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THE ALGEBRAIC METHOD IN REPRESENTATION THEORY ( ENVELOPING ALGEBRAS) 

I Introduction 

In Lie algebra theory a basic open problem is to classify all 

irreducible representations (up to equivalence). For the category of finite 

dimensional representations the answer is known and is classical. By contrast 

a full classification for infinite dimensional representations appears to be 

impossible. For example, this is evidenced by the work of Arnal and Pinczon 

[2] on s~(2) and by the work of MeConnell and Robson [34] on A 1 which can be 

used to show [5] that the Heisenberg Lie algebra [18], 4.6.1, admits infinitely 

many inequivalent irreducible representations all very different from the 

standard one. 

One way out of this difficulty is to consider only representations 

which integrate to unitary (or just bounded) representations of the corresponding 

Lie group(s). This has physical justification through Wigner's theorem. We call 

it the analytic approach. In it the Lie algebra plays only a subservient role. 

About ten years ago, Di~nier proposed a purely algebraic way out 

which has since then generated a new area of mathematics called enveloping 

algebras. The philosophy is to find a less refined classification than 

equivalence classes rather than to exclude representations. We call it the 

algebraic approach. Except for finite dimensional representations, or for nilpotent 

Lie algebras, the exact relationship between these two approaches is not yet known, 

though one can find many analogies. Consequently in a given application one must 

make a definite choice as to which to use. 

It is my personnel conviction that the algebraic approach has a very 

real and important contribution to make in physics. First of all it gives an 

overall framework which I believe physicists have been unsucessfully groping at 

for some years. Secondly, new techniques have been developed which go far beyond 

the relatively naive (though often intricate) computations of physicists. Some of 

these were taken over from situations where the analytic approach could be reduced 

to purely Lie algebraic questions and in this sense notable early contributors 

to enveloping algebras are Gelfand, Kostant and Harish-Chandra ( the acknowledgement 

here is Dixmier's [18], p. 5 ). Other techniques are inspired by commutative 

(and non-commutative)algebra and in particular localization plays a fundamental role. 

I do not suggest that either approach is superior in its physical 

applicability; rather that a choice between the two should be dependent on the 
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situation concerned. Apart from the question of taste ( i.e. if one prefers 

algebra to analysis) two further principles should be kept in mind. 

i) If the Lie algebra is given through the action of a Lie group on a manifold 

(such as the Poincar~ group acting on space-time) then the analytic approach is 

favoured. Yet for internal symmetries (e.g. su(3) in particle physics) where 

the symmetry has no well-established geometric origin, then the algebraic 

approach is at least of equal importance. In fact the search for "realizations" 

of Lie algebras (especially in the context of spectrum generating algebras [36] 

and chiral Lagrangians [14] ) constitutes what I believe to be the primordial 

component of enveloping algebras in physics. 

2) Roughly speaking, the analytic approach is best adapted to fundamental 

questions in physics, whereas the algebraic approach applies best to a computational 

scheme. 

In the next section we give a precise definition of the algebraic 

approach. For "representation space", it is convenient to use the more precise 

term - module [18] , 1.2.1. This in particular excludes the possibility that we 

are talking about representations in Hilbert space, though in this context 

we remark that the module should be regarded as a common dense domain for 

the generators of the Lie algebra ( in the language of say field theorists). 

Moreover this notion can often be made precise and then has a highly non-trivial 

content [22,39]. 

Throughout we take the base field k to be cormnutative and of 

characteristic zero. For example, k can be the real field ]R or the complex 

field 5, the latter being algebraically closed. IN denotes the natural numbers 

and ~+ the positive integers. 

2 The Primitive Spectrum 

Let ~ be a finite dimensional Lie algebra with enveloping algebra U(~). 

k I k 2 k n 
Recall that if [Xi}i= 1 is a basis for ~, then X 1 X 2 ..... Xn n : k i C ~ is a 

basis for U(~) and that for all X,Y E ~, we have IX,Y] = XY - YX in U(~), where 

[ , ] denotes the Lie bracket in ~. The importance of U(~) derives from the 

fact that every ~ module extends ( in the obvious fashion) to a U(~) module. 

