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Abstract

This is a survey article which deals with some basic notions and

results in geometry and cohomology theory of a remarkable class

of complex manifolds so called Kähler spaces and their subclass of

Calabi-Yau spaces. Our approach to these spaces includes differen-

tial geometry methods and technics. We emphasize in some details

manifolds of the complex dimension 3, because of their role in the

string theory. To explain what is a Calabi-Yau space we start with

the definition of a smooth manifold, its tangent space, vector fields,

a connection and the corresponding curvatures. We introduce also de

Rham cohomology groups.

Then we develop the corresponding theory over manifolds with

complex structure and point out properties of these spaces making

them distinguished for extra studying. Among all complex manifolds

we pay the attention especially on Kähler spaces and consider them

in some details. Finally we define Calabi-Yau spaces. We deduce

formalism on some level being not very precise whenever is possible

and explain some notions very roughly. For more details we notify the

corresponding references. Examples, involved in some subsections,
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2Research partially supported by DFG and Ministry of Science of Serbia, project

Geometry, Education and Visualization with Applications
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should clarify the corresponding notions, hoping it makes this text

more readable.

1 Introduction

As we know a possible background configuration for superstrings is the

space M4×C, where M4 is a four dimensional Minkowski space and C is a

three dimensional Calabi-Yau space. Since a Minkowski space is well known

we are interested in the notion of Calabi-Yau space, in the framework of

the applications in the superstrings theory. The main purpose of this note

is to explain the meaning of the following definition.

Definition 1 Calabi-Yau space is a compact (three dimensional) complex

manifold with a Ricci flat Kähler metric.

More precisely, we shall consider Calabi-Yau spaces using the complex man-

ifold theory. Of course, to understand these spaces in all details one should

be familiar with the algebraic geometry. The full generality overcomes this

note and hence we develop this theory as much as possible to omit that

parts which need the knowledge of algebraic geometry. We point out also

that some notions will be explained only on an intuitive level to succeed

at least to advise how this theory is rich and fruitful for a research. More

details one can find in [13], [10], [8], [12], [14], [17], [18], etc.

The paper is organized in five sections:

2. Real manifolds

3. Complex manifolds

4. Kähler metrics

5. Ricci flat Kähler merics

6. Geometry and topology of Kähler and Calabi-Yau spaces.
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We clarify all notions with the suitable examples for a reader who is inter-

esting in physics, especially in the string theory.

The section 2. considers differential geometry of smooth manifolds and

the cohomology theory over these spaces. This is the reason to be interested

also in the differential forms. The section 3. deals with complex manifolds.

All notions introduced in the section 2. are adopted to the existence of

holomorphic transition functions. We consider Kähler spaces in the section

4. These spaces and their metric, Laplacian, as well as topology are studied

in terms of Kähler form. To introduce Calabi-Yau spaces we need the

curvature for the Levi-Civita connection of Kähler metric. We study these

objects in the section 5. To consider geometry and topology of Kähler

and Calabi-Yau spaces in full generality it overcomes this paper. Hence

we present only few results of mathematicians from our University in the

Section 6.

2 Real manifolds

The main purpose of this section is to introduce the basic notions to develop

differential geometry of smooth manifolds: a manifold, coordinate systems,

tangent and cotangent spaces, differential forms, a connection and the

corresponding curvatures. Using the differential forms we develop also the

cohomology theory.

U1

U2
U3

U4

Figure 1: A manifold
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2.1 Definition of a manifold

A manifold M is a space which looks like a Euclidean space R
n around each

point. In other words, a manifold M is the union of open subsets Ui of R
n

(see Fig. 1) , i.e.

M = ∪Ui, ∀Ui ⊂ R
n.

Open subsets Ui in general case do not have to be open subsets of R
n but

only homeomorphic to open subsets of R
n.

One may illustrate this very important notion with some examples.

2.2 Examples

1. The Euclidean space R
n; especially, for n = 1 R ≡ R

1 is a Euclidean

line:

Figure 2: Euclidian line

2. n-sphere Sn immersed in R
n+1 may be defined by

∑n+1
i=1 x2

i = c2,

where c = const and (x1, . . . , xn+1) are Desquartes coordinates. For

n = 0, 1, 2 see Fig.3.
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S0 : x = ±c (”zero-sphere” is just two points

S1 : = a circle or ring

S2 : a sphere like a balloon

Figure 3: Spheres

3. Projective spaces Pn(R).

Let us explain this manifold giving its three equivalent models.

So the projective line may be obtained from an affine line if one adds

to that line one point, so called infinite point. If we do the same with

all lines in an affine space An, such that parallel affine lines have the

common infinite point (see Fig. 4), one obtains the model Pa(R) of

a projective space Pn(R). The second model Pl(R) of a projective

space Pn(R) one may obtain assuming that points of Pl(R) are lines

in R
n+1 passing through the origin O.

Finally, the third model Ps(R) is built from a sphere Sn with identified

antipodal points.
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Figure 4: Parallel affine lines

4. Group manifolds are defined by the space of free parameters in the

defining representation of a group. So we have:

• Z2 = {(0, 1), +2} is an additive group with the summation +2

modulo 2; but Z2 is also the group generated by multiplication

by (−1), and thus has elements ±1.

Consequently, Z2 may be identified with S0, i.e. Z2 = S0.

• Let U(1) be the group of multiplication by unimodular complex

numbers with elements eiθ. Since 0 ≤ θ < 2π may parametrize

a circle we have U(1) = S1.

• We know that

SU(2) =

⎧⎨
⎩u =

⎡
⎣ a b

−b̄ ā

⎤
⎦ , a = x1 + ix2, b = x3 + ix4,

det u = |a|2 + |b|2 =
∑4

i=1 x2
i = 1

}
.

As one can identify the parameter space of the group SU(2) with
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the manifold of the 3-sphere S3 it follows

SU(2) = S3.

• One can verify also the following identification:

SO(3) = SU(2)/Z2 = P 3(R),

where SO(3) is the special orthogonal group of 3 × 3 type ma-

trices.

So far, we gave only examples of manifolds. To see that all sets of points

are not manifolds we illustrate it with some examples too. One-dimensional

spaces which are not manifolds are given with the pictures (see Fig. 5)

, , .

Figure 5: Spaces which are not manifolds

The condition that the space looks locally like R
1 is not fulfilled at the

junctions.

