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tant characteristics of spin-dependent distributions. We consider all the different spin-dependent
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using a direct perturbative calculation at one loop, we obtain a null result which agrees with the
experimental measurements.
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1. Introduction

The transverse momentum dependent (TMD) factorization theorems formulated in [1, 2, 3, 4]
provide a self-contained definition of TMD operators which can be considered individually with-
out referring to a scattering process. This is because the factorization theorems allow a consistent
treatment of rapidity divergences in the definition of spin (in)dependent TMD distributions. We
focus on the evaluation of the large-qT (or small-b) matching of the TMD operators on the corre-
sponding integrated functions. The matching coefficients resulting are practically very important
because they serve as an initial imput to many models and phenomenological ansatzes for TMD
distributions. The unpolarized TMD distribution is the most studied case at the next-to-leading-
order (NLO) [1, 5, 2, 4, 6, 7, 8] and the next-to-next to leading order (NNLO) [9, 10, 11, 12]. This
paper is dedicated to show results for polarized distributions obtained in a systematic way as in
[13, 14] for helicity, transversity and pretzelosity distributions.

The quark and gluon components of the generic TMD operators are

Φi j(x,bbb) =
∫ dλ

2π
e−ixp+λ q̄i (λn+bbb)W (λ ,bbb)q j (0) , (1.1)

Φµν(x,bbb) =
1

xp+

∫ dλ

2π
e−ixp+λ F+µ (λn+bbb)W (λ ,bbb)F+ν (0) , (1.2)

where n is the lightlike vector used in lightcone coordinates and W (λ ,bbb) is the gauge link
made of Wilson lines. Its staples contour results in the rapidity divergences. They are removed by
the proper rapidity renormalization factor R, which is built from the TMD soft factor,

S(bbb) =
Trcolor

Nc
〈0|
[
ST †

n S̃T
n̄
]
(bbb)
[
S̃T †

n̄ ST
n

]
(0)|0〉, (1.3)

where Sn and S̃n̄ stand for soft Wilson lines (for the precise definition of Wilson lines see
e.g. [10]). The structure of the factor R depend on the rapidity regularization scheme. In our
case the scheme used is the δ -regularization scheme, which is based in a regularization of the
rapidity divergences directly from the operators, by using decreasing exponentials with the rapidity
regulator, δ , as

Wn = Pexp
(
−ig

∫
∞

0
dσ(n ·A)(nσ)

)
→Wn = Pexp

(
−ig

∫
∞

0
dσ(n ·A)(nσ)e−δxσ

)
, (1.4)

Sn = Pexp
(
−ig

∫
∞

0
dσ(n ·As)(nσ)

)
→ Sn = Pexp

(
−ig

∫
∞

0
dσ(n ·As)(nσ)e−δσ

)
. (1.5)

This scheme violates gauge properties of Wilson lines by power supressed in δ terms, i.e.
only the calculation at δ → 0 is legitimate. Also this regularization makes the non-abelian expo-
nentiation of the soft function satisfied at all orders. For another part, in this scheme the zero-bin
contribution is equal to the soft factor, obtaining a simple expression for R,

R =

√
S(bbb)

zero-bin
δ−reg.−−−−→ Rδ−reg. =

1√
S(bbb)

. (1.6)
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The rapidity divergence regularization scheme affects to the quantities related to the regulariza-
tion and renormalization of the rapidity divergences, but does not affect to the rapidity-divergences-
free-quantities, such as evolution kernels and matching coefficients.

