more
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Figure 4.M: The left panel shows the chiral condensate for the smallest coupling ge f f in use
for different UV-Cutoffs. The right panel displays the dual condensate that is
obtained from the two dimensional setting for a small coupling ge f f = α/900
and different UV-Cutoffs.

appropriate to introduce an effective coupling between quarks and gluons in order to account
for discretization and dimensional reduction effects.
In any case, it is interesting to study the influence of such an effective coupling onto the
solution of the DSEs and in consequence on the chiral and dual condensate. In order to get
a very first idea of the influence of an effective coupling, we evaluate the effectively two
dimensional DSEs for different values of ge f f . The Dyson–Schwinger equation for the quark
propagator in this scenario is given by

S −1
F ( p̄) = Z2

−1
0 ( p̄) −CFg2

e f f
Z2

Z̃3

∑
κ

d(κ)
∫

dq3dq0

(2π)2

(
γµS F(q̄)Γν(q̄, p̄)Dµν( p̄ − q̄) δ(q0)δ(q3)

)
.

We solve the DSEs for the quarks’ dressing functions in a ’box’ of side length L = 6 fm and
b ∈ [1, 402]. Figure 4.M displays the chiral condensate for different values of the effective
coupling ge f f ∼ α. We find a decreasing condensate with a decreasing quark-gluon coupling,
which, in general, is to be expected. However, we also note that the condensate becomes non-
monotonous for very small effective couplings. The left panel of Fig. 4.M shows that this
behavior is persistent also for larger UV cutoffs.
We interpret these findings as an artifact of our approximation scheme (see section 4.1). Ne-
glecting in particular the exponential damping factor of the gluon momentum in the px − py

plane (see App. B.3) amplifies the gluon contributions to the fermion self-energy and thus
the chiral condensate. We suspect that this additional contribution might prevent the strong
increase of the chiral condensate for large magnetic fields. In consequence, this might even
help to recover the signal of the dressed Wilson loop in the dual condensate.

Due to the vanishing of the chiral condensate for large magnetic fields (see Fig. 4.M), our
continuation (of the dressing functions) by zero to larger momenta is smoother than in the
previously discussed cases. We therefore expect the dual condensate to show a stronger
signal of the chiral condensate than of the boundary condition.
The right panel of Fig. 4.M confirms that this is indeed true. The dual condensate now
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Figure 4.N: The string tension for varying external parameters: cutoff (left panel), volume
(right panel). The string tension is extracted from the dual condensate, com-
puted in the plane perpendicular to the magnetic field only, with an effective
quark-gluon coupling ge f f .

displays an area law decay with an increasing area s, from which we extract the associated
string tension. To this end, we further analyze the dependence of the equations with the
effective coupling on our setting parameters. The results for the string tension for different
UV cutoffs are displayed in the left panel ofFig. 4.N, for different volumes in the right panel.
For both, the increasing volume and UV cutoff, we find a converging string tension. This
leads us to the conclusion that it is in principle possible to extract a string tension via the
dressed Wilson loop in a DSE setting. However, as the various discussions in this chapter
have shown, our current approximation scheme needs to be improved in future investigations.
Furthermore, more work needs to be invested in order to clarify on the details of the effective
coupling, the possibility of a ’better’ Fourier transform by different UV cutoffs and finally,
on the best way of solving the DSEs for a discrete coordinate space.
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4.2.2. Summary

In this chapter, we investigated the accessibility of a recently introduced lattice observable,
the dressed Wilson loop, in a finite volume Dyson–Schwinger framework. This work aimed
to evaluate if it is possible to extract the string tension from the dual condensate although
functional methods in general do not have direct access to the Wilson loop. One could
also reformulate this task, namely if the information about the string tension is indeed only
encoded in the gauge fields. Or if this information is also extractable from fermionic observ-
ables and especially if our finite volume setting is apt to grant us access to this information.
To this end, we introduced an external magnetic field along the lines of Ritus’ method and
chose a finite volume framework resembling the lattice conditions in [156]. In this very first
approach, we chose a rather strong approximation scheme in solving the ’standard’ DSE for
the Ritus propagator with a bare (spin summed) vertex ansatz. Our analysis encompassed
the computation of the dual condensate from four different scenarios.

In the first approach, we solved the four dimensional DSEs for a fixed number of Landau
levels for all magnetic field strengths. While we found a monotonically increasing chiral
condensate for the lowest Landau level, the inclusion of more Landau levels led to a non-
monotonicity of the chiral condensate for small to intermediate magnetic field strengths. We
could recover the dressed Wilson loop and extract the string tension as a function of the
number of Landau levels. However, this approach has the caveat that the UV cutoff depends
on the magnetic field strengths.

In the second scenario, we therefore imposed a largely magnetic field independent UV cutoff

by adjusting the number of included Landau levels with b. This lead to De Haas–Van Alphen
oscillations in the condensate for small magnetic fields and an increasing behavior for inter-
mediate to large external fields. Due to the increasing chiral condensate for large magnetic
fields, we cannot extract a definite value for the string tension in this setting. The reason
for this is the hard cutoff at a certain value bmax. This cutoff signal dominates the Fourier
transform and we cannot identify the clear area law decay that is needed for an extraction of
the string tension.

We therefore switched to the third scenario, that is closer to the lattice gauge theory setting
of [156] in the way that we compute the two dimensional chiral condensate. To this end
we solved the effectively two dimensional DSEs and calculated the planar chiral condensate
perpendicular to the magnetic field. As expected from lattice results, the two dimensional
results for the chiral condensate are qualitatively the same as for the four dimensions: the
overall increasing chiral condensate for an increasing magnetic field. In consequence, there
is no possibility to extract the string tension from the dual condensate.

Finally, in the fourth approach, we solved the DSEs for an effective coupling between quarks
and gluons in an effectively two dimensional setting. Our results show that there exists an
effective coupling strength for which we can minimize the cutoff effects in our dual conden-
sate. For this case, the dual condensate displays an area law decay and we could extract a
string tension that converges for large volumes and large cutoffs. This finding furthermore
suggests that the approximation/truncation scheme of the DSEs is too strong, since the omit-
ted exponential damping of the gluon momentum would have a similar effect as the effective
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coupling.

In summary, the findings of this chapter have shown that the computation of the dressed Wil-
son loop in a Dyson–Schwinger framework suffers from more technical problems than the
dressed Polyakov loop. It turned out to be a delicate task to identify a finite volume setting
that allows to extract an area law decay in the dual condensate. The reasons for this are on
the one hand technical aspects and on the other hand assigned to our approximation scheme.

Regarding the technical aspects, we firstly miss the periodicity of our observables with re-
spect to the magnetic field b that makes the dual condensate accessible in a lattice framework.
Furthermore, our chiral condensate is increasing for large magnetic fields close to the cutoff.
This is in principle in agreement with the phenomenon of magnetic catalysis in quenched
QCD 15. However, this also means that our dual condensate is spoiled by cutoff effects, and
that we do not see a clear area law decay. Our results for an effective coupling and for a fixed
number of Landau levels for all b however suggest, that the dual condensate might neverthe-
less be an accessible quantity in a Dyson–Schwinger framework. However, also regarding
technical aspects, more investigations are needed in order to establish a reliable setting that
allows to extract the true QCD string tension.

To this end, we propose two different starting points. Firstly, based on the above presented
results, we suggest to stay in the basic approximation/truncation scheme, but to modify the
cutoff procedure in the magnetic field. It might be sufficient to introduce a damping factor
for the dressing functions outside the momentum space volume. Although this is clearly an
artificial ingredient, it might permit a minimization of the cutoff effects in the chiral and dual
condensate16. Secondly, one could choose a momentum space configuration such that the
coordinate space is discretized, too17. This would lead to a lattice-like theory that is auto-
matically periodic. However, this second alternative represents a formidable task and an, in
principle, independent project.

However, the most important point for future investigations is certainly the improvement of
our approximation scheme. The effective coupling study suggest that the additional gluonic
damping functions are essential for the recovery of the dual condensate. Including this factor
as well as the spin-dependent vertex will be subject of a future investigation.

15We therefore do not attribute the failure of the string tension extraction to our approximation scheme only
16Note that the periodicity of the chiral condensate from lattice calculation is also ’artificial’ in the sense that

it is inherent to the theory, but not a physical feature of the quarks.
17This procedure would probably be in analogy to condensed matter techniques that allow to change between

coordinate and reciprocal space.
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4.3. Physical Magnetic Field Strengths

In this chapter, we will present first results for the implementation of magnetic field strength
as realized in physical systems. In contrast to the previous chapter, we will limit the field
strength itself to 2GeV2. This is a common value estimated to be produced in peripheral
heavy-ion collisions [144]. We will consider the four dimensional equations and chiral con-
densates only. Before we discuss our numerical results in section 4.3.2, we need to redefine
the cutoff in the plane perpendicular to the magnetic field direction in the following section.