2.3 Boundary of a manifold

We do not introduce this notion in a formally correct way, as it overcomes

the framework of this note. To understand this rather complicated notion
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on an intuitive level we explain it through some examples.

The boundary ∂(AB) of a line segment AB consists of the two points A, B,

and one may write ∂(AB) = {A, B}. If D2 is a disk, then its boundary

∂D2 is S1, i.e. ∂D2 = S1 (see Fig. 6 respectively).

A B

S1

D2

�
�

Figure 6: Boundaries of a segment and a disk

In general case if dimM = n, and M has a boundary ∂M , then dimM =

n− 1 and ∂∂M = ∅.

2.4 Coordinate systems

Let M = ∪i∈AUi, where Ui are open sets covering M , and φi : Ui −→ R
n

homeomorphisms, for all i ∈ A. Let Σ = Ui ∩ Uj �= ∅. Then

φij = φj ◦ φ−1
i : φi(Σ) −→ φj(Σ)
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Ui Uj

R R

M

�

�

�

Φi

Φj

Φji

Figure 7: Transition functions

we call the transition function (see Fig. 7). If p ∈ Ui it follows φi(p) =

(x1, . . . , xn) are coordinates of the point p with respect to the coordinate

system φi which is defined on Ui. Having in mind properties of φij we get

some classes of manifolds. If all transition functions φji have continuous

partial derivatives of all orders we say M is C∞ or smooth manifold. M is

a real analytic manifold if all φij are real analytic functions. Finally, M is a

complex manifold if all φij are holomorphic, i.e. complex valued functions

with complex power series.

2.5 Examples

1. Let S2 be a 2-dimensional sphere. One may show that S2 can be

covered with two open sets U1 and U2, such that ∅ �= U1 ∩ U2 = S2 \
{N, S}, N ∈ U1, S ∈ U2. We can define the corresponding coordinate

systems φ1, φ2 (see Fig. 8) such that the transition function is the

following one

φ12(x, y) =
(

x

x2 + y2
,
−y

x2 + y2

)
.

315



Φ2(A)

N

S

A

Φ1(A)

Figure 8: Coordinate systems of a sphere

Therefore S2 is a smooth manifold.

If we put z = x + iy, consequently we have φ12(z) = 1/z and hence

S2 is also the complex manifold.

2. Lie groups in general. Let A be a matrix. Then exp(A) = I + A +

. . .+ 1
n!A

n+. . . converges to an invertible matrix. Assuming that a Lie

group G is one of the followings: GL(k, R), GL(k, C), U(k), SU(k),

O(k), SO(k), and g its Lie algebra then exp : g −→ G is the diffeomor-

phism which defines a coordinate system near I ∈ G. A coordinate

system near g0 ∈ G can be defined by mapping g −→ g0 exp g. The

transition functions are thus given by left multiplication in the group.
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2.6 Tangent space and cotangent space

Roughly speaking the tangent space TpM of a smooth manifold M in a

point p is the linear approximation of M in some neighbourhood U of p.

To introduce TpM more precisely, let y = f(x) be a real map and x = p+v

be some point near p. Then expanding this function around p in a Taylor

series it yields

f(x = p + v) = f(p) + v
df

dx

∣∣∣∣
x=p

+ . . .

�

�

��

p
α

d f
d x |p

y

x

Figure 9: The tangent line of a curve

As we know df
dx

∣∣∣
p

= tan α, where α is the angle between x axis and the

tangent line of the curve y = f(x) in the point p (see Fig. 9). Considering
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n-dimensional surface with coordinates xi (i = 1, . . . , n) the corresponding

second term in Taylor series is the following one

n∑
i=1

vi ∂f(x)
∂xi

∣∣∣∣
x=p

:= vi ∂f(x)
∂xi

, (1)

where, from now on, we use Einstein convention of summation when we

have repeated index. One may show vi ∂
∂xi |x=p has an intrinsic meaning not

only on a surface but also on an arbitrary smooth manifold M . Hence vi ∂
∂xi

with smoothly varying coefficients vi(x) is called a vector field. Further-

more, the operators
{

∂
∂xi

}
at x = p define a basis for the tangent space of

M at the point p. One can prove also that TpM is the vector space spanned

by the tangents at p to all curves passing through p in the manifold M ,

and its dimension is n at each point p ∈M .

Since we obtain the tangent space using the second term (1) in Taylor series

it says for instance that at a point p a manifold M can be approximated

by the vector space up to the first order, not merely up to the zero-th

order. Further theory reveals that TpM may be some of special vector

spaces (Euclidean, Hermitian etc.) which depends on the structure of M .

The tangent space occurs naturally in classical mechanics. Let L(qi(t), q̇i(t))

be a Lagrangian. Then t-derivatives can be defined using the implicit

function rule
d

dt
=

∂

∂t
+ q̇i ∂

∂qi
. (2)

The second term in the previous equation has the structure of a vector

field. Velocity space in Lagrangian classical mechanics corresponds exactly

to the tangent space of the configuration space: if M has coordinates {qi},
then Tq(M) has coordinates {q̇i}. Comparison (2) with (1) shows that

the operators
{

∂
∂qi

}
form a basis for TqM .

Since TpM has a structure of a vector space, having in mind our knowledge

318



of linear algebra we are ready to be interested in its dual space T ∗
p M , p ∈M ,

so called the cotangent space of a manifold at p ∈M .

To understand better T ∗
p M we recall some facts from the corresponding

theory. Let Ei be a basis of V . Then the basis ej of V ∗ is given by their

inner product

< Ei, e
j >= δj

i .

Especially, if Ei = ∂
∂xi is a coordinate basis of TpM then ei = dxi is given

by the differential line elements. We consider the covector field U = uidxi.

A motive to study a cotangent space T ∗
p M one may find also in classical

mechanics as cotangent space corresponds to momentum space. As the

basis vectors are given by the differential line elements dqi, the covector

fields are the followings pidxi, assuming we identify pi = ∂L(qi, q̇i)/∂q̇i.

Using the construction of tensor product of vector spaces one may introduce

a tensor field ω
(k)
(l) over M as

ω
(k)
(l) = ωi1...ik

j1...jl

∂

∂xi1
⊗ . . .⊗ ∂

∂xik
⊗ dxj1 ⊗ dxjl .

Consequently, this is an element of

TpM ⊗ . . .⊗ TpM︸ ︷︷ ︸
k

T ∗
p M ⊗ . . .⊗ T ∗

p M︸ ︷︷ ︸
l

.

