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Spectroscopic parameters and decay channels of the vector resonance Y(2175) are studied by
considering it as a diquark-antidiquark state with the quark content susi. The mass and coupling of
the tetraquark ¥ (2175) are calculated using the QCD two-point sum rules by taking into account various
quark, gluon and mixed condensates up to dimension 15. Partial widths of its strong decays to ¢f(980),
¢n, and ¢y’ are computed as well. To this end, we explore the vertices Y¢f(980), Yoy, and Y¢py', and
calculate the corresponding strong couplings by means of the QCD light-cone sum rule method. The
coupling Gy, of the vertex Y¢hf,(980) is found using the full version of this method, and by treating the
scalar meson £(980) as a diquark-antidiquark tetraquark state. The couplings gy,,, and gy,,,, however, are
calculated by applying the soft-meson approximation to the light-cone sum rule method. Prediction for the
mass of the resonance my = (2173 £ 85) MeV is in excellent agreement with the data of the BABAR
Collaboration [Phys. Rev. D 74, 091103 (2006)], and within errors of calculations is compatible with the
result reported by BESIII [Phys. Rev. D 91, 052017 (2015)]. The full width T'y;; = (91.1 £ 20.5) MeV of
the Y(2175) saturated by its three strong decay channels is in a reasonable agreement with existing

experimental data.
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I. INTRODUCTION

The resonances {Y} with the quantum numbers J°¢ =
17~ constitute two families of particles, interpretation of
which is one of interesting and yet unsettled problems of
the high energy physics. Members of the first family
populate the mass region m = 4.2-4.7 GeV, and were
observed by different collaborations. These resonances
reside very close to each other, and are more numerous
than vector charmonia ¢c¢ from this mass range. Hence, at
least some of these resonances have different quark-gluon
structure, and are presumably states built of four valence
quarks. Besides a suggestion about the tetraquark nature of
heavy {Y} states, there are various alternative models to
account for their parameters and decay channels.

Another family of the {Y} resonances occupies the light
segment of meson spectroscopy and incorporates the
famous “old” state Y(2175), and new ones X(2239) and
X(2100) seen recently. The structure Y(2175) was dis-
covered by the BABAR collaboration in the initial-state
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radiation process e"e™ — ysr®f(980) as a resonance in
the ¢f((980) invariant mass spectrum [1]. The mass and
width of this resonance measured by BABAR amount to
m=(2175+104+15) and T = (58 4+ 16 +20) MeV,
respectively. The same structure was seen also by the
BESII collaboration in the exclusive decay J/y —
n¢gz*x~ [2]. The spectroscopic parameters of the Y (2175)
extracted in this experiment differ from original results and
are m = (2200 £ 6 +5) and I' = (104 4 15 £+ 15) MeV.
Recently, anomalously high cross section at /s =
2232 MeV was observed by the BESIII collaboration in
the channel e*e™ — ¢K " K~, which may be explained by
interference of different resonances [3]: more data are
necessary to decide whether Y(2175) contributes to
enhancement of this cross section or not. Because the
Y(2175) was seen by BABAR and confirmed by the BESII,
BESIII, and Belle collaborations [2,4,5], its existence is not
in doubt, but an uncertain situation with the mass and full
width of this resonance requires further experimental and
theoretical studies.

Other resonances that may be considered as candidates
to light exotic vector mesons were discovered by the
BESIII collaboration. The first of them, i.e., X(2239),
was fixed in the process ete™ — KTK~ as a resonant
structure in the cross section shape line [6]. The second
resonance X(2100) was seen in the ¢’ mass spectrum in
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the process J/w — ¢’ [7]. The quantum numbers of
X(2239) were determined unambiguously, whereas a sit-
uation with X(2100) remains unclear. Indeed, because of a
scarcity of experimental information the collaboration
could not clearly distinguish two 1™ and 1~ assumptions
for the spin-parity J¥ of the resonance X(2100). Hence,
BESIII extracted its mass and full width using both of these
options. Obtained results differ from each other and depend
on assumption about the parity of the state X(2100).

