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ABSTRACT

A radio-frequency method of inflecting particles (supplied from a
given injector) into or:bits suitable for subsequent acceleration in a cyclic
particle accelerator is studied theoretically and experimentally. The
particles circulating in the accelerator are subjected to an "RF bump'': a
transverse radio-frequency electric field over a small length of the orbit,
tuned to the frequency of the radial betatron oscillations. It is shown that,
in the absence of nonlinear effects and with no septum (inactive injector
extremity), the number of particles made available for acceleration can
be as large as the limit set by Liouville 's theorem (100% filling efficiency).
In achieving this limit not less than 75% of the injected charge is wasted
(25% charge efficiency). Nonlinear effects decrease both the charge and

filling efficiencies.

*AEC Research and Development Report. Research supported by the
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1. INTRODUCTION

Early in 1960, B.C. Cook, working with the MURA FFAG spiral

1, studied experimentally a method for ex-

sector electron accelerator
tracting beam from a cyclic particle accelerator, This method in.
volved the application of a radio-frequency electric field to a coast-

2,3 Gook found**® among other results, that an RF field of

ing beam.
proper frequency could affect the amount of useful beam injected into
the machine. Prior to this, other investigators (Ohkawa, Terwilliger)
had noted this "RF knock in" injection mechanism. Cook's work is

unique in that he measured its efficiency, finding it to be, under
proper conditions, about one-half the upper limit set by Liouville's
theorem and the knewn machine parameters, This work was not pursued
further until K. R. Symon suggested to the present writer that an analye.
sis of the mechanism be made. The interest in the mechanism stems from
ita high efficiency and also from the fact that conditions under which
Cook made his measurement parallel those that would exist in a large
FFAG accelerator employing beam stacking. Here injection would occur

at those times when little or no energy is being added to the beam by
the various devices normally used to accelerate the beam.

This thesis deals with a particular method for increasing the
useful beam injected into a cyclic accelerator in which injection and
acceleration secur at separate times, There are several other metheds.
Kerst has pointed out that space charge and inductance effects can aid

6,7,8,9

injection, That guide field inhomogeneitie310'11 can lead te
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"regonant™ damping of the radial betatron metion has been considered
by Barden12 and more extensively by Judd®. Teng has treated the case
of time dependent impulses which (1) are in resonance with the radial
oscillation and which (2) depend on the radial coordinate and which (3)

3

act on a bunched beam only at certain accelerator azimuths.1 A time

dependent distortion of the equilibrium orbit aiding injection has been
investigated by Kerst, Mills, and Morin.l’l4

The explanation for Cook's observation rests on properties of
the forced harmonic oscillator. This explanation and its implications
form the core of the present thesis, The theoretical wdel of an ac-
celerator used here is rather idealized, the basic assumption being
that the radial betatron metion is simple harmonic, Because the angue
lar frequency Wgae of the RF electric field perturbing a particle is
set equal to the particle's angular frequency of radial oscillation
the mechanism under study will be referred to as Resonant RF Inflection
(RRFI). In what follows this RF electric field is called the "RF buwp"
because it is an irregularity localized around some azimuth in the
machine,

An electron's radial oscillation amplitude Qyx 1is usually ala
tered each time the electron traverses the region over which the RF bump
acts. The injector and RF are presumably turned off together. At this
turn off those electrons with sufficiently small Qx centinue to circu-~
late (revolution frequency o). They do not collide with the injector.
It is such electrons which are available for acceleration. This group
is the useful beam injected into the accelerator. It will be shown
that, if non-linear effects are sufficiently small and if the injecter

has a septum of zero thickness, then RRFI makes a number of electrons
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available for acceleration equal to the upper limit given by Liouville's

theorem, The term filling efficiency denotes the degree to which this

limit is realized.
For RRFI to realize 100% filling efficiency wore charge must be
injected than becomes available for acceleration. Here the ratie of the

latter to the former is called charge efficiency. It is shown that RRFI

exhibits a charge efficiency < 1/4. A charge efficiency of about 1/5
usually obtains,

The angular frequency of radial oscillation @y and the circula-
tion frequency fo actually do depend semewhat on the radial oscilla-
tion amplitude dx , and any appreciable dependence of either one de=~
creases the effectivenesa of RRFI, The experimental test reported here
was conducted in such a way as to minimize these non-linear effects.
The experiment for the wost part agrees with theory. In any less
idealized application of RRFI the inhibitory effects of non-linearity
will have to receive closer attention, A step in this direction is
taken in Appendix 7. The paragraphs which follew indicate the or&cr
in whiech topics related to the above points will be discussed.

Section II begins by considering differences between the
accelerator used in the experiment of Section VI and its idealized
representation used in the theory of Sections III, IV, and V. The
change in an electron's motion in making a single pass through the RF
bump is discussed. An idealized model of this bump is develsped.
Finally, the injection problem of interest here is stated in terms of
these idealizations,

Section III considers these aspects of Resonant RF Inflection

which can be treated without recourse to high-speed automatic
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computation, The approach used has applicability outside the realm of
RRFI. Section IV uses it to illustrate the method eof Stochastic In-
f1ection.15 Section V contains computational results which extend the
conclusions of Section III. Three of the computer programs used here,
i,e., SHO-16, SHO-18, and SHO-20, are described, respectively, in ap-
pendices 4, 5, and 6. Each of the latter begins with a short general
description which is followed by a detailed consideration of the actual
Fortran program. The program which analyzes the experimental data of
Section VI is SHO~l4, Its detailed description is given in Appendix 3
but its physical description occurs in Section 6.6, Since higher
numbered programs are generally described in terms of how they differ
from those of lower number, the reader may find it advantageous to skip
consideration of programs used in Section V until after he has met the
contents of Section 6.6 and Appendix 3,

The conclusion to the experiment of Section VI appears in

Section 6.9. The thesis conclusion, Section VII, enumerates basic

properties of RRFI,
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11, IDEALIZED MODEL OF ACCELERATOR

AND BUMP

The accelerator of Figure 1 is used in the experiment of Section
V. In considering this accelerator, as well as the idealized represen
tation of it met later, it is convenient to introduce cylindrical coore
dinates (0,8,3) . The radial coordinate P lies in the plane of the
paper. The center of the aeccelerator corresponds to P = 0. The azimuth
of the electron gun or injector (arrow A) is taken as @ = 0, Since elecw
trons leaving the gun circulate in a clockwise manner, 6 is taken to ine
crease in the clockwise direetion, The vertical or positive ¥ axis has
its origin at @ = 0, is orthogonal to the plane of the paper, and points
away from the reader. Specifying the magnetic field B on the median
plane (3 = 0) automatically determines 3 for 3#0. In a conventional

cyclotron the median plane field is

Bp'-"o
B.’ o
n
By = B.(-ﬁ—') -1l<n<o

An electron injected under proper conditions into this guide field will
not only circulate about the origin but also oscillate about a
unique path lying in the wedian plane., This path, known as an equilie
brium orbit, is the one trajectory associated with an electron of energy
E, (speed N, ) which connects smoothly with iteelf each revolution, In
the cyclotron it is just a circle of radius @, .

The oscillation separates into two modes: one radial, the other

vertical., Since the guide field is independent of time, Vx 3: O.



~ Y
Y
b

-6

Solving for the field E off the median plane in linear approximatioh

yields
n
e 73R
B.: (o]
B = Bi(g)”

The equations of motion for an electron of charge —e and relativistic

mass m in this field are
m(f-pe’)
m(p8+2p8)

m 3

i i
i
o ®
. ©
D.
0 w
—~
o
——

s{g)’

The dots denote derivatives with respect to time., For an electron whose

1}

o

g

0
*olus fey

trajectory is its equilibrium orbit, "0'3,55 ©: O . When such is the case
the first qjuation gives 6 = (&] 2 Wy =29 F, » where £, is the elecw
tron revolution frequency. Since electron speed n, equals Wo L., elec-

tron energy E_, increases with increasing Pe * Upon linearizing the equa-

tions of motion about the equilibrium orbit using the substitutions L= Pet+ %

and @ = W,+ 86 one obtains

_(nu)w:'x

v 4 =

66 = - Yo o'c
)

3 = 7’!0):3

The solutions are
2 = Qx dm (Wit + B.)

3 = 03 4m (wyk + Ga)

UJ‘ = v i+ wo
u.>3 = v‘-‘n Wo

e 3 wo(l‘%;)
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The quantities (1) # and 2, (2)0Gxand 63, (3) B, and B, , and (4) wy
and w, are, respectively, (1) the electron's radial and vertical dise
placements from its equilibrium orbit, (2) the electron’s radial and
vertical amplitudes of oscillation about this orbit, (3) the phase angles
of the radial and vertical oscillations at t'= 0, and (4) the angular
frequencies of the radial and vertical oscillations.

It is sometimes convenient to consider © as the independent

variable rather than the time. If in the original equations of motion '6

is replaced by(die)e and P by i:oezé‘... g_e etc.. then the linearized
e d e
equations of wotion for & and 3 become

2

a_ﬁ = -—(11-0-1)’1
d 62

da‘i = -(-'ﬂ):
d ¢

It is convenient to introduce the radial and vertical "tunes™ Vv and V,
where Vy:¥i+ '  and where vy Y-n . From a practical point of view
Vs (V3) 1is the b L Ghere L is the number of complete radial (ver=
*\7"3 N N
tical) oscillations executed by an electron in going around the accelerator
N times. The solutions to the preceding equations are
x = ax am (e+ 8.)
3 = 0.3 M (Vse + Bﬁ)
It is sometimes desirable to express them as

+ AV O
x = 2

3 - Q:Lw?se

Two points are worth noting., First, both ¥Yx and \23 are indee
pendent of Po and hence of electron energy Eo‘ For certain values of
vx (V) unavoidable imperfections in the guide field cause an electron's
0x(@3) to increase until the electron is lost from the beam. The quane

tity m is chosen such that \’x(\’g) is as far as possible from those

values (the "resonant values"™) which cause trouble,
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Unavoidable variation of n over the allowed range of Po also occurs,
This variation must never be great enough to shift W, (v,) onto a re-
sonant value, The second point is that electron revolution frequency £,
is independent of oscillation amplitude in linear approximation. The
time average of 0= w, (\- %’) y Llees, -; s is just w, since ¥ = 0,
Hence, electrons of the same energy E, exhibit the same f_, in linear
approximation,

To add energy to electrons injected into its guide field, a cone
ventional cyclotron employs a radiosfrequency acceleration scheme, The
RF voltage is applied across two electrodes between which the circulating
electrons pass repetitively, Their direction of motion is parallel to
the lines of force between these electrodes. The frequency of the RF
Vbltage is constant in time and is set equal to the rewolution fre-
quency of the injected electrons, As long as synchronism between the
RF and f, prevails, some electrons receive energy. As their energy in-
creases so does their p, . At these larger P, two factors operate to
destroy synchronism and thereby 1imit the energy attainable, (1) Cone
sider the expression for w, met previously, i.e., W, = 2Nfs = %&%r
where m is the relativistic electron mass. Since ~1<n<0, f_  decreases
with increasing pPo s This decrease can be minimized by using the largest
feasible n, (2) As electron velocity approaches the speed of light, m
begins to incraease. This also lowers £,

The loss of synchronism noted above can be circumvented by varying
the RF frequency with time so as to follow the f, of a single group of
nearly monoenergetic electrons all the way from injection out to the
largest p, for which the guide field has the proper form, When this
group reaches the target the RF frequency is returned to its initial
value and the process repeated, The price paid for higher energy is

twofold., First, economic difficulties are encountered in constructing
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and exciting the larger electromagnet required to contain the higher
energy electrons, Second, pulsed operation tends to lower the average
number of electrons reaching the target per second,

The economic difficulties noted above can, in some measure, be
overcome., In the expression 7ma,: e BgpPo the electron speed A% can be
replaced by the speed of light c when dealing with relativistic elecw
trons, Multiplication of the resulting expression by ¢ gives the total
electron energy. Once the electron energy an aecelerator is to yield
has been specified, the maximum value of Bgp, which must obtain is also
known, Choosing the maximum feasible 33 y L1e€ay Bmox , fixes the
magnet pole radius Praax .- Nothing one can do will decrease this dimenw
sion, However, if n were allowed to be greater than zero, say ten or
twenty, then it would be possible to cut out the central region of the
magnet pole, The field on the remaining annulus would be B3= B, ('g:)"'
The annulus would extend from pP. to Pmax where ﬁﬂ:’;—iﬁi <<\, Here Bwax
is B, ,L;-Tg_x_)“ and B, << B, .. Electrons wuld be injected at low energy
onto an equilibrium orbit of radius P, and aecelerated out to Pwmax .
From previous considerations we know, however, that with n»o VYg= -

£ AV40
is imaginary and the 3 motion, & '» unstable, It is possible,
however, to stabilize it by introducing a suitable azimuthal dependence
into the guide field, The spiral sector accelerator of Figure 1 is an
example of a machine with ny0 which uses azimuthal dependence of a time
invariant guide field to stabilize the 3 mo tion,

The fact that pulsed operation lowers the average number of elecw
trons reaching the target per second motivates the present thesis, One
desires to maximize the number of electrons accelerated per pulse, The
properties of the injector, e.qg., current emitted by it, etc., enter into
the problem but are not of primary concern here. The question here is

what can be done to electrons between the time they leave the injector and
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the time the injector is turned off such that after injector turn off as

- many as possible are available for acceleration. For reasons which are
not given here, RF acceleration, as it would be used in a full scale
version of the accelerator of Figure 1, restricts one to methods of ene
hancing this number which conserve electron energy. The particular
method considered in this thesis (RRFI) was tested experimentally in the
accelerator of Figure 1., 1In developing an idealized representation of
this accelerator we begin by noting ways in which the azimuthally depen.
dent guide field makes the electron motion differ from that in the cyclow
tron previously considered, ‘

The guide field on the wedian plane in the accelerator of Figure 1

is approximately

"

B, = B\(.e_)ﬂ [ )+ am (68 + 33)] n £ 0.7

P.
The quantity 33 is a phase angle which depends on ﬁ o An equilibrium
orbit in this field is roughly hexagonal, An equilibrium orbit of higher
energy is a photographic enlargement of the preceding one coupled with a
clockwise rotation sufficient to keep each of its "“rounded vertices" at
the middle of a magnet, Electron oscillation about the equilibrium orbit
is deseribed in terms of new variables 9; x ‘ and 31. These var iables,
which are never very different from their cognates 6, %, and 3 , are de-
fined as follows., Let 84 be the circumference of an equilibrium orbit
and @5 » path length along this orbit measured in a clockwise direction
from a reference point on the orbit where P happens to be orthogonal to
the orbit, The quantity o equals 2% %!E « Next, draw a line between an
electron®s projection on the mediamn pla:me and the nearest point on the
equilibrium orbit. This projection is assumed close enough to the orbit

so that there is only one such nearest point., The length of the line just

drawn is || where x' is negative if the projectior lies within the
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?
equilibrium orbit and pos itive if outside. The quantity 3 equals 3,
The solutions to the linear ized equations of motion for the

accelerator of Figure 1 are

: t v, 0 ,
x' « 2 LT £ (00"

s iv,0 .
31 o e 3 %(66)
where

o0 . ’

L+ S, boam (Mmee '+ tu)
nz |

[+ i’, dn ain (M66 + ha)
m=1

The nature of the guide field fixes the constants b,, c,, dy, and hn,.

f(e8)
g (66)

As in the cyclotron, Vx and Vv, are independent of electron energy.

Suppose an observer at @, records the A’ and 3' of an electron
as it passes 8. . He then jumps ahead to 6 0+ an/e and waits until he
sees the electron pass this point whereupon he again records its ' and
3' o Jumping ahead to 6'=0+ R(%) he repeats the process, etc, Since
the observer jumps :_z_g each time and since $(6@') and q(¢8') are periodic
with period 353 s the observer finds that the simplest assumption which

will allow him to analyze his data is that electron motion is simple hare

!
monic between observation points, i.e,, that for all ©

. T AVO'
'« & *

2w 2 iVy0

The ideal ized representation of the accelerator of Figure 1 which
we use throughout this thesis is as follows, We choose 6.' to be the point
on the equilibrium orbit corresponding to the injector azimuth in Figure
1, ..y Y Like the observer above, we assume the /X' and 3'
motion to be simple harmonic at all points between the six azimuths ©": &
2 0, ?,ng)..., %’_k. Exper imentally (Section VI) this assumption gives no
trouble as we, like the observer, restrict ourselves to observing and in.

fluencing the beam at azimuths © which are integral multiples of 3}

We also assume the equilibrium orbit to be circular (radius Po ), i.e.,
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we neglect any discrepancy between x' and x at these six azimuths.
Hence, the idealized representation of the accelerator of Figure 1 which
we use here is basically the linearized cyclotron model previously cOne
sidered, We, however, disregard the theoretical predictions for vy and
vy made on the basis of this cyclotron model and replace them with any
values we happen to be interested in,

The dashed circle of Figure 2 represents an equilibrium orbit while
the line crossing it a projection onto the median plane of one possible
electron orbit. Here \’u=% . The electron orbit originates at © = 0,
the injector being represented by a line segment at € = 0, extending from
the inner vacuum tank wall to some less negative but still negative x,
The backside or negative € side of the injector is a sink., Any electron
colliding with it is absorbed. The injector is assumed to be of sufe
ficient vertical extent so that an electron's vertical displacement 3 is
rever sufficient to allow it to hop over or under the injector when a
projection of its orbit onto the median plane intersects the injector,
An electron's 34 motion is not considered further in the theoretical
work of this thesis. It is sufficient to work with the projection of an
electron®s orbit on the median plane rather than the orbit itself, Nevere
theless, it is convenient to talk of electrons so in what follows we
assume that all electrons travel in the median plane, i.e,, that their
vertical oscillation amplitudes are zero.

The positive side of the injector emits electrons
only over some small segment near its right hand extremity. Segment DE
of Figure 3 is known as the septum, It is an unavoidable region of zero
emission, To its left is the active segment CD each point of which emits
electrons over some angular range gbout the forward direction, An
arrow's origin represents the radial displacement of an electron.at the

instant of its emission while its orientation, the electron's direction
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of emission, The anglé o measures the inclination of an arrow to the
forward direction, Itaéﬁ positiye for arrows inclined toward the equiw
1ibrium orbit. An elecfron's radial component of momentum at the time
of its emission is Px: MW Mm d&. After emission its Pu is given by
P,"-;m/:t : Mmax Wi ooo(w,t+6.).

Instead of working directly with an electron's p, it is helpful
to replace p, by a number y, proportional to it, having dimension of

length,
y = P

m Wy

As an electron travels around the accelerator (Figure 2) it is informative
to view the motion of its representative point (x,y) in phase space. By
phase space we simply mean a plane on which a rectangular coordinate
system is inscribed, the horizontal axis of this system measuring x and
its vertical axis measuring y., It is convenient to imagine this phase
plane as set perpendicular to the equilibrium orbit at the azimuth @ at
which the electron happens to be., The equilibrium orbit passes through
the point (0,0). We agree to view only that side of the phase plane
which faces in the direction of increasing @ . The phase plane's negae
tive x axis coincides with the negative x axis in real space at this same
azimuth, We also view the plane in such a way that an electron exhibiting
a negative x lies to the left of the wvertical line x = 0, The positive y
axis points upward., For now we take this phase plane as traveling around
the accelerator with angular velocity w, so that the electron under cone
sideration always lies in the plane, Later we shall fix the phase plane
at some azimuth @ and simply record the phase points (x,y) of electrons
passing through it,

The motion of an electron's representative point (x,y; in phase

space is given by




R

wlbiw

T Qg M (V.0 +8.)

z
9 ax oo (Vo + 8.)
e w, t

"

The point (x,y) travels around a circle of radius Qu«* 444"+ y! with angular
velocity W,z YuWo . Vector notation is helpful in expressing these

results, The electronts (';)at ©@>» 0 is obtained from the (',:) it had at

e =0, i . . by rotating the latter clockwise V.8 radians,
x oo (Vx8) am (vu8)\ [ ¥o o

= . = MCVge)
y -2 (Ve 8) <od (Vx8)]\ Yo Yo

The injector is assumed to emit electrons of only one energy E_, .
The phase space representation of the current emanating from the injector
will prove a useful device., More generally one desires the phase space
representation of the beam current at any azimuth & , Set the phase
plane at the desired 8 , let F(x4,6t)dedxdy be the number of elec~
trons of charge -e between © and ©6+dé@ having x's between x and x+dx
and y's between y and y+dy at time t. Let i(x,yst)dxdy be the rate
at which charge having x's between x and x+dx and y's between y and
y#dy crosses this plane at time t, The increment of charge passing
through dxdy in time dt divided by 4t is

L (d.,g'e,‘t») dfxdtj

1

-e F(x,4 e,t) dedxdy
dx

= d . = d
Therefore (w, ;-z ) dx —9)

Wo

1"

L(2,y,6%) drdy -e F(ry, e +t)dedxdy

(%)

~eWo F(x,y 6 t)dudy
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Hence, 4(%,4,6t) = -€We F(xy,6,t) . In what follows, 1(x,y,9,t)
will be replaced by the symbol i(x,y). It will sometimes be referred to
as the current per unit area of phase space. The par ticular © and t
associated with i(x,y) will be mentioned in each case., The symbol
i,(x,y) denotes the current per unit area of phase space over the injec-
tor. It applies only at 8 = 0+ over (x,y) to the left of a vertical line
through E in Figures &4 and 5, i.e., for 2 < 7%z ¢ O _ Figure 3 shows x,
to be the displacement of the right hand extremity of the injector,

If one draws lines of constant io(d,y) on the phase plane at

© = 0+, conteurs like those of Figure 4 are expected. The current

j (x)dx emitted by the injector between x and x + dx is
o

«j,(rx)dm =[ .

)

-Ax

iow.q)de] do

Here A is an upper bound on oscillation amplitudes o, of electrons
leaving the injector. The current density jo(x) agssociated with the in~

jector has dimensions of current per unit length. One talks of 1°(x,y)

and j_(x) only at © = 0+ and for Xex o At 6 = 0+, i(x,y) and j(x) in.
clude io(x,y) and jo(x),respectively. In much of the theoretical work
which follows io(x,y) is assumed to be a nonzero constant function of x
and y over a region of finite area and to be zero outside this region,
When such is the case its nonzero constant value is designated io.
Suppose at time t = 0 the injector whose phase plane representa-
tion Is given by Flgure 4 is turned on. 1In physical space one sees a
pencil of charge emanate from the injector and snake around the ac-
celerator. When its head reaches ©:2%any charge lying to the left of
AN collides with the injector. That pertion noet celliding snakes

around again, etc, Eventually equilibrium is achieved, i.e., the current
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colliding with the injector equals the current emanating from it.

It is informative to view this approach to equilibrium on a phase
plane set at @ = 0. We let V. be 1/3. It takes a time 7= ‘/-F. for an
electron to travel once around the accelerator, With the injector turned
on at £t =0, Figure & applies at @ = 0+ for 0<X<7,  For T<t< 2% a

second beam manifests itself in phase space at the one o‘clock position.

A third beam makes its presence felt at the five o'clock position when

2% <%<3T, For 2»3ta fourth beam is not realized as electrons associated
with it collide with the back side of the injector., (For an electron at

® = 0w to subsequently collide with the injector its radial displacement
must be £2_ .) Figure 5 gives i(x,y) for %> 37 appropriate to @ in
the neighborhood of @ = 0. For t » 37T  the number of electrons circu-
lating is constant, Just as many are being emitted by the injector's
forward surface as are colliding with its back side.

Figure 5 also applies when ¥y = 4/3, 7/3, 10/3, « . . o The
transformation M(%a¥)relating the (’;) of an electron to its value one
revolution later is independent of any integral portion of ¥Yx .

When (1) it is permissible to dealoy‘:r?.th the nonwintegral portion of Vx
and when (2) it is advantageous to consider only rational vy then the
radial tune will be written as Vs = L/N rather than as V¥, . Here L and
N are integers and O<L<N, Restricting Vx to be rational allows one to
investigate certain properties of RRFI more easily. When it is advan-

tageous to remove this restriction we shall do so,

Specializing to a Vi of 1.400, i.e., ¥Yx = L/N = /5 , we view a
phase plane set at @ = 0. It is assumed that the septum thickness DE of
Figure 3 is zero and that the gun emits an io(x,g) of i°>0 only over (x,y)
lying both within a eircle of radius A, and to the left of x = X o
The quantity A will be taken several times larger than \x‘l. The lined

portion of Figure 6a corresponds to such an injection region, Supposing
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emission to begin at t = 0, Figure 6 gives i(x,y) in the ne ighborhood of

© =0 for t>0. Since i(x,y) at © = 0+ is not always the same as i(x,y)
at © = 0-, the following device is used to distinguish differences. An
unlined region indicates that an i(x,y) of zero is seen at both @ = 0. and
6 =0+, A s'ingly shaded regiom as in Figure 6a indicates an i(x,y) of A'..
at @ = 0+ and an i(x,y) of zero at @ = O~. A region where the ver tical
lines are twice as dense as those in 6a indicates an ilx,y) of i, at both
© =0+ and O = Ow, Hence)doubly shaded regions as well as white regions
indicate continuity in i(x,y) across & = 0 while singly shaded regions,
discontinuity. Discontinuity occurs only over the injector extent and for
times t less than or equal to the equilibrium time 57,

A V¢ of 1,400 is seen to yield an empty pentagon surrounded by =
filled band for X 2 57 . If ¥Yx were 4/3, an empty equilateral triangie
would result for % z 3% e With V% = L/N an Nwsided equilateral polygrn
is realized for 1 ZNT (N >2). Once such equilibrium has been egtab-
lished a like polygon would also be seen at other azimuths @ except for
its being rotated clockwise by Vx6 radians, For @implicity, the phase
plane will usuallybe set in the neighborhood of @ = 0. As N becomes largev
the associated polygon looks more and more like the circle it ecircumseribes.
This circle of radius Y, will be called the beam circle. 1Its interior will
be called the area of usable beam. The radius of a general circle in phase
space centered at (0,0) will be denoted by v

In the previous example where J’b(x,y) is set equal to ijonly two
values of i(x,y) are ever realized, i.e., i, and zero, There can never
be doubling up or overlapping of filled regions of phase space, Our
present purpose is to illustrate this fact more vividly.. Suppose that

the injector has been turned on and equilibrium achieved. At some time



t, momentarily stop the beam and break i t into a large number of sege
ments each of azimuthal extent d® ., The rewlution frequency of each
segment is ¥, . Each segment maintains the same position with respect
to all other segments for all time. Set a single phase plane in the
middle of one segment and let it travel around the accelerator with the
segment. We plot the representative points (x,y) of all eiectrons in
the segment on this plane. The point density on the plane is F(x,y,8,t)de
where © is the azimuth the segment happens to be at time t. Each point
on the phase plane rotates clockwise about (0,0) with angular velocity
Wy = WW,o. Rotation does not change the relative positions of repre
sentative points so that doubling up or thinning out of the point denw
sity can not take place except, perhaps, when the pegment passes the ine
jector, However, when the latter occurs all electrons in the segment
whose representative points lie to the left of x = X, collide with the
injector., 1In other words the region of phase plane to the left of x = X
is completely evacuated just before new points are added to any portion
of it, Hence, there can never be a doubling up in the density of the ree
pregentative points. An observer viewing a phase plane fixed at any
azimuth @ can see only one of two values of i(x,y) near any (x,y) at
time t,s {,c., either i, or zero.

The problem with which this thesis deals can now be seen more
clearly. As before let i (x,y) = i,, VY =1L/N, and £>NY . An elec-
tron leaving the injector circulates about the accelerator from one to N
times depending on the particular (x,y) = (%,,4.) it had at its instant
of emission, 1Its oscillation amplitude is always Qx ='V;EF:T§?1 . If
the injector is now turned off, all electrons collide with the injector
within N7 seconds after this furn of f, In such a case there is no beam
left to accelerate., The general problem then is to apply some kind of

energy-conserving perturbation to the circulating electrons while the
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injector is on, which leaves, at the time the injector is turned off, as

many electrons as possible with QOx's less than Yo o The perturbation
is presumably turned off at or before injector turn off., Electrons ree
maining (&« < Ye) continue to circulate without obstruction., It is this
beam which is available for aeceleration., The particular per turbat ion
considered in this thesis is a "bump™ of radial electric field oscilw
lating at an RF frequency 'Fm: . The azimuthal extent of this electric
field is much less than 2% o The azimuth @ at which the bump is set
turns out to be imuuateri#l. The frequency fge is usually set at or near
the radial oscillation frequency v, £, o

In the experiment of Section VI an eledtrode eonsisting of a 1" by
1" square plate is set 0,32 "™ to the left of the equilibrium orbit at
6= an/e (Figures 1 and 25). We neglect electrodynamic effects. If
the potential on the plate does not change significantly in the time it
takes an electron to pass by the plate, then the problem reduces to that
of an electron moving through an electrostatic field, An electron inie
tially in a region of zero potential passes through a region of nonzero
potential and on into a region of zero potential again. Though the glecw
tron's kinetic energy may vary in the neighborhood of the bump it is
conserved when the complete pass is considered., Our present purpose is
to understand the effect such an electric field bump has on an electror
mak ing a single pass of the bump. !

It is assumed that all electrons travel in thé median plane., They
feel no vertical component of electric field, Imagine another 1" by 1'; )
plate }5* . set opposite and charged opposite to the one of Figure 25,
Cons ider an electron passing between these plates. Suppose the displace-
ment x of the orbit is negative for 6 < Zz’lf , zero for €= %ﬂ s and

positive for @» R , Suppose also that at the time the electron
@
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passes. through this condenser the electric field between the plates exerts
a fgfée on it in the positive x direction. Since work done by the field on
the electron, i.ec., Fx A% , is positive, the radial field in the neigh~
borhood of 9 =36£tends to increase the electron's kinetic emergy. On the
other hand, the electron loses energy as it does work against the azimuthal
component of the fringe fie‘ld at either end of the condenser, In both
cases this azimuthal component is such as to slow the electron down, Hence,
the electron first experiences a lowering of its kinetic energy, followed
by an increase, which in turn is followed by another lowering, The resule
tant energy change is zero when the overall pass is considered,

We idealize such a bump by replacing it with two delta function

6=/6

kicks: one radial, the other azimuthal, Both are situated at¥and act si=-
mul taneously on any electron passing this azimuth, We guess that the azie
muthal impulse influences electron motion but little. The only reason for .
including it & to allow one to simulate the energy conserving property of
the actual bump. The radial electron motion is simple harmonic, The radial
impulse given to an electron by the bump is Fx &Y = /”"-Af" . Here F is
the radial electric force acting on an electron for a time AT . If we view
an electron®s representative point in phase space as the electron passes the
bump, we expect to see its x coordinate remain invar iant but its y coordinate
jump by an amount Ay= Ex 87T - b . Since the square of the electron 0se

m Wy Wy
cillation amplitude, .

oy , before application of the bump is 2 3’“ N
we expect that afterwards it will be s (Y~ Ai:;)=L « The change in this
quantity across the bump is A(ai]: Zgbtj-i- 632 o« It is next shown that
this result is nearly correct.

The equations of motion for an electron in our idealized accelerator

are

L)

m("o'-Pé*) .-epé B'lﬁ)ﬂ

P )

[

m(p6+3p6)



For an electron whose orbit is its equilibrium orbit, ' .. pPE¥PZ 6:0
]
= ) = = & B (£ . Letting « represent e B, L .
and pxpe s 6:wo = LB (E) m  e"

these equations of motion become

B-pet - -=pop
Pé'+?{56 = «pp

The first integrals of these equations are

2 an+2
,63 + (‘oé)a’ = congtant = 5 = w:P: z ac‘/o,
. n+2
p‘e ~&pL __ =  comgtant = £
n+A

The first equation states that electron energy is conserved. That the
second is true is seen by differentiating it with respect to time, dividing
by’o*o , and compar ing the result with the second equation of motion. These
two first integrals allow one to find the amplitudes of radial oscillation
in terms of the two constants of th: motion, o and £ o« When an electron

exhibits its maximum or wmianimum value of /o s 1its P is zero., When such is

. ne s .
the case, the first e7uation yields @ = o Po which upon substitution into
) P
the second gives
n+i n+2
PXPo -~ XL . = X
N+ R

If one plots the left side of this equation as a function of 705 ihe posie
tive linear term predominates at small /o (n>0) . At larger p the
negative term predominates, The function realizes its maximum at P = Po
A plot of the right si‘e of this equation is just a horizontal line of ore
dinate & . The abscissas at which this line intersects the other curve are
the maximum and minimum p exhibited by an oscillating electron whose con-
stants of the motion are Po and £ .

The left side of this equation resembles a parabola in the nzighe

borhood of its vertex, the resemblance being more perfect the smaller the
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interval on either side of Po‘ one restricts oneself to., When the two

values of p which satisfy the previous equation lie within such an interval,

the electron oscillation is simple harmonic. We replace pQ

in the previous equation by Po+ Qx and solve for the lowest power of GQx

which occurs,

. n+a
. T i
(Poi- Qx)“loo - o(!Eoﬁ- Qx! = i
n+
n+R T
% Lo [l+&--—‘-(l+9.=) ]=£
Po nm+2 Lo 3
n+a | . S . a
& Lo | + Qx - o (\ +(n+xi dn < (me)(nel) (&) PR B ¢
L P naa e R Pe
maaf 2 -
o Po mtl _ n+d fﬁ‘}ﬁ}-%- e ] = R
M+ -3 | e ;
3 %
/)1.‘.2
ayx = 2 L A o Mt Pe - K
o Tel Po TN+
We desire the change in Q: 1. ., . which occurs when the

constants of the motion Pe and X change slightly because of the bump
acting on the electron, Later we shall restrict ourselves to the case of

a bump which concerves energy, i.e., one in which A(o. = 0,

d(ad) :;:_( -n ) Po--n—l [d) nel ,oom-oa _ x]

(“,«\‘Po n+| nez
P2 L o [ame @)
s mMe Lo L J
= -2 Q:‘ A R‘OO
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Hence,

2 - a . 2 \ A X
a(ax) = (apo ) %Q‘) 8po Wo (M+i)

A bump which increases an electron's energy increases its /J. .
The ordinate of the parabola ver tex becomes greater for greater P, 8o that
with other things remaining constant one expects q.t to increase. The quan-
tity 2o bpo measures this increase. As /0, increases, however, the para~
bola becomes more pointed in the neighborhood of its vertex. The damp ing
of the electron oscillation which results is accounted for by the term
-7 o} bp,. The change in the ordinate £ of the horizontal line inter-

Po
2 . cee s
secting the parabola is A®. The change in Qx due to this shift is -1 2B 8%,

woe M+
. n+a
Though & = Pze - ok_p___a_ is not proportional to an electron's angular mo..
n+

mentum, A¥= ,OlAG is proportional to its change in angular momentum due

to the bump, The quantity @ is continuous across the bump while € is
not, In what follows b6 and A/; represent the discontinuous change in an
electronts @ and f; due to the bump.

