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A systematic discussion of the coupling impedances of stripline beam-position monitors is given.
Termination either at both ends or at the center is treated. Special emphasis has been given to the
transverse impedance, which is derived in more than one way.

1. INTRODUCTION

Beam-position monitors are required to measure the horizontal and vertical
positions of a beam so that it can be guided through the central region of a beam
pipe and circulate around the storage ring many many times. Since beam signals
are registered at the terminations, the monitors must exhibit impedances to the
beam. For a storage ring of very high energy, the large number of beam position
monitors required can become a significant portion of the total impedance of the
whole ring (aside from the rf contribution of electron machines). Therefore, an
accurate estimate of the monitor impedances is necessary.

The beam monitors that will be discussed here are cylindrical stripline pickups,
used primarily because the computations are usually much simpler than for
rectangular-geometry monitors. However, in many cases, as, for example, in the
Fermilab main ring, rectangular geometry is preferred over cylindrical. Our
cylindrical results described below should provide at least a rough estimation for
the rectangular counterpart.

2. THE CYLINDRICAL STRIPLINE MONITORS

Consider a pair of cylindrical stripline pickupsl,2 exposed to a short beam bunch
as shown in Fig. 1. Each stripline has a length land subtends an angle 4>0 to the
transverse axis of the beam pipe. The stripline together with the extruded beam
pipe behind it can be considered as a section of transmission line with a
characteristic impedance Zs = YLIC, where Land C are the inductance and
capacitance per unit length. Any signal propagating along this section of
transmission line will have a velocity f3 sc = livre. Each end of the stripline is
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FIGURE 1 Geometry of the cylindrical stripline monitor.

attached via a port to a transmission line of the same characteristic impedance.
Hence, any signal induced on the,stripline will propagate through one of the ports
into a transmission line without reflections. This is equivalent to terminating each
end of the stripline by a resistance of Zs as in Fig. 2.

When a beam bunch of time distribution I(t) and velocity f3 pc traveling along'
the axis of the beam pipe crosses the first or upstream port, the image current on
the walls of the pipe sees an impedance of Zs/2, representing the parallel
impedances of the upstream termination Zs and, the transmission line formed by
the stripline, which, since terminated at the far end by Zs, also has impedance Zs.
In other words, the image current splits into two equal parts, one traveling
through the upstream termination where it is detected and the other half traveling
along the stripling and ending up going through the downstream termination at a
time II f3 sc later.

When the bunched beam passes the downstream port, the same thing happens
but the polarity reverses. One half of the signal travels through the downstream
termination while the other half propagates up the stripline to be collected by the
upstream termination. Thus, the voltage across the upstream termination is

Vu(t)=Zs(4>O)[I(t)-I(t--1 __I )],
2 2n f3 pc f3sc

and that across the downstream termination is

(1)

(2)Vd(t) = Zs (4)o)[I(t _ _I ) _ I(t _ _ I )].
2 2n f3 sc f3pc

the factor 4>o/2Jr represents the fraction of the image current that flows across the
ports along the stripline.

~ZS ~ Stripline ~ZSI $~---$tl~Bea-mPipe

FIGURE 2 A stripline forming a transmission line with the beam pipe having characteristic
impedance Zs and terminated at both ends by Zs.
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(3)

The net signal seen at the upstream port is a bipolar doublet with each lobe
having essentially the same time distribution as the beam bunch itself but
spearated by a constant time of (IIf3pc + IIf3 sc). However, the signal at the
donwnstream port will be completely cancelled if the beam velocity and the signal
velocity are the same. This is in fact the situation, since the signal velocity in a
transmission line with a free space medium is exactly c and the beam particle
velocity is also very close to c. For simplicity, we shall set f3p = f3s = 1 below and
forget the downstream port.

3. LONGITUDINAL COUPLING IMPEDANCE

In the frequency domain, the beam has at frequency wl2Jr a current let) = loejwt

at the upstream port. Note that 10 is in general complex but is time-independent.
The voltage across the upstream port becomes

Vu(w) = ~s (:;)10(1- e-j2rollc).

This also happens to be the potential difference across the gap at the upstream
end. The total image current in the walls of the beam pipe is of course -10 • but
only a fraction <Po/2Jr will see this' potential difference while the rest simply flows
through without meeting any impedance. As a result, the average potential seen
by the particle beam is

(4)

(5)

(6)

The longitudinal impedance for one strip plate is therefore (ZII)BPM = Vb ( w)110 , or

(
<PO)2( . 2 wi .. wi WI)

(ZII)BPM = Zs 2Jr SIn ~ +] SIn~ cos~ .

