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Abstract: We evaluate the topological charge density of SU(3) gauge fields on a lattice by calculating the trace of the

overlap Dirac matrix employing the symmetric multi-probing (SMP) method in 3 modes. Since the topological charge

Q for a given lattice configuration must be an integer number, it is easy to estimate the systematic error (the devi-

ation of Q to the nearest integer). The results demonstrate a high efficiency and accuracy in calculating the trace of

the inverse of a large sparse matrix with locality by using the SMP sources when compared to using point sources.

We also show the correlation between the errors and probing scheme parameter 7y, as well as lattice volume Ny and

lattice spacing a. It is found that the computational time for calculating the trace by employing the SMP sources is

less dependent on Ny than by using point sources. Therefore, the SMP method is very suitable for calculations of

large lattices.
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1 Introduction

Topological charge Q and density ¢(x) are important
quantities for investigating the structure of the quantum
chromodynamics (QCD) vacuum, and the susceptibility
ofQisrelatedtor’ massbytheWitten-Venezianorelation[ 1,2].
Lattice QCD is one of the best non-perturbative frame-
works for studying QCD properties, in which the space-
time is discretized on a lattice. Q on a lattice can be cal-
culated by the gauge field tensor F,,, [3]:

1
_ [ g - 4
Q = fd xq(x) = mfd .xtr(eﬂypo'FﬂVFpO')’ (1)

where the trace is over color indices, and €, is a totally
antisymmetric tensor. However, the topological charge Q
calculated in this way is not always an integer, unlike that
in the continuum, unless multiplied by a renormalization
factor or calculated on smoothed configurations whose
renormalization factor tends to 1. Smoothing methods or
other cooling-like methods will change the topological
density, and also introduce ambiguous smoothing para-
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meters, like the smoothing time ng, , which is always set
empirically. Another way to get g(x) is to evaluate the
trace of the chiral Dirac fermion operator in the Dirac and
color space [4]:

1
q(x)= Etr (¥5Dchiral) » 2)

where the trace is over color and Dirac indices, ys is the
Dirac gamma matrix, and Dy is the chiral Dirac fermi-
on operator on a lattice. In this definition, Q will always
be an integer due to the Atiyah-Singer index theorem [5],
but is hard to calculate exactly as evaluating the trace of
Dehiral 18 @ very computationally costly task. As one of the
chiral Dirac fermions, the overlap fermion operator [6, 7]
is widely used in the studies of the chiral properties of lat-
tice QCD. The massless overlap Dirac operator D, is
constructed from a kernel operator, usually using the
Wilson Dirac operator Dy as the kernel:

Doy = 1+yse(ysDw), 3)

where the hopping parameter « in the kernel Dy is a free
parameter, which is not related to the bare quark mass,
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and « € (k.,0.25) wherek, refers to a critical hopping para-
meter of the Wilson fermion. We takex =0.21 in this
work. e(ysDy) is the sign function:

vsDw

D, Dw
=ysDW[co+i C—) “)

i=1 Déva +4q;

€(ysDw) =sign(ysDw) =

in which the Zolotarev series expansion [8] is introduced.
In our work, the 14th-order Zolotarev expansion was ap-
plied [9]. To extract the trace of D,y,, we need to calcu-
late the trace of D7, whereDy is a large sparse matrix.
Its rank is 12N;, where N; is the number of lattice sites,
empirically in the range of 103 ~ 10® depending on the lat-
tice size. So, the trace of Dy} is too computationally
costly to be calculated exactly.

Fortunately, D,, is a local operator [10], and there are
methods to approximately calculate its trace by making
use of this property. The multi-probing method is one of
these methods [11, 12] that can be used to estimate the
trace of the inverse of a large sparse matrix when the in-
verse exhibits locality. A. Stathopoulos et al. developed
the hierarchical multi-probing method and tested it in lat-
tice QCD Monte Carlo calculations [13]. E. Endress et al.
used the multi-probing method to tackle the noise-to-sig-
nal problems when calculating all-to-all propagator in lat-
tice QCD [14, 15] by applying the Greedy Multicoloring
Algorithm to construct the multi-probing source vectors.
Their results have shown the validity and efficiency of
the multi-probing method.

In this work, we employ the symmetric multi-probing
(SMP) method to evaluate the topological charge density
by calculating tr(ysD,y), and show its efficiency by com-
paring it to the point source method. We introduce the to-
pological charge density, as well as the trace calculations
with point sources and SMP sources, in the next section.
Subsequently, the calculation results are presented and
discussed. We summarize our work in the last section.