The damping term can be neglected relative to the vertex term.

In the experiment of Section VI the ratio of the former to the latter is

-

4 2 2 " -
about 10 » le€a, ﬂ;:"/x,ao = —:—'(%’1’) < (9-‘-1-)(9-%5..) = 1.8 x\0 4

Restricting ourselves to a bump which conserves energy makes Af. 0 .

.

Hence,

a = -2
A(Q‘) ) Z-U—o ;:-:I 6%

Since electron energy before collision must equal that after,

pirEe) = (P+ 1)+ p (6486) or 2pap +8p° +p2(2606 +08") =0,
The quantity p can be small so that it is not valid to neglect (Aﬁ)a
relative to z,é Af;. We can, however, neglect Aéz relative to abaé o

We estimate the error involved. Llet 3 = a(c;AF‘; +(A(‘S)z . Then



24 -

Ae = -—__@.9__[|+_é2_“+..- ]
2p%6 4p%0
Since: p=po(l+%°) . wo()-%\ LW,z W fiam g
=_.—-m;‘ =-.L =
‘j mwn (73 193 wx )

we have that
. . . R 2
S @ ahebred . AL Gy o)
4 0%6 4o ws 4pe

In the experiment of Section VI the maximum 4 and AY are, respectively,

~r ‘ »
0.25" and 0,010", Since Vx Z 1.3¢ and since Po= 12", _ka is of the
4

4 . e .
order 10 , We neglect Be relative to unity in the expression for

. 4pzéa
868 above, Hence,

= p2p8 = pP*[-Be ] . - Le

AX = p a6 = p 2,,a'9] z 26
= s(Rp0p @) & = (2686 +8B)) (14 2
Rwe (1 -~ &) 2w, ] Pe

o
so that
I . 2

Bladys SR AR . 2 (2paBr@EV) (|, )
Po

We (M+1) Wo (M+1) 2wWo

= (2yAay +(A‘j)a)( |+ %‘o)

This result differs from the guess made previously by the factor
(I+%) e This factor comes in because the change A¥ = ‘azAO in an elec=-
(-]
tron's angular momentum produced by a given azimuthal impulse depends on the

radius p at which the electron happens to be when this impulse is applied

.‘(

i
!

to it, iee.,
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NTE PY)

A a
neglect the factor (|+%) so that A(a?.) is just equal to 2501-&(&5)
-

In the experiment of Section VI . In what follows we

Hence, the conclusion as regards the effect of an energy conserving bump on
an electron is that even though the azimuthal impulse enters into the
theoretical picture its presence can be neglected from a practical point
of view., An electron's (x,y) gets changed to ('z,«#au] in crossing
the bump. It is satisfactory to compute B8Y from the radial impulse Fx A’T‘,
ilee., AY = w .

mwx

In what follows the radial force exerted by the bump on an elec
tron passing the bump, fs «, '. x «, is assumed independent of x. This
means that all electrons passing the bump at the same time receive the same
By . In Section VI it is shown that Resonant RF Inflection is relatively
insensitive to dependence of Fyx on x,

Before considering the properties of Resonant RF Inflection it is
of interest to note properties of the accelerator-bump combination which are
independent of the particular time dependence exhibited by the bump,

As before choose l:°(/¥,l;|) = i.o over the lined region of Figure
6a, We do not require Yy to be rational nor shall we wait a certain length
of time after turning on the injector before viewing the beam. Before
turning on the injector divide the "beam" into segments, Each is of
azimuthal extent de and each travels around the accelerator once every
Ve seconds, Set a phase plane in the middle of any one of these sege

ments and let it travel with the segment, Though:no electrons are in the

segment, imagine the entire phase plane to be covered with points, their
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density being uniform and equal to the nonzero value of F(x.Yooat)d' me t
previously, These points rotate about (0,0) with angular velocity

Wx * Ve §o . All points receive the same displacement By as the segment
passes the bump, Neither rotation nor the bump change the relative posie
tions of these points. Also, as the segment passes the injector the posiw
'tions of these points are not disturbed. After the injector has been
turned on each point may or may not have a single electronic charge -e
attached to it; if a charge -e is attached, the point is said to be filled;
if not, empty. If points covering an area of the phase plane are filled
then there are electrons in the segment whose representative points also
cover this same area to the same uniform density. If points covering an
area are empty, then there are no electrons in the segment whose represene
tative points cover this area. 1In what follows attention is focused on this
hypothetical set of empty and filled points ratﬁer than on the actual
representative points of electrons in the segment,

(1) Turn on the injector. Consider any one of the segments at
the time it makes its initial pass of the injector after the injector has
been turned on, At & = 0O-all points are empty. 1In cwossing 0=0 empty
points are converted into filled points provided they lie within the lihed
region of Figure 6a., Empty points lying outside this region remain empty.
Subsequent rotation or displacement AY does not alter the occupation of any
of these points,

(2) Consider any segment making its second pass of the injector
after the injector has been turned on, The previous paragraph tells what
happens to regions of empty points. Regions of filled points remain filled
provided they lie within either the lined region of Figure 6a or to the
right of x = Xg e In the first instance charge associated with filled
points gets replaced with new charge. 1In the second, the same charge

associated with filled points at @ = O- is also associated with these
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points at © = O+, Filled points are converted into empty points proe
vided they lie both to the left of x = xeand outside the lined region

of Figure 6a, The phase space representation of the injector sink ex~
tends over the half plane to the left of x = Xgu-

(3) Consider any segment making its third pass of & = 0 after
the injector has been turned on, At & = 0- all points on this segment's
phase plane are either empty or filled. Paragraph (1) above tells what
happens to empty points. Paragraph (2) above tells what happens to
filled points. The net result is that all points are still either singly
filled or empty when the segment finds itself at & = 0+,

(4) Paragraph (3) above is adequate to treat a segment making its
fourth or higher pass of & = 0O,

The preceding considerations indicate that no matter what time dew
pendence AY(t) has and no matter how many times the segment passes the
bump, the best one can hope to do is to have the interior of the beam
cirele of the segment under consideration completely covered with singly
filled points., When all segments are considered the best one can hope to
do is to have the beam circle interior of every segment completely
covered with filled points, This limit also corresponds to seeing on a
phase plane fixed at any azimuth @ an i(x,y) of i, over the complete ine.
terior of the beam circle for a period of time 7 , If this limit were
achieved, the filling efficiency would be 100%; the charge available for
acceleration would be L,Qrvf’f - These conclusions also follow from
Liouvillets theorem.

Since an upper limit on filling is known, the degree to which any
bump ay4(%) allows f£illing to approach this ideal can .1n principle, be

found. We turn our attention to evaluating the filling efficiency fm

the particular type of bump used by Cook, i.e., A&Y(z) - R L (et ¢ ),

In what follows we refer to the injector as infinite if the vegion in
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phase space at @ = 0+ over which io(x,y) = i, is like that in Figure 6a.
Here A, 1is several times larger than r,. When the region over which
i,(x,y) = i is as small as possible without decreasing the filling effi.
ciency achieved with an infinite injector, we shall refer to the injector
as being finite, With a finite injector the region of (x,y) at & = 0+

over which i {x,y) = io will be called the required injection area.
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1II. RESONANT RF INFLECTION (RRFI)

3,1 INFINITE INJECTOR AND NO SEPTUM

We wish to know how much char ge RRFI can trap relative to the
theoretical limit set by Liouville®s theorem. The terminology used
below is defined in the last paragraphs of Section II, We assume ap
infinite injector having a septum of zero thickness, It tutns out to
be immater ial at what azimuth the bump is placed, For simplicity we set
it at @ = 0, The bump has the form AY = R 8m (Wept+ $) where the RF
frequency fae is set equal to the electrons® radial oscillation frequency
V«$s o In finding the filling efficiency given by such a bump we do a
rough treatment of the problem first, following this with a more exact
treatment, The latter method is used in Section 3,2 where one works with
a finite injector and in Section 3,3 where one estimates the effect of
including a septum of nonzero thickness,

Choose VY, = L/N with N very large; let io(x,y) equal i over the
lined region of Figure 6a; turn on the injector but not the bump, After
waiting at least N7T seconds consider a phase plane fixed at any azimuth & ,
One finds that Figure 6f illusfrates what is seen provided the pentagon
in this figure is replaced by an Nesided polygon rotated clockwise Vx@
radians from its orientation at @ = 0, Because N is large, this polygon
looks like the beam circle Yo ., Next, turn the injector of f but imagine
at this instant of turn off that the injector somehow becomes transparent
to electrons, Figure 6f, as modified above, still applies at all azimuths

© and all times t, Break the beam into segments and set a phase plane in

one of them letting it travel around the accelerator with the segment.
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Turn on the RF bump, All points on the phase plane, irrespective of
whether they are empty or full, rotate clockwise with angular vélo’city
w, . Each receives the same displacement ay when the segment ﬁgsses the
bump. We define the time t to be zero when the segment under cd‘ii‘\sidera-
tion makes its first pass of the bump after the RF has been turtiéd on,
When ot her segments are cons idered, t = 0 will be similarly defiind. In
each case ¢ will be the RF phase angle existing at a segment’s t:= O, This
angle varies from one seqment to the next,

The segment under consideration passes 6 = 0 at F K o 'f"!} aq—J oo o

The bump is thought of as being a uniform radial electric field

Abn@ugpxi-¢) . .
€o v of azimuthal extent * A® about 6 = 0, Let AT be the time it takes
z .

an electron to cross the bump, In terms of time the bump extends * %f!‘
seeonds tc either side of those times when the segment is at @ = O,

The electric force acting on electrons in the segment is the product of
-eés AiM(w"* + ¢) and a periodic square wave of unit height and
period 1 extending % %’_P seconds to either side of X =0 T 2T *°
Figure 11 illustrates one cycle of this square wave, E::cpandingi it in

a Fourier series about t = 0 on the interval - -’;- < T < %' yields

—

for the time dependent electrical ferce felt by points in the segment,

)
~e€oam (weet +P) 2, On w«(a’u-n_{;'.)
”n=0 .
We neglect all terms but the first, The constant Qg is just the average

height of the square wave over a period *, i.e., Qo = ‘;7%? z 9'_;._"

(This approximation corresponds to, not a bump, but an RF electric
field uniformly distributed around the machine. 1Its interest is.that
it gives the right answer for the actual problem involving the bﬁnlp),

The equation of motion for a point on the phase plane is

Az - wink -efe sy am (Wept+9)
m *

Thic is the equation for a foreced harmonic oscillator, We set th}%a



forcing frequency Wye equal to w,, It proves convenient to express

-6 A% iy terms of k. The radial impulse Fe®8T an
the constant o .
electron receives in passing the bump is —e€fo oMm(w, t+8) AT

Since &Y = Ram(w t+@) = :_',’_;,_z_} M(w,t+¢) , we have
t ]

The equation of motion becomes

Arwla = Rws am (wak+9g)

fr-
The solution for the inhomogeneous portion is
= - XL R cod(wnt+

” 53 Rz
The complete solution is ‘ )

n = i B‘$§W¢} oo Wit +iA+%:‘%M¢}M“’xt
where A and B are constants, Differentiating x with respect to time

and dividing x by w, yields y.

y = -{B~.’j;_§coo¢g&nu«t +{A+%§M¢}ww,t

-."i‘:wn 4.2. coo (wy t + @)

- We drop the last term realizing this introduces an error into y which

is never greater than k/10, It will become apparent that this error is

' of no practical significance. Here Vx> 1 and ker .

We have found that

\j -

Tn

To visulaize this result it is helpful to go into a coordinate system
rotating with the points on the phase plane. Letting (x’, y’) repree
sent the coordinates of a point in this new system we have for the

transformation between systems
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Coupling this with the above result we have

. xR
"~ B ﬁamcﬁ
' ) M¢
Yy A-)-%%

Since (t‘-)*(z) = ,::) ot X =0,

) s (o)

- coog
The orientation of the unit vector ( M-“‘)depends only on the

2k
»iw

RF phase angle ¢ at t = 0, The scalar;;:?".;~ multiplies this vector,
Every point on the phase plane, therefore, moves away frowm its origie
nal position (x,,y,) with constant velocity %_% along a straight line
whose orientation is the same for every point, The empty circular
region gets pulled away from the beam circle, a region of filled points
be ing pushed into the beam circle, The region of filled points lying
inside v2¥, at this stage is crescenteshaped, When%% equals AYy, the
empty region lies outside the beam circle, At this time the interior
of the beam circle is completely covered with filled points ( Ax >3vs ).
We turn off the bump,

Switching from the (x',y’) system to the (x,y) system one sees
an empty circular region lying outside Y=Y, which rotates clockwise
about (0,0) with angular velocity wyx, The beam circle itself still
appears filled, Since covering of the beam circle occurs for any }5 »
we conclude that similar covering would be seen on the phase plane of

any segment, If the injector, which is off, is now imagined to switch
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from its transparent state to its normal or opaque state, all filled
points external to the beam circle become empty points within N7 se-~
conds after this switch, This result also holds for all segments,

We conclude that Resonant RF Inflection, under the assumptions
made above, achieves the Liouville limit; it traps a charge ierv:ﬁ'

One questions whether turning off the injector and assuming it to be
transparent alters the conclusions from those that would prevail if this
had not been done. It does not, With an infinite opaque injector which
is continually operating, filled points have no possibility of being cone
verted into empty ones as long as their a,'s are less than Ay, This fact
follows from the rules considered near the end of Section II. We note
that all filled points occupying the beam circle at the time the RF is
turned of £ have always had amplitudes less than Ay.

The previous example does differ from what takes place with an
opaque injector in operation throughout in that no empty circular region
lying outside the beam circle is realized. Ewmpty points outside Y = Yo
but within r = A, tend to be converted into filled points. Any region of
empty points finding itself within the lined region of Figure 6a when
the segment passes the injector becomes a f£illed region., The details of
this process are of no interest to us here as once an empty point has
been pushed outside the beam circle it remains outside, By choosing A>3Y,
and by turning off the RF when §_§ equals AY¥s we have been able to insure
that only filled points enter the beam circle,

The ability of RRFI in conjunction with an infinite injector having
a septum of zero thickness to realize the Liouville limit will now be
illustrated by an alternative method. This approach includes the effect

of all terms of the Fourier series met previously rather than just the
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first. Exact algebraic transformations are used rather than an ap-
proximate differential equation, Nevertheless, basic results given by
these two approaches agree. Besides paralleling the actual problem more
closely the second approach can answer questions about RRFI other
than the one we are presently concerned with,

Choose ¥, = L/N; let io(x,y) equal i, over the lined region of
Figure 6a; turn on the injector but not the bump. After waiting N7 sew
conds one inserts a phase plane at & = 0 and finds that Figure 6f ape
plies provided the pentagon in this figure is replaced by an Nesided
polygon, Break the beam into segments and set a phase plane in one of
them letting it travel around the accelerator with the segment., Pree
viously we allowed ourselves to view this plane at any azimuth, Here we
restrict ourselves to viewing points on this plane only when the segment
is at & = 0,

The bump &Y= hu'm.(w..né) is set at @ = 0+, Here it is
thought of as being produced by a very intense uniform radial elecw
tric field €o Avm (Weet+P) extending over a very small azimuth,
Turn on the bump, We define the time t to be zero when the segment
makes its first pass of & = 0 after the bump is on, When other seg-
ments are considered, zero time will be similarly defined. In each case
56 will be the RF phase angle appropriate to a segment's t = 0, This
angle varies from one segment to the next. When the sejment under cone
sideration passes @ = 0O+ at time t, every point on its phase plane re-
ceives a vertical displacement &Y= km(“—’"t +@). We agree not to
view the effect of this displacement until the segment appears at 6 = 0

one revolution later,
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We denote the Ay a point receives at t = O+ by By, ; that at X =,
by by,; etc, Consider a general point (x,,y,) on the phase plane at
= = ° %o iew the segment
t =0, At t = O+ (N’.¥ets added to (%o). Since we view g
only at 6 = 0 we do not see the effect of this displacement until t = O+
. T ~A, ’lo) M(o \
at which time the resultant vector (g-) is (%') T M(‘” * 0ye
The vectors (?;:)appmpriate to 2z=mT, n =0,1, 2, cecee00y are given
it ] ,
in Table 1. A simpler expression for (,’:) obtains if one fur ther re~
stricts viewing times to be integral multiples of NY* , i.e., X = TNT

where I =1, 2, 3, .... « The details of this simplification are

given in Appendix 1, The result is
| n - oo d
:(’K:N) ( 0) + TNk ( . )
Yzw Yo 2 Aum
The first method gave
HRGETIS
Y 9! T2 am P

Here (x, y') is a point on :hie'segment's phase plane viewed from a

1]}

coordinate system rotating with the points on this plane, When INTis
substituted for t, the result is identical to that found with the second
method. One notes that when t = IN*the x'~y axes coincide with x-y
axes at 6 = 0,

k4
1for I=0,1, 2, 3, 4, and 5, Here

x
Figure 7 is a plot of (‘5"

¢ is ’h'/e o Arbitrary values have been assigned to x_,y , and Ni; o
A sequence of evenly spaced points lying on a straight line is real ized,

A lire between two adjacent p-ints directed from the point of lower I

: - CO0 "Ia ‘o
to the one of higher I corresponds to NB& ( « The vectors \q )
10

Lo '\'/s

Ts
-and ( N) also appear in Figure 7. As I increases, the region of filled

Y 3N

points { Yo < Y < Ax at *=0\is displaced across the beam circle eventually

covering it ( Ax >> Yo) . At the time the beam circle interior becomes



36w

covered, the RF is turned off, This covering takes place no matter

coog

) has., In what follows N!!(
am® 2

-wu}

what orientation the vector N% (- e

is c alled the Neturn displacement vector, Points initially residing

withyi.n the beam circle tend to be converted into filled points as they
move through the region between Y:=Yo and ¥ : Ax, Filled points moving
into the region outside v= Axeventually become empty points,

From study of the first approach we know that an arbitrary sege
ment which appears filled at one azimuth will appear filled at all azim
muths., Hence, upon turning off the injector the charge which remains
trapped is ;.., A ve T .

Though RRFI has been able to realize 100% filling efficiency it
is, in another sense, quite inefficient. The ra¥té of the trapped charge
to the charge emitted by the injector is small, When Ax>>Y,the area
of the lined region in Figure 6a is approximately %Q{ A3 . Multie
plying this area by i, gives the injector current. In the x -y’ system
a point must be displaced 2Y, before the beam circle interior is come
pletely covered with filled points, Since its displacement velocity is
AR, the minimum time the injector must be on is nearly Yo - 4YeT.

ELy (R7at) *
The total charge injected is the product of the injector current and this

time, i,esy 2o Ax K4V‘oq"§ . The charge efficiency is the ratio of
2 Je

. . t
the trapped charge to the injected charge, iceeqy <o V‘:'?'/(&o'BTA_‘ ﬁ_!_‘g_'*)-.
n
L (a2
2 ( A:‘

is very low, In Section 3,2 a less pessimistic result is obtained by

(l‘;) . Since i.!«: and since R <) the charge efficiency here

Yol % Yo

replacing the area of the lined region in Figure 6a with the required

injection area,

3.2, FINITE INJECTOR AND NO SEPTUM

The charge efficiency of RRFI in conjunction with a finite in-

jector having a septum of zero thickness depends on the required
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injection area. Study of the case where V= 1/3 leads to an expression
for this area applicable to any tune V.= L/N provided k of AY= k“"'(“btd)
is sufficiently small,

When Vx = b/ = /5 the Neturn displacement vector N% (

~cosd
poiy
has magnitude %k o This suggests that an injector of x extent _':_h(\ﬂ-)
may be sufficient to maintain 100% filling, Here'o0<e <<\ , The ine
jector's y extent will be terminated so that on a phase plane fixed at
© =0 a filled band 1ike that of Figure 8 is realized in the absence
of RF, The emitting region of the injector is the shaded area to the
left of the dashed vertical line, The back side of the injector
(xox) continues to act as a sink,
Bonsider a particular segment of the beam, 1In the absence of
RF it will appear at @ = 0 at some time t which we take here as t = 0,
It is seen again at €= 0 Tseconds later, In this time 4 , points on
the segment’s phase plane have rotated clockwise 120°, At t = 2% a roe
tation of 240° is evident, At t = 37 all points are back in the ir oria
ginal positions, In this threewturn process the charge associated with
each point of the band has been replaced at least once, To keep track
of which points have their charge replaced at which time the segment,
as Qiewed at t = Olwill be subdivided into three overlapping trapezoids
as shown in Figure 9, The trapeaoid boundaries are thought of as roe-
tating with the points of a segment., In the absence of RF the same
£illed pointé occupy a given trapezoid for all time. Points lying in
trapezoid ABFGA have their charge replaced at ¢ = T, 47 7'7; T,
those in CDGHC at %t = 27, §% 8%, and those in ADEIA at £ = 37, 6T q’f‘) e,
In the presence of RF the trapezoid boundaries do not suffer

displacement; points do, Consequently, empty points can be displaced

into a trapezoid, etc, Whenever one of the trapezoids enincides in its
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entirety with the injector any empty points within it become filled
while filled points in it simply have their charge replaced, Each
trapezoid coincides in its entirety with the injector once in every
three passes the segment makes of the injector. Only one trapezoid
undergoes such coincidence on any given pass. In proving that the
chosen injector extent yields 100% filling it is first shown that a
point from outside triangle ADGA of Figure 9 which gets displaced

ingide inside of triangle JKLJ is seen to reside within the tri-

angular band formwed by the overlapping trapezoids on at least three

consecutive passes of the injector immediately prior to that pass on

which it is first seen to reside within triahgle JKLJ.

The maximum displaceément received in one pass of the bump is kj;
in two passes, %k ; in three passes, ,:.k o« The twowpass value is
obtained by maximizing the magnitude of

f{° e o

(agan) ¥ ™™ (5)
as function of t, Since the band formed by the three trapezoids is a
minimum of %h(\-rc\ wide, the conclusion of the previous paragraph is
true,

It is next shown that the point lies within one particular
trapezoid on the first three of the three or more consecutive passes
referred to above, On the pass just p¥evor to that pass on which the
point is first seen %o reside within the band the point will be assoe
ciated with that trapezoid, the ma jor portion of which lies between
the same pair of dashed lines of Figure 9 as the point itself lies
between, If the point happens to be on a dashed line it can be assOw
ciated with either one of the trapezoids which overlap in its néigh.-
borhood., On the next three passes the point resides in the band and

is never greater than 3k away from its original position, i.e., the
2
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position of the point at the time it was associated with a trapezoid,

But Figure 9 shows that it must get more than %h away to get out of

the trapezoid with which it was originally associated, Hence, if the
point was originally empty, it is converted into a filled point by the time
' it reaches the interior of triangle JKLJ.

The chosen injector extent is therefore sufficient to yield 100%
£filling of the beam circle for the particular segment considered. Since
the preceding arguments are independent of Neturn displacement vector
orientation, the same conclusion applies to all segments of the beam.

We conclude that when y, = 1/3 an injector of x extent %h and of y extent
about equal to 2f3' v, 1is sufficient to maintain the 100% filling property
of Resonant RF Inflection, Here af3'v, is the length of a side of the
equilateral triangle in which the beam circle Yo 1is inscribed., If we
require that the N-turn displacement, here ;.. b , be much smaller than

" Rf3've  then the area of the required injection area is just %k(iﬁ“"o)
or 33 Rvo o It is seen to depend linearly on k, approaching zero

as k approaches zero,

One expgcts that a similar analysis could be carried through for
other ¥k = L/N where N»3 , We shall assume that such is the case. 1In |
what follows the Neturn displacement, N% y» Will be kept much less than
the length of a side of the Nw~sided polygon in which the beam circle is
inseribed,

The N=3 case has the practical“i’;a‘dvant:ge‘s;?r‘:quiring a ty extent
larger than v,, i.e., ¥ 3'vo . Usually one would like it to be
somewhda® less than v, . This can be realized by going to higher N,
The circumference of the beam circle is AMvo , For high N the length
of one side of the Nesided polygon is approximately QM Yo . The 2y

~N

extent of the injector is therefore * MY¥o ¢ v, , However, in de-
N
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creasing the y extent, the x extent N!z! has increased. The required
injection area is their product, i.e., N).;_ (7}_’5_"3’)= Mvye . This
result for high N is about 0.6 of that for N = 3,

The charge efficiency appropriate to the case of high N will now
be found., The N~turn displacement Nl_zn shows that !i can serve as an
average displacement per turn., The displacement velocity is %

For high N, the beam circle will be covered with filled points at the

time the displacement equals the diameter of the beam circle 2vo

The time required to achieve complete filling is therefore 2ve divided

by S « The charge emitted by the injector in this time is
‘e
Ao (reve) A¥o . 'The trapped charge is 4o (WY¥Yo ) T . The
Ce/an)

resulting charge efficiency is 25%.

'ie ‘."‘YO“)T = -L k- 25’70

T &,

AO('"’JQY'Q) iﬁﬂ. \

R/RYT

e
The above result is valid under the conditions of high N,V,and
zero septum thickness. Table 2 indicates how the charge efficiency
approaches this limit with increasing N, Here the same expression
for ‘trapped charge has been used as before, However, in calculating
the filling time the diameter of the circle circumscribing the polygon
in question has been used instead of the beam circle diameter. This
makes the charge efficiencies for low N in Table 2 smaller than they
should be. A charge efficiency of about #0% is seen to be applicable
for N26, In a practical situation the septum thickness is not zero
a:ﬁ; violated, For such a case computatinnal study will be relied

upon to yield the charge efficiency.
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3,3 FINITE INJECTOR AND FINITE SEPTUM

The presence of a septum of nonzero thickness lowers the filling
efficiency, In terms of phase space a septum creates a strip of zero
i (x,y) lying between x =-(¥, + DE) and x =~Y,, The septum thickness
is DE (Figure 3). An estimate of filling efficiency, FE, can be made
by noting that fraction of the required injection area remains uncovered
by this strip. For instance, with N <¢ 2%Ys , FE is zero when Nl < DF ,

a N a
When N%>5€a

NE -1—3']

In a practical situation N? will exceed 9.]:_:‘. so that recourse to compue
tation is necessary to determine the shape and size of the required in~
jection area, Nevertheless even when N% «< "3.%!:0, compatational results
indicate that the above procedure is at best an appruximation, the reason
being that not all portions of the required injection area are equally efw
fective in contributing to the current trapped within the beam circle, The
physical reason for this behavior is given below.

Let VY be 1/3, Break the beam into segments, each segment being
viewed at @ = 0 only on every third pass it makes of @ = 0, The RF is

turned on at t = 0. Viewing the beam at @ = 0 will be limited to times

t as follows:

o<« * <
3+ < £ <47
6 ¢ £t < T

Between consecutive viewings of a segment the displacement vector
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increases in length by ZJ but its orientation remains invariant, The
F]

- mcwg,t.+¢))
M (w..to*d) :
where Wyt + ¢ is the phase angle of the RF at the time 4, a segment

orientation appropriate to a segment is given by (

makes its first pasé of the RF bump after the RF has been turned on,
Choose ¢ to be 120°, Then only displacement vectors which incl ine to
the right and which lie within an angular range of & 60° about the hori.
zontal are seen, In what follows only displacement vectors lying within
% 30° of the horizontal will be considered. We also considegbnly that
charge regching the beam triamgle (JKLJ; Figure 9) which originates in
a small neighborhood about a point (x,y) near (-¥e,0) , say (x,0), where
(x,0) is to the left of (—Vo,O) « One wants to know how the amount of
charge residing within the beam triangle which originated from this
neighborhood varies with the pesition (x.0) of this neighborhood,

Redef ine io(x,y) to be zero for all (x,y) outside a small neigh-
borhood about (x,0) but equal to i, on this neighborhood. Suppose (x,0)
is more than }ih to the left of (-Ve,&) . Charge which becomes attached
to points which 1ie in this neighborhood at time Z:%1. is seen at £ just
less than £,+37 to lie ;J! from (x,0). No matter what orientation the
3-turn displacement vector has, this island of filled points camnot lie
within the beam triangle., Because of the way i {(x,y) is defined, this
island of filled points is converted to a region of empty.’ points at
£:24,+¢37,

When (x,0) is slightly less than 3k to the left of (-rp,0 then
some of the charge which gets attached to points in the neighborhood of
(x,0) reaches the beam triangle. Consider a segment whose 3-turn dise
placement vector is both perpendicular to the left side of the beaw
triangle and directed to the right. At t:%_empty points in the neigh=

borhood of (x,0) become filled. At g:%,+37 an island of filled points
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resides _;! to the right of (x,0) and therefore within the beam triangle,

At %= %,+ 67T , two such islands are realized, On successive views a
straight line chain of islands develops, each island being %h from its
nearest neighbors. When the first island reaches the other side of the
beam triangle, equilibrium obtains. The number ef islands trapped is prow-
por tional to the length of the chair, The herizontal line of dots in
Figure 10 represents this chain for the particular segment under consideraw
tion,

Otlier segments also inject islands along chords of the beam cir
cle, Results for five segments are superimposed in Figure 10, The range
of inclinations exhibiied by these chords is determined from (x,0)., This
range is given by the angle between the two vectors of length g.h in Figure
10 whose origin is (x,0) and which terminate on the beam triangle. As
(x,0) is set nearer (-vo,0) , this angle becomes larger. Since angular
range measures the number of segments contributing isl#nds to the beam
circle, we conclude that when (x.0) is near (—v.'o) » a neighborhood
about (x,0) contributes more charge to the beam circle than when (x,0)
is further from (-vo,0) . The presence of a septum therefore lowers
filling efficiency more than estimated on the basis of area arguments
given previously,

The two paragraphs which follow discuss points whict will become
relevant in Section 5,2, This discussion is based on the example cOnNw
sidered above.

A neighborhood of any contvibuting (x,y) near (-v.‘o) contributes
some islands which zross the beam circle on a diameter of this circle,

The speed with whicht an island gets displaced is f%_. This result
applies not only to islands moving along a diameter but also along shorter

chords inclined at some angle to a diameter. Consequently, about the same

length of time is required for the small neighborhood about each contrituting
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(x,y) near (-¥e,0) to achieve its maximum contribution to beam circle
£illing, This time is about 2"°/(,&1.)

Choose (x,VO) to be almost %k to the left of (~Ye,0) . Then only
a few segments haQé a 3=turn displacement vector with the proper orienta=
tion to allow ag’ineighborhood of (x,0) to contribute islands of filled
points to the beam circle, Consider a segment which does contribute,
Divide the interior of the beam circle into, say, ten concentric annuli
of equal area, Since the chord along which islands migrate nearly coine
cides with y = 0 and since the number of islands per unit length of this
chord is constant along the chord, the number of islands in an annulus
is proportional to the fraction of a beam circle diameter residing in the
annulus, This fraction is larger for central annuli than it is for perie
pheral ones, If one now sets a phase plane at any azimuth and records
i(x,y,®,t) as a function of time, it is found that i(x,y,®,t) forﬁ;;?< Y.
is zero most of the time since most segments exhibit no islands, Never=

the less, when all segments are considered a time average of the quantity

SS i(m,g'o,i:) dxdy

Avmulus
A
%X dxdy
Annulus

the average being taken over an interval of, say, 100% seconds after

equilibrium prevails, will be nonzero and greater for central annuli than
for peripheral ones. Even for central annuli, however, this time average
is much less than i, because of previous restrictions put on the size and

position of the region of nonzero i (x,y).