2.7 Differential forms

A tensor product includes neither symmetrization nor antisymmetrization

of indices. Anyhow, it is shown the totally antisymmetric covariant tensor

fields (elements of T ∗
p M ⊗ . . .⊗ T ∗

p M) are powerful tool for many practical

calculations not only in differential geometry but also in cohomology theory,

integration over a manifold, global analysis, etc. We call these tensor fields

differential forms. We omit their consideration in full generality and pay
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the attention on important details expressed in terms of basis elements of

T ∗
p M , dual to coordinate basis of TpM .

Let dx, dy be two basis elements of T ∗
p M . Cartan’s wedge product or

exterior product ∧ of dx and dy is defined by

dx ∧ dy =
1
2
(dx⊗ dy − dy ⊗ dx).

One may check directly

dx ∧ dy = −dy ∧ dx,

dx ∧ dx = 0.

The differential line elements dx, dy are differential 1-forms or 1-forms and

its wedge product defines 2-form dx ∧ dy. Using the linearity of tensor

product ⊗ one may compute Cartan’s wedge product of arbitrary two 1-

forms α = αidxi and β = βjdxj , such that we have

α ∧ β = αiβjdxi ∧ dxj = −β ∧ α.

Consequently, the wedge product is a rule for constructing 2-forms out of

pairs of 1-forms.

Let Λp(x) be the set of p-forms at a point x, and C∞(Λp) the space of

smooth p-forms whose elements are anti-symmetric tensors fij...(x) having

p-indices contracted with the wedge products of p-differentials. This is

a vector space of dimension n!/p!(n − p)!. To clarify rather complicated

explanation in terms of indices and contractions we give explicitly elements
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of C∞(Λp) and corresponding dimensions for p = 0, 1, 2, 3, . . . , n− 1, n:

C∞(Λ0) = {f(x)} dim = 1

C∞(Λ1) = {f(x)dxi} dim = n

C∞(Λ2) = {f(x)ijdxi ∧ dxj} dim = n(n−1)
2!

C∞(Λ3) = {f(x)ijkdxi ∧ dxj ∧ dxk} dim = n(n−1)(n−2)
3!

......................... .......

C∞(Λn−1) = {fi1...in−1dxi1 ∧ . . . dxin} dim = n

C∞(Λn) = {fi1...indxi1 ∧ dxin} dim = 1.

Several important properties of p-forms and the wedge products are recog-

nizable at once. First of all the wedge product of p- and q-form is (p + q)-

form and hence

Λp(x) ∧ Λq(x) = Λp+q(x).

Because of antisymmetry properties we have

Λp = 0, p ≥ n.

Consequently, the wedge product and linear operations among differential

forms give the resulting form which always belong to the original set of

spaces denoted by

Λ∗ = Λ0 ⊕ Λ1 ⊕ . . .⊕ Λn.

This is a graded algebra called Cartan’s exterior algebra of differential

forms.

Since arbitrary p-form depends on smooth functions fij... we may introduce

some maps between these spaces C∞(Λp) (p = 0, 1, . . . , n) in terms of the

differentiation. So we have

d : C∞(Λ0) −→ C∞(Λ1); d(f(x)) = ∂f
∂xi dxi,

d : C∞(Λ1) −→ C∞(Λ2); d(fi(x)dxi) = ∂fi

∂xj dxj ∧ dxi,

d : C∞(Λ2) −→ C∞(Λ3); d(fij(x)dxi ∧ dxj) = ∂fij

∂xk dxk ∧ dxi ∧ dxj .
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One may reveals simple for p = 0, 1 . . . , n it makes sense the following map

d : C∞(Λp) −→ C∞(Λp+1),

such that

d2 = 0.

This map is called the exterior derivative. Pay the attention for p = 0, 1, 2 it

is given exactly by the foregoing relations and henceforth one may generalize

a rule of exterior derivation of an arbitrary p−form.

The exterior derivation is connected with the wedge product of p− and

q−forms respectively by the equation

d(αp ∧ βq) = dαp ∧ βq + (−1)pαp ∧ dβq,

which seems like ”generalized Leibnitz rule”.

2.8 Example

One may check that possible p−forms αp in 2-dimensional space M are

these ones:
α0 = f(x, y),

α1 = u(x, y)dx + v(x, y)dy,

α2 = φ(x, y)dx ∧ dy,

and their exterior derivatives

dα0 = ∂f
∂xdx + ∂f

∂y dy,

dα1 =
(

∂v
∂x − ∂u

∂y

)
dx ∧ dy,

dα2 = 0.

Among all p−forms we have two remarkable classes, important for example

in the cohomology theory. A p− form ω is closed if dω = 0. A p−form ω is

exact if ω = dα for some globally defined (p− 1)-form α. It is simple to see

that every exact form ω(= dα) is also closed one, as dω = d2α = 0. There
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is an interesting phenomenon for M = R
n. Every closed form defined on

R
n is also exact. If M is an arbitrary manifold this is true only locally, but

not globally in general.

We are ready to introduce the pth cohomology group, Hp(M), one of the

important topological notions for our subsequent studies.

Definition 2 The pth cohomology group Hp(M) is the set of all closed

p−forms where two forms ω and ω′ are considered equivalent if ω − ω′ is

exact.

Hp(M) are real cohomology groups with the structure of real vector spaces

even its name points out only the group structure.

The dimension of Hp(M) is also significant topological notion, named the

pth Betti number, which we denote bp := dimHp(M).

It is simple to check that H0(M) is the space of constant functions. To

find bp or Hp(M) in general case it might be a very complicated problem.

We compute them here in the simplest case just to clarify the previous

definitions.

2.9 Examples

• b0(M) = 1 for a connected manifold M , and generally b0 is equal to

the number of connected pieces of the manifold.

• dimHp(Rn) = 0, for p > 0 and dimH0(Rn) = 1.

• Hn(M, R) = R, as all forms ωn, elements of Hn(M, R), differ from a

volume element of M for a constant factor.

We recall once again H0 consists of the constant functions and Hn

consists of the constant multiplies of the volume element.
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• Let Sn be an n-dimensional sphere. Then

dim Hp(Sn, R) = 0, for 0 < p < n,

dim H0(Sn, R) = dimHn(Sn, R) = 1.

• Let T 2 = S1 × S1 be a two-dimensional torus. We denote by

θ1, θ2, 0 ≤ θi < 2π coordinates on each of the two circles making

up the torus. It is simple to see dθi are closed but not exact forms,

since θi are defined only modulo 2π and are not global coordinates.