Given M a U(~) module, we set Ann (M) = [a E U(~) : aM = O}. Ann(M) is a two-sided 

ideal in U(~) and if p denotes the representation of U(~) associated with M, 

then ker p = Ann(M). If MI, M 2 are isomorphic (i.e. equivalence of representations) 

as U(~) modules, then Ann(M I) = Ann(M2). By Wedderburn's theorem (23], Chap. 2, 

the converse holds in the category of finite dimensional simple U(~) modules. 
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Yet the converse fails for infinite dimensional modules and this observation 

is the starting point of the algebraic approach. In more detail~ set 

Prim U(~) = [ Ann(M) : M a simple U(~) module]. Then the fundamental goal of 

the algebraic approach is to classify Prim U(~) ( the primitive spectrum) for 

each ~. This is less refined than classification by equivalence classes and 

unlike the latter is proving quite feasible. 

One should admit from the start that Prim U(~) is not s~fficiently 

refined for all physical purposes. Thus we shall see that the description of 

a primitive ideal I E Prim U(~) entails the use of differential operators. 

Then a canonical transformation llke x 4 x, d/dr ~ d/dr + f(x), does not 

alter I. On the other hand ( if these operators are applied to a fixed space 

of functions) this transformation does in general alter the equivalence class 

of the associated representation [19], Sect. 3. Moreover this transformation 

has been used fo~ example by Zak to contrast the behaviour of a free electron 

with one in a magnetic field [7,21] . In a simply connected region one may 

solve the equation g'(x) = f(x) and eliminate f(x) through a gauge 

transformation. However this is not possible in general and different f(x) 

can correspond to different physical situations as exemplified by the Bohm- 

Aharonov effect [I]. Again one might recall the work of Miller [ 35] who 

shows that a quite large variety of different physical situations can be encompassed 

within various realizations of one or two Lie algebras and in fact within a quite 

small class of (primitive) ideals. Yet again the realization of the symplectlc 

algebra sp(2n) through syrmnetrized quadratic polynomials in xi, ~/~x i : i = l~2,..n, 

leads by its action on the polynomial ring k[Xl~X 2 .... Xn] to two inequivalent 

irreducible representations (the Well representations) spanned by polynomials of 

odd and even degree. These have the same annihilator in U(~) and both have 

enjoyed enormous popularity in physical models [32] , p. 69. 

Nonetheless it should be emphasized that the description of a primitive 

ideal through differential operators allows one to recover practically all the 

representations of Lie algebras discussed in physics. In fact I know of no examples 

for which this is not so. 

3 Goldie's Theorem and the Gelfand-Kirillov Conjecture. 

There are two main problems in the study of Prim U(~). One~ its 

description as a set and secondly the description of a given primitive ideal. 

First we give two basic properties of the latter which highly motivates its 

physical interest. 

Given I E Prim U(~), we set U = U(~)/I. The structure of the factor 
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algebra U should be considered as the generic property of the set of sidle U(~) 

modules with annihilator I and is hence of fundamental importance. In gel&oral 

U is not integral and so we set S = [ a 6 U : ab = O, b E U implies b = O}. 

Example i . Let I be the annihilator of a simple finite dimensional U(~) module. 

Then dim U < ~ and for some m C IN+, it is isomorphic to the full matrix algebra 

M over k. Then S is the set of all invertlble matrices in M . 
m -- m 

Appl~cation of Goldie's theorem [18], 3.6.2, shows that 

Fract U = [ a-lb : a E S, b E U} is an algebra under the obvious identifications 

and furthermore that Fract U is isomorphic for some m E IN + to M over ~me 
m 

non-cormmutative field K (which is an extension of the base field k). More 

precisely we have 

THEOREM - 

(i). 

(ll). 

S is an Ore set for U. 

Fract U = Mm(K) , up to isomorphism. 

Observe that this assigns a number m to I known as its Goldie rank. 

M describes in the generic sense, the finite dimensional piece of the 
m 

representation associated with I. If ~ is solvable, then m is always one [18], 

3.7.2, and this generalizes Lie's theorem to the infinite dimensional case ! 