3.4 OFF-RESONANCE BEHAVIOR

In an actual accelerator there will be, of course, non.linear
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effects. These effects cause the angular frequency of radial oscillae
tion wy to depend on the amplitude Gx « This means that it will not be
possible for wqy to be set equal to the w, for every electron, since
there are electrons of var ious amplitudes preser;t. The effects produced
by this discrepancy are similar to those seen in the linear problem when
Wpgy # Wyee For this reason, as well as experimental considerations met
later, a treatment of the off-resonance case of the linear problem will
be given. 1In this treatment one starts with an equation of motion, the
general solution of which reduces in cases of interest to an expression
applicable to a forced harmonic oscillator,

Let i (x,y) = i, over the lined region of Figure 6a (Ax>> Vo) .
The septum thickness is set equal to zero, If Vx is chosen rational, N
of Vys %‘ should be large. Break the beam into segments., The bump

0y= R Mm(ugpt+d) is produced by a uniform radial electric field

€0 Am (wert +¢) of azimuthal extent ¥ Q.: about 6 = 0, It takes b7

seconds for a segment to cross the bump. In considering any particular
segment, t is taken to be zero when this segment makes its first pass of
® = 0 after the bump‘has been turned on, In each case ¢ is the RF phase
angle existing at the segment's zero time, The angle ¢ varies from one
ségment to the next,

Set a phase plane in one of the segments letting it travel with
the segment, The electric force acting on a point on this plane can be
exiaressed as the product of —~e&é€o A (Weet+8) and a square wave of
period * and unit height on the interval tb_éb to either side of %t:9,2 2% ..
Figure 11 illustrates one cycle of this function. If one expands it
about t = 0 on theb interval —; < % <§ then the equation of motion for

a point becomes
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oo
@® = -w:,qz - G;"_‘_g am (Wwept+f) >, A wo(a‘h'ni)
m0

Here the G+« are the expansion coefficients of the function illustrated

in Figure 11,

' a7
a = —
° "

aw * 2 M("”‘M'\] nz
an

The general solution to the equation of motion is

o0
n = A .Aim(th) + B woo(wxt) - [

n=o

o ((Wee +NWo)T+P)  + M((wn-nwo)t“b)
w:"(“’as*"wO)z w;“"(wuc'ﬂw‘)t

The quantities A and B are constants, This golution indicates that there
are many resonant values of Wage , Vhen nearly on resonance ,' the quantity
of interest is the deviation of wg, from the on-resonance condition., This
deviation will be expressed in terms of a quantity d where

L+ Wy = Wee £ M Wy, n 2o
When an on-resonance condition is nearly realized the general solution

yields

nz !l ; %

"

A am(wst) + Beod (wat) ~ g,___o Qw 2 ((FFwn)t +6)
‘(f'fwu)x

A am (wat) + B oo (wyt) - e€o Qo M ((Jeun)t+d)
m n‘(d"f-w&)t

N
1}
O
»

It is seen that the results of studying the solution for n = 0 can serve
.for cases where n2l through suitable variation of &€, . The case of n =0
is considered here,

Lettin . and letting A = -~€Ffede: -2€e 8% ,np pag
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Z = A (wer) + Booo (wit) ¢ 8 an ( Frw,)t+d)
((wy? -(J'q-wx)a)
y = Acoo(wet) - Bam(waz) + B(d*w,) con((fow - wa t + @)

Wx (W, - (F+ wx)?)
(1) Express A'gm((J:..w‘)t.;d) and ooo((di-w;)z-n-{d) in terms of
sines and cosines of wyt and JZ+F€ . (2) Collect coefficients of
M(w,t) and cow (wxt) . (3) Neglect d relative to wx in terms
like 4w, which do not occur as an argument of a trigenemetric
function, (4) Evaluate the constants A and B in terms of (x,y) at

t =0, i,e., (x,,y,). The result is

% wawst) smwnt) || 2, + “767’ (Avn § -m(JE+g))
y - am(w,t) coowst) [\ g + ;%. (oo § - co0(dR+d))
W

If the segment's phase plane is viewed from a coordinate system (primed)

rotating with points on this plane then the transformation between sys-

tems is
n' cod (Wat) - sim(uw,t))| %
9! am (wxt)  coo (wxt) /| Y
Hence
o' Ao + -Q—%w (am ¢ ~ oum (% +6))
R Wwx

Collecting terms with no explicit time dependence on the left, squaring
the components of the resulting vector, and adding these squared

values gives

(¢'~ Mo - gﬂ;xw ¢ )a+ (%f- Yo :;%;: w”‘) (2&“')
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i v, d ircle of radius l A
The tip of (g) therefore travels around a cir b

centered at

o' Ae + B amé
_ ad wx
' L coo0d
9 Yo 2 & wx
once every 2% seconds. This circle,of radius VY, : \-@— \ s Will be
T aduux

called a resonance circle.

Points on a segment's phase plane between v: Az and Y=V, will
be assumed to be filled at t = O, Points within ¥ =V¥eo at t = 0 are
empty. The RF causes each point (x',y') to travel around a cirele of
radius V,., A point returns to its original position i2,?‘!1‘ seconds later.
In this process filled points initially outside the beam circle enter it
and then withdraw. Some of the empty points initially within the beam
ecircle move outside it and then return, The number of the latter which
do move outside depends on v, « While outside, these empty points tend
to become filled, the probability of this occurring increan;rl,with a point's
maximum ax and with the length of time it spends outside Y:=Yo, Here
we assume that every empty point which gets pushed outside v: ¥e has be-
come a filled point by the time it returns to the beam circle.

With Y+ > Ye all points initially within the beam circle get
pushed outside it, Therefore 100% filling efficiency obtains in this
case., However, when v_< Y, not all empty points get outside the beam
circle. In this case, the effect of the off-resonance RF is to produce
an unfilled circular region of radius vYo-Y+ lying within the beam circle,
After the RF is turned on one must wait - e 3;1_‘ seconds before this
empty region of radius v,-v, assumes its circular \form. This empty region

is not centered at (0,0), Instead, its boundary touches the beam circle

at a single point, this point of contact woving around the beam circle oncs
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every 20 seconds. The circle appearing at the upper left in Figure 12
is a r(e‘sdc;‘r\ance cirele Vv, . Several are also drawn within the beam circle
as an aid in visualizing why the empty region of radius Ve-v, within
the beam circle is circular and why it moves in the manner described above,
In the portion of the experiment of Section VI which deals with
of f-resonance behavior one sets a vertical wire of thickness dx at x = 0
and measures the current collected by this wire (Figure 26). For pur=
poses of illustration it is assumed here that the wire is set at @ = 0, that
every electron colliding with it sticks to it, and that there is no se-
condary emission, Knowing the collected current at time t yields the beam
current density j(x,6,t) at x == 0, i.e., j(0,0,t) 3MPETe8 = 4po ynits
me ter
are not conventional, One is interested in beam current at & = 0 due to
electrons with x's between x and x + dx independent of the‘ir 3 values,
Collected current equals j(0,0,t)dx., The device which measures
collected current does not respond to fluctuations occurring over a time
7 but can to those which occur over a time 1001, We denote j(0,0,t)dx
averaged over an interval extending, say, ¥t §0% to either side of time t
as j(0,0,t)dx. Experimentally it is found that m-)c: approaches an
equilibrium value shortly after the injector has been turned on. Two such
equilibrium values are measured; one with RF on, the other with RF off,
Let KT(—O—,O—,t-) denote the result of subtracﬂmg the latter from the former.
One measures W as a function of bump strength R and of the dem

viation of -F” from the on resonance value Vi{, .

It is helpful to introduce the tune Vg, of the RF.

wo fo

The deviation of VYgz from V, will be called AVg. . In predicting the

exper imental results mentioned above it is assumed that 43j(0,0,t)dx is
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due only to electrons forced into the beam circle by the RF. In the
absence of RF, i(x,y,0,t) for Yxa,4 < v, is zero. Hence, in the

presence of RF one has at x =6 =0

Yo

i(o)\.“’o,t)d\ﬂ dx

-Yeo

a4 (0,0%)dx

The bar over i has the same meaning as the one over j., Previous considera=
tions allow 1(0—,y,—075 to be found,

Suppose that bump strength k and RF frequency %gq¢ have been chosen
so that Yo > Yy > !_f « Then figure 13 applies when points on a sege
ment's phase plane are viewed from a coordima te system (primed) rotating
with these points. The white circle within vz ¥o is covered with empty
points; the lined region outside, with filled points, If, at the same
time one views the phase plane of the particular segment for which Figure
13 happens to apply, one also views phase planes set in other segments,
then Figure 13 still applies provided the point where the empty region
touches the beam circle is changed appropri.ately. If at some instant
one considers in sequence the segments of a block of segments extending
over 2% radians, one nctes that thisz point of contact moves once around
the bea:\Fcircle.

The average i(x,y,®,t) seen on a phase plane fixed at € = 0 over
the time it takes the above block to pass © = 0 deperds on (x,y) only
through v = W « This is so as the empty region is seen to revolve
once around (0,0) as the block passes @ = 0., This average can be found
by considering only one segment of the block. Choogse that segment for
which Figure 13 applies when the segment passes @ = 0, Choose a circle
of radius ¥ about (0,0) on this phase plane, Let the angle subtended by
the arc of this circle which lies in the empty region be ¥, The arc

lying in the filled region is 2% -4, The average i(x,y,0,t) on a narrow
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annulus enclosing this circle is Ao (2%~ %) ., The quantity i will be
RN

set equal to unity.

The same result, M=% _ obtains if any other segment of the block
27
is considered, Because the center of gravity of the empty portion of the

annulus rotates through am when all segments of the block are considered,
+ime
an—% aslso serves as theVaverage i(x,y,0,t) exhibited by this block as
30

it passes @ = 0,

Before finding W in terms of v , ¥, , and Yo, One question re-

+1me
mains, Though 2% -% can serve as the'average i(x,y,0,t) for a block of
M
segments of azimuthal extent RN | there is not an integral number of

Vee
such blocks around the accelerator, That this makes little difference

can be seen by viewing any particular segment of the beam as it makes
several successive passes of © = 0, On each pass the empty region ap-
pears to have been rotated clockwise nearly V. 2% radians from its posie
tion on the preceding pass, For practical Vx the empty region effectively

gets averaged over all orientations when enough passes are considered. Hence,

i(x,y,0,t) = z_’k_i-,hi . It is also true that i(x,y,®,t) = i(x,y,0,t).

The quantity 1_(x_,y,T,t3 will be expressed in terms of ¥ , Y, and
Yo . Fkigure 12 is applicable when Y. <& Lz. e When Ye>Y.?> \fie , Figure
15 applies., Consider the latter case. Since the empty region does not
enclose the origin, m = 1 for ¥ going from zero to 2v. -Vo
For ¥ lying between Ay, -~Vv, and Y, , m = _&.";_;‘!. The angle Y
must be found in terms of ¥ , Yy , and Yo , Circle ¥ in Figure 13 inter.
sects the boundary of the empty region at (a\y') = (* vau)n.‘{,v‘m{) The
boundary of the empty region is given by ¢'z+ (cj'- ve)'= vo—Vr)a . Eliw

minating x' and y ! yields
bl

wa ¥ = viove + 2YeVr
2V vy
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Hence

1]

-Ye + 1V0""]

]
-\ Y
L(ny6t) P - ,—‘k— s [ 2Y Y

AYy =¥ € ¥ € ¥ * Yo > ¥y > Yo
F

These results, along with those for other ranges of v and v, , are
found in Table 3, A consistency check between these results and those
obtained by computation was made, The dot at the tip of each of the four
arrows in Figure 22 represent the former while the solid curve nearest
these dots represents the latter,

It is of interest to note the difference between i(x,y,6,t) and
i(x,y,0,t). Because i, (x,y) is unity, i(x,y,6,t) can have only the one
of tw values, i.e., one or zero, As time t progresses, X, Y , and @
being held constant, i(x,y,€,t) may jump discontinuously between these
two values, When such change occurs an average over time of i(x,y,@,t)
will yield an m intermédiate between one and zero, In the
example considered above where Y > ¥ > Y_i'g (Figure 13) i(x,y,®,t) is
unity for all t for (x,4) satisfying m= Y < A¥--Vo o In this
case i(x,y,0,t) is unity. At larger v +{xtagr , excluding v:=V,
i(x,y,0,t) jumps back and forth between one and zero as time progresses,
For such (x,y), m is less than unity. Therefore it is possible
for m to be greater for (x,y) near (0,0) than it is for (x,y)
further from (0,0). In all cases m <1,

The quantity

Yo
Aj"(o'o.;t)dx z [ Sl(o‘\j,o’ts dx

..va

can now be found, It is convenient to normalize A j(0,0,t)dx by dividing
it by the value of 8j(0,0,t)dx which obtains when the RF frequency is set

on resonance, i.,e., when f..= Vyf, . Normalization will be indicated
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by the subseript N.

Ye

S 4 o'g'o'tj dy
~Yo

.OO‘t =
Aj(,,)u -

| - dy

..V'.

Since i(0,y,0,t) depends on y only through v=Vx‘+«=" where x is

zero,

Yo
84 Co,0,%) = S i(O,V,o,t)c%r
o -]

When reduced variables vy = ¥ and Ye = ¥+ are introduced,
Yo Yo

Aj:(o,o,t)N = SOL(O,V,’O':\ dv'

The functional form of Aj(0,0,t) appears in Table 4. Because A3(0,8,t)
equals AJ'—(_O_._O;-‘E;“ and because Am“ is independent of t:ime’A:R'(-)TG-,T:'SN
will be denoéed by 4j(0),, . Figure 14 gives 4 j(0),, versus Yy o

Figure 14 is used in predicting experimetital results, The quantity
Yy depends on bump strength k and on the amount by which Vge differs

from Vy , i.e,, OVge . Since

- | B
Ve \sz
/g = eto 9_3
”n ™
kR = efo oOF
m Wy
f = am ‘Fo AVRF
one has
- = R
A | & Vgel
V“. = k/Y‘o

At \ aVere|
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Once %} has been specified, cheosing AvVge ylelds Y, . One ob-

-]
tains the correspending A j(0) from Figure 1l4. Figure 36 gives a plot
of Aj(())N versus QAVgc for four values of %V_'? s leee, 1.0, 2,25,
5.0, and 9,0 each times the quantity 0,493 x 10—3. The numbers 1,0,

2,25, 5,0, and 9,0 are used to designate these four curves,

respectively,
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IV, DIGRESSION ON STOCHASTIC INFLECTION

K. R, Symon has suggested the method of Stochastic Infl:acti.on.15
His treatment involves solution of the diffusj.on equation and allows for
a finite injector having a septum, In what followa the second method of
Section 3;1 is used to illustrate the 100% f£illing efficiency property of
Stochastic Infiection which prevails when used in conjunction with an
infinite injector having no septum,

Y

Set Vo= L/N; let i (x,y) equal i, over the lined region of Figure
6a (Ax>> ¥o); turn on the injector; wait NT seconds. Inserting a phase
plane at @ = 0 one notes that Figure 6f applies provided the empty penw
tagon is replaced by an Nesided polygon., The bump Ay(t) situated at
@ = 0+ now has the form 4y = kf(t) where £(t) is a random signal of
average value zero, lLet f(t) be indentically zero for t<0, The rms value

of &y for t>0 1s about k where R << Yo , It takes a certain time At for

this signal to become uncorrelated with %previous value of itself, Here

it is assumed that 8% cc | « Break the beam into segments, each of
U
azimuthal extent de= A% | A segment is viewed only at & = 0 on
(™1B%)

every N-th pass it makes of this azimuth, Hence, in the absence of a
bump points on a segment's phase plane exhibit the same positions on

successive viewings, 1In its presence, all points receive the same dis~

placement so it suffices to focus attention on just one point of the segment,

say the one at (0,0) at t = 0, In what follows such a point is called a
reference point,
Consider the segment passing @ = 0 at t = 0, A¢ this segment is

viewed at 8 = 0 at § = NY, 2NT, 3NT, . . . s its refer ence point will
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perform a random walk about (0,0). One can just as well superimpose

the results for all segments onto the above segment. One then has at

t = 0 a distribution function consisting of ;’tt reference p}oi.nts set one
on top of the other at (0,0). At later viewing times this distribution
spreads out around (0,0). When a reference point migrates into the region
between Y=2Y%and ¥ = Ax-Yo , the beam circle of the segment associated
with this reference point is completely covered with filled points

I1f a reference point, after reaching this band, migrates back agnin ine
side v: 2v, , the associated beam circle probably is still covered

(empty points outside v:v, and within ¥s: Ax tend to be converted into
filled points). Here Ax is made so large that at any viewing time of
interest all reference points lie within ¥ = Ax~-Y,, Eventually most
reference points lie outside of ¥=2¥e , Hence, by waiting long enough
the number of segments having unfilled beam circles comprise such a small
fraction of the total number that they can be neglected relative to the
latter, Therefore 100% filling efficiency prevails,

" An advantage of Resonant RF Inflection when used in conjunction
with a finite injector appears to lie with its charge efficiency. A dise
advahtﬁge will be seen to be its sensitivity to non-linearity. The correse
ponding points relative to Stochastic Inflection are not known by the

writer,
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V. COMPUTATIONAL RESULTS ON RRFI

5,1 GENERAL CONS IDERATIONS

Computational results presented here extend the conclusions

of Section IITI, Section III shows that RRFI can be described in
terms of four parameters: k, r , V,, and Vas * The first two are
lengths and the latter two dimensionless, Here r, is taken to be
209 mils and k as varying between about 0,1 and 10 mils, The quane
tities V¥, and \?m= range between one and two, The bump strength k is
not substituted as input data but computed on the basis of other input
data and a theoretical model of the experimental RF electrode (Fig{ure
25), This model is described in Sectierixed. The net result is that an
electron passing the electrode receives a radial impulse FxAT= ~e€o am
(waset+ )8t yielding a By= %: kM(w,,t+¢). The computed k
depends on w, and hence Vv, , In this sense the computer programs de-
part from the theory of Section III where k is treated as an indepenw
dent variable., This independence can be simulated, however, by alt“gring
the input data representing the RF voltage on the electrode whenevei; Vx
is changed,

| The programs yield four quantities of interest to us here, (il)
The first is the required injection area, its shape and size., (2) T}xe
second is the minimum number of revolutions that both the injector and
the RF must be on in order to allow RRFI to trap the maximum charge, E‘
(3) After equilibrium has been established for a given k, r , ¥x, and
Vag, turn the RF bump and the injector off together, On a small neighe

borhood of (x,y) at some azimuth © find the time average of i(x,y,6,t).
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Designate this time average by i(x,y,0,t). Divide the beam circle into
a large number of concentric annuli of equal area. Find tﬁe average
value of i(x,y,®,t) over each annulus. Divide this average by i, The
result is the third item of interest found by computation. It is alw-
ways less than or equal to one; it is independent of @ and t; it de-
pends on (x,y) only through the variable v<¥x%4 43, Such a quantity
was met in the last paragraph of Section 3,3 (except for division by i,)
and again in Section 3.4, When plotting this result it is designated
IEE:;:B:ET/io. The fact that it has been averaged over an annulus ene
closing a circle of radius r will be indicated by marking the abscissa
as Y = V)(vo .

(4) The time average trapped current is SS i(’l.‘j,e,*;d’ﬂd‘j
where the integration is performed over the beam circle interior. Cone
sider that portion of this current which originated from a particular
element on the required injection area. Divide this portion by i,.

The result can be thought of as a time average of the beam circle area
which could be covered to an i(x,y) of i by charge which originated
from the element in question., By either Liouville®s theorem or Section
IT the "could be" above can be replaced by "is™, Division of this time
average area by 1YYQ? yields a time average of the fraction of the beam
circle area covered to an i(x,y) of i by that portion of the time
average current which originated from the elemeént in question. This
fraction is proportional to element area,

When one is referred to a plot of any of the four quantities
mentioned above the number of the computer program used to obtain the
result along with the particular run number appear on the plot, The

—h

Ey program and a description of it will be found in an appendix, the table
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of contents directing the réeder to the appropriate one, The infore

mation given there is:

1) the purpose and physical content of the program
2) a description of the Fortran program

3) the output data given and the input data required
4) the input data used on various runs

5) the actual Fortran program

5,2, ON~-RESONANCE LINEAR PROBLEM

The program§ SHO~16 and SHO-18 are used here to study the Oon-~
resonance linear problem, Figure 15 illustrates_fhe shape and size of
the required injection area when k 22,093, Y, = 209, and Yx = Vge = 1.36,
This figure is not drawn to scale., If it were, its vertical extent
would be increased about a factor of six, The number inside a differw
ential element gives a time average of the percentage of the beam circle
area covered (i(x,y) = i,) due to charge which originated from the ine
jector element in question, Sixty~nine such elements fill the beam
circle to 100.44% of capacity. The discrepancy of 0,449 is caused by
the coarseness of various meshes used in the computation, The required
injection area is 1,05% of the beaﬁ circle area. Its y eXtent is about
60% of Y, and its x extent, about 10%. The trapped current isJ(B\os =95
times that coming frdm the required injection area. It is common to

call this 95 . the number of turns injected. One must keep in mind,

‘however, that the injector and the RF must be turned on longer than 957

seconds to achieve an injected current of 95 turns, The time required
in this example is closer to 4(95) 7T,
One can also speak of the number of turns injected by a particular

element on the required injection area. Suppose i (x,y) equals 1;70 on
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that element of Figure 15 which gives a filling efficiency of 1.908%,
but that io(x,y) is zero outside this element, The number of turns in.
jected is 0.01908M ,2/(dxdy). Since mr,2/(69dxdy) equals 95, 0.01908
roz/(dxdy) equals 125 turns,

The charge efficiency is the ratio of the trapped charge
to the charge emanating from the required injection area in the time
it takes to achieve 100% filling, Here there are 69 contributing ele=
ments each of area (8,3)(2.5) square mils, The time required to
achieve 100% filling is 4327, The charge efficiency is .Lo’h(aoﬂ)&Ty/
i,m(s.s)(:;),:’r;r 22%. When \.Lz!.? << 3_%_:, s Section 3.2 gives the charge
efficiency of RRFI as 25%, This difference between 22% and 25% is
due to the condition %Ae« 3_’%_!'_0 not being satisfied,

The values of k, r , ¥, and Yy used in obtaining Figure 15
are near those values existing in the accelerator of Figure 1 as used
in the experiment of Section VI. The septum in this accelerator (5
mils) corresponds to a vertical strip covering the two columns of ele-
ments on the right in Figure 15, Contributing elements associated
with columns not covered by this strip are 41 in number., The filling
efficiency calculated in terms of areas (Section 3.3) is 100(41/69)
or 60%, The actual filling efficiency found by adding up the numbers
in these 41 elements is 53%,

A septum reduces charge efficiency somewhat. The active region

of the required injection area fills the beam circle to 0,53 of capacity.

The equilibrium time is the same as before, i.e., 4327, The resulting
(0.63) 4, Ys ¥

40(41)(8.3)(2.5)432 T
Figures 16 and 17 illustrate required injeetion areas for Vi

charge efficiency is or 19%.
varying between 1,25 and 1,42. These figures are drawn to scale, Here

Yo = 209 mils but k, varying here as y; , has its former value ohly at
x
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VY = 1,36, In discussing Figure§ 16 and 17 we shall neglect this
7% variation in k about its value at Yx = 1,36,

The shape, position, and size of these required injection areas
depend on Vx 4 For N of Vx = L/N equal to 3, 4, and 5, the required
injection area elongates vertically as expected, its x extent varying
roughly as Zg'le ’ %k s and gk . With a tune shift of % .Ol‘about
these rather impractical values of Yx a usable shape is realized but
its center of gravity is displaced from y = O, The asymmetry in this
displacement about Vx = 1+1/3 as seen in runs 3> and 5 is expected.

For instance, if Vx were (1+1/3 + ,01) and if charge were injected near
the bottom of the required injection area existing when Vx = | Y5 then
this charge would end up 37 seconds later to the left of its starting
point even though the 3-t@rn displacement vector displaces some of it.
%k to the right. Hence, when Yy = (1+1/3 +0,01), less injection
area appearé below y = 0 than above, etc, Runs 9 and 11 indicate that
asymmetry about Vy= 1.4 disappears by the time a tune shift of £0,02
about ¥y =1,4 is real ized.‘

Previous theory shows that the area of the required injection
area decreases by 40% as one shifts Erom N = 3 to large N provided
Nk ?_‘E‘__Vc . In Figures 16 and 17 this area is expressed as a per-
centage of the beam circle area and appears over the figure»associated
with each run., Rumns 3 and 5 in coﬁjunction with Run 4 show this same
behavior even though the above condition is violated. If the percentage
for Run 4 (N = 3) were taken as unity then the percentage for either
Run 3 or Run 5 would be about 0,7.

In Section 3,2 it was found that the size (area) of the required

injection area varies linearly with k provided NR << 2% Y, .
N
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Pigure 18 gives the size of the required injection area ve;'aus k when
Ve = 1,35674 (ﬁh‘s%?,%%). Since Y, = 209 mils and since k is gevevally
greater than 0,1 mils the previous comdition is far from being satis=
fied, Nevertheless, a linear relation between size and k is seen to
exist over the range of k dealt with, As k is varied, the required
injection area changes shape, By decreasing k, the number of turns
injected (the ratio of the beam circle area to the required injection
area) can be made arbitrarily large.

The last paragraph of Section 3.3 considered the manner in
which different regions of the required injection area contribute
charge to the beam circle., These qualitative results will be illuse
trated quantitatively by applying SHO=18 to the three elements of
Figure 15 having heavier boundaries than the others. Reading from
left to right, bottom to top, these rectangles will be designated
F, G, and H, Figure 19 gives m/,i, versus v = V/‘.. for each of
these rectangies. All three are seen to contribute to the central
regions of phase space about equally whefeas the ir contributions to
the peripheral regions is a strong fumction of their position on the
required injection srea. Curve F exhibits a maximum at small v in
accordance with the prediction made in Section 3.3. As expected,
rectangle G contributes more charge than rectangle F., Rectangle G is
seen to emphasize the peripheral regions of phase space, Curve H most
closely parallels curve F, It is concluded that charge contributed by
elements far away from (-Y‘.‘o) acts like charge contributed by F and H
whereas elements nearer (-Y.'o) yield behavior paralMeling that of G
more closely.,

Figure 19 in conjunction with Figure 15 indicates that each
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portion of the required injection area contributes some charge to the
central region of phase space. 1In Section 3.3 it was seen that such
charge gets displaced across the beam circle essentially on a diameter
of this circle. Since a diameter is the longest chord it was cone
cluded that all contributing elements near (-v,,o) realize their maxi.
mum contribution to beam circle filling at nearly the same time. Ome
wonders, however, about the speed with which these var ious contribue
tions approach equilibrium, Applying the results of Section 3,3 to
rectangle F of Figure 15 one concludes that rectangle F realizes its
contribution to beam circle filling linearly with time up until maxi.
mum filling is achieved. Figure 20 contains computational results
from a program written toc study such approach to equilibrium. The
program itself is not described in this report, Figure 20 gives the
ratio of (1) trapped current at time t to (2) the maximum trapped
current, Curve F applies to rectangle F of Figure 15, The expected
linear dependence is seen, The filling time of G equals that of F

as expected, bt its time dependence deviates from linearity. Treate
ment of rectangle H yields a curve like that of G, In a practical
situation like that of Figure 15 it is approximately true that all
portions of the required injection area realize their contribution to

beam circle filling in a manner which depends linearly on the time.

5,5 NON-LINEAR EFFECTS

Nonl inearity will eertainly be present in the experiment of
Section VI, One must be able to decide whether this factor is of ime
portance relative to the experimental data taken there. The program

SHO-20 can answer this question., 1In this program the transformation
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relating the (q) of an electron to 1its \._A one revolution later is

kept a pure rotation, i.e.,
M(\’u%’k\ A (\h’«‘“)

™M (\’x R'“’) = (- 2 (Ve an) coq (v,.a'k)

Nonelinearity is introduced by making Vx depend (quadratically) on
electron oscillation amplitude O« ='K‘* y*.
Let Y, be the tune when Gx is near zero, and AVyx the change

in VYx when Qx increases from zero to Yo Then

{z a
Vx = Vo * AvVx (lx +15 )
Yo

We set Y,, equal to the ¥, of an electron whose Gx is Yo , i.e.,
VYar = Vxo + AVx o For an electron residing within the beam circle
WV“F-V,I< lA"x\ . Let k <= 2.093 nils, Ye o 209 mils, and VYge = 1.36,
Figure 21 gives W/io versus v for AV,'s,of O, 0.,00453, 0.01360,
and 0,02720, The presence of non-linearity is seen to inhibit filling
of the beam circle, the inhibition becoming more pronounced with in-
creasing non-linearity.

It is informative to compare these results with corresponding
offe.resonance cases of the linear problem (Figure 22), Here ¥y is
always 1,36 so that | Vgg- V) = \Av,,\ does not depend on Qx . In the
four runs of Figure 22 | AVge¢| has values of 0, 0,00453, 0.01360, and
0.02720, Comparing runs for which AVx in Figure 21 equals \A\?"\
in Figure 22 one concludes that an off-resonance case of the linear
problem can serve as an upper bound on inhibition to beam circle
filling for the corresponding non-linear problem,

In one sense, the above result is expected., The nonelinear

problem can be viewed as a succession of off-resonance linear problems,
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the discrepancy between Vge and Vi varying slightly from one problem
to the next. In the off-resonance linear problem the greater | Vee -Vx\
is, the more beam circle f£illing is inhibited. For electrons within
the beam circle in the non-linear problem, \V“-\?,,\ is always less
than in the corresponding off-resonance linear problem,

In Appendix 7 it is shown that, when Vgq¢ is set at a value in.
termediate between VYio + OVx and Yxe , the inhibition noted in Figure
21 becomes less pronounced. Therefore, if in the off-resomance linear
problem \A\’Rp\ is such that no inhibition occurs, then in the corres-
ponding nonelinear problem where \A\?"\ above equals \A\’x\ , NONe
linearity is not expected to be a problem, particularly if Vg, in the
non-linear problem is set intermediate between V,, and WVxe+ AVx &
Now the curves of Figure 22 can also be obtained via the theory of

Section 3.4, From this theory we have

Y: = )Q//Yﬁ
4% | bVRel

Here inhibition does not occur as long as ¥ 2\ . It is concluded

that in Section VI where the amount of charge trapped by RRFI is

studied experimentally nonelinearity should be no problem provided

)Q/’YE
AT | AVx\

v
——
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V1. EXPERIMENTAL TEST OF RESONANT RF INFLECTION

6.1 PRELIMINARY CONSIDERATIONS

The degree to which experimental conditions are known to fulfill
the theoretical requirements of Sections IT and III is dealt with here.

(C-1) It is required that the electron beam be observed ani afw-
fected at azimuths which are integral multiples of AW/p.

This condition is fulfilled,

(C-2) It is required that electron motion be simple harmenic
as far as an observer situated at azimuths allowed by C-~1 is concerned
(Section 1I).

The degree to which this requirement is met is not known. The
various currents which excite the guide field are set at valves which
(1‘) yield a relatively intense accelerated beam over a range of Qx
substantially greater than that used in the experiment and (2) yield
a Yx allowing one to exploit the capabilities of the exper imental
measur ing apparatus., In the experiment V. is near 1.36. The Vg
which obtains is not measured., From other information it is known to
be about 1.2,

(C-3) It is required that an electron's % motion never allow an
electron to hop over or under the injector when its displacement x at

@ =0-1is < -, .

It is not known if this condition is fulfilled. We assume that it

is, Partial justification of this assumption follows: The vertical

oscillation amplitude Q4 is not restricted except by the vacuum tank,
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If the experimental median plane were defined by 4= 0 then 03 would be

< 750 mils, Because T is imperfect, the median plane is mt flat, Ex= |
perimentally it is known that the least upper bound on G is cons iderably
less than 750 mils. We assume it to be 250 mils. The injector extends
t 262 mils above and below 3 = 0, If the median plane at the injector

is near 3= 0 then an electron at @ = 0~ with a4 £ 250 will collide with
the injector when its x is < ~Y,,

(C-~4) It is required that V. be independent of Qx and Q3 .

This condition is approached closely enough, Experimentally aqQ« ¢
250 mils, We have assumed Q; < 2;5::" Does YV, vary sufficiently with
ax and Qy to inhibit filling efficiency? Figure 23 illustrates the
experimental dependences of Vy on CGx and Q4 for v, not radically
different from 1,36, Experimentally, Wee = Wy wy - An electron’'s 3
motion is affected very little by the RF so that its 03 remains essen-
tially what it was at injection. Figure 23 shows that as long as Qy and
Qg are < 250 mils, Y, cah vary between any two electrons by at mest, say,
0,001, Section 5.3 provides an estimate of whether non~linear effects are
important. It is found that they are unimportant when k =2 4% \8vx|Y, .
In the experiment, Y‘; = 209 mils, Since the required injection area
lies to the left of (-Vo 0) , the maximum dx will be somewhat larger.
Here we take it as 250 mils, With Yo = 250 mils and with AV, = 0,001,
it is required that k>3 mils. The conditions under which much of the
experimental data is taken fulfill this requirement, It tutns out that
if the exper imentally measured RF voltage applied to the RF electrode is
three wolts then k is a little larger than three mils,

(C-5) It is required that §, be independent of Qx and Qg »

This condition is approached closely enough,
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Does §, vary sufficiently with ax - - " to inhibit filling effi.
ciency? In answering this question one begins by showing that a problem
in which £, varies with Qx (w“ and V, constant) i{s equivalent to one
in which ge depends on ax ( §, and VY« constant). The latter problem
i{s then shown to be equivalent to one in which V. depends on Q. (fo and
Uye constant). Finally, the test R=z4M|av| v, , used in C-4 to insure
that the non-linearity considered there does not inhibit f£illing effi-
ciency, is applied here. A value of 4% |8vc\vo about one-third that
found in C-4 is obtained. It is concluded that when the non-linearity
considered in C-4 is of no consequence exper imentally then variation
of fo with a. 1s also of no consequence experimentally.

