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Abstract Modified gravity is one of the most favorable candidates for explaining
the current accelerating expansion of the Universe. In this regard, we study the via-
bility of an alternative gravitational theory, namely f (R,G), by imposing energy
conditions. We consider two forms of f (R,G), commonly discussed in the literature,
which account for the stability of cosmological solutions. We construct the inequalities
obtained by energy conditions and specifically apply the weak energy condition using
the recent estimated values of the Hubble, deceleration, jerk and snap parameters to
probe the viability of the above-mentioned forms of f (R,G).

Keywords Energy conditions · f (R, G) modified gravity · Cosmological parameters

1 Introduction

As is well known in general relativity, the energy conditions are often required in the
proofs of various important theorems about black holes, such as no hair theorem or laws
of black hole thermodynamics [1]. The energy conditions are systematically obtained
when one refers to the Raychaudhuri equation, in which the attractive character of
gravity is reflected through the positivity condition Rμνkμkν ≥ 0, where Rμν is the
Ricci tensor and kμ is any null vector. In general relativity, through the Einstein field
equation, this condition on geometry is translated to a corresponding condition on
matter, namely null energy condition Tμνkμkν ≥ 0, where Tμν is the stress energy
tensor. In particular, the weak energy condition (WEC) assumes that the local energy
density is positive and states that TμνUμU ν ≥ 0, for all timelike vectors Uμ. For
instance, in the case of a perfect fluid
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Tμν = (ρ + p)UμU ν + pgμν, (1)

we have ρ > 0 and ρ + p ≥ 0. By continuity, the WEC implies the null energy
condition (NEC), Tμνkμkν ≥ 0 [1].

The energy conditions have been widely studied in in the context of modified grav-
ity, such as f (R), f (G), f (R, T ) and f (T ) gravity [2–16]. The motivation for the
study of modified theories of gravity is clear and strong. As we know, Einstein’s theory
of general relativity (GR) can not explain the late-time accelerated expansion of the
Universe, unless an unknown dark energy element is introduced in the field equations
[17–23]. In the context of GR, the attempts to explain the observed speed-up of the
Universe, have introduced some modifications of Einstein-Hilbert action by adopting
a general function of the scalar curvature in the gravitational Lagrangian density as
f (R) [24–39]. The motivation for this procedure consists of the analysis of strong
gravitational fields near the curvature singularities and considering the consistent can-
didates of a fundamental theory of quantum gravity. Indeed, string/M-theory predicts
that scalar field couplings with the Gauss–Bonnet invariant G are important in the
appearance of non-singular early time cosmologies. These motivations may also be
considered in the context of late-time acceleration of the Universe [40–43].

Recently, a new generalized modified Gauss–Bonnet gravity, whose action contains
a general function of R and G as f (R,G), has attracted considerable attention [44–60].
Besides its stability, this attention is due to its ability to describe the present acceleration
of the universe as well as the phantom divide line crossing and transition from acceler-
ation to deceleration phases. Two specific models of f (R,G) gravity were constructed
to account for the late-time cosmic acceleration [61], and the respective constraints of
the parameters of the models were also analyzed in [61]. So, in order to proceed along
with the interests of these models, in the present work we shall consider two forms of
f (R,G) introduced in [61]. In Ref. [61] the authors have studied the stability of de
Sitter and power-law solutions in f (R,G) gravity and have shown that gravitational
action plays a very important role in the stability of the solutions both of which depend-
ing on the form of the f (R,G) theory and the parameters of the model. In this con-
text, we further consider the constraints imposed by the energy conditions and verify
whether the parameter range of the proposed models considered in [61] are consistent
with the energy conditions. More specifically, we define generalized energy conditions
for f (R,G) modified theories of gravity, and consider their realization for flat Fried-
mann cosmological models. In particular, we analyze whether the weak energy condi-
tion is satisfied by particular choices of f (R,G) which were advocated in Ref. [61].

In Sect. 2, we introduce the gravitational field equations for the f (R,G) gravity. In
Sect. 3, we obtain the inequalities corresponding to the energy conditions. In Sect. 4,
we consider two specific forms of f (R,G), and analyze the constraints resulting from
the energy conditions. The paper ends with a brief conclusions in Sect. 5. We use the
units c = G N = 1.

