# PURELY STRINGY MODEL BUILDING WITH LOWER-RANK GAUGE GROUPS

Hikaru Sato

Department of Physics

Hyogo University of Education

- - § 2 Noncommuting Wilson lines
  - §3 Gauge symmetry breaking
  - § 4 Model building
  - § 5 Conclusions

#### § 1 INTRODUCTION

Compactification of 10-d heterotic string theory may provide a unified framework for all fundamental interactions in 4-d.

Compactification of 6 space dimensions

- (1) Calabi-Yau manifold
  tensor product of minimal N=2 Gepner
  superconformal theories
- (2) Orbifold
  - standard Z orbifold

$$E_8 \times E_8 \rightarrow E_6 \times SU(3) \times E_8$$

- orbifold with Wilson lines homomorphism of the space group defining the torus into  $E_8 \times E_8$ 
  - gauge symmetry breaking \ ⇒ realistic
  - number of generations | models

extra U(1) -> Z'

Rank of the gauge group is not changed and many extra U(1)'s survive.

Are large rank gauge groups a characteristic feature of chiral string models in 4-dimensions?

The purpose of this talk is

to give a powerful method to construct
chiral string models in 4-d with lower
rank gauge groups.

#### Z orbifold

6-dimensional torus  $T^6 = R^6/\Gamma_6$ 

 $\Gamma_6$ : lattice defining the torus

 $Z_3$  invariance (point group)  $\theta: Z^{\alpha} \rightarrow \exp(2\pi i/3)Z^{\alpha}$ 

 $\alpha=1, 2, 3$  (R<sup>6</sup> in complex notation)

space group

$$S: Z^{\alpha} \to (\theta Z)^{\alpha} + \zeta^{\alpha}$$
$$\zeta \in \Gamma_{6}$$

Z orbifold

$$T^6/Z_3 \simeq R^6/S$$

fixed points
$$(0,1,2)\sqrt{\frac{1}{3}}e^{i\frac{\pi}{6}}$$
mod 3



## Orbifold with commuting Wilson lines

bosonic formulation

space group

$$Z^{\alpha} \rightarrow (\theta Z)^{\alpha} + \zeta^{\alpha} \qquad \alpha = 1,2,3$$

embedding in gauge degrees of freedom

$$\chi^{I} \rightarrow (\Theta \chi)^{I} + \chi^{I}$$
  $I = 1, \dots, 16$ 

⊖: automorphism of group latticeWeyl rotation

homomorphism:  $(\theta, \zeta) - (\Theta, V)$ 

(rotation) × (shift) noncommutative
⇒ reduction of the rank of subgroup

It is rather difficult to construct realistic models on purely stringy basis.

- ⇒ Field theory approximation
  - flat direction in the potential
  - anomalous U(1)

## § 2 NONCOMMUTING WILSON LINES

fermionic formulation

☆ unified treatment of both Abelian and non-Abelian embedding

☆ systematic model building

☆ no field theoty approximation

orbifold with Wilson lines

(R<sup>6</sup> with background gauge field)/S

A

$$X \rightarrow X$$
 $Y(B) = e^{i \int_{A}^{B} A_{\mu} dx^{\mu}}$ 
 $X \rightarrow X$ 

Fixed point

 $X \rightarrow X$ 
 $X \rightarrow X$ 

fixed point ⇔ shift in lattice ⇔ Wilson line

fixed point ⇔ conjugacy class of S

⇔ twisted Hilbert space

O Wilson lines corresponding to different fixed points are <u>noncommuting</u>.

This noncommutability may reduce the rank of the gauge group.