The same impedance can be computed using Eq. (3) in another way. The
average real power dissipated in the upstream termination is

pew) = lVu(wW.
2Zs

This is by definition equal to ! 1/012 Re (ZII)BPM, which results in the same
Re (ZII)BPM as Eq. (5). The imaginary part can be obtained using a Hilbert
transformation and is left as an exercise for the reader. However, in this
situation, Re ZII(w) does not vanish at infinity, and we have to work with
Re ZII(w)1w instead. In using a Hilbert transformation, one has to keep in mind
that we may not be getting a unique result. This is because a frequency­
independent real impedance need not have an imaginary counterpart. Also the
ideal induct~nce or capacitance that gives rise to 1m ZII = wL or -IIwe need not
have a real counterpart. In other words, to the 1m ZII obtained from Re ZII
through a Hilbert transform, we can add any ideal inductive or capacitive terms.



96 KING-YUEN NG
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(7)

FIGURE 3 A stripline forming a transmission line with the beam pipe having characteristic
impedance Zs and terminated at the center by Zs.

On the other hand, to the Re ZII obtained from 1m ZII through a Hilbert
transform, we can add any pure frequency-independent resistive term.

Note that the longitudinal impedance starts out as inductive at low frequencies
and, after OJ = nc/21, alternates between capacitive and inductive. However,
there are no sharp resonances to the degree that the stripline is match-terminated
at both ends.

There are some striplines, like those in the Fermilab main ring, that have only
one termination at the center, which is chosen to be the same as the characteristic
impedance formed by the stripline and the beam pipe (see Fig. 3). The
impedance seen at each end is Zs in parallel with an open transmission line of
characteristic impedance of Zs. At zero frequency, the impedance seen is
therefore just Zs, and the currents from each end of the stripline will be absorbed
totally without any reflection. When the frequency is low, keeping the lowest
reactive term, the impedance seen at either end of such a stripline is

Zi =Zs(I- j
;:).

Here, we have set the particle velocity and the signal velocity along the stripline
to be equal to c. The voltages Vu and Vd seen by the image current while crossing
the upstream end and the downstream end are, respectively,

(8)

and

The average voltage seen by the beam is therefore

V =Zi(t:r[I(t) - I(t -lIe)].

(9)

(10)

The extra factor of (¢o/2n) comes in because of the partial angular coverage
process mentioned above. Putting in I(t) = Ioe jwt

, we obtain the logitudinal
impedance,

(11)

for one stripline terminated at the center at low frequencies. At high frequencies,
the stripline can accept resonances with standing waves having a node at the
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(12)

(13)

middle, where the termination does not absorb any power..Such resonances will
therefore not be dampled.3 Resonances will occur whenever the length of the
stripline I is a half-integral multiple of the wavelength.

4. TRANSVERSE COUPLING IMPEDANCE

Let us turn to the problem of transverse coupling impedance. Assume a dipole
current source separated by L\, i.e., I at x = L\/2 and -I at x = -L\/2. Here, we
assume that the pair of cylindrical striplines are positioned horizontally as in Fig. 1.
Note that both currents have the same t and z dependence, such as ejw

(t-zl/3c),

so that both are traveling in the same direction. Therefore only the upstream
termination will see a signal (for striplines match-terminated at both ends).

When a current 10 deviates from the pipe axis by an amount Xo = 1;b, the
image-surface current density at angle () is

J(O;xo) = _~ 1- ~2 •

2Jrb 1 + 1;2 - 21; cos ()

This is obtained by the method of inversion by placing a current -10 at the point
Xl = b2 /xo as shown in Fig. 4. Then the beam-pipe cylinder is an equipotential
surface (using the analogy of a line charge). The image-surface current density on
the cylinder at angle () can thus be computed directly from the two current
sources at Xo and Xl:

J(O;xo) =~ (COS 00 _ cos ( 1),

2Jr Yo Y1

where Yo and '1 are distances from the point of observation to the current and its
image, respectively. Using the fact that '1 = bYo/xo, Eq. (13) leads to Eq. (12).

For our dipole current, the image-wall current density can be obtained from
Eq. (12) by differentiation with respect to Xo. Since we are interested only in the
dipole term, l( (); xo) can be expanded to give

I(O . ) = _ lod cos 0
,Xo Jrb 2 ·

FIGURE 4 Computation of current density on cylinder by the method of inversion.