2 Field equations of f (R,G) modified gravity

Let us start by writing the most general action for modified Gauss–Bonnet gravity
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S = 1

2κ

∫
d4x

√−g f (R,G)+ SM (g
μν, ψ), (2)

where SM (gμν, ψ) is the matter action, and f (R,G) is a function of the Ricci scalar
and Gauss–Bonnet invariant defined by

G ≡ R2 − 4RμνRμν + Rμναβ Rμναβ. (3)

Variation of the action (2) with respect to the metric provides the following gravita-
tional field equation

Rμν − 1

2
gμνR = κ T (mat)

μν +�μν, (4)

where �μν is defined by

�μν = ∇μ∇ν fR − gμν� fR + 2R∇μ∇ν fG − 2gμνR� fG − 4R λ
μ ∇λ∇ν fG

−4R λ
ν ∇λ∇μ fG + 4Rμν� fG + 4gμνRαβ∇α∇β fG + 4Rμαβν∇α∇β fG

−1

2
gμνV + (1 − fR)

(
Rμν − 1

2
gμνR

)
. (5)

Note that

fR ≡ ∂ f (R,G)

∂R
, fG ≡ ∂ f (R,G)

∂G
, (6)

V ≡ fR R + fG G − f (R,G), and T (mat)
μν is the stress energy tensor describing the

ordinary matter.
Now, we consider the flat FRW metric

ds2 = −dt2 + a2(t)dx2, (7)

where a(t) is the scale factor. In the FRW background with a perfect fluid equation of
state for ordinary matter, the field equations for f (R,G) gravity are given by

fR Ḣ = −κ
2
(p(m) + ρ(m))+ 1

2
(H ḟR − f̈ R + 4H3 ḟG − 8H Ḣ ḟG − 4H2 f̈G),

fR H2 = κ

3
ρ(m) + 1

6
( fR R − f − 6H ḟR + G fG − 24H3 ḟG). (8)

where ρ and p are the energy density and pressure of ordinary matter, respectively,
and the overdot denotes a derivative with respect to the time coordinate, t . Moreover,
we have

R = 6
(

2H2 + Ḣ
)
, (9)

G = 24H2
(

H2 + Ḣ
)
, (10)
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and the gravitational field equations may be rewritten in the following form

ρeff = 3

κ
H2, peff = − 1

κ

(
2Ḣ + 3H2

)
, (11)

where ρeff and peff are the effective energy density and pressure, respectively, defined
by

ρeff = 1

fR

[
ρ(m) + 1

2κ
( fR R − f − 6H ḟR + G fG − 24H3 ḟG)

]
, (12)

peff = 1

fR

[
p(m) + 1

κ

(
2H ḟR + f̈ R + 8H3 ḟG + 8H Ḣ ḟG + 4H2 f̈G

−1

2
(R fR + G fG − f )

)]
. (13)

Combining the above equations, we obtain the following useful relationship

ρeff + peff = 1

fR

[
ρ(m)+ p(m)+ 1

κ

(
−H ḟR − 4H3 ḟG + f̈ R +8H Ḣ ḟG + 4H2 f̈G

)]
,

which will be used throughout the paper.

3 Energy conditions

In general, the energy conditions arise when one considers the Raychaudhuri equation
given by

dθ

dτ
= −1

2
θ2 − σμνσ

μν + ωμνω
μν − Rμνkμkν, (14)

where θ , σμν and ωμν are the expansion, shear and rotation, respectively, associated
with the congruences defined by the null vector field kμ.

From Raychaudhury equation it is seen that for spatial shear tensor with σ 2 ≡
σμνσ

μν ≥ 0, and for any hypersurface orthogonal congruences, which imposesωμν ≡
0, the condition for attractive gravity, namely dθ/dτ < 0 reduces to Rμνkμkν ≥ 0. In
general relativity, using the Einstein field equations one can rewrite the above condition
in terms of the stress-energy tensor given by Tμνkμkν ≥ 0. However, in any other
theory of gravity such as f (R,G), one should know how to replace Rμν in terms of
Tμν , using the corresponding field equations.