The RF bump causes an electron's Gy to change. We estimate the
variation of £, with Qx when V4 and electron speed s, (energy E.)
are held constant. Though Yx is constant, Wy: MV §es varies since
§o varies. Let 2= Qx M (V0+48) An increase of 2N in @ corres-
ponds to one revolution, When a, is gero, the average orbit length per
revolution is 2% po « With Qx>0 this quantity is approximately 2'7(,06{
t+ ‘;_"(?;)‘g. The product of revolution frequency {£.(a,) and average

orbit length per revolution is just ,., Hence

-Fo(.Qx) = %O(o)
ﬁvﬁ 2
Set the RF bump, AY = k aim(weet+d) , at € = O+, Here k 1s

assumed Iindependent of both V, and -T-o(a.x). At injection (t = 0) an
electren has an G, near vy, . At t = O+ this ax gets altered to Cx\,
When making its second pass of the bump its Qx changes from Qx: to Qx2 ,
etc., The RF phase angle at the time it passes the bump is shown in the

following table:




Pass # @ + week
! ¢
2 P + Wee/fo(an)
3 b + wnw/{o(qxz\ + Wee/s, (Qxa)
4 ¢ + Wes/$o(an)  + Wer/fal@xa) + Wpe/£,(0x3)

Call the constant value of Wy, here Wy.-. Upon substitution of

obtains 2
wg‘.-c - WRec i \ + Qai_::) }
$o(@xn) £.(0)

It is concluded that the same orbit x(@) exhibited by the electron in

the present problem would also be found in a problem where £, (-F,:.F,(o))

is somehow independent of dx and where (wpge depends on ayx as

Wee (Qx) = Wepe il + C‘Q"_‘Z’.‘)}

Consider then the problem where w“(q,) = wkpc{, + (au\’sﬂ
R e

and where f, and Vx are held constant. Set o)”c equal to the ¢y,

of an electron in the preceding problem whose Gx is8 Y, , i.e.,

w = am v o (o)

RFC -
2
)+ (Vovx)
R Po

Then

‘ ax W\
2 V“LL__ a’a) £.(0)
|+ Yen_\?")a
2 Po

Wer (Clx) =

Wer (ax)

We define the RF tune V. (Gx) to be
2% £,00)

Then
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Vae (Gy) = Ve + Y R (20 Kg—’i)
L+ () | ¥ (.&ﬁ)* Yo
R Qo 2o
Let Yo Vx
€ = \’x (QP°
|+ (n\?x)
R po
Qx 2
Then Ver(ax) = Vx - € + € (7:)

The program SHO-20 can treat the case of Vg varying with Gx, |
The crosses in Figure 38 give W/io versus Y" for k = 2,093
mils, Yo = 209 mils, ¥y = 1.36, and € = 0,00453, The variation of Vge
with Qx is seen to inhibit filling of the beam circle. The reasen
why _i—(-x—,_y_:e_,t_)/i, is much less than unity for v' near one is that only
a fraction of the required injection area has been used. In this compu-

tation

‘ Q) = 1.6 ~ 0.00453 + 0.00 453 (9!):
VQF( * = L ' ' Yo

The dots in Figure 38 are obtained from applying SHO~20 to a case
where Yg¢ is held constant (Vge = 1.36) and VYx allowed to vary with

Qy . Here 2
o Qx
VYe(axy = 136 ~ 0.00453 + 0.004¢3 (Yo)

The results are seen to be nearly the same as those found in the previous
problem. Hence, effects observed when Vg varies with Gx ( Yk and £,
constant) can be simulated Qith little error by allewing V, to vary with
Gy (Veand f constant), We have been careful to keep Vv, for @, = Vo
equal to 1.36. If this had not been done, the shape of the required
injection area would change between these two problems, This in turn

would cause a discrepancy between the two runs of Figure 38,
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In the problem above AVx was chosen to be .00453. 1In general

o Vx \ 2
AV, = € = Vx ;:o) 2 Vx (Yo\?,‘)a
\+(1,_v,_r 2pe
Ao

For non-linearity to be no problem

k =2 a9 \bv«l Yo
3
k 2 __fgi(n\?x)
Po

Yo = RS0 wils (see C-4)

Vs = |36

f’o? V2000 Tils
k z 0.86

In C-4 it is required that @23 mils, Therefore, insuring that the
non-linearity considered in C-4 does mot inhibit filling efficiency
also insures that variation of ¥, with Qx (and Q; ) does not either.

(C~6) It is required that the injector yield monoenergetic
electrons,

This condition is probably fulfilled. The electron gun consists
of a filament (-'21; kilovolts) and a plate (grounded) with a hole in the
latter through which electrons entering the accelerator must pass. The
metallic vacuum tank in which electrons circulate is also grounded.
Their energy spread Af, is expected to be of the order of kT or about
0.25 ev, The results of C~5 allow one to find whether such a AF, in-
hibits filling efficiency. Two moncenergetic electrons, one with Qx:= 0
the other with «, - Y, , exhibit a difference in §, between them of

2 -
ASo where Afo = (Y°V"'> = A X110 4. We saw above that a 8%e about
Lo APe £

three times as large can be tolerated. Now an energy spread #HE; also

L4
gives rise to a frequency spread Af,, For the accelerator of Figure 1,
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the relationship has the form

Afo 4.86 A'?o' (Q,:O- 0;:0)
Eo fo ) '
-4 !
We use the previous limit on AYe., i,e,, 6 x 10 °, for the value of A.:
to o

in the above expression., Since E°= 24 x 103 ev, DE, must be less than
70 ev. The AF, caused by kT satisfies this condition,

If the injector voltage were to vary from pulse to pulse by an
amount sufficient to alter filling from pulse to pulse ( ¢.constant)
the latter could be detected exper imentally, Such variation was not
seen. High-frequency noise on an individual injecter pulse can inhibit
filling if of sufficient amplitude. It is known that inhibition caused
by noise with quarter period greater than 5-5 microseconds is net present,
That noise of higher frequency is not of sufficient amplitude to inhibit
f’illing is an assumption inherent in the experiment.

(C~7) It is required that the RF bump conserve electron energy.

It is thought that this condition is approached closely emough.
Though electron energy fluctuates when the electron is in the RF field,
electron eﬁergy is conserved in the overall pass provided transit time

across the bump is short compared to the period of the RF 2 . When

this is nmot true, the energy change caused by the radial imp:;se is not
entirely negated by that due to the azimuthal impulse (Section II). As
indicative of the worst that can happen, we assume that none of the
energy stored in the radial motion gets transferred to the azimuthal
motion as Q«x is reduced from 250 mils to zero, When Qu« = 250 mils
and when Wy » RN Vx$o = AT (1.36)42.94 xno‘ then the energy associated

with the radial motion is %mwrﬂf = 15 ev. From C~6 we know that an

energy spread of 70 ev, can be tolerated.
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(c-8) It is required that space charge effects be negligible.

This conditiom is fulfilled. Electrostatic repulsion between
beam electrons tends to-lower Y, (A, = 0.3c). When a beam electron.

'
ionizes a gas molecule the electron produced is repelled by the beam and
collides with the vacuum tank, Thé trapped ion tends to neutralize the
beam and thereby raise Vg, In the experiment which follows variation
of ?, in time can be detected. The gun current is kept significantly
below the value required to preduce such variation.

(C-~9) It is required that scattering of beam electrons by gas
molecules be negligible.

This requirement is fulfilled. In the absence of RF, electrons can
be trapped by a space charge mechanism which becomes operative at high
injector current, After injector turn off a quantity roughly proper-
tional to the number of circulating electrons is megsured at two times,

-! ia—ta)
2 T

i,e.y N at t , and N, at t,. We assume that Ns . where T

is the decay time. The time t, is adjusted relative to t, so that %% is
about %.. In this case t, - t = 80 microseconds (2 x 10"6mmHg;fV3?0-3c)-

In the experiment which follows, maximum f{l1ling of the beam circle
is achieved in gbout éeven microseconds when k equals 3 mils. After
achievement of maximum filling, electrons within the beam circle have
resided there for various lengths of time ranging from zero up to seven
micreseconds. The average uge . 31 :- is less than 3.5 microseconds.,
We take (3.5/80) 50% = 3% as indicative of the maximum decrease in trapped
current which can arise because of gas scattering when k2 3 mils, When
analyzing the experimental data which follows, no correction for such
scattering losses is made. ,

(C-10) It is required that the RF bump given to an electron be

independent of electron displacement  and 3.
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This condition is mot fulfilled, However, in what follows it is
ghown that RRFI is relatively insensitive to dependence of bump strength
kx on x, i.e., that the condition above is not the essential thing it
appears to be in Sections II and IIL Nevartheless, the experiment
tests for the unimportance of this condition,

The computer program SHO-20 allows the radial electric field am-
plitude €, to vary as a function of electron displacement x, The
three cases of such variation studied are illustrated in Figure 24. Run
5 is a constant field or control case. Run 6 involves a linearly de-
creasing field while Run 7 uses a step function decrease, the single
step occurring at x = 0. Below Figure 24 is 1isted the average
E?;:;T;:ij/i, in each of ten concentric annuli of equal area which, taken
together, cover the beam circlef In these runs only a fraction of the
required injection area is used so that E?;:;j;:zj/io is always less
than unity. Runs 6 and 7 deviate little from the controel. It is
thought that this agreement allows the same conclusion to apply for'any

monotonic decrease which can be represented as the sum of a constant

" function of x and an odd function of x, The dashed curve of Figure 24

represents one such possibility, The significant quantity appears to be
an average over x of the radial electric field amplitude, In executing
successive passes of the bump an electron essentially performs such an
average.

Study of decreases which cannet be represented as the sum of a
constant function of x and an odd function of x is not pursued. The
previous results are taken as justifying the conclusion that Resonant
RF Inflection is relatively insensitive to electric field nonuniformity.

The previous result does not discourage the use of a one~sided RF
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electrode (Figure 25). A 1" by 1" copper plate terminates the end of a
ecoaxial cable inserted into the vacuum tank at © = 60°., The displace-
ment %,<0 of this plate can be varied by means of a screw drive.
Charged to a voltage Vou'm(w”t*-e‘) the electric field to the right of
the plate both bends away from the median plane and spreads out in
azimuth, Let &, (9,%3),&»1 (wpeed +&) represent the radial come
ponent of this field, The A‘j an electron receives in passing the

electrode is

L+ . . ]
Ay = - S QEo(G(t')la(i')'3(*'))M(wppt+¢)dt

m Wx +
T-e o 8™ A (wet+@) =-R M(wapt+¢)
anrn wx

The minus sign will be absorbed in $.We tet R> 0. Here £, in some
sense measures the amplitude of the radial component of the RF electric
field., In a similar vein, AT is the time taken by the electron to
cross the region of the bump. The bump strength k above will be thought
of as an effectivé value found by c'onsidering many electrons over many
successive passes, the various electrons exhibiting all the Qx , Q3 ,
A, , and B4 present in the experiment. That such an effective k
exists will be considered an assumption, the validity of which must be
tested experimentally.

An estimate of such an effective value of k will be made. Cone
sider a particle passing the electrode of Figure 25 whose orbit is its
equilibrium orbit. Assume that the end plate of this electrode extends
from the flépr to the ceiling of the vacuum tank as well as an infinite
distance out of as well as into the plane of the paper rather than the

t1 inch which theoretically prevails, Nevertheless, the electron :«
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taken to see an electric field €, only over the 1" extent noted abeve,
Curvature of the vacuum tank and equilibrium orbit are neglected. Then

€, on the equilibrium orbit is

Tre

€° - 4Vo -e =
aAwk
H 14+ 2 1 a

Here H is the height of the vacuum tank. The veoltage V, is found in-
directly. The rms RF voltage Vp on the coaxial line feeding the RF
electrode is wmeasured at a point about 2 feet from the electrode. Hence,
Vo= Vg12'F, where F, (determined in Appendix 2) takes account of
standing wave effects on the line which make the voltage on the elece

trode differ from that at the voltmeter, Hence,

&g
kR = 4V2" Vp F, 2 A Q 4
H ‘+£a"hH4-g m Wx

In Appendix 2 the RF electrode of Figure 25 is investigated using
an electrolytic tank, When X, =-320 mils it is found that the k
which obtains is a factor of F, = 1.56 larger than that found above.
In the experiment which follows two values of /X, are used; -321 mils
and -294 mils, It is assumed that F, does mot charge between these

two g o The estimate for k becomes

N
k s VR 4V2' F.Fa -Q_\"_B 2 [a'h][{-e]
H L4 o2xxe || mary?| (w][f.]*

The quantity A™ has been expressed as M™fe= i_'. where f, 1is the

-]
fraction of 2% over which the 1™ electrode extends. The computer

program which analyzes the experimental data computes k. The six
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numbers in square brackets above are given to the program as A(N) where

N is an integer. Which bracket corresponds to which A is evident from

the expression

e < LA@](ANAW@]AD)
(A [AW])?

Two independent proper ties of Resonant RF Inflection are measured
which depend on an effective value of k. In predicting these results
the expression for k above will be used except for one modification, A
factor F>0 will be included where F, is to be adjusted in each case
so that the theoretical curves look as much as podsible like the exw
perimental ones. If the theoretical curves can be made to agree with
the experimental curves and if F, is unity in both cases, then we take
it to mean that (1) it is possible totalk of an effective k as we have
assumed, and that (2) the theory of Section III provides an adequate

explanation of the observations,

6.2. EXPERIMENTAL APPROACH USED

The beam current density j(x,8,t) EE%%E%E is the basic quantity
of experimental interest, A fine wire of thickness dx is set verti-
cally in the beam at some o¢ and © (Figure 26). The current collected
by the wire will be assumed here, for purposes of illustration, to be
j(x,8,t)dx. Knowing this collected current and also dx yields
j(x,8,t). ‘The device which measures collected current does not respond
to fluctuations occurring over a time 4 but can to those which occur over
a time 1007, We denote j(x,8,t) averaged over, say, 507 to either side
of time t as j(x,8,t). Experimentally 3?2?5?{3 approaches an equilibrium

value shortly after the injector has been turned on, This occurs both

in the presence and absence of RF.
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The injector is pulsed on for about 60 microseconds 15 times per
second, Normally, experimental conditions do not vary between pulses
80 the same m is found on successive pulses. The collected cur-
rent is measured about 40 microseconds after the initiation of each
pulse. When measuring m in the presence of RF, the RF voltage
applied to the electrode of Figure 25 is left on between pulses. In
what follows j(x,8,t) will be denoted as j(¥), or j(x) .  depending
on whether the RF is on or off,

One experimental quantity involving an effective value of k is
(3o, - i), “) as a function of ’VR when Vo.= V. o Here Vg is the
experimentally measured rms RF voltage applied to the bump electrode, In

what follows a quantity 1ike (j(x)RF - jx) ) will be called 8 j(x).

NOo RE

Hence, (j(O)R: - 3(€0) ) above becomes Aj(0). A second quantity

NO RF
involving k is the family of resonance curves consisting of A j(0) as
a function of Yy for V. in the neighborhood of vy at various Vg, In
predicting the first quantity it is necessary to measure i (x,y). As
regards'the re@pnance curves, however, io(x,y) will be assumed constant
and the septum as being of zero thickness. Such resonance curve pre-
dictions have previously been met in Section 3.4,

In what follows the method of measuring a current density j(x)
is dealt with first (Section 6,3). Then the determination of Aj'(o)
and certain other quantities is considered (Section 6.4). The measure-
ment of ia(x,y) is considered next (Section 6.5) followed by a rather
physical description of the computer program which uses this i_(x,y)
to predict A j(0) (Section 6.6). The value of Fy which giives the best
correlation between the computational prediction and the experimental

result is noted (Section 6,7). Section 6.8 deals with (1) the
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. determination of the experimental resonance curves and (2) their eor-

relation with the theoretical curves of Section 3.4,

6.3, METHOD OF MEASURING A CURRENT DENSITY

A probe supporting a 0.5 mil vertical tungsten wire is posi-
tioned along the inner wall of the vacuum tank at 6 = 300° (Pigures
1 and 26). A screw drive and turn indicator allow the fine wire to
intercept the electron beam at desired x, Not all the 24 kilovolt
electrons striking the wire stick to it, The fraction which sticks is
denoted by s. The energy dependence of s need not concern us as essen-
tially monoenergetic electrons are dealt with in any particular run,
The quantity s will be seen to drop out of the calculation. Charge
collected by the fine wire (diameter D_) is fed through about three
feet of 100-ohm coaxial cable to a grid resistor Rq of a preamplifier
(Figure 27). The woltage gain of the preamplifier iifﬂ » Its output
voltage V is fed to an oscilloscope. Consequently, a voltage V propor-

tional to j(x) can theoretically be measured.
V = //A"ig .3 E)Fﬂs(o‘)

The electron gun is pulsed 15 times per second, the pulse length
being kept at about 60 microseconds, Because the electron revolution
frequency is 43 megacycles a constant circulating current is achieved
at about the same time, The quantity j(x) is usually sampled at about
40 microseconds, its value being constant from 20 to 60 microseconds,
One desires the rise time of the grid resistor coaxial cable combinae
tion to be appreciably less than 40 microseconds. The largest R3

consistent with this condition is desired for two reasons,
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First, relatively weak beams must be used so that space charge effects
are unimportant, Second, the input signal should exceed the equiva-
lent grid noise of the first tube by a fair amount., The RS chosen
is 39,000 ohms, Rise times associated with other sections of the pre-
amplif fier are shorter than the resulting input rise time, The firast
tube rather than Rqis the dominant noise source.

The grid of the first tube is bilased negative by a 1.5 volt pen-
light cell. Normally this would mean that the fine wire would give
rise to significant changes in electron momenta. Consequently, a second
cell is inserted into the coaxial lirne g0 as to neutralize the fine
wire, Prior to a run these two batteries are allowed to buck gne
another for several minufss to insure their preper caneellation later,

The preamplifier gain/y/drOps out of the calculation provided it
is constant during a run, This is checked before and after each run
through the use of a ten microsecond square wave pulse generator}and
the veltage divider of Figure 27, The oscilloscope has two inpu£ jacks,
The test pulse as well as the preamplifier output are connected to the
osclilloscope at all times during a gain measurement. No impedence
changes occur as one shifts from viewing the Input pulse to vLewing the
output pulse, The gain of the preamplifier is about 250, The prc;
amplifier is linear up to an output voltage of 0,4 volt., Usually
eutput signals under 0.4 volt are used. Useful readings can be made
even when the desired output signal is of the order of the noise
level. The pulse rate of 15 cycles per second essentially averages
the noise as viewed on the oscilloscope. Systematic displacement of the
center of the symmetrical fuzz is easy to see. Sixty cycle pickup is k
not bothersome since each of the 15 pulses occurring per second is |

initiated on the same portion of every fourth eycle of the 60 cycle
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line voltage.

The purpose of this fine wire probe will become clear as we con-

sider a measurement of 4 §(0) and i_(x,y).

6.4, MEASUREMENT OF A j(0)

An RF oscillator, wltmeter, and frequency meter are connected
together at a common point., This point in turn is connected to the
RF electrode via two feet of 200 ohm coaxial cable. The voltmeter
reading is Vg . The beam circle radius Y, 1is fixed by the injecter
voltage., The latter is quite reproducible from pulse to pulse and
can be adjusted to give an Y, in the range desired. The exact value
of v, which obtains must be found from other information, In Section
6.5 one estimates Y, from the plot of i, (x,y).

The position of the fine wire (Figure 25) is adjusted until the
oscilloscope trace indicates that the wire intercepts beam, This ad-
justment .is made by a screw drive mechanism attached to the fine wire
probe. A turn indicator allows one to keep track of the fine wire po-
sition, The reading on this indicator will be called the fine wire
turn number. An increase of one turn corresponds to the fine wire
being displaced 50 mils Iin the positive x direction,

The pulse on the oscilloscope is 60 microseconds long, about
20 microseconds being required for it to reach an equilibrium value
V. The 20 microsecond rise time is a property of the injector, not eof
the beam. Since the revolution time 7+ is 1/43 microsecond, circu-
lating charge reaches an equilibrium value shortly after the injector

voltage has achieved its equilibrium value, This is also true in the
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presence of RF. With Y, = 209°and with k23] filling of the beam

R¥ A 2

circle is achieved in less than or equal to.hlz

7 mwmicroseconds,

Since V is messured about 40 microseconds after initiation of the pulse,

the circulating charge is in equilibrium at this time both in the

absence of RF and in its presence. In equilibrium the rate at which

electrons leave the injector equals the rate at which they are lost
from the beam. Electrons are lost frem the beam by collisions with

vacuum tank, with the injector, and with the fine wire,

the

The RF is turned on and the frequency scanned until an increase

in collected current is seen, i.e., until j(x)RF exceeds J(x) , pp

One chooses the RF casé or the NO RF case by switching the plate supply

of the oscillator either on or of f. In the RF case the RF voltage is

not pulsed, but remains on between injector pulses., Generally, j(x)

is at most only two or three times as large as j(x) ., qe 8¢ that one

does not have to switch oscilloscope scales between the RF case and
the NO RF case. The oscillescope reticle has 20 division (here .02
volt per division)., The veltages V corresponding teo j(x)ng and j(x)u.'p ,

respectively, will be measured and plotted in these reticle units.

RF

Having maximized j(x)RF as a function of .. , 8 J(x) is then

maximized in a rough manner as a function of x. It is maximized once

more, this time as a function of an injection parame ter known as in-

flector voltage. Onece decided upon, the various injection parameters

are held fixed throughout a run,

The RF electrode is next given a pesitive displacement until a

decrease in j(x)RF is noted. It is then withdrawn one turn (71 mils
Along with other data this allows one to estimate how far the face o

the RF electrode is from the equilibrium orbit, Normally such a fac

).

£

t

would be superfluous., Here it is useful when compar ison is made between
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results of the present run and those of the run in which the reso-
nance curves are determined., Unfortunately Y, differed between these
two runs. In comparing results a correction of the order of 3% is made.

In order to fix the origin in the plot of i_ (x,y) of Section 6.5
the fine wire turn number corresponding to x = O wust be kmown. With
Yee = Vx and with a given‘\/R we expect to be aple to obtain this quan-
tity from a plot of A j(x) versus fine wire turn number (x). The lat-
ter ought to be symmetrical about x = O because nonzero A j(x) is due
mainly to charge forced inside the beam circle by the RF. Assuming
that the beam circle is uniformly covered, A j(x) should vary roughly

as \Yo'-2% |, Figure 28 is a plot of J(x) and A j(x) versus

No RE
fine wire turn number, Here VR is 3 volts., The symmetry of the
latter curve, in conjunction with that exhibited by another curve
taken at 6 volts, allows one to estimate the fine wire turn number
corresponding to x = 0, The value settled on is 9,75 turns,

The arrows in Figure 28 imlicate a relationship between the
bump iness §f the two curves. The quantity 4j(x) is not entirely the
result of circulating charge residing within the beam circle since in
the presence of RF, charge outside thig circle is expected to be modi-
fied somewhat relative to charge outside this circle in the NO RF case.
The mountains and valleys produced by such outside charge in the
absence of RF presumably tgnd to flatten out and £ill in, respec~
tively, in its presemce yielding the indicated result., Now the
highest mountains of the NO RF case occur at the edges of the beam.
Consequently, negative A j(x) might be expected in such regions, Ex-

per imentally such negative values are found but for different Yy fhan

presently cons idered. Here this effect is masked by an erratie



behavior from pulse to pulse in the values of J(x) g and J() o ge at
the beam extremities (Figure 28). The jumpiness is due to beam elec-
trons which arise from field emission, Presumably they have large
Qa4 and therefore circulate only a few times. Their erratic behavior
is associated with small variations in gun voltage from pulse to pulse,
An erratic beam is seen when the injector filament is turned off,

The data necessary to determine Vx and ¥, is found next. It
consists of two or more RF frequencies at which A j(x) exhibits a

maximum, TIn the run here being described four of them are

Ve, fo = Ve fo §8.123 Me.
Voeg Fo = (-t) fo |5 . 300 Me.
Varg Fo = (2] fo 27.549 Me.
Vas, fo = (3-W) fo 70. 389 Me.

The correspondence between relations of the above type and the measured
frequencies is a matter of trial and error, a consistent assignment
being necessary. Here o is 42.84 Mc. while VYV, = 1,357,

The curve drawn through the encircled points in Figure 34 is
the experimental result for A j(0) versus Vg . This data was taken
several months prior to the resonance curve data of Section 6.8, At
some point between these two experiments the writer caught himself
reading Vg off the DC scale of the RF voltmeter rather than off the
AC scale. Subsequent readings were made correctly, At the time,
however, the taking of readings off the AC scale felt line an une
familiar procedure. There is a definite possibility that all Vg
up to this time had been read off the wrong scale. The DC scale is
linear; the AC scale, non-linear. Figure 40 is a plot of the correc-

tion facter for going from an incorrect value of Vg on the DC scale to
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a correct value on the}AC scale, In Figure 34 Vg was scanned from
low values to high values, Presumably the 3.0 volt scale was used

for Vg ¢ 3,0 volts and the 10 volt scale for Vq > 3.0 volts, The
second curve of Figure 34 is the experimental 5 j(0) versus Vg curve
noted above corrected for such an error in reading the voltmeter. The
two curves are not radically different. In what follows no decision
will be made as to which is the correct one, The next two sections,
6.5 and 6,6, are concerned with the prediction of A j(0) versus Vg
via (1) a2 measurement of io(x,y) followed by (2) a computational study

using this i (x,y) as input data,

6.5. MEASWREMENT OF i, (x,y)

A second probe, identical to the fine wire probe except for a
thicker wire (10 mils rather than 0,5 mil), is positioned at € = 240°
(Figures 1 and 26), The phase space at & = 0 covered by current
leaving the injector is indicated by the rectangle in the 1 position
of Figure 30. Here Vx is 1,36, Four sectors later ( 6 = 240°) this
rectangle is rotated clockwise 4 (3-3')\-’!6 radians and appears in the 2
position, 'The radial position x of the thick wire is set to intercept
a portion of the passing current, It leaves a shadow in the phase
space representation of this current which manifests itself one sector
later (& = 3000) at the 3 position. At © = 300° the radial pesition
of the fine wire is also set to intercept beam and cuts out a strip
ags {llustrated. A metal. plate collects the beam between & = 300° and
& = 360° thereby insuring that only single turn beam is being dealt

with experimentally,
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At 6= 300° or the 3 state of Figure 30, the fine wire collects
a certain current, If the thick wire were withdrawn to more negative
x 80 as to miss the beam, the current collected by the fine wire would
increase. This increase is associated solely with the phase area
comprising the intersection of the fine wire with the shadow of the
thick wire. Dividing this increase by the intersection area yields
an average i(x,y) over this small parallelogram whese center is at
(x,y). Varying the displacement of the thick wire and fine wire probes
allows one to determine i(x,y) at @ = 3000, To realize good detail
the fine wire should cross the shadow of the thick wire approximately
at right angles and the diameters of both wires should be significantly
less than the shortest "diameter" of the phase space representation of
the single turn beam. Letting D, and D, represent the diameter of
the fine wire and thick wire, respectively, the intersection of the
fine wire with the shadew of the thick wire is seen from Figure 30
to be of area De D/mg . Here 3 equals (’-'"i - 261\?“) . The
veltage increase recorded by the escillescope upon remeval of the thick
wire from the beam is AV = RSAi(/x,g) D‘D/me—

To obtain a plot of i(x,y) appropriate to 6 = 0, i.,e., i (x,y),
one proceeds as follows. The thick wire is set so as tomss the beam,
The fine wire is advanced in increments across the beam, the trace
displacement j(x) being recorded. Figure 31 gives two such plets of
j(x) wversus fine wire turn number from the same experimental run. A
time lag of apout four hours separates curve II from curve I, The
voltage corresponding to j(x) is expressed in reticle divisions, Here
one reticle division equals 0,004 volt, (The mismatch of curves

I and II indicates unwanted variation. In this period,/u, increased



nine percent, This does not explain the relative displacement of
these curves nor dees the change in /,u appear definitively in this
control data),

The 9.751_ curve of Figure 31 represents what is measured when
the beam is scanned by the fine wire as before but with the thick wire
set 80 as to intercept a pertion of the beam, The thick wire turn num~
ber apprepriate to this curve is 9,75, Ten such T curves are found,
each at a different thick wire displacement., The first seven mesh
fairly well with contro.l curve I while the tenth goes with contrel
cur ve .II. The relative displacement of the two control curves appare
ently took place sometime during the measurement of the eighth and
ninth T curves., These two curves, corresponding to thick wire turn
numbers ;f 9.5 and 9.75, respectively, mesh with control curve II at
their right..hand extremity. At their left-hand extremity, it is awbi-
guous with which control curve 9.5, should be associated, while 9'751'
meshes with control I. The 9.5_‘_ and 9'751' curves will be associated
with control curve II.

The 9‘75T curve of Figure 31 gives the result of subtracting

d
9;75,‘_ from curve II. The nine other Td curves are obtained in a
similar fashion, Before one can use the‘Td curves to build up a eontour
map of i (x,y), the fine wire and thick wire turn numbers corresponding
to x = 0 must be determined, Section 6.4 yields 9,75 as the turn number
appropriate to the fine wire., (It is an accident that this number
equals the thick wire turn number associated with the 9.75T curve of
Figure 31). The thick wire turn number corresponding w x = 0 is found

as follows, The fine wire is set near x = 0, Then A j(0) is recorded

as a function of thick wire turn number. A plot of the results yields
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a rectangular curve the symmetry of which allows one to estimate the
thick wire turn number corresponding to x = 0. The result for the
present run is 13.4,

Congider the 9'75Td curve of Figure 31, Its maximum value of
5.5 reticle units occurs at a fine wire turn number of 6.8. Adjusting
these turn numbers so they represent wire pesitions relative to x = 0,
one has -~3,65 turns for the thick wire, i.e., (9.75 - 13,4) and -2,95
turns for the fine wire, i.,e., (6.8 = 9,75), In terms of Figure 30
these two displacements define an intersection of the fine wire with
the shadow of the thick wire. This intersection is solved for graphi-
cally. One draws a perpendicular to the x axis of Figure 30 at
x =«2.95 turns, The x axis which serves to measure the thick wire dié-
placement at € = 2#00, i.e., the 2 axis of Figure 30, is rotated clock-
wise by 2_;,"\9,‘ radians when viewed at © = 300°. Its negative portion as
seen at this fine wire azimuth is represented im Figure 30 by the line
extending upward from the origin and inclined at an angle B to the ver-
tical, One marks off 3,65 turns on this axis and draws a perpendicular
to it through this point, The intersection of these two constructed
perpendiculars is a point (x,y) where an i(x,y) of 5,5 exists,

After a sufficient number of such i(x,y) values are plotted, con-
tours of equal i(x,y) can be drawn, The result is given in Figure 32,
The method of plotting has essentially rotated the i(x,y) at the 3 posie
tion of Figure 30 to the 1 position so that the l(x,y) of Figure 32
should be designated i_(x,y). The x axis of Figure 32 is a portion of
the 3 axis of Figure 30, The diagonals slanted to the left in Figure 32
represent perpendiculars to the x' axis of Figure 30, while those slanted

to the right perpendiculars to the axis inclinded at an angle B to the
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vertical. The original or unadjusted turn numbers are used to desig~
nate these diagonals. The subscript T stands for thick wire turn num-
bers while F serves for fine ones. The 13‘4"T diagonal intersects the

9,75 diagonal at (0,0).

E

At the beginning of a run current injected by Resonant RF Inflece
tion 1is maximized as a function of an injection parameter known as in-
flector voltage. In terms of Figure 32, the main effect of varying this
- voltage is to displace i, (x,y) up or down, Figure 32 indicates that
this maximization process places the region of high i (x,y) {n the
neighborhood of y = 0., This is expected on the basis of Section 5,2
which shows that for most tunes V¥V, and relatively low RF wvoltages the
region most effeective in producing usable beam lies in the neighborhood
of (-Yo 0).

The beam circle radius Yo is estimated from Figure 32, The sep-
tum thickness is five mils, One expects io(x,y) to exhibit an agbrupt
rise at x = -(v, + 5). Figure 32 gives some indication of such an
effect, The thick wire diameter 1limits the spatial resolution of
io(x,y). An Y, of 209 mils is chosen, For such a case the septum
extends from x = -214 mils to x = ~209 mils. The line x = -214 mils
skims, for the most part, the right hand side of the high intensity
plateau. A region of high intensity (seven units) lies below the base
line of Figure 32. The injection parameters and tune selected here do
not allow it to contribute charge to the beam circle. This region is

probably the origin of the field emission component of the beam noticed

in Section 6,4,
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6.6. PHYSICAL BASIS OF COMPUTER PROGRAM

USING i,(x,y) TO PREDICT A 3j(0)

The computer program SHO-14 takes i (x,y) of Figure 32 and finds
8 j(0) as a function of bump strength k., In making this prediction the
program allows for fine wire absorption effects. A detailled descrip-
tion of this program as well as other somewhat simflar ones will be
found in the appendices, Here a more physical description of the
approach used in SHO-l4 will be given,

A rectangle enclosing the required injection area is divided into
rectangular elements each of area dxdy., The current emitted by one such
element is i (x,y)dxdy. The relation between j(x) and io(x,y) is
built up by summing over the individual contributions of these various

elements, Consider j(x) first, The gun is turned on at t = 0,

NO RF
A pencil of charge from a particular element snakes around the accel-
erator several times before its head collides with the injector. At the
time of this collision the circulating current due to this element
reaches equilibrium, To evaluate its contribution to j(x)Nb qe At some
observation azimuth @ the following procedure is employed. Beginning
at t = 0 the successive displacements x of the pencil head are recorded
as it makes successive passes of the observation azimuth. An additional
steady current of icﬁx,y)dxdy comes into being with each new pass. The
x axis at the observation azimuth is divided into cells., Each of the
above increases is assigned to the cell in which its associated dis-
placement lies. When equilibrium is reached the program moves to a

consideration of the next injector element, After all such elements

have been considered, j(x)No e is found by dividing the current associated
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with each cell by the cell width,

The quantity j(x)“ 1s found next, Here the gun and RF are
considered to be on at a time defined to be t = 0. Por clarity, we
shall assume that beth the gun and the RF are turned on at this time
though this is not essential. Again censider the pencil of charge
emitted by a particular injector element. Break this pencil into units
of equal azimuthal extent corresponding to equal durations of emission,
This duration {s taken as one period of the RF, The first unit is

emitted from t = 0 to t = % o Its azimuthal extent is 2N

RE Ve
radians. The second unit is emitted from t = L ¢o t = 2% , ote,
¢Rg VYRe

Break each unit into subunits., The azimuthal extent do of all sub
units is the same. Theoretically, the RF electrode is considered to be
of zero azimuthal extent. 1In such a ecase eaéh de subunit of the first
unit of charge has a unique relationship to the phase of the RF as it
passes this electrede, Computationally, this condition is approxi..
mated by dividing a unit into JB subunits each of azimuthal extent
R‘Tt/\,” Jp radians. JB is any integer greater than zero, In what

follows any particular subunit of the first unit will be called a

first subunit,

For a particular first subunit there is a corresponding subunit
in each of the follewing units in the sense that each of these latter
subunits has the same relationship to the phase of the RF upon its
initial traversal of the bump as did the first subunit, Because of
this relationship the dynamical history of each of these latter sub-
units is identical to that of the first except for a time lag which
is sowe integral wultiple of = , Therefore, if one observes some

Yre
event involving the first subunit, sag at t = t , a repeat performance
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of this event will be given by the second subunit at t = t, + T
VR

The third subunit does the same at t = t, +.%£; , etc. Now the first
subunit travels about the machine anywhere from several to several
hundred times before colliding with the injector. A particular event
associated with this first subunit could be, say, the observation eof
its passing € = 300° for ifs tenth time. One would observe a burst
of current of magnitude i,(x,y)dxdy, and duration iF—.i%E seconds,

A certain displacement x would also be associated w;:L this burst,
From previous considerations we know that this burst will be followed
by an evenly spaced sequence of similar bursts é%% seconds apart, We
also know that these latter bursts are caused by subunits executing
their tenth pass of @ = 300° and that their displacement is the sawme
as that of the first subunit on its tenth pass of this azimuth. The

average current due to such a sequence of bursts is the charge per

burst, i(x,y)dxdy {F__L , multiplied by the bursts per second,
) Re J8

vRF go .