2 Methods

2.1 Topological charge density and trace calculation

with a point source

The overlap Dirac operator Doy (x,Y)q5,, On a lattice
L(ny,ny,ng,n;) is a large sparse matrix, where n, denotes
the number of sites in the u direction, u = x,y,z,t, @ B are
the Dirac indices and a b are the color indices. The topo-
logical charge density ¢(x) can be obtained by calculat-
ing the trace of the massless overlap Dirac operator:

1
q(x) = Etrd,c (ysDoy (x, X))
1
=5 D WEaasDalyxaa), ()

where the trace is over the Dirac and color indices,
l(x,@,a)) is a normalized point source vector which has
N XNyzX N, components, where the lattice volume is
Ni = nynynzn;, Ng=4, N.=3. Only one specific (x,a,a)
component takes a nonzero value in the point source.
Substituting Eq. (3) and Eq. (4) into Eq. (5), the most
computationally costly step in calculating the trace of D,y
is to compute the multiplication:

= xaa), ©)
Dy Dw +gqi

Vi

which is equivalent to solving the following linear equa-
tion:
My; =D, (7

where
1
n@:E{DQDW+%yb=hmnaﬂ». (8)

This equation has a high computational cost when
solving for a large matrix M;, and the huge number of
point sources corresponding to sites on the whole lattice
makes things even worse. The computing time to solve
Eq. (7) with the Conjugated Gradient(CG) algorithm for
one source is more than O (N,) (considering that M; is a
large sparse matrix, and that its conditional number grows
as Ny ), and there are 12N, point sources. Hence, the cost

of evaluating Q = Zq(x) by calculating the trace of Dy

with point sources v)élill be larger than O(Nz), which is too
high, especially for large Ny [16, 17], although this is an
exact calculation of the topological charge density on a
lattice without any approximations.

2.2 Trace calculation with a multi-probing source

We know from above that calculations of the trace of
D, with a point source is quite a costly task. If we intro-
duce a new source vector ¢ by adding two point sources:

¢’(x’y’a”a)=¢’(X,a’,a)+¢’(y,a"a)’x¢y’ (9)
then Eq. (5) can be rewritten as:

q(x) = Z v(x,a,a) Dovq) (x,y,a,a)

- D (6,0 Doty (3,2, a), (10)

w,a
. 1
where D, = 575Dov, and the second term:

Zlﬁ(x,a,a)Dovlﬁ(y,a,a) = ZDOV(x,a,a;y,a,a) (1)

are space-time off-diagonal elements of D,,. Considering
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the space-time locality of Dy, ithas anupperbound[10, 16]:
[Doy (x,@,a3y,8,b)| < Cexp(—ylx—yD), (12)

where C and vy are constants that do not depend on gauge
field configurations, and |x—y| is defined as the distance
between site x and site y. Note that ys only exchanges the
elements of D,, in the Dirac space, so D,y also satisfies
this inequality. In the following, ‘off-diagonal’ refers to
‘space-time off-diagonal * unless otherwise stated. We
checked this relation on several lattice configurations, as
shown in Fig. 1 . y in the inequality (12) is around 1.076
from [16] , when |x—y| is defined as the Euclid distance,
and around 0.529 for the taxi driver distance. This result
means that the off-diagonal elements of D,, are exponen-
tially suppressed as |x—y| increases, and the inequality
(12) holds when the distance is not too small (larger than
3) for the two definitions of distance. We also see that y
for the Euclid distance is larger, which means stronger
locality, so we adopt this definition in our work.

The approximate topological charge density ¢(x) can
be written as:

qappl‘OX(x) :Zlﬂ(.x, a,a)DOV¢(x’y’a’ Cl), (13)
qapprOX(y) =Z(//(y, Q,Q)Dov¢(x,y7 a, a)- (14)

We see that the approximate density of both sites can be
easily calculated from Doy ¢(x,y,a,a), and only one linear
equation like Eq. (7) needs to be solved to obtain ¢(x)
and ¢(y), as long as |x—y| is sufficiently large. This meth-
od is called the multi-probing method (MP) or probing
method.