4.3.1. Cutoff Scheme

We start our investigations for vanishing temperature and the truncation scheme as discussed
in section 4.1. We wish to impose a symmetric momentum cutoff in all four momentum
directions, and firstly fix Λ2

z to some value depending on the torus size. Since the range of
the external magnetic field strength has an upper limit for physically realized situations, we
use this Bmax = 2GeV2 to determine the maximum number of Landau levels κmax in order to
obtain Λ2

xy,

Λ2
z

!
= Λ2

xy,

κmax =

(2πn3

L

)2 1
2|eBmax|

 . (4.32)

In contrast to the previous cutoff scheme for the dual condensate, we still have more than the
lowest Landau level inside our momentum space box at maximum magnetic field strengths.
The magnetic field strength itself is regulated by the integer b that is limited to bmax =⌊
|eBmax |L2

2π

⌋
. Finally, we obtain the number of included Landau levels per magnetic field b

from the relation

(p2)2
κb
≤ Λ2

xy

κb ≤

⌊
κmaxbmax

b

⌋
. (4.33)

With the adjusted cutoff in the plane perpendicular to the magnetic field we can start to solve
the Dyson–Schwinger equations for the quarks’ dressing functions.

4.3.2. Numerical Results at zero T

In this section we present the numerical results obtained from solving the equations Eq. (4.11)
in the truncation scheme from sec. 4.1 with the above (see sec. 4.3.1) specified cutoff scheme.
We solve the DSEs for the dressing functions in a four dimensional volume with a box length
of L0 = L = 30 GeV−1 = 6fm and a momentum space grid of Nt = Nx = 2 × N points18. The
magnetic field strengths is limited to 2 GeV2, which means that we are always beyond the
lowest Landau level approximation, even for maximum external field strengths. We solve the
DSEs under varying external parameters and calculate the (four dimensional) chiral conden-
sate according to Eq. (4.23). Figure 4.O displays the results of our investigations for varying
18 N will be further specified in Figs. 4.O
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bare quark masses (upper panel of Fig. 4.O), varying UV cutoffs (left lower panel) and two
test volumes. Remember that we cannot compute the limit b → 0 in the Ritus formalism
as introduced in sec. 4.1. Due to the degeneracy factor in front of the integral, the chiral
condensate is trivially zero.

Figure 4.O: The chiral condensate as a function of the magnetic field b at zero temperature.
The upper panel displays a study of the seed mass dependence of the chiral con-
densate. The lower panel shows the chiral condensate for varying UV cutoffs
(left) and volume (right).

The chiral condensate for different bare quark masses nicely shows the transition between the
smoothly increasing condensate for small masses and the ray pattern for large bare masses.
We observed these two behaviors before in the dressed Wilson loop calculations: the chiral
condensate was smoothly increasing in the two dimensional setting, where we could impose
large UV cutoffs and where the dominant Landau levels were far away from the cutoff. The
ray pattern emerged for intermediate and large magnetic fields in two and in four dimensions,
as soon as the dominant Landau levels start to be shifted beyond the UV cutoff.
For small masses, the number of Landau levels that lie below our UV cutoff is so large that
transitions between the levels happen more or less at every b, washing out the oscillations.
Since the UV cutoff is for small masses large enough that the dominant (lower) Landau
levels are still inside our momentum space volume, there is no ray pattern observable. An
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increasing bare quark mass however naturally increases the chiral condensate. The quark
momenta, especially the Landau levels are shifted to higher energies and thus the dominant
(lower) Landau levels are earlier, that is at lower magnetic field strengths, sensitive to the
UV cutoff and therefore the ray pattern is observable.
The left hand side of the lower panel shows the chiral condensate for varying UV cutoffs. As
we would expect from our previous findings, there are no qualitative changes in the behavior
of the chiral condensate. However, the value of the chiral condensate increases for an in-
creasing cutoff. Note, that the UV cutoffs employed in these calculations are rather small in
comparison to the large cutoffs employed for the two dimensional calculations. The reason
for this is the large demand of computational resources: our cutoff prescription allows a com-
parably large number of Landau levels up to intermediate magnetic field strengths. Together
with the four dimensional setting, that is three quark dressing functions, this represents a
considerable amount of necessary CPU time.
A similar reasoning applies to the chiral condensate for different volumes. We therefore
chose only two representative volumes. The resulting chiral condensates are displayed on
the right hand side of the lower panel of Fig. 4.O. For a larger volume but at fixed UV cutoff,
we find a slightly smaller chiral condensate.

4.3.3. Summary

In this chapter, we investigated the four dimensional chiral condensate under the influence
of physical magnetic field strengths. In comparison to chapter 4.2, this results in a modified
cutoff prescription in the plane perpendicular to the magnetic field.

We analyzed the condensate as a function of bare quark masses, the UV cutoff and the size
of the volume. For all variations, we found an overall increasing chiral condensate with an
increasing magnetic field strength. This finding is in accordance with the phenomenon of
magnetic catalysis, that was also found in other approaches.

However, we are aware that the presented investigations were performed in a very strong
approximation scheme. This approximation scheme needs to be improved before it is rea-
sonable to proceed with investigations at finite temperature or even for the unquenched equa-
tions. Nevertheless, we consider the results of this chapter to be a very first step towards a
Dyson–Schwinger study of the effects of physical magnetic fields on QCD.
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5. Conclusions and Outlook

In the work at hand, we employed a finite volume Dyson–Schwinger framework to investi-
gate primarily the chiral phase transition in both, QED3 and QCD. Both of these studies were
carried out in an anisotropic environment.

We considered QED3 in an incarnation that was derived to serve as a low-energy effective
theory for high-temperature superconductors. In this form, QED3 also includes the exper-
imentally found anisotropy of the high-temperature superconducting materials. With this
starting point, we investigated the effects of the anisotropic spacetime on the critical num-
ber of fermion flavors for chiral symmetry breaking. This transition is associated with the
breakdown of the so-called pseudo-gap phase of high temperature superconductors and the
transition to the antiferromagnetic (non-superconducting) phase. Our analysis at vanishing
temperature was the first study including an arbitrary amount of anisotropy and to go beyond
the large-N f approximation in a functional methods framework. To this end, we employed
an ansatz for the gauge-boson vacuum polarization that accounts for the anomalous dimen-
sion of the fermion vector dressing function in isotropic spacetime. Although our results
are affected by finite volume artifacts, they give a qualitative picture of the phase diagram
for the critical number of fermion flavors in the full anisotropic plane. Our phase diagram
agreed (on a qualitative level) with results from photon-exchange and lattice calculations, at
the points where these approaches provided results.

Furthermore, we included finite temperatures in our considerations of QED3 in an anisotropic
spacetime. Besides the extension of the QED3 phase diagram by a thermal axis, this scenario
offers the possibility to study the critical scaling behavior close to the pseudo-conformal
window of QED3 . That is, close to the merger of the thermal phase transition line with the
quantum critical point, two generic scaling behaviors can emerge, dominated either by expo-
nential scaling or power-law contributions. From our finite temperature phase diagram, we
found that the spacetime anisotropy provides a parameter to tune the generic scaling behavior
of QED3 . While the power-law contributions are dominant for small anisotropies, we found
a dominant exponential scaling with only small power-law corrections around the isotropic
point.

Another aspect of this work was to investigate the anisotropic environment created in QCD
by introducing external magnetic fields, i.e. to study the effects of the magnetic fields onto
the chiral phase transition. With this information, our investigations aimed at a feasibility
study of the calculation of the dressed Wilson loop from Dyson–Schwinger equations. The
dressed Wilson loop is a dual variable to the chiral condensate and was originally introduced
in a lattice framework. This observable is of great interest, since it potentially offers func-
tional methods access to a direct calculation of the string tension. However, our studies found
considerable technical problems due to the quantized, but still continuous magnetic field in
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the DSE framework. Although we found certain finite volume settings where we observed
an area-law decay of the dressed Wilson loop and extracted a string tension, these settings
were highly sensitive to the choice of parameters. We could assign this sensitivity on the one
hand to an unfortunate choice of boundary conditions for our finite volume and on the other
hand to the shortcomings of our very strong approximation scheme.

Finally, we employed our finite volume DSE setting with external magnetic fields to evaluate
the chiral condensate at physical magnetic field strengths. In the context of these investiga-
tions, we found magnetic catalysis, what is in accordance with lattice and effective model
calculations. These findings represent first steps towards a satisfying analysis of the effects
of magnetic fields on the QCD vacuum due to the already mentioned strong approximation
scheme that we employed throughout a part of this work.

Outlook

Already in the course of this work, many new questions and ideas for new projects arose. In
the following, we strive to address the most important ones.

In zero temperature QED3 , it is desirable to improve our truncation/approximation scheme
beyond our gauge boson vacuum-polarization ansatz to a fully self-consistent treatment of
the gauge boson sector. Furthermore, a detailed study of more sophisticated vertex ansätze
and of finite volume effects is necessary to obtain also quantitatively reliable predictions for
the phase diagram of the critical number of fermion flavors as a function of the anisotropic
velocities.

The finite temperature QED3 setting furthermore lends itself for a continuum study in the
case of equal anisotropic velocities. Since we can exploit the cylindrical symmetry, the com-
putational demand of a continuum study should be manageable, if not reduced in comparison
to our finite volume torus setting. If we could access the anisotropic plane, or certain regions
of it, in a continuum calculation it should furthermore be possible to resolve the exponential
scaling region in the close vicinity of the quantum critical point.

In the course of our studies of QCD with external magnetic fields, one recurring question
concerned the definition of ’quenched’ in a lattice gauge theory and a Dyson–Schwinger
setting. On the one hand, results from e.g. dressed Polyakov loop calculations [178] suggest
that both definitions are equal. However, there is no systematic study to prove the equiv-
alence of both realizations of a ’quenched’ system. To exclude all possibility of doubt, it
would be desirable to have such a systematic study.