The result is

Ao(’l,g)dlxdtj
8

To compute the contr ibution to j(x)RF from subunits having the
same relationship to the phase of the RF on the ir initial pass of the
bump we therefore need only evaluate the displacement of one of these
subunits, say the one from the first unit, i.e., a particular first
subunit, as it makes successive passes of 8 = 300°. Each pass can be
considered an origin of a sequence of charge bursts of identical dis-
placement ylelding from this time onward an average current of
i,(x,y)dxdy/JB . Therefore £§x,y)dxdy/UB is added to the appropriate

cell on each subsequent pass of this first subunit, After all passes
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of the first subunit have been treated in this manner, the program
shifts to a consideration of the next first subunit, After all JB
first subunits have been scanned, the program shifts to the next ine
Jector element. At the end of the ¢ alculation the contents of each
cell are divided by the cell width to yield j(x)m= -

Given i (x,y) from Figure 32, k’ Yos Yx» and Ve, (here vy = vyq,)

the program SHO~14 yields j(x)RF » J(x) and A j(x). Two sets

NO RE
of these quantities are obtained; one uncorrected for fine wire abe
sorption, the other corrected for it. In the case of the latter, the
results are strictly valid only in the neighborhood of the specific
value of x at which the fine wire is set. Figure 29 gives computa-
tional results which correspond roughly to A j(x) of Figure 28 in the
sense that the value of k used in the computation is comparable to the
k which is thought to be apprepriate to Figure 28, Curve A of Figure
29 does not take fine wire absorption effects into account while Curve
B does, but eonly for the case of a 0,5 mil wire placed at x = 0., The
bump iness of curves A and B is mainly statistical rather than physical
as indicated by curve C. Curve C is the central pertion of Curve A
recomputed under the condition that one of the megshes used inthe preow

gram be twice as fine as before, Curve A shows the negative values of

Aj(0) expected at the beam extremities,

6,7 COMPARISON OF COMPUTED AND EXPERIMENTAL VALUES OF p3j(0).

From the end of Section 6, 1

Rl 222 | | mam? () [ £o)?

R = F3 Ve 4721 F\F[ 2-?%3 [ 2 ][9'"][{:@]
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In the experimental determination of A j(0) versus ViR of Section 6.4
the RF electrode is pulled back 71 mils from that point where it first
decreases j(O)RF « From Figure 32 it is seen that this point of inter~
ference will be near x = =250 mils. Hence, an #o ©f about -321 mils

prevails, Values of the other parameters in the expression for k abeve

are:
F, = 2,0 (Appendix 2-1)
F, = 1.56 (Appendix 2-2)
H = 0.0381 meters (1500 mils)

e/m(2m)2) = 0.4255 x 1010 coulombs/Kg. (24 KV. electron)

fe = 0.013
¥Yx = 1.357
fo = 42,84 Mc.

Hence,
k = F,V, 0.261 x 10" meters

3R
= F. Ve 1.03 mils

Figure 33 gives computational results for A j(0) versus Vp for three
values of Y, ; 205 mils, 209 mils, and 214 mils. In all cases (1) Fy4
equals 0.340 and (2) the septum thickness is 5 mils, The required in-
jection area exceeds the region over which ia(x,y) is known for Vg
equal to 20 and 25 volts, Extrapolated values of i (x,y) are used when
computing A j(0) at these two Vg .

The experimental A j(0) versus Vy appears in Figure 34 (Section
6.4, last paragraph). In Figure 35 comparison is made between the com-
putational result for an Y, of 209 mils (dashed curves) and the experi-
mental result (solid curves). The three dashed curves are the same comw

putational result for three different values of Fs; 1,02, 1,46, and 2,55,
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An Fy of 1,46 gives best agreement.

6.8. EXPERIMENTAL RESONANCE CURVES AND

THEIR COMPAR ISON WITH THEORY

The experimental resonance curves were found in a separate run.
Instead of measuring Vv, and §, the currents which excite the guide
field were set near values existing in the run which determined A j(0)
versus V, of Section 6.4 and i (x,y) of Section 6.5. To meésure a
resonance curve one first selects a VR + Then A j(0) is recorded as
a function of RF frequency fg. = Vie Yo for Vee lying in the neigh-
borhood of VY, . Off-resonance values of A j(0) are divided by the onw
resonance or maximum value of this quantity, Hence, each experimental
curve of Figure 37 exhibits a maximum of unity. The abscissa of Figure
37 measures AVpe in units of 0,002, The curves are designated by the

Vg appropriate to each. Here
A\?nP = (\?RF £fo - Vxfo )/-Fo

Iy = 1.357
£o = 42,84 Me,
Yo = 182 mils

The corresponding theoretical curves appear in Figure 36, They
were met previously in Section 3,4, There it was found that each curve

is generated by a specific value of the dimensionless number kT/q?
The four values are 1.0, 2.25, 5,0, and 9,0 each times 0,493 x 10™>.

The associated curves are designated by the numbers 1.0, 2.25, 5.0, and
9.0, respectively.

From Section 6,1
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The parameters whose values differ from their values in Section 6,7

’h'/lg ANkp
are IX.R and Fs « Here Lg = =294 mils so that ¢ %l+-€ H )

_ Y/Xg RANAR
= 0.418, Previously g H%H 2 h ) was 0,404 with k being equal

to Fy Vg 1.029 mils, 1In the present section, therefore,

k = FzVa 1.029 —__0'4'8) = F3Vp 1.06 wmils
0.404 /.
Multiplying this expresgsion by %"04'“’) ylelds
k/\"o - FzVg }.06
47 Yo 4N

Cons ider the Vg = 1,0 volt curve of Figure 37. The values of féh'&-
and Vg associated with its theoretical cognate of Figure 36 are,
respectively, 1'.0 (0.493 x 10"3) and 1,0. Substituting these values

in the expression above gives

.0 (0.493x107%) = Fy (1.0) _i.06
' 182 4T
Hence, F3 = 1.06. This value of F, makes the theoreti-

cal curves of Figure 36 look as much as possible like the exper imental

ones.

6.9 DISCUSSION OF RESULTS

The results of Section 6.7 (Figure 35) indicate that fair
agreement between the experimental and computational curves for § j(0)
versus VR can be had provided F; in the expression for k of Section
6.1 is set equal to 1,46, The same conclusion applies to the resonance

curves of Section 6.8.(Figures 36 and 37) except that there the factor
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F. is 1,06, The reason for the discrepancy between these two factors

has net been isolated. The discussion which follows reviews two points

which were considered in attempting to account for this discraepancy,
Inherent in the theeretical resonance curves of Figure 36 is the
assumption of an injector which has no septum and which exhibits a cen~
stant io(x,y). One questions what effect the introduction of variable
io(x,y) has on the width (shape) of these resonance curves. Once the
answer to this question is known, the effect of introducing a septum
will also be known since the latter is just a special case of the
former. Applying the program SHO-14 to specific elements (Figure 15)
on the required injection area, one finds that the shape of the reso-
nance curves obtained varies with the pesition of the element, For an
element near (-r,,0), resonance curves 1like these of Figure 36 are ob-
t;ined except that the flat top is medified., A dip appears in the
center, the curve rising to a maximum value where a cufve of Figure 36

breaks. When an element as far as possible to the left of (-r,,0) is

considered, its resonance curve has a maximum at AvVge = 0 and dew

creases monotonically with increasing | AVR\‘I « An element between
the above two gives resonance cur ves much like those of Figure 36, When
all elements on the required injection area are considered, the two com-
plementary types of behavior noted above cancel leaving the flat-tepped
curves of Figure 36. E)cperimgntally, flat-topped curves are observed.
at the higher V, (Figure 37)., It appears that taking injector preper-
ties into account will not significantly alter the value of Fy asso-
ciated with the resonance curve experiment.

The resonance curve data (Figure 37) does not depend strongly on

Injection parameters; the experimental and theoretical curves for A j(0)
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A

versus k of Figure 35 do, The main consideration in choosing an F,
which makes the latter look al ike is that their leading edges mesh,
The experimental Vg at which nonzero 4 J(0) begins is sensitive to
assumption C-3 of Section 6.1, i.e., that an electron's vertical dise
placement is never sufficient to allow it to hop over or under the
injector when its radial displacement would otherwise lead to colli-
sion with the injector. We indicate how violation of this condition
would be expected to affect the experimental results,

Assume an infinite injector having no septum, Let Vi = LN and
let io(x,y) = 1 . Turn on the injector, Assume that when an elec-~
tron first finds itself with a radial displacement x¢-r, at ¢ = 0O- that
the injector appears transparent to this electron but that when this
electron finds itself in a similar situation the second time, the in-
Jjector appears opaque, After waiting 2NTseconds, Figure 6f applies
except for (1) the pentagon being replaced by an N-sided polygon and
(2) i(x,y) over the shaded region being 2i, rather than i,, Break the
beam into segments, viewing any particular one only as it passes & = 0,
on every N-th pass it makes of @ = 0, Turn on the RF bump (6 = 0+),
Choose k so that ';lsl_t << A%Y¥o . Consider a segmenlt whose N-turn displace=-
ment vector is directed 1':1 the positive x direction,

Charge which oeriginates to the left of x= -v,-2 (B%.) never
reaches the beam circle. To see this, consider points which at t = 0
lie between = —Y°_3(’N_2!) and Z = -Y, - 2(—".‘5‘!). At t = N7 they appear
displaced &;to the right. At t = NT- all charge attached to this group
of points still eriginated to the left of x= —Yo-l(_NTk) . The points
are doubly filled. One half the charge on each point has age N7 ; the

other half, 2NK% , That half of age 2N+ collides with the injector at
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t = Nt. 1Its place is taken by new charge of age zero, The injector
appears transparent to that half of the charge which is of age NT, This
half subsequently collides with the injector at t = 2NT between = =V,
- N% and x = -r,, Hence, charge which originates to the left of

X = -r, —2(N%) never reaches the beam circle.

The required injection area is seen from the above example to be
of x extent 2(N§). Introduce a septum of thickness DE. As long as
NJEO < _5_?_ , N0 charge reaches the beam circle. When BF > N%’ > EE,
charge reaches the beam circle. The i(x,y) associated with this charge
is i, . When Ng > DE, the i(x,y) associated with filled regions
pushed into the beam circle can have two pessible values, i, or 21, .
By increasing N% sufficiently, regions of 2i, can be made to pre-
dominate over regions of i .

It is concluded that if in the experiment of Section VI the
assumption of an opaque injector is vislated in some degree then (1)
charge will begin to reach the beam circle at lower RF voltages than
with an opaque injector and (2) the amount of charge trapped at any RF
voltage (k) will be greater than or equal to that trapped with an
opaque injecter, other things remaining the same, In other words, in-
jector transparency would make F larger in the A j(0) versus Vyp 86X~
periment than in the resonance curve experiment and would also meke the
experimental curve of Figure 35 lie above the computational one. The
former is seen; the latter is not. No conclusion is possible. One notes,
however, that even with a perfectly opaque injector, the experimental
curve will lie below the computational one if the vacuum tank has not
eliminated all electrons with large 03--which it eliminates anyway be-

cause of their large 03--before such electrons have reached 9 = 3000.
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In such a case the experimental i (x,y) used in finding the computa-
tional curve of Pigure 35 would be greater than it should be.
We conclude that the theory of Section III provides an adequate
sero-th order explanation of the experimental results. Beyond this it

is not possible to say too much as reasons for discrepancies of the

order of 40% have not been isolated,
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VII. CONCLUSION

Segtion III considers properties of RRFI which can be investi-
gated analytically, The computational results of Secéion V extend
these results. Section VI {s an attempt to test the predictions of
Sections IIT and V experimentally. To accomplish the latter it is
necessary to restrict Qx so that non-linearity is effectively absent,
In a less idealized application, non-linearity will inhibit the effec-
tiveness of RRFI (Section 5,3; Appendix 7). In what follows we simply
review basic properties of the on-resonance linear problem.

(1) 1In the absence of a septum RRFI achieves the Liouville
limit: 1t exhibits 100% filling efficiency. The size of area of the
required injection area depends linearly on bump strength k., The
number of turns injected is given by the ratio of the beam circle area
erf to the required injection area. Making k arbitrarily small makes
the number of turns injected arbitrarily large.

(2) Charge efficiency is the ratio of (a) the charge trapped to
(b) the charge emanating from the required injection area in the minimum
time required to trap the above charge. When 100% filling obtains, an
upper limit on charge efficiency is 25% ( Vx = L;_ ; N!; << AMNYo ) .
Raising k lowers charge efficiency somewhat. 1In a situation like that
of Figure 15 it is about 20%.

(3) The shape of the required injection area depends strongly on
V¢ ; less strongly on k. The size of this region is relatively insen~

sitive to y, but, as noted above, varies linearly with k, When the
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required injection area is broken into differential elements one
notes (Figure 15) that each element contributes roughly the same
amount of charge to the beam circle. Because of this, the filling
efficiency in the presence of a septum 1is given roughly by the fraction
of the required injection area not covered by the septum, Introducing
a septum does not alter the charge efficiency appreciably.

(4) Resonant RF Inflection is relatively insensitive to depen-
dence of k on x, at least when k(x)»0 is the sum of an 0dd function

of x and a constant function of x,
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APPENDIX 1

DETERMINATION OF THE N~TURN D ISPLACEMENT

VECTOR USING ALGEBRAIC TRANSFORMAT IONS

Table 1 gives
Xn): n
‘ M
Yn

M

n-1
’ZO) + ””-p ( o )
Yo 8Yp

p:=0

where .
cod (AW V) A (2% Vi)

- am (2N %) coe (2WW)

o . : ¢
and where AYyp = R.am (wy P'\-.\.d:): kum(amv,.m?) A simple expresew
x .
sion for (":) is desired when vg= -‘; withn= IN; I =1, 2, 3,00000 o

¢‘
Upon substitution of IN for n in (*:) one obtains

¥ 1 T~ | %o = n-P [ ©
= ™M + Z ™M (AHP)
Yzn Yo p=0
Since e (RME) MB""\-)
M ) : N

‘M(a"'".':) cos (ank)

N

it is true that 1+ M=z M

(’th (’lo) = -P o
+ 22 o)
Yan \30 P=0 3'

Break this sum into I units of N terms each. The first N terms of the

b
= *++x2M . Hence,

"

sum belong to the first unit, etc, Now all units have the same value,

This fact is shown below,

The bump AY, has the form By, = R aum (2% EP+¢) . Because of
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this, A3'= Ag Pew - Ay P+an = **’'e One can therefore write

-p (o} ~(Pyn) [0} ~(P+ran) o
M ( ) - M = M e

If the first expression here is summed over P from P = 0 to P = N « 1, one

obtains just the first unit mentioned above, Treating the second exprese
sion in a like manner yields the second unit mentioned above, etc., Hence,
all units have the same value,

The previous result allows one to write
Kxv Lo - M—P ©
( = + X Z. Ay,
Y Yo

pxo
Express the term AY.: hm(ﬁ’h'h“’*#) as
byp= R 2m ( ATLP) coad + Je m(amﬁp)_w'n¢

Now .
o4 (AN LP) - aum (2N 5 P)
. 1) L
M = ) ,
M(M\%P} wa (2% )
80 that

J( o ) . -m‘(am%‘w)mw\ - AU (AN P) coo (AN P).aimig)
™ by, am (RN ﬁ?)m(?"";") cool@) + coo.’(z«th).w'n(d)

Substituting this result in ('xtn\) gives

Yzw
N- ) A
- awm (2% % P)
Krwn : %o + Thcoad Z( ' ]
Yzn Yo pro) hin (A% y P) oo (2 iP)
Neplt
. Zj ~m (2% LP)coo (aML?
+ Thamd ( ( ) ) N\
P=o0 ma (2'“ i?)
Wt s
It is seen that only two basic quantities need be found, i,.e., ZM(‘\'N;P\
LR 2 N Pz o
and ZW (2"‘1“:‘?) . 'This is so because ZM(ﬁ‘h ‘.';P)coc(am\.:r) can
P:O e =0

be expressed in terms of the first quantity above, i.e.,
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\

L \ S o L P
> :M(ah%v)m(afwﬁﬁ =z EOM (4w )
- P:

p=o

M=t
. R
and because 24"”‘ (:”'EP) can be expressed in terms of the second
p=o
quantity above, i.e.,

M- ™= N~
o = - z L?)) = N - 2anr
Zm(amﬁv) = Z(l coa®(amEP)) = N 7 coa®(2 ;P)
pzo p=zo pzo
Nt [T 2
’ L nLP
The sums ZA‘M(‘"‘.&") and ZCDO (? 3 ) are evaluated.
pso pzo
Now
: LY, -+AtTw®
am (4%sP) = |, 2 i -2
~N .
L R4
and .. —A4AT:P
| 9
oo (A LP) TN L N
GO | 4

Summing either of the above over P from P = 0 to P = N ~ 1 yields
& raane®
sums like Z,o. N, Such a sum is a geometric series., The ratio
p=o

: , Lav L
R of any term to the preceding one is ‘_t* ~N

. The sum S of this

2+
geometric series is g§= 1-R where = N-1. Hence,

Yzn Yo
‘ + Ik Aamd (

1-R
N\ - .
. 3 A Q%L
Z Q_t&q“}ﬁ? - l - 2 _ TR \
: W L 3
p:o i - -2.*"'4,“';'34 | -~ o5t -
. = 0 since o< k <«
[, N Na
Consequentl am (4 LP): nd coa (AR LP)= N i
q v.:Z; (4xLP):0 a Z SRR T LE
. = [V ) . . - -
concluded that Ew(am 59) wo(aml_uv\wand that Zmz (R & P) =
et N N N
. a P=o Pzo
L am (ﬂ"f.“-.‘?)= % . Upon substitution of these results into the expression
'RD
for ('X‘N) above one obtains
Yzm
Lrw %o -!15
' = + Ik oo ¢ o
o
2)
F3
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Airw %o ) ( - Coo ¢ )
x + INK
9 zw ’ Yo a Awm @
Here NX [~ el is the N-turn displacement vector,
2\ amé
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APPENDIX 2

EVALUATION OF THE FACTORS F, AND F,

USED IN THE ESTIMATE FOR k OF SECTION 6.1

(1) The RF oscillator, wltmeter, and frequency meter are con-
nected together at a commwon point, This point in turn is connected to
the RF electrode (Figure 25) via about two feet of 200 ohm coaxial
cable (Hewlett Packard 46A-~l6A). A sinusoidal wave traveling toward
the electrode is reflected at the electrode, A standing wave results.
Consider the elevctrode to be at x = 0, Take the cable as extehding
from x = -~ % to x = 0, Let C(0) be the capacitance terminating the
cable, i.e., at x = 0, With €(0)30the rightmost node occurs at x = -%
An antinode oecurs at x = 0, Here 2 is the wavelength of the RF wave

on the coaxial line. 1In what follows A is the wavelength in free

vac

space or, synonomously, on a coaxial line whose dielectric is free
‘space.
Exper imentally, the RF voltme ter is at x = -2'= - Avee | With

®

C(O) = 0 and with 2= 2,,. , Ve (o) z ! = /.4 . Nonzero
, Ve (-3") cod 45°

C(0) shifts the node closer to x = 0, In such a case both VR(O) and

V‘(-2') decrease but the latter decreases faster than the former so

that their ratio increases. When 24 2,.. , the node moves still further

| 16

to the right, An expression is found for _Vﬂ(")) which takes these
Ve (-2'

two factors into account, The treatment which follows is based on one

, 17
given by J. C. Slater.
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The current at x at time t due to a wave traveling to the right

w - - . : ’
is Aa.“ ne 0'&). The line is cons idered loss free so A is real and

A% The current due to a wave traveling to the left is

(Wept -Bx)
+

equals .

L.‘(w"t'a.?)

,'BLL(w"“'t*e"') . The total current is I(2%)= AL B

The impedence Z, of the line is assumed purely resistive, It is posie

tive for a wave traveling to the right and negative for one traveling R
| - i (Uget-dn)
to the left, The voltage at x at time t is Vo(4, %) = Za[A ¢4(_ .“i *)

_ B".:L(wnpt-f 84)]

. The impedence of the line at x, i.e., 2 (a) , when

waves of both types are considered is

Z(x) = Velxt) . z, (A 48" - Bo*82]

I (m,t) [An.';"@"‘-& 5&194]
The impedence Z (9) terminating the line is -L « Here wn';z'ﬁ';'p
Wee CLO)

where §__ is the frequency of the RF., This capacitative reactance will

be represented by iX where X is real and equals _=! , At x = 0 one
Wee CLO)
has .

Z(e) = Z,(A=B) = Zo() - B/A)
' (A + B) (| "'B/A)

Solving this boundary condition for B/A yields

B/A = z,'--Z(M= Zo -4 X _ ZJ?-,'X‘-»'Z.«'XL
Zo+ 2(0) Zo+aX 22 ¢ x?

and letting cooy= — 29 _ omne finds that

Z2;+ X \{7}_4-?‘

B/A equals _Q_**a" o Substituting for B/A in Vo(x,t) and multipllying the

Letting .awmm ¥ =

: an
result by o vyi_elds

44‘" . . ) :
‘ ' A (Wept -8x +n) Plw ft+s¢-n>]
Vow) = 2o B [ | et -

" .

—

Since A is arbitrary, let A/‘in equal A’ where ' : A’ is real, The

real portion of V (x,t) is Zo A’ [ ot (weet -Bat+n)- W(ngt+8¢-n)]
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or just -2Zoe A'awm (-8%+M) am(w,,t). The rms value of this quantity

is (2 Zo A'\M(_/Ja.nq)\. Hence

Ve (©) . | amn) - /
Vet?) . .
Ve (%) Laim (-Bx +7))\ | coo (-84) + cot 7t 4m (-8m)|
Since cot (M) = Zo/X = - Zo War C o) .
Ve(°) _ l .
Ve (%) | co0 (-Ba) ~ Zo Wee CL0) am (-84)|

To compute -B4 = - A%, 2 must be known, If L, and C, repre-
' a

" sent, respectively, the cable's inductance and capacitance per unit

leﬁgth then the propagation velocity of a wave down the cable vis

I | = L2 dw(De 2N €6 ;

\WWee, . Hence, 2+ =—=—_—— . Now L= (-—\. Cue £2NEbe
‘LICI ) ,———1\-*(:‘ ":ns x 2% 0i h(_p_ﬁ) )

o and D, are, respectively, the diameters of the outside and inside Ds

édnductors; € is the dielectric constant of the material (beads)

separating the conductors; e €o= Z'-" where ¢ is the speed of light;

€= 8.85 x 10"12 farads per meter. Hence, 4= S + The charace
‘ /¢ Fre

.. L 1 GM(E-‘\
teristic impedence of the line 2, is 200 ohms where Z,* r = {-‘_—, 0.
) »

o . A% €aC
The quantities D, and D; are, respectively, 0.480" and 0,0092"., Hence,
‘ ¢
Ye '=1.18 and Q= « Here 4:” = V¥ = 58,1 x 106 1/sec.
) \ [NE ) -ng

. !
Whem x =-2°, -@x - - 2% is 0,876 radians or 50.4°, Hence, coo(-3x)=
0,637 and am (-B2) = 0,770,

. Express C(0) in units of 10-12 farads. Then Zo wy, CLO)

becomes (200) (2 (58.1 x 10°)1071%C(0) or 0,073 C(0). The quantity

" Ve(o) _ l

Ve (%) | €00 (-82) - ZowWgp CLO) aim (~484)

becomes for x =-2

Ve (o) _ ]
Ve (-3') ] 0.637 ~ 6.0562 ¢(O)|
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Substituting values of C(0) one obtains

) VacH
o) |.57
l 1.7
2 1.91
9 ‘A.l4
4 2.43 .
s 2.81

A measurement of Vg(o)/vﬂ'(_z.) was made, A second RF elecw
trode~coaxial cable combination like that of Figure 25 in conjunction
with a shield to simulate the electrical effects of the vacuum tank was
made, Differences between the two systems follow,

The stem protruding from the brass draw tube in Figure 25 _is
soldered to a 1" by 1" copper plate., The other end of this stem sets
in a socket which in turn is held in place by a plastic spacer. The 1"
by 1" plate in conjunction with the s tem, which we call the RF elec~
trode, can be removed from the socket. ‘The brass draw tube and Socket,
less the RF electrode, is simulated with a General Radio #874 50-ohm
coaxial connector, The plastic spacer in the 874 is thinner tﬁan in the
brass draw tube., The socket is larger, It is assumed that the terﬁ\ina-
tion capacitance presented by the socket and spacer is the same in both
cases, This capacitance is denoted by C;. No attempt is made to simu-
late the 9/8" by 9/8" grounded plate situated at the end of the draw
tube (Figure 25),

The first step in determining _V_Rﬂ is 1;.0 find the input capae

Ve (-2') _
citance of the RF voltmeter (HP-410B) used in the measurement. A second
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RF voltmeter (HP=411l) is placed at x = ~2', The RF electrode and the
shield simulating ‘the vacuum tank are removed from the 874, The HP-410B
is attached to the central terminal of the 874, the ground lead of the
HP-410B being attached to the outside conductor of the 874, The voltage
at x = =2’ is recorded. The HP=410B is disconnected and var ious capae
citances shunted across the 874 until one is found which gives the same
voltage at x = -2'.as noted above. The best compromise proved to be a
3.3!.5/7w¥{capacitor. This capacitor is taken to be electrically
equivalent to the RF voltmeter. The exact value of this capacitance
is noted by C_,

The HP-All at x = =2 is disconnected., It is not used in any of
the subsequent measurements. The above capacitor is shunted across the
line at x = =2’ and the RF voltage at the 874, as measured by the HP-410B,
adjusted to 2,8 volts, Five different capacitors are then shunted across
the 874 and the Vh(O)'associated with each recorded., The HP=410B at
x = 0 and the 3,3 uufd, capacitor at x = -2’ are interchanged. The
Vk(-z’) a;e recorded as this same sequence of capacitors is shunted
across the 874, 1In addition, the 3,3%,5 uufd, capacitor simulating the
HP-410B at x = 0 is removed along with any of the previous shunts and
Vk(-z') recorded, Thell" by 1" electrode and the shield simulating the
vacuum tank are attached to the 874 and Vu(-2') recorded,

The above data appears in the table below, Here C, denotes that
portion of the capacitance terminating the coaxial cable due to the RF
electrode and shield. The last column on the right contains predictions
of the total capacitance terminating the cable, i.e., C(O)I. These
predictions are made via information contained in the previous table

\

coupled with the measured values of )ﬁgﬁj{l found in the next to the
' Ve (-2°)
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last column below,

# ey | clo) Yo 2 s vacan |2 | cco’
o fd. measured | estimated | o R (-2) o dd.

| Com Ci 4 Com 2.8 1.6 2-4 4.0

2 | Cwm Ci+Cm+33] 2.75 S1(5) S.3 8.0

3 Cwm Ci+CmeSo 2.67 .33 8.\ 9.1

4 Cm | Ci+Cm+75| 2.57 66(5)| 3.9 16.0

5 Cwm Ci +Cw +10 2.42 1. 6 2.4 18.7

6 Cm | Ci 2.82 176 .6 .2-,3

7 Cm Ci+ Ca 2.62 1.38 2.0 2.6

Compar ing C(0) and c(0)’ in lines 1, 2, and 3 leaves one with the
feeling that the measwrements are consistent, Consideration of lines 1
through 5, however, leaves one with the opposite feeling. This dise
crepancy is not pursued, It is concluded from lines 1, 2, and 3 that

Ci+Cy 1is about 4 uufd, This result in conjunction with line 6 says
s ¥d .
that C_ is 3.7 - 3.8y This is consistent with the knownh value of C_,

i,e.y 3.3 2.5 vufd. Line 7 indicates that the total capacity termi-

Ay £d

nating the cable is about 2.6 uufd., Since C; = 0.2 -~ 0.3« 2,6, the

A
assumption that C; is the same in the original arrangement of Figure 25
as it is in the present one is not critical. One concludes that it {s
not unreasonable to associate a VR (O) of about two with the arrange-

Ve(-a')

ment of Figure 25, Hence, F = 2,0,

'
(2) 'The effectiveness of the RF electrode of Figure 25 was
investigated using an electrolytic 1:ank.18 If this electrode is held at
a potential V  and if the vacuum tank is filled to one-~half its height
with sl ightly acidified water then the eleetric field throughout the

vacuum tank is the same after filling as before, The reason for this

red -~
follows: A small current 0 E gompeves flows in the water. Here
3 metey 2
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E is the electric field at a point and o, the conductivity of the

water. Since no current flows across the interface between water and
air, the component of € normal to the interface at the interface must
be zero, In the absenc; of water the component of € normal to the
median plane on the median plane is also zero, The potentials on all
metallic surfaces serving as boundaries for either the region occupied
by air or the region occupied by water are the same after filling as
before filling. It is known that a unique solution to the electro~
static problem exists within a charge free region when either (1) the
potential or (2) the normal component of -E’ is specified at each point
on a surface enclosing the region., Hence, T within either the region
occupied by water or the one occupied by air is the same as it was
before f£illing occurred,

If any of the metallic surfaces above the water are now altered,
E‘.’ within the water does not change. This is so because (1) the com-
ponent of ¥ normal to the interface at the interface is still zero and
because (2) potentials on other surfaces bounding the water remain
cons tant, Figure.39 shows how the problem is set up in an electrolytic
tank, We shall, however, continue to speak of the vacuum tank of Figure
25 as being half filled with water.

The quantity of interest is the radial impulse an electron
traveling in the median plane receives as it passes the RF electrode,
Hence, only the potential gradient in the x direction on the surface
of the water need be found and then only along the electron orbit. As
in Sect#fdn 6/l curvature of the electron orbit as well as that of the
inside wall of the vacuum tank is neglected. The electron is taken to

pass 0,32" from the RF electrode. A sliding carriage above the water in
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conjunction with suitable measuring devices allows the tip of a fine

wire touching the surface of the water to be set reproducibly at any
desired point on this surface.

The tip of the wire is set on the assumed electron orbit and
moved along it in 0,1 steps past the RF electrode, At each step the
setting of the voltage divider giving a null in the voltmeter reading
is recorded for two radial positions of the wire, i.e., x =-0,02"and
x = 0,02", The voltage divider is a linear 40 turn Helipot, We let
P, and P: be, respectively, the number of turns on the Helipet dial
which gives a voltmeter null when the wire is at x =-0,02" and x = 0,02",
Here P,2 Pn . If the wire were to touch the RF electrode, P, would be

40, The radial electric field at x = 0 for the n-~th step is

Pn _ Pu
E" - VO -;-—o— AO
0.04"

The time a particle spends in the neighborhood of the n-th step

is ©:.! , Here ,, is the electron speed, The impulse an electron re~
Vo

ceives on passing the electrode is

> ~e € 2_') : -e% L 5 (Pn - P)
ksl

m V) e -'-;
The P, are recorded over a range extending about +1.5" to either side
of the center of the RF electrode. In the first trial, however, only
one side of this range is traversed. The first trial gives -)¢4 (%r!.‘.’)
L
e Vo
for this impulse; the second, - /.73 ( > )
The expression for the radial electric field on the equilibrium

orbit found in Section 6.1 is

U3
EO - 4‘\/0 2 -
N
H o+ o5



wll5-

Since H {s 1.5" and since xniu ~0,32", the impulse an electron raceives

in a time ar. ' 1is

o
- (o0.32
- QEoBT™ = -—-eVo (.‘_‘_) 2 -
Mo Ls - am (0.32)
\ + 2 . €
= ~ .08 (‘_V'.)
Ao

Upon compar ing this result with the two trials above one concludes

that the kick given an electron by the electrode of Figure 25 is abeut
[—'—'f{—%}:l.;b times stronger than estimated in Section 6.1, Hence,
F, = 1,56, |

2

(3) It was investigated whether the time varying magnetic field
associated witft the electric field in the neighborheod of the RF Elec-
trode of Figure 25 is 6£ sufficient strength to contribute appreciably
to the A'j" given an electron passing the bump. Such influence was

found to be negligible,
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APPENDIX 3

DESCRIPTION OF COMPUTER PR OGRAM SHO-14

Given io(x,y) SHOw14 predicts, via the theory of Sections II

and III, j(x)“ , §(0 and 8j(x). Two sets of these quantities

nNe ve !
are given; one includes the effects of fine wire absorption, the other
does not. The physical content of SHO-1l4 is discussed in Section 6.6,
This appendix considers the actual Fortran program, The program, a$

it appears at the end of this appendix, is divided into consecutive

blocks designated l4.l, 14-2, etc. These blocks are described in the
order in which they are met, In what follows the term "electron” de-

notes either (1) the head of a pencil of charge in the NO RF case or

(2) a sub-~unit in the RF case.