Now K can be thought of as carrying the infinite dimensional part of the 

representation and it is a remarkable fact that in the enveloping algebra 

context K is apparently always a Weyl field. In more detail, recall that the 

Weyl algebra A of index n (over k) is isomorphic to the associative algebra 
n 

generated by x i j ~/~x i : i = 1,2, .... nj which physicists should consider 

as creation and annihilation operators (and correspondingly k[Xl,X2, ..... Xn] 

as Fock space). Set K n = Fract A n = [ a-lb: a # O,b 6 An}. Let K be defined 

by (li) above. 

CONJECTURE - Suppose that ~ is a split alsebraic Lie algebra. 

(i). For some n E ]N~ K = K n ~ up to isomorphism. 

(ii). n = !/2 Dim U. 

Then 

The above conjecture, in a slightly different form 3 was proposed by 

Gelfand and Kirillov [20]. It has been established for ~ solvable [9, 33] and fmr 

the minimal primitive ideal (see Sect. 6) of a semislmple Lie algebra [161, 

Cor. 10.5. In [28] I have shown that the origin of the Weyl field derives from 

nilpotent action. In (ii), Dim denotes Gelfand-Kirillo~ dimension. This is 

roughly the same as transcendence degree; but we refer the reader to [II] for its 
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exact definition and principle properties. We remark that ~ is always split if 

is algebraically closed. The requirement that ~ be algebraic [8] is of a 

technical nature and we could equally well have extended slightly the class of 

possible candidates for K (c.f. [33]). Most Lie algebras in physics are algebraic. 

We should llke to emphasize three points. 

i) A further integer~ namely Dim U is associated with I. It is called the 

Gelfand-Kirillov dimension of I. Whilst it is an integer~ it is not obviously 

even. However, this has been shown for ~ solvable (and algebraic) and for ~ semi- 

simple [Ii], 7.1. 

2) The identity K = K has the physical interpretation that the infinite 
n 

part of the representation is carried by Fock or a Fock-like space (depending 

on the amount of localization necessary in the embedding of U in Kn). The 

conjecture and the theorem can be regarded as a precise way of saying that 

the matrix generalization of quantum realizations provides the general setting 

for Lie algebra representations. The representation space ( in the generic sense) 

is spanned by finite component wave functions such as those encountered in the 

Dirac or Majorana equations. 

3) It should be emphasized that the algebraic approach is not just 

a transition from the study of representations to the study of realizations. 

This would have little more than heuristic value since the latter problem is 

equally intractable (though some progress was made with therealization of 

s~(2) in A I [26] ). Rather one classifies all the possible relations between 

U relative to M and for this the description of U in terms of differential 

operators is particularly useful. 

Example 2 Let ~ be a subalgebra of ~ and ~ a finite dimensional irreducible 

representation of ~ of dimension m. Let ind ( ~ , ~ # ~) [18], Chap. 5, 

denote the representation induced to ~ and set I = ker ind ( ~, ~ @ ~). Under 

favourable circumstances (see Sects. 4-6) , I is a primitive ideal of Goldie 

rank m, and Gelfand-Kirillov dimension n, where n = dim ~ - dim ~. It is 

said to be an induced ideal. 

We remark that the inducing construction in the algebraic context 

[16], Sect. 5, or [27], Sect. 3, exactly coincides with what physicists called 

non-linear or induced realizations of Lie algebras [14, 24] . Moreover the 

above decomposition of the representation into finite and infinite dimensional 

pieces was given [14] the physical interpretation of being the decomposition 

of the particle spectrum into baryonic (finite) and mesonic (infinite) parts. 

(This distinction arose because baryon number is conserved and for fixed baryon 

number, the baryon spectrum is finite. Also it is easy to give the finite part 
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the correct statistics through the use of operators satisfying the canonical 

anticommutation relations). An important fact is that not all primitive 

ideals are obtained by induction from a finite (or even infinite) dimensional 

representation of a proper subalgebra (c.f. Sects. 5,6). In particular this 

is true of the annihilator of the Well representations. I have succeeded in 

giving some new constructions for non-induced primitive ideals and I anticipate 

that these may have some useful physical applications. 