Equation (4) may be written in the following effective form

Gμν ≡ Rμν − 1

2
R gμν = T eff

μν , (15)

where the effective stress-energy tensor is given by

T eff
μν = κT (mat)

μν +�μν. (16)
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The positivity condition Rμνkμkν ≥ 0, through the modified gravitational field
Eq. (15), provides the following form for the null energy condition

T eff
μν kμkν ≥ 0. (17)

Moreover, it is plausible to impose the condition T (mat)
μν kμkν ≥ 0 for ordinary matter,

because it implies that the energy density of ordinary matter is positive in all local
frames of references.

To deduce the energy conditions in the context of f (R,G)modified gravity, we use
the modified (effective) gravitational field equations and obtain the energy conditions
as follows

NEC ⇐⇒ ρeff + peff ≥ 0, (18)

WEC ⇐⇒ ρeff ≥ 0 and ρeff + peff ≥ 0, (19)

SEC ⇐⇒ ρeff + 3peff ≥ 0 and ρeff + peff ≥ 0, (20)

DEC ⇐⇒ ρeff ≥ 0 and ρeff ± peff ≥ 0, (21)

where the notation NEC, WEC, SEC and DEC stand for the null, weak, strong and
dominant energy conditions, respectively.

In cosmological context, in addition to the Hubble parameter H = ȧ/a, it is appro-
priate to define the deceleration, jerk, and snap parameters as

q = − 1

H2

ä

a
, j = 1

H3

...
a

a
, and s = 1

H4

....
a

a
, (22)

respectively; in terms of which, we may consider the following definitions

Ḣ = −H2(1 + q), (23)

Ḧ = H3( j + 3q + 2), (24)
...
H = H4(s − 2 j − 5q − 3), (25)

respectively. By using (23)–(25) one may rewrite Eqs. (12) and (13) in the explicit
forms, as follows

ρeff = 1

fR

[
ρ(m) + 1

2κ

(
−24H4q fG − 576H8 fGG

(
j + 2q2 + 3q

)

− 1728H6 fGR

(
j + q2 + q − 1

)
− 36H4 fRR( j − q − 2)

+ 6H2(1 − q) fR − f
)]
, (26)

peff = 1

fR

[
p(m) + 1

κ

[
576

(
2q2 + 3q + j

)2 (
4 fGGG H2 + fGGR

)
H10

+ 24(−2 j (3q + 2)− q(2q(q + 6)+ 5)+ s + 3)
(

4 fGG H2 + fGR

)
H6
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+ 144( j − q − 2)
(

2q2 + 3q + j
) (

8 fGGR H2 + 2 fRRG

)
H6

+ 36( j − q − 2)2
(

4 fRRG H2 + fRRR

)
H6

+ 24
(

2q2 + 3q + j
) (

8 fGG H3 − 8(q + 1) fGR H3 + 2 fGR H
)

H5

+ 6
(

4q2 + 15q + 2 j + s + 9
) (

4 fGG H2 + fRR

)
H4

+ 6( j − q − 2)
(
−8(q + 1) fGR H3 + 8 fGR H3 + 2 fRR H

)
H3

+ 1

2

(
24q fG H4 − 6(1 − q) fR H2 + f

)]]
, (27)

where ρ(m) and p(m) are the matter energy density and pressure, respectively. To derive
the above equations we have replaced for ḟ R , ḟG , f̈G and f̈ R in Eqs. (12) and (13),
for example as

ḟ R(R,G) = fR R Ṙ + fRG Ġ = 6(4H Ḣ + Ḧ) fR R

+ (96H3 Ḣ + 48H Ḣ2 + 24H2 Ḧ) fRG . (28)

Using these definitions, the energy conditions (18)–(21) take on the following
respective forms

NEC :
ρeff+ peff = p(m)+ρ(m)+ 1

κ

[
24H6(−2 j (3q + 2)− q(2q(q + 6)+ 5)+ s + 3)

×
(

4H2 fGG+ fGR

)
+24H5( j +q(2q+3))