We first mark all sites in the lattice with a color label,
called the coloring algorithm. The sites with the same
color form a subset of all lattice sites. The multi-probing
source can be constructed from a subset as follows:
choose a color and Dirac index, construct point sources

0-10% = D,, (n,n + dg,gi)
0.01F" 4 Dy, (0,0 + digi arived) |4

= 1E-3

T

= 1E-4

=
Z1ES

1E-6

1E-7

1E-8
0

Fig. 1. (color online) The locality of D,y is shown by the av-
eraged off-diagonal elements as a function of the Euclid
distance and the taxi driver distance, in logarithmic co-
ordinates. The red line is a fit of the taxi driver distance de-
pendence with a slope —0.528, while the blue line is a fit of
the Euclid distance dependence with a slope —1.075.

on sites in the subset, and add all these point source vec-
tors.

In order to reduce the calculation cost, we would like
to reduce the number of MP sources by combining more
point sources in one MP source. However, the errors in-
troduced by MP sources depend exponentially on the dis-
tance between the sites in the subset, as shown in Eq.
(12). To control the systematic errors, we should include
in one MP source the sites that as far as possible from
each other. Therefore, an appropriate coloring algorithm
is important to optimize the balance of the systematic er-
rors and calculation cost.

We chose a symmetric coloring algorithm and the
definition of Euclid distance in this work, which marks
the sites with the same color in each direction with a
fixed distance. There are other algorithms, like GCA
(Greedy Coloring Algorithm) [12] , which uses the defin-
ition of taxi driver distance. It is convenient to choose the
same gap r in all directions, so that the minimal distance
of two sites in the subsets is 7y, = r. We call this type of
MP source the Normal Mode, and some examples are
shown in the left panel of Fig. 2 and Fig. 3.

Furthermore, we can divided a subset into two sub-
sets by marking half of the sites with a new color, where
each site has a different color with respect to its neigh-
bors, see examples in Fig. 2 and Fig. 3 for 2-D and 3-D
lattices. In this Split Mode, 7/ . = V2r for the two new
subsets.

We can also combine two subsets into a new subset
which includes two sites with equal space-time offsets
(r/2,r/2,r/2,r/2), where the minimal distance remains
unchanged, that is r/ . =r for the new subset. We call
this mode the Combined Mode, where the number of sites
doubles and the errors are increased since more adjoining
neighbors are introduced. Note that the Combined Mode
only works on 4-D lattices, and » should be even. Fig. 4
and Fig. 5 show examples of the Combined Mode in 2D
and 3D situations, where rmin = r/ V2 and romn = V37/2 ,
respectively, after combination.

Let us consider a lattice L(ny,ny,ng,n,). First, we
choosethesymmetriccoloringschemeP (mx, My, My, 1y, mode),
which means that m, sites are marked with the same col-
or in the u direction of the lattice, and the mode label can
be 0,1,2 , which corresponds respectively to the Normal,
Split and Combined Mode. We then pick a site
X(x1,x1,%3,x4) as a seed site, where x, denotes its co-
ordinate on the lattice, and we construct an SMP source

¢p in the scheme P(mx,my,mz,m,,mode):
or(S (X, P)0s)= > Y(,a.a), (15)
yeS(X.P)
where S (X,P) denotes the site subset that includes all
sites with the same color X obtained by the coloring
scheme P (mx,my, mg,my, mode).
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Fig. 2. (color online) Example of the Split Mode on a 8 x8 2-D lattice. Red sites in the left panel are colored in the Normal Mode col-
oring scheme P(4,4,0); in the right panel, they are split in two subsets with red and yellow colors in the Split Mode scheme P(4,4,1).
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Fig. 3. (color online) Examples of the Split Mode on a 43 3-D lattice. Sites denoted with red stars in the left panel are colored in the
Normal Mode coloring scheme P(2,2,2,0); in the right panel, they are split in two subsets as red stars and black triangles in the Split
Mode scheme P(2,2,2,1).

Fig. 4. (color online) Example of the Combined Mode on a 8 x8 2-D lattice. Red sites and yellow sites in the left panel are two sub-
sets colored in the Normal Mode symmetric coloring scheme P(2,2,0); in the right panel, they are combined into one with red color
in the Combined Mode scheme P(2,2,2). Note that the minimal distance changes from 4 to 2 V2.

033102-4



Chinese Physics C Vol. 43, No. 3 (2019) 033102

Fig. 5.