Consequently

dim H1(T 2, R) = 2.

H2(T 2; R) is generated by dθ1 ∧ dθ2 and furthermore using Küneth

formula we get

H2(T 2 = S1 × S1; R) = H1(S1, R)⊗H1(S1, R),

and hence

dim H2(T 2, R) = 1.

We correspond the Euler number ℵ(M) to M via alternating sum of bp.

More precisely we have

ℵ(M) =
n∑

p=0

(−1)pbp.

The theory, represented so far here in terms of differential forms, has not a

metric character. For this one, that follows, we need also a metric on M .

Let

ds2 = gμν(x)dxμdxν , gμν = gνμ

be the first fundamental form of M or a Riemannian metric. Let ω and τ

be two arbitrary p−forms. Then

〈ω|τ〉 :=
∫

M
ωμ1...μpτμ1...μp

√
gdx1 ∧ . . . ∧ dxn
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is their inner product, where

g = det(gμν).

To introduce the Hodge operator ∗ : Hp(M) −→ Hn−p(M) one may rewrite

the inner product of ω and τ in the following way

〈ω|τ〉 :=
∫

M
ω ∧ ∗τ.

If ωp ∈ C∞(ΛpM) then

∗ ∗ ωp = (−1)p(n−p)ωp.

We use the Hodge operator ∗ to introduce the operator δ which is adjoint

of exterior derivative. One may check by direct computations that

δ := (−1)np+n+1 ∗ d∗

is an operator

δ : C∞(Λp) −→ C∞(Λp−1)

with the properties:

〈ωp|dτp−1〉 = 〈δωp|τp−1〉,
δδωp = 0.

One may use these operators d and δ to introduce the Laplacian

Δ = (d + δ)2 := dδ + δd,

which acts on p−forms (0 ≤ p ≤ n) on M . We compute

〈ωp|Δωp〉 = 〈ωp|dδωp〉+ 〈ωp|δdωp〉
= 〈δωp|δωp〉+ 〈dωp|dωp〉 ≥ 0

to see Δ is a positive operator.
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A remarkable class of p−forms are harmonic whose image under the action

of Δ is zero, i.e.

Δωp = 0.

Since Δ is positive the condition ωp being harmonic is equivalent to these

ones dωp = 0 and δωp = 0:

Δωp = 0⇐⇒ dωp = 0, δωp = 0.

Among differential forms exact, co-exact and harmonic forms are sufficient

to express an arbitrary form in their terms. More precisely we have the

statement in the well-known Hodge theorem (1952):

Theorem 2.1 If M is a compact manifold without boundary, any p−form

ωp can be uniquely decomposed as a sum of exact, co-exact and harmonic

forms

ωp = dαp−1 + δβp+1 + γp,

where γp is a harmonic p−form.

Hodge theorem implies there is a unique harmonic representative for each

equivalence class in Hp(M).

How one can deal with these operators we illustrate on M = R
2 with the

standard Euclidean metric:

Basis of Λ∗: (1, dx, dy, dx ∧ dy),

Hodge ∗: ∗(1, dx, dy, dx ∧ dy) = (dx ∧ dy, dy, −dx, 1),

δf(x, y) = 0,

δ(udx + vdy) = −(∂xu + ∂yv),

δφdx ∧ dy = −∂xφdy + ∂yφdx,

Δf = −(∂2
xf + ∂2

yf).
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2.10 Connections on a manifold

Some analysis of the previous consideration tell us that we do not connect

neither vectors from tangent spaces TmM and TnM in any two points

m, n ∈M nor differential forms, built over T ∗
mM, T ∗

nM . Anyhow we know

that any vector v ∈ TpR
2 may be corresponds to other v′ ∈ TqR

n under

parallel displacement

	 	
v

v′

p qC

Figure 10: Parallel displacement of a vector along curve

along any curve C (see Fig. 10). To generalize this idea on any manifold

we need to introduce a notion of a connection. We present here the Cartan

approach via forms and later on we give relations to classical tensor calculus

approach.

Let ea = aa
μdxμ and Ea = Ea

μ ∂
∂xμ be any orthonormal basis of T ∗

xM and

TxM respectively. The affine spin connection one-form ωa
b is given by the
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relation

dea + ωa
b ∧ eb ≡ T a ≡ 1

2T a
bce

b ∧ ec, (3)

where T u is called the torsion 2−form of M . The curvature 2−form Ra
b is

defined by

Ra
b = dωa

b + ωa
c ∧ ωc

b =
1
2
Ra

bcde
c ∧ ed. (4)

The equations (3) and (4) are called the Cartan’s structure equations.

We differentiate (4) to obtain the Bianchi identities

dRa
b + ωa

c ∧Rc
b −Ra

c ∧ ωc
b = 0.

Let V a
b be a differential form of degree p. Then its covariant derivative is

defined as

DV a
b = dV a

b + ωa
c ∧ V c

b − (−1)pV a
c ∧ ωc

b.

The Levi-Civita spin connection is an affine spin connection which satisfies

two conditions:

metricity : ωab = −ωba,

no torsion : T a = dea + ωa
b ∧ eb = 0.

For a given metric (gαβ) on M there exists the unique Levi-Civita spin

connection.

Using the classical tensor calculus these two conditions are expressed as

metricity : gμν;α = ∂αgμν − Γλ
αμgλν − Γλ

ανgμλ = 0,

no torsion : Tμ
αβ = 1

2(Γμ
αβ − Γμ

βα) = 0,

where the Cristoffel symbols Γμ
αβ are determined by the relations

Γμ
αβ =

1
2
gμν(∂αgνβ + ∂βgνα − ∂νgαβ).

The components of the corresponding Riemann curvature are as

Rα
βμν = ∂μΓα

νβ − ∂νΓα
μβ + Γα

μγΓγ
νβ − Γα

νγΓγ
μβ;
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its Ricci tensor has the components

ρμν = Rμανβgαβ ;

and finally, we have the scalar curvature:

τ = ρμνg
μν .

The Riemann curvature gives the complete information about ”the shape of

a manifold M”. But, since it has n2(n2−1)/12 independent components, it

might be rather inconvenient to use all of them. For many investigations it

is enough to use the Ricci tensor and sometimes only the scalar curvature.

Further theory reveals that curvature is precisely the second order effect

which essentially measures deviation from the Euclidean case.

