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The recently proposed method (OPP) to extract the coefficients of the
scalar one-loop integrals to any multi-particle (sub)-amplitude is described.
Within this method no analytical information on the structure of the am-
plitude is needed, allowing for a purely numerical, but still algebraic, im-
plementation of the algorithm. The algorithm can be used to automatically
perform one-loop calculation both in QCD and in the EW Theory. As an
application, we give QCD one-loop results for the process pp → ZZZ at
the LHC.

PACS numbers: 11.10.–z, 12.38.Bx, 12.15.Lk, 13.85.Hd

1. Introduction

In two recent papers [1], we proposed a reduction method (OPP) for
arbitrary one-loop sub-amplitudes at the integrand level [2]. The method
is based on idea of expressing the integrand of the one-loop amplitude in
terms of the propagators that depends on the integration momentum. The
solution of this equation can proceed in an hierarchical way, by exploiting
numerically the set of kinematical equations for the integration momentum,
corresponding to the so-called quadruple, triple and double cuts used in
the unitarity-cut method [3–5]. The method requires a minimal information
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about the form of the one-loop (sub-)amplitude and therefore it is well suited
for a numerical implementation. The method works for any set of internal
and/or external masses, so that one is able to study the full electroweak
model, without being limited to massless theories.

2. The OPP method

The starting point of the OPP reduction method is the general expression
for the integrand of a generic m-point one-loop (sub-)amplitude

A(q̄) =
N(q)

D̄0D̄1 · · · D̄m−1
, D̄i = (q̄ + pi)

2 − m2
i , p0 6= 0 . (1)

In the previous equation, we use a bar to denote objects living in n = 4 + ǫ
dimensions, and q̄2 = q2 + q̃2, where q̃2 is ǫ-dimensional and (q̃ · q) = 0.
N(q) is the 4-dimensional part of the numerator function of the amplitude.
If needed, the ǫ-dimensional part of the numerator should be treated sep-
arately, as will be explained later. N(q) depends on the 4-dimensional de-
nominators Di = (q + pi)

2 − m2
i as follows

N(q) =

m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i6=i0,i1,i2,i3

Di

+

m−1
∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]

m−1
∏

i6=i0,i1,i2

Di

+

m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i6=i0,i1

Di

+

m−1
∑

i0

[a(i0) + ã(q; i0)]

m−1
∏

i6=i0

Di

+P̃ (q)

m−1
∏

i

Di . (2)

Inserted back in Eq. (1), this expression simply states the multi-pole nature
of any m-point one-loop amplitude, that, clearly, contains a pole for any
propagator in the loop, thus one has terms ranging from 1 to m poles. The
coefficients of the poles can be further split into two pieces. A piece that
still depends on q (the terms d̃, c̃, b̃, ã), that vanishes upon integration, and
a piece that does not depend on q (the terms d, c, b, a). Such a separation is
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always possible and the latter set of coefficients is immediately interpretable
as the ensemble of the coefficients of all possible 4, 3, 2, 1-point one-loop
functions contributing to the amplitude.

Once Eq. (2) is established, the task of computing the one-loop amplitude
is then reduced to the algebraical problem of fitting the coefficients d, c, b, a
by evaluating the function N(q) a sufficient number of times, at different
values of q, and then inverting the system. It can be achieved quite efficiently
by singling out particular choices of q such that, systematically, 4, 3, 2 or 1
among all possible denominators Di vanishes. Then the system of equations
is solved iteratively1. First one determines all possible 4-point functions,
then the 3-point functions and so on. For example, calling q±0 the two
solutions (in general complex) for which

D0 = D1 = D2 = D3 = 0 , (3)

(there are 2 solutions because of the quadratic nature of the propagators)

and since the functional form of d̃(q; 0123) is known, one directly finds the
coefficient of the box diagram containing the above 4 denominators through
the two simple equations

N
(

q±0
)

=
[

d(0123) + d̃
(

q±0 ; 0123
)

]

∏

i6=0,1,2,3

Di

(

q±0
)

. (4)

This algorithm also works in the case of complex denominators, namely with
complex masses. Notice that the described procedure can be performed at

the amplitude level. One does not need to repeat the work for all Feyn-
man diagrams, provided their sum is known: we just suppose to be able to
compute N(q) numerically.

