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of the drop of the cross sections at high energies it 
would be extremely desirable to visualize (e.g. by 
diagrams) the mechanism responsible for this phenom
enon, provided, of course, that it exists in reality. 

In conclusion we wish to express our appreciation 
to V. N. Gribov, L. D. Landau, L. B. Okun and I. M, 
Shmushkevich for interesting discussions connected 
with this work. 
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The asymptotic behavior of scattering amplitudes 
is investigated at high energies. It is shown that at 
high energies the usual diffraction pattern of scattering 
contradicts unitarity conditions and analytic properties 
of the scattering amplitude formulated with the help 
of Mandelstam's representations. The most natural 
behavior in terms of these conditions is a decrease 
of the cross section faster than ( l n f 1 ) - 1 . 

1 . I N T R O D U C T I O N 

Asymptotic behavior of scattering amplitudes 
in quantum field theory has been investigated in a 
number of works 1 - 3 ) . In all cases, however, only 
very weak restrictions on possible asymptotic be
havior have been obtained. At present, mainly 
owing to Mandelstam's work 4 ) , in studying asymp
totic behavior it has become possible to make a 

more extensive use of the dispersion relations for the 
momentum transfer, and of unitarity conditions. 
Since we can, so far, operate only with two-body 
states under unitarity conditions, evidently we cannot 
expect a complete solution of the problem. Never
theless, some limited information can be obtained 
as will be shown below. 

The description of elastic scattering at high energies 
is based on the so-called diffraction picture. Accord
ing to this picture, particles with an impact param
eter p smaller than a certain R (of the order of 
[JL is the meson mass) strongly interact with the scatterer 
and are emitted from the elastic channel, while particles 
with an essentially larger impact parameter would not 
be scattered. This results in a diffractional scattering 
which is characterized by two main features: the total 
cross-section (aT) and the differential cross section 
of the elastic scattering in a unit interval of the square 
of the momentum transfer dojdt are energy-independent 
(—f is the square of the momentum transfer). 
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The present work investigates the consistency of 
such a pattern with the requirements of unitarity 
and analyticity for scattering amplitudes. It is shown 
that energy independence of oT and dojdt cannot be 
naturally fitted with the conditions of unitarity and 
analyticity. (In terms of these conditions, the most 
natural behavior is a faster than logarithmic decrease 
of aT and da/dt at high energies). 

V. Berestetsky and I. Pomeranchuk 5 ) , investigating 
inelastic processes in the pole approximation, arrived 
at a similar inconsistency of diffractional representa
tions with the general properties of amplitudes in 
quantum field theory. Assuming that the elastic 
scattering cross section remains constant, they found 
that the cross section of inelastic processes tends to 
infinity. An assumption about the decrease of the 
scattering cross section makes their results self-
consistent. 

where 0 < ^ < 2 ; k^^y/s—4JLI2 is the particle mo
mentum in the center-of-mass system. 

If we use the dispersion relation for At(s, t) as a 
function of t: 

2. G E N E R A L PROPERTIES OF S C A T T E R I N G 
A M P L I T U D E S 

For simplicity we shall first consider scattering of 
two identical particles without spin (mesons) and 
assume that these particles are the lightest in our 
theory and are pseudo-scalar, to prevent virtual 
conversion of two particles into one. 

The elastic scattering amplitude of these particles, A, 
will be treated as a function of the two invariant 
variables : the square of the center-of-mass energy, s9 

and the square of the momentum transfer, —/. 
A(s, t) is normalized in such a way that 

We shall assume that A(s9 i) possesses the analytic 
properties formulated by Mandels tam 4 ) and we shall 
use the Mandelstam plane. 

The functions A(s, t) and Ax{s, t) will interest us 
in the region I [s>4fx2] for s-^oo, — t<4s. In the 
t<4pi2 region, A(s, t) and Ax{s, i) can be represented 
by a Legendre polynomial series. In particular, 
At(s, t) can be written down in the form 

From this formula, they easily derived the asymptotic 
t 

Ik' 
behavior of at{s) at / ->oo, since at \ , 

p = l/k is the impact parameter, and K0(x) is 
McDonald's function; then 

decreases exponentially for lpk/2p and any s, pro
vided only that I m ^ ^ , f) does not change essentially 
when t—4p2^4p2. 