2.11 The holonomy group

We finish this short review about Riemannian geometry with holonomy

group. A holonomy group of the space Mn in the case when it differs from

SO(n) carries a considerable amount of information about the differential

geometry and topology of the space. For example, knowing the holonomy

group of a symmetric space, one can effectively calculate its cohomology

algebra (which in this case is isomorphic to the algebra of parallel differen-

tial forms). A holonomy group heavily depends on the parallel transport

with respect to any connection ∇.

Let∇ be a given connection, e a basis at Tp(M), γ a curve passing through a

point p ∈ γ. We denote by e′ the image of e, obtained by parallel transport

along γ with respect to ∇ (see Fig. 11).
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Figure 11: Parallel transport of a basis

Consequently we may write e′ = ge, where g ∈ GL(n, R). If we make

the same procedure along all closed curves γ, then all g ∈ GL(n, R) build

the subgroup G ⊂ GL(n, R). This subgroup is independent of the original

point p and is called the holonomy group of the connection. We have that

G ⊂ SO(n, R) if the connection preserves a metric (and M is orientable).

We refer [4], [1], [2], [16] for more details.

3 Complex manifolds

We have introduced already complex manifolds in the section 2. requiring

the transition functions being holomorphic. In this section we use another

approach to define a complex manifold. This approach will be used later

just to announce how many geometries on the same manifold is possible

to have and how are reach some of these geometries with corresponding

properties. To develop the theory of complex manifolds we will have in

mind all what we have introduced in the previous section (coordinate

systems, tangent and cotangent spaces, differential forms, cohomologies,
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Hodge theorem) to see how is it possible to adopt these objects to the

holomorphic transition functions. Of course, the existence of holomorphic

transition functions implies various consequences and sometimes a specific

approach to these previously mentioned objects.

�
�

��

M

X

JX

J2X = −X

Figure 12: A complex structure

A complex manifold is a real manifold endowed with a complex structure.

A complex structure on a real manifold M is an endomorphism J , J2 = −id

satisfying an integrability condition∇J = 0 (see Fig. 12). As a consequence

of this integrability condition one can prove that we may introduce local

complex coordinates zj on M such that the transition functions between

different coordinate patches are holomorphic. For a complex manifold we

have the corresponding real and complex dimensions:

dimR M = 2n, dimC M = n.

From here it follows that only evendimensional real manifolds may admit

a complex structure. But, it is interesting all these manifolds do not admit

anyhow a complex structure. This fact makes this theory more attractive.
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We do not consider now the criterions of its existence. We mention only

examples of manifolds which admit and which do not admit any complex

structure. So S6 does not admit a complex structure, while S2 = P 1(C)

does admit as well as Sp×Sq, for p, q odd numbers. Consequently S3×S3,

S2 × S2 × S2 are complex manifolds. The torus T 6 is also the complex

manifold.

The complex projective space Pn(C) is also one typical example of complex

manifolds. Moreover topology and geometry of this space are very reach and

hence we explain here how one can define Pn(C). Let z = (z0, . . . , zn) �= 0

determines a complex line through origin. We introduce the equivalence

relation ∼ between points with the condition

z ∼ z′ ←→ z = cz′, c = const �= 0.

It implies all points �= 0 of the same complex line are equivalent and

determine one point of Pn(C). Let Uk ⊂ Pn(C) be a set of lines with

zk �= 0. Then

ζ
(k)
i =

zi

zk

is well defined on Uk and it yields ordered multiplies of complex numbers

ζ(k) = (ζ(k)
0 , . . . , ζ(k)

n ) (we omit ζ
(k)
k = 1).

We use

ζ
(j)
i =

zi

zk

zk

zj
= ζ

(k)
i (ζ(k)

j )−1

on Uk ∩ Uj to see finally Pn(C) is the complex manifold. We call

(ζ(k)
0 , . . . , ζ

(k)
n ) inhomogeneous coordinates and (z0, . . . , zn) homogeneous co-

ordinates.

3.1 Equivalence of complex manifolds

One may ask now the question: how can we recognize some differences

between two-dimensional torus T 2, T
′2 or all of them are the same, i.e.
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one is the image of another one under some map.

We answer this question starting from more general point of view. Let

M, N be two complex manifolds and ϕ : M −→ N 1 − 1 and onto map,

such that ϕ, ϕ−1 are holomorphic. Then we say M and N are equivalent

and write M ∼ N .

�

�

e1 = (1, 0)
�

� e2 = (x, y)

Figure 13: A lattice defined by two vectors

Let L be a lattice defined by vectors e1 = (1, 0) and e2 = (x, y), where

y > 0 (see Fig. 13). Then

Tz = C/L, z = x + iy

as a real manifold is diffeomorphic to T 2. It is possible to prove

Tz ∼ Tz′
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only if

z′ =
az + b

cz + d
,

where a, b, c, d are integers, such that

ad− bc = 1.

3.2 Cohomology for complex manifolds

Following the method of introducing cohomology groups for real manifolds

it is clear we need, first of all, to give the notions of tangent and cotan-

gent spaces, differential forms and the corresponding differential operators.

Since complex numbers z = x + iy have their conjugate z̄ = x − iy and

z = z̄ only if z ∈ R we shall see that this phenomenon implies results of

different type from these ones in the section 2.

Let M be a complex manifold with local complex coordinates (z1, . . . , zn),

where

zk = xk + iyk and z̄k = xk − iyk.

We define

dzk = dxk + idyk, dz̄k = dxk − idyk

∂
∂zk = 1

2

(
∂

∂xk − i ∂
∂yk

)
, ∂

∂z̄k = 1
2

(
∂

∂xk + i ∂
∂yk

)
,

so that we have

df =
∑ ∂f

∂zk
dzk +

∑ ∂f

∂z̄k
dz̄k = ∂f + ∂̄f.

Consequently, if f(z) is a holomorphic function of a single variable then

∂̄f =
∂f

∂z̄
dz̄ = 0.

Similarly we have for functions of more complex variables. If

∂f

∂z̄k
= 0, k = 1, . . . , n or ∂̄f = 0
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then a function f defined on C
n is holomorphic.

We are ready now to introduce the tangent and cotangent spaces

TcM =
{

∂
∂zj

}
, T̄cM =

{
∂

∂z̄j

}
,

T ∗
c M = {dzj}, T̄ ∗

c M = {dz̄j}.
One can check simply these spaces are independent of the particular local

complex coordinates which are chosen as well as

T (M)⊗ C = TcM ⊕ T̄cM,

T ∗(M)⊗ C = T ∗
c M ⊕ T̄ ∗

c M.

