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Dark Matter (DM) is a crucial component of the universe and is successfully modelled as a
pressureless perfect fluid for calculations of the cosmic microwave background (CMB). With
data from Planck it becomes possible to test generalisations of this model, searching for DM
properties beyond the pressureless perfect fluid and thereby testing the CDM paradigm itself.
Although there is no unique way to generalise the pressureless perfect fluid, the Generalised
Dark Matter (GDM) model has proven useful in CMB applications. In this model, DM is an
imperfect fluid with pressure and shear viscosity. We will present the GDM closure equations
for pressure and shear that are parameterised by 3 new model parameters w, c2s and c2vis and
elucidate their physical meaning and main effects on the CMB.1 This will shed light on our
parameter constraints we obtain using Planck data, see also the contribution by D.Thomas.
Assuming constant values we constrained those parameters |w| < O(10−3) and c2s, c

2
vis <

O(10−6), both at the 99.7% CL using the CMB, finding no evidence for properties beyond the
pressureless perfect fluid.2 We will also discuss how several non-perturbative models can be
related to GDM,1 which will prove useful for extending the parameterisation to the non-linear
regime of structure formation. These models include the non-equilibrium thermodynamics
of Landau and Lifshitz, the so-called effective field theory of large scale structure and the
effective field theory of fluids.

1 Generalized Dark matter

The evidence for Cold Dark Matter (CDM) has been mounting up for over 80 years 3 culmi-
nating in a precise measurement of its abundance to be 26 ± 1% of the total energy budget,4

and spectacular demonstrations of its gravitational footprint and collisionless nature through
observations of colliding galaxy clusters.5 Many more independent astrophysical and cosmolog-
ical observations created this concordant picture. In addition many extensions of the standard
model of particle physics (SM), whose purpose was to solve problems within the SM, predict as
byproducts the existence of particles, like axions, wimps or a sterile neutrino, which are perfect
dark matter candidates. They are non-baryonic, electrically neutral and for most practical pur-
poses cold and collisionless and therefore approximately described as pressureless perfect fluid,

Tμν
c = ρcu

μ
c u

ν
c . (1)
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On the other hand despite extensive searches 6,7 there is still no non-gravitational evidence for
DM. We therefore should exploit all the available cosmological data to test the CDM paradigm
by searching for properties beyond the perfect pressureless fluid. This requires modelling the
DM component with a more general stress-energy-momentum-tensor

Tμν
g = ρgu

μ
gu

ν
g + Pg(g

μν + uμgu
ν
g) + Σμν

g . (2)

Although axions, wimps and sterile neutrinos can be reasonably well described as pressureless
perfect fluid in the regime where linear perturbation theory applies, there are subtle differences
and these manifest themselves as pressure Pg and shear Σμν

g .8,9,10,11,12 Since there exist many
more (and also more complicated) DM candidates,13,14,15,16,17,18 and since there is no strong
theoretical prior for any particular class of models, a phenomenological approach is best suited.

1.1 GDM definition

One such phenomenological model is the Generalised Dark Matter (GDM) model,19 a specific
ansatz for Pg and Σμν

g , with three parametric functions: equation of state w, sound speed c2s, and
viscosity c2vis. In more detail, this ansatz is for the GDM pressure and shear Pg = P̄g + ρ̄g Πg,

Σi
gj = (ρ̄g + P̄g)

(
�∇i�∇j − 1

3
�∇2δij

)
Σg , where Πg and Σg are linear scalar perturbations of GDM

pressure and shear and P̄g the Friedmann-Robertson-Walker (FRW) background value of the
GDM pressure. Hu postulated the following closure equations 19

P̄g = w(a) ρ̄g (3a)

Πg = c2a(w) δg +
(
c2s(a, k)− c2a(w)

)
Δ̂g (3b)

Σ̇g + 3HΣg =
4

(1 + w(a))
c2vis(a, k) Θ̂g , (3c)

where Δ̂g = δg|rest frame and Θ̂g = θg|Newtonian are gauge invariant combinations, H = ȧ/a, where
a dot refers to a derivative w.r.t. conformal time τ , and c2a = w− 1

3d ln(1+w)/d ln a is the adiabatic
sound speed. The conservation equations ∇μT

μν
g = 0 give the remaining equations for the GDM

background density ρ̄g and density perturbation δg and as well as the GDM velocity perturbation
θg. Together with the Einstein equation Gμν = 8πGTμν , where T

μ
ν = Tg

μ
ν+TΛ

μ
ν+TSM

μ
ν+ ... ,

is the total stress-energy-momentum tensor, the system of equations is closed. It should be
noted that although the parameters c2s and c2vis are allowed to depend on scale k, they are not
allowed to depend on the particular solution. It is worth emphasising that the non-adiabatic
pressure