The hadron matrix elements of the TMD operators with open vector and spinor indices (1.1,1.2)
are to be decomposed over all possible Lorentz variants, which define TMD parton distribution
functions (TMDPDFs). It is convenient to consider TMD distributions in the impact parameter
space, where factorization theorems are naturaly defined. For our purposes we need only a part of
the complete decomposition,

Φq←h,i j(x,bbb) = 〈h|Φi j(x,bbb)|h〉=
1
2

(
f1γ
−
i j +g1LSL(γ5γ

−)i j (1.7)

+(Sµ

T iγ5σ
+µ)i jh1 +(iγ5σ

+µ)i j

(
gµν

T
2

+
bµbν

bbb2

)
Sν

T
2

h⊥1T + ...
)
,

Φg←h,µν(x,bbb) = 〈h|Φµν(x,bbb)|h〉 (1.8)

=
1
2

(
−gµν

T f g
1 − iεµν

T SLgg
1L +2h⊥g

1

(
gµν

T
2

+
bµbν

bbb2

)
+ ...

)
,

where the vector bµ is a 4-dimensional vector of the impact parameter space (b+ = b− = 0 and
−b2 = bbb2 > 0) and ST,L are transverse and longitudinal of the hadron spin vector. In Eqs. (1.7,1.8)
we write only the TMD distributions that match the twist-2 integrated distributions. The reported
distributions are adressed as helicity (g1L and gg

1L), transversity (h1), pretzelosity (h⊥1T ) and linearly
polarized gluon (h⊥g

1 ) distributions.

2. Small-b operator product expansion

The small-b operator product expansion (OPE) is the relation between TMD operators and
lightcone operators. Its leading order can be written as

Φi j(x,bbb) =
[
(Cq←q(bbb))

ab
i j ⊗φab

]
(x)+

[
(Cq←g(bbb))

αβ

i j ⊗φαβ

]
(x)+ ..., (2.1)

Φµν(x,bbb) =
[
(Cg←q(bbb))

ab
µν
⊗φab

]
(x)+

[
(Cg←g(bbb))

αβ

µν
⊗φαβ

]
(x)+ ..., (2.2)

where the symbol ⊗ denotes the Mellin convolution in the variable x. The matching coeffi-
cients C(bbb) are dimensionless, i.e. they depend on bbb only logarithmically. The power supressed
terms, which are studied for the unpolarized case in [15], are represented in the dots. At this order
of OPE, the functions φ(x) are the formal limit of the TMD operators Φ(x,000). These functions
have a decomposition over Lorentz variants analogous to the decomposition shown in Eqs. (1.7,
1.8). The interesting integrated distributions are adressed as helicity (∆ fq,g) and transversity (δ fq,g)
distributions for quarks and gluons.

To study the different matchings one by one we have to project over the corresponding Lorentz
variants. We introduce the universal notation

Φ
[Γ]
q =

Tr(ΓΦ)

2
, Φ

[Γ]
g = Γ

µν
Φµν . (2.3)
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Both sides of Eqs. (2.1,2.2) should be supplemented by the ultraviolet renormalization con-
stants. Additionally, the TMD operator is to be multiplied by the rapidity renormalization factor R.
The renormalized TMD operator is written as

Φ
ren(x,bbb; µ,ζ ) = Z(µ,ζ |ε)R(bbb,µ,ζ |ε,δ )Φ(x,bbb|ε,δ ). (2.4)

The renormalization factors do not depend on the Lorentz structure but depend on the parton
flavor. The explicit expressions for these factors up to NNLO can be found in [10, 16].

The cancellation of rapidity divergences for the spin-dependent distributions is not trivial. If
we consider the small-b OPE for a generic quark operator up to NLO,

Φ
[Γ]
q = Γ

ab
φab +asCFBBBε

Γ(−ε)
[

(2.5)

− (γ+γ
−

Γ+Γγ
−

γ
+)ab + x̄

(
gαβ

T
2
− bαbβ

4BBB
ε

)
(γµ

γαΓγβ γµ)
ab

+

(
1

(1− x)+
− ln

(
δ

p+

))(
γ
+

γ
−

Γ+Γγ
−

γ
++

iεγ+6 bΓ

2BBB
+

iεΓ6 bγ+

2BBB

)ab

− iπ
2

(
γ
+

γ
−

Γ−Γγ
−

γ
++

iεγ+6 bΓ

2BBB
− iεΓ6 bγ+

2BBB

)ab ]
⊗φab +O(a2

s ).

