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Using the infinite-volume photon propagator, we develop a method which allows us to calculate
electromagnetic corrections to stable hadron masses at leading order in αQED with only exponentially
suppressed finite-volume effects. The key idea is that the infinite-volume hadronic current-current
correlation function with large time separation between the two currents can be reconstructed by its value at
modest time separation, which can be evaluated in finite volume with only exponentially suppressed errors.
This approach can be extended to other possible applications such as QED corrections to (semi)leptonic
decays and some rare decays.
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I. INTRODUCTION

Electromagnetic and strong interactions are two funda-
mental interactions known to exist in nature. They are
described by the first-principle theories of quantum electro-
dynamics (QED) and quantum chromodynamics (QCD),
respectively. In some physical processes, QED and QCD
are both present, and both play indispensable roles. A
typical example is the neutron-proton mass difference,
which is attributed to both electromagnetic and strong
isospin-breaking effects. Although this mass difference is
only 2.53 times the electron mass, it determines the
neutron-proton abundance ratio in the early Universe,
which is an important initial condition for big bang
nucleosynthesis. This quantity attracts a lot of interest
and has motivated a series of lattice QCD studies on the
isospin-breaking effects in hadron spectra [1–8].
Generally speaking, QED effects are small due to the

suppression of a factor of the fine-structure constant
αQED ≈ 1=137. However, when the lattice QCD calcula-
tions reach the percent or subpercent precision level, the
QED correction becomes relevant. It plays a particularly
important role in precision flavor physics, where lattice

QCD calculations of the semileptonic decay form factors
fþð0Þ and the leptonic decay constant ratio fK=fπ have
reached a precision of ≲0.3% [9]. At this precision, the
isospin symmetry breakings cannot be neglected. Pioneering
works [10–12] have been carried out to include QED
corrections to leptonic decay rates.
The conventional approach to include QED in lattice

QCD calculations is to introduce an infrared regulator for
QED. One popular choice is QEDL, first introduced in
Ref. [13], which removes all of the spatial zero modes of
the photon field. There are also some other methods:
QEDTL [1], massive photon [14], and C� boundary con-
dition [15]. In general, by including the long-range electro-
magnetic interaction on a finite-volume lattice, all of
these treatments introduce power-law suppressed finite-
volume errors. This is different from typical pure QCD
lattice calculations where finite-volume errors are sup-
pressed exponentially by the physical size of the lattice.
Reference [16] provides an up-to-date systematic analysis
of the finite-volume errors for the hadron masses in the
presence of QED corrections.
Another approach to incorporate QED with QCD is to

evaluate the QED part in infinite volume analytically and
completely eliminate the power-law suppressed finite-
volume errors. Such an approach, called QED∞, has been
used in the calculation of hadronic vacuum polarization
(HVP) and the hadronic light-by-light (HLBL) contribution
tomuon g − 2 [17–20]. This approach,when applied toQED
corrections to stable hadron masses, does not completely
remove the power-law suppressed finite-volume effects. This
is mostly because the hadron correlation functions, which
one calculates on the lattice to extract hadron masses, are
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exponentially suppressed for a large hadron source and sink
separation. Therefore, the finite-volume error of the QED
correction to the hadron correlation function evaluated with
QED∞, while its absolute size is still exponentially sup-
pressed by the size of the system, is power-law suppressed
only when compared with the correction functions. In this
paper, we propose a method to solve this problem. We show
that the QED self-energy diagram, at the leading order in
αQED, can be calculated on a finite-volume lattice with only
exponentially suppressed finite-volume effects.

II. MASTER FORMULA

We first consider the self-energy calculation in an infinite
space-time volume. For the case of a stable hadronic state
N, the self-energy diagram shown in Fig. 1 can be
calculated in Euclidean space from the integral:

ΔM ¼ I ¼ 1

2

Z
d4xHμ;νðxÞSγμ;νðxÞ; ð1Þ

where the hadronic part Hμ;νðxÞ ¼ Hμ;νðt; x⃗Þ is given by

Hμ;νðxÞ ¼
1

2M
hNð0⃗ÞjT½JμðxÞJνð0Þ�jNð0⃗Þi; ð2Þ

where Jμ ¼ 2eūγμu=3 − ed̄γμd=3 − es̄γμs=3 is the had-
ronic current, jNðp⃗Þi indicates a hadronic state N with
the massM and spatial momentum p⃗, and Sγμ;ν is the photon
propagator whose form is analytically known. The states
jNðp⃗Þi obey the normalization convention hNðp⃗0ÞjNðp⃗Þi¼
ð2πÞ32Ep⃗δðp⃗0−p⃗Þ. The current operator Jμðt; x⃗Þ is a
standard Euclidean Heisenberg-picture operator Jμðt; x⃗Þ ¼
eHtJμð0; x⃗Þe−Ht. A possible short-distance divergence of
the integral can be removed by renormalizing the quark
mass.
If we examine an L3 finite-volume system, the main

feature of conventional methods such as QEDL is to design
a finite-volume form for the photon propagator, Sγ;Lμ;ν , and
calculate the hadronic correlation function in a finite
volume in the presence of finite-volume QED using Sγ;Lμ;ν .
Unfortunately, it results in power-law suppressed finite-
volume effects in the mass extracted from the finite-volume
hadronic correlation function. For the QED∞ approach, one
may begin with the infinite-volume formula in Eq. (1) to
extract the QED self-energy but then limit the range of the

integral and replace Hμ;νðxÞ with a finite-volume version.
However, as we will explain later, the result still suffers
from power-law finite-volume effects.
To completely solve the problem, we develop a method

as follows. We choose a time ts (ts ≲ L) that is sufficiently
large that the intermediate hadronic states between the two
currents are dominated by single hadron states since all of
the other states (resonance states, multihadron states, etc.)
are exponentially suppressed by ts:

I ¼ I ðsÞ þ I ðlÞ;

I ðsÞ ¼ 1

2

Z
ts

−ts
dt

Z
d3x⃗Hμ;νðxÞSγμ;νðxÞ;

I ðlÞ ¼
Z

∞

ts

dt
Z

d3x⃗Hμ;νðxÞSγμ;νðxÞ: ð3Þ

We propose approximating I ðsÞ and I ðlÞ using the lattice
QCD calculable expressions I ðs;LÞ and I ðl;LÞ,

I ðsÞ ≈ I ðs;LÞ ¼ 1

2

Z
ts

−ts
dt

Z
L=2

−L=2
d3x⃗HL

μ;νðxÞSγμ;νðxÞ;

I ðlÞ ≈ I ðl;LÞ ¼
Z

L=2

−L=2
d3x⃗HL

μ;νðts; x⃗ÞLμ;νðts; x⃗Þ; ð4Þ

where Lμνðts; x⃗Þ is a QED weighting function, defined as

Lμ;νðts; x⃗Þ ¼
Z

d3p
ð2πÞ3 e

ip⃗·x⃗

Z
∞

ts

dte−ðEp⃗−MÞðt−tsÞ

×
Z

d3x⃗0e−ip⃗·x⃗0Sγμ;νðt; x⃗0Þ: ð5Þ

Here the energy Ep⃗ is given by the dispersion relation

Ep⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p⃗2

p
. The integral in Lμ;νðts; x⃗Þ can be calcu-

lated in infinite volume (semi)analytically. In Sec. IV,
detailed expressions for Lμ;νðts; x⃗Þ are given for both
Feynman- and Coulomb-gauge photon propagators.
The finite-volume hadronic part HL

μ;νðxÞ is defined
through finite-volume lattice correlators (assuming that
t ≥ 0):

HL
μ;νðt; x⃗Þ ¼ L3

hNðtþ ΔTÞJμðt; x⃗ÞJνð0ÞN̄ð−ΔTÞiL
hNðtþ ΔTÞN̄ð−ΔTÞiL

; ð6Þ

where N̄ðtÞ=NðtÞ is an interpolating operator which cre-
ates/annihilates the zero momentum hadron state N at time
t, ΔT is the separation between the source and current
operators, which needs only to be large enough to suppress
the excited-state effects. The disconnected diagrams,
where the vector currents attach to the quark loops instead
of the quark lines connected to the interpolating operator
of the hadron, should be included in the above matrix
elements. Neglecting the disconnected diagrams in theFIG. 1. Self-energy diagram.
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lattice calculation is usually referred to as the QED-
quenched approximation.
We will demonstrate below that the quantities I ðs;LÞ and

I ðl;LÞ defined in the master formula (4) differ from I ðsÞ and
I ðlÞ only by exponentially suppressed finite-volume effects.