Fixed point on the Z orbifold is denoted by (p, q, r); p, q, r = 0,  $\pm 1$  mod 3 specify location of the fixed point on the three complex  $z^{\alpha}$  planes.  $\alpha = 1, 2, 3$ 

$$2\pi k/3$$
 rotation  $\Leftrightarrow$  shift  $pe_{\kappa}^{1}+qe_{\kappa}^{2}+re_{\kappa}^{3}$   
 $k = 1, 2$  for fixed point  $f=(p, q, r)$ 

# Wilson line corresponding to this shift

$$\Theta_{f,k} = \exp[2\pi i(pa_k+qb_k+rc_k)]$$

$$2\pi a_k=A_{\mu}\cdot(e^1_k)^{\mu}, \text{ etc.}$$

Internal degrees of freedom of the heterotic string is described by

$$\psi^{i}$$
 ,  $\widetilde{\psi}^{i}$  (i=1, ..., 16)

which transform as vectors of  $SO(16) \times SO(16)$ .

Embedding of  $Z_3$  into  $E_8 \times E_8$  is given by rotation matrix  $\Omega$  for  $\psi$ 

$$Ω = \exp[2\pi i \xi^{\ell} H_{\ell}]$$
,  $3\xi^{\ell} = 0 \mod 1$   
 $H_{\ell}$ : Cartan subalgebra of  $E_8 \times E_8$   
 $\ell = 1, \dots, 16$ 

## Boundary condition on orbifold

for gauge fermions

$$\psi(\sigma_1+\pi,\sigma_2)=(-1)^n\Omega \Theta_{f,k}\psi(\sigma_1,\sigma_2)$$

$$\psi(\sigma_1, \sigma_2 + \pi) = (-1)^{m} \Omega \Theta_{f, h} \psi(\sigma_1, \sigma_2)$$

nondiagonal in matrix notation

n,m: Spin

Automorphism of order 3

structure

 $\theta_k$ : exp[2 $\pi$ ik/3]  $\Leftrightarrow \omega_{f,k} = \Omega \Theta_{f,k}$ 

# of automorphisms  $\omega_f$  = # of fixed points f = # of twisted Hilbert spaces

Noncommuting  $\omega_{\text{f}}$  and  $\omega_{\text{g}}$  for different fixed points f,g

 $[\omega_{\rm f},\ \omega_{\rm g}] \neq 0 \Rightarrow {\rm reduction\ of\ the}$ 

Quantum numbers invariant under  $\omega_f$  determine the gauge symmetry of the subgroup.

#### § 3 GAUGE SYMMETRY BREAKING

Commutability of  $\omega_{\rm f,\,k}=\Omega$   $\Theta_{\rm f,\,k}$  depends on the choice of background gauge fields A  $\mu$ 

(i) Abelian embedding

A $_{\mu}$  in the Cartan subalgebra

all  $\omega_{f,k}$  commutable  $\Rightarrow$  diagonalized simultaneously

This case is equivalent to the embedding of the space group by shifts in the  $E_8 \times E_8$  lattice.

$$\Omega^{k} \Theta_{f,k} = \exp[2\pi i k v_{f}^{\ell} H_{\ell}], \quad k=0, \pm 1$$

$$v_{f}^{\ell} = \zeta^{\ell} + (pa_{1} + qb_{1} + rc_{1})^{\ell}$$

$$\ell = 1, \dots, \ell$$

 $v_f$  corresponds to a shift in the  $E_8 \times E_8$  lattice in the bosonic formulation.

<u>Modular invariance</u> in the presence of background gauge fields

⇔ the level matching condition.

## condition of modular invariance

$$\begin{cases} N \sum_{\alpha} \xi^{\alpha} = 0 \mod 2 \\ N \sum_{\ell} v_{f}^{\ell} = 0 \mod 2 \pmod 2 \\ N\{\sum_{\ell} (v_{f}^{\ell})^{2} - \sum_{\alpha} (\xi^{\alpha})^{2}\} = 0 \mod 2 \end{cases}$$

