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INTRODUCTION 

A Riemann ellipsoid is a fluid with an ellipsoidal boundary whose 

Velocity field is a linear function of position. The theory of Riemann 

ellipsoids forms a highly satisfying and coherent structure which 

unifies and draws upon ideas across traditional disciplinary lines: 

i. Riemann ellipsoids are applied to diverse areas of physics from 

rotating stars to superdeformed nuclei. 

2. The theory uses ideas from classical fluid mechinics, Lie 

groups, geometric quantization, Hamiltonian dynamics, 

bifurcation theory, and quantum dynamical symmetry. 

3. Riemann ellipsoids may be realized as classical or quantum 

models of rotating systems from a single unified viewpoint. 

During the 1960s, Chandrasekhar and Lebovitz systematically 

investigated the equilibrium and stability of rotating stars by 

modeling them as Riemann ellipsoids bound by their gravitational 

Self-energy [I]. Bohr and Wheeler in their seminal 1939 paper on 

nUclear fission proposed viewing rapidly rotating nuclei as 

irrotational fluid droplets, whose stability is determined by a 

Competition between an attractive surface tension and the Coulomb 

repulsion between the protons [2]. Rigid body rotation was studied for 

nuclei by Rosenkilde [3] and Cohen, Plasil and Swiatecki [4], who both 

emphasized a unified approach with astrophysics. 

In 1968, Cusson initiated an independent line of research by 
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proposing the application of classical linear velocity fields to 

low-energy rotational bands in nuclei [5]. However, in this domain, an 

explanation of rotational nuclear states must be fully quantum 

mechanical. By constructing the irreducible unitary representations of 

Lie algebras of purely collective observables, quantum models of 

collective motion have been derived. For rigid rotation, the 

rotational algebra rot(3) is relevant [6-7]. This Lie algebra is a 

semidirect sum of so(3) with an abelian five dimensional ideal spanned 

by the traceless inertia tensor, rot(3)-[RS]so(3). For incompressible 

linear flow in the low energy domain, Weaver and Biedenharn introduced 

the irreducible unitary representations of sl(3,R), whose noncompact 

generator is the time rate of change of the traceless inertia tensor 

[8]. But, in order to allow for a potential energy which is a function 

of the size and deformation of the ellipsoid, sl(3,R) must be augmented 

with the inertia tensor itself, thereby forming the special collective 

motion algebra scm(3)-[R6]sl(3,R) or, for compressible flow, the 

general collective motion algebra gcm(3)-[RS]gl(3,R) [9-10]. In order 

to achieve compatibility with the harmonic oscillator shell model, the 

collective motion algebras must be extended further to the symplectiC 

Lie algebra sp(3,R), which is the subject of M. Moshinsky's paper. 

In this paper, the quantum theory of collective motion is unified 

with the classical theory of Riemann ellipsoids, via the group GCM(3). 

The classical Riemann ellipsoids live on the co-adjoint orbits of 

GCM(3), while the corresponding quantum models are produced by its 

irreducible unitary representations. The connection between the 

classical and quantum models is achieved by geometric quantization. 

This elegant unified picture is aesthically pleasing. It is similar to 

the case of the relativistic free particle presented by Souriau [II]. 

There are two important by-products of this analysis. The first 

is the observation that the GCM(3) Casimir invariant £2 is just the 

square of the Kelvin circulation vector, which is expected generally to 

be conserved. Hence, the constancy of fz on the co-adjoint orbits and 

irreducible representations of GCM(3) is an advantageous feature of the 

algebraic approach with a firm basis in fluid mechanics. The second is 

the demonstration, apparently for the first time, that the classical 
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Riemann ellipsoids form a Hamiltonian dynamical system on the 

co-adjoint GCM(3) orbits. This is the reduced phase space of the 

system for which conservation of circulation has been exploited fully. 

The plan of this article is to first consider linear velocity 

fields, establish some notation, and then show that this kinematics is 

characterized uniquely by the gcm(3) observables. Next, the co-adjoint 

orbits of GCM(3) are enumerated, the Poisson bracket defined, and the 

Hamiltonian dynamics of Riemann ellipsoids is presented. Finally, the 

geometric quantization of the co-adJoint orbits is reviewed. 