Theoretical interpretations of the light vector resonances
comprise all available models and approaches of the high
energy physics. Thus, the Y (2175) was considered as 2°D,
excitation of the ordinary 5s meson [8,9]. It was explained
also as a dynamically generated state in the ¢KK system
[10], or as a resonance appeared due to self-interaction
between ¢ and f;(980) mesons [11]. A hybrid meson with
structure 5sg [12] and a baryon-antibaryon ggsggs state
which couples strongly to the AA channel are among
alternative models of the Y(2175) resonance. There were
attempts to interpret Y(2175) as a vector tetraquark with
ssss or ssss contents [13—15] (see Ref. [6] for other
models). The resonance X(2100) was examined in the
framework of the QCD sum rule method in Refs. [16,17].

Recently, we explored the light resonances X(2100) and
X(2239) as the axial-vector and vector sss5 tetraquarks
[18], respectively. Besides spectroscopic parameters we
also investigated the strong decays X(2100) — ¢’ and
X(2100) — ¢y, and calculated their partial widths. Pre-
dictions obtained for the mass and width of the axial-vector
state allowed us to identify it with the resonance X(2100),
because our theoretical predictions are very close to its para-
meters measured by the BESIII collaboration. We classified
X(2239) as the vector tetraquark ss35 and found a reason-
able agreement between theoretical and experimental results.

In the present work, we continue our investigations of the
light vector resonances and concentrate on features of the
state Y(2175) (hereafter, Y). Our treatment of this state dif-
fers from existing analyses. Thus, we consider it as a vector
tetraquark with content su5s u# rather than as a state ssss.
The traditional assumption about the quark content of the ¥
is inspired by the fact that it was discovered in ¢f(980)
invariant mass distribution. Because in the standard model
of mesons one treats the ¢ and f((980) as vector and scalar
particles with the same 5s structure, then it is natural to
assume that Y is built of four valence s quarks.

But the conventional quark-antiquark model of mesons
in the case of light scalar nonets meets with evident
difficulties. In fact, the nonet of scalar mesons in the gg
model may be realized as 1°P,, states. In accordance with
various computations, masses of the scalars 13P,, are higher
than 1 GeV. They were identified with the isoscalar mesons
fo(1370) and f,(1710), the isovector ay(1450) or iso-
spinor K{;(1430) states, i.e., with scalars from the second
light nonet. But masses of the mesons from the first nonet
are lower than 1 GeV, and they cannot be included into this

scheme. Therefore, to explain experimental information on
their masses, and an unusual mass hierarchy inside of the
nonet Jaffe made a suggestion on a four-quark nature of
these particles [19].

An updated model of the light scalar nonets is based on
assumption about a diquark-antidiquark structure of these
particles, which appear as mixtures of spin-0 diquarks
from (3., 3f) representation with spin-1 diquarks from
(66,3f) representation of the color-flavor group [20]. In
Refs. [21,22] we investigated the scalar mesons f(500)
and f((980) as admixtures of the SU f(3) basic light L =
[ud|[ad] and heavy H = ([su][5@] + [ds][ds])/V/2 tetra-
quark states, and calculated their spectroscopic parameters
and full widths. Obtained predictions agree with existing
experimental data, therefore we consider the f,(980) as the
exotic four-quark meson. Once we accept this model, a
treatment of the Y as a vector tetraquark Y = [su][5 i
becomes quite reasonable.

We calculate the spectroscopic parameters of the vector
tetraquark Y = [su|[5&] and explore some of its decay
channels. The mass and coupling of the Y are evaluated
using the QCD two-point sum rule method [23,24]. We
investigate the strong decays Y — ¢f((980),Y — ¢n, and
Y — ¢/, and find their partial widths. To this end, we use
the QCD light-cone sum rule (LCSR) method [25], and
calculate the couplings Gy, Gygy» and gy, corresponding
to the strong vertices Y¢f((980), Y¢n, and Y¢r/', respec-
tively. The coupling Gy, is computed by employing the
full version of the LCSR method, whereas in the case of
9ygy> and gy, this method is supplemented by a technique
of the soft-meson approximation [26—28]. Because the light
component of f,(980) is irrelevant for analysis of the decay
Y = ¢f0(980), we treat f(980) as a pure H state.

