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1. Introduction

Nuclear mass is one of the most fundamental properties of nuclei. The interest in studying
nuclear masses is twofold. First, to know nuclear masses of different nuclear species is a necessity
for astrophysics, mainly because they need to accurately know the Q-values of different nuclear
reactions in order to explain the origin of the elements [1]. The Atomic Mass Evaluation 2003
(AME03) [2] reports the masses of the measured 2149 species (with N ≥ 8, Z ≥ 8).1 However,
many nuclear reactions taking part in astrophysical processes involve nuclei quite far from the sta-
bility line, whose masses have not been measured, requiring instead the best theoretical predictions.
Second, because of the absence of a full theory of the nuclear interaction, to find a theoretical mass
formula able to reproduce the experimental nuclear masses could shed light on the basis of the
nuclear theory. Consequently, decades of work have been invested to develop several microscopic
and macroscopic mass models, which have succeeded in adjusting the known masses with average
deviations smaller than half an MeV. However, a better precision is still needed in nuclear calcula-
tions, and the predictions of the different models are in general divergent [4]. Accurate theoretical
predictions of nuclear masses remain a challenge.

Nuclear mass formulas are usually built with a macroscopic sector which resembles the Liquid
Drop Model (LDM), and a microscopic one which includes information about shell effects. All of
them fit known nuclear masses with certain deviations, weighted through the root mean square
(RMS). The Duflo-Zuker (DZ) mass model [5] provides one of the simplest and more precise ways
to predict nuclear masses. In fact, it gives an RMS of 373 keV with a set of 28 parameters in
the original version. Another code, with only 10 parameters (DZ10) [6] leads to good though less
spectacular results but embodies the essence of the model. This model leads to an RMS of 554
keV.

In [7] a proposal was made to reformulate the DZ model, including the shell closures in a more
direct way. It led to the exploration of the ability of the LDM to describe spherical and deformed
nuclei. Challenging some of our preconceptions, we found that when the LDM is employed, the
masses of prolate deformed nuclei are far better described than those of spherical ones [8], making
clear, one more time, that the inclusion of shell closures is the most important challenge in the
building of a nuclear mass formula. As shown in Refs. [6, 7, 8, 9], the so called ’master term’,
inspired in realistic interactions, reproduce the usual volume and surface terms of the LDM and is
the basic building block of the DZ model. The master term in DZ model is built with harmonic
oscillator (HO) shells, introducing the nuclear magic numbers through an ’ad-hoc’ term. On the
other side, the DZ10 model from [6] and also those developed in Refs. [8, 9] include the magic
numbers directly in the master term through the replacement of the HO closures by the Extruder-
Intruder (EI) shells [7].

In this contribution we present a status report of our exploration on: i) the microscopic origin
of the master term, and the way to include from the very beginning the shell closures, keeping the
consistency with the realistic nuclear forces; ii) the inclusion of two, three and four body interac-
tions through higher order terms in the number of valence nucleons. We will analyze the effect of
different forms of the master and the many body interactions terms on the fits. The paper is orga-

1A new Atomic Mass Evaluation performed in the year 2012 (AME12) was very recently published [3].
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nized as follows: in the second section we discuss the inclusion of shell effects through different
forms of the master term, in the third section we add two, three and four body terms to the different
models, and conclusions are presented in the last section.

2. Shell effects

We combine in a single mass formula both the ability of the LDM to describe the masses of
deformed nuclei, and that of DZ to include shell effects. To this end, we will work with a LDM,
adding the shell effects present in the DZ master term, but with their asymptotic behavior removed,
because it is basically contained in the volume and surface terms of the LDM. The nuclear negative
interaction energy is given by [8]

ELDM+shell effects = ELDM +avol(Ma −Ma,asym)+asur f (Ma −Ma,asym)/ρ , (2.1)

where

ELDM =−avA+asA2/3 +Sv
4T (T +1)

A(1+ yA−1/3)
+ac

Z(Z −1)
(1−Λ)A1/3 −ap

∆
A1/3 . (2.2)

Here: (i) the pairing interaction is given by ∆ = 2, 1, and 0 for even-even, odd-mass and odd-odd
nuclei, respectively; (ii) a correction to the radius of the nucleus is included through a modification
Λ in the Coulomb term, Λ = N−Z

6Z(1+y−1A1/3)
; (iii) the symmetry term employs 4T (T + 1), with T =

|N −Z|/2, instead of (N −Z)2 to account for the Wigner energy; and (iv) the Coulomb interaction
is proportional to Z(Z −1) to avoid the Coulomb interaction of a proton with itself.

The master term in (2.1) is:

Ma =
1
ρ
(
e2

1ν + e2
1π
)
, with e1ν = ∑

pν

nν

Gpν

, e1π = ∑
pπ

nπ

Gpπ

, (2.3)

where nπ and nν are number operators for neutrons and protons, respectively, and ρ =A1/3
[
1−

(T
A

)2
]2

is the scaling factor. The denominator Gp contains the microscopic information about the monopole
sector of the nuclear interaction. Numerical studies of realistic interactions (chiral N3LO interac-
tion) show that, when a major shell is full, the dominant isoscalar master eigenvector Up behaves as
Up ∝ D−1/2

p , being Dp the degeneracy of the major shell of principal quantum number p. However,
a variant Up ∝ D1/2

p − (2/15)D−1
p behavior has been seen to be almost indistinguishable from the

first one [6]. We have explored this freedom in the parametrization of the monopole part of the
nuclear Hamiltonian in [6, 8, 9]. Additionally, other possible adjusts have been analyzed in Ref.
[10]. Inspired in these results, we propose here four different models:

• model1

We adopt Gp = D1/2
p from Refs. [6, 8].