(color online) Example of the Combined Mode on a 43 3-D lattice. Red stars and black triangles in the left panel are two sub-

sets colored in the Normal Mode symmetric coloring scheme P(2,2,2,0); in the right panel, they are combined into one shown by red
stars in the Combined Mode scheme P(2,2,2,2). Note that the minimal distance changes from 2 to V3.

The topological charge density on any site x € S (X, P)
can be calculated from the combined source:

) = ) u(x,@,0) Doy, (S (X, P),a,0)

Y#EX

=g+, Y, Doalxa.a yaa),  (16)

a,a yeS (X,P)

where the second term sums the corresponding off-diag-
onal components of D,, which satisfy Eq. (12).

The lattice sites can be divided into NSMP site sets,
with mm,m.m; sites in each set for mode = 0, lmxmymzm,
sites for mode = 1, and 2 xmmym,m, sites for mode = 2.
Each site on the lattice should belong to only one set in a
specific scheme P. SMP sources are constructed from
these symmetric site sets that are only distinct from each
other by a few units of coordinate shift. In this case, all
SMP sources include the same number of sites for a spe-
cific P, which leads to less sources compared with the
Greedy Multicoloring Algorithm for the same minimal
Euclid distance |x—y|. Summing Eq. (16) over the lattice
volume, the total introduced systematic error for Q is:

Y#EX
Rp =Q¥P*—Q = Z Z Z Dyl(x,a,a; y,a,a)
xeV a,a yeS (x,P)
Y#EX
SON.C Y exp(-yli=y). (17)
yeS (x,P)

where Eq. (12) is used, and the sum over the color and
Dirac indices results in a factor of 12. In practice, the er-
rors are far smaller than the upper bound. We define the
minimal distance rr’; ., for an SMP scheme P, which is the
minimal Euclid distance of any two sites in a site set
S (X, P) based on an arbitrary seed site X:

P =min{lx—y[,¥x,y €S (X,P), x #y}, (18)

min

and we believe that [x—y|=r’,
Eq. (17).
For the case of a spatial symmetric lattice L (ny,ng,n,

n n n n
n,), the SMP scheme canbe chosenas P(—X, ==t mode)
r r

r r
so that

, terms will dominate in

_ mode = 0,2

Tmin = {r V2, mode=1. (19)
Therefore, the choice of ry, should be one of the com-
mon factors of n,; and n,, or multiplied by V2 when
mode = 1, such as ry;, =2 in the left panel of Fig. 2, and
rmin = 2 V2 in the right panel. We choose in this way the

appropriate ryi, and SMP schemes for different lattices.
3 Lattice setup and results

We calculate the topological charge density and the
total topological charge for pure gauge lattice configura-
tions with Iwasaki gauge action [18]:

Sia :ﬁq {Qp + rﬁQ,} (20)

. . 1
where 8 is the bare coupling constant, Q¢ = Z —ReTr(1-

We)is the real part of the trace over all Wilson loops W¢
within a closed contour C, while subscripts p and r refer
to a plaquette and 2 x 1 rectangle, respectively. ¢; = 3.648,
rg = —0.09073465 in Iwasaki action which is an O(az) im-
proved gauge field action.

First, we calculate the topological charge density ex-
actly with point sources on a 16* lattice and compare it to
that using SMP sources with rp, = 44/2. The results for
the topological charge density in the X -y plane, with
t=1and z=1, are shown in Fig. 6. It is obvious that the
peaks and valleys are very similar in the results obtained
by using point sources and SMP sources, which indicates
that the topological structure of the QCD vacuum is well
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Fig. 6.
sources with rmin = 4 V2 (right), in a 16* configuration.

preserved in the SMP method.

A series of gauge field configurations were then gen-
erated with different lattice spacing a and different lattice
volume. The topological charge density for each config-
uration was evaluated with SMP sources in different
schemes, see Table 1, where the SMP scheme
P(m,m,m,m,mode) is written as (m,mode) for short, and
the lattice L(n,n,n,n) is written as n*. The number of
point sources N*T and SMP sources NSMP are presented in
Table 2, which are also the number of linear equations,
Eq. (7) , that we have to solve by the CG algorithm. It is
shown that the cost of calculating the topological charge
density sharply reduces for smaller ry, and larger lat-
tices.