(14)
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The current flowing into the right stripline system is,> therefore,

IR = J</><12 - [of). ~~s 0 b dO, (15)
-cj>oI2 :Jr

and the current flowing into the left stripline system is

IL = -/R • (16)

Using Eq. (3), the voltages at the right and left upstream gaps are, respectively,

~ = Z lo~ sin CPo (1 _ e-j2wllc)
R S :Jrb 2 '

VL = -YR'

The total average power dissipated is

_ 1 2 2
P - 2Z (IVLI + IVRI ),

S

or

P _ 4Z (1/01~)2 . 2CPo . 2wi
- S :Jrb sIn 2 sIn c·

(17)

(18)

(19)

There is a relation between the power dissipated and the real part of the
transverse impedance derived by Nassibian and Sacherer,4 which we are going to
repeat here. For a length I of current loop, the interaction with the beam detector
will give a magnetic field By through the loop so a back emf will be induced.
Equivalently, the current in the loop will see an impedance Z given by

jwBy/~ = Zlo.

Substituting into the definition of transverse impedance, which is

1 JLZ1-(w) = .z ~R dz[(E + (vp X 8)]1-,
] 0 tJp 0

V p = {3pc being the particle velocity, gives a horizontal transverse impedance,

cZ
Z1-=W~2·

The power dissipated is P =! 1/012 Re Z, and we therefore get

1 w 2
P =2~ (/o~) Re Z1-'

Thus, for a pair of striplines,

8Zs c . 2 CPo . 2 wi
Re (Z-L)BPM = 2b 2 - sIn -2 sIn -,

Jr W C

(20)

(21)

(22)

(23)

(24)

which has exactly the same frequency dependence as Re (ZII)BPMI w. The
imaginary part can be found by a Hilbert transform; it should have exactly the
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(26)

same frequency dependence as 1m (ZII)BPM/OJ. Therefore, for a pair of striplines,

(Z-l)BPM =:z (;JZ(SinZ ~o) [(ZU:PM] 1- to striplines, (25)

or the x-direction here. In Eq. (25), (ZII)BPM is the longitudinal coupling
impedance of a pair consisting of two striplines.

To compute the transverse impedance in the y-direction, we put the currents f
at y = ~/2 and -fat u = - ~/2 instead. Then the current flowing into the right
stripline system is

l = f4>01
2

_ fo~ cos (Jr12 + 0) b dO
R 2 b2 ,

-4>012 Jr

which is identical to zero, and so is fL. The voltages across each upstream gap are
therefore also zero. Thus,

II to stripiines, (27)

(29)

or the y-direction here. The reason is clear, because (Z.L)BPM depends on the
voltages across the stripline gaps, which, in turn, depend only on the total
currents flowing across each gap but not on the actual distribution of the current
density. However, a current dipole at y = ±~/2 will only produce an image
current distribution that is antisymmetric with respect to the x-axis while the total
currents crossing each gap are zero.

5. APPLICATION TO THE SSC

In the SSC, the most demanding requirements for the beam-position monitors are
in the commissioning stage, when very low beam currents must be used in order
not to quench the magnets. It appears that both coordinates must be measured at
every quadrupole (one per half-cell); so the pickups must be a four-electrode
design shown in Fig. 5. We takeS ¢o = 55°, 1= 10 em, and Zs = 50 ohms. The pipe
radius is b = 1.65 em. At low frequenceies, ro/2Jr« c/41 = 750 MHz, the lon­
gitudinal impedance per harmonic per monitor (four striplines) is

( ZII) === j Zs(¢O)2 i = j3.53 X 10-5 Q, (28)
n BPM Jr R

while the transverse impedance (only two striplines are contributing, either in the
x -direction or the y -direction) is

(z ) .8Zs1 . 2 ¢o. /
.L BPM === J Jr2b2 sIn 2 =J3.17 kQ m.

With almost 900 sets of monitors in each ring, the impedances are (ZlIn)BPM--­
jO.0318 Q and (Z..L)BPM --- j2.86 MQ/m for either the horizontal or the vertical
direction.
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SMA Vacuum Feedthrough

FIGURE 5 The four-electrode stripline monitor of the sse.