Let Λp,q be the set of complex exterior forms, whose elements ω are of the

following type

ω = ωi1...ipj̄1...j̄q
dzi1 ∧ . . . ∧ dzip ∧ dz̄j̄1 ∧ . . . dz̄j̄q .

The operator ∂ acts as

∂ : Λp,q −→ Λp+1,q,

and similarly

∂̄ : Λp,q −→ Λp,q+1,

such that we have

∂ω =
∂ωi1...ipj̄1...j̄q

∂zk dzk ∧ dzi1 ∧ . . . ∧ dzip ∧ dz̄j̄1 ∧ . . . dz̄j̄q ,

∂̄ω =
∂ωi1...ipj̄1...j̄q

∂z̄k̄ dz̄k̄ ∧ dzi1 ∧ . . . ∧ dzip ∧ dz̄j̄1 ∧ . . . dz̄j̄q .

It is simply to verify
∂2 = ∂̄2 = 0,

∂∂̄ + ∂̄∂ = 0.

We introduce holomorphic forms as a generalization of holomorphic func-

tions. So, if ω ∈ Λp,0 and ∂̄ω = 0 then ω is holomorphic.

We combine ∂ and ∂̄ to define the operator

d =
1
2
(∂ + ∂̄).
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Among all (p, q) forms we survey their distinguished classes: ∂̄ closed (∂̄ω =

0) and ∂̄ exact (ω = ∂̄α). Since ∂̄ exact (p, q) forms are also ∂̄ closed ones

(recall ∂̄2 = 0) we may introduce the Dolbeault cohomology groups Hp,q

∂̄
(M)

as a factor space

Hp,q

∂̄
(M) ≡ ∂̄ closed (p, q) forms

∂̄ exact (p, q) forms
.

We notify for these groups the following facts:

• they posses the structure of a complex vector space;

• they measure global properties of the complex manifold;

• Hp,q
∂̄

(Cn) are trivial.

Following the considerations in the section 2. for real manifolds to intro-

duce the conjugate operators we need a metric, being compatible with the

complex structure of M . Therefore, we introduce a Hermitian metric on

M

ds2 = gab̄dzadz̄b̄,

assuming (gab̄) is a Hermitian matrix. This metric allows to define an inner

product of (p, q) forms and the operator ∗. Consequently, one may check

that

δ = (−1)np+n+1 ∗ d∗ ≡ d∗ = ∂∗ + ∂̄∗

is conjugate to d, and ∂∗, ∂̄∗ respectively to ∂, ∂̄.

The existence of three different differential operators d, ∂, ∂̄ acting on the

same spaces of forms implies also the existence of three kinds of Laplacians

Δ = (d + δ)2,

Δ′ = 2(∂ + ∂∗)2,

Δ′′ = 2(∂̄ + ∂̄∗)2,

which makes this theory of complex manifolds more interesting.
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We finish this section with answering the question: how one can decompose

any (p, q) form? This question answers the complex version of Hodge

theorem.

Theorem 3.1 (Hodge theorem - complex version) Every (p, q) form ω has

a unique orthogonal decomposition

ω = α + ∂̄β + ∂̄∗γ,

where Δ′′α = 0, β is a (p, q − 1) form, and γ is a (p, q + 1) form.

In particular, if ∂̄ω = 0 then the last term vanishes and we again have a

unique representative α for each cohomology class Hp,q
∂̄

(M).

4 Kähler metrics

We recall from the previous considerations complex manifolds may be de-

fined in terms of transition functions or a complex structure J . As we know

in general case J is an endomorphism of the tangent vector bundle T (M)

satisfying the condition

J2 = −id.

A manifold M endowed with an almost complex structure is called an

almost complex manifold, and denoted by (M, J).

If g is a metric defined on M , compatible with J , i.e.

g(JX, JY ) = g(X, Y ), X, Y ∈ T (M) (5)

and LC∇ the corresponding Levi-Civita connection, then according to prop-

erties of LC∇K, where K = g(·, J ·), Gray and Hervella [12] have obtained

sixteen different classes of almost Hermitian manifolds, i.e. almost complex

manifolds endowed with an almost Hermitian metric g: a Riemannian

metric which fulfills the condition (5). One of these classes is the class
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of Kähler manifolds, in some sense the simplest one, but nevertheless being

one of very interesting. We devote this section just to Kähler spaces.

Let ds2 = gab̄dzadz̄b̄ be a Hermitian metric (it means (gab̄) is a Hermitian

matrix. We associate to this metric the corresponding (1, 1) form

K =
i

2
gab̄dza ∧ dz̄b̄,

which we call the Kähler form. The strightforward computation gives

K̄ = − i

2
ḡab̄dz̄a ∧ dzb =

i

2
gbādzb ∧ dz̄a = K, z̄a = zā

and consequently K is a real form. Especially, if

dK = 0

then g is the Kähler metric. M is a Kähler manifold if it admits a Kähler

metric.

One may find very easily the examples of Kähler spaces. Namely, if

dim M = 2 then M is a Kähler space. The condition g being the Kähler

metric is possible to express in the terms of covariant derivative with respect

to the Levi-Civita connection LC∇. Namely, if g is a Riemannian metric

satisfying the conditions

g(JX, JY ) = g(X, Y ), LC∇J = 0, X, Y ∈ T (M),

then we call g a Kähler metric.

We notify some properties of Kähler spaces.

• The three different kinds of Laplacians, introduced on Hermitian

manifold, coincide, i.e.

Δ = Δ′ = Δ′′.

Consequently, every harmonic (p, 0) form is holomorphic and vice

versa.
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• The forms

K, K ∧K, . . . , K ∧ . . . ∧K︸ ︷︷ ︸
n times

are all non-zero and harmonic.

• K, K ∧K, . . . , K ∧ . . .∧K define cohomology classes in Hp(M, R) for

p = 2, . . . , 2n; so K defines an element of H2(M, R), K ∧K defines

an element of H4(M, R), etc.

All these cohomology classes are non-trivial.

• The volume form is given as V = 1
n! K ∧ . . . ∧K︸ ︷︷ ︸

n times

.

• The Betti numbers are positive, i.e. b2p ≥ 1.