Since Qp (the topological charge calculated in scheme
P) should approach an integer, and the deviation of Qp to
its exact value is always smaller than 0.1 as long as ry, is
large enough, we extracted the topological charge O and

(color online) The topological charge density in the X-Y plane, obtained by plotting D,, with point sources (left), and SMP

the absolute value of the systematic error |Qp — Q| from
the series of results with different ry, for each configura-
tion. An example is shown in Fig. 7. The average errors
are shown in Fig. 8, and decrease sharply as rp, in-
creases. In general, the average absolute value of the sys-
tematic error of Qp and its variance become small enough
when rpi, > 4. One may note that the error with ry, =
32 on a 244 lattice is larger than forry;, = 4, which may
come from a larger number of nearest neighbor terms
(satisfying |x—y| = rmin in Eq. (17)) for mode = 1 than for
mode = 0. There are 24 nearest neighbors for each site in
the former mode, and only 8 nearest neighbors in the lat-
ter mode.

Considering the same lattice with different lattice spa-
cing a, Fig. 9 shows that finer lattice spacing a leads to
smaller errors. This can also be concluded from Fig. 10,
which compares two lattices with the same physical
volume. We finally present the errors versus efficiency in

Table 1. Lattice setup and the multi-probing scheme. Symmetric schemes P (m,m,m, m,mode) are written as (m, mode) for short.
lattice a/fm No. of config. SMP scheme T'min
0.1 20
124 0133 20 (6,0) (6,1) (4,0) (4,1) (3,2) (3,0) (2,0) 2,2v2,3,3V2,4,4,6
164 0.1 20 (8,0) (8.1) (4,2) (4,0) (4,1) (2,0) 2,2V2,4,4,4V2, 8
244 0.1 20 (12,0) (12,1) (8,0) (8, 1) (6,2) (6,0) 2,22,3,3V3, 4.4
304 0.1 20 (16,0) (16,1) (8,2) (8,0) 2,2v2,4,4
Table 2. The number of sources NSMP required in different SMP schemes, and their ratio to the number of point sources N PT
lattice NSMP NSMP NPT
124 192, 384, 972, 1944, 1536, 3072, 15552 6 B e TR T B 18
164 192, 384, 1536, 3072, 6144, 49152 e T8 5130 Ta60 TR T
244 192,384, 972, 1944, 1536, 3072 ST ToNGs 056 TR 793> I8
304 192, 384, 1536, 3072 1 1 L1

65536 32768 8192° 4096
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T,

min

Fig. 7.
each configuration on a 16* lattice with a=0.1 fm. When

(color online) The series of Qp with different ry;, for

rmin =4, Qp is very close to an integer. The exact integer
numbers of the topological charge can be extracted since
the systematic errors are sharply suppressed as rpj, in-
creases.

——12% a=0.1 fm
——12% a=0.133 fm
——16% a=0.1 fm
2F ——24* a=0.1 fm
—=-324 a=0.1 fm

<
o
1F
OF_, \ N P—— i N t
2 3 4 5 6 7 8
Timin
Fig. 8. (color online) The average absolute error of Op Vvs.
rmin for all lattice settings. For ry, > 4, the errors are small.
0.6
—=— 124 a=0.1 fm
—*— 124 a=0.133 fm
0.4+
<
o
0.2+
0

Fig. 9.
ror of Qp Vs. ryin on a 124 lattice with different a. For the

(color online) Comparison of the average absolute er-

same rmi,, the finer lattice with a smaller a leads to a smal-
ler deviation of Qp to an integer.

Fig. 11, which shows that for larger lattices the calcula-
tion of the trace using the SMP method is more efficient
for achieving sufficient accuracy.

All results of {|Qp — Q|) are presented in Table 3. We
can see, for example, that for NSMP = 3072 , the systemat-
ic error increases slowly as the lattice becomes larger.
This can be explained by the fact that the number of non-
zero off-diagonal elements for SMP sources is propor-
tional to Ny, while NSMP =3072 is fixed. Therefore, we

0.8
—#—-124 a=0.133 fm
—*—16% a=0.1 fm
0.6
q.{_ 04
o
02F
0 I I I I I I I
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Iy (fim)
Fig. 10. (color online) Comparison of the average absolute

error of Qp vs. physical distance rpj,a on V = (1.6 fm)* lat-
tice for different a. In physical units, the errors are also
smaller on a finer lattice with the same volume.