(
8H3 fGG−2H fGR

(
4H2(q+1)−1

))

− 288H8 fGG( j +q(2q+3))+6H4
(

2 j +4q2+15q + s + 9
) (

4H2 fGG + fRR

)

+ 576H10( j + q(2q + 3))2
(

4H2 fGGG + fGGR

)

+ 288H6( j − q − 2)( j + q(2q + 3))
(

4H2 fGGR + fRRG

)

− 864H6 fGR

(
j + q2 + q − 1

)
− 12H3( j − q − 2)

(
4H3q fGR − H fRR

)

−18H4 fRR( j − q − 2)+ 36H6(− j + q + 2)2
(

4H2 fRRG + fRRR

)]
≥ 0, (29)

WEC :
ρeff = ρ(m) + 1

2κ

[
− f (R,G)− 24H4q fG − 576H8 fGG

(
j + 2q2 + 3q

)

−242 H6 fGR

(
j + q2 + q − 1

)
− 36H4 fRR( j − q − 2)+ 6H2(1 − q) fR

]
≥ 0,

ρeff + peff ≥ 0, (30)

SEC :
ρeff + 3peff = ρ(m) + 3p(m) + 1

κ
[3(0.5(24H4q fG + 6H2(q − 1) fR + f )

+ 24H6(−2 j (3q + 2)− q(2q(q + 6)+ 5)+ s + 3)(4H2 fGG + fGR)
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+ 24H5( j + q(2q + 3))(8H3 fGG − 2H fGR(4H2(q + 1)− 1))

+ 6H4(2 j + q(4q + 15)+ s + 9)(4H2 fGG + fRR)

+ 576H10( j + q(2q + 3))2(4H2 fGGG + fGGR)

+ 288H6( j − q − 2)( j + q(2q + 3))(4H2 fGGR + fRRG)

−12H4( j − q− 2)(4H2q fGR− fRR)+36H6(− j +q+ 2)2(4H2 fRRG + fRRR))

+1

2
(6H2(−4H2q fG − 96H6 fGG( j + q(2q + 3))− 288H4 fGR( j + q2 + q − 1)

+ 6H2 fRR(− j + q + 2)− (q − 1) fR)− f )] ≥ 0 , ρeff + peff ≥ 0, (31)

DEC :
ρeff − peff = ρ(m) − p(m) − 1

κ

[
24H4q fG − 24H6(−2 j (3q + 2)

−q(2q(q + 6)+ 5)+ s + 3)
(

4H2 fGG + fGR

)

−24H5( j + q(2q + 3))
(

8H3 fGG − 2H fGR

(
4H2(q + 1)− 1

))

− 288H8 fGG( j +q(2q+3))−6H4(2 j +q(4q+15)+ s + 9)
(

4H2 fGG + fRR

)

− 576H10( j + q(2q + 3))2
(

4H2 fGGG + fGGR

)

− 288H6( j − q − 2)( j + q(2q + 3))
(

4H2 fGGR + fRRG

)

−864H6 fGR

(
j + q2 + q − 1

)
+ 12H4( j − q − 2)

(
4H2q fGR − fRR

)

+ 18H4 fRR(− j + q + 2)− 6H2(q − 1) fR

−36H6(− j +q+2)2
(

4H2 fRRG+ fRRR

)
− f

]
≥ 0, ρeff+ peff ≥ 0, ρeff ≥ 0.

(32)

4 Constraints on f (R,G) gravity

In this section, we consider the viable f (R,G) modified theories of gravity which
were used in [61] to study the stability of cosmological solutions. Stability of power-
law solutions for f (R,G) models were given by expressions (33) and (34), bellow.
In the cases where no fluids are considered (vacuum) it is seen that stability of the
cosmological solutions can be achieved by appropriate choices of the parameters space
[61]. However, in this section we consider the constraints imposed by the energy
conditions and verify the consistency between the parameters ranges of the models
considered in [61] and the energy conditions in f (R,G) flat Friedman cosmological
models obtained here as (29)–(32).