As is well known, even starting from a perfectly finite tensor integral, the
tensor reduction may eventually lead to integrals that need to be regular-
ized (we use dimensional regularization). Such tensors are finite, but tensor
reduction iteratively leads to rank m m-point tensors with 1 ≤ m ≤ 5, that
are ultraviolet divergent when m ≤ 4. For this reason, we introduced, in
Eq. (1), the d-dimensional denominators D̄i, that differs by an amount q̃2

from their 4-dimensional counterparts

D̄i = Di + q̃2 . (5)

The result of this is a mismatch in the cancellation of the d-dimensional
denominators of Eq. (1) with the 4-dimensional ones of Eq. (2). The rational
part of the amplitude, called R1 [7], comes from such a lack of cancellation.

1 An interesting method to optimize the solution of the system has been very recently
presented in [6].
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A different source of Rational Terms, called R2, can also be generated from
the ǫ-dimensional part of N(q) (that is missing in Eq. (1). For the time
being, it should be added by hand by looking at the analytical structure of
the Feynman Diagrams or via a dedicated set of Feynman Rules. Examples
on how to compute R2 are reported in [7] and [8]. The Rational Terms R1

are generated by the following extra integrals, introduced in [1]

∫

dnq̄
q̃2

D̄iD̄j

= − iπ2

2

[

m2
i + m2

j −
(pi − pj)

2

3

]

+O(ǫ) ,

∫

dnq̄
q̃2

D̄iD̄jD̄k

= − iπ2

2
+O(ǫ) ,

∫

dnq̄
q̃4

D̄iD̄jD̄kD̄l

= − iπ2

6
+O(ǫ) .(6)

The coefficients of the above integrals can be computed by looking at the
implicit mass dependence (namely reconstructing the q̃2 dependence) in the
coefficients d, c, b of the one-loop functions, once q̃2 is reintroduced through
the mass shift m2

i → m2
i − q̃2. One gets

b(ij; q̃2) = b(ij) + q̃2b(2)(ij) , c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) . (7)

Furthermore, by defining

D(m)(q, q̃2) ≡
m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3; q̃
2)+d̃(q; i0i1i2i3; q̃

2)
]

m−1
∏

i6=i0,i1,i2,i3

D̄i , (8)

the following expansion holds

D(m)(q, q̃2) =
m

∑

j=2

q̃(2j−4)d(2j−4)(q) , (9)

where the last coefficient is independent on q, d(2m−4)(q) = d(2m−4). In
practice, once the 4-dimensional coefficients have been determined, one can
redo the fits for different values of q̃2, in order to determine b(2)(ij), c(2)(ijk)
and d(2m−4). Such three quantities are the coefficients of the three extra
scalar integrals listed in Eq. (6), respectively. Therefore, the OPP method
allows an easy and purely numerical computation of the Rational Terms of
type R1.

3. pp → ZZZ at NLO

The calculation is composed of two parts: the evaluation of virtual cor-
rections, namely one-loop contributions obtained by adding a virtual particle
to the tree-order diagrams, and corrections from the real emission of one ad-
ditional massless particle from initial and final states, which is necessary in
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order to control and cancel infrared singularities. The virtual corrections
are computed using the OPP reduction [1]. In particular, we make use of
CutTools [9]. Concerning the contributions coming from real emission we
used the dipole subtraction method [10] to isolate the soft and collinear di-
vergences and checked the results using the phase space slicing method [11]
with soft and collinear cutoffs, as outlined in [12].

These results have been already obtained, following a very different ap-
proach, by Lazopoulos et al. in Ref. [13]. We also presented some prelim-
inary results in [14]. A more complete study, that also includes the case
of W+W−Z [15], W+ZZ, and W+W−W+ production, has been recently
presented in [16].

Let us begin with the evaluation of the virtual QCD corrections to the
process qq̄ → ZZZ. We consider the process

q(p1) + q̄(p2) −→ Z(p3) + Z(p4) + Z(p5) . (10)

Fig. 1. Diagrams contributing to virtual QCD corrections to qq̄ → ZZZ.

At the tree-level, there are six contributions to this process, obtained by
permuting the final legs in all possible ways. One-loop corrections are ob-
tained by adding a virtual gluon to the tree-level structures. The calculation
involves the reduction of 48 diagrams.

We perform a reduction to scalar integrals using the OPP reduction meth-
od [1]. The coefficients determined in this manner should be multiplied
by the corresponding scalar integrals. Since, in the process that we are
studying, no q-dependent massive propagator appears, we will only need
massless scalar integrals. They are computed using the package OneLOop

written by van Hameren [17].
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We turn now to the calculation of Rational Terms. As explained in Sec-
tion 2, part of this contribution, that we call R1, is automatically included
by the reduction algorithm. The second term R2, coming from the explic-
itly ǫ-dimensional part of the amplitude, has been added after having been
computed separately; it turns out that only three- and two-point functions
contribute and the result is proportional to the tree-order amplitude.