Here  $\xi^{\alpha}$  determines the boundary condition for the right-moving NSR fermions:

$$\lambda^{a}(\sigma_{1}+\pi, \sigma_{2}) = (-1) \exp(2\pi i k \xi^{a}) \lambda^{a}(\sigma_{1}, \sigma_{2})$$

$$\lambda^{a}(\sigma_{1}, \sigma_{2}+\pi) = (-1) \exp(2\pi i h \xi^{a}) \lambda^{a}(\sigma_{1}, \sigma_{2})$$

$$\xi^{a} = (1/3, 1/3, -2/3, 0)$$

$$\alpha = 1, \dots, 4$$

# condition of group invariance

string states on orbifold must be invariant under  $\mathsf{Z}_3$ 

$$(V^{\ell} + kv_f^{\ell}/2)v_f^{\ell} + (K^{\alpha} - k \xi^{\alpha}/2) \xi^{\alpha} + m_k = 0$$

$$V^{\ell} \subseteq E_8 \times E_8 \text{ lattice}$$

$$K^{\alpha} \subseteq SO(8) \text{ vector or spinor lattice}$$

$$m_k : \text{ eigenvalue of the twist operator}$$

$$\hat{q} = e^{2\pi i \hat{m}_k} , \quad \hat{q} \neq \hat{q}^{-1} = e^{2\pi i/3} \neq 0$$

#### Massless spectra

- (1) untwisted sector
- $\bigstar$  gauge boson helicity  $\pm 1 \subseteq 8_v$  of SO(8)  $K^a \xi^a = 0 \mod 1$ group invariant condition

$$\Rightarrow V^{\ell}v_{f}^{\ell} = 0 \mod 1$$

- ★ massless fermions helicity  $1/2 = 8_s$  of SO(8) $K^* \xi^* = 2/3 \mod 1$  $\Rightarrow V^{\ell} v_f^{\ell} = 1/3 \mod 1$
- (2) twisted sector
- ★ massless fermion

$$\frac{1}{2}(V^2 + v_f^2)^2 + N_L - \frac{2}{3} = 0$$

 $N_L$ : number of  $z_L$  oscillation

Mass spectrum is the same as the one obtained by embedding shifts in the  $E_8 \times E_8$  lattice.

 ${\bf A}_{\mu}$  not restricted to Cartan subalgebra  $ightharpoonup \omega_{{\bf f},\,{\bf k}}$  noncommutable

Quantization of string states needs to diagonalize the boundary conditions:

 $\Omega^{\mathbf{k}} \ominus_{\mathbf{f}, \mathbf{k}} = U_{\mathbf{f}}^{-1} \exp[2\pi i \mathbf{k} \mathbf{v}_{\mathbf{f}}^{\mathbf{\ell}} \mathbf{H}_{\mathbf{\ell}}] U_{\mathbf{f}}$ transformation matrix  $U_{\mathbf{f}} \subseteq SO(16) \times SO(16)$ eigenvalue  $\mathbf{v}_{\mathbf{f}}$ :  $3 \mathbf{v}_{\mathbf{f}}^{\mathbf{\ell}} = 0 \mod 1$   $Z_3$  invariance

String states associated with each fixed point are expressed in the different basis.

String Hilbert space is invariant under

$$\omega_{f,k} = \Omega^k \Theta_{f,k}$$
, automorphism of  $Z_3$ 

 $\bigstar$  Gauge symmetry is determined by invariance under  $\omega_{f,k}$  for all f

$$\Rightarrow \begin{cases} V^{\ell} v_{f}^{\ell} = 0 \mod 1 \\ U_{f} E_{V} U_{f}^{-1} = E_{V} \rightarrow \text{always satisfied} \\ \frac{U_{f} H_{\ell} U_{f}^{-1} = H_{\ell}}{\text{of subgroup}} \rightarrow \text{reduce the rank} \\ \text{of subgroup} \end{cases}$$

Chiral fermions

(1) untwisted sector

$$V^{\ell}v_{f}^{\ell} = 1/3 \mod 1$$

$$U_{f} H_{2} U_{f}^{-1} = H_{2}$$

Singlets with the noninvariant U(1) charge are projected out.