In this regard, we consider two classes of viable f (R,G) given by [61]

f1(R,G) = μRβGγ , (33)

f2(R,G) = k1 R + k2 RnGm, (34)
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where k1, k2, μ, n, m, β, and γ are constants and n, β are assumed to be positive. The
Ricci scalar and Gauss–Bonnet invariant, defined in Eqs. (9) and (10) in terms of the
Hubble and deceleration parameters, can also be expressed as

R = 6H2(1 − q), (35)

G = −24H4q, (36)

respectively.
Since the inequalities (29)–(32) imposed by the energy conditions in f (R,G)

gravity are so lengthly, for simplicity we only consider the WEC in the following
analysis. Moreover, we take the following observed values for the deceleration, jerk and
snap parameters [62,63]: q0 = −0.81 ± 0.14, j0 = 2.16+0.81

−0.75, and s0 = −0.22+0.21
−0.19.

4.1 f1(R,G) = μRβGγ

To impose energy conditions on f1(R,G) gravity, for simplicity we consider the
vacuum, i.e., ρ(m) = p(m) = 0. Hence, the WEC constraints for the vacuum, ρ(v)eff ≥ 0

and ρ(v)eff + p(v)eff ≥ 0, are given respectively by

2β+3γ−13β+γ (−H2(q − 1)
)β (−H4q

)γ [
(− j + q + 2)(β − 1)β

(q − 1)2

−12
(
q2 + q + j − 1

)
γβ

(q − 1)q
+ β − ( j + q(2q + 3))(γ − 1)γ

q2 + γ − 1

]
μ ≥ 0,

(37)

2β+3γ−33β+γ−1 (−H2(q − 1)
)β (−H4q

)γ

×
[
−4(β − 1)β(q(β + γ − 2)− γ )(− j + q + 2)2

(q − 1)3q

+12(β − 1)β(− j + q + 2)

(q − 1)2
− 8β(β − qγ + γ − 1)(− j + q + 2)

(q − 1)2

+8( j + q(2q + 3))βγ (−γ + q(β + γ − 2)+ 1)(− j + q + 2)

H2(q − 1)2q2

−144
(
q2 + q + j − 1

)
βγ

(q − 1)q
− 12( j + q(2q + 3))(γ − 1)γ

q2

−8( j + q(2q + 3))γ
(
q

((
4H2(q + 1)− 1

)
β − γ + 1

) + γ − 1
)

(q − 1)q2

+ (2 j + q(4q + 15)+ s + 9)
(
(γ − 1)γ (q − 1)2 + 4H2q2(β − 1)β

)
H2(q − 1)2q2

−4( j + q(2q + 3))2(γ − 1)γ (−γ + q(β + γ − 2)+ 2)

(q − 1)q3

−4( j (6q+4)+q(2q(q+6)+ 5)− s − 3)γ (−γ+q(β+γ − 1)+ 1)

(q − 1)q2

]
μ≥0. (38)
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Fig. 1 Plots of the weak energy condition for the specific form of f1(R,G) = μRβGγ . The left and right

plots correspond respectively to ρ(v)eff ≥ 0 and ρ(v)eff + p(v)eff ≥ 0. The positivity requirement of the weak
energy condition is satisfied in the plots for the parameter range considered

The exact analytical expressions for the parameter ranges of the constants β and γ
can not be explicitly obtained because the constraints provided by the inequalities (37)–
(38) are so complex, so we consider specific values for some of the parameters. In [61]
the authors have shown that the vacuum solutions are stable for β > 1 and γ < 1

8 (5−
4β). To verify this result from the energy condition’s point of view, we plot the WEC
as a function of β and γ , as is depicted in Fig. 1. It is seen that in the left (right) figure,
the weak energy condition ρ(v)eff ≥ 0 (ρ(v)eff + p(v)eff ≥ 0) is satisfied for the parameter
ranges β ≥ 1 and γ < 0, in the specific form of f1(R,G) gravity by Eq. (33).