Another aspect that arises in the context of the comparison with the dressed Wilson loop
from lattice gauge theory calculations, concerns a Dyson–Schwinger setting for a discrete
coordinate spacetime. Put in a different way, one could also ask for what happens if one
applies the Dyson–Schwinger machinery to a lattice gauge theory.
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Finally, a crucial next step1 for any Dyson–Schwinger calculation including magnetic fields,
is the inclusion of the fully-fledged Ritus eigenfunctions, including the gluon damping- and
vertex spin functions. Furthermore, it may be necessary to include higher spin structures in
the dressed propagator. With these improvements, one could extend the Dyson–Schwinger
setting to finite temperatures and even begin to unquench the DSEs. As we already men-
tioned at the very beginning of the QCD chapters, unquenching the equations would be
crucial to contribute to the ongoing debate over (inverse) magnetic catalysis at finite temper-
atures.

1currently work in progress
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A. Aspects of QED3

A.1. Derivation of the QED3 Lagrangian

In this appendix we follow the derivation of the QED3 Lagrangian presented under different
aspects in [53–55, 57, 179].
The starting point is a BCS-like Hamiltonian in Nambu form,

H =
∑
~k

Ψ
†

~k
H Ψ~k, (A.1)

where the index ~k denotes the quasiparticles’ momentum. The Nambu spinors ψ~k contain the
creation operators for particles (c†

−~k↓
) and holes ( c~k↑). They are denoted as

Ψ~k =

 c~k↑
c†
−~k↓

 , (A.2)

where the arrows ↑, ↓ additionally indicate the spin of the electron, respectively the hole. The
Hamilton matrix H in Eq. (A.1) can be decomposed into particle-particle (pp) and particle-
hole (ph) interactions [56]. Under the assumption, that the energy-gap function is dominated
by pp-interactions, one neglects the ph-interactions as ’residual’Hph ' Hres, thus leading to

H = Hpp +Hph =

(
ε~k ∆~k
∆∗
~k
−ε∗

~k

)
+Hres, (A.3)

with the “∗” indicating complex conjugation. The contribution of interest, Hpp, contains
kinetic and pairing energy and can be further rewritten to [63],

HBCS−like =
∑
~kσ

ε~kc
†

~kσ
c~kσ +

∑
~k

∆~kc
†

~k↑
c†
−~k↓

+
∑
~k

∆∗~k
c~k↑c−~k↓. (A.4)

Here, we sum over σ, denoting all possible spin directions of particles/holes in the first term.
The kinetic energy ε~k of a quasi-particle is expressed in reference to the chemical potential µ
and given by

ε~k =
~k2

2m
− µ, (A.5)

where m is the quasiparticles’ mass and ~k its momentum.
The pairing energy contribution is represented by the energy-gap function ∆~k. It is charac-
terized by an amplitude ∆ and a phase field ϕ~k

∆~k = |∆| exp
(
iϕ~k

)
. (A.6)
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The amplitude ∆o := |∆| is assumed to be constant over the considered sample, which is a
valid assumption for regions in the phase diagram with T � T ∗ and H � Hc2 (London
limit).
Before we proceed in the derivation, the d-wave symmetry of the energy-gap function needs
to be considered. The symmetry implies that the gap function has zeroes. Experiments
show that these ’nodes’ lie on the Fermi surface of the electrons and holes that are the build-
ing blocks of the quasiparticles [64]. Since we will concentrate on low-energy excitations,
these quasiparticles close to the nodes of the energy-gap function are the relevant degrees of
freedom for our investigations. We therefore switch into a more suitable coordinate system
located at these nodes (as indicated in Fig. A.A). For low energy excitations, we expand the
particles’ energy contributions in terms of their momenta denoted as q1 and q2,

ε~k = vFq1 + O(q2), (A.7)

∆~k =
(
v∆q2 + O(q2)

)
exp

(
iϕ~k

)
. (A.8)

The first order expansion coefficients are denoted by vF and v∆. They describe the velocity of
the quasiparticles orthogonal and parallel to the Fermi surface and introduce the anisotropy
on a formal level. The linearized Hamiltonian matrixHlin now takes the form

Hlin =

(
vFq1 v∆q2 exp(iϕ~k)

v∆q2 exp(−iϕ~k) −vFq1

)
. (A.9)

The standard approach to describe a quasi-particle spectrum in a spatially inhomogeneous
system [58] is to solve the eigenvalue problem of the linearized Hamiltonian, also known as
the Bogoliubov-de Gennes (BdG) equation,

HlinΨ = EΨ. (A.10)

However, with the present form of the Hamiltonian, this is still a formidable task. Since we
restricted ourselves to the pseudogap phase with H � Hc2 and T < T ∗, vortices (magnetic
flux tubes) pierce the material in a hexagonal lattice structure [55, 56]. While the vortices
are bound in the superconducting phase, they start to fluctuate and interact with the quasi-
particles. In particular, the phase field of the energy-gap function picks up a 2π shift when
winding around such a vortex. This leads to a non single valued gap function. Ways to
avoid this are for example to diagonalize the linearized Hamiltonian with the constraint that
the wave function remains single-valued. This is quite a formidable task as branch cuts
would have to be introduced, which complicate the calculations significantly [54]. To cir-
cumvent this problem, Franz and Tešanović proposed a single-valued phase transformation
(FT transformation)[53].
The idea of this transformation is to map the original Hamiltonian onto a Hamiltonian with-
out phase field contributions in the off-diagonal parts via the singular phase transformation.
This phase transformation acts differently on the singular and on the regular parts of the
phase field of the gap function [53].

Singular FT transformation

We will follow the main steps of the FT transformation in the next lines. Firstly, the phase
field ϕ~k is decomposed into groups of singular (s) and of regular (r) phase contributions,

ϕ~k = ϕr + ϕs. (A.11)
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Both of these groups contain vortices. Therefore a second, different grouping redistributes
the vortices into the two groups A and B,

ϕA =
ϕr

2
+ ϕs,A ,

ϕB =
ϕr

2
+ ϕs,B . (A.12)

These phase fields contain both a regular contribution and an integer number of vortices.
Notice that we have only grouped the phase contributions differently; their renaming and
ordering is only for further convenience in calculations. From the two groups of phase fields
A and B, one can build a local gauge transformation U~k that acts differently on the particle
and hole wave functions contained in the Nambu spinor,

U~k =

(
exp(iϕA) 0

0 exp(−iϕB)

)
, (A.13)

Carrying out the transformation,
Ψ′~k

= U~kΨ~k (A.14)

and Fourier transforming the HamiltonianHlin, we obtain the HamiltonianH ′, which is then
given in coordinate space by

H ′ = U−1HlinU =

(
i~vF

[
i (∂1ϕA) + ∂1

]
−i~v∆

[
i (∂2ϕA) + ∂2

]
−i~vF

[
−i (∂2ϕB) + ∂2

]
−i~vF

[
−i (∂1ϕB) + ∂1

] )
. (A.15)

The phase field contributions define two new fields aµ and vµ that represent the gauge fields
of the theory,

aµ =
1
2
∂µ (ϕA − ϕB) , (A.16)

vµ =
1
2
∂µ (ϕA + ϕB) . (A.17)

While eq. (A.17) still contains singular and regular parts of the phase field ϕ, eq. (A.16) is
built only of singular contributions of ϕ. Introducing these gauge fields into eq. (A.15), the
HamiltonianH ′ changes to

H ′ =

(
i~vF [∂1 + ia1] −i~v∆ [∂2 + ia2]
−i~v∆ [∂2 + ia2] −i~vF [∂1 + ia1]

)
+ vµ-terms. (A.18)

The contributions of the gauge field vµ are not specified in eq. (A.18), as these terms will
lead to a source term representing charged current interactions. The quasi-particle fields do
not carry charge, which legitimizes the focus on the aµ-field contributions.

Recombination into spinorial representation

As a next step, we combine the four nodes of the energy-gap function on the Fermi surface
into four spinors. The reason for this is that we can easily rotate opposite lying nodes into
each other and only need to consider the dynamics at two different nodes [63].

Ψ1
(
~x
)

=

(
Ψ1

(
~x
)

Ψ1̄
(
~x
) )

, (A.19)
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Figure A.A: The Fermi surface is indicated by dashed lines. The dots represent the nodes of
the gap function [63].

This simplifies the notation considerably, if we now recast the Hamiltonian into the new
form,

H ′′ =

(
H ′ 0
0 −H ′

)
. (A.20)

Further rewriting of the Hamiltonian with the help of Dirac γ-matrices in natural units brings
us closer to the effective QED3 Lagrangian as can be seen from

H′′ =

∫
d2xΨ̄

(
~x
)
H ′′Ψ

(
~x
)

=

∫
d2xΨ̄

(
~x
)
{γ1vF (∂1 + ia1) + γ2v∆ (∂2 + ia2)}Ψ

(
~x
)
. (A.21)

The Dirac γ-matrices obey the Clifford algebra
{
γµ, γν

}
= 2δµν, which were further specified

in chapter 2.
The final step is to include possible time dependencies that we neglected so far. A way to
do this is to switch to the path integral formalism [14] by introduction of the generating
functionalZ,

Z =

∫
DΨ†DΨ exp(−S), (A.22)

wherein the action S is defined by

S =

β∫
0

dτ
∫

d2xΨ†(~x, τ)
(
∂′0 +H

)
Ψ(~x, τ), (A.23)

with β = 1
T , the inverse temperature. In momentum space, the creation operators contained

in the Nambu spinors (Eq. (A.2)) obtain an energy dependence
(
c~k → c~k(ωn)

)
.