At this point the analytic properties of Ax(s91) are 
consistent with the diffraction picture. The expo
nential decrease of a^s) for l^kjlp means that the 
function Ax(s9 i) changes significantly only when t 
changes by a value greater or of the order of / i 2 . This 
is a simple consequence of the uncertainty principle 
between / and the scattering angle 6, 

As s->oo there are three possibilities : 

then according to the work of Galanin et al \ 

where 
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(iii) s) oscillates around the mean value of 
a(p) (6c) 

Passing from summation to integration in (2) and 
employing the relation 

where, although / (s91) oscillates with s9 as a function 
of t it changes essentially only when t changes by the 
order of p2; generally speaking <rT = f(s, 0)/16n also 
oscillates with energy. Only the first case is com
pletely consistent with the usual diffraction picture. 

Note that if, in this case, we assume (6a) to hold 
at p9 then by virtue of (5), ImA^s, i) = slmf(t)9 

at any rate at t—4p2<^p2. (The author's attention 
was drawn to the fact that A{ = sf (t) corresponds 
to the diffraction picture and that this expression 
must agree with the dispersion relation on t by I. 
Pomeranchuk.) 

So far, we have concerned ourselves only with 
analytic properties of At(s, t) as a function of t and 
employed the unitarity condition in the physical 
region on a limited scale (the 0 < a f < 2 condition). 
However, as Mandelstam first showed, unitarity 

conditions in other physical regions also impose 
essential restrictions on amplitudes by virtue of the 
analytic property of A(s> i) as a function of s. 

Let us consider the unitarity condition in region 
III [t>4jj2]. When 4fi2<£<16/i2, inelastic processes 
in channel t being forbidden, the unitarity condition 
has a simple form : 

where A3(s91) = \mA(s91) in region III, and 

z£ = lH T is the cosine of the scattering angle 
t-4fi2 

in the center-of-mass system of channel III. 

This form of unitarity condition differs from the 
usual one only by a replacement of the variable 
cj) by z 2 . Integration is performed over the area in 
which the square root is real. It was shown by 
Mandelstam that this relation can be continued from 
region III ( | z | < l ) to region (I, III) ( | z | > l ) . In 
continuing (12) sufficiently far to region (I, III) 
expressions to the right and to the left become com
plex. Calculating their imaginary part and taking 
into account that I m . 4 ^ , /) = I m ^ s , t) — p(s, t) we 
shall find, according to Mandelstam, that 

when 4p2 < / < 1 6 / i 2 . Integration is performed over 
the domain 

Note that this equation is valid irrespective of the 
asymptotic behavior of Ax(s91) as s-^oo. 

3. I N V E S T I G A T I O N OF T H E B E H A V I O R OF 
At(s9t) A T L A R G E s W I T H T H E HELP OF T H E 
U N I T A R I T Y C O N D I T I O N 

Since At = sf(t) is the most natural expression for 
Ai(s9 i) obtained on the basis of the diffraction picture, 
it is necessary, first of all, to substitute it into the uni-

[l0(x) is the Bessel function of imaginary argument.] 

In the first case At(s, i) = sf(t) 

in the second case 

constant ; 

in the third case 

where J0(x) is the zeroth Bessel function, we shall 
obtain simple relations for Ax(s91) as s-+oo in each 
of these cases. 
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tary condition and to check whether it can be fulfilled. 
It can be done simply since, with such an asymptotic 
behavior of Ax(s91) and at z > l , the essential contri
bution to the integrand is made by z x > l , z 2 > l . 
Therefore, it is possible to substitute Ax(sl9t) = s1f(t) 
and A*2(s29 t) = s2f*(t) into the right-hand side of 
Eq. (13). Then, integrating, we obtain 

Since the left-hand side must equal slm/(t) by assump
tion, then in view of the presence of In s in the right-
hand side we come to the conclusion that Ax(s, t) #= 
4= /̂(0 at arbitrary large s. This means that the 
diffraction picture described in the introduction 
contradicts the unitarity condition. 