(2) twisted sector

massless condition

$$\frac{1}{2}(V^{\ell}+V_{f}^{\ell})^{2}+N_{L}-\frac{2}{3}=0 \qquad \text{unchanged}$$

 $N_1$ : number of  $z_1$  oscillation

Modular invariance of the truncated theory

partition function for the left-moving gauge fermions for the boundary condition  $(k,h)_f$ 

$$Z_{(k,h)_{f}} = Tr[\Omega^{h} \Theta_{f,h} \exp(2\pi i \tau H_{f,k})]$$

$$= Tr[\exp(2\pi i h v_{f}^{\ell} H_{\ell}) \exp(2\pi i \tau H_{f,k})]$$

 $H_{f,\kappa}$ : Hamiltonian in the  $(k,h)_f$  sector invariant under  $SO(16) \times SO(16)$ 

# Partition function does not depend on Uf.

(Inner)automorphism corresponding to  $U_f$  is commutative with modular transformation.

the level matching condition for eigen values v<sub>f</sub> is sufficient for modular invariance

The discarded zero modes are singlets of the unbroken non-Abelian group.

⇒ Anomaly cancellation with respect to unbroken subgroup is not changed.

# Remark

- © Gauge symmetry and mass spectra are determined by the eigen value v<sub>f</sub> of the boundary conditions for gauge fermions.
  - ⇒ Different Wilson lines with the same v<sub>f</sub> give the same symmetry and mass spectra.
  - ⇒ degenerate orbifold

# § 4 MODEL BUILDING

(1)  $Z_3$  embedding

$$\Omega = \exp[2\pi i \zeta^{\ell} H_{\ell}]$$

$$\zeta = \frac{1}{3}(2.1,1.0^{5}; 0^{8}) \quad \text{Standard}$$
ambedding

(2) Possible Wilson lines

$$\Theta_{f,k} = \exp[2\pi i(pa_k+qb_k+rc_k)^{37}T_{ij}]$$
  
 $T_{ij}: SO(16) \times SO(16) \text{ generators}$ 

# Electroweak symmetry should not be violated.

$$SO(16)$$
 adjoint  $120 \supset SO(10) \times SU(4)$ 

$$\frac{120}{L} = (45, 1) + (10, 6) + (1, 15)$$

$$SU(2)_R \text{ breaking} \qquad SU(4) \text{ or } SU(3) \text{ breaking}$$

\* electroweak symmetric Wilson lines

$$(3,1) + (1,15)$$
 of  $SU(2)_R \times SU(4)$ 

| Wilson lines                        |       | <u>re</u> | <u>duction</u> | of | rank |
|-------------------------------------|-------|-----------|----------------|----|------|
| $SU(2)_R$ , $SU(2)$                 |       | •••       | 1              |    |      |
| $SU(2)_{\mathbb{R}} \times SU(2)$ , | SU(3) | •••       | 2              |    |      |
| $SU(2)_{\mathbb{R}} \times SU(3)$ , | SU(4) | •••       | 3              |    |      |
| $SU(2)_{\mathbb{R}} \times SU(4)$   |       | •••       | 4              |    |      |

# \* Simple model

$$E_8 \times E_8' \rightarrow SU(3)_c \times SU(3)_L \times SU(3)_R \times SO(14) \times U(1)'$$

(1) Z<sub>3</sub> embedding

$$\xi = \frac{1}{3} (e_1 + e_2 + e_5 - 2e_6 + e_7 + 2e_1')$$
  
e: orthogonal basis

 $\xi$  is invariant under SU(9) $\times$ SO(14) $\times$ U(1).

(2) one Wilson line from SU(3)

$$a^{xy} T_{xy} \rightarrow \frac{1}{3} (2H_1 + H_2 + H_3)$$

diagonalized by • SO(16)∩SU(9) rotation which leaves & invariant.