The frequencies ωn, known as the Matsubara frequencies, naturally result from the finite
time interval on which we evaluate the path integral. They contain the boundary conditions
for fermions and bosons and are given by

ωn =

2π
β

(
n + 1

2

)
for fermions

2π
β

n for bosons,
(A.24)

where n denotes an integer number n ∈ Z0. The time derivative ∂′0 is the transformed time
derivative

∂′0 = U−1∂0U = (∂0 + ia0) + vµ-terms . (A.25)
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The vµ-terms are again omitted. To cast the action (A.23) into its final and most elegant form,
eqs. (A.21), (A.23) and (A.25) are combined. This yields:

S =

∫
dτ

∫
d2x

{
Ψ̄1

(
~x, τ

)
(γ0 (∂0 + ia0) + γ1vF (∂1 + ia1) + γ2v∆ (∂2 + ia2)) Ψ1

(
~x, τ

)
+ Ψ̄2

(
~x, τ

)
(γ0 (∂0 + ia0) + γ1v∆ (∂1 + ia1) + γ2vF (∂2 + ia2)) Ψ2

(
~x, τ

)}
, (A.26)

which contains the desired QED3 Lagrangian1.

It is important to recognize the influence of the two different speeds of the quasiparticles
(vF , v∆) close to the Fermi surface in the action given above. They display an inherent
anisotropy of the theory, if vF , v∆ is valid. Experiments showed [81] that for HTSs (e.g.
YBCO) the so called anisotropy α = vF

v∆
is about 14. This evidence clearly prohibits the

neglect of anisotropy motivates its investigation.

1For more detailed information on the intermediate steps see e.g. [180].
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A.2. Renormalization Point Dependencies in QED3

The renormalization factors of QED3 appear as additional factors in the DSEs. In particular,
only the fermion wave function renormalization Z2 remains in the final version of the equa-
tions. In this section, we state the main results of the analysis of the renormalization point
dependence of the solutions for the fermionic dressing functions obtained in [181].
To probe the qualitative dependence of the fermion dressing function on the choice of the
renormalization point, we solve the DSEs for several values of Z2. The results are displayed
in Figs.A.B and A.C.

Figure A.B: The scalar fermion dressing function for Z2 = 1 and Z2 = 0.7, evaluated on a
momentum lattice of (2 × 10 − 1)3 points and a lattice spacing of Le2 = 600.

Figure A.C: The time component of the fermionic vector dressing function for Z2 = 1 (lhs)
and Z2 = 0.7 (rhs), evaluated on a momentum lattice of (2 × 10 − 1)3 points
and a lattice spacing of Le2 = 600.

Qualitatively, there is no change in the dressing functions observed. We find a simple
rescaling of the dressing functions. To exclude all doubts, we additionally calculate the
RG-invariant mass function defined by

Mi (p) =
B (p)
Ai (p)

. (A.27)

102



Appendix A. Aspects of QED3

The results for the time component of the M-function for different Z2 values is shown in
Fig. A.D and displays no renormalization point dependence. We therefore conclude that our
choice of Z2 = 1 represents a valid option and apply this choice to all following calculations.

Figure A.D: The renormalization group invariant time component of the M-function. The
plot on the left hand side shows the result for Z2 = 1, while the right hand side
displays the result for Z2 = 0.7.

A.3. QED3 :Anisotropic Nc
f in the Pisarski approximation

In the following, we provide the details of the derivation of the scalar fermion dressing
function in Pisarski’s approximation for anisotropic spacetime. In the case of v f = v∆, we
insert the large-N f vacuum polarization, Eq. (3.10), into the scalar fermion dressing function.
The scalar dressing function is implicitly given in Eq. (3.3). The equal anisotropic velocities
lead to an inherent cylindrical symmetry. Thus we switch to problem suited cylindrical
coordinates. Given the abbreviations

A = 2v6
f z

4(
√

r2 + z2α2 + 16z2(4
√

r2 + z2 + α)) +

8r6(8
√

r2 + z2 + α + v2
f (8

√
r2 + z2 + 3α))

B = r2v2
f z

2((1 + v2
f )

2
√

r2 + z2α2 + 8z2(8
√

r2 + z2 + 24v2
f

√
r2 + z2

+16v4
f

√
r2 + z2 + (2 + 5(v2

f + v4
f ))α))

C = 2r4(v2
f

√
r2 + z2α2 + 4z2(8

√
r2 + z2 + α + v2

f (16
√

r2 + z2 +

24v2
f

√
r2 + z2 + (5 + 5v2

f + v4
f )α)))

D = N f (r2 + z2)(r2 + v2
f z

2)2(8
√

r2 + z2 + α)

E = 64r4 + r2(64(1 + v2
f )z

2 + 8
√

r2 + z2α + v2
fα(8

√
r2 + z2 + α)) +

v2
f z

2(64z2 + α(16
√

r2 + z2 + α))

we arrive at

B(~p) =
1

(2π)3

2π∫
0

∞∫
0

∞∫
0

dϕdrdz
16 B(~p) rα (A + B + C)

DE
. (A.28)
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Pisarski’s approximation [71] now implies that we assume the the scalar fermion dressing
function B(~p) equal to a constant B(~p) = m for all momenta in the range α � p � m. All
other momentum contributions are neglected in the integration. Since r < α and q < α,
we only keep terms with the largest power of α in the numerator and denominator of the
integrand. The resulting equation is of a more compact form and reads

m =
1

(2π)3

2π∫
0

dϕ

α∫
m

dr

α∫
m

dz
16mr

(
2r4 + r2(1 + v2

f )
2z2 + 2v4

f z
4
)

N f (r2 + z2)
3
2 (r2 + v2

f z
2)2

. (A.29)

At this point, we perform the integration in z-direction and again neglect the terms not pro-
portional to α. This leads us to

m =
1

(2π)3

2π∫
m

dϕ

α∫
0

dr
8m

(√
v2

f − 1α + (2 + α) arctan[
√

v2
f − 1]

)
N f rα

√
v2

f − 1
. (A.30)

As a next step, the perform the integration over r and ϕ, using the fact that α is the largest
scale in the problem for a last time. We finally arrive at

m =

2m
(√

1 + v2
f + (2 + v2

f ) arctan(
√

1 + v f 2)
)

π2N f

√
1 + v2

f

ln
(
α

m

)
, (A.31)

that can be rearranged into the form given in the main text, Eq. (3.26):

m = B(0) = cα exp
[(
−π2N f

√
v2

f − 1
)
/

(
2
√

v2
f − 1 + 2(2 + v2

f ) arctan(
√

v2
f − 1)

)]
.

104



B. Aspects of QCD

B.1. Ritus’ method for the quark propagator

Ritus’ method is used to diagonalize the quark propagator in momentum space. In this
appendix, we follow the steps of [157]. For a more pedagogical presentation and discussion
in the light of QED applications of Ritus’ method, the interested reader might also refer to
[182, 183].
The quark propagator in the external magnetic field has to satisfy the Green’s function iden-
tity,

( /Dµ − m)S (x, x′) !
= δ(x − x′). (B.1)

Here, the external field couples to the charged fermion via the covariant derivative, Dµ =

∂mu − ieAµ. The bare mass is denoted by m. Due to the external field term that does not
commute with the momentum, we cannot use the standard method to extract the propagator
from B.1.
The propagator has to be Lorentz- and gauge invariant, as well as invariant under charge
conjugation. In consequence, only four Lorentz-scalars remain as a basis for S ,

S (x, x′) ∼ /D, σ · F, (F̃ · D)2.

All of these commute with the operator /D2 and therefore have simultaneous eigenbasis. Its
eigenfunctions can be used to diagonalize S (x, x′) in momentum space. Thus, we refor-
mulated the problem of solving the Green’s function identity into solving the eigenvalue
problem,

/D2Ep(x) = Ep(x)γp2, (B.2)

For a constant magnetic field in z direction, this can be rearranged to[
D2 + eBσ3

]
Ep = p2Ep, (B.3)

where σ3 denotes the diagonal Pauli matrix with eigenvalues σ = ±1. Since the eigenprob-
lems decouple, we can solve the eigenvalue equations for the separate components,

D2
0 Ep = p2

0 Ep D2
3 Ep = p2

3 Ep (B.4)
(D2

1 + D2
2)Ep = (p2 − p2

0 − p2
3)Ep = k2

12 Ep. (B.5)

Here, we denoted the eigenvalue of the coupled equations in 1-2direction by k2
12. We proceed

with a separation ansatz for the eigenfunction Ep(x) = Ep,σ(x)ωσ. The function ωσ is a
bispinor containing the eigenvectors of σ3 and can be written as diag(δσ,1, δσ,−1, δσ,1, δσ,−1).
Furthermore, the Ep,σ separates into the plane waves as solution for the 0 and 3-component
and the eigenfunction for the 1, 2 components,

Ep,σ(x) = Nexp(−i(p0x0 − p3x3)) Fp1,p2,σ(x),

105



Appendix B. Aspects of QCD

with the normalization constant N. Altogether, B.5 is nothing more than the Pauli equation
without an electric field, that is basically a shifted harmonic oscillator equation,[