In view of the fact that Ax(s, t) = sf (t) is impossible, 
it is necessary to clarify of what character a function 
satisfying Eq. (13) can generally be. For this 
purpose, we shall apply the Mellin transformation 
to Eq. (13), i.e., multiply the right- and the 
left-hand side by z ~ ( p + 1 ) and integrate over z. 
A(s, t) does not have an essential singularity at s->co, 
therefore At(s, t) can be written in the form 

where Bt(s) neither increases nor decreases power-like 
as s-^oo. Because of this, the Mellin transformation 
makes sense for any p>q. At z = 0 there is no 
divergence, since At(s, t) = 0 for z > z 0 , z 0 > l . 
Integrating over z we obtain 

Let us now consider this equation for p in the neigh
borhood of q9 p = q+5. In this case, if Bt(s) does 
not decrease as 5->oo, then on the right-hand side of 
Eq. (17), the regions z x > l and z 2 > l become most 
important if <5<^1. Under these conditions a->l. 
Denoting 

But since |Im ij/(p)\ <|*Kp)| it follows from Eq. (19) 
that 

for any 5<^ 1, i.e., 

Integral (21) can converge either due to the decrease 
of Bt(s) or due to oscillations. It can be proved easily 
by direct substitutions that an oscillatory solution 
does not satisfy Eq. (13). Therefore, we shall interpret 
condition (21) as a condition that Bt(s) decreases 
faster than 1/ln s. Since apart from this Bt(s) by 
definition does not contain a power dependence at 
s-+oo9 it is more convenient to regard Bt as a function 
of £ = In s and instead of (16), write down : 

Thus, we find that in order to make Eq. (13) valid it 
is necessary for At(s, t) to have the form of Eq. (16a). 

In this section we have so far been concerned with 
the behavior of At(s, t) as a function of s. Now we 
shall find out what can be said on the basis of Eq. 
(16a) about the behavior of A^s.t) as a function 
of t. If the power in Eq. (16a) is a function of t then 
At(s, t) will essentially change with a change of t not 
by a value of the order p2, but by a value of the 
order / i 2 /^ , i.e., at sufficiently great s9 arbitrarily 
rapidly. Such behavior of Ax(s9 i) should hardly 
be considered to be possible, because firstly, for such 
behavior of the amplitudes, at(s) calculated by means 
of Eq. (5) would not, generally speaking, decrease 
exponentially when l^>k/2p; and secondly, it seems 

we obtain then 

for 54l. This means that 
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extremely artificial that a function which in the region 
t<4pi2 changes essentially only with a change of t 
by a value of the order / i 2 , begins to change arbi
trarily fast when analytically continued beyond the 
branch point into the region t>4pt2. In any case, 
it seems reasonable to postpone the treatment of 
such rapidly changing functions until a more detailed 
investigation, and to assume that q is independent 
of / and is equal to unity. Assuming that Bt(£) also 
changes essentially only with a change of t of the 
order ja2

9 we shall come to the conclusion that the 
third case (6c), is also impossible, and so we conclude 

So far, we have shown only that the decrease of 
Bt(£) is a necessary condition for Ax(s9 i) to satisfy 
Eq. (13). It is easy to show that a solution of such 
a structure exists. We shall assume that Bt(£) is a 
power type function of i.e., it possesses the property 

that Bt(^1+^2)^Bt(^i) H €i>%2> a n d w e shall take 
for simplicity q = 1. (The same result is easily 
arrived for arbitrary q). 

Contrary to Eq. (15), in the case of asymptotic 
behavior Eq. (16a) the regions z 1 > l , z 2 ~ l ; zi~h 
z2 > 1 prove to be most important for the integrand 
in the right-hand side of Eq. (13) at zg>l. There
fore, an asymptotic expression for Ax(s9 t) cannot 
be directly substituted into it. 

We shall write down Eq. (13) in the following way : 

The main contribution to the integral occurs when 
u~z0. Therefore, the integral over zt can be 
broken into two parts : from z 0 to X and from A to 
u/z0; and X can be chosen in such a way that 

Cdz1 

Since —A(zl) converges according to the assump-
J z i 

tion, the main contribution to the integral from 
z 0 to X is made by z x ~ l , and therefore one can 
neglect z\ — 1 compared with the remaining terms, 
and integrate not up to X but up to the zero of the 
argument of the square roots. 