KINEMATICS 

A linear velocity field is defined if each infinitesimal element 

of the fluid centered at time t at the position vector X(t) in some 

inertial frame is constrained to an orbit of GI(3,R), 

X(t) - g(t) yo , g(t) E GI(3,~) (i) 

where ~o specifies the fluid's position at t-0. Since at time t the 

location of each fluid element is defined by the same matrix g(t), the 

fluid elements move in tandem, or collectively. The implications of 

the GI(3,R) constraint are explicated for ellipsoids by writing g as 

the product of two rotations, R and S, sandwiching a diagonal matrix A, 

g - tR.A.S . (2) 

Choose R 6 SO(3) to align the principal axes with the Cartesian axes, 

let A - diag(al,a2,a) be composed of the lengths of the principal 

seml-axes, and leave S 6 SO(3) to determine the internal rotational 

motion, or vorticity. Then, the angular velocity ~ and the vortex 

Velocity I are defined by the antisymmetric matrices 

- ~.~R A- ~-~S 
(3) 

i l J k  ~k i i Jk  j k  

The components of the angular momentum L and the Kelvin circulation 

Projected onto the axes of the body-fixed frame are given by 

for i,j,k cyclic. 
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Observables 

Our goal is to show that the kinematics of Riemann ellipsoids is 

characterized uniquely by the gcm(3) - [Re]gl(3,R) observables. The 

ideal R e is spanned by the inertia tensor in the laboratory frame 

f)L ~ ~ X dsX ( 5 ) ±j P X i j 

With respect to the body-fixed frame x~RX, the inertia tensor takes the 

form 

~lJ " ~ p x± xj dSx . <6) 

If the fluid has constant density p and total mass M, 

~L -- tR.~. R ~ - (M/5) a 2 6 (7) 
lj i lJ 

Thus, the eigenvectors of ~L define the instantaneous directions of the 

principal axes and its eigenvalues define their lengths. We conclude 

that the E 8 observables give complete information about the spatial 

configuration of the ellipsoid. 

As one would expect, the gl(3,E) observables uniquely specify the 

motion of a linear velocity field. With respect to the body-fixed 

frame coordinate x - RX and velocity U - P~', the generators of gl(3,R), 

known as the shear tensor, take the form 

, ~ij O xi Uj dSx (8) 

which is evaluated to be 

- (M/B) [A.A + A2.~ - A.A.A] (9) 

The diagonal components of the shear tensor define the vibrations of 

the axes lengths ~ - , ±± (M/5)a±a±, and the off-diagonal entries specifY 

the angular momentum and circulation 

L - ~ ± j  ~ j  £ _ ~ (~-1 /2 .~  -1/2 k klj "~ )lj' (i0) 

which, in turn, define the angular and vortex velocities. 
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DYNAMICS 

The dynamical description of Riemann ellipsoids depends upon the 

Lie structure of gcm(3): 

'~.i il kj 3k if' [ i3 klJ il ~k 31 ik 

This structure is utilized in two essential ways: 

i. The reduced phase space of a Riemann ellipsoid is a co-adjoint 

GCM(3) orbit, O~. The orbits are indexed by the total 

circulation ~. 

2. Hamiltonian dynamics, as defined by the natural Poisson bracket 

on O~, is identical to the Euler fluid equations of motion as 

given by Chandrasekar [I]. 

In order to compute the co-adjoint orbits explicitly, consider a 

faithful matrix representation of the Lie algebra gem(3) by 6×6 real 

matrices, 

gem(3) -= E,X) ~ E -iX , = = E (12) 

where ~L ~ e + e , ~L -> e e and e denotes the 
lJ i +3, ~ j+3, i J i i~ 3+j, 3+i, km 

6×6 matrix with 1 at the intersection of row k with column m and zero 

elsewhere. The group GCM(3) is represented by exponentiation of the 

gem(3) matrices, 

GCM(3) s (A,g) - "g t , -- A (13) 

With the semidirect product multiplication law 

(A1,gl).(A2,g2) = (At+ t -l.. • -i , gl n2 gl g1"g2 ) (14) 

The dual space to the Lie algebra gcm(3) is given by the space of pairs 

of 3x3 real matrices 

gcm(3)* _= {(~,~)I ~ - ~ } , (15) 

Where the linear function (~,~) is defined by the pairing 

i 
<(~,~)I(E,X)>- ~ tr (#.E) + tr(~-x) . (16) 
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The co-adjoint action is computed to be 

* -I 
Ad(A,g)(~,N) - (g-~.~g , g.N-g -(g.~.tg)-A) (17) 

The physical interpretation of the points of the abstract dual 

space is provided by the classical observables, i.e. smooth functions 

on the co-adjoint orbits in the dual space. In general, for a Lie 

algebra ~, each element Z E ~ is mapped canonically into a classical 

observable 8(Z) E C~(~ *) , 

e(z)(~) - <~Iz> (18) 

* 
for N e ~ . Applying this general prescription to ~ - gcm(3) gives 

e(n~j). (~,~) - 
(19) 

L 

Therefore, the points of the dual space are interpreted as (QL,~L) e 

gcm(3)*. Unless required for clarity, distinctions between the 

coordinate function 8(Z), the coordinate Z, and the Lie algebra element 

Z are not made explicit. 