where BBB = bbb2/4 > 0, as = g2/(4π)d/2, we see that it is affected by logarithms of δ that repre-
sent rapidity divergences. These rapidity divergences are to be eliminated by the R factor which up
to NLO reads

R = 1+2asCFBBBε
Γ(−ε)

(
L√

ζ
+2ln

(
δ

p+

)
−ψ(−ε)− γE

)
+O(a2

s ), (2.6)

where LX = ln
(
BBBX2e2γE

)
. The rapidity divergence cancels in the product RΦ if and only if

γ
+

Γ = Γγ
+ = 0 , (2.7)

and if we follow the same procedure for gluons, rapidity divergences only cancels if and only
if

Γ
+µ = Γ

−µ = Γ
µ+ = Γ

µ− = 0. (2.8)

The conditions in Eqs. (2.7,2.8) are satisfied only for the following Lorentz structures

Γ
q = {γ+,γ+γ

5,σ+µ}, Γ
g = {gµν

T ,ε
µν

T ,bµbν/bbb2}, (2.9)

which correspond to the Lorentz structures for the so called "leading dynamical twist" TMD
distributions. The relations in Eqs. (2.7,2.8) provide a definition of the leading dynamical twist for
TMD operators without referring to a particular cross-section.

3



P
o
S
(
R
A
D
C
O
R
2
0
1
7
)
0
4
0

Daniel Gutiérrez-Reyes

3. Helicity distribution

In the case of helicity distribution the Lorentz structures for quark and gluon operators are

Γ = γ
+

γ
5, Γ

µν = iεµν

T , (3.1)

that depend on the definition of γ5 matrix in dimensional regularization. The most popular
schemes for QCD calculations are ’t Hooft-Veltman-Breitenlohner-Maison (HVBM) [17, 18], and
Larin scheme [19, 20] . In both schemes the combination γ+γ5 can be presented as

γ
+

γ
5 =

i
3!

ε
+ναβ

γνγαγβ , (3.2)

where in HVBM scheme the εµναβ is defined only for 4-dimensional set of indices, but in
Larin scheme it is different from zero for all set of d-dimensional indices. Larin scheme is more
convenient than HVBM because it does not violate Lorentz invariance, but for TMD calculations
it is inapplicable. The point is that it does violate the leading dynamical twist Eq. (2.7). To ensure
that the Eq. (2.7) is fulfilled, we perform a light modification of the Larin scheme, and we call it
Larin+ scheme. In this new scheme, the expression for γ+γ5 is

(γ+γ
5)Larin+ =

iε+−αβ

2!
γ
+

γαγβ =
iεαβ

T
2!

γ
+

γαγβ . (3.3)

The NLO calculation is parallel to unpolarized calculation done in details in [10]. The match-
ing onto integrated distributions is written as

RΦ
[γ+γ5]
q = ∆Cq←q⊗φ

[γ+γ5]
q +∆Cq←g⊗φ

[εT ]
g

RΦ
[εT ]
g = ∆Cg←q⊗φ

[γ+γ5]
q +∆Cg←g⊗φ

[εT ]
g (3.4)

where

∆Cq←q = δ (x̄)+asCF

{
2BBBε

Γ(−ε)
[ 2
(1− x)+

−2+ x̄(1+ ε)Hsch. +δ (x̄)
(

L√
ζ
−ψ(−ε)− γE

)]}
ε-finite

,

∆Cq←g = asCF

{
2BBBε

Γ(−ε)
[
x− x̄Hsch.

]}
ε-finite

, ∆Cg←q = asCF

{
2BBBε

Γ(−ε)
[
1+ x̄Hsch.