III. PATH TO THE MASTER FORMULA

A. Comparison between I ðsÞ and I ðs;LÞ

We adopt the conventional expectation (which can be
demonstrated in perturbation theory using the Poisson
summation formula [21]) that, for a theory such as QCD,
with a mass gap a matrix element such as HL

μ;νðt; x⃗Þ,
evaluated in a finite space-time volume L3 × T with periodic
boundary conditions, will differ from the corresponding
matrix elementHμ;νðt; x⃗Þ in infinite volume by terms that are
exponentially suppressed in the spatial and temporal extents
of the volume. In addition, the value of the infinite-volume
Hμ;νðt; x⃗Þ, when jx⃗j≳ t, is exponentially suppressed in jx⃗j.
These considerations suggest that the integral for I ðsÞ is

dominated by the region inside the finite-volume lattice
and well approximated by the finite-volume integral I ðs;LÞ.
We therefore conclude that I ðs;LÞ differs from its infinite-
volume version I ðsÞ by an exponentially suppressed finite-
volume effect.

B. Comparison between I ðlÞ and I ðl;LÞ

We remind the reader that the value of Hμ;νðxÞ is not
always exponentially suppressed at large jxj. In fact, for
large jtj, we shall have

Hμ;νðt; x⃗Þ ∼ e−Mð
ffiffiffiffiffiffiffiffiffi
t2þx⃗2

p
−tÞ ∼ e−M

x⃗2
2t ∼Oð1Þ: ð7Þ

Therefore, if we limit the range of the integral for I in
Eq. (1), it will contain an Oð1=LÞ power-law finite-volume
effect even if the infinite-volume photon propagator Sγμ;ν is
used instead of Sγ;Lμ;ν . This is one of the reasons why the
traditional QED∞ method, which works for the cases of
HVP and HLBL, does not work for the QED self-energy
diagram. As both ends of the photon propagator couple to
the quark current, one can perform the intergral over a finite
time window only. Even if we could create an infinite time-
extent lattice and use the integral

Z
∞

−∞
dt

Z
L=2

−L=2
d3x⃗HL

μ;νðt; x⃗ÞSγμ;νðt; x⃗Þ; ð8Þ

the result would still carry anOð1=L4Þ finite-volume effect,
due to the fact that HL

μ;νðt; x⃗Þ −Hμ;νðt; x⃗Þ is not exponen-
tially suppressed at large jtj.
Instead of using HL

μ;νðt; x⃗Þ at large jtj directly, we study
the t dependence of the infinite-volume Hμ;νðt; x⃗Þ for
jtj > ts. By inserting a complete set of intermediate states,
we can rewrite Hμ;νðt; x⃗Þ as

Hμ;νðt; x⃗Þ ¼
X
n

Z
d3p⃗
ð2πÞ3

1

2En;p⃗
eip⃗·x⃗e−ðEn;p⃗−MÞt

×
1

2M
hNð0⃗ÞjJμð0Þjnðp⃗Þihnðp⃗ÞjJνð0ÞjNð0⃗Þi:

ð9Þ

Without losing generality, positive t is assumed in the above
equation. In Euclidean space with large t, the contribution
from excited states is exponentially suppressed. The follow-
ing approximation, where only the lowest energy states’
contributions are kept, is then valid for t > ts:

Hμ;νðt; x⃗Þ ≈
Z

d3p⃗
ð2πÞ3

1

2Ep⃗
eip⃗·x⃗e−ðEp⃗−MÞt

×
1

2M
hNð0⃗ÞjJμð0ÞjNðp⃗ÞihNðp⃗ÞjJνð0ÞjNð0⃗Þi;

ð10Þ

whereEp⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p⃗2

p
. On the one hand, Eq. (10) suggests

that we can calculate Hμ;νðt; x⃗Þ, for large t, via the matrix
element hMðp⃗ÞjJμð0ÞjMi. On the other hand, it indicates that
the Fourier transformation ofHμ;νðt; x⃗Þ at fixed t ¼ ts gives
the relevant matrix element:

Z
d3x⃗Hμ;νðts; x⃗Þe−ip⃗·x⃗

¼ 1

2Ep⃗
e−ðEp⃗−MÞts

×
1

2M
hNð0⃗ÞjJμð0ÞjNðp⃗ÞihNðp⃗ÞjJνð0ÞjNð0⃗Þi: ð11Þ

Putting Eq. (11) into Eq. (10), we are able to reconstruct
the needed infinite-volume hadronicmatrix element at large t
from its value at modest ts:

Hμ;νðt; x⃗0Þ ≈
Z

d3x⃗Hμ;νðts; x⃗Þ

×
Z

d3p⃗
ð2πÞ3 e

ip⃗·x⃗e−ðEp⃗−MÞðt−tsÞe−ip⃗·x⃗0 : ð12Þ

We will refer to this relation, which is the crucial step in the
derivation, as the “infinite-volume reconstruction” (IVR)
method. Here the≈ symbol reminds us that the excited-state
contributions in Hμ;νðt; x⃗Þ and Hμ;νðts; x⃗Þ are exponentially
suppressed and have been neglected. This relation allows us
to express all of the long-distance contributions I ðlÞ in terms
of thematrix elements evaluatedwith a fixed time separation,
Hμ;νðts; x⃗Þ, as
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I ðlÞ ¼
Z

∞

ts

dt
Z

d3x⃗0Hμ;νðt; x⃗0ÞSγμ;νðt; x⃗0Þ

≈
Z

d3x⃗Hμ;νðts; x⃗Þ
Z

∞

ts

dt
Z

d3x⃗0

×
Z

d3p⃗
ð2πÞ3 e

ip⃗·x⃗e−ðEp⃗−MÞðt−tsÞe−ip⃗·x⃗0Sγμ;νðt; x⃗0Þ

¼
Z

d3x⃗Hμ;νðts; x⃗ÞLμ;νðts; x⃗Þ: ð13Þ

On the second line, we have used relation (12) to convert
Hμ;νðt; x⃗Þ toHμ;νðts; x⃗Þ. Note that all of the integrals except
the first can be performed (semi)analytically and independ-
ently of the hadronic function. We name it as the weighting
function Lμ;νðts; x⃗Þ on the last line. As a preview, the
definition of Lμ;νðts; x⃗Þ is already given in Eq. (5). It can
be seen that the only information needed to calculate
Lμ;νðts; x⃗Þ is the mass of the target hadron. We then
approximate Hμ;νðts; x⃗Þ by a lattice calculable quantity
HL

μ;νðts; x⃗Þ up to the exponentially suppressed finite-volume
effects

I ðlÞ ≈
Z

L=2

−L=2
d3x⃗HL

μ;νðts; x⃗ÞLμ;νðts; x⃗Þ ¼ I ðl;LÞ: ð14Þ

Note that integral runs over a finite-volume box with
x⃗ ∈ ½−L=2; L=2�. Outside the box, the contribution from
Hμ;νðts; x⃗Þ is exponentially suppressed by the lattice size L.
By reaching Eq. (14), we complete the derivation of the
master formula.

IV. QED WEIGHTING FUNCTION Lμ;νðts;x⃗Þ
Detailed expressions for the QED weighting function

Lμ;νðts; x⃗Þ defined in Eq. (5) can be evaluated for the
following Feynman- and Coulomb-gauge photon propagators:
(a) Feynman gauge,

Sγμ;νðxÞ ¼ δμ;ν
4π2x2

¼ δμ;ν

Z
d4p
ð2πÞ4

eipx

p2
; ð15Þ

Lμ;νðts; x⃗Þ ¼
δμ;ν
2π2

Z
∞

0

dp
sinðpjx⃗jÞ

2ðpþ Ep −MÞjx⃗j e
−pts :

ð16Þ
(b) Coulomb gauge,

Sγμ;νðt; x⃗Þ

¼

8>><
>>:

1
4πjx⃗j δðtÞ μ ¼ ν ¼ 0

R d3p⃗
ð2πÞ3

1
2jp⃗j ðδi;j −

pipj

p⃗2 Þe−jp⃗jtþip⃗·x⃗ μ ¼ i; ν ¼ j

0 otherwise

:

ð17Þ

Li;jðts; x⃗Þ

¼
�
δi;j−

xixj
x⃗2

�
1

ð2πÞ2
Z

∞

0

dp
sinðpjx⃗jÞ

2ðpþEp−MÞjx⃗je
−pts

þ
�
δi;j−3

xixj
x⃗2

�
1

ð2πÞ2

×
Z

∞

0

dp
pjx⃗jcosðpjx⃗jÞ− sinðpjx⃗jÞ

2ðpþEp−MÞjx⃗j3 e−pts : ð18Þ

Only the spatial polarization components are needed for the
large timeexpression inCoulombgauge.All other components
of L are zero.