∂1 − (−∂2 + eB x1)2 + σeB
]

Fp1,p2,σ(x) = k2
12 Fp1,p2,σ(x). (B.6)

The eigenvalues are given by k12 =
√

eB(2n + 1 + σ). The quantum number n counts the
quantum mechanically known Landau levels. All Landau levels, except for the lowest, are
twice spin degenerate due to the contributions of the eigenvalues of the spin matrix, σ = ±1.
Another degeneracy of the eigenenergies arises from the free momentum in 2 direction,
∂2Ep,σ(x) = p2Ep,σ(x). From B.6, it is obvious that p2 only shifts the center of the oscil-
lations. The eigenenergy of the harmonic oscillator is independent of p2. The additional
factor introduced in 4.9 accounts for these degeneracies, whenever we integrate over all pos-
sible momentum states. The eigenfunctions of the shifted harmonic oscillator are given by
parabolic cylinder functions,

Fk12,σ(x) = N(n) Dn

(√
2eB(x1 −

p2

eB
)
)
, (B.7)

that form an orthogonal and complete basis. The normalization constant is given as N(n) =

(4πeB)1/4/
√

n!. Finally, we can return to the original eigenvalue problem of /D that is now
solved by

/DEp,σ = Ep,σ /̄p, (B.8)

where we introduced the momentum vector p̄ = (p0, 0, (p2)n,σ, p3). For convenience, we
renamed the momentum component k12 → (p2)n,σ. This subset of momenta satisfies p̄2 =

p2
0 + (p2)2

n,σ + p2
3 = p2, as it is easy to convince oneself. This brings us back to the Green’s

function identity that is now straight forward to solve,

( /Dµ − m)0(x, x′) =

∫
dp ( /Dµ − m)E†p 0(p̄)Ep

=

∫
dpE†p ( /̄pµ − m) 0( p̄)Ep

=

∫
dpE†p Ep

= δ(x − x′). (B.9)

The last step holds due to the orthogonality property of the Ritus eigenfunctions. We find that
the diagonal bare propagator in momentum space takes its ’standard’ form, but now depends
on the special subset of momenta,

0(p)→0 (p̄) =
1

/̄p − m
.

The eigenfunction matrix that diagonalizes the bare propagator is given by

Ep(x) =
∑
σ

Ep,σ(x)ω(σ) (B.10)
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B.2. The dressed quark propagator

Ritus originally stated in his papers that there are four possible, non-trivial Lorentz-scalar
structures that the propagator can depend on. Including all of them with an according dress-
ing function would be a formidable task. However, investigations of Leung and Wang, [184],
have shown that terms proportional to σµνFµν lead to a fermionic mass that depends on the
direction of the magnetic field. This structure is therefore also forbidden in the quark propa-
gator.

In principle, the propagator can still depend on Lorentz-scalar structures of the form

(F · D)2 and γ5(F · F̃). (B.11)

in addition to the ’standard’ Lorentz-scalars /D,1. However, it is not clear if these structures
are relevant for the chiral dynamics investigated in this work, or if they might even suffer
from similar caveats as the term proportional to σµνFµν.

In chapter 4, we therefore started our investigations with the simplest possible Lorentz struc-
ture for the propagator,

S F(p̄)−1 = B( p̄) + i (A0( p̄)γ0ωp + A2( p̄)γ2(p2)κ + A3( p̄)γ3 p3). (B.12)

The investigation of an extended propagator with additional dressing functions for the terms
Eq. (B.11) is relegated to future investigations.
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B.3. The Dyson Schwinger equation in an external
magnetic field

In the very first sections, we extracted the quark DSE from the generating functional. The
derivation procedure lead us to equations in coordinate space that we Fourier transformed
to momentum space, where we wish to solve them on a compact manifold. With an ex-
ternal magnetic field, the discussion of Ritus’ method in App. B.1 showed us, that this last
part needs further attention. The propagator depends on a special subset of momenta (4.4),
and is only diagonal if we consider the non-plane wave eigenfunctions. Besides a manifest
spin dependence of the quark propagator itself (via the eigenfunctions) and of its argument
((p2)n,σ) the parabolic cylinder functions lead to a modification of the quark-gluon coupling.
The detailed steps of the Fourier transformation can be found in [185], or discussed under
different aspects in [184, 186–189]. In the following, we provide a summary of the most
important steps and specify our approximations.
The DSE in coordinate space reads

S −1(x, x′) =−1
0 (x, x′) − iZ1Fg2

∫
d4u d4w γµ S (x, x′) Γν(u,w, x′) Dµν(u, x′), (B.13)

with the dressed vertex Γν(u,w, x′) and gluon function Dµν(u, x′). The color indices are
suppressed. With the help of Ritus’ eigenfunctions, we can write down the corresponding
equation in momentum space,

S −1( p̄) =−1
0 ( p̄) +

∫
d4xd4x′ Ep(x) Σ(x, x′)Ep(x′), (B.14)

where we need to elaborate on the Fourier transform of the self-energy term Σ(x, x′). We
insert the Fourier transformation of the propagator into the self-energy kernel in B.14. Addi-
tionally, we replace the dressed vertex function Γν by a second bare vertex in order to better
keep track of the equations. The self-energy then reads

Σ(p, p′) =

∫
d4xd4x′ Ēp(x)

(
γµ S (x, x′) γνDµν(x − x′)

)
Ep(x′),

=

∫
d4xd4x′ Ēp(x)

(
γµ

[∫∑ d4 p′

(2π)4 Ep′(x) S (p′) Ēp′(x′)
]
×

γν

[∫
d4k

(2π)4 e−ik(x−x′)Dµν(k)
] )
Ep(x′), (B.15)

where
∫∑

d4 p′ =
∑

(p2)n,σ

∫
dp0dp1dp3. To further evaluate this expression, we need to solve

to integrations over coordinate spacetime. Before we concentrate on this integration, we
introduce the shorthand for the spin-vertex construction ω(σ) γµ ω(σ′) =: γσνσ′ . This will
simplify to keep track of the equations. Furthermore, since the integrand over x and x′ are
basically the same, we only consider the integration over x as an example,
∞∫

−∞

d4x Ēp(x) γµ Ep′(x) e−i k x = (2π)3δ(p′0 + k0 − p0) δ(p′2 + k2 − p2)δ(p′3 + k3 − p3) ×

∑
σ

N(n)N(n′) × (B.16)∫
dx1Dn

(√
2eB(x1 −

p2

eB
)
)

Dn′

(√
2eB(x1 −

p2

eB

)
e−i k1 x1 γσµσ′ .
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The integration yields three Dirac δ-functions, that we would also obtain without an external
field. Due to the Ritus-eigenfunctions however, the momentum transfer to the gluon, in p2

direction is now modified by the parabolic cylinder functions. The integral in x1 direction can
be further rearranged and simplified with the help of some general properties of the cylinder
functions. The integral B.16 then yields

∞∫
−∞

dx Ēp(x) γµ Ep′(x) e−i k x = (2π)3Πiδ(p′i + ki − pi)ei k1(p′2+p2)/(2eB)e−(k2
1+k2

2)/(2
√

2eB) ×

∑
σ,σ′

1
√

n!n′!
ei(n−n′) arctan (k2/k1)Jnn′

(
k2

1 + k2
2

2
√

2eB

)
γσµσ′ .

with i = 0, 2, 3. The function Jnn′ arises from the integral over the cylinder functions and is
given by

Jnn′

(
k2

1 + k2
2

2
√

2eB

)
=

min(n,n′)∑
m=0

n!n′!
m!(n − m)!(n′ − m)!

(
i

k2
1 + k2

2

2
√

2eB

)n+n′−2m

.

With a similar result for the integral over x′, we can go back to the equation for the self-
energy in momentum space that reads in full glory

Σ( p̄)δ(p2)n,σ,(p2)n′′ ,σ′′ = iZ1Fg2(2eB)
∑

(p2)n′ ,σ′

∑
σi

∫
d4k

(2π)4 e−(k2
1+k2

2)/(2
√

2eB) ei(n−n′+n′′′−n′′) arctan (k2/k1)

√
n!n′!n′′!n′′′!

×

Jnn′

(
k2

1 + k2
2

2
√

2eB

)
Jn′′′n′′

(
k2

1 + k2
2

2
√

2eB

)
Dµν(k) γσµσ′ S ( p̄′) γσ′′′νσ′′ .

Since large gluon momenta in 12 direction are damped by the exponential, the self-energy
can be further simplified by only keeping small powers of Jnn′(k1, k2),

Jn′′′n′′

(
k2

1 + k2
2

2
√

2eB

)
→

[max(n, n′)]!
|n − n′|!

[
i

k2
1 + k2

2

2
√

2eB

]|n−n′ |

→ n!δnn′ . (B.17)

The DSE then reads

Σ(p̄)δ(p2)n,σ,(p2)n′′ ,σ′′ = iZ1Fg2(2eB)
∑

p2

∑
σi

δn,n′δn,n′′′ ×∫
d4k

(2π)4 e−(k2
1+k2

2)/(2
√

2eB) Dµν(k)γσµσ′ S ( p̄′) γσ′′′νσ′′ .