Among examples of complex manifolds, which we have considered in previ-

ous section some of them admit a Kähler metric, but not all of them. So, the

complex projective space Pn(C) is a Kähler manifold and all of its cohomol-

ogy classes are generated by scalar multiplies of forms K, . . . , K ∧ . . . ∧K.

The Fubini-Study metric on Pn(C) is given by the Kähler form

K = i
2∂∂̄ lg(1 +

∑
zαz̄α)

= i
2

dzα∧dz̄β

1+
∑

zγ z̄γ [δαβ(1 +
∑

zγ z̄γ)− z̄αzβ ].

The manifold S3 × S3 does not admit any Kähler metric as b2 = 0.

The complex dimension hp,q, so called the Hodge number, of the Dolbeault

cohomology group Hp,q
∂̄

(M)

hp,q = dimC Hp,q

∂̄
(M)

is one of important topological invariants of M . Since for physicists, inter-

ested in string theory, dimC M = 3 is the most important, as we pointed
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out at the beginning we give the Hodge diamond in this case

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h0,1 h0,1

h0,0

The Hodge and Betti numbers are connected by the equation

bn =
∑

p+q=n

hp,q. (6)

The Hodge numbers possess also the properties

hp,q = hq,p, (7)

as ω is harmonic if and only if ω̄ is harmonic;

hp,q = hn−p,n−q. (8)

These properties define symmetries of the Hodge diamond. Moreover the

relations (6) and (7) imply b2n+1 is even. One can use (7) and (8) to see

that we have only 6 independent Hodge numbers if dimC M = 3.

5 Ricci flat Kähler metrics

In the previous section we have considered the properties of Kähler spaces

in terms of Kähler form. But to introduce special class of Kähler spaces,

so called Calabi-Yau spaces we need to study the curvatures of a Kähler

space.
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Let g be a Kähler metric. Then one can compute non-vanishing Christoffel

symbols of its Levi-Civita connection

Γj
kl = gjm̄gkm̄,l, Γj̄

k̄l̄
, (9)

as well as non-vanishing components of the curvature

Rj
klm̄ = −Γj

kl,m̄ (10)

and those related by symmetry and complex conjugation. It follows from

here also

Rj
klm̄ = Rj

lkm̄. (11)

We can combine (9) and (10) to obtain the components of the Ricci tensor

ρjk̄ = −∂2(lg det g)
∂zj∂z̄k

.

We introduce the Ricci form as

ρ := iρjk̄dzj ∧ dz̄k.

Since dρ = 0, it follows the Ricci form is closed and defines an element [ρ]

in H2(M). One can compute that the cohomology class [ρ] is independent

of the Kähler metric.

We call c1 = [ρ] the first Chern class. We consider here only the first Chern

class on the tangent bundle. One may introduce the Chern characteristic

classes on any vector bundle (see for example [14] for more details).

If c1 �= 0 on M then there cannot exist a Ricci flat metric.

The problem of prescribing the Ricci flat curvature on a compact Kähler

manifold was open a long period. Calabi [7] has proved c1 = 0 implies

uniqueness and 20 years later Yau [19] has proved the same condition

implies also existence of Ricci flat metric. More precisely, we have the

following theorem.
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Theorem 5.1 Given a complex compact manifold with c1 = 0 and any

Kähler metric gjk̄ with Kähler form K = igjk̄dzj ∧ dz̄k̄, then there exists

a unique Ricci flat Kähler metric ĝjk̄ whose Kähler form is in the same

cohomology class as K.

So, we are ready to define Calabi-Yau manifold.

Definition 3 The Calabi-Yau manifold is a compact Kähler manifold with

c1 = 0 in H2(M).

We point out the Ricci flat metric as unique is not important. Let us

recall the condition c1 = 0 is equivalent to the existence of a nonvanishing

holomorphic n-form ω.

As we know the Kähler space S2 × S2 × S2 has b3 = 0 and consequently

it may not be endowed with harmonic 3-forms. This implies S2 × S2 × S2

cannot admit a Ricci flat Kähler metric.

5.1 Symmetries of the Hodge numbers of Calabi-Yau spaces

M3

We present a consideration to 3-dimensional Calabi-Yau spaces as they are

important for superstring theory.

Since c1 = 0, the Hodge numbers get an extra symmetry. One can use

the covariantly constant three form ω (∇ω = 0) to see that the dual of a

harmonic (p, 0) form is also harmonic form of type (0, 3− p). Therefore:

if c1 = 0, then hp,0 = h0,3−p. (12)

We have in mind that lowering an index with a Hermitian metric changes

its type.

Property (12) reduces the six independent Hodge numbers to just four

which one can take to be h0,0, h1,0, h1,1, h2,1. However h0,0 is just the
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dimension of the space of constant functions and hence h0,0 = 1. It is also

simple to compute h1,0 using the Weitzenbock identity which makes possible

to express the Laplacian on p forms in terms of the covariant derivative ∇
and curvature of the metric:

Δd = −∇2 + curvature terms.

For a one form, the curvature term involves only the Ricci tensor. This

implies that on a Ricci flat manifold, every harmonic one form must be

covariantly constant and for this reason non-vanishing. But, a manifold

with ℵ �= 0 does not admit any nowhere vanishing 1 forms. Consequently

ℵ �= 0 implies b1 = 0 and hence h1,0 = 0. But we use also ℵ �= 0 to see

π1(M) is finite. Hence there exists a compact simply connected covering

space.

So we conclude the cohomology of a Calabi-Yau space with ℵ �= 0 is charac-

terized by two integers h1,1 and h2,1, such that we have ℵ = 2(h1,1 − h2,1).

5.2 The holonomy group of a Calabi-Yau space M3

We are familiar with the notion of a holonomy group. As we know the

holonomy group of a Levi-Civita connection LC∇ = ∇(g) is in general

SO(6), when g is a Riemannian metric. But, if the metric g is Kähler, then

the complex structure is preserved and the holonomy group is contained

in U(3). If the metric is Kähler and Ricci flat, then the holonomy group

is even more restricted. Namely, the Lie algebra of the holonomy group

is given by parallel transport around infinitesimal loops. The change in a

vector is then given by the curvature tensor by Ambrose-Singer theorem

[3]. The change for a Kähler metric is Rj
klm̄vlvm̄ which are generators of

U(3). We use (11) to compute the trace of these generators

trRj
klm̄vlvm̄ = Rk

klm̄ = Rk
lkm̄ = ρlm̄.
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Consequently the holonomy group is contained in SU(3) if and only if the

metric is Ricci flat and Kähler.