V. EXTENDED DISCUSSIONS

Equation (12) tells us that the large time hadronic matrix
elements Hμ;νðt; x⃗Þ can be determined using Hμ;νðts; x⃗Þ,
while Hμ;νðts; x⃗Þ can be calculated using the lattice. Before
reaching Eq. (12), we explored other methods to determine
hNð0⃗ÞjJμð0ÞjNð0⃗Þi. We recognized that by using the
Coulomb-gauge photon propagator and assuming that
jNð0⃗Þi is a spin-0 charged particle, the corresponding
matrix element can be determined easily. Our discussion
follows.
The infinite-volume photon propagator in Coulomb

gauge is given in Eq. (17). This implies, for I ðlÞ, that only
Sγi;j is relevant. For a spin-0 charged particle, we have

hNðp⃗1ÞjJμð0ÞjNðp⃗2Þi ¼ −ieðp1 þ p2ÞμFðq2Þ; ð19Þ

where the matrix element is expressed in terms of the form
factor Fðq2Þ with q ¼ p1 − p2. If the initial or the final
state has zero momentum, as is the case in Eq. (10), we
have

hNð0⃗ÞjJið0ÞjNðp⃗Þi ¼ −iepiFðq2Þ: ð20Þ

Therefore, we can obtain the result that I ðlÞ ¼ 0 simply
because of the Coulomb-gauge condition. Thus

I ≈ I ðs;LÞ ¼ 1

2

Z
ts

−ts
dt

Z
L=2

−L=2
d3x⃗HL

μ;νðt; x⃗ÞSγμ;νðt; x⃗Þ ð21Þ

for a spin-0 charged particle and a Coulomb-gauge photon
propagator, and all of the finite-volume errors are expo-
nentially suppressed by the lattice size L or the integration
range in the time direction ts. Note that ts ≲ L is required
for the above statement to be valid.

VI. CONCLUSION

We have demonstrated that the QED self-energy for a
stable hadron can be calculated on a finite-volume lattice
with only exponentially suppressed finite-volume effects.
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The power-law finite-volume effects, which are common in
QCDþ QED calculations, are completely eliminated. This
is achieved using the following three ideas.
(1) QED∞: We start with an integral I , where the QED

part in the integrand can be calculated in infinite
volume analytically, and the hadronic part is purely a
QCD matrix element and enjoys an exponential
suppressed long-distance behavior because of the
mass gap, as is familiar from pure QCD lattice
calculations.

(2) Window method: We introduce a cut in the time
extent of the integral ts to separate the integral into
the short-distance part, which can be calculated
within finite volume directly, and the remaining
long-distance part.

(3) Infinite-volume reconstruction (IVR) method: We
use the fact that the long-distance hadronic function
is dominated by the lowest isolated pole (the hadron
whose QEDmass shift is under study) in the spectral
representation to express the infinite-volume had-
ronic function at large t in terms of its value at
modest ts, which can be evaluated in finite volume.

The first idea, QED∞, has already been employed in
some QEDþ QCD calculations, e.g., HVP [17], HLBL
[18,19], and the QED correction to HVP [20]. For these
calculations, this idea is able by itself to remove all of the
power-law suppressed finite-volume errors. The second
idea used in this work, the window method, is relatively
new. The name of the method comes from Ref. [20], where
the integrand is also divided into parts, and different
treatments are applied to different parts. The third idea,
the infinite-volume reconstruction method, combined with
the window method, is the essential part of our framework.
It should be emphasized that it is the infinite-volume
hadronic function, Hμ;νðt; x⃗Þ, at large t, expressed in terms
of Hμ;νðts; x⃗Þ at modest ts, which helps eliminate the
power-law finite-volume errors.
In additional to QED self-energy, the framework devel-

oped here can also be applied to other QEDþ QCD
problems. One example is the QED corrections to (semi)
leptonic decays, which can be used to determine some
important Cabibbo-Kobayashi-Maskawa matrix elements
like Vud and Vus [10–12]. Another example is rare kaon
decays [22–26], where the light electron propagator can be
treated in a way similar to the photon discussed in this
paper to reduce the finite-volume error. In these QEDþ
QCD problems, just like the self-energy case studied here,
the finite-volume errors for QEDL can arise from two
sources: the short time separation region, which can be
fixed by using the QED∞ photon propagator, the long time
separation region, which can be fixed by the IVR method.
For problems like HVP or HLBL, the finite-volume errors
for QEDL are only from the short-distance region.
Therefore, QED∞ can be successfully applied for these
problems, and the IVR method is not needed.
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APPENDIX A: NUMERICAL TEST