## Symmetry breaking:

## Chiral fermions

untwisted sector

two of them are projected out by  $SO(16) \cap SU(9)$  rotation

twisted sector

$$27 \{(1,3,1) + (3,1,1) + (1,1,3)\}$$

More elaborate examples are constructed by choosing  $Z_3$  embedding,  $\zeta$  and Wilson lines.

#### (2.0) orbifold

Hank

$$E_8 \times E_8' \rightarrow$$

|               |   | gauge groups                                                                             | Wilson lines                                      | massless fermions                                                                                 |
|---------------|---|------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|
|               | 7 | E <sub>6</sub> × U(1) × SO(14) ' × U(1) '                                                | SU(2)                                             | 12 <u>27</u> + 81 <u>1</u>                                                                        |
|               | 7 | SU(6) × SU(3)<br>× SO(14)' × U(1)'                                                       | SU(2) <sub>R</sub>                                | 3(15,3) + 9(15,1)<br>+ $36(\overline{6},1) + 45(1,\overline{3})$                                  |
|               | 6 | E <sub>6</sub> × SO(14)' × U(1)'                                                         | SU(3)                                             | 3 <u>27</u> + 3 <u>27</u> + 54 <u>1</u>                                                           |
|               | 6 | SU(6) × U(1) × E' × U(1)*                                                                | SU(2) <sub>R</sub> ×SU(2)                         | 9 15 + 36 6 + 18 6 + 81 1                                                                         |
|               | 5 | SO(10) × SO(14)' × U(1)'                                                                 | SU(4)                                             | 3 16 + 6 10 + 3 10 + 36 1                                                                         |
| <br> -<br> 30 | 5 | SU(6) × E' <sub>1</sub> × U(1)'                                                          | SU(2) <sub>R</sub> ×SU(3)                         | 3 <u>15</u> + 3 <u>15</u> + 24 <u>6</u> + 24 <u>6</u><br>+ 54 <u>1</u>                            |
| 4             | 4 | SU(4) <sub>c</sub> × SU(2) <sub>L</sub><br>× E' <sub>7</sub> × U(1)'                     | SU(2) <sub>R</sub> × SU(4)                        | $3(4,2) + 12(\overline{4},1) + 6(4,1)$<br>+ $30(1,2) + 6(6,1)$<br>+ $3(\overline{6},1) + 36(1,1)$ |
|               | 4 | SU(3) <sub>c</sub> × SU(2) <sub>L</sub> × U(1) <sub>Y</sub><br>× E' <sub>7</sub> × U(1)' | SU(2) <sub>R</sub> × SU(4)<br>× U(1) <sub>Y</sub> | $6(3,2) + 3(\overline{3},2) + 33(1,2) + 9(\overline{3},1) + 3(3,1) + 36 (1,1)$                    |
|               |   |                                                                                          |                                                   | J                                                                                                 |

 $(0,0,1): 3\{(3,2)+3(1,2)+3(\overline{3},1)+(3,1)+3(1,1)\}$ 

(0,1,+): 3 {4(1,2)+(3,2)} mittor conjugate
(0,-1,+): 3 {4(1,2)+(3,2)}

## § 5 CONCLUSIONS

1. We have proposed a powerful method to construct orbifold models with lowerrank gauge groups.

non-commuting Wilson lines

 $\Rightarrow$  automorphism of Z<sub>3</sub>,  $\omega_{\mathrm{f}}$ for twisted Hilbert space H<sub>f</sub>

$$[\omega_f, \omega_g] \neq 0$$
 for  $f \neq g$ 

2. Unified treatment for Abelian (no rankreduction) and non-Abelian embedding

more general than bosonic formulation

3. Purely stringy construction of models with lower-rank gauge group

> no field theory approximation flat direction of potential  $\Rightarrow \langle \phi \rangle \neq 0$

4. Need more study to construct realistic models

choice of Z<sub>3</sub> embedding and Wilson lines