In order to compare with the particular case f (R), we put γ = 0 in Eq. (33). We find
that Eq. (33) can be reduced to f1(R) = μRβ , which is a class of f (R)-gravity. The
energy conditions of such theories have been studied in [13–16]. Therefore, consider-
ing γ = 0 in the current model the WEC constraints, i.e., ρ(v)eff ≥ 0 and ρ(v)eff + p(v)eff ≥ 0,
are given respectively by

1

(q − 1)2

[
2β−13β

(
−H2(q − 1)

)β
(β − 1)

(
(q − 1)2 + (− j + q + 2)β

)]
≥ 0,

(39)

− 1

(q − 1)3

[
6β−1

(
−H2(q − 1)

)β
(β − 1)β

(
(β − 2) j2 + 3(q + 3) j

−2(q + 2)β j + s − q(2q(2q + 7)+ s + 3)+ q(q + 4)β + 4β + 3)] ≥ 0. (40)

For more understanding the above relations, we have plotted them in terms of β.
Obviously Fig. 2 shows that the WEC is valuable for β ≥ 1, and this is in agreement
with result obtained in [13–16].

4.2 f2(R,G) = k1 R + k2 RnGm

In this case, as in the previous one, we consider the vacuum, i.e., ρ(m) = p(m) = 0.
This modified gravity model accounts for the stability of the cosmological solutions
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Fig. 2 The plots depict the weak energy condition for the specific form of f1(R) = μRβ . The left plot

corresponds to ρ(v)eff ≥ 0; the right plot corresponds to ρ(v)eff + p(v)eff ≥ 0

for late-time cosmic acceleration, and the stability of solutions depends on the values

of the coupling constants k1 and k2. In fact, for k1 > 2
(

1152
25

)3/2
k2 the perturbations

grow exponentially, and the de Sitter solution becomes unstable. For other values
of k1 and k2 than mentioned above, the perturbations behave as damped oscillations
decaying to zero, hence the solution becomes stable. To verify whether the parameter
range of the stability of solutions are consistent with the energy conditions, we again
consider the weak energy condition.

For the form of f2(R,G) considered by Eq. (34), the WEC constraints, i.e.,ρ(v)eff ≥ 0

and ρ(v)eff + p(v)eff ≥ 0, are given by

−23m+n−13m+nk2

(q − 1)2q2

[(
−H2(q − 1)

)n (
−H4q

)m (
j
(

m2(q − 1)2

+m((12n − 1)q + 1)(q − 1)+ (n − 1)nq2
)

+ q
(

m2(2q + 3)(q − 1)2

+3m
(
−q2+4n

(
q2+q−1

)
+1

)
(q−1)−(n−1)q

(
(q−1)2+n(q+2)

)))]
≥ 0,

(41)

23m+n−33m+n−1(−H2(q − 1))n(−H4q)mk2

×
[
−4(n − 1)n((m + n − 2)q − m)(− j + q + 2)2

(q − 1)3q

+8mn(−m + (m + n − 2)q + 1)( j + q(2q + 3))(− j + q + 2)

H2(q − 1)2q2

+12(n−1)n(− j +q+2)

(q − 1)2
− 4(m − 1)m(−m+(m+n − 2)q+2)( j +q(2q+3))2

(q−1)q3

+8n( j − q − 2)(−qm + m + n − 1)

(q − 1)2
− 144mn(q2 + q + j − 1)

(q − 1)q

−12(m − 1)m( j + q(2q + 3))

q2

−8m( j + q(2q + 3))(−qm + m + q + nq(4H2(q + 1)− 1)− 1)

(q − 1)q2

123
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Fig. 3 The plots depict the weak energy condition for the specific form of f2(R,G) = k1 R + k2 Rn Gm .