The Fortran program SHO-1l4 is intended lial

for use with an IBM-704 computer having a 32-K core.
The CC*s specify the experimental io(x,y) at mesh points of a rece

tangular grid (Figure 43). CALL MURGR2 ( ) is a subroutine pecu-

liar to the MURA Fortran Library.I' It specifies the manner in which

input data is punched on cards and read into the core,

Input data other than 1°(x,y) is entered 14-2
in terms of the A's, ‘
The subroutines SINAF( ) and COS4F( - ) 14-3

of 14-3 and 147, respectively, are peculiar to the MURA

Y )
Fortran Library, If the number g is used as the argument of the first

then the associated subroutine computes sin(2fg). In 14«3 sin(2%g) is



=117
computed and stored as B(I) for JA values of g ranging from zero to

(JA=1)/JA in increments of 1/JA, Later the B(I) are selected as needed

to simulate the RF bump

When a series of runs is submitted, tle lbwts

program returns to statement 110 at the completion of
each run, Hence, the A's can be changed between runs but the CC's as
well as the value of A(l) actually used in a run remain invariant

from one run to the next. A(l) is used prior to statement 110,

The experimental io(x,y) as contained in 145

the singly subscripted CC's is expressed in terms of

the doubly subscripted Gl1(I,J) after the manner of Figure 43,

The rectangle of Figure 43, defined by A(16) 146

through A(19) is divided into cells, The width and he ight

of a cell are, respectively, APC and ARC,

In the absence of external influences the l4a?

transformation M relating the (’;) of an electron to

its (’:)one revolution later is

0ds (AN Vr)  am (3TV) pw D6
MWV = =
~ am (A V) coa (3N Va) -DG  DH
Exper imentally, the observation azimuth is l4.8

at 9:—32! while the RF electrode is at @= 2_61" .
Computing .time can vbe decreased by taking the observation azimuth as
the point of ‘reference rather than © = 0, The quantity A(25)20 is the
fraction of a turn the observation azimuth’is behind the injector. The
fpaction of a turn the RF bump is ahead of the injector is given by

A(23)20, The counterclockwise transformation from & = 0 to the observa-

tion azimuth is
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oo -0C

M(-Vx2% A(26)) =
ocC oD

The counterclockwise transformation from the RF bump to the observation

azimuth is
AF -AE

M (-« 2N (A(25) + A23))) =
AE  AF

When an electron passes the observation 14=9

azimuth it is of interest to know whether it will collide

with the injector on its next attempt to cross @ = 0, This test can
be made at the observation azimuth by transforming the phase space
representation of the injector sink at & = 0 back to the observation
azimuth, One then notes whether the (x,y) of the particle lies inside
or outside the half plane representing this sink; if inside, collisfon
will result, The transformed sink is shown in Figure 45. It is the
half plane lying below the solid diagonal line. Here ¥ = Vx 2N A(RS),
It will be required that o< ¥ <‘r. The y intercept of the solid dia-
gonal is b, « The parallel dashed line drawn through (x,y) has a y

intercept of b,, If (ba. ...b' )»0 then no collision will take place.

b . Yo . -A(R4) _ _pv
Y aimT DC
bp= y+reee¥ 4z y 4+ B0p = ye+oT2

DC

The tesulfing collision test, as it appeays in 14-20, 14~23, 1434,
and 14-37, is: IF (Y+X®*DT4DV)>0, then no ecollision, The program also
allows the observation azimuth to be placed at @ = 0. In such a case
A(25) = 0 and .the collision test becomes : IF (X+A(24))>0, then no

collision,
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The portion of the x axis at the observation 14-10

azimuth defined by A(27)$x ¢ = A(27) where A(27)<0 is divided

into cells of width equal to the fine wire diameter A(28), It is re~
quired that A(27) be an integral multiple of A(28) thereby yielding
2|AC27)] /A(28) cells in all, The leftmost cell is number one. When

an electron passes the observation azimuth its displacement x is noted
and an appropriate io(x,y)dxdy added to the storage location corres-
ponding to the cell in which this displacement l1ies, The relevant cell
number JG is the integral portion of (((-A(27) + x) / A(28)) + 1,0). The

actual test is JG = (DPP+x) / A(28)., It is equivalent to

J6 = —A(37) + % , | c000004
Ac28)

The ,0000004 is superfluous, It is required that electron displacement
x always satisfy A(27)<x¢- A(27).
The number of the cell corresponding most nearly to the posi-

tion of the fine wire is JJH = A(33).

Tilese instructions allow the addition of a 14=11

Kx* bump (:") to the (":)of an electron passing the

observation azimuth,

o o o

.-
Ay AC30) Z x**2 ‘BEEP
Yo

The bump strength when |M‘= Yo is A(30), The Ay is computed at the
center of each of the cells of 14..10 and stored as GGBU(I)., Here I

represents the number of a cell, The total number of cells is INT2,

The program finds j(x)No e

and j(x)p.F 14-12

¢

both in the presence and absence of fine wire absorption

effects, The various "GG" storage locations of 14-12 are associated

‘with these four current densities, The code used to distinguish them

is:



WNR Wire; No RF
NWNR No Wire; No RF
W R Wire; RF
NW R No Wire; ’r
The experimental io(x,y) is specified at l4e13

points lying om or within the rectangle of Figure 43

defined by A(16) through A(19)., It is convenient to introduce a second
rectangle (Figure 44) lying on or within the previous one over which the
program extracts information in any par ticular rumn. The latter is brow
ken into rectangular cells corresponding to the differential elements
dxdy of Section 6,6, In 14=13 dxdy = AREA = AP*AR/A(26) provided A(26)
is unity.‘ A(26) is a scale factor which allows the éxperimental iy (x,y)
to be punched in the most convenient units and which yields j(x) ex~

pressed in oscilloscope reticle unitse

The dxdy elements of the rectangle of 14-14

Figure 44 are scanned from left to right, bottom to
ﬁ)p. The value of 'io(x,y) at the center of the particular dxdy element

the program happéns to be considering is G2, Linear interpolaiion is

used,

The observation azimuth rather than 6 = 0 V 1415

is the reference azimuth, When the program considers a new
dxdy element, the (':) associated with it is first transformed back to

the observationaimuth (14«.8), This nonphysical operation is negated in

l4-16,

Given the (?;) of the head of a pencil of charge 14.16

1416 finds its (’:) one revolution later (f4-7).

The number of the cell in which this head 1417

lies is JG (14~10),

The current io(x,y)dxdy = G2*AREA 14-18
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(14~13), 14-14) should be added to GGWNR(JG) (14~12); instead only G2

is added, The multiplication omitted here is performed in 14«24,

The Kx~ bump is added in (14=11), 14w19

Division 14=20 tests whether the pencil 1420

head collides with the injector on its next attempt to
pass @ = 0 (14-9), If it will collide, the program shifts to a consi-
deration of the next dxdy; if it will not, the program proceeds to

1421,

Statement 210 tests whether the pencil head 1421

collides with the fine wire, If it does not, control
passes back to statement 180 of block l4-~16. This loop is repeated
until the pencil head either collides with the injector or with the fine

, control shifts

wire, Because one may be interested in obtaining j(x)'“"“

to statement 14~22 when the collision is of the latter type,

Since j(x) and j(x), . .a are not 1422

NwR

observed exper imentally, it may be of interest to skip
computation of these quantities in order to decrease cewmputing time,

Division 14-22 tests whether j(x) is to be computed., If it is not

Nwnut

to be found, the program jumps to a consideration of the next dxdy;

otherwise, the program goes to 1423,

This loop parallels 1415 through 1420, 1423

dn (4~R4, ¢ 2 @OWIR(IG) is added to GGNWNR(JG) so that the

latter is associated with j(x) as it is supposed to be rather than

Nw R

with (j(x) 3(x) ) as it is in 14«23,

NwNRT waR

When the pencil head collides with the injector the program
jumps to a consideration of the next differential element dxdy. After

all dxdy elements have been treated control passes to 14.24,

The multiplication of i°(x,y) by dxdy 1424

neglected in 1418 and 14.23 is performed here as well as
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the addition omitted in 14~23, The resu!ting GGWNR (I) and GGNWNR(I) need

only be divided by the cell width A(28) to yield j(x)wN and j(x)

® NWNR

This division is performed in l4«40,

Division l4wz5 begins the determination 14-25

of j(x) , and j(x)_ . . Here AD equals k of Ay-= R am (wept +9)

The expression for k is derived in Smetidun:od,

The straightforward way of taking into 14-26

account the RF bump A\J = km(wgpx+¢) is to add the

bump vector (:g) to the (z)exhibited by a subunit as it passes the
Azimuth of the RF bump, Here, however, an equivalent procedure is eme
ployed which allows computing time to be saved. The bump vector is
transformed back to the observation Dzimuth and this transformed bump
(Am;) added to the (?:) exhibited by the above subunit as it passes

4y
the observation azimuth, By 14.8 one has

(o) = (& e a) - () e
(::) (A‘)mcw;,tw)'

AW
Divig ion 1426 computes A® and AH.

nt

1
an
The transformed RF bump vector (A )of 14.27

14-26 is evaluated for JA values of (wp,t+@) running from

zero to 2 (JA~-!)  in increments of %“:f (14-3), When an RF bump is %o

JA 63}

be added to a subunit an appropriate bump vector ( ) is selected
F(x)

from this reserwir,

The number of subunits in the first unit 14-28

is JB. The definition of AAJA in QRST is given in 14.3, The

program makes use of JB, AG, and QRST when selecting the appropriate
G(I\)

transformed bump vector (
F(

of 1427 to add to the (':)of a



subunit, See l4a33, wl23.

The rectangle of Figure 44 defined by A(12) 1429

through A(15) is considered in 1413 in connection with the
NO RF case. This same rectangle also serves in the presence of RF,
Statistical considerations, however, allow the dxdy elements into which
this rectangle is broken to be larger than in 14-13, Both dx and dy are
usually increased by a factor of Voe' (14=28), These larger dxdy must
still be fine enough to represent variation in io(x,y) over this rece
tangle (Figure 32) as well as variation in the relative effectiveness
of different portions of this rectangle to contribute charge to tha beam
circle (Figure 15).

The statement, AREA = AP*AR*AB/A(26), parallels the AREA state-

ment of 14+13 except for the factor AB = 1/JB. See 8ection 6,6,

See 1414, 1430
See lé4al5. 1431
This statewment controls scanning of the JB , 1432

subunits into which the first unit is divided.

Division 14«33 selacts the appropriate l4=33

transformed RF bump vector (::::)of 14=27 and adds it to the

("') of the subunit passing the observation azimuth,

: When the Leth subunit of the first un{t makes its first pass of
the RF electrode the phase angle of the RF, Wy, £ +¢ , is assigned the
value 2 (& +AMR) | See 14-28 and 14=32. Here A(2) = Var . Any
constant besides A(2) would serve just as well, In 1433, as in the rest
of SHO=14, the factor 2% does not appear in the argument of a trigono-
metric function, The subroutines used to generate values of the sine and

cosine add this fgactor of am iwplicitly (14-3). 1In desceribing 14«33,

however, the 2% will be included, The RF phase angle mentioned above
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resides at line three of 14~33. If the Leth subunit makes a second pass
of the RF bump, statement 390 of 14«37 increases the above phase angle
by aNVge . On the L-th subunit's Q-th pass, Wege+ ’ equals
an (& + @A),

When the Leth subunit makes its Q-th pass of the observation

azimuth, the transformed RF bump vector which should be added to the

subunit's (':) is (:: ) Am (wact-!-vs) . Here (wguai 4-#) equals
) e(x)) _ AG\ ) N (3~1)
am ( 3"3 +Q AL2)) . 'The particular FLI)\‘ ...4( An M(%_K‘:.__:‘ )

of 14«27 which nearly corresponds to the above bump vector is selected
as follows; (1) Any integral multiple of 2% is temporarily dropped from
(weat+g) .;(2) The fraction left is divided by ax/sa ; (3) The
fractional portior)bf the preceding result is discarded, The integer ree
maining can range from zero to JA~lj (4) Unity is added to the preceding

integer. The resulting integer ranges from one to JA, It is this ine
6(1‘»)

F(TY /0 ‘

Statement 310 and the one following it perform the four operations

teger which {s used for I in (

listed ébove. The latter statement is equivalent to

NN = (AAA ~ (Integral Portion of AAA)) + 1.0000004
( Yia)

If the ,0000004 were missing and if AAA were zero or nearly zero then

NN = 1,0000000, When the program converts 1,0000000 to an integer withe
out the decimal point, it is not certain whether one or zero results, To
insure that unity obtains the ,0000004 has been included above,

Since AAA increases by A(2) = Y, every time a subunit makes a
revolution, N of statement 310 may bgcome quite large, Fortran sets
an upper limit on integers of 32768, Hence, VYge Wultiplied by the
number of revolutions necessary to achieve equilibrivm, i,e., AV

de/a,
(Section 3.2) wust always be less than, say, 32,000,

Division 1434 parallels 14~16 through 1420 14234




AT,

wl25e
except as follows: (1) The quantity G2 is added to GGWR(JG) rather than

to GGWNR(JG)., G2 is io(x,y) whereas it should be io(x,y)dxdy/UB. The;g
omitted multiplication is performed in 14-39 (14-29). (2) The last stéLe-
ment of 14~34 increases the RF phase angle AAA by A(2) = Vo in prepar;tion
for the additioﬁ of the next RF bump to the subunit, This addition occ@rs,

however, only if the previous collision test indicates that the subunit

makes another pass of the RF bump.

The fine wire collision test of 14-38 1435

parallels that of 14-21, 1If no collision occurs, control

switches back to 14~33 which adds in the next RF bump. This loop is repeated
until the subunit either collides with the injector or with the fine wire.

If the collision is with the injector, the program jumps to a consideration
of the next subunit of the first unit; if with the fine wire, control

passes to 1436,

Division 14«36, paralleling 14-22, tests 14.36

whether j(x) is to be found; if it is not, the program shifts to a cone

NWR

sideration of the next subunit of the first unit; if it is, control passes

to l4<37,

Division 14=37 is required to compute 14.37

F(x) o This block parallels that beginning with statement 310 of 14«33

NwWR
and extending through 1l4~34, One difference is that G2 in 14.37 is added to
GGNWR (JG) rather than to GGWR(JG). In 14-39 GGWR(JG) =tw added to GGNWR(JG) so

that the latter becomes associated with j(x)“wnas it is supposed to be rather

than with (j(x)Nw‘l ..j(x)“) as it is in 14-37.

After all JB subunits of the first unit , 1438

have been scanned the program considers the next differential
element dxdy (14-14), After all dxdy elements have been scanned control

passes to 1439,
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Division 14-39 performs the multiplication 14-39

of i.o (x,y) = G2 by dxdy/JB which was omitted in l4~34 and
14-~37. Here the addition of the GGWR(I) to the GGNWR(I) omitted in
14-37 is alsuv performed. The resulting GGWR(I) and GGNWR(I) need enly

L]

be divided by the cell width A(28) to yield j(x),, and j(x)

Nwg

This division is performed in l4-40,

I l4.40 the contents of each eell of the 1440

four groups menticned in 14-24 and 14.39 are effectively
civided by the cell width A(28) to yield the four current densities,
1(x) . Before this division

i(x) , and j(x)

wNR ? NWNR ? j(x)wa NWR

is performed, however, the following device is introduced, Since it is
usually impractical to call for the contents of all cells associated
with a particular j(x), the cells are grouped into boxas, ezch box con-
taining NDIVPB consecutive cells. The contents of each such box is
divided by the bex width to yield a eurrent density j(x). It is re-
quvired that the tetal number of cells INT2 into which tha allowed por-

tion of the x axis is broken be an {ntegral multiple of NDIVVB ,

Division l4=41 subtracts the j{(x) found 1441

in the absence of RF from that found in its presence

to yield (_1(:()'“”t -.-j(:lc)m”“t ) and (j(x)wn -j(x) ). The output |

WNR
given by SHO-14 is:
1) AQl) threugl A(35).
2) j(x)uwk s j(x)Nw“ ’ (_'!(lc‘)Mwﬂ - 3O wnr )

3) X e s JO e 0 (JOO L, = IO ue )
4) k of Agzk&m(w"xﬁ-ﬁ)

The output is read from left to right, top to bottom. The j(x)°s are




N

1

«l27.
printed out as a function of box number beginning with box one (l4ws0),
The contents of the first and last box for each of the six jtx)'s should be
zero; if they are not, this run as w%l az all succeeding cuns may be invalid.
These runs should be resubmitted using a larger {A(27)| (14-10). In addie
tion, any single run jis invalid if \?”(3‘5:) s A(Z).«\.O*A(M)/jg exceeds

32000 (14.33),

The input data required by SHO=1l4 follows. 1442

(1) The CC's. The CC's of 141 correspond to values of
i,(x,y) found, for instance, at the mesh points on and within the rectangle
of Figure 43, when this rectangle is laid over the experimental io(v.,y) of
Figure 32, Trhe rectangle referred to here is defined by A(16) through A(19).
Figure 43 rilustrates how one associates a particular CC with a particular
mesh poirt .

(2) [te A’s. When an A represents an integer 1 it will be punched

o v sume.

zs I.1., 1 it were punched as I.,0, it is not certain whetbter the program

converis - to I or to I«i, In what Follows *I.1" denotes an A which is an
integer.
AL) I.1. Y.9A(1)£4000, Division 143 evaluates .Awm (wept+f)

for JA = A(1) values of ()wn,k¥¢) ranging from zero to RN
(JA=1)/JA in increments of R%/JA,
(2)>0. A(2) = Vhg = w”/a‘k-‘-o= *F-uw/;_o

A3 1. A(3)2]1.1. The first unit is broken into JB = A(3) suba-

\its. (Section 6.6, 14=28, 14=32, l4=23).

Al | @ amplitude of the‘ radial RF electric field over the azi-
tthal extent of the bump is A(4) = &, (Sprdndm &),

A{5} e quantity A(5) equals e/(p(2%)?*) where e is the absolute
value of the particle charge and m its relativistic mass

(Sectidn @),



H‘)

A(6)

A(7)

A(8)

A(9)

A(10)
A(1IDY
A(12)
A(13)
A(l4)

A(15)

A(16)
A(17)
A(18)
A(19)
A(20)

A(21)

A(22)

A(23)

2%

The fraction of the accelerator azimuth over which the RF

bump extends is A(7) = fe(ﬁguiﬁcﬁa‘2l)

A(8)>0.

A(B) = Vx = W,/ 2§,

The particle revolution frequency is A(9) = fo (Gactidrk @1).

I.1. A(10)21.1, See A(15).

I.1. A(l1)21.1. See A(15),

A(12)<0,

A(13)<0,

A(12)<A(13). See A(15).

A(13)>A(12). See A(15),

A(14)<A(15). See A(15),

A(15)>A(14)., The quantities A(12) through A(15) define the

rectangle of Figure 44, All portions of the rectangle boundary

must lie on or within the rectangle of Figure 43, The latter

is defined by A(16) through A(19). The rectangle of Figure 44

is surveyed into differential elements dxdy. In the RF case

the number of such elements per row and per column is A(10) and A

(11),respective1y (16-29),

A(16)<0,

A(17)<0,

A(16)<A(17). See A(21).

A(17)>A(16). See A(21),

A(18)¢cA(19)., See A(21),

A(19)>A(18). See A(21).

I.l, 2,1sA(20)s30,1, See A(21),

I.1. 2,1<A(22)%$20.1. Mesh points at which io(x,y) is defined

extend over a rectangular region bounded by A(l6) through

A(19) (145, Figure 43)., Some of the points lie on the recw

tangle boundary, The number of points per column and per row

is given
Not used

A(23)20,

by A(20) amd A(21), respectively.

03A(23) + A(25)<1,



-129-

The fraction of a turn the RF bump is ahead of the injector

is A(23). The second condition above requires that a particle
leaving the injector encounter the RF bump before reaching the
<bservation azimuth.

A(24) The beam circle radius is A(24) = Y.

A(25) N0£A(25) 2%V < T ., The fraction of a revolution the observaw
tion azimuth is behind the injector is A(25)»0 (i4t-8,14.9),

LA A(26)»0, Theoretically, A(26) is uhity; practically, A(26)
is a srale factor which facilitates ecmparison of computae-
tional results witn experimental ones (14-13. l4.29),

A7) A(27)<0. It is required that |A(27)|/A(28;be an integer
<1000 (14.10), The negative x valve at which one begins to
divide the x axis into cells is A(27).

A(28) A(283>0. It is required that | A727)|/A(28, be an irteger
<1000 (14.10), The fine wir. d.ameter is A(28),

A(29) Not used,

A(30) The strength of the Ry 2 vump wner |xi= Yo 1is A(30), 1(30)
has dimension of lengi* ('4~11, 14419),

A(3] I.le 1,1%A(31). See A(32).

A(32) I.1 1,152A(32), The qiantities A(31) and A(32) do in the
absence of RF what A(10) ard A(11) do)respectivc‘y, in its
presence. Usua'ly A(31) = VA(3) A(10) and A(32) = VAGY ¥
a(ll) (14-13, 1£a29).

A(33) I.l. 1,1£A(33)€2000,'. The nymbe:r »>f the cell whos - nosie
tion corresponds to the fine wire displacement is A(3> 14.10),

A(34) T.1. 1,1€A(34)€2000,1, The number cf cells per box is A(34},
ie., NDIVPB of 14~40, The total number of -e'i:,6 INT2 = 2,0|A(27)|

/ A(28) mus* be an integral muttiple of NDIVPB. A(35) 15 not used.
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FORTRAN PROGRAM SHO-14

wl3l.

SHO-14

DIMENSION CC(600), A(35), B(4000),
161(20,30)s GGBIJL2000), GGHWNRL{2000),
2GGNWNR (2000), GGWR(2000}, GGNWR(2000),
3F1400C), G{4000)

PRINT 520

CALL

MURCD2(CC)

14— 1

CALL

MURCDZ tA)

14~

100

1A =
AAJA
80 10
BLI)

All)

= lo«/FLOATF(JA)

01 =1, JA

= SIN4F (FLOATF(I-1)/ FLOATF{JA)|

win

Ta-

110

CALL
PRINT

MURCDZ2(A)
500, (ALI)y, I = 1, 35)

14— 4

120

JONX
JONY
NN =
Do 17
pa
NM =
Gl{l,

Alzl)
A{20)

4]

1 4 =
) I =
NN+1
J)} = CCI{NN)

1, JCNY
ly JCONX

14- 5

FPNX
FPNY
APC

ARC =

= JCNX-)

= JCNY-1
(ATL7) -A(1%:) / FPNX
(A119) -Al19)) / =PNY

Ta-6

0G
DH

ST-4F (A(8))
C... F _tAa(s))

14— 7

0C
DD
AE
AF

SINGF (A(8) = A(25))
COS4F (A{8) » Al25))
SINGF (A(8) =*{Al23)+ Al2%)))
COS4F (Al8) =(Al23)+ A(25)).

130

IF
or
DV

A

[ T E U TR T B T 1]

(25)) 130, 1404 130
00/DC
Al241}/7DC

140

DPP =
JJIH =

1.0000004 ®Ai23V-A127,
A(33)

T%~10

150

BEEP
XBEG
INT

INT2
00 15
N =1
66BUL
NN =

6GBU!
XBcG

Al30)/7 Af124) &7
A(28) / 2.0
-Al27) / Al28) +).1
= 2% INT
0 1 = 1y INT
NT+I
N) = XBEG =2 + BEELP
INT-121
NN) = GGRUIN)
= XBEG+A[28)

14-11

Bo 16
GGWNR

GGNWNR (1)

GGWR

GGNWR({I) = O

01 = 1, 2000
(I) = 0.0

= 0.0
1) 0.0

l4-12

_160
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290 DE = X«DO-Y#DC 14-21]
DF = X2DC+Y=DD
300 DO 400 L = 1y, JB 14-32
X = DE 14-33
Y = DF
AAA = A{2) + FLOATFIL) =A3
310 N = AAA
NN = (QRST+AAA-FLOATFIN)) / AAJA
X = X+G{NN)
Y = Y+F(NN)
D0 = XaDH+Y*DG 14-34
Y = ~X«DG+Y2(0H
X = DO
JG = (DPP+X) / Al28)
GGWR(JG) = GGWRIJG) + G2
Y = Y + GGBULJG)
IF (A(25)) 330, 320, 330
320 IF (X+A{24)) 400, 400, 340
330 IF (Y+X#DT+DV) 400, 400, 340
340 AAA = AAA+A(2)
IF {JG-JJH) 3:10, 350, 310 14~-35
350 IF {SENSF SWITCM 2) 400, 360 14-36
360 N = AAA 14~37
NN = {(QRST+AAA-FLOATFI{N)) 7 AAJA
X = X+GINN)
Y = Y+F{NN)
DO = XaDH+Y»D§
Y ==X2#DG+Y®DH
X = DO
JG = (DPP+X) / a{28)
GUNWRIJG) = GOHNWRIJG) + G
Y = Y + GGBULJG)
IF (A(25)) 380, 370, 380
370 IF (X+Al24)) 400, 400, 390
380 IF (Yy+X=DT+DV) 400, 400, 390
390 AAA = AAA+AL2) .
G TD 369 Yh-24
400  LCONTINUE
410 CONVINUE
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A1)

260

CONTINUE

JC = 14-13
AQ = JC
AP = (A(13}) -A(1l2)) / AC
JB = A{322)
AC = JD
AR = (A(L15) —-A{14)) / AQ
EB = A(12) —-AP/2.0
EA = A{l4) —-AR/2.0
AREA = AP#AR/A (26)
DC 260 4 = 1, JD 14-14
AT =
Y = EA+ATs AR
CAT = Y
DO 260 I = 1. JC
AS = 1
X = EB+AS=AP
Y = CAT
M = (X-Al(16)) / APL+1.0
N = (Y-A(18})) / ARC+!l.0
FPM = M-~}
FPN = N-1
PAT = (X-FPM®»APC~A(16)) / APC
RAT = (Y-FPN#ARC~A(18)) / ARC
f Ml = M=zl
N1l = N+1
G2 =GL{MaNY+PAT*{G1 (M1 ,N)
1-G1{MyNII+RAT#{GL(MyNL)~GL(M,N))
2+PAT 2R AT#(GL1{ML ,NL1)-GLl{M,N1)~
3GLIMILN)1GLIM,N))
IF (G2} 2604 260, 170
170 DE = X#0D-Y=DC 14-15
Y = X*DC+Y=DD
X = DE
180 DO = X=DH+Y=D( l14-16
Y =-Xa#DG+Y=DH
X = DD
JG = (DPP+X) / AlZ8) 14-17
GGWNR(JG) = GGWNRIJG) + G2 14-18
Y = Y + GLBU{JG) 14-19
IF (A(25)) 200, 190, 200 14-20
190 IF (X+A(24)) 260, 260, 210
200  IF (Y+X4DT+0v; 260, 260, 210
210 Ir (JG-JJdH) 120, 220, 180 . 14-21
220 IF (SENSE SW T;H 2) 2604 230 la--22
230 DO = X#DH+Y*DG 14-23
Y =-X#DG+Y=DH
X = Do
JG = (DPP+#X) / At(z5)
GONWNRLAG) = CONWHNRIJIG)Y + 62
Y = Y + GGBULJG)
IF (A(25%)) 250, 240, 250
260 [F (X+A(24)) 260, 260, 230
250 IF (Y+X=DI+DV) 210, 260, 230
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DO 270 I = L, INTZ 14-24
GGWNR{I) = GGWNR(I) = AREA
GGNWNRIUI) = GGNWNR{I) ® AREA
270 GGNWNR{I) = GGWNR(I) +GGNWNR{I)
AD = AlGI#A(SI#A(6I®ALTI/(A(BIXA(G)#®2) 14-25
AG = —AL*AD 1%-0
AH = AF#AD
DO 280 1 = L, JA 14-27
G(I) = AG = B(I1)
280 F(I) = AH = B{I)
JB = A(3) 14-28
AB = 1.0/ FLOATF{(JB)
QRST = 1.0000004%AAJA
JC = A(10] T14-27
A0 = JC
AP = (A(13) =A(12)) / AD
JD = A(ll)
AQ = JD
AR = (A{15) - A(14)) / AQ
EB = A(12) -~ AP/2.0
EA = A(l4) - AR/ 2.0
AREA=AP®=AR®AB/A{26)
D0 410 J = 1, JD 14-30

AT = J

Y = EA+L #AR

CAT = Y

DO 410 I = 1y JC

AS = [

X = EB+ASzAP

Y = CAT

M = (X-A(16)3)/7APC +1.0

N = (Y-A{18Y3/ARC +1.C

FPM = M-1

FPN = N-1

PAT = {X-FPM&LFPZ-Al16)) / APC
RAT = {Y-FPN#ARC-A{18)) / ARC
Ml = M+

N1l = N+1

62 =GV MM v PATA{GL (ML, N)

L=GL(MyN)S+RAT2GLI(M;N1)-GL(My,N))
2+PATHRAT#(G1IMLINL)~OGLIMyN]1)~
3G1AML,NI+CT{M,N))

I1F (GZ)j_I_O, ‘010' 290




=135~

DG 420 I = 1, INTZ2 14-39
GGWR(I) = GGWR{I) # AREA
GGNWR(I) = GGNWR{I) » AREA
420 GGNWR{I) = GGWR(I) +GGNWR(1)
NOTIVPB = LA(34) ‘ 14~40
NBOX = INT2/NDIVPB
L =0
DO 440 1=1,NBODX
VGWHNR = 0.0
VGNWNR = (.0
VGWR = 0.0
VGNWR = 0.0
DO 430 4 = 1, NDIVPB
L = L+1
VGWNR = “GWNR + GGWNRIL)
VGNWNR = VGNWNR + GGNWNRIL)
VGWR = VOWR+GGWRAL)
430 VGNWR = YGNWR+GULNWR(L.)
GGMHR{I) = VGWNR
GGNWNR{I) = VGNWNR
GGWR(I) = VGWR
440 GGNWRI(I) = VGNW?2
BBBB = NDIVPR
OP = BBBB#® A{28)
00 450 I = 1, NBOX
GGHNRIT) = GGWNRI .y 4 LP
GGNWNR I} = GGNWNelL, 7 P
GGWR(I) = GGWR{!I) 7 OP
450 GGNWR(IL) = GGNWR!{I) /[JOF

\\ Q«
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APPENDIX 4

DESCRIPTION OF COMPUTER PROGRAM SHU=16

The pivgran SHOwl6 tells which differential elements dxdy of
the rectangle defined by A(12) through A(15) in Figure 44 contribute charge
to the interior of the beam circle. To minimize computing time it is
assumed that if a dxdy element in any row contributes no charge to the beam
circle then all dxdy in the same row and to the left of this one do not cone
tribute either, See Figure 15, The program alluws the addition of a Kx ?
bump to electrons passing the observation azimuth. 1In the experimental work
of Section VI, SHO-16 is usec in ccnjunction with SHO-14 to test whether the

exper imental io(x,y) fed into SHO~14 is defined over a region sufficiently

large to allow SliO-l4 to yield a valid predic*ion for A j(x).

Division 16.1 differs from l4-1 in act 16~1
calling for the CC*'s. In SHO=16 io(x,y) is not required,
See 142, 162
See 14-3, 16.3
See lbwtb, 16=4
.
See l4..7, ‘ . 16-5;‘1
Sze 148, 16-6
See 149, 16-7 J
In 16-20 the square of the beam circle 16-8

R . . 2 2 . .
radius Y, = FA is compared with the r = x + ya as~uciated with

a subunit to see whether the latter lies indide or outside the bzam circle,

SHO~ 16
Like SHO—leallows the addition of a 16-9
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460

470

480

490

500
510
520
530
540
550

560
570
580
290
600

IF (SENSE SWITCH 2) 480, 460
PRINT 530
PRINT 510,
PRINT 540
PRINT 510, (GGNWNRI{I)y, I = 1,
DO 470 1 = 1, NBOX
GGNWR(I) = GGNWRLI)
PRINT 550
PRINT 510,
PRINT 560
PRINT 510,
PRINT 570
PRINT 510, (GGWNR{I)y I = 1,
DO 490 I = 1, NBOX
GGWR(I) = GGWR{I)
PRINT 580
PRINT 510,
PRINT 590
PRINT 500,
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
1(36H CURRENT DENSITY-NG WIRE-DIFFERENCE//)
FORMAT (25H CURRENT UDENSLITY=WIRE-RF//)

FORMAT (28H CURREN1 DENSITY-WIRE-NO RF//)
FORMAT (33H CURRENT DENSITY-WIRE-DIFFERENCE//)
FORMAT (7H )

FORMAT (1H1)

PRINT 6CO

GO TO 110

END (0O, 1y 1y 1 1)

(GGNWR(I)y I = 1y NBOX)

NBDOX)
~GOGNWNR )

(GGNWAR(I)y I = 1, NBOX)

(GGWR{I)y T = 1, NBOX)

NB8GX)
-GGWNRIT)

(GGWR{I)y I = 1, NBOX)

(AD)

(1LHO(5E18.8)/71H0)

(2Xy10E11.4)

(TH1SHO-14//)

(28H CURRENT DENSITY-NO WIRE-RF//)
(31H CURRENT DENSITY-NO WIRE=NO RF//)

14-21

¥ e T A G s

INpUe 28TA RELUVIRED BY SHO-1-+

B T T~ NP e o,

INPUT DATH LXAMFL TS

14-47

P
"~
[}
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x* bump to a subunit passing the observation azimuth, In SHO=1$5, however,

the strength of the bump is computed each time it is applied rather than

selecting an appropriate value from a reservoir of stored values. In

( N ) ( o )
a
Ay AL30) %.:

BEEp * AL30)/vs = A(30) /A(24V*¥

SHO=16

sue = 2 = x**2

Instruction 312 of 16.20 alters the y of a subunit approp.iately, i,e.,

Y = Y + SUB*BEEP.

The quantity LMN(I,KKK) is associated with 16=10

the (I,KKKhth differential element dxdy of the rectangle defined
by A(12) through A(15) in Figure 44. At the end of a run each LMN(I,KKK)
is either zero or one; if zero, the associated dxdy contributes no charge

to the interior of the beam circle; if one, the dxdy does contribute some
charge.

See 14-25. 1611 I
See 14-26 [_ "2 !