This is the result for the quark self-energy obtained in [187]. For this work, we further
approximated this expression for first investigations. To this end, we imposed an artifi-
cial momentum conservation in 12 direction, thus neglecting the damping factor for large
gluon momenta. Additionally, we neglected the spin-matrix modifications of the vertex,
ω(σ) γµta ω(σ′) ∼ γµta. In consequence, our first investigations are dedicated to study the
Dyson–Schwinger equation for a magnetic field modified quark propagator only. We address
this approximation as the bare vertex approximation throughout this work.

Σ( p̄) = iZ1Fg2(2eB)
∫∑ d4q̄

(2π)4γµ S (q̄) γν Dµν( p̄ − q̄),
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where
∫∑

d4q̄ =
∫

dq0dp1dq3
∑
κ and the momenta are given by k0 = p̄0 − q̄0, k3 = p̄3 − q̄3,

p̄1 = q̄1 = 0 and q̄2 =
√

2eBκ. In a second step, we include the exponential damping of large
gluon momenta, but still insert spin-summed vertices. The quark self-energy then reads

Σ( p̄) = iZ1Fg2(2eB)
∫∑ d4q̄

(2π)2

∫
dk1dk2

(2π)2 e−(k2
1+k2

2)/(2
√

2eB) Dµν(k) γµ S (q̄) γν .

The investigation of the full magnetic field DSE, including the additional Lorentz scalar
structures in the dressed quark propagator (see B.2), will be subject of future studies.
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unconventional superconductors. Phys. Rev. B, 63:134509, Mar 2001.

[55] M. Franz and Z. Tesanovic. Algebraic Fermi Liquid from Phase Fluctuations: ’Topo-
logical’ Fermions, Vortex ’Berryons, ’ and QE D-3 Theory of Cuprate Superconduc-
tors. Phys.Rev.Lett., 87:257003, 2001.

[56] M. Franz, Z Tesanovic, and O. Vafek. QED(3) theory of pairing pseudogap in
cuprates. 1. From D wave superconductor to antiferromagnet via ’algebraic’ Fermi
liquid. Phys.Rev., B66:054535, 2002.

[57] Igor F. Herbut and Dominic J. Lee. Theory of phase fluctuating d wave superconduc-
tors and the spin response in underdoped cuprates. 2002.

[58] Luca Marinelli, B. I. Halperin, and S. H. Simon. Quasiparticle spectrum of d-wave
superconductors in the mixed state. Phys. Rev. B, 62:3488–3501, Aug 2000.

[59] A. Concha, V. Stanev, and Z. Tesanovic. A Criterion for the Critical Number of
Fermions and Chiral Symmetry Breaking in Anisotropic QED(2+1). Phys.Rev.,
B79:214525, 2009.

[60] J.G. Bednorz and K.A. Müller. Possible hightc superconductivity in the ba−la−cu−o
system. 64(2):189–193.

[61] John Bardeen, L.N. Cooper, and J.R. Schrieffer. Theory of superconductivity.
Phys.Rev., 108:1175–1204, 1957.

[62] John Bardeen, L.N. Cooper, and J.R. Schrieffer. Microscopic theory of superconduc-
tivity. Phys.Rev., 106:162, 1957.

[63] Igor F. Herbut. QED(3) theory of underdoped high temperature superconductors.
Phys.Rev., B66:094504, 2002.

[64] H. Ding, M. R. Norman, J. C. Campuzano, M. Randeria, A. F. Bellman, T. Yokoya,
T. Takahashi, T. Mochiku, and K. Kadowaki. Angle-resolved photoemission spec-
troscopy study of the superconducting gap anisotropy in bi_2sr_2Cacu_2o_8 + x.
Phys. Rev. B, 54:R9678–R9681, Oct 1996.

[65] Leon Balents, Matthew P.A. Fisher, and Chetan Nayak. Dual order parameter for the
nodal liquid. Phys.Rev., B60:1654–1667, 1999.

114



Bibliography

[66] Simon Hands and Iorwerth Owain Thomas. Lattice study of anisotropic QED(3).
Phys.Rev., B72:054526, 2005.

[67] A. Bashir, A. Kizilersu, and M.R. Pennington. Analytic form of the one loop vertex
and of the two loop fermion propagator in three-dimensional massless QED. 1999.

[68] A. Kizilersu and M.R. Pennington. Building the Full Fermion-Photon Vertex of QED
by Imposing Multiplicative Renormalizability of the Schwinger-Dyson Equations for
the Fermion and Photon Propagators. Phys.Rev., D79:125020, 2009.

[69] James S. Ball and Ting-Wai Chiu. Analytic Properties of the Vertex Function in Gauge
Theories. 1. Phys.Rev., D22:2542, 1980.

[70] P. Maris. The Influence of the full vertex and vacuum polarization on the fermion
propagator in QED in three-dimensions. Phys.Rev., D54:4049–4058, 1996.

[71] Robert D. Pisarski. Chiral Symmetry Breaking in Three-Dimensional Electrodynam-
ics. Phys.Rev., D29:2423, 1984.

[72] Thomas Appelquist, Daniel Nash, and L.C.R. Wijewardhana. Critical Behavior in
(2+1)-Dimensional QED. Phys.Rev.Lett., 60:2575, 1988.

[73] Daniel Nash. Higher Order Corrections in (2+1)-Dimensional QED. Phys.Rev.Lett.,
62:3024, 1989.

[74] Christian S. Fischer. Nonperturbative propagators, running coupling and dynamical
mass generation in ghost - anti-ghost symmetric gauges in QCD. 2003.

[75] Tobias Goecke, Christian S. Fischer, and Richard Williams. Finite volume effects and
dynamical chiral symmetry breaking in QED3. Phys.Rev., B79:064513, 2009.

[76] C.S. Fischer, Reinhard Alkofer, and H. Reinhardt. The Elusiveness of infrared critical
exponents in Landau gauge Yang-Mills theories. Phys.Rev., D65:094008, 2002.

[77] C.S. Fischer and M.R. Pennington. Finite volume effects in a quenched lattice-QCD
quark propagator. Phys.Rev., D73:034029, 2006.

[78] Iorwerth Owain Thomas and Simon Hands. Fermion propagators in QED(3) with
velocity anisotropies. PoS, LAT2005:249, 2006.

[79] Iorwerth Owain Thomas and Simon Hands. Chiral symmetry restoration in
anisotropic QED(3). Phys.Rev., B75:134516, 2007.

[80] V.A. Miransky and K. Yamawaki. On Gauge Theories with Additional Four Fermion
Interaction. Mod.Phys.Lett., A4:129–135, 1989.

[81] May Chiao, R. W. Hill, Christian Lupien, Louis Taillefer, P. Lambert, R. Gagnon, and
P. Fournier. Low-energy quasiparticles in cuprate superconductors: A quantitative
analysis. Phys. Rev. B, 62:3554–3558, Aug 2000.

[82] Jens Braun and Holger Gies. Running coupling at finite temperature and chiral sym-
metry restoration in QCD. Phys.Lett., B645:53–58, 2007.

115



Bibliography

[83] Jens Braun and Holger Gies. Chiral phase boundary of QCD at finite temperature.
JHEP, 0606:024, 2006.

[84] Jens Braun and Holger Gies. Scaling laws near the conformal window of many-flavor
QCD. JHEP, 1005:060, 2010.

[85] David B. Kaplan, Jong-Wan Lee, Dam T. Son, and Mikhail A. Stephanov. Confor-
mality Lost. Phys.Rev., D80:125005, 2009.

[86] Jens Braun, Christian S. Fischer, and Holger Gies. Beyond Miransky Scaling.
Phys.Rev., D84:034045, 2011.

[87] Jens Braun. Thermodynamics of QCD low-energy models and the derivative expan-
sion of the effective action. Phys.Rev., D81:016008, 2010.

[88] Jens Braun. Fermion Interactions and Universal Behavior in Strongly Interacting The-
ories. J.Phys., G39:033001, 2012.

[89] Kenji Fukushima and Tetsuo Hatsuda. The phase diagram of dense QCD.
Rept.Prog.Phys., 74:014001, 2011.

[90] Ana Julia Mizher, M.N. Chernodub, and Eduardo S. Fraga. Phase diagram of hot
QCD in an external magnetic field: possible splitting of deconfinement and chiral
transitions. Phys.Rev., D82:105016, 2010.

[91] Kenji Fukushima. Chiral effective model with the Polyakov loop. Phys.Lett.,
B591:277–284, 2004.

[92] Claudia Ratti, Michael A. Thaler, and Wolfram Weise. Phases of QCD: Lattice ther-
modynamics and a field theoretical model. Phys.Rev., D73:014019, 2006.

[93] Bernd-Jochen Schaefer, Jan M. Pawlowski, and Jochen Wambach. The Phase Struc-
ture of the Polyakov–Quark-Meson Model. Phys.Rev., D76:074023, 2007.

[94] V. Skokov, B. Stokic, B. Friman, and K. Redlich. Meson fluctuations and thermody-
namics of the Polyakov loop extended quark-meson model. Phys.Rev., C82:015206,
2010.

[95] Tina Katharina Herbst, Jan M. Pawlowski, and Bernd-Jochen Schaefer. The phase
structure of the Polyakov–quark-meson model beyond mean field. Phys.Lett.,
B696:58–67, 2011.

[96] N. Cabibbo and G. Parisi. Exponential Hadronic Spectrum and Quark Liberation.
Phys.Lett., B59:67–69, 1975.