4 Geometric Quantization and the Solvable Case 

To describe Prim U(~) as a set, we should like to relate it to some 

simple geometric object. Suppose (for technical simplicity) that ~ is an 

algebraic Lie algebra [8]. Recall that the adjoint group G acts by transposition 

in the dual space ~ of ~ and let ~/G denote the corresponding orbit space. 

After Kirillov-Kostant each G orbit in ~ is a symplectic manifold [6], Chap. II, 

and hence in physicists'language provides a classical realization of ~. Through 

the conjecture of Sect. 3, primitive ideals are associated with quantum 

realizations. This suggests that one can construct a bijection between 

g~/G and Prim U(~) which we should naturally call (geometric) quantization. 

Actually this term is usually reserved for the rather specific procedure 

initiated by Kirillov [31] for the nilpotent case and generalized by Auslander 

and Kostant [3,4] to the solvable case. This was put in the enveloping algebra 

framework by Dixmier for the nilpotent case and by Borho, Gabriel and 

Rentschler [9] , [18], Chap. 6, in the solvable case. We sketch the method 

below. For its wider context we refer the reader to Simms' article in this 

series. 

Given f 6~, let Gf denote the G orbit containing f. A polarization 

b for f is a subalgebra of ~ satisfying 

(i). dim ~ dim b = ½ dim Gf (recall Ex. 2). 

(ii). (f, [~,b] ) = O. 

The set of all polarizations for f is denoted by P(f). 

By (ii) the map f : ~ ~ (~,f) is a one-dimensional representation 

of ~ which we simply denote by f. Set l(f,~) = ker ind ( f, ~ ~ ~). Ideally 

this is the required element of Prim U(~). For ~ split solvable, 

l(f,~) is in fact primitive [18], 6.1.1 ; but may also depend on the 

polarization b chosen. In the above case this difficulty can be removed 

by replacing ind by ind N - namely, the twisted induced representation [18], 5.2. 

Indeed [18], 6.1.4, 
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THEOREM i ( ~ split solvable) . Let f E ~, ~i ' ~2 E P(f). 

Then ker ind--(f, ~i t ~) = ker ind--(f, ~2 # ~). 

From now on we take ~ solvable and k algebraically closed. Following 

Theorem i, we set l(f) = ker indN(f,~#~) : ~ E P(f). Then Theorem 2, [18], 

6.1.7, asserts that all primitive ideals are obtained in this way. 

THEOREM 2 The map f ~ l(f) of ~ ~ into Prim U(~) is surjective. 

Let G denote the algebraic adjoint group of ~ [18], 6.1.5. (One 

has G = G if ~ is algebraic). Then I(f I) = I(f 2) if f2 E ~ fl" Extend 

f 4 I(f) to a map ~ of ~/~ into Prim U(~) by passage to the quotient (i.e. 

in the obvious manner). Theorem 3, [18], 6.5.12, shows that different 

orbits give different ideals. 

THEOREM 3 ~ is a bijection. 

is continuous in a natural manner. Indeed take the Jacobson 

topology [18], 3.2, in Prim U(~) and the Zariski topology in ~* (and the 

corresponding quotient topology in ~*/~). We remark that the Jacobson topology 

is the non-commutative analogue of the Zariski topology and that the latter is 

generally used in algebraic geometry to discuss algebraic curves. It is coarser 

than the usual metric topology. For ~ solvable, ~ is continuous [18], 6.4.4 

and [9], Sect. 6, and for ~ nilpotent, it is known to be a homeomorphism [15]. 

To establish the connection with the analytic approach, let Q 

be the connected, simply connected real Lie group with Lie algebra ~ over 

IR and Q the set of classes of irreducible unitary representations of ~. 

When ~ is nilpotent, ~/ ad(Q) ~ Q is a bijection [31]and [3g], Thm. 2.10. 