]}
ε-finite

,

∆Cg←g = δ (x̄)+asCA

{
2BBBε

Γ(−ε)
1
x

[ 2
(1− x)+

−2−2x2 +2xx̄Hsch. +δ (x̄)
(

L√
ζ
−ψ(−ε)− γE

)]}
ε-finite

,

(3.5)

where the subscript "ε-finite" implies the removal of ε-singular terms. The only difference
between the results calculated in both schemes is accumulated in the coefficient

Hsch. =

 1+2ε HVBM,
1+ ε

1− ε
Larin+.

(3.6)

One can see that up to ε-supressed parts results in both schemes coindice. The drawback of
both schemes of Adler-Bardeem theorem for the non-renormalization of the axial anomaly. This is
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fixed by an extra finite renormalization constant Z5
qq from an external condition (see [19, 21, 22]). In

the TMD framework, the condition is the requirement of equality between helicity and unpolarized
matching coefficients. [

Z5
qq(bbb)⊗∆Cq←q(bbb)

]
(x) =Cq←q(x,bbb). (3.7)

We find the following result for Z5
qq up to NLO,

Z5
qq = δ (x̄)+2asCFBBBε

Γ(−ε)(1− ε− (1+ ε)Hsch.) x̄. (3.8)

For further discussion about Z5
qq for TMDs and for the expressions of the matching coefficients

in the limit ε → 0 see [13].

4. Transversity and pretzelosity distributions

At leading twist there is not mixture between quarks and gluons, and the Lorentz structure
fot the transversity TMD operator is commonly chosen as Γ = σ+µ , instead of the more general
Γ = iγ5σ+µ , which depend on the scheme. In this case, we find that both the transversity and
the pretzelosity distributions have the leading twist-2 matching on the integrated transversity PDF.
Their matching coefficients, δCq←q and δ⊥Cq←q respectively, are defined as

RΦ
[σ+µ ]
q = gµν

T δCq←q⊗φ
[σ+ν ]
q +

(
bµbν

bbb2 +
gµν

T
2(1− ε)

)
δ
⊥Cq←q⊗φ

[σ+ν ]
q . (4.1)

For the transversity distribution we have up to NLO

δCq←q = δ (x̄)+asCF

{
2BBBε

Γ(−ε)
[ 2
(1− x)+

−2+ x̄
ε2

1− ε
+δ (x̄)

(
L√

ζ
−ψ(−ε)− γE

)]}
ε-finite

,

(4.2)

and for the pretzelosity distribution

δ
⊥Cq←q =−4asCFBBBε

Γ(−ε)x̄ε
2. (4.3)

We can see that the pretzelosity matching coefficient is proportional to ε , i.e. zero. This
result coincides with the estimation made in [23]. This observation is indeed supported by the
measurements of sin(3φh−3φs) asymmetries by HERMES and COMPASS (see [24] and references
within). Calculations at NNLO suggest that at this order the pretzelosity is different from zero and
it means that would be a quantity that begins at NNLO in QCD.

5. Conclusions

In this paper we show the complete set of NLO TMD matching coefficients of the TMD dis-
tributions to the twist-2 integrated distributions in the regime of small-b. As we have shown the
expressions of the matching coefficients with its complete ε-dependence, the path to the calcula-
tions of spin dependent TMDs at NNLO is open and in progress [25].
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As a consecuence of the evaluation of the OPE for a general operator the possible Lorentz
structures for TMDs are restricted, giving the so called "leading dynamical twist" TMD distribu-
tions. We also provide a discussion on the different schemes used to deal with the calculation with
γ5 and εT in dimensional regularization. Within this discussion the Larin+ scheme is defined, as a
modification of the classical Larin scheme that fulfills the leading dynamical twist conditions. Up
to NLO there is not difference between schemes in the calculation of the matching coefficients.

Finally, we obtain that the pretzelosity distribution has ε-supressed matching coefficient, but
it is not zero at NNLO. It is a natural explanation of its smallness in phenomenological analyses.
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