[97] Julian S. Schwinger. On gauge invariance and vacuum polarization. Phys.Rev.,
82:664–679, 1951.

[98] V.P. Gusynin, V.A. Miransky, and I.A. Shovkovy. Catalysis of dynamical flavor sym-
metry breaking by a magnetic field in (2+1)-dimensions. Phys.Rev.Lett., 73:3499–
3502, 1994.

116



Bibliography

[99] V.P. Gusynin, V.A. Miransky, and I.A. Shovkovy. Dynamical chiral symmetry break-
ing by a magnetic field in QED. Phys.Rev., D52:4747–4751, 1995.

[100] V.P. Gusynin, V.A. Miransky, and I.A. Shovkovy. Dimensional reduction and dynam-
ical chiral symmetry breaking by a magnetic field in (3+1)-dimensions. Phys.Lett.,
B349:477–483, 1995.

[101] V.P. Gusynin, V.A. Miransky, and I.A. Shovkovy. Dimensional reduction and catalysis
of dynamical symmetry breaking by a magnetic field. Nucl.Phys., B462:249–290,
1996.

[102] K.G. Klimenko. Three-dimensional Gross-Neveu model in an external magnetic field.
Theor.Math.Phys., 89:1161–1168, 1992.

[103] K.G. Klimenko. Three-dimensional Gross-Neveu model at nonzero temperature and
in an external magnetic field. Theor.Math.Phys., 90:1–6, 1992.

[104] I.A. Shushpanov and Andrei V. Smilga. Quark condensate in a magnetic field.
Phys.Lett., B402:351–358, 1997.

[105] Igor A. Shovkovy. Magnetic Catalysis: A Review. Lect.Notes Phys., 871:13–49,
2013.

[106] Kenji Fukushima. Chiral Symmetry and Heavy-Ion Collisions. J.Phys., G35:104020,
2008.

[107] Kenji Fukushima. QCD matter in extreme environments. J.Phys., G39:013101, 2012.

[108] Nikita O. Agasian and I.A. Shushpanov. The Quark and gluon condensates and low-
energy QCD theorems in a magnetic field. Phys.Lett., B472:143–149, 2000.

[109] Nikita O. Agasian. Chiral thermodynamics in a magnetic field. Phys.Atom.Nucl.,
64:554–560, 2001.

[110] Thomas D. Cohen, David A. McGady, and Elizabeth S. Werbos. The Chiral conden-
sate in a constant electromagnetic field. Phys.Rev., C76:055201, 2007.

[111] Jens O. Andersen. Thermal pions in a magnetic background. Phys.Rev., D86:025020,
2012.

[112] Jens O. Andersen. Chiral perturbation theory in a magnetic background - finite-
temperature effects. JHEP, 1210:005, 2012.

[113] S.P. Klevansky and Richard H. Lemmer. Chiral symmetry restoration in the Nambu-
Jona-Lasinio model with a constant electromagnetic field. Phys.Rev., D39:3478–3489,
1989.

[114] D.P. Menezes, M. Benghi Pinto, S.S. Avancini, and C. Providencia. Quark matter
under strong magnetic fields in the su(3) Nambu-Jona-Lasinio Model. Phys.Rev.,
C80:065805, 2009.

117



Bibliography

[115] Raoul Gatto and Marco Ruggieri. Deconfinement and Chiral Symmetry Restoration
in a Strong Magnetic Background. Phys.Rev., D83:034016, 2011.

[116] Raoul Gatto and Marco Ruggieri. Dressed Polyakov loop and phase diagram of hot
quark matter under magnetic field. Phys.Rev., D82:054027, 2010.

[117] Kouji Kashiwa. Entanglement between chiral and deconfinement transitions under
strong uniform magnetic background field. Phys.Rev., D83:117901, 2011.

[118] Jens O. Andersen and Rashid Khan. Chiral transition in a magnetic field and at finite
baryon density. Phys.Rev., D85:065026, 2012.

[119] Sidney S. Avancini, Debora P. Menezes, Marcus B. Pinto, and Constanca Providencia.
The QCD Critical End Point Under Strong Magnetic Fields. Phys.Rev., D85:091901,
2012.

[120] Kenji Fukushima and Jan M. Pawlowski. Magnetic catalysis in hot and dense quark
matter and quantum fluctuations. Phys.Rev., D86:076013, 2012.

[121] Jens O. Andersen and Anders Tranberg. The Chiral transition in a magnetic back-
ground: Finite density effects and the functional renormalization group. JHEP,
1208:002, 2012.

[122] Shinya Kanemura, Haru-Tada Sato, and Hiroshi Tochimura. Thermodynamic Gross-
Neveu model under constant electromagnetic field. Nucl.Phys., B517:567–598, 1998.

[123] J. Alexandre, K. Farakos, and G. Koutsoumbas. Magnetic catalysis in QED(3) at finite
temperature: Beyond the constant mass approximation. Phys.Rev., D63:065015, 2001.

[124] Daniel D. Scherer and Holger Gies. Renormalization Group Study of Magnetic Catal-
ysis in the 3d Gross-Neveu Model. Phys.Rev., B85:195417, 2012.

[125] Clifford V. Johnson and Arnab Kundu. External Fields and Chiral Symmetry Breaking
in the Sakai-Sugimoto Model. JHEP, 0812:053, 2008.

[126] Florian Preis, Anton Rebhan, and Andreas Schmitt. Inverse magnetic catalysis in
dense holographic matter. JHEP, 1103:033, 2011.

[127] Ana Julia Mizher, Eduardo S. Fraga, and M.N. Chernodub. Phase Diagram of Strong
Interactions in an External Magnetic Field. PoS, FACESQCD:020, 2010.

[128] J. Gasser and H. Leutwyler. Light Quarks at Low Temperatures. Phys.Lett., B184:83,
1987.

[129] J. Gasser and H. Leutwyler. Thermodynamics of Chiral Symmetry. Phys.Lett.,
B188:477, 1987.

[130] P. Gerber and H. Leutwyler. Hadrons Below the Chiral Phase Transition. Nucl.Phys.,
B321:387, 1989.

[131] Eduardo S. Fraga and Ana Julia Mizher. Can a strong magnetic background modify
the nature of the chiral transition in QCD? Nucl.Phys., A820:103C–106C, 2009.

118



Bibliography

[132] Raoul Gatto and Marco Ruggieri. Hot Quark Matter with an Axial Chemical Potential.
Phys.Rev., D85:054013, 2012.

[133] V. Skokov. Phase diagram in an external magnetic field beyond a mean-field approxi-
mation. Phys.Rev., D85:034026, 2012.

[134] P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, and M.I. Polikarpov. Numer-
ical study of chiral symmetry breaking in non-Abelian gauge theory with background
magnetic field. Phys.Lett., B682:484–489, 2010.

[135] V.V. Braguta, P.V. Buividovich, T. Kalaydzhyan, S.V. Kuznetsov, and M.I. Polikarpov.
The Chiral Magnetic Effect and chiral symmetry breaking in SU(3) quenched lattice
gauge theory. Phys.Atom.Nucl., 75:488–492, 2012.

[136] Massimo D’Elia, Swagato Mukherjee, and Francesco Sanfilippo. QCD Phase Transi-
tion in a Strong Magnetic Background. Phys.Rev., D82:051501, 2010.

[137] Massimo D’Elia and Francesco Negro. Chiral Properties of Strong Interactions in a
Magnetic Background. Phys.Rev., D83:114028, 2011.

[138] G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, et al. The QCD phase
diagram for external magnetic fields. JHEP, 1202:044, 2012.

[139] Kenji Fukushima and Yoshimasa Hidaka. Magnetic Catalysis vs Magnetic Inhibition.
Phys.Rev.Lett., 110:031601, 2013.

[140] Márcio Ferreira, Pedro Costa, Débora P. Menezes, Constança Providência, and Nor-
berto Scoccola. Deconfinement and chiral restoration within the SU(3) PNJL and
EPNJL models in an external magnetic field. 2013.

[141] Falk Bruckmann, Gergely Endrodi, and Tamas G. Kovacs. Inverse magnetic catalysis
and the Polyakov loop. JHEP, 1304:112, 2013.

[142] Christian S. Fischer and Jan Luecker. Propagators and phase structure of Nf=2 and
Nf=2+1 QCD. Phys.Lett., B718:1036–1043, 2013.

[143] Dmitri E. Kharzeev, Larry D. McLerran, and Harmen J. Warringa. The Effects of topo-
logical charge change in heavy ion collisions: ’Event by event P and CP violation’.
Nucl.Phys., A803:227–253, 2008.

[144] V. Skokov, A. Yu. Illarionov, and V. Toneev. Estimate of the magnetic field strength
in heavy-ion collisions. Int.J.Mod.Phys., A24:5925–5932, 2009.

[145] Adam Bzdak and Vladimir Skokov. Event-by-event fluctuations of magnetic and elec-
tric fields in heavy ion collisions. Phys.Lett., B710:171–174, 2012.

[146] Robert C. Duncan and Christopher Thompson. Formation of very strongly magnetized
neutron stars - implications for gamma-ray bursts. Astrophys.J., 392:L9, 1992.

[147] K. Enqvist and P. Olesen. On primordial magnetic fields of electroweak origin.
Phys.Lett., B319:178–185, 1993.