Now in this case ~ is algebraic, so ad(~) = ~ = G. Furthermore the appropriate 

generalization of theorem 3 when k is not algebraically closed (and ~ is nilpotent) 

obtains by replacing Prim H(~) by Rat U(~), the set of rational ideals [18], 

4.5.8. Then by (18], 6.2.4 and the above, Rat U(~) ~ ~ is a bijection. Thus 

the algebraic and analytic approaches can be considered equivalent in the 

nilpotent case. For general solvable Lie groups the unitary representation theory 

has not yet been fully worked out. However for type 1 solvable Lie groups ( which 

in particular includes the algebraic case) one has ~3], Thm. 2, ~4], Thm. V. 3.3, 

U ~, 

E ~ / a d ( ~ )  

where ~@ i s  the c h a r a c t e r  group o f  the fundamental  group of  @ and has the  

structure of a torus of suitable dimension. Thus ~/ad(~) 4 ~ is a bijection 

only if all orbits are simply connected and this may fail even if ~ is algebraic, 

as exemplified by the oscillator group [41], Sect. 6. It remains to determine 

whether or not the algebraic approach exhibits a similar phenomenon (probably not). 
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5 Difficulties with quantization in the Semisimple Case. 

By contrast with the solvable case, quantization encounters many 

difficulties in the semisimple case. These we summarize below. For simplicity 

we take k = ¢. 

I) Every simple Lie algebra, excepting sZ(n+l) : n E IN + has at least one 

orbit which does not admit polarization. 

2) Theorem 1 fails. That is different polarizations of a given f 6~ W 

can give rise to different primitive ideals. This 

was remarked [iO] by Borho and Rentschler for sp(4). 

3) Theorem 2 fails. That is not all primitive ideals are induced. The first 

counterexample was given by Conze and Dixmier [17], Ex. 3. It turned out that 

this was exactly the annihilator of the Well representations for sp(4). I have 

since then shown [25,29] that every simple Lie algebra, excluding s~(n), 

admits at least one primitive ideal which is not induced. For sp(2n) my 

construction gives the annihilator of the Weil representations, whereas for the 

other cases it is entirely new both to mathematicians and to physicists. I 

believe it may have application to spectrum generating algebras and to the 

classification of nuclear states. 

4) Unlike the solvable case the map ~/G ~ Prim U(~) is not always continuous 

[40]. In particular for sI(3), the space of subregular orbits (those of 

dimension 4) form a cusp, whereas the corresponding family of primitive 

ideals (namely those of Gelfand-Kirillov dimension 4 and Goldie rank 1 ) 

form a less singular loop. This is illustrated below. 

space of subregular orbits 
orbits. 

space of corresponding 
primitive ideals. 

It is very striking that the passage from orbits to ideals exactly 

corresponds in this case to what algebraic geometers call ~ resolution of a 

singularity. Actually the mechanism is quite simple and derives from the 

(p,p) : p = ~(sum of positive roots), term present in the spectrum of the Casimir 

invariants. This term is analogous to zero point energy and it would be very 

nice to find a resolution of singularity in the passage from classical to quantum 

mechanics. For s~(3), Borho and I have shown [12] that the primitive ideals 

of higher Goldie rank form similar loops except that these have finitely many 

missing points where they intersect with loops of lower Goldie rank. 
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5) Theorem 3 fails. That is different orbits can give rise to the same 

ideal [iO]. 

6) Goldie rank can be greater than one. Hence it is not sufficient to induce 

from a one-dimensional representation as outlined in Sect. 4. Of course for 

each f E ~*, one can simply induce from a finite dimensional irreducible 

representation ~ of ~ 6 P(f). However it can happen [12] that over a certain 

(finite ? ) number of orbits, the resulting ideal is not primitive. Again 

it is not known if the Goldie rank of ker ind (o, ~ ~ ~) always coincides with 

dim ~ , [19 , Prob. 12. 

We remark that these difficulties are not restricted to the algebraic 

approach and in fact become even more serious in the analytic approach. 