This problem of relations between curvature tensors and holonomy groups

from representation theory point of view has been considered by S. Salamon

[16].

5.3 Examples

We checked already that S2 × S2 × S2 does not admit Ricci flat Kähler

metric. We finish this section with some examples of 3-dimensional Kähler

spaces. One of them does not admit Ricci flat metric, second one admits

metric of this type.

• P 3(C). The complex projective spaces admit Kähler metrics, given

by the Kähler form

K =
i

2
∂∂̄ lg(1 +

3∑
α=0

zαz̄α)

and have the smallest possible Hodge numbers hp,q = δp,q. We con-

clude that P 3(C) does not admit a Ricci flat Kähler metric using the

equality h3,0 = 0, which implies there is no holomorphic three form

and hence c1 �= 0.

• We define the submanifold Y4,5 of P 4(C) by the equation

5∑
i=1

z5
i = 0,

where zi are homogeneous coordinates. If yi = zi/z5, i = 1, . . . , 4,

then the holomorphic three form

1
y4
4

dy1 ∧ dy2 ∧ dy3
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is non-singular and non-vanishing in all points of Y4,5. Consequently

Y4,5 has c1 = 0 and admits a Ricci flat Kähler metric. Moreover one

can show that h2,1 = 101 and h1,1 = 1 and consequently ℵ = −200.

These relations imply some interesting consequences. So, we use

h1,1 = 1 to see there is a one dimensional space of cohomology classes

of the Kähler form K, and consequently there is an one complex

dimensional space of harmonic (1, 1) forms. Since the Kähler form

is real, this implies one has only an one real dimensional space of

possible cohomology classes for K.

The equality h2,1 = 101 implies that there is a 101 (complex) dimen-

sional space of complex structures on this manifold. This yields a 203

(real) dimensional space of Ricci flat metrics. It is interesting, while

not one of these metrics is known explicitly, the different complex

structures on this manifold are known explicitly. So, let

f(zi) = Aijklmzizjzkzlzm, i, . . . , m = 1, . . . , 5

be any homogeneous polynomial in C
5. We define a smooth submani-

fold MA in P 4(C) by the equation f = 0, provided df �= 0. Every two

different tensors A, A′ yield diffeomorphic submanifolds MA, MA′ ,

while they have different complex structures only unless the tensors

A, A′ are related by a GL(5, C) transformation. Therefore, it is simple

to find the number of inequivalent complex structures. We use that

there is a 126 (complex) dimensional space of symmetric tensors A

and dimGL(5, C) = 25 to obtain 126−25 = 101 inequivalent complex

structures.
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6 Geometry and topology of Kähler and Calabi-

Yau spaces

We devote the last section to a presentation of some results related to

geometry and topology of Kähler and Calabi-Yau spaces obtained by group

of mathematicians from Belgrade. So we pay the attention on relations

between groups of transformations and the first Chern class, furthermore

some other geometrical (conharmonic curvature tensor) and topological

invariances (Hirzebruch signature, arithmetic genus) and finally the charac-

terization of complex space forms in terms of the shape operator for every

sufficiently small tube.

We recall a map f : (M̃, ∇̃) −→ (M,∇) of manifolds with symmetric

connections is called projective if for each geodesic γ of ∇̃, f ◦ γ is a

reparametrisation of a geodesic of ∇ (see Fig. 14). If a transformation

s of M preserves geodesics and the affine character of the parameter on

each geodesic, then s is called an affine transformation of the connection

∇ or simply of the manifold M .
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Figure 14: A projective map

Theorem 6.1 [5] Let (M, g) be a Calabi-Yau space of complex dimension

n > 1 and the scalar curvature τ = const. Then:

1. the group of projective diffeomorphisms of Levi-Civita connection

∇(g) coincides with the group of affine diffeomorphisms of the same

connection;

2. the identity component of the group of holomorphically projective dif-

feomorphisms of Levi-Civita connection coincides with the identity

component of its group of isometries.

Corollary 6.2 [5] Let (M, g) be an irreducible Calabi-Yau space of complex

dimension n > 1 and the scalar curvature τ = const. Then the group

of projective diffeomorphisms of the Levi-Civita connection ∇(g) coincides

347



with its group of isometries.

Studying the conformal transformations of Kähler manifolds and connec-

tions with torsion M. Prvanović [15] has introduced the complex conhar-

monic curvature tensor H. Let c2 be the second Chern class determined

by the form γ2. We have in the following theorem a characterization of flat

space in terms of H and γ2.

Theorem 6.3 [6] Let M be a compact Kähler manifold of complex dimen-

sion n > 1. If H = 0 then ωn−2c2(M) =
∫

γ2 ∧ Kn−2 ≤ 0 with equality

sign if and only if M is a flat space.

Let τ(M) and a(M) be Hirzebruch signature and arithmetic genus of a

complex surface M . Then we can use these topological invariances and H

to characterize also a flat complex space form.

Theorem 6.4 [6] Let M be a compact Kähler surface with H = 0. Then

ℵ(M) ≤ 3
2τ(M),

a(M) ≤ 0,

with equality sign if and only if M is a flat complex space form.
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�v
p

Figure 15: A tube about geodesic

Let Pσ(r) be a tube of radius r about geodesic σ on M tangent to the

unit vector field u. Further, consider the special point p = expσ(t)(rv), v ∈
σ(t)⊥, v(σ(t)) = Ju(σ(t)) of Pσ(r) and suppose that γ : s �→ expσ(t) sv is

the unit speed geodesic connecting σ(t) and p.

Theorem 6.5 [9] Let (M, g, J) be a Kähler manifold of dimM ≥ 4. Then

with the convention made above M is a complex space form if and only if

for every sufficiently small tube Pσ(r), (J ∂
∂s)(p) is an eigenvector of the

shape operator Sσ for all m ∈M and all geodesics through m.
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groups, Funktional Anal. i Priložen. vol 2(2), 1–10, (1968), (English

translation: Functional Anal. Appl. vol 2, 97–105, (1968)).

[2] Aleksievsky, D. V., On holonomy groups of Riemannian manifolds,

Ukrain. Math. Z. vol 19, 100–104, (1967).

[3] Ambrose, W. and Singer, I. M., A Theorem on holonomy, Trans. Amer.

Math. Soc. vol 75, 428–443, (1953).

[4] Besse, A. L., Einstein manifolds, (Springer, Berlin, 1987).
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