The left plot corresponds to ρ(v)eff ≥ 0; the right plot corresponds to ρ(v)eff + p(v)eff ≥ 0

−4m(−m + (m + n − 1)q + 1)( j (6q + 4)+ q(2q(q + 6)+ 5)− s − 3)

(q − 1)q2

+ (m
2(q − 1)2 − m(q − 1)2+4H2(n − 1)nq2)(2 j +q(4q+15)+ s+9)

H2(q − 1)2q2

]
≥ 0,

(42)

respectively.
It is seen that the weak energy condition dose not depend on k1. Therefore, it turns

out that WEC do not interfere with the stability conditions. As in the previous example,
considering the complex constraints provided by the inequalities (41)–(42), finding
exact analytical expressions for the parameter ranges of the constants m and n is not an
easy task. Hence, we consider specific values for the parameters to find WEC condition
as a function of the parameters m and n. It is seen in the left (right) Fig. 3 that the
weak energy condition ρ(v)eff ≥ 0 (ρ(v)eff + p(v)eff ≥ 0) is satisfied for the parameter ranges
n ≥ 1 and m < 0, in the specific form of f2(R,G) gravity by Eq. (34).

Again, in order to compare with the particular case f (R) we put m = 0 in Eq. (34)
to obtain f2(R) = k1 R + k2 Rn . The energy conditions of such theories have been
studied in [13–16]. Thus, considering m = 0 in our model, the WEC constraints, i.e.,
ρ
(v)
eff ≥ 0 and ρ(v)eff + p(v)eff ≥ 0, are given respectively by

1

(q − 1)2

[
2n−13n(n − 1)

(
−H2(q − 1)

)n (
(q − 1)2 + n(− j + q + 2)

)]
≥ 0,

(43)

− 1

(q − 1)3

[
6n−1(n2−n)

(
−H2(q−1)

)n (
(n−2) j2 + (3(q + 3)− 2n(q + 2)) j

+ n(q + 2)2 + s − q(2q(2q + 7)+ s + 3)+ 3
)]

≥ 0. (44)

We have plotted Eqs. (43) and (44) in terms of β. Figure 4 shows that the WEC is
valuable for n ≥ 1, and this is in agreement with the results obtained in [13–16].
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Fig. 4 The plots depict the weak energy condition for the specific form of f2(R) = k1 R + k2 Rn . The left

plot corresponds to ρ(v)eff ≥ 0; the right plot corresponds to ρ(v)eff + p(v)eff ≥ 0
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Fig. 5 The plots depict the strong and dominant energy conditions for the specific form of f1(R,G) =
μRβGγ . The left plot corresponds to SEC; the right plot corresponds to DEC
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Fig. 6 The plots depict the strong and dominant energy conditions for the specific form of f2(R,G) =
k1 R + k2 Rn Gm . The left plot corresponds to SEC; the right plot corresponds to DEC

To complete our discussions, we have plotted SEC and DEC in the Figs. 5 and 6
for two suggested f (R,G) models (33) and (34). From these figurers it can be seen
that in both models SEC holds but DEC does not. This is in agreement with the results
obtained previously in the study of energy conditions in f (R) gravity [13–16].

Note that for simplicity, we have examined the vacuum case p(m) = ρ(m) = 0. If
we add regular matter to our models, the general results of the paper will not change,
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because with no loss of generality we may always add a positive energy density or pres-
sure of matter satisfying the WEC to the vacuum case such thatρeff ≥ 0,ρeff+peff ≥ 0.

5 Conclusions

In this paper, we have studied the viability of an interesting alternative gravitational
theory, namely, f (R,G) gravity. We have considered two realistic forms of f (R,G),
analyzed in the literature, accounting for the late-time cosmic acceleration and the
stability of the cosmological solutions [61]. The general inequalities imposed by the
energy conditions are obtained. To be specific and for simplicity, we have focused
on the weak energy condition and used the recent estimated values of the Hubble,
deceleration, jerk and snap parameters. We have shown the consistency of the above-
mentioned forms of f (R,G) with the weak energy condition.

We have just examined the vacuum case for which p(m) = ρ(m) = 0. Actually
this is not a physically relevant case bearing in mind that the universe contains matter.
This simplification, however, does not change the general results of the paper, if we
add matter to our models. This is because we can add a positive energy density or
pressure of regular matter satisfying the WEC (ρ(m) ≥ 0 and ρ(m) + p(m) ≥ 0) to the
vacuum case (ρ(v) ≥ 0 and ρ(v)+ p(v) ≥ 0) such that ρeff ≥ 0, ρeff + peff ≥ 0, where
ρeff = ρ(m) + ρ(v) and peff = p(m) + p(v).
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