As a simple demonstration of the method, we shall apply
the method in scalar QED, where we shall refer to the
charged scalar particle as π and present some numerical
results in this section.
In scalar QED, Eq. (10) is valid for any t > 0. Therefore,

the hadronic correlation function takes the following form:

Hμ;νðt; x⃗Þ

¼
Z

d3p⃗
ð2πÞ3

1

2Eπ;p⃗
eip⃗·x⃗e−ðEπ;p⃗−mπÞt

×
1

2mπ
hπð0⃗ÞjJμð0Þjπðp⃗Þihπðp⃗ÞjJνð0Þjπð0⃗Þi

¼ e2
Z

d3p⃗
ð2πÞ3

−ðimπδμ;t þ pμÞðimπδν;t þ pνÞ
4mπEπ;p⃗

;

× eip⃗·x⃗e−ðEπ;p⃗−mπÞt ðA1Þ
where pt ¼ iEπ;p⃗. In the above derivation, we have already
applied Eq. (19) with Fðq2Þ ¼ 1, the form factor for the
charged particle in scalar QED. In the Feynman gauge, only
Hμ;μ contributes to the self-energy, which can be written as

Hμ;μðt; x⃗Þ

¼ e2
Z

d3p⃗
ð2πÞ3

mπ þ Eπ;p⃗

2Eπ;p⃗
eip⃗·x⃗e−ðEπ;p⃗−mπÞt: ðA2Þ

To study the finite-volume effects numerically, we use
the lattice version of Hμ;μ with

HL;a
μ;μ ðt; x⃗Þ ¼ e2

L3

X
p⃗

mπ þ Eπ;p⃗

2Eπ;p⃗
eip⃗·x⃗e−ðEπ;p⃗−mπÞt; ðA3Þ

where the standard discretization of p⃗ ¼ 2πn⃗=L (nk ∈
ð−L=2a; L=2aÞ) indicates the finite-volume momenta sum-
mation, and the upper bound of momenta π=a indicates the
hard cutoff. Here L is the linear lattice size in the spatial
direction. We can apply this lattice version function
HL;a

μ;μ ðt; x⃗Þ to master formula equation (4). This allows us
to test the size of the finite-volume error and how it depends
on the lattice volume. Feynman-gauge equation (15) is used
in this numerical test.
In the numerical test, we choose the scalar QED

parameter mπ close to the charged pion mass, with mπ ¼
140 MeV. We choose the lattice spacing to be a ¼
1 GeV−1 and vary the lattice size to test the finite-volume
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effects. We calculate with L=a ¼ 6; 8;…; 96. The infinite-
volume value is approximated by the L=a ¼ 96
(L ≈ 19 fm) calculation. The finite-volume corrections
on the QED self-energy are plotted in Fig. 2. As denoted
in the plot, we always use ts ¼ L=2, mimicking the
situation in a real lattice QCD calculation where large
ts is needed to suppress the excited-state effects.
We also plot the ts dependence for two specific volumes,

L=a ¼ 24, 32, in Fig. 3. It should be noted that ts ≲ L is
required to guarantee the small exponentially suppressed
finite-volume effects. Taking the ts → ∞ limit will intro-
duce new power-law suppressed finite-volume effects.
Finally, as we have studied the exponentially suppressed

finite-volume effects using scalar QED, we can make the
corresponding correction to lattice results from infinite-
volume reconstruction if necessary. Such a correction has

been applied to our recent calculation on the π− → πþee
transition [27].

APPENDIX B: POSSIBLE STRATEGY FOR
LATTICE QCD CALCULATIONS AND

COST ESTIMATION

In lattice calculations, there are two popular computa-
tional strategies to include QED effects.
(a) QCDþ QED: Generate QCDþ QED ensembles (fully

dynamical or quenched QED), and perform the lattice
calculation in the presence of both QCD and QED
gauge fields. This method is usually referred to as the
nonperturbative method, as both the QCD and QED
effects are included to all orders. This strategy was
used in the very early era of including QED in lattice
QCD calculations [1,2].