= 12% a=0.1 fm
—©—12% a=0.133 fm
—2—16% a=0.1 fm
21 —~v—24% a=0.1 fm
——32% a=0.1 fm

<
o
1F
0 L . i
1E-5 1E-4 1E-3 0.01 0.1
NSMP/NPT
Fig. 11.  (color online) The errors versus the efficiency for

all lattices. A larger lattice has a higher efficiency.

can expect to apply this method with success on a larger
lattice with fixed NSMP, where Npr is proportional to the
lattice volume N .

There is another method to obtain the topological
charge by calculating a few low modes of the chiral Dir-
ac operator, counting the number of zero modes and ap-
plying the index theorem. However, to estimate the topo-
logical charge density ¢(x) one must calculate more low
modes by applying low mode expansion [19]. We com-
pared the calculation cost for the SMP method with the
cost of low modes for the overlap operator on 12# lattices.
We considered NSMP = 3072 with the scheme P(3,3,3,3,
0), rmin =4 in the SMP method, and calculated the low
modes of the overlap operator by the Arnoldi algorithm
with the number of low modes N™°% = 100, 200. The res-
ults showed that when N™°% =100, low mode calcula-
tion costs about 18% less than the SMP method, while for
N™de =200 it costs 28% more than the SMP method.
However, since the number of zero modes is always an
integer, the systematic errors for ¢ (x) in the low mode ex-
pansion could hardly be estimated, while in the SMP
method the systematic errors of O and ¢(x) are related.
The comparison of ¢(x) from the SMP method and the
low mode expansion will be an interesting topic for our
further studies.
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Table 3. The average absolute systematic error {|Qp — Q) for different SMP schemes P.

L a/fm P N (1Qr-0N L a/fm P N (10pr -0
(6, 0) 192 0.471(71) ®,1 384 0.384(79)
6, 1) 384 0.220(37) 4,2) 1536 0.0117(21)

(4,0) 972 0.141(24) 16* 0.1 4,0) 3072 0.098(15)

0.1 4,1) 1944 0.051(10) 4,1) 6144 0.022(3)

3,2) 1536 0.060(10) 2,0) 49152 0.003(1)
3,0 3072 0.049(7) (12, 0) 192 1.767(244)
. 2,0) 15552 0.010(2) 12,1 384 1.029(153)
12 (6, 0) 192 0.467(94) . (8,0) 972 0.406(81)
6, 1) 384 0.301(65) 4 0.1 ®, 1 1944 0.253(41)

(4,0) 972 0.181(29) 6,2) 1536 0.250(36)

0.133 4,1 1944 0.059(12) (6,0) 3072 0.186(27)
3,2) 1536 0.082(16) (16, 0) 192 2.335(576)
3,0 3072 0.065(11) . 16, 1) 384 1.026(320)

2,0) 15552 0.010(2) 32 01 8,2) 1536 0.242(63)

16’ 0.1 (8,0) 192 0.592(101) (8,0) 3072 0.133(29)

4 Conclusion

The topological charge Q and density g (x) were cal-
culated from the trace of the overlap Dirac operator em-
ploying symmetric multi-probing sources on pure gauge
configurations. The systematic errors are reduced as rpin
is increased, as expected, due to the locality of the over-
lap Dirac operator. Thus, the estimated topological charge
was close enough to an integer for rpiy, >4 Or rpy >4 V2,
inwhichcasethenumberofrequiredsourceswasNSMP = 1274
or 24r1 . ascomparedtothenumberofpointsourcesN*' = 12N
Note that NSMP only depends on the chosen 7y, and is in-
dependent of Ny . Furthermore, we found that the system-
atic errors of the SMP method for the same r;, increase
slowly with larger N, which means that the computation-
al time for estimating the trace is less dependent on the
lattice volume N, . Thus, it is much more economical to
employ the SMP method on larger lattices. Since the er-

ror in calculating the trace comes from the off-diagonal
elements of the matrix, we expect better performance of
this method by employing the techniques for suppressing
the off-diagonal elements of D,,, which we leave for our
future work . This method is also believed to work well
when dealing with an ultra-local matrix such as the
Wilson Dirac operator Dy, as TrDy; is very important
and quite computationally costly to determinate exactly in
lattice QCD.

We developed a symmetric scheme with 3 modes of
the coloring algorithm and evaluated the topological
charge with the SMP method. The results of the average
absolute systematic error were presented, as well as the
efficiency of the SMP method compared to the point
source method. Potential applications of the SMP meth-
od are expected in calculations of the trace of the inverse
of any large sparse matrix with locality.
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