Co-adj oint Orbits 

Each co-adjoint orbit of GCM(3) intersects exactly one point from 

the transversal 

T-{(l,L) E gcm(3)* I Lij - i/2 f Eli3, ~ ~ 0} . (20) 

At each transveral point, ~e--l, ~n~l and the circulation £k=£6ks, in 

dimensionless units. Thus, the net circulation uniquely distinguishes 

the co-adjoint orbits and provides their physical interpretation 

It has been shown by Gulshani and Rowe [12] that the Casimi~ 

invariant of gcm(3) is 

£2. tr(D-1.~.D t~) tr(~ 2) , (21) 

which is just the square of the circulation vector. Hence, the 

circulation must be constant on each orbit 0f whose points are given by 

-I g t * (I,[) - (g.tg, g.[.g _ g.A) (22) Ad(A,g) 
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After evaluating the isotropy subgroups at the transversal points, one 

obtains 

~ GCM(3)/SO(2), dim-14, £~0 
0£ - (23)  

[ocM(3)/so(3), dim-12, £-0. 

Poisson Bracket 

For any Lie algebra ~, 

structure on each co-adjoint orbit 

for Y,Z e ~. 

there is a natural Poisson bracket 

(24) 

Hamiltonian Dynamics 

Using the Poisson bracket, Hamiltonlan dynamics may be considered. 

Let the Hamiltonian H be the sum of the kinetic energy T and potential 

energy V. But, the kinetic energy is given by 

T - ~ p U.U d3x - t r ( t ~ - a - 1 . ~ ) ,  (25)  

Which shows t h a t  T i s  a f u n c t i o n  o f  t h e  gcm(3) o b s e r v a b l e s  [ 5 ] .  

Suppose that V is a scalar function of the inertia tensor, i.e. V is a 

function of the semi-axes lengths a of the ellipsoid. In this case, H 
i 

is also a function of the gcm(3) generators and Hamiltonian dynamics is 

Well-defined by 

. {< <.> 

It has been proven by the author that this Hamiltonian system on 0~ is 

identical to the Euler equation of motion studied by Chandrasekhar 

[13]. 
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GEOMETRIC QUANTIZATION 

Since the geometric quantization of the co-adjoint orbits of 

SCM(3) has been determined by lhrig and the author [14] and Guillemin 

and Sternberg [15] and the GCM(3) case is similar, only the three key 

results will be reviewed here. Firstly, the Bohr-Sommerfeld 

quantization condition demands that £ be a nonnegative integer. Thus, 

the circulation is quantized. Secondly, a complex polarization is 

required if the circulation is nonvanishing, viz. the subalgebra 

spanned by R 6 with the complex Borel subalgebra of so(3) ~ generated by 

so(2) and the raising operator L - L+£L . If the circulation 
+ x y 

vanishes, then the polarization is the real subalgebra [RS]so(3). 

Thirdly, quantization yields all the irreducible unitary 

representations of GCM(3) as determined independently by Maekey 

inducing [9]. 

REFERENCES 

I. S. Chandrasekhar, "Ellipsoidal Figures of Equilibrium," Yale Univ. 

Press, New Haven, 1969. 

2. N. Bohr & J.A. Wheeler, Phys. Rev. 56, 426 (1939). 

3. Carl. E. Rosenkilde, J. Math. Phys. 8, 98 (1967). 

4. S. Cohen, F. Plasil & W.J. Swiateeki, Ann. Phys. 82 ,557 (1974). 

5. R.Y. Cusson, Nucl. Phys. All4, 289 (1968). 

6. H. Ui, Prog. Theoret. Phys. 44, 153 (1970). 

7. O.L. Weaver, L.C. Biedenharn & R.Y. Cusson, Ann. Phys.77,250 (1973) 

8. O.L. Weaver & L.C. Biedenharn, Nucl. Phys. A185, i (1972). 

9. G. Rosensteel & DoJ. Rowe, Ann. Phys. 96, 1 (1976). 

I0. O.L. Weaver, R.Y. Cusson & L.C. Biedenharn, Ann. Phys.102,493(1976) 

Ii. J.-M. Souriau, "Structures des Systemes Dynamiques," Dunod, Paris, 

1970. 

12. P. Gulshani & D. J. Rowe, Can. J. Phys. 54 ,970 (1976). 

13. G. Rosensteel, "Rapidly Rotating Nuclei as Riemann Ellisoids," 

preprint. 

14. G. Rosensteel & E. Ihrig, Ann. Phys. 121, 113 (1979). 

15. V. Guillemin & S. Sternberg, Ann. Phys. 127, 220 (1980). 