A natural problem posed by 3) is to give a criterion for when an ideal 

is induced. I propose the following. First recall [27], Sect. 3, that through 

induction each X E ~ is realized as a first-order differential operator 

with coefficients in S(~) ~ , where ~ = ~ ~ ~ and S(~) ̂  denotes the formal 

power series completion of the syrmnetric algebra. (Of course this is also the 

essential fact behind polarization). Since each X is first order, ~ leaves 

S(~) ̂  stable. Under favourable circumstances [27], Prop. 3.5, [16], Cot. I0.5, 

we can replace S(~) ̂  by R(~) = Fract S(~) and furthermore identify R(~) as a 

subfield of Fract U(~)/I. Obviously R(~) is cormnutative. Set L = R(~). 

Given I E Prim U(~), set U = U(~)/I. Suppose that L c U and let L' denote its 

commutant in U. Through the discussion of Sect. 3~ one expects to have 

L' = M(L), where m is the Goldie rank of I. In particular Dim L = Dim L' and 

L = L' if m = i. This motivates the following definition. Call a subfield 

L of U induced if (i) L is corm~utative, (ii) [~,L] c L, (iii) Dim L = Dim L' 

CONJECTURE - A primitive ideal I is induced if and only if 

U admits an induced subfield. 

Assume that ~ is split solvable. Extending the results of [37] 

and in fact with some simplifications, I have shown that for all I E Prim U(~), 

(i) U(~)/I admits an induced field, (ii) L = L' (recall that the Goldie rank 

equals one in this case). Combined with Theorem 2, this proves the conjecture 

for ~ solvable and ~ algebraically closed. An easy application of [16], Cot. 10.5, 

shows that the conjecture also holds for the minimal primitive ideal of a split 

semisimple Lie algebra (see Sect. 6). A possible generalization of quantization 

and its role in the Gelfand-Kirillov conjecture is discussed in [30]. ( I should 

add that a certain primitive ideal is incorrectly identified in F30], pp. 232-233, 

and these pages should be ignored. For sp(4,~) a correct description is given 

in [12] ). 
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6 The Semisimple Case 

In view of Sect .5, new techniques must be devised to handle the 

semisimple case. Here we have space only to surmnarize some of the main results. 

Take ~ simple and k = ~. Let h be a fixed Cartan subalgebra and 

a (resp. a+) a choice of non-zero (resp. positive) roots. Set 

= [ ~ E ~9~: (~3~) > 03 for all ~ E A ÷ ~. ~ is called the Weyl chamber and 

plays a fundamental role in the representation theory of ~. Let ~ denote the 

closure of ~ (in the metric topology). Then the walls ~%%~ of the Weyl chamber 

form a set of reflection planes which generates the Weyl group W of ~. Let Z(~) 

denote the centre of U(~). Given I E Prim U(~), then I N Z(~) = Zl is a 

maximal ideal in Z(~) and after Harish-Chandra [18], 7.4.33 we can regard 

as an element of ~. That is each ~ E ~ specifies the eigenvalues of the Casimir 

invariants of ~ in some well-defined fashion, and is called the central 

character of I. Set ~(~) = [ I E Prim U(~) : I n Z(~) = Zk} . Then 

i) 1 ~ card X(%) < ~, for all % E ~ , [ 18], 8.4.4, 8.5.7 (b). 

2) Order X(~) by inclusion. This is not in general a total ordering; but 

~(%) does have a unique minimal element Imin(%) and a unique maximal element 

Imax(%) , [18], 8.4.4, 8.5.8 (a). 

3) Imin(~) = U(~) el 3 [18], 8.4.3. 

4) Card X(k) = 13 if and only if 2 (k,~)/(~,~) ~ ~+, for each ~ E A + , 

[18], 8.5.8 (a). 

The sets [k E ~ : 2 (%3~)/(~,~) E IN + , for some ~ E A + } are 

called the exceptional hyperplanes. By 3) and 4) 3 the study of Prim U(~) 

reduces to what happens on these planes. A similar phenomenon occurs in the 

analytic approach. We remark that a bounded representation gives rise to a 

Harish-Chandra module M ~ , p. 277, for U(~). Now whereas I . (~) is the 
mln 

annihilator of a Verma module M(~), ~ , Chap. 7, one cannot have M = M(A), 

except on the hyperplanes defined by the compact roots. This excludes the obvious 

interrelation. Again for a finite dimensional representation one must have 

2 (%,~)/(~,~) E ~, fOe all ~ E A + . 