• model2

We adopt 1/Gp = D−1/2
p − (2/15)D−1

p from Ref. [9];
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• model3

We adopt Gp =
Dp

E
2
3
p −(Ep−Dp)

2
3

from Ref. [10], with Ep =
1
3(p+1)[(p+1)2 +5].

• model4

We adopt Gp =
Dp

g(Ep)−g(Ep−Dp)
from [10], with g(X) = X

2
3

[
1− 1

2(3X)
2
3

]− 1
2

.

Here Dp = (p+ 1)(p+ 2) + 2 describes the EI degeneracies (which reproduce to the observed
closures at N,Z = 14,28,50,82 and 126).

Finally, the asymptotic terms in (2.1) were calculated interpolating e1ν vs N by a function of
the form c0+c1N1/3+c2N2/3+c3N [9] for the set of 2149 nuclei reported in AME03. The specific
expressions of these terms are given in Eq. (10) from Ref. [9].

Numerical results for the RMS of the different fits are shown in Table 1. We show the results
obtained when all the 2149 nuclei are included in the fit (second column) and also those obtained
when only the 185 semimagic nuclei are considered (third column). From these results we can
observe that all models give similar RMS values. For completeness, in Figure 1 we have compared
the difference between experimental and theoretical binding energies, BEexp −BEth, for the LDM
and model2. This figure shows that shell effects are smaller but they are still there. Finally, it is
important to mention that we have also explored another models using different asymptotic terms
Ma,asym obtained interpolating Ma vs A, with no visible improvement in the fits.

Table 1: RMS for different models.
model RMS for 2149 nuclei (in KeV) RMS for semimagic (in KeV)
ELDM 2387 2113

Emodel1 1407 952
Emodel2 1402 942
Emodel3 1402 939
Emodel4 1403 940

3. Two, three and four body interactions terms

We refine our model adding terms with higher powers on the number of valence nucleons,
which describe two, three and four body interactions following the DZ ideas [11]:

S2 =
nvn̄v

Dpν

+
zvz̄v

Dpπ

,

S3 =
nvn̄v(nv − n̄v)

Dpν

+
zvz̄v(zv − z̄v)

Dpπ

,

S4 =
nvn̄vzvz̄v

Dpν Dpπ

, (3.1)
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Figure 1: Comparison between LDM and model2 fits.

where n̄v =Dpν −nv and z̄v =Dpπ −zv with Dpν (Dpπ ) being the degeneracy of the neutron (proton)
valence shell.

We have analyzed the effect of different combinations of these terms, including also divisions
by different powers of ρ . Particularly, we consider interesting to analyze the following models:

• model5

We add shell corrections which are linear and quadratic in the total number of valence nucle-
ons [11]

Emodel5 = ELDM +b1(nv + zv)+b2(nv + zv)
2. (3.2)

• model6

We add many body interaction terms to our model2:

Emodel6 = Emodel2 +a1S2 +a2(S2)
2 +a3S3 +a4S4. (3.3)

• model7

We add many body interaction terms as in Ref. [11]

Emodel7 = Emodel5 +a1S2 +a2(S2)
2 +a3S3 +a4S4. (3.4)

We present the results for the fits using these models in Table 2 and Figure 2. Comparing
model2 with model5, and model6 with model7, we conclude that:

1. Employing b1(nv + zv)+b2(nv + zv)
2 is more efficient that using Ma −Ma,asym to reproduce

the shell effects.

2. This last option describes better than the other the semimagic nuclei.

3. The rounded peaks at A ∼ 180 and 270 within model2 are due to deformation effects, which
are better described (removed) within model6 and in the original DZ formalism [5].
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Table 2: RMS for different models.
model RMS for 2149 nuclei (in KeV) RMS for semimagic (in KeV)
Emodel5 1075 1038
Emodel6 901 737
Emodel7 888 817
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Figure 2: model5, model6 and model7 fits.

4. Conclusions

We have analyzed the inclusion of shell effects through different forms of the master term.
Besides, we have discussed and compared different ways of adding terms accounting for two, three
and four body interactions. Summarizing:

• The major challenge in going beyond the LDM description of nuclear masses is the inclusion
of shell effects.

• The different ways to construct the master terms presented above allow to built a macroscopic
mass formula which in some cases is able to remove the shell effects as well as DZ10, without
the need of the ’ad-hoc’ term.

• Employing the master terms constructed by Typel to fully enforce the linear behavior of Ma

with A allows for fits with smaller RMS than the other options explored.

• Present results seem to indicate that the strategy suggested in [7, 9], to modify the master
term using Ma −Ma,asym, is less efficient than employing the terms b1(nv + zv)+b2(nv + zv)

2

from Ref. [11]. These has also been verified analyzing a model8 such us Emodel8 = Emodel7+

avol(Ma−Ma,asym)+asur f (Ma−Ma,asym)/ρ which given an RMS = 883 MeV, essentially the
same as model7.
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Finally, we conclude that our detailed description of the shell effects, which includes the
shell effects directly in the mast term, cannot reach the precision of the DZ10 mass formula,
neither outperforms the approach based in the F-spin symmetry. The challenge to obtain a
simple and strongly predictive formalism to predict nuclear masses, at the level required in
nuclear astrophysics, remains open.
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