119



Bibliography

[148] T. Vachaspati. Magnetic fields from cosmological phase transitions. Phys.Lett.,
B265:258–261, 1991.

[149] Berndt Muller and James L. Nagle. Results from the relativistic heavy ion collider.
Ann.Rev.Nucl.Part.Sci., 56:93–135, 2006.

[150] Berndt Muller. From Quark-Gluon Plasma to the Perfect Liquid. Acta Phys.Polon.,
B38:3705–3730, 2007.

[151] Kenji Fukushima, Dmitri E. Kharzeev, and Harmen J. Warringa. The Chiral Magnetic
Effect. Phys.Rev., D78:074033, 2008.

[152] L.F. Palhares, E.S. Fraga, and T. Kodama. Chiral transition in a finite system and pos-
sible use of finite size scaling in relativistic heavy ion collisions. J.Phys., 38:085101,
2011.

[153] Eduardo S. Fraga, Leticia F. Palhares, and Paul Sorensen. Finite-size scaling as a tool
in the search for the QCD critical point in heavy ion data. Phys.Rev., C84:011903,
2011.

[154] L. McLerran and V. Skokov. Comments About the Electromagnetic Field in Heavy-
Ion Collisions. 2013.

[155] Kirill Tuchin. Time and space dependence of electromagnetic field in relativistic
heavy-ion collisions. 2013.

[156] Falk Bruckmann and Gergely Endrodi. Dressed Wilson loops as dual condensates in
response to magnetic and electric fields. Phys.Rev., D84:074506, 2011.

[157] V.I. Ritus. Method of Eigenfunctions in Quantum Electrodynamics of an Arbitrary
Constant Field. 1977.

[158] V.I. Ritus. Method of eigenfunctions and mass operator in quantum electrodynamics
of a constant field. Sov.Phys.JETP, 48:788, 1978.

[159] V.I. Ritus. Radiative corrections in quantum electrodynamics with intense field and
their analytical properties. Annals Phys., 69:555–582, 1972.

[160] Christian S. Fischer, Jan Luecker, and Jens A. Mueller. Chiral and deconfinement
phase transitions of two-flavour QCD at finite temperature and chemical potential.
Phys.Lett., B702:438–441, 2011.

[161] Pieter Maris, Craig D. Roberts, and Peter C. Tandy. Pion mass and decay constant.
Phys.Lett., B420:267–273, 1998.

[162] Heinz Pagels and Saul Stokar. The Pion Decay Constant, Electromagnetic Form-
Factor and Quark Electromagnetic Selfenergy in QCD. Phys.Rev., D20:2947, 1979.

[163] Larry D. McLerran and Benjamin Svetitsky. Quark Liberation at High Temperature:
A Monte Carlo Study of SU(2) Gauge Theory. Phys.Rev., D24:450, 1981.

120



Bibliography

[164] Christof Gattringer. Linking confinement to spectral properties of the Dirac operator.
Phys.Rev.Lett., 97:032003, 2006.

[165] Tom Banks and A. Casher. Chiral Symmetry Breaking in Confining Theories.
Nucl.Phys., B169:103, 1980.

[166] Falk Bruckmann, Christof Gattringer, and Christian Hagen. Complete spectra of the
Dirac operator and their relation to confinement. Phys.Lett., B647:56–61, 2007.

[167] Franziska Synatschke, Andreas Wipf, and Christian Wozar. Spectral sums of
the Dirac-Wilson operator and their relation to the Polyakov loop. Phys.Rev.,
D75:114003, 2007.

[168] Wolfgang Soldner. The Polyakov Loop and the Eigenvalues of the Dirac Operator.
PoS, LAT2007:222, 2007.

[169] Franziska Synatschke, Andreas Wipf, and Kurt Langfeld. Relation between chiral
symmetry breaking and confinement in YM-theories. Phys.Rev., D77:114018, 2008.

[170] Christian Hagen, Falk Bruckmann, Erek Bilgici, and Christof Gattringer. Thin and
dressed Polyakov loops from spectral sums of lattice differential operators. PoS,
LAT2007:289, 2007.

[171] Erek Bilgici, Falk Bruckmann, Christof Gattringer, and Christian Hagen. Dual quark
condensate and dressed Polyakov loops. Phys.Rev., D77:094007, 2008.

[172] Jens A. Müller. A Dyson–Schwinger approach to finite temperature QCD. PhD The-
sis, TU Darmstadt, 2013.

[173] Jan Lücker. Chiral and Deconfinement Phase Transitions in N_ f = 2 and N_ f = 2+1
Quantum Chromodynamics . PhD Thesis, JLU Giessen, 2013.

[174] M.H. Al-Hashimi and U.-J. Wiese. Discrete Accidental Symmetry for a Particle in a
Constant Magnetic Field on a Torus. Annals Phys., 324:343–360, 2009.

[175] N.D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism
in one-dimensional or two-dimensional isotropic Heisenberg models. Phys.Rev.Lett.,
17:1133–1136, 1966.

[176] Sidney R. Coleman. There are no Goldstone bosons in two-dimensions. Com-
mun.Math.Phys., 31:259–264, 1973.

[177] Jan Luecker, Christian S. Fischer, and Richard Williams. Volume behaviour of
quark condensate, pion mass and decay constant from Dyson-Schwinger equations.
Phys.Rev., D81:094005, 2010.

[178] Jan Lucker and Christian S. Fischer. Two-flavor QCD at finite temperature and chem-
ical potential in a functional approach. Prog.Part.Nucl.Phys., 67:200–205, 2012.

[179] M. Franz, Z. Tesanovic, and O. Vafek. Gauge invariant fermion propagator in QED(3).
2002.

121



Bibliography

[180] Tobias Goecke. On the critical number of flavours in QED_3 as an effective theory of
Cuprate superconductors. diploma thesis, TU Darmstadt, 2008.

[181] J.A.Bonnet. Effects of anisotropy in (2+1) dimensional QED. Master’s Thesis, TU
Darmstadt, 2010.

[182] Gabriela Murguia, Alfredo Raya, Angel Sanchez, and Edward Reyes. The Electron
Propagator in External Electromagnetic Fields in Lower Dimensions. Am.J.Phys.,
78:700–707, 2010.

[183] Kaushik Bhattacharya. Solution of the Dirac equation in presence of an uniform mag-
netic field. 2007.

[184] Chung Ngoc Leung and Shang-Yung Wang. Gauge independent approach to chiral
symmetry breaking in a strong magnetic field. Nucl.Phys., B747:266–293, 2006.

[185] Chung Ngoc Leung, Y.J. Ng, and A.W. Ackley. Schwinger-Dyson equation approach
to chiral symmetry breaking in an external magnetic field. Phys.Rev., D54:4181–4184,
1996.

[186] D.S. Lee, Chung Ngoc Leung, and Y.J. Ng. Chiral symmetry breaking in a uniform
external magnetic field. 2. Symmetry restoration at high temperatures and chemical
potentials. Phys.Rev., D57:5224–5229, 1998.

[187] D.S. Lee, Chung Ngoc Leung, and Y.J. Ng. Chiral symmetry breaking in a uniform
external magnetic field. Phys.Rev., D55:6504–6513, 1997.

[188] Y. Jack Ng. Magnetic catalysis of chiral symmetry breaking and the Pauli problem.
pages 557–563, 1998.

[189] Chung Ngoc Leung and Shang-Yung Wang. Gauge independence and chiral symme-
try breaking in a strong magnetic field. Annals Phys., 322:701–708, 2007.

122



Eigenständigkeitserklärung

Ich erkläre:

Ich habe die vorgelegte Dissertation selbstständig und ohne unerlaubte fremde Hilfe und nur
mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle Textstellen, die
wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen sind, und alle Angaben,
die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Bei den von
mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grund-
sätze guter wissenschaftlicher Praxis, wie sie in der “Satzung der Justus-Liebig-Universität
Gießen zur Sicherung guter wissenschaftlicher Praxis” niedergelegt sind, eingehalten.

(J.A. Bonnet)

Ort Datum Unterschrift

123


	Introduction 
	Basic aspects of strongly coupled theories 
	Functional integral formalism in a nutshell 
	Chiral Symmetry 
	Aspects of phase transitions 
	Confinement
	Dyson–Schwinger Equations 

	QED3in an anisotropic spacetime 
	QED3at zero temperature 
	QED3as an effective theory for high-temperature superconductors
	QED3Lagrangian for HTSs
	Dyson–Schwinger equations for anisotropic spacetime 
	Numerical Results: The phase diagram of HTS at zero temperatures 
	Summary

	QED3at finite temperature 
	Finite temperature DSEs 
	Critical Scaling 
	Numerical Results
	Summary


	Quenched QCD under strong external magnetic fields
	Formalism 
	The Dyson–Schwinger equations of QCD with an external magnetic field 
	Chiral condensate 

	The dual condensate from external magnetic fields 
	Numerical Results
	Summary

	Physical Magnetic Field Strengths 
	Cutoff Scheme
	Numerical Results at zero T 
	Summary


	Conclusions and Outlook
	Aspects of QED3
	Derivation of the QED3Lagrangian 
	Renormalization Point Dependencies in QED3
	QED3:Anisotropic Nfc in the Pisarski approximation 

	Aspects of QCD
	Ritus' method for the quark propagator
	The dressed quark propagator 
	The Dyson Schwinger equation in an external magnetic field 