In the same way we may treat the integral from 
X to u/z0. It will yield a complex conjugate expres
sion. Transforming to the original variables, Eq. 
(22) can be written in the form 

After this transformation, the first integral is easily 
integrated over z2 and the second over zx (certainly 
asymptotically at s-+oo). 

As a result we obtain 

Integral (26) converges provided condition (16) is 
fulfilled. E q . (25) shows that (13) is really satisfied 

where 

Integration is respectively performed over the regions: 

In the integral from z0 to A, u/z0pl and therefore 
we may substitute for J4* 1(w/z 1) the asymptotic 
expression : 



Strong Interactions of Pions and Nucleons (Theoretical) 345 

if Ax(s, i) has the form of Eq. (16a). Simul
taneously, an equation for Bt{s) as a function of t 
emerges: 

4. O N E N E R G Y V A L U E S A T W H I C H T H E C R O S S 
S E C T I O N D E C R E A S E M A Y P R O V E T O BE 
ESSENTIAL 

This equation holds only at 4/i 2 <t <16 Ju 2 but if 
we assume it to be valid at any / we immediately 
obtain : 

where exp [2»5(0] = (1 — 2/^>(0)(l +2i<j>*(t))~1 ; it is 
assumed that 5(0 does not decrease at t-*-oo. Thus, 
in particular, we have in the physical region : 

1 d° • • 1 

is independent of .y. 

If, from the outset, we had proceeded from the 
assumption that A^{s9 i) — <j>(s)f(t)9 then without 
making any further assumptions we would have 
arrived at the fact that <j>(s) = sB(£) and that / (t) 
satisfies the equation 

It is interesting to note that the value (j)(t) given by 
Eq. (26) is somehow related to the scattering phase 
shifts at the center-of-mass system energy. Indeed, 
the scattering amplitude in region (III) can be written as 

It is very difficult to make a definite estimate of 
energies at which the cross section decrease may 
prove to be significant since we can use the unitary 
condition only in the 4fi2<t<I6jli2 interval which 
does not contain contribution from inelastic processes 
in the third channel. 

However, one may attempt to make a rough esti
mate of the critical energy. It is rather interesting 
that such an estimate involves a numerical parameter 
which renders this energy very great. 

In order to make the mentioned estimate we shall 
assume that starting with s = A the cross section 
becomes constant, and Ax = sf(i). Substituting into 
the unitarity condition Eq. (13) we shall arrive at 
Eq. (15). To estimate up to what energy Ax&sf{t) 
it is necessary to determine up to what energy the 
first term in Eq. (15) containing Ins is small as com
pared with the entire I m ^ . We shall obtain then 
that the cross section may remain constant up to 
energies at which 

If we now put Imf~f9 neglect the fact t h a t / ( f ) in
creases with / in the interval from 0 to 4/z2, and substi
tute Gn/I6n for f(t), then instead of Eq. (31) we 
obtain : 

where z is the cosine of the scattering angle in the 
center-of-mass system. If we wanted to evaluate 
the p-wave amplitude, multiplying At(z91) by z and 
integrating over z we would arrive at a zero by virtue 
of the symmetry of A(z91). However, if we take 
only the first term in Eq. (30) and multiply it by z9 

carrying out the integration we obtain cj)(t) to within 
a factor. 

Eq. (32) makes sense up to / = \6ju ; therefore 

if ( ? n ~ \ , Eq. (32) roughly means that 

In spite of the fact that the value W0 = V^ 0 proves 
to be very great and that the cross section possibly 
vanishes only at unattainably high energies, already 
with the change of energy from 10 9 eV to 10 1 3 eV 
the first term in Eq. (15) may result in a 10% change 
of the cross section. 
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5. P I O N - P I O N S C A T T E R I N G A T H I G H E N E R G I E S 

So far, we have considered scattering of neutral 
particles without spins. In this section we shall show 
that the same reasoning can be applied to the case 
of pion-pion scattering. 