(b) Perturbative: Express the QED effects perturbatively
in terms of the photon propagator and the hadronic
matrix elements. The hadronic matrix elements shall
be calculated on pure QCD ensembles. The final
results are obtained by integrating over the QED
photon quark vertex locations, possibly with some
stochastic integration techniques. This strategy allows
various ways to calculate the hadronic matrix elements
and perform the integrations. For example, in Ref. [6],
the leading QED and strong isospin-breaking effects
on the lattice are studied following a perturbative
strategy.

There is no sharp boundary between the two strategies
in the quenched QED calculations at leading order in
αQED. In particular, the QCDþ quenched QED calcula-
tion is effectively identical to a perturbative approach
where the quenched QED fields are used for the stochastic
method to include the photon propagators [8]. The two
strategies differ on how unquenched QED effects are
included in the calculation. In the QEDþ QCD simula-
tion, the unquenched QED effects are included in the
distribution of the QCD and QED gauge configurations,
which are generated by a Markov chain process. In the
perturbative approach, these unquenched QED effects are
described by the contributions of disconnected diagrams
The cost comparison between the two strategies for the
unquenched QED effects is not clear.
The IVR method introduced in this paper fits naturally

within the perturbative strategy, as we explicitly work with
the QED corrections of masses and express the correction
in terms of integration of the hadronic matrix elements
which can be calculated with Eq. (6).
However, it should be noted that for both the IVR

method and QEDL, at leading order, the mass shift can be
expressed as an integral of the following form:

ΔM ¼ 1

2

Z
d4xHμ;νðxÞWμ;νðxÞ: ðB1Þ

FIG. 2. Exponential dependence of the finite-volume (FV)
error.

FIG. 3. Fixing L ¼ 4.7 and 6.3 fm, we display the finite-
volume correction to QED self-energy as a function of ts.
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The only difference is in the function Wμ;νðxÞ. For QEDL,
the function Wμ;νðxÞ is the photon propagator in finite
volume with all of the spatial zero modes removed. For the
IVR method, the function Wμ;νðxÞ can be extracted via the
master formula equation (4). In both cases, the function
Wμ;νðxÞ is defined within a finite-volume lattice and can be
evaluated (semi)analytically with very little computational
cost. Therefore, we can use basically any existing computa-
tional strategy for which QEDL can be used, with only the
function form of the photon propagator needing to be
changed.
As an extreme example, the IVR method can be used

even with the QCDþ QED strategy. We can set up a
nonlocal “IVR gauge action” whose inverse is the
function Wμ;νðxÞ for the IVR method. We can then
perform a dynamical QCDþ IVR simulation to include
the unquenched QED contributions for QED corrections
to hadron masses. Although the cost of the dynamical
QCDþ IVR lattice simulation is similar to the corre-
sponding QCDþ QEDL lattice simulation, the ensemble
generated with the IVR method is less useful for appli-
cations other than the leading QED corrections to the
hadron mass. In addition, the nonlocal IVR gauge action
depends on the mass of the target hadron; therefore,
the QCDþ IVR ensemble is useful only for hadrons with

a similar mass as the target hadron. These drawbacks do
not apply if we adopt a perturbative computational
strategy.
If the perturbative strategy is used instead, as the only

difference between the IVR method and QEDL (and many
other schemes) is the function Wμ;νðxÞ, the computational
cost for the IVR method is the same as QEDL for the same
statistics. On the other hand, there are two advantages for
the IVR method:
(a) Smaller finite-volume errors. For the IVR method, the

finite-volume error is exponentially suppressed by the
lattice size, while QEDL has finite-volume errors
suppressed only by some power of the lattice size.

(b) Shorter source sink separation. For QEDL, the source
sink separation needs to be large enough to suppress
the hadronþ one photon excited-state effects. This
becomes very difficult, as the gap between ground and
excited states vanishes in the infinite-volume limit.
However, for the IVRmethod, ts needs only to be large
enough to suppress the QCD excited-state effects,
rather than the hadronþ photon effects; thus only
modest values of ts are required.

For applications with a signal-to-noise-ratio problem, i.e., a
nucleon or π0 disconnected diagram, the second advantage
can dramatically reduce the statistical error.
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