(30)

6. OFF-CENTERED BEAM AND IMPEDANCES

We can also compute the longitudinal impedance of a beam passing through a
pair of striplies as shown in Fig. 1 but deviating from the central axis by Xo

horizontally and Yo vertically. Using Eq. (12), the total image currents flowing
across the right and left upstream gaps are

I - -L (CPo) [1 4xo sin (CPo/2) 2(x~ - y~) . . .. ]
R,L - 0 2:Jr ± b 4Jo + b2 8m 4Jo + ·

Note that the second term is the dipole term, and that we have included a third
term that is of a higher multipole. In the present situation, it is not so simple to
compute the "average" voltage seen by the particle beam because the beam has
been displaced and the distribution of the image current is no longer uniform. As
a result, we shall compute the power dissipated at the upstream terminations and
infer the real part of the longitudinal impedance. This power is proportional to
the sum of IIR I2 and IIL I2 and is given by

Pdisp = 2G(xo, Yo)P, (31)

where P is the power dissipated through one stripline when the beam is at the
central axis of the beam pipe as given by Eq. (6), and the function

(XO)2( 4)2 . 2CPo (X~- Y~) ( 4) .
G(xo, Yo) = 1 + b <Po 8m 2 +~ 4Jo 8m 4Jo (32)

takes care of the fact that the beam is displaced. The longitudinal impedance of a
pair of striplines is therefore equal to G(xo, Yo) times the impedance of an
undisplaced beam. Note that the second term of G(xo, Yo) comes from the square
of the dipole term while the third term is from the higher multipole. Here, the
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term linear in Xo or the linear dipole term cancels out. This is in fact exactly what
we expect. In order to measure the deviation of the beam from the central axis,
one should measure the difference between the left and right terminations but not
the sum; then the linear dipole term will emerge.

The longitudinal coupling impedance of a displaced beam provides a way to
compute the transverse coupling impedances.4 This method is very useful, so we
shall derive it here. Let us concentrate on displacement in the x-direction only.
We write Ez(x, xo) as the image electric field at x due to a current /0 at Xo. For a
length I, define

Z ( )
- IEz(x, xo)

II x, Xo - /0 ' (33)

which is measurable quantity and reduces to the usual longitudinal impedance
ZII(XO) at Xo in the limit x~xo.

The image electric field at x due to a dipole current at Xo separated by ~ is

E' = aEz(x, xo) A (34)
z axo '

and the magnetic field at x perpendicular to the plane of the dipole is, by
Faraday's law,

B' =~ a
2
Ez(x, xo)

Y jw ax axo .

Substituting into the definition of Z1- in Eq. (21),
impedance displaced by Xo is

ZL = ~ a
2
Z II (x, xo) I .

w ax axo X=Xo

(35)

the horizontal transverse

(36)

In many cases, the longitudinal impedance at (xo, Yo) has the form

ZII(XO, Yo) = [1 + F;(xo) + F;(Yo)]ZlIlxo=o,yo=o, (37)

so Z1- can be obtained directly from the position dependence of ZII. In that case,
the horizontal transverse impedance is

C (dE',)2
ZL = OJ dx: ZlIlxo=o,yo=o, (38)

However, one should be careful that only dipole contributions should be included
in F'x and F'y since the dipole impedances cannot receive contributions from other
multipoles. Thus, in our situation, the third term of Eq. (32) must be omitted to
obtain the square-bracketed term in Eq. (37). Then substitution into Eq. (37) will
lead to exactly the same transverse impedances we obtained earlier in Eqs. (25)
and (27). For striplines terminated at the center, the off-centered factor G(xo, Yo)
is the same. Theorefore, the transverse impedances can also be obtained through
Eq. (38).

In Ref. 1, the third or higher multipole term of G(xo, Yo) has been included
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(40)

when the differentiation with respect to Xo or Yo is carried out. As a result, both
the horizontal and transverse impedances quoted there are not correct. In
particular, for positive frequencies, the real part of the vertical transverse
impedance quoted is negative, which is not possible. The transverse impedance is
related to and has the same sign as the longitudinal impedance of the dipole mode
when w is positive.6 The longitudinal impedance for each multipole must be
positive because it is responsible for the power dissipation of a beam particle in
that lnultipole mode.

7. HIGH-FREQUENCY LIMITS

The impedances derived above cannot be applied to the high-frequency region
without reservation. The high-frequency limitations have been discussed by
Shafer2 and Cuperus.7 Here, we just mention them briefly.

So far we have assumed that an image of a point charge in the wall of the beam
pipe is also a charge of zero duration. This is in fact not true because the
electric-field lines have a longitudinal spread. As a result, the wall current at
frequency W/21C is reduced. The 3-dB point occurs when

_ 1.2{3pYc
w - b ' (39)

where {3pc is the particle veolicty and y = VI - {3~.
The second limitation is the finite transit time across the upstream and

downstream port gaps. For a centered beam, the signals from stripline pickups
should include the additional factor

H w = sin (wg /2{3pc) I
() rog/2f3pc Io( rob / f3p yc) ,

where g is the port gap.
Also there is the problem of cutoff frequencies. When the thresholds for the

lowest-order TE and TM modes are reached, the field structures between the
striplines can be altered. At present, this problem has not yet been fully
understood.
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