In a further paper it will be shown that the same 
holds for pion-nucleon and nucleon-nucleon scattering. 
The scattering amplitude describing scattering of 
7r-mesons with momentum p{ in isotopic state a by a 
71-meson with momentum p2 and isotopic state f} 
into 71-mesons with momenta —p 3 , —p4 and isotopic 
states y, 5 can be written in the form 

If both functions Fx(s13) and F2(sl3) were non-zero 
it would follow from Eq. (34) firstly that backward 
scattering is of the same order as forward scattering 
for any a, p; and secondly that the cross section of 
the forward charge exchange is of the same order as 
elastic scattering. The second is evident; to make 
the first evident it is sufficient to consider Ta^ yd 

at 5 1 2 ->oo and s23~—p2 and to put a = y, j8 = 8. 
At sl2-+oo and s 2 3 ~ — p2 we shall have from Eq. (34): 

By virtue of crossing symmetry, 

We shall consider the behavior of 7"a/3 y5 as sl2->oc 
and when sn~—ii2, and shall proceed at first from 
the assumption that 

As is well known the Feynman amplitude A(s12; 
sl39 s23) is not an analytic function of sn in the 
upper half plane. It is the function corresponding 
to the retarded commutators that are analytic in the 
upper half plane. Therefore if we pass through the 
upper half plane from s{2 to —s{2 we shall obtain 
not 

but 

However 

Hence, in view of the fact that si2F3(s13) transforms 
into —si2F3(s13) as s 1 2 -> — s12 we obtain that 

and in a similar way we shall obtain for A(s13, sl2, s23) 

It follows from Eq. (30) that in order to prevent 
particles of different charges from backward scattering 
with the same amplitude as for forward scattering it 
is necessary that F(s23) = 0. Then it will follow from 
Eq. (37) that F 3(^ 1 3) = 0. In this case, we obtain 

i.e., only scattering without charge-exchange occurs 
in the forward direction. Thus if we assume that 
backward scattering of particles with different charges 
is comparatively small we come to the conclusion 
that pion-pion scattering is characterized at high 
energies by a single scalar function A(sn, s23, s{2) 
symmetrical with respect to sX2 and s23 in exactly 
the same way as for neutral particles without spins. 

The unitarity condition for the channel in which 
s13 is the energy is written in a manner analogous to 
Eq. (17) for each of the three amplitudes corresponding 
to definite isotopic spins 0,1 and 2. 

Each of these relations can be continued into region 
| z | > l . However for 2 > 1 , since A(si2, s23, s13) 
and A(s23, sl2, s13) make a small contribution to 
scattering at high energy, it is sufficient to consider 
only the relation for T0 which is identical with Eq. 
(13) and will yield the same results as for neutral 
particles. 

One more interesting consequence of these results 
is to be observed. Under the same assumptions 
as in section 3 we find that 
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If B{£) were absent it would follow from Eq. (38) 
that 

i.e., the scattering amplitude is purely imaginary (the 
real part could be of the order \js as compared with 
the imaginary part). 

In the presence of B(^) the situation changes drasti
cally. With the substitution of s for —s, B{£) will 
be replaced by B(£+iri). It is easy to show that in 
this case the correct expression for the whole amplitude, 
instead of Eq. (43), will have the form 

The function A(s, t) in this case cannot be purely 
imaginary. If, ass ->oo, B(!;)~t;~q, then 

Thus, the real part of A(s, t) is only logarithmically 
small as compared with the imaginary part. 

The main results obtained in this work can be sum
marized as follows : 

(1) a representation of the scattering amplitude 
at high energies in the form sf (/) which holds if the 
scattering is of diffractional character, contradicts 
unitarity condition; 

(2) it follows from the conditions of unitary and 
analyticity under natural assumptions that the total 
cross section for the scattering decreases at high 
energies. 

Our treatment does not claim to be mathematically 
rigorous, but in our opinion it is convincing enough 
from the physical standpoint to encourage further 
investigation. 

In conclusion the author wishes to express his 
profound gratitude to L. D. Landau and I. J. Pomeran-
chuk for their exceptional interest in this work, 
numerous discussions and valuable remarks without 
which the work could hardly have been carried out. 
The author is also thankful to K. A, Ter-Martiro-
sian, V. B. Berestetsky, I. M. Shmushkevitch and 
I. T. Diatlov for helpful discussions. 
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