16e

See 14«27 16.13
fee 14-28, 16=ia
Division 16«15 wuld be identical to 14«29 L 15

if the statement, AXEA = AT*AR*AB/A(26), were delete¢ crom

the latter,

Th.s block scans a rowv vof differential i .16

elements dxdy from rlignt to left. Figure 15 [« . re iaformative

in this regard than Figure 44, 1In the former, I gcar*s with ¢

eight each time the program considers 3 new iow J.
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See l4~31. 1617
See 1432, | 16=-18
See 14.33, 1619
(1) Given the (zﬁ of a subunit, its (:J one 16=20

revolution later is computed. (2) The v = xt s y* associated

with the subnnit is found and compared with the square of the beam circle
radius Y& = FA (16~8). If the subunit lies within *he bear circle then
IMN(K,J) is set equal to one (1l6«10) and the program shifts to a considerae.
tion of the next differential element dxdy., If the subunit does not lie
within the beam circle, the Kx1 bump is added in, (3) The program tests
whether the subunit will collide with the injectcr on its next attempt to
cross © = 0; if it will, the program shifts to a cunsideration of the next
subunit; if it will not, A(2) = “gsis added to the RF phase angle in pre=

paration for the application of the next RF bump to the subunit,.

If none of the JB subunits associated with the (I,J}th 16m21

dxdy element ever has an Y':V;?:TJP < Yo then the LMN(I,J)

associated with this elewent is zero. In such a case the computation
reaches the statement betweern 400 anc 401, Control then passes to statument
410, bypassing consideration of all 1ifferential elem¢uts dxdy in the same
row as the previous one and to the le 't of it, Hence, it is assumed that

such bypassed elements contribute no charge to the beam circle,

The print out giver. by SHO=16 consists of "hiee 1622

items; (1) the input data A(1) ihvough A(35), (2) an arrow

designating the direction of the positive y axis as iegards the data which
follows, and (3) the LiM{(,5) ¥ 510, In viewirig the block of LMN‘I,")'s,
fhe output sheet should be rotated crockwise 90° from the normal viewing
position, The (I,J)-th element of this block is now associated with the

(1,J)~th differential element dxdy of Figure 44 cr ~.gure 15,
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All input data required by SHO-16 can be fed 1€ .23

in in terms of the A's, i.e., A(1) through A(15), A(23),

A{24), A(25), and A(30). The description of these quantities as given in

14-42 is adequate except for:

A(10)

A(lD)

T.1.

I.1

1.1€A(20)<40,1,

1,15A(11)<100,)
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RUN

R-1

R-2

R=3

R=5

R=-6

CARD

p-

2

VE~NCUVLWUN

DATA

+
»H

« 40001
END DATA
«125
«251
«1416
452
52832
.13
«125
«4284
«501
".215
~-2209
‘.3
3
e 16666666
«209 +
«16666666
END DATA
13 +
13 +
«81 +
=241 +
-e229 +
"ol +
o1 +
END DATA
«132 +
«132 +
221 +
—e13333333+
5 +
END DATA
«13333333+
«13333333+
<481 +
~e213
~al
b
END DATA
«134
« 134
<271
"3229
-.50
«175
END DATA
«135946
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+
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RUN

R-8

R=9

R=10

R-11

R-12

R-13

R~-14

R-15

R=16

CARD

12

10

DATA

«135946 +
«241 +
"01 +
ol +
END DATA
«136 +
«136 +
END DATA
«136762 +
«136762 ¢+
END DAVA
«138
<138
END DATA
ol4
<14
.61
«481
-.215
-el
2
END DATA
«142
«142
«81
201
"0229
~+83333333+
«83333333+
END DATA
« 135874
«236
«135514
201
.361
".219
"075
15
END DATA
«472
END DATA
<708 +
«151 +
~e224 »
END DATA
« 944 <
END DATZ
011916 g
«101 +

¢ 4
s
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RUN  CARD
11
12
14
15
R-17 4

R-~16 s

DATA

«24]
"023‘
"ol

ol
END DATA

.1888
END DATA

e 235
END DATA
END DATA
END DATA

+e et e
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wlide

l6-24
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FORTRAN PROGRAM SHO-16

SHO-16

DIMENSIUON A(35), B(4000), F(40001},
16{4000),y LMNI40,y 100), KLMN{100)
PRINT 630

CALL MURCDZ(A)

100

JA = A(l)

AAJA=]1./FLOATF(JA)

DO 100 I=1,JA
B{I)=SIN4AF(FLOATF{I-1)/FLOATF{JA))

110

CALL HURCDZ2(A)
PRINY 640y (AlI), I = 1, 35

16~

DG SIN4F (A{8))
DH COS4F (A(8))

16-

[o 4

DC SINGF (A{8)=A{25)i
DD COS4F (A18)=A(25))
AE SINGF (A(3)={A(23)+A(25)))
AF COS4F (A{B)={A(23)+A(25)))

16—

130

anl TR TR TR T F 130N 11

IF tal253) 130, 141, 139
oT BD/OC
DV A(24)/DC

16~

141

FA Al24)ue?

16—

BEEP = A(30) / A{24) »a2

16—

9

161

DO 161 T = 1y 40
DO 161 KKK = 1, 10V
LMNII, KKK) = 0

16-10

AD=A(4 )2 A(S5)#A(6)2A(T)/ (A 8)2A(9) wn2)

16—

11

ab=~AaiD
AH= AF=AD

T?

L

280

DO 280 I=1,JA
GII) = AG= BlI)
F(I) = AH= 8{1)

16~

13

J3=Al3)
AB=1.0/FLOATF(4B)
QRST = 1.0000004 = AAJA

Jr-A(LO)

AQ=J4C
AP={A(13)-A(12))/A0
JO=4(11)

AQ=4D
AR={A(15)-All4 )/AQ
EE=4(12)~-AP/2.0
EA=A(14) -AR/2 O

16- 14

. —

-
B




#llhe

B0 410 J 5 1l JD
AT=J

Y=EA+AT=AR

CAT=Y

£O 401 IN1 = 1, JC
I = JC+]1=IN]

AS=]

X=EB+AS#®AP

Y=CAT

»lb—lﬂ

-

OF = X=DD - Ye0C
DF = X=DC + Y=&DD

16—1A

O 400 L = 1y JB

16~-18

DE
OF
=A(2)+FLOATF{L 1+a8
AAA
N = (QRST+AAA-FLOATEI{N))/ZAAJA
X+G{NN)
Y+F{NN)

A

LS - I 1]

nown

16-19

311
312
326

330
340

0 = Xe«DH+Y DG
==XxDG+Y=DH
= 00
SUB = X#=2
IF {SUB+Y+#+?2-FA) 311, 312, 312
Litnily J) = 1
GO 10 401
Y = Y +SUB=REEP
IF (A{25)) 330, 320, 330
IF (X#Al24)) 400, <0 340
IF (Y#X2DT+DV) 400, -y 340
AAA = AAA+AL2) .

X<L<XOKXZZDP <X

|

[
[
!
N
(@]

400

401
410

GO 10 310
CONTIHUE
IF (LMNGI, J3) 416, 410, 491
CONTTNUE
CONT INUE

|

P
o
|
Y
[
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=
PRINT 670 - 16-22
DO 620 L = 1, JC
I = JC+l-L
DO 610 K = 1, JD
MM = JD+1-K
610 KLMN(K) = LMN{I, MM)
620 PRINT 650, (KLMN{KX), XK = 1, J0)
630 FORMAT (ZHISHO-16////!
640 FORMAT ((2X,5E18.8//) ")
650 FORMAT (10X,10011!
670 FORMAT (18H C- == Y == ClI])
700 FORMAT (1H1)
PRINT 700
G0 TO 110
JE_iD {0, 1, _l.t j.;i ) |
— 16-23
INPUT DA & RI%: Rer BY SHO-16
-7 B 16-7
INPUT DY - FXAMPLES
A
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APPENDIX 5

DESCRIPTION OF COMPUTER PROGRAM SHO-18

The program SHO-~18 requires that io(x,y) be specified via input
data at each point of a recta#gular array (Figure 43), All these points
lie on or within the cectangle defined by Ar16) through A(19)., In a run,
information is extracted from-this array over a second rectangle (Figure
44) lying on or within the one abowe. The seco.d rectangle, defined by
A(12) through A(l5), is broken into differential elements dxdy. The program
SHO-18 averages io(x,y) over just thcse ixdy which contribute charge to the
beam circle. (1) Designating this average as (i,(x,y)) s SHO=18 divides
is(x,y) at the center of each cuntributing dxdy by <§§x,y)> . (2) SHO=~18
finds, at the observation azimuth, the time average of the fraction of the
beam circle area covered by .harge originating from each dxdy. (3, The
program computes ET§T;T§:I;/{io(x,y)) as a fuactio. of r'= :A“, ieee, it
averages {?;T;TS:;3/<; o - +Y)) over ar ci.:. 3 enciesing a circle of radius
r. Usually %§x,y) = ioso that the above rcsult be:ome- I?;:;:;:Z3/i° versus
r’ The quantity {?;:;jaj?S/ioversus r’ does r:- deperd on @ o t, i.e., it
applies at any azimuth aft v raximum £il1ling of the tz2ar cirele has been
achieved, See Section 5,°. . ) Other quantitles comnuted by <“HOw1l8 are
described in 18«24 tnroagh 18«32,

The program SHO=]J& can serve as an irefficient substitu.e for SHOw
16 (R=l of Figure 15 corresponds to R~7 ot Figure 17), Like SHN-16 it

assumes that if a dxdy element in a row of such elemerts contributes no
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charge to the beam circle then all dxdy elements in the same row and to
the left of this one do not contribute either, SHO-18 allows the appli-

: 2 . . .
cation of a Kx bump to a subunit passing the observation azimuth,

See liaml, 18-1
See 14«2, 18.2"
See 1l4.3, 18=3
See lheb, 184
See 14«5, 18.5
See 146, 186
See l4=7, 18=7
See l4=8, 188
See 14«9, 38.9
The interior of the beam circle at the 18-10

observation azimuth is divided into JH = A(22) concentric
annuli of equal area centered at (0,0) which, taken together, completely
cover this interior, There are 400 annuli in all (400 ~ JH) of them
lying outside the beam circle, The central annulus, a circle, is number
one, The storage location P(JG) is associated with the JGe-th annulus.
The P(JG) eventually beccme synomonous with I?§:;:3:Z7/i° « The latter
quantity is defined tw paragraphs prior te 18.1. The quantity JJH = A(29;
is the number of annuli beginning with number one whose associate¢ P's are
printed out.

The program, in consider ing a specific subunit passing the ob.
servation azimuth, must determine which P(JG) is to receive the
i4(x,y)dxdy/JB associated with this supuirit (Section 6.6). Since al.

annuli have the same area 7rYfVUH, JG is given by
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J6 = & +y? Lo

Yo'/ IH
a
If x + ya happens to be zero, JG = 1.0, When the program converts 1,0
to an integer without the decimal point, it is not certain whether one
or zero results., To insure that one obtains, ,0000004 is added to 1,0

above, The resulting test as it appears in 18«22 is JG = (DPP + SUB +

Y**2)/DP.
See 16-9. 1t=ll
The 'P(I) are the 400 storage locations which 18~12

eventually contain 1(x,y,6,t)/{i,(x,y))versus r’ (1810),

(2) Initially, G2(I,J) is the value of io(x,y) at the center of the
(I,J)-th'differential element dxdy of the rectangle defined by A(12)
through A(15) in Figure 44, Llater G2(i,J) corresponds to thisié§x,y)
divided by {i,(x,y) ). (3) The effectiveness with which the (I,J)~th
differential element dxdy contritutes charge to the beam circle is
measured by GCLMN(I,J). See 18«30, (4) The quantities NEQUT1 and
NEQUT2 are used in defermining how many revolutions are needed for

Resonant RF Inflectir: to achieve maxiwum iilling of the beam circle.

See 18-21,
See 14-25, 1813
See 14«26, 18-14
See 1427, 18~15
See 14-28, 18«16
If the statewent ARFA = £P%AR*AB/A(26) were 18=17
deleted from 14-29 ther. (8«1’ weuld be identical to 14«29,
Division 18-18 parallels 14-50 except for (1) —EE:E:T-

scanning a row of dif "ecential elements dxdy from righi
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to left rather than left to right and (2) the replacement of G2 by

G2(I1,J). The reason for the first change is dealt with in 16<21, The

G2(I,J) are used in computing (io(x,y)> .

See 1431, 18=19
See 14.32, 18-20
Division 18«21 would be identical to 1433 1821

if statewents invclving NEQUT1 and NEQUT2 were deleted irom the

former. As SHO-1l8 considers a subunit from a pa-ticular differential
element dxdy, NEQUTL counts the number of revolutions thés subunit makes
up until it collides with the injector. The quantity NEQUT2 is the
maximum NEQUT1 exhibited when all subunits frcm all differential elew
ments are consideced. Hence, NEQUT2 is the computational analog of

the expression Qvaélla) found in Section 3,2,

(1) Given a subunit's (g\ its (:\one 18.22

revolution later is found, (2) The program tests in which annulus JG
the subunit l‘es and adds io(x,y) = G2(I,J) to F(3G) (18~10)., The
program should have added io(x,y)dxdy/JB. The multiplication by

dxdy/JB is taken care of in 18<27 and 1831 (4) 1If JG corresponds to
an annulus lying inside the beam circle then 1,0 is added to GGLMN(I,J)
(18-12, 18~30). () The Kx' bamp is added in, (6) The program tests
whether the subunit will collide with the injector on its next attempt
to cross @ = 0; if it wili, the program sh.fts to a consideration of

the next subunit; if not, the RF phase angle is increased by A(2) = Vgf¢

in preparation for the addition of the next RF Hump to the subunit,

The use made of GGLMN(I,J) in 18-23 paraillels 18223

the use wade oZ IMN(I,J) in 16-~21., SHO-18 sets the G2(I1,J)

associated with the (I,J)~-th dxdy element to zero if this element
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makes no contribution to the beam circle filling., When the G2(1,J3)
are printed out, the previous step allows one to distinguish between
those dxdy which contribute charge to the beam circle and those which

do not,

The trouble number TRNUMB is the number I of 18e24

the largest annulus whose associated storage location P(I)

exhibits nonzero occupation at the end of a run. For this run as well
as all succeeding runs of the series to be valid, TRNUMB must be less
than or equal to 399; if it is not, the uncertain runs should be ree
submitted using (1) a smaller number of annuli within the beam circle
(18-10), (2) a smaller rectangle of the type defined by A(12) through

A(15) set nearer (0,0), and (3) a smaller RF bump strength k (18-13).

Division 18«25 tests which differential 1825

elements dxdy of the rectangle defined by A(12) through A(1l5)
in Figure 44 contribute charge to the beam circle. The total area of

these'contributing elements is found (REIA) as well as the average

value of i _(x,y) over these contributing elements. This average ,uetou),

is AVIOI,
The beam circle area BERGA is computed. 18=26
The time average value of i(x,y) over the beam 1827

circle, i.e., AVIOBC, is found by computing the time
average trapped current and dividing this result by the beam circle
area BEGA. The factor dxdy/JB = AB*AP*AR omitted in 18«22 is taken

into account here,

The quantity BUMPK is set equal to k of 1828

8y = Ram (wWyet+¢) (18-13).

See 18«21, 1829
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Up to mow i_(x,y) has been stored as G2(I,J). 1830

Prom a physical point of view it is of interest to have i,(x,y)

divided by (io(x,y)>. Accordingly, G2(I,J) is divided by AVIOI (18«25).
When the program reaches 18«24, GGLMN(I,J) is the ratio of (1)

the time average trapped current at equilibrium due to charge origina-

ting from the (I,J)=~th differential element to (2) the current emana=

ting from this (I,J)-th element, In 18«30 these GGLMN(I1,J) are mul-

. g 1.0 dxdy [ \ . . .

tiplied by the factor [——-J-E—-—] o ’IrV':] . This multiplication is

interpreted as follows, The{}Od'ds] gives the time average trapped
48

current at equilibrium due to the (I,J)~th dxdy under the assumption

that i (x,y) = 1.0, Section 6.6 deals with the originof the fector

io(x,y)dicdy/JB which is here 1,0dxdy/JB. The time average of the

" fraction of the beam circle area covered to unit i(x,y) by such a

time average current is found by dividing this current by 1.0 ’kY‘:“ .
Summing these modified GGLMN(I,J) over all (I,J) gives the time average
of the fraction (PCBCCV) of the beam circle area covered to unit i(x,y)
by the total time average trapped current stemming from an io(x,y) of

unity.

Division 18«31 finds the average i(x,y,6,t) over 18-31

an annulus and divides this result by (io(x,y)). The factor AB*AP*AR =
dxdy/JB omitted in 18~22 is included here. Unity divided by the area

of an annulus equals FLOATF(JH)/BECA. The quantity AVIOI is Lig(x,y)),

The area ratio, ARRAT, is the ratio of the 18-32

beam circle area (BECA: 18<26) to the area of that
portion of the injection region treated by the program which contributes
charge to the interior of the beam circle (REIA: 18.25)., The filling

efficiency, FEFF, is the average i(s,y,0,t) over the beam circle
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(AVIOBC: 18~27) divided by (io(x,y)) (AVIOI; 18«25), The currcnt
ratio, CURAT, is the ratio of the time average trapped current to

the current emanating from REIA (18«25),

CURAT = (AVIOBC){BECA) _ (rger)( ARRAT)
(AVIOI)( RETA)

The charge efficiency, CEFF, is the ratin of the trapped charge at
equilibrium to the total charge emirted from REIA in the time it

takes the system to achieve equilibrium.

CEFF__(AVIOBCKBECA)¢ _ CURAT
(AvIox)(REIA)EQVUTR)T EQUTR
The print out given by SHO-18 follows: | 18,33
(1) A(1l) through A(35) 18«34
() 6201,M = 1 (x,9)/{i (x)) 1812
18w23
18w30
(3) GGLMN(1,J) 18«12
18-3C
) P(D) = i(x,y,6,t)/ (Lo(z,y)> 18+10
18«12
1831
(5) AT 18.32
-~ AT 18-32
FEFF 18-32
CEFF 183mw32
PCBCCV 1830
AVIOBC 18w27
AVIOI 16w?5
BECA 1826
REIA 15-25
EQUT2 18.29
BUMPK 1828
2NUME 3e2a

In (2) and (*) above the numbers G2(I,J) and GGLMN(I,J) occupy
a position in their respective blocks equivalent to that held by the

(I,J)=th differential element dxdy (Figure 44) with respect to its
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ne ighbors provided T does not exceed ten. When I exceeds ten all
numbers associated with any row J are printed out at ten numbers per
line for as many lines as needed. The printer then skips two spaces
and begins printing out numbers associated with row (J=1). 1In (4)
above the P(I) are printed cut at ten numbers per row for as many rows
as needed, The first number of the first row is P(1). Here I rums
from 1 to JJH = A(29). The twelve numbers in (5) above are printed out

in the same order as they appear there at five numbers per rOW for as
many vows as needed.

f EQUTZ of (5) above multiplied by Vo= A(2) is greater than
32,000 (l4«4i) or if TRNUMB is greater than 399 (18~24) then this run
as well as all succeeding runs of the series may be invalid, To remedy

the first defect either the integral portion of Vagor the revolutions

2 Yo

required to achieve equilibrium, i.e., R7
2

o should be decreased,
To remedy the latter defect (1) the number of annuli lying within the
beam circle, JH = A(22), should be decreased, (2) the rectangle defined
by A(12) through A(15) in Figure 44 should be made smaller and should be

set closer to (er,,0/, and (3) the bump strength k should be made

smaller,
The input data requairel by SHO-18 follows, 18«34
(1) The CC's: See 14«42,
(2) The A's. A(l) through A(25), A(29), and A(30).

The description of these a's as given in 14-42 is adequate except for

the following changes ar1 additions.
A(10) I.1. 1,1sA(10):40,1,
A(ll) I.1. 1,l<Afl1)<40,1,

A(22) I.l. 1,1<A(22)<400,1, The integral portior of A(22)



A(29)

«l B4~

is the number of annuli residing within the beam circle
(18-10; 18-12; 18-31),

I.1, 1,1¢A(29)¢400,1, The integral portion of A(29) is
the number of annuli whose contents P(I) one desires to
have printed out beginning with annulus numbef one,

(18«10, 18«12; 18.31),
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Re&
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o229
’0209
~e58333333+

o235
"01

[
[
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ol

END DATA

*
>

«40001

END DATA

-~ 136
»251
-1416
452
«62832
«13
2136
4284
81
<151

R R R E R R

«66666656+

ol

21

w21

+101

» 16666666
2¢09 +
v :H066666
. 2C1 +

b P r et e
N oW N e W WD NN WU 0D et et )TN e

END DATA

.11
.11

4
+
~e2265 +
83333343+
Eni’ 247 A

~e2l15 +
~+207 +
--83333333+

END DATA
"02115 +
-~ 209 +

«58333333+
266666666+

e

- A A

NN W W

RUN

R=5

CARD

10

12
13
14
15
22
29

@155«

18-35

DATA

END DATA
61 +
«101 +

“.233 +

’0209 +

=+739358333+
« 82291666+
«201 +
« 401 *

ERXD DATA
«135771333+ 1

END UATA
13554667+ 1

END DATA
« 13464 + 1

ENC DATA

END DATA

ENC DATA

NN N W WA -




FORTRAN PRUGRAM SHO-18

»l56=

C SHO-1R8 T
DIMENSTION CCINN0Y, A(3Tj, BL40TN),
1G1820s 303y FLATON), " (3000), P(400,
262140y 40),y GOLMHIGG, 400

PRTNT 810

CALL MURCD2(CC)

-

18- 1

“CALL MURCDZ2(A)

138~ 2

JA = All)
AA A=) /FLOATFL 34,
DO 1CO I=1,JA
100 BL{I)=SIN4GF(FLOATF(1- 1)/FLOATF/uA))

1R~ 3

110 CALL MURCODZ (A"
PRINT 820, (AL}, ' = 14 35)

16 %

JCNX=A(21)
JONY=A(20)
NN=0
DO 120 J=1, JCNY
DO 120 I=1, JCNX
NN=NMt1

120 Gl{i, J) = CCAINN,

18- %

FPHX=JCNX—1
FPNY=JCNY-1
APC={A(L7)-AL16) ) /FPNX
ARC 'al(19)-4118);/F2HY

1R~ A

DC SINaF lAL8))

OH COS4F {(A{R))

[a] o8 LINSF (ALBY®AL25))

DD CUSaF [AtlR)Yepr(258)Y)

AE SINAE (A« i (Al23)Y+Al2n:

AF COS4F (Af8 +!5(23)+A(25)"'

Bl i

O R AR My T

18-?"”"'l

= .

18-

IF (A(25)F 130. 14 5 130
130 D1 = DIH/DC

| DV=A124)/0C

18- ol




e

)57

142

JH = AL22)

JIH = A(29)

DP = 41264)#22/FLOATFIJH)
DPP = 1.000030042DP

165-10C

BEEP = A(30) 7 Al24) %22

18~11

162

163

DG 162 I = 1, 400
PLI) = 0.0

00 163 1
bo 163 J 1y 40
G2{I, 4) 0.0
GGLMN{IL,y, J) = 0.0
NEQUTL = Q0

NEQUTZ2 =

1, 40

[ LI 1]

18-12

AD=A(4)*§§5)*A(6)*A(7)/(A(6)*A(9)**23

18-13

AG=—AE*4D

AH= AF#*AD

18~-14

280

00 230 1<1+dA
GlLi) = AG= Bil)
F(I) = aH* B(I)

18-15

JB=A13)
AB=1.0/FLDAYr ¢ 1B)
QRST = 1.0000U04 = AAJA

18~16

JC=A(10)

A0=JC
AP=(A(13)-A(12))/A0
JD=A(11)

AQ=4D
AR={A{15)-A{143)/7AQ
EB=A{12)}-AP/2.0
EA=AL]4)—-AR/¢,0




DO 410 J = 1, JD

AT=J

Y=EA+AT#AR

CAT=Y

DO 401 INI = 1, JdC

I = JC+]1-IN]

AS=1

X=EB+AS#AP

Y=CAT

M=(X~Al16))/APC+]1.0
N={Y~-A(18)}/A2C+1,0

FPM=M~-1

FPN=N-1
PAT=(X-FPMs*AP(~a3i6))/APC
RAT={Y-FPN«ArPC~-A{18))/ARC
Ml=mM+1l

N1=N+1
G21{I1,J)=GL (M N)+PAT®{GIIM]L+N)
1-GL{MgNII+2AT{GLIMaNL)-C1l1MyN) !}
2H+PAT#RAT+{GLIML I NLYI-GLIMeMNL) -
3GLIML,NI+GLIM, NG )

18-1¢

290

Dk = X=20D -~ Y=DC
UF = XeCC + YD

18-17%

300

PJ . 4CO0 L = 1l JB

L8-2¢

304
305

310

IF {(NeQUTL ~ NEQUTZ2) 305, 305, 304

NEQUTZ = HNEQUT |

NEQUTY1 = ©

X = DE

Y = DF

AAA=AL2)+FLODATFH{L)=AY

N = AAM

N = (QRS1+AAA-FLOATFIN,))/ZAAGA

X+GINN)

16-21

313
314

320
330
340

0 = X*Dn+Y»0G

==X #3G+Y %DH

X = 00

NEQUTL = NFQUTL + 1

SUB = Xev?2

JG = {DPP+5UB+Y=22)/DP

P (JG) = PLIUGYIG21i,d)

IF (4G4} 313, 313, 314
GOUMNIT, J) = GGLMNII, J)+1.0
Y = Y+5JBrBEEP

IF (A{%5)) 330, 320, 330

IF {(X¢3(24)) 400, 400, 340
IF {v+Z=0:{4+DV) 400, 400, 340
QLA = QAL+ {2)

N

X =

Y = Y+F(MNN)
D

Y

18-2/

400

402

401
410

GO Y0 31

COMT INUE

If {GGLMN' .« J)) 4G2, 402, 401
G2114d) = .0

oN TO 41u

CONT INUE

CONT INUE

186-23
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710
120

U0 710 F=1s40GY

J= 401-1

IF (PLJ}) 710, 710, T20
CoNTinUt

ToaMUR3= J

Lo—-24

730

740

AVIUOYI = 0.0
REIA = 0.
Do 740 J 1, JO

DO 740 1 l, JC

IF (GGLMAIT, J)) 740, 740, 730
AVIOL = AVIOI+G211, J)

REIA = REIA+1.0

CONT INUL

AVIDI= AVIOI/REIA

RETA RETA® AP%AR

4 O

win

15-25

0 A Blnde L 24 un2/0

le=-2o

750

AViLSC Ced

DO 750 1 = 1, JH

AVICBC = AVICBC+P(I)

AVIOSE = AVIORCEAB®AP®AR/BECA

[T ]

i8-27]

BULPK = AD

YE~2u

EwUT2 = HiEQUT2

o=

76(

770

DO 760 J ly JO

DO 760 1 ly JC

G2(I, J) G211, J)/AVIOI

GGLIN{Ty J) = GGLMN(I, J)* AB= AP#AR/LECA
PCBCCV 0.0

DO 770 J=1,4D

DO 770 1=1,J4C

PCACCY = PLACCV 4 GGLMN{T,J)

H o# #

Li-3¢0

(30

GO 780 I = 1, 420
PlI) = PUI)#AB=AP®ARSFLOATF! H) Y/
1{BECA= AVIDI]}

16-31

ARRAT = BeCA/RELA

FEFF = AVIQBC/AVIOT
CURAT = FEFFaAR T
CEFF = CUIAT/EDL L o

18-3¢
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INPUT DATA EXAMPLES

PRINT 8L0O 1H=-3.
PRINT 840
Lo 790 4 = 1e JD
K o= Jdutl—-J
RINT 830, {G21Iy4 K}y I = 14 40C)
730  PRINT 860
PRINT 8B&O
PRINT 4350
00 200 & = 1e JO
K o= JL+i-d
FRIMT 820, {GGLMNIL, K}y I = 1, JC)
800 PRILT 860
PRINT BED
PRINT 850
PRINT 850, iPII)e I = L1y ddnd
pRINT 840
PRINT 8%0
PRINT £820, UARRAT, LCUR4LT, FEFF, CEFF,
1FCBLCY,y AVIGOC, AVIOI, BLECA, RETA,
2EQUTZ » BUMNPK, TRMUIE)
QL0 FC MAT (THISHO-L13/7/7/7/77)
820 FC. 'AT 12X,5E18.8//)
G20 FrudAYT 15X,10F11.5)
640 FO-W0T (24¢10E11.4/7)
150 FOPMAT {(210nnaaundtabntraatnnnss)
860 FORMAT {1K0O)
L 900 FORMAT (1¢l)
PRINT 930
GG T3 110
EXD {Oy 1y 10 1y 1)
18-34
iNPUT DATA REGUVIRLD Y SHU-18
13-3%
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APPEMDIX 6

DESCRIPTION OF CCMPUTER PROGRAM SHO-20

The program SHO=20 is more general than SHO-18 in that it allows
(1) the RF bump strength k to depend on x, (2) ‘7,‘— to vary with Q», and
(3) Vee to vary with a@,. The variation of V¢ with Qx is a nonphysical
device utilized in C-5 of Section 6.1 to simulate the variation of %o
with Qx. Ever when Vx depends on Qx, SHO~20 still uses a rotational
transformtion M to relate the (’2;) of a subunit to its (’._’;) one revow
lution later. The amount of rotaticn, however, depends 2n Qx, i.e.,
M = M(@N¥x(ax)), The program ShU-20 is less general than SHO-~18 in that
1) io(x,y) = 1,0 , (2) both the azimuth of the RF bump and the observaa
tion azimuth are fixed at @ = 0, and (3) no provision is made for the
addition of a Kx~ bump to a subunit, The program SHO~16 is pot intended

for use with SHO.20,

Division 20«1 differs from 1l4-~1 in not 201

calling for the CC's.

See 1l4-2, 20-2
See 14«3, 20«3
Division 20~4 reads in any input data 20«4

differing. from that used in the previous rum; it prints

out all input data used in the present run, i.e., the A's and the nonzero
D1VAR*s. The DIVAR's in conjunction with the interpolation procedure of
20-15 define how the bump strength R(x)>0 of the radial RF bump Qy= Je

am{w, te@)varies with x. The range of x over which this variation is
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defined is || £ A(36). The integral portion of A(37), i.e., KKEKD,
gives the nuwber of cells into which either the negative ur positive
half of this line gsegment is divided, The quantity KEND = 2* KKEND is
the total number of such cells, The leftmost cell is number one; the
. :
rightmost, KEND,
Instead of computing and storing a k(x) appropriate to each cell,

SHO-20 associates with each cell I a dimensionless factor D2VAR(I). When

the program is ready to add AY = kam (wee t +6) to the y of a
subuait's (q), it first determines in which cell I the subunit dise

placement x lies and then (indirectly) multiplies k as computed in 20-12
by D2VAR(I) to yield k(x). It will be required that the D2VAR(I) be
positive for all allowed x, i.e., D2VAR(I)>0 for 14I <« KEND., This cone
dition is met by requiring (1) D1VAR(I):0, (2) D1VAR(1)»0, and (3)
DIVAR(KEND)>O. Since the D2VAR(I) are not evaluated until 20-5 one

uses the empty locations D2VAR(I) ir 20«4 to aid in printing out (1)

the values of I at which DIVAR(I)>0 and (2) the nonzero T1VAR'sS assOe

ciated with these I,

Division 20«5 computes the D2VAR(T) for 1< I<KEND, 20.5

Statement 118 of 20~5 sets D2VAR(I) equal to D1VAR(I),

No fur ther consideration is given the D1VAR(I) during the course of the
run, The program interpolates linearly between neighboring nonzero
D2VAR's to obtain nonzero positive values for those D2VAR(I) (1<I<KEND)

which are still zero after the execution of statement 118,

The x axis at © = 0+ ((xI < A(36))is divided 206

into KEND cells each of width DELK., The integral portion
of (((x + A(36))/DEIK) + 1,0) is tne number of the cell in which a

subunit exhibiting a displacement x at @ = 0+ resides. In 20~18 this
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integer is given by IVAR = (X + BABO)/DELK. This expression is equie
valent to IVAR = (((x + A(36))/DELK + 1.0000004), It is required that
a subunit's displacement x always satisfy the condition |#| < A(36e)

The ,0000004 above is superfluous,

Non-linearity in the x motion is simulated 20~7

by keeping M(R%Vx) a pure rotation and allowing V¥, to vary
quadratically with a subunit®s Q4= W « Divigion 20-7 evaluates
the elements of M(ANV¥x), i.e., RRG(I) and RRH(I), for discrete Vx
arising as Gx is varied from zero to A(36) in small steps,

Letting Yxo be the ¥, of an electron having an as near zero and
AVx the change in an electron's Vx as its Qw is increased from near zero

to A(36) one has

VY« = VYxo + AVx M
v { ¢ ACsO?
XXN VU AlgY + AwG9)[x?+ «ﬁ]

A(36)?

Consider a circle in phase space centered at (0,0) and of radius A(36).
Its interior is broken into KCIR = A(40) concentric annuli of equal
area which, taken together, completely cover this interior. The smale
lest annulus, a circle, is number one; the largest, KCIR. The xa+ ya
associated with an annulus will be that of its inside boundary., Since
the annuli are of equal area, the xa + ya of the I~th annulus is
(I-1)A(36)2/KQIR. Hence, the ¥V, associated with the Iwth annulus, i.e.,

with an electron or subunit whose ax lies in the I-th e@unulus, is

XXNU = A(8) + A(39) [x-1]
KCIT R
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It is réquired that a subunit's Qg =v =\fo»"‘+ ‘531 always be less than

"A(36).

The program SHO-20 allows Yge to vary 20«8

quadratically with Qx, In the spirit of 207,

Vs, + &vee (224 9%]
A(36)?

L]

Ves

AGa) » AGYL3-1]
KCIR

RFNUST(T)

When a subunit passes @ = 0 the program must ’ 20-9

evaluate in which of the KCIR annuli defined in 20-7 the
subunit's Qygs v = ‘x1+5" lies. Since all annuli have the same area,
the appropriate annulus number is given by the integral portion of

A (%2 y?)