5) Given I E Prim U(~) 3 then Dim U(~)/I equals the dimensional of some 

nilpotent orbit [Ii], 7.1, and is hence even (c;f; Sect. 3). 

6) Let I13 12 E Prim U(~) 3 then I 1 D 12 implies Dim U(~)/I 1 K Dim U(~)/12, 

with equality if and only if I 1 = 12 ~ [II] , 3.6. 

7) By 2)~ 5) 3 6) and [1613 Cor. 10.5, Dim U(~)/I = ½ (dim ~ - rank ~)3 if 
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and only if I = Imin(%) , for some I E ~. Again Dim U(~)/I = O, if and only if 

dim U(~)/I < m, that is if the associated representation is finite dimensional. 

8) Suppose I = ker ind (~,~$~), where o is a finite dimensional representation 

of a parabolic subalgebra ~ of ~. Then [13], Sect. 2, Dim U(~)/I = 2(dim ~ - 

- dim ~). 

9) By 2), 8) and [17], Prop. 2 , we have card X(%) = 2, if ~ lles on just one 

exceptional hyperplane [13]. 

Given X E h* , let M(X) be the Verma module with highest weight 

- p : p = ½ ~ ~ , [18], Chap. 7. (Note that the M(w%) : w E W, are not 

isomorphic). Now M(%) admits a largest non-trivlal submodule L , 

[18], 7.1.11 (ii) and the quotient module M(X)/L is simple. Hence 

I(%) = ker M(%)/L E Prim U(~) and if we choose W 6 W such that m% E ~, 

then I(X) E ~(~%). For each ~ E3, let xO(%) denote the subset of all I E ~(%) 

having the above form. Observe that card X_°(X) is bounded above by the order of 

the Weyl group. 

BASIC OPEN PROBLEM - Is X(%) = X°(X), for all % 6 ~ ? 
1 

iO) Imln(1) I (%) E X°(%), [18], 7.6.24 and 8.4.4, and 8.5.8 (b) 
' max -- 

Finally Borho and I have given [12 3 a complete description of 

Prim U(~) for ~ = s~(3) and sp(4). Space does not permit a description of the 

results or the methods; but I should add that many aspects of the analysis 

admit a straightforward generalization to arbitrary simple ~. Also the 

annihilator of the Well representations (which has Goldle rank one) generalizes 

giving ideals of Goldie rank ½(~+ l)(2k + ~ + 2) : k,~ E IN. This is a new 

class of primitive ideals none of which are induced. It must surely 

be true that such a natural generalization of the Well representations will 

play an equally important role in physical models. In any case our 

construction is very explicit. 

7 Decomposition Theory 

Let M be an arbitrary U(~) module and set I = Ann(M). physicists 
theory 

often require a decomposition~for M especially in the discussion of coupling 

coefficients. Taking the algebraic approach to its logical conclusion we should 

attempt to do this in terms of I alone. Here there are some initial difficulties. 

First I can be primitive even if M is not simple. For example, the annihilator 

of the Vermamodule is always primitive [ 18], 8.4.4, even though the module 

itself is not always simple [18], Chap. 7. Also the direct sum of the Well 
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representations has a primitive annihilator. Again the algebraic approach does 

not distinguish between decomposability and reducibility. For example, I = llnl 2 

can mean either that M = N I • N2, where lj = Ann(Nj) : j = 1,2., or that M is 

indeco~osab!e and ad~.~its the sub.~D_du!e N with ! i = ~n(N), 12 = Ann(M/N). 

Nevertheless one does have a decomposition theory for I which generalizes a 

situation from algebraic geometry. Thus I can be written as a finite product of 

not necessarily distinct prime ideals [18], 3.1, which in the commutative case 

corresponds to the decomposition of the zero set of I into irreducible 

algebraic varieties one for each distinct prime ideal. Then, at least for 

solvable [9], i0.8 and 13.4, each prime ideal can be written as ( in general 

infinite) intersection of primitive ideals having different central character. 

It then remains (for physicists ! ) to develop a version of the Wigner-Eckart 

theorem. 
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