We checked that our results, agree with the results obtained by the au-
thors of Ref. [13].

In what concerns the real emission, we only have to deal with initial
state singularities, where we distinguish qq̄ and qg initial states. For the qg
initial state, no soft singularity is present because the corresponding tree-
level contribution vanishes. We recall that the structure of the NLO partonic
cross sections is as follows:

σNLO
qq̄ =

∫

V V V



dσB
qq̄ + dσV

qq̄ + dσC
qq̄ +

∫

g

dσA
qq̄



 +

∫

V V V g

[

dσR
qq̄ − dσA

qq̄

]

,

σNLO
gq =

∫

V V V



+dσC
gq

∫

g

dσA
gq



 +

∫

V V V g

[

dσR
gq − dσA

gq

]

, (11)

where dσB , dσV , dσC , dσR, dσA are respectively the Born cross section, the
virtual, virtual counterterm, real and real-subtraction cross sections. For
the qq̄ initial state two dipoles are needed as subtraction terms. If p6 is the
momentum which can become soft or collinear, the dipole term for gluon
emission off the quark is given by

Dq1g6,q̄2 =
8παsCF

2x̃ p1 · p6

(

1 + x̃2

1 − x̃

)

|MB
qq̄({p̃})|2 ,

x̃ =
p1 · p2 − p2 · p6 − p1 · p6

p1 · p2
, (12)

where the {p̃} are redefined momenta, {p̃j} = {p̃16, p̃2, p̃3, p̃4, p̃5}, which are
again on-shell and go to {p1, . . . , p5} in the singular limit, e.g. p̃16 = x̃ p1.
The regularised real emission part then reads

dσR
qq̄ − dσA

qq̄ =
1

6

1

N

1

2s12

[

CF

∣

∣MR
qq̄({pj})

∣

∣

2 −Dq1g6,q̄2 −Dq̄2g6,q1

]

dΦV V V g ,

where the factor 1/6 accounts for the three identical bosons in the final state.
More details can be found in [10, 16].

The hadronic differential cross section with hadron momenta P1 and
P2 is the sum over all partonic initial states convoluted with the parton
distribution functions
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dσ(P1, P2) =
∑

ab

∫

dz1dz2fa(z1, µF)fb(z2, µF)dσab(z1P1, z2P2) , (13)

where the sum runs over the partonic configurations qq̄, q̄q, gq, qg, gq̄, q̄g.

As an explicit example we present the numerical results for the case
uū → ZZZ for

√
s = 14 TeV and using CTEQ6L1 [18]. Tree-order cross

section has been evaluated using the HELAC event generator [19]. The same
generator has been appropriately developed and used for the calculation of
the real corrections as outlined above. In the following table the results in
fb are presented for the tree-order cross section σ0, the ratio of the virtual
to the tree-level cross section, and the real contribution, combining 5- and
6-point contributions, as described above, for all channels, i.e., uū, ug, gū,
for different values of the factorization(renomralization) scale (µ=µF =µR).

Scale σ0 σV /σ0 σR σNLO

µ = MZ 1.481(5) 0.536(1) 0.238(2) 2.512(2)

µ = 2MZ 1.487(5) 0.481(1) 0.232(2) 2.434(2)

µ = 3MZ 1.477(5) 0.452(1) 0.232(2) 2.376(2)

µ = 4MZ 1.479(5) 0.436(1) 0.232(2) 2.355(2)

µ = 5MZ 1.479(5) 0.424(1) 0.237(2) 2.343(2)

Fig. 2. Scale dependence of the total cross section.
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As is evident from these results, the K−factor is quite sizeable (1.58–1.69),
whereas the dependence on the scale µ (see also Fig. 2) is for both cases quite
weak, due mainly to the electroweak character of the process.

4. Conclusions

In conclusion we have presented, a reduction method at the integrand level
which is changing the way we are looking at the NLO calculations: a full numerical
but still algebraic method has been born.

The efficiency of the OPP is quite good. The main future improvement is the
efficiency with which the one-loop amplitude, at the integrand level, is computed.

Finally, taking into account the speed, precision and easiness of the OPP
method, a universal NLO calculator/event-generator seems feasible.
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