N ACB6Y?
KCIR

.0

In 20=19 this integer is given by TAMP = (RRO + RRPT)/RRP. This exXe
pression is equivalent to
. L 2, 421
1AMP = L“ +4 ] 4+ 1.0600004

{ Acsey?]
KCTR

The ,0000004 insures that IAMP = 1 when x . + y* = 0, If it were missing,

it is not certain whether vne or zero results when the program converts

‘1;0'to'an integer without the decimal point, To insure that IAMP<KCIR

it is required that a subunit's U x always be less than A{(36).
See 18410, 2010
Division 23~1) is identical to 18«12 20-11

when the statement involving G2(I1,J) is deleted from ¥he

latter;
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See 1425, | | 20-12 |

When the: RF bump .dees mot depend on' s’ub.u-ﬁit} 20-13

displacement x it has the form &y'z R 4m (Wept+4)

Division -20-:13-’ s,to:;e:s this btd for ‘JA valués of ‘-(;'wgp't +¢) vgpy-in_g
from zera ‘to a'n [RLED VALY fn .‘ij\érenien"bs- of ANJA, |
| See 14m28. ; 230-14 .
‘See -18-17. | 20"..1-5'-. .-
Lj.ivi's“'ionf 2016 wéuld .parax,-iei 18-18 if : _;2:}5_}
the ihterpo‘l”atioh- Prodess us'e'd to 'fihdv GZ"(_‘I'_,J)‘in 18-18. '
wefe omitted,
See l4-32. 1 20e17
The program SHOW20 allows for variation of | '20-.‘14'8; {

bump streng' . k w.i'c'h's..ub'mi.-‘.;: displacementt x. It restricts

th,‘ev, bump and nservation azimuths to 8.=0. .S”lir'\ce the t{oﬁpﬁysi&al
bagkv{ard‘r'otat:ién of 1819 id'o'e..'s not appear i'n,_sﬁ(')..'.z-q’ only ’be. (?; }
in 20-18 ‘is altered by the bump Ay -:‘vh‘(f'&)'.@v.\'@”=*+¢') . (Ses 204,

2045, 20~6, 2012, 20-13, and 20-14),

(1) After the ada“tion of the RF bump 2019

. he ihteg@r IAMP is ‘Found ‘we ich seleets appropr iate

elemetits for the rotation mat rix M (;;;q:.'\z-‘ (@ ) 720-7; 20-9).  (2)
Given the (ﬁ‘)of a :s‘,u.bun-i.t '.i‘ts (";) one revolution later’ is computed.

(3) The ;"&&b-u;nit'.re«"zb;;_t'l-tion. number is increased- by one.. (_i;8-321)a (4) The
pragrai 'Al;'es',tls. 'iu wb}ﬁaﬁ annpulv s J{; the subun it"_s Q‘ lies and adde-. 1.0 to
the agsvclated ‘.s-t'ofagev ,Illoi"iat.?bn qLJg;) « ‘The numbig.y_g H o.{'k-’, ,y_}'d;.cdv(‘_]B =

1 :0dxdy /T8 rather than L.0 should have been added (Secticn 6.6 ). The
mult'itligatidn ~.b;(;dxdy-[.1i§-fii < akel. cave of in 20284’ .an§ 2‘.0.;2.’8., tfhe

J,G—tt'\ anmmulug ‘i‘e.ff,éi‘ijeéi:‘ to -ghove is.ome Qf. the 4060 @sed' in -iétérm‘i‘ln'i.'n:g
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T ————————— .
i(x,y,8,t)/i, (18~10)., Tt is not related to the set of annuli used

Qs
in connection with the variation of vy and Ygp withY(20s7),

(5) 1f

JG corresponds to an annulus lying within the beam rircle then unity

is added to GGIMN(I,J) (18.12; 18=30). (6) The test as to whether

the subunit collides with the injector is made. TIf no collision takes

place, the RF phase angle is brought up to date by adding Ve (Qx) =

RFNUST(IAMP) to it (20w8).
Division 2020 would be identical to 16«21 if

in the latter IMN(1,J) were replaced by GGLMN{Z,T', The

20420

purpose'bi,the GGLMN(1,J) is given ir 18«12 ard 18-30, The assumptior

inherent in 16.21 is also present in=20.20,

See 1824,

If G2(1,J) in statement 730 of 18«25 were
repléced by 1.0 then 20.22 would be identical to 18«25.
In SHO-20 i (x,y) = 1.0.

See 18«26,

See 18~27,

See 18«28, (20=12)

See 18-21.

If the statement involving G2(I,J) in 18-30 were
omitted ~hen 2t«2’ would be identinal ‘o 18-30,

See 18-31.

See 1832,

The print out given oy SHO=20 parallels

that given by SHO~18 except that the block of rumbers

2021

20w22

20m23

2024

2025

20-26

2027

2028

2029

20«30

appearing immediately after the A's in SHO~18, i.e., the GQ(I,J)'s’is

replaced in SHO-20 by (1) the values of I tor which DIVAR(I)#0 followed
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by (2) the nonzero D1VAR(I) themselves. The I's are printed out at
ten numbers per row for as many rows as needed. The block of nonzero
D1VAR's follows, The position of an I in the first block corresponds
to the position of the associated DIVAR(I) in the second,

In addition to the requirements for a valid run stipulated in
18-33, i.e., A(2)*EQUT2¢32,000 and TRNUMB<399, SHO-20 requires that a
subunit’s Qu=v = m always be less than A(36). Whether or not
this latter condition has been fulfilied throughout a run is determined
as follows¢ The radius of the outside boundary of the TRNUMBth
annulus of the set of annuli defined in 18-10 serves as a least upper
bound on Gx above, If the radius of this boundary is less than A(36),

all is well, Since the annuli are of equal area and since JH = A(22)

" of them reside within the beam circle Y, = A(24), the third condition

for a valid run can be expressed as

TRNuUMB ALM)a
JH A (24)3

If the output data shows that any of the above conditions is violated in
a run then this run as well as all succeeding runs of the series may be
invalid. 1In addition to applying the corrections mentioned in 18-33 it

may be necessary to increase A(36).

In terms of input data,SHO-ZO differs from 2031

SHO-18 in (1) not requiring the CC's which in SHO-18
def ine io(x,y) and (2) in requiring the DLVAR's which in SHO-20 specify
how the bump strength k(x) of &Y= kcm)M(wR¢t+¢\ varies with x,
Specific input data required by SHO-20 follows.

(1) The A's: A(1l) through A(1l5), A(22), A(24), A(29), and A(36)

through A(40). The description of these A's as found



A(2)

A(8)

A(36)

A(37)

A(38)

4(39)

A(40)

RS LY P

in 18-34 is adequate except as follows:
The quantity A(2) is the Yy, associated with an electron
exhibiting nearly zero radial oscillation amplitude 4=
{(20-8) .
The quantity A(8) is the V, of an electron exhibiting
nearly zero radial oscillation amplitude (20-7),
A(36)>0, The quantity A(36) should be larger than the
max imum Q x exhibited by any electron in
the computation, It is the rad%ps,of a cirele in phase
space centered at (0,0) the interior of which is divided
into concentric annuli which are used in gimulating the
variation of Yy and VYge with ax (20.7),
I.1. 1.,15A(37)<1500.1, The portion of the x axis
serving as a diameter of the circle defined by A(36) is
divided into cells of equal width. The integral portion
of A(37) is the number of such cells aleng either the
negative or the positive half of this diameter. These
cells are used in simulating the var iation of bump
strength k(x) with x (20<4; 20.5; 20-6).

-~

The quantity A(38) is the change in the Ve associated
with an electron when its radial oscillation amplitude
is increased from near zero to A(36) (20~8),
The quantity A(39) is the change in an electron®s Vi
when its radial coscillation amplitude G« is increased
from near zero to A(36) (20.7),
1.1, 1.12A(40)£3000,1, The integral portion of A(40)

is ths number of concentric annuli of equal area into
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= which the interior of the circle defined by A(36) is
divided, These annuli are used in simulating the varia-
tion of ¥V and Vge with an electron's radial oscillation
amplitude Qx (20-7: 20.8),
(2) The D1VAR's: The D1VAR's in conjunction with an interpow
lation procedure in 205 specify how k(x) of the radial RF bump
Ay:= Ry am (Weet+@) varies with electron displacement x (20«4;
20.5), It is required that
DIVAR(I)20 (1<I4KEND)
D1VAR(1)>0
D1VAR(KEND)>0
where
2<KENDs3000
KEND = 2*KKEND
KKEND = A(37)

1.1¢A(37)£1500,1




RUN

R=1

R-~5

CARD

[

10
11
12
13
14

DATA

+
»

+ 40001
END DATA
«136
«251
<1416
«452
«562832
«13
«136
«4284
b1
«201
-.233
~+209
~+10714286+
«10714286+
«401
«209 +
«601 +
3 +
«11 +

NN EEEEE.

= WNWNWWWWN= DO ON ™~

*

«30001 +
END DATA

ol +

ol +
END DATA

« 46702226~
END DATA

ol +

ol +
END DATA

«9340344 -
END DATA

ol +

ol +
END DATA

«28021336~
END DATA

ol +

el
END DATA

«501

«21

«61
-0219
"0214
"’.25

+

++ e
NWWr N

- - Pt

-

RUN

R=6

R-10

CARD

15
37
38
39
40

1920

160
1761
1920

160
1761

961

«l 70=

20-32

DATA

«25 + 2

«9601 + 3

«11 + 1
END DATA

el + 1

.1 + 1
END DATA

«40001 + 4
END DATA

19 + 1

«19 + 1

i |

o1
END DATA

«40001 + 4
END DATA

.19 + 1

ol
END DATA

« 13554667+ 1

11 + 1

«9340344 ~ 2

«30001 + 4
END DATA

el + 1

o1 + 1
END DATA

«136 + 1

« 13554667+ 1

«9340344 ~ 2
END DATA

P § + 1

ol + 1
END DATA

«13622665¢+ 1

«251 + 2

«136 + 1

«61 + 1

«1l41 + 2



RUN

R+11

Re12

R=-13

R-14

R=15

- CARD

12
13
14
15
38

N N

N N e

N -~ N LAV N N) »e

DATA

"'.233

".209

-a15
75

++ 4

«9340344
END DATA
o1 +
ol +
END DATA
«13645332+
END DATA
el +
ol B
END DATA
«13668
END DATA
ol
ol
EHND DATA
«13532
«135664
«81
.101
"0241
-+2C9
- 15
75

t

+
—

+* 4+

+er et r e

«28021336~
END DATA
el

ol +
END DATA

«13566 +
END DATA

ol +

ol +
END DATA

«136 +
END DATA

ol +

" | +
END DATA
END DATA
END DATA

&
e et NNW O N e

N NN W W

Y

e

ot

oy

=171~

R0-3%




D)

FORTRAN PRUGRAM StHiU-20

~172

SHU~-20
DIMENSION A(40)y BI&A0OCUYs FL4C00),
1P{400Y, GLLMNIGO, 40}, DIVYAR(30C0),
Z2D2VARE3000), RRGL30D0), RRH(3006O),

3RFRUST(3000)
PRINT 110

20~

Cali, = loD2ed)

JA = A(13}

ALIA=1./FLOATEF(JA)

DO 100 I=1sJA
BII)=SINGFIFLOATFII-1)/FLOATF(JA))

20U~

111

112

112

114

115

116

Thie MURGCUZ1A)

CALL MURCDZ(G1VAR)

PRINT 820y (A1I1)e I = 1y 40)
KEERD = A(37)

KEID = 28KKEND

DC 111 1 = 1, 3000

D2VALLY = QuC

L =20 ‘

CG 113 I = 1, KEND

IF {Divari{I)) 113, 113, 112
L = L+1

D2vAR(L) = FLOATF(I)
ConTInus
PRINT 870
DG 114 I
p2VAR(T)
L =0

0O 116 I = 1, KEND

IF (DLVAR{I)) 1164 116, 115

L = L+1 :

c2va’iL) = DIVAR(I)

CONTINUE

PRINT 050 (L2VARII)y I = 1y L)
CO 117 I =1, L

D2VA2LI) = 0.0

(D2VAR(I)y I = 1y L)
L

0ol -

|
0.0

20~
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118
119
121
122
123

124

1125

126

127

1238

DO 118 I
D2VAR(I)
I =1
JBEG = I
BEG = D2VARLI)

I = 1+1

IF {I-KEND) 122, 126, 126

IF (D2VAR(E}) 121, 121, 123
JEND = 1
END = D2VARLI)

IF (JEND-JBEG-1) 119, 119, 124
K = JBEG+1
L = JEND-1

DO 125 J = KL

D2VAR(J) = (END-BEG)*FLOATF (J-JBEG)/
LFLOATF{JEND-JBEG) +BEG

GO TO 119

JEND = 1

END = D2VAR!I)

IF (JEND-JBEG-1) 129, 129, 127

K = JBEG+]

L = JEND-1

DU 128 J = K, L

D2VAR(J) = (END-BEG)*FLUATFIJ-JBEG)/
1FLOATF (JEND~JBEG) +HEG

1y, WEND
DIVARITI)

[/t

it 0

129

DELK = A{36)/FLUATF(KKEND)
DBELK = 1.000C004=0ELK
BABD A{36) +DDELK

131

KCIR = AlaD)

PARKL = A{39} /FLOATF(KCIR)

00 131.1 = 1y XCIR

XXNU = A(8) +PARX® FLOATF(I-1)
RRGUI) SINGF ULAXHLU)

RRH(I) COS4F UXXNU)

20- ¢

132

PARRF = A(383)/FLOATF{KCIR)
DO 132 I = 1y KCIR
RENUST(I) = Al2)+PARRF* FLOATF(I-1)

RRP = A(36) %22/ FLOATF(KCIR)
RRPT = l.0000004%* RRP

142

JH = A(22)

JJH = A{29)

DP = A(24)#42/FLOATF{JH)
DPP = 1.0000004=DP

162

163

0O 162 I = 1, 400
P{1} = 0.0

DO 163 1
00 163 J
GGULMNI{I,
NEQUTL
NEQUTZ

40
40
0.0

g

)

0o
oCoC

20-11
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wl74e

Al=A14)#A{S)#A16)vA(T)/(A(B)=A[9)522)

20-12

280

DO 280 I=1,JA
F(I) = AD=B(I)

20-13

JB=AL3)
AB=1.0/FLUATF{J4B)
QRST = 1.00C00004 = AAJA

20-14

JC=AT10)

A0=JC
AP=(A(13)-A(12))/A0
JO0=A(11)

AQ=4D
AR=(A(15)-Al14))/AQ
EB=A(12)-AP/2.0
EA=A{14)~AR/2.0

20-15

DO 410 4 = 1y JO
AT=J4

Y=EA+AT*=AR

CAT=Y

DO 401 INI = 1, JC
I JC+1-IM1

AS=1

Dt EB+AS=AP

DF = CAT

20-16

300

DO 400 L = 1, 4B

20-117

304
305

310

IF (NEQUTL - NEQUTZ2) 305, 305, 304
NEQUTZ2 = NEQUT1

NEQUTL = O

X.= DE

Y = DF

AAA=A(2)+FLOATHIL) =AB

N = AAA

NN = (QRSTH+AAA-FLOATFIN))/AAJA
IVAR = {X+BABU)/DELK

Y = Y4D2VAR(IVAR)#® F{NN)

20-13

313
320
340

RRO = X#uZ+Yun?

IAMP = (RRU+RRPT)/RRP

DO = X=RRH{IAMP)+ Y#RRG{IAMP)
Y ==X#RRGUIAMP)+ Yx*RRH{IAMP)
X = DO

NEQUTL = NEQUTL1 + i

JG = (DPP+RRO) /D°P

PLJUG) = PLJGY +1l.C

IF {JG-JH) 313, 313, 320
GGLMN{Iy J) = GGLMN(I, JJ)+1l.0
IF (X+A{24)) 400, 400, 340
AAA = AAA+ RFNUSTIU{IANP)

20-149

400

401
410

GO 70 310
CUNTINUE
IF (GGLMN{I, JJ) «10. 410, 401
CONT INUE
CONT IHUE

20-20




Oy

ol75«

710
720

GU 710 1=1,40C0

J= 401-1

IF {P{JI) 710, 710, 720
CONRTINUL

TRNUMS=

20-21

730

740

- REIA

J
AVIOI = 0.0

REIA = 0.

DO 740 J ly JD

DO 740 1 1s JC

I# (GGLMN(I, J)) 740, 740, 730
AVIOLl = AVIQI+1l.0

REIA = REIA+1.0

CONTIRUE

AVIOI=- AVIDI/REIA

RETA® AP=AR

o

20~-2¢

Hw

BECA AlE)le Al24)w22/2.0

20-23

750

AVIUBL = 0.0

PO 750 I = 1o JH

AVIOS AVIOBC+P(I)

AVIOBRC AVIUBC=AB=AP%AR/BECA

20-24

20-25

BUNPK- = AR oo
ENUTZ2 = HEDUTZ

20=-26

760

770

DO 760 J = 1o JD

00 760 I = 1, JC

GGLMN(T+Jd) = GOGLMN{I,J)=AB=AP®AR/BECA
PCBCCY = 0.0

80770 J=1,4D

Do 770 I=1,J4C

PLBLCV PCHCCV + GGLMHNI{T,J)

1}

20-21

780

DC 780 1 = 1, 400
PLI) P{L1)=AD=AP=AR®FLOATF{JH)/
1{RECAs AVINT)

]

20-2¢8

ARKAT = bBelA/REIA

FEFF = AVIGBC/AVIUI
CURAT = FLEFRF=ARRAT
CEFF = CURAT/EQUTZ

20=27%
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800

PRINT 860

PRINT 850

DO 800 4 = 1y JO

K = JD+1-J

PRINT 830, (GGLMN(I, K)y 1 = 1y JC)
PRINT 860

PRINT 860

PRINT 850

PRINT 840, (PUI), I = 1, JUH)

PRINT 860

PRINT 850

PRINT B20, (ARRAT, CURAT, FEFF,y CtFF,
12C8BCCY, AVIOBLC,-AVIODl, BECA, REIA,
2EQUT2 , BUMPK, TRNUMB)

20~ 301

810 FORMAT (THLSHD-20//7/477)
820 FORMAT (2X,KE18.8//)
830 FURMAT (5X,10F11.5)
840 FORMAT (2X,10El1l1.4//7)
850 FORMAT (2lbh0asaacsassassanassassnas)
860 FORMAT (1HO)
870 FORMAT (10F10.1)
880 FORMAT (10F10.4)
900 FORMAT (1H1)

PRINT 900

&8 10 110

END (0O, 1o 1y 1, 1)

INPUT DATA REQUIRED BY $SHO-20
20-321}

INPUT DATA EXAMPLES

" Se— e e
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sequence,

K
APPENDIX 7
e
EFFECTSOF NON-LINEARITY ON RRFI
Figure 21 of Section 5.3 shows how non~linearity can decrease
mils milg
filling efficiency. Here k = 2,095 r = 209% and Vx(0) = Vie = 1.36.
As Vx(ax) is made a successively stronger function of (Shi), filling
Yo
efficiency (FE) drops.
Run \7,‘ (Gx) FE 90
2
Q
R-1 1.36 + 0.0 (_é) 100
2
R-R }.36 4+ ©0.002137 (%i) 78
2
R-3.] 1.36 + 0.00453 (%_L;) 41
: 3
- . .O1360 ( S
R~4 | .36+ © ( r‘) by
Filling efficiency can be increased by making a better choice of $§f.
Figure 41 illustrates runs paralleling R~3 above except for v,  being
changed slightly.
Run Ve FE o/o
R-3 1.36 41
R-10 1.3¢ + O.00227 89
R- 1) .36 + ©0.00453 7l
R-12| 1.36 + 0.00680 41
Here filling efficiency has been increased from 41% to 89% by setting
Vge half-way betweer VYx(o) and Vj(v,). Figure 42 illustrates a similar
sequence modeled after R-4. In R-13, R-1l4, and R=15 WV,(a«) = 1.36 =
-

2
0136 + 0136 (%—E) . This change over R~4 is of little physical cone




b

Run Yae FE ©o/o
R-4 1.36 .
R-13 1.3 — .0136 + .0068 49
R~14] (.36 — .0136 + .0102 Gl
R-15 .36 ~ .0136 + -013¢ 42

Here maximum filling (£61%) is achieved when Vae 1s set 3/4 of the
way between Vu(0) amd Yx(¥,). This fraction gets nearer to unity and
the filling efficiency drops below 61% when (Y (ve)- VxC0)) is made
larger than 00,0136,

Consider R«l4, Raise k until filling efficiency has imcreased
from 61% to 100%. Adjust Vga so that the k which gives 100% filling
is a minimum. The size of the required injection area has increased
in this process, A practical injector, even if its septum thickness
were zero, would probably be able to cover only a fractioqbf this area
to an i (x,y) of i,, From study of the on-resonance linear problem one
might expect the filling efficiency which prevails to be slightly greater
than the fraction of the required injection area so covered. <?re-
sumably ia(x,y) equals i near (-\ro'o} but is zero further from (-v, o).
Figure 15 indicates that dxdy near (-ve,0) are slightly more effective
in filling the beam circle than dxdy further from (7VB,O)). What
actually prevails is thought to deviate from the on-resonance linear
problem in two basic respects. (1) It takes longer than El;—:’i" to
achieve maximum filling and (2) dxdy near (—-Y‘o,O) contr ibute more charge
to the beam circle; dxdy further from (-qu) contribute less than in the
on-resonance linear problem, Point (1) means that the charge efficiency

will be less than in the on~resonance linear problem, Point (2) means
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that with a practical injector covering only that portion of the re-
quired injection area near (-Vo,0) , filling efficiency will be some~
what higher than anticipated on the basis of the on~resonance linear
problem,

Statements (1) and (R) above are inferred from behavior of the
off-resonance linear problem in the special case of Y.z Yo , 1l.e.,
where k is just sufficient to achieve 100% £illing in the absence of a
septum., The rest of this appendix considers those aspects of the off-
resonance linear problem which support statements (1) and (2) above.

(1) In the off-resonance linear problem maximum £illing occurs

in a time am., provided v, £ Yo . One assumes here that every
bt | Avgel

empty point initially within the beam circle which gets pushed outside
the beam circle has become a filled point by the time it returns to the
beam circle, When v\ :Vv,, maximum filling corresponds to 100% filling,

Consider the case where ¥Ywz= Yo . Substituting for ‘Aval in the ex-~

R
4%\ AVrel

pression above its value as obtained from the relation Y =

one obtains

. AMYonp . RWYe v
| avgel )] ()9/2)

This result can be understood by viewing points on a segment's phase
plane from a coordinate septum rotating with these points, One notes
that each point must be displaced once around a resonance circle of
circumference 2%y, before complete filling obtains., The average disw
placement per revolution along this curved path is the same as along
the straight line path in the on.~resonance linear problem, i.e., k/2.
%o A& 45 noted above. This filling time is

RIA
a factor of 9y larger than in the one~resonance linear problem,

Hence, filling time is




e
< e
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Consequently, charge efficiency is reduced by a factor of ’;‘—— over this
case. This reduction is the worst that can heppen, however, as either
increas‘ing or decreasing Y, makes the charge efficiency greater. In
the latter case 100% filling no longer prevails,

When Vgg deviates from ¥y by the amounts considered above, the
shape and size of the required injection area do not differ radieally
from what they are when A\’RF = 0,

The above results suggest that in the presence of non-linearity
a decrease in charge efficiency over the on-resonance linear problem
is to be expected when non-linearity is on the verge of destroying the
100% filling efficiency property of RRFI.

(2) Let V= L/N, CGChoose N large so that the Nwsided polygon
looks like the beam circle. Let N% << 2_%_\:0. Break the beam into
segments, viewing any particular segment only at @ = 0 on every Neth
pass it makes of @ = 0, Define the time t to be zero when the RF is

turned on, Viewing times t will be limited to:

0O <« %X <« 7T
NT ¢ £ <& N &+ 7

2NT ¢ T < 2ZNT + T

. - .

When viewing segments in any one of these intervals one notes that the
Neturn displacement vector exhibits all orientations (Vx»1). There
will be degeneracy in the sense that a given Nwturn displacement vector
orientation can be exhibited by more than one segment. Even though Vy
is not an integer it will be assumed that the number of segments which
exhibit Neturn displacement vectors lying within a given angular range
is proportional to this range. Only charge injected into the beam

circle which crosses the leftmost side of the beam polygon as viewed
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at © = 0 during the allowed viewing times will be considered. This
restriction is not essential to the arguments which follow. One could
just as well consider charge entering across any other side of the beam
polygon by shifting to a different set of viewing intervals,

Pick a point on the required injeetion area, say, (x,0) where
x £-Y,, Consider a small circular neighborhood about this point, Take
io(x,y) = ’1°>0 on this neighborhood. Outside this neighborhood io(x,y)
= 0. Let Vge =V . If this point is less than N% to the left of
(-r,,0) then for that segment whose N~turn displacement vector is
directed parallel to the x axis and to the right one sees a string of
filled islands move across the beam circle on the line y = 0, Each
island is separated from its nearest neighbors by a distance Nl:.

When equilibrium is achieved the number of islands in this string is
AVo

N /2
is proportional to the amount of charge injected from a neighborhood

, lee., the length of the trajectory across the beam circle

about the point, Henceforth, the term "point" will be used to mean the
neighborhood about the point,

The results for all segments will be superimposed onto the above
segment (Figure 10)., When the point on the required injection area is
less than N{ to the left of (-r,,0) strings of islands are seen along
chords lying in an angular range of + §, about the orientation con-
sidered above, This angle §, is zero when the point is N% to the left
of (~r,,0). It approaches t ’_E as this point nears (-r, ,0). The angle
€, will be taken positive for chords lying below the x axis and as
negative for those lying above. As a measure of the charge injected

into the beam circle by the point one finds the integral of chord length

over an angular range +§ 6 about the chord y = 0. To facilitate this it
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will be assumed that when the point is to the left of (-r,,0) all
chords never theless pass thraugh (-r,,0), i.e., (-r,,0) serves as the
origin of these chords.,

It proves convenient to define a new coordinate system (x",y")
which has its origin at (x,y) = (-r,,0). The equation of the beam
circle in this system is (&= V'g)‘-l- 3"z= Yo or 2" 2 2n"vo+ 3"’: o,
A chord inclined at an angle § to the horizontal has the equation
\1"-_- -M(g)o‘: This chord intersects the beam circle at (x ,y )=

(0,0) and at a second point which is found from these two equations,

Substituting y“ from the second for y“ in the first gives

1" l ’
- an"ve + "*lam*g = 0

! n

s 2

OZ!. = R Yo

1+ famt s
Hence the second intersection is at

,xu ,,) - AVo ‘AYOEM.%

(2,9") = ( —= z
1+ Tan ° ¢ | + tam* €

The length of the chord between intersections is

V(- 0Y Rty oyt = _RYe = Ao o4 §
Jli-lbnn €

The charge injected by the point over an angular range of :E. about y =0

is propor tional %o

. _
S Avowod & cd® = 2y, 2 am §,
_g‘

Next, an expression analogous to the one above for the off-
resonance linz2ar problem will be found. The special case of Yy 2 Vo
is worked with, Here islands do unot move across the beam circle on
chords as before but on arcs of circles (ro). A specific example will

be considered first,
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Islands moving into the beam circle along the x axis at (x,y) =
(ery,0) have their direction of motion subsequently altered so that
they leave the beam circle at (x,y) = (0,tr,). The sign depends on the
sign of Vge~Vx .+ The path length within the beam circle for thdse
islands is 2% Yo , In the oneresonance linear case islands similarly
injected have gath length 2v,. 1t is concluded that when the injece
tion point is mear (x,y) = (-v,-N% ‘o) , a factor of :_;1 less charge
zets into the beam circle from this point in the off.resonance linear
problem (r, = ry,) than in the on-resonance one,

The particular trajectery which is inclined at an angle § to
y = 0 at (x,y) = (~r,, 0) is the pdrtion of the circle (fz'i-v:,.wng)“+
(3"-\(.@04;)‘: y~: which lies within#the beam circle, The length of
this trajectory will be found. The trajectory subtends an angle ¥ on
itself, i.es, On the trajectory circle, where Am % equals one-half
the distance between the intersections of the trajectory circle with
the beam circle all divided by r,.

“The equation for the beam circle is (N-"-Yo)‘ﬁh tg“z= Y‘.z or
fx“‘- AYox "'+ 3"20 The previous equation gives

,xa.‘ 2 y-,,umf,-\- 3" - RY"ve oS =

One intersection occurs at (x' ,y "y = (0,0). Upon eliminating the
quantity /y."’;,uj"z from the above two equations one obtains

Y " (l —umg)

Substituting this result into the beam circle equation gives

lz *
A SV VR L;:M__ﬁ.i)‘:o
Coo§
or

n - 2\!‘,
|+ (\—M%
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The second point of interseection is- .
| - Am € )

\ 2V Ar XS
(%54") = , . ) 2 ,
\+(l-M§)7‘ |+ (“MS 2
oo g 0§
‘The distance between the two points of intersection is
W[(’%"—0)2+(3"-o32 = A =

JI+(‘E’“ )

Hence,

Y = RAawm !
|- amE\2a
| ——
'\/ + c.oog)

The length of the trajectory under consideration is v Y¥.

Yo“ = RY'o

2v, ot -'—'M—ﬁ—g-)
JW+ kﬁﬂi) o §

withinm

The charge injected along trajectories mclinedvtﬁ. of y =

at (x,y) = (-r,,0) is proportional te
s

g Zvowx-l |-M§)dg
o0 §
-g'

The integrand equals av'.(fg..."_h'). The integral becomes
A 4 :

2ve gg(

"gu

Pivo

= RV‘oIE RS
+g)Ag 3 '

The result from the on-resonance linear problem which corresponds to

the above result is Rv, R2.amm € . The ratio of the former to the

latter is
u
av‘b T a§| = -rﬂl'- e|
AY¥o R.ME, 4 ams,

When & 90, obtains., Hence an injection point near (x,y) =
4

(-ro-N_)_t »0) in the off-resonance linear problem (r. = r,) contributes
2 :
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a factor of ’_:. less charge to the beam circle than in the oneresonance

linear problem, When considering injection points nearer (%,y) = (er,,0)
one is reached where equivalence betwecen the two problems obtains, Here
jis _f&_ zl, An § of 67° applies, Points still closer to (er,,0) inject
4 oS, .
change over a still larger range. Such points contribute more charge to
the beam circle in the off-resonance linzar problem than they do in

k
the on~resonance one. When €\=%", ™ £ becomes %.. or 1,23,

4 Lo,

When using an injector which provides an i (x,y) of i  only

)
over a small neighborhood near (-r, ,0), the above results suggest that
with nonwelinearity present a slightly larger filling efficiency than
found in the corresponding on-resonance lineér problem should obtain
when the non-linearity is on the verge of destroying the 100% filling
property of RRFI. On the other hand, introduction of a geptum is exw

pected to inhibit filling efficiency more in this non.linear problem

than it does in the corresponding on-resonance linear one,




10,

11,

12,

13,

14,

15,
16.

17,

18,

19.

~186-

REFERENCES

Kerst, D. W., et al. Rev. Sci. Instr, 31, 1076 (1960).

Hamper, C. L., R. W. Pidd, and K. M. Terwilliger, Rev. Sci, Instr.,
26, 555 (1955).

Cole, P. T., R. 0. Haxby, L. W, Jones, C. H. Pruett, and K. M,
Terwilliger, Rev. Sci. Instru., 28, 403 (1957).

Cook, B. C., Minutes of MURA Staff Meeting No. 11},2(April-5,1960),

Cook, B. C.,Bulletin of the Awmerican Physical Society 5, series II,
226 (1960),

Kerst, D. W., Physical Review 74, 503 (1948),
Rerst, D. W.,Rev. Sci., Instr., 21, 452 (1950),
Judd, D. L. A Study of the Injection Process in Betatrons and Syne

chrotons. Unpublished Doctoral dissertation, California Institute
of Technology (1950). '

Kevrizhnykh, L. M, and A, N, Lebedev, Soviet Physics JETP 34(7),
679 (1958).

Davis, Leverett, Jr. and R, V. Langmuir, Physical Review 75,
1457 (1949).

Jones, W. B., H. R, Kratz, J., L. Lawson, G. L. Ragan aund H. G,
Voorhies, Physical Review 78, 60 (1950).

Barden, S. E., Proceedings of the Physical Society (London) 64B,
85 and 579 (1951).

Teng, L. C., Argonne National Laboratory Report ANLAD-49 (1958),

Mills, F. E., and D. C. Morin, Procecdings of the 1961 International
Conference on High Energy Accelerators, 395, (1961).

Symon, K. R., Minutes of MURA Staff Meeting No. 111,1 (April 5,1960).
Rowe, E, M. A conversation,

Slater, J. C. Microwave Transmission. New York: Dover Publica-
tions, Inc., 1959, pp. 23-26,

Curtis, C. D. and R. E. Rothe, MURA Report No. 531 (1959),

Westlund, G. A,, MURA Reports No, 536 and No, 550 (1959),



=187~

Table 1
t Resultant Vector
[+ %)
o =
Yo Yo
% ’XO\ ’°
v (3) ) M(ao M M(A'io]
. (5« )+l
= +
R (‘ja) M(‘Jo M BYe + ™ bt?.
o ) n|a = n-p [ ©
nT (5'.1 - ‘.M ('1°3 + Z:{, ™ (A‘J,]
Tebie &
N Charge E‘f‘?\:tehck_’ /o
3 7.6
4 3.8
s V1.4
6 19.6
7 2i.0
8 21.8
9 22. 4
0 23.0
1 23.4
12 23.8
o0 5.0
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Table 3

Range of v

Llviy,8%) /4,

0 £ Yy £ Yef7] O£ v £YXo-2Ny o
Yo-2%2Y £ Yo | —dcos” [""""“* ”’W]
g AYY%
Yo < <
/2<% ¥ |0L ¥ ¢ an-T |
2 A
RYv-Yo ¢Y < Y, \ Lot LYo dATeYr
v AYYe
YoS \rr < o o} S Y ‘s T'o |
Tab le 4
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