Πnad ≡ Πg − c2aδg =
(
c2s(a, k)− c2a(w)

)
Δ̂g (4)

is algebraically related to the rest frame density perturbation Δ̂g, while the Σg is dynamical and
sourced by the Newtonian velocity perturbation Θ̂g. We have investigated those choices implicit
in (3), but refer the reader to our paper for more details.1

1.2 DM models encompassed by GDM

To get a feeling for the size and expected time dependence of those parameters, we compare in
Fig. 1 two important cases. The dotted line shows the prediction for CDM by the effective field
theory of large scale structure (EFTofLSS) 11 and the dashed line shows the upper bound for
freely streaming warm dark matter. Note that while the former takes into account that even
initially cold DM warms up through the backreaction of unresolved small scale non-linearities,
the latter describes initially Maxwell-Boltzmann distributed warm dark matter without taking
into account this backreaction. In these two cases w � c2s � c2vis, and it is interesting that the
expectation for CDM comes close to the value of our upper bound (the constant line).
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Figure 1 – Redshift evolution of GDM parameters for two physical DM models and the constant case.

1.3 GDM imprints on the CMB

The basic imprints of GDM on the CMB can be understood by expanding analytic solutions for
ρ̄g and the Newtonian potential Φ̂ (sourced only by GDM) in small w, c2s, c

2
vis � 1 giving 1

a3ρ̄g ∝ ωg(1 + 3w ln(1 + z)) , k−1d (τ) � τ
√
c2s +

8
15c

2
vis , (5)

where k−1d is the scale below which the potential Φ̂ starts to decay. This explains most features in
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Figure 2 – Comparison of the effects of constant GDM parameter on the temperature power spectrum of the
CMB, the potential evolution. Also shown are the constraints and important degeneracies.

the temperature power spectrum shown in Fig. 2, where we take the Planck best fit value for ωg

and the other standard parameters and switch on one GDM parameter with a size corresponding
to our upper limits. The smaller upper plots show the effect on the evolution of a single k-mode
of the potential Φ̂ and the contours show the results of our MCMC analysis confirming (5), which
states that w, like ωg, affect the freeze-out value of Φ̂ via matter-radiation equality and c2s, c

2
vis

cause Φ̂ to decay below k−1d , manifesting in a reduction of the lensing potential, amplifying
slightly acoustic peaks and throughs. The yellow boxes in the left corners show our constraints.2

Earlier studies only constrained one or two parameters.20

2 Non-pertubative Extensions

In order extend the GDM model into the non-linear regime of structure formation, necessary if
we want to take into account the wealth of data that cannot be described by linear perturbation
theory, we considered several models for imperfect fluids that are defined non-perturbatively.
Here we focus on the non-equilibrium thermodynamics of Landau and Lifshitz (LL) 21 and the
effective field theory of fluids (EFT) by Ballesteros.22 Both theories use physical or mathematical
principles to restrict the possible form of Tμν

g , Eq. (2), see the table below. In both causes the
full Tμν

g contains only a few free functions. To make the connection to GDM we to set to zero
the bulk viscosity in both cases. The remaining free function κ and η for LL, as well as γ and
α for EFT describe non-adiabatic pressure Πnad and shear Σg.
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 shear

algebraic function of Θ̂g Θ̂g, Δ̂g, Ψ̂

Σg c2vis ∝ η

c2s − c2a = 0

κ = 0 
c2s − c2a ∝ ∂Sp|ρ
κ→∞ 

Hu, et al, PRL 85, 2000
same for axions

if always

Effective theory of uidsNon-equil. thermodynamics

c2vis ∝ ᾱ− 1, ˙̄α

c2s − c2a ∝ (γ̄ − 1)k2

While Πnad in EFT is automatically of GDM
form, although with a particular scale depen-
dence, reminiscent of axions,8 in LL Πnad is in
general dynamical. Nevertheless it is sourced
by the particular density perturbation Δ̂g. It
can be made algebraic in two limits, either very
large or very small heat conduction κ. In LL
theory, the Σg is algebraically related to Θ̂g,
which gives a behaviour similar to Eq. 3c and
connects the viscosity parameters η and c2vis.

Acknowledgments

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant
Agreement n. 617656 “Theories and Models of the Dark Sector: Dark Matter, Dark Energy and
Gravity.”

References

1. M. Kopp, C. Skordis, and D. B. Thomas. An extensive investigation of the Generalised Dark Matter
model. ArXiv: 1605.00649, May 2016.

2. D. B. Thomas, M. Kopp, and C. Skordis. Constraining dark matter properties with Cosmic Microwave
Background observations. ArXiv: 1601.05097, January 2016.

3. F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6:110–127, 1933.
4. Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, et al. Planck 2015 results. XIII. Cosmological

parameters. ArXiv e-prints, February 2015.
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