This article is organized as the following way: In Sec. II
we calculate the mass and coupling of the tetraquark Y. The
strong decays of this state are considered in Secs. IIT and I'V.
In Sec. III we analyze the process ¥ — ¢f(980) using the
LCSR method and find the partial decay width of this
channel. The partial widths of the decay modes Y — ¢,
and Y — ¢y are calculated in Sec. IV. In Sec. V we analyze
the obtained results, and give our conclusions.

II. SPECTROSCOPIC PARAMETERS OF THE
TETRAQUARK Y: THE MASS my AND
CURRENT COUPLING fy

To evaluate the mass my and coupling fy of the vector
tetraquark Y, we use the QCD two-point sum rule method
and start our calculations from analysis of the correlation
function,

1, (p) = i/d“xe"”x<0|7{1,f(X)Ju”(0)}|0>7 (1)

where J)/(x) is the interpolating current for the Y state.
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The current for a tetraquark with J® = 1~ can be built of
a scalar diquark and vector antidiquark or/and a vector
diquark and scalar antidiquark. There are several options to
construct alternative currents with required spin-parities,
but because a scalar diquark (antidiquark) is a most stable
two-quark state [29], for J}f we use the structure

Cys ® 7,75C — Cy,rs ® ysC. (2)

This current consists of two components, and each of
them describes a vector tetraquark. The whole structure
corresponds to a vector tetraquark with definite charge-
conjugation parity J© = 17, Indeed, the charge-conjuga-
tion transforms diquarks to antidiquarks and vice versa,
therefore the minus sign between two components in
Eq. (2) generates the current with C = —1.

The last question to be solved is a color structure of
constituent diquarks and antidiquarks. Thus, to get the
color-singlet current J) they should have the same color

structures and be either in color triplet [3.] ® [3.] or sextet
[6.] ® [6.] configurations. The current of the type (2) and
built of color-sextet diquark-antidiquark has the following

form [30]:

Ji, = ul Cyssplit,y,ysCsh + ityy,rsCsh]
— u,Cy,ys5SpliaysCs), + i,ysC5L ). (3)

The triplet current (2) is given by the expression

J3, = ul Cysspligy,ysCsh — ipy,ysCsh]

—ul Cy,yssylit,ysCsl — iysC5L). (4)

In Egs. (3) and (4) a and b are color indices, and C is the
charge-conjugation matrix.

The J,, and J3, are color-singlet currents composed
of color-sextet and -triplet diquark-antidiquark pairs,
respectively. To see this, let us consider in a detailed form
J1,- The color-sextet, i.e., color-symmetric a <> b nature
of the antidiquark fields in Eq. (3) is evident. The first
component of J;,,, for example, in the explicit color-singlet
form is

(ul Cyssy + ul Cyssa) iy, rsCsh + iy, rsCsh],  (5)

where both the diquark and antidiquark are symmetric in
color indices. It is not difficult to see that diquarks u! Cyss,
and u! Cyss,, lead to identical results, hence it is enough in
J1, to keep one of them. The similar analysis is valid for the
second component of J;, as well. In the case of the current
J3,, we see that the antidiquark fields in Eq. (4) are color-
triplet or color-antisymmetric constructions. The color-
triplet diquark field, for example, in the first component
of J3, is (ufCyss, — uj Cyss,), and both ul Cyss, and

—ul Cyss, give again the same results. Therefore, we use
one of them in the current J3, and get (4).

An appropriate form of the current J) that ensures
stability and convergence of the sum rules, which are
actual in the case of light tetraquarks [31], is superposition
of Jy, and J3,. In the present work we use J}; =
(1, +J3,)/2, and get

Ty (x) = [ (x)Crss, (X)][fa(x)7,75C5, (x)]
= [ (x)Crrssp(x)] [ (x)rsCF, ()] (6)

The J}(x) is a sum of two colorless terms, but belongs
neither to sextet nor to triplet representations of the color
group being the admixture of such states J,, and J3,.

To obtain sum rules for the mass and coupling of Y, we
should express the correlation function in terms of these
spectral parameters, and also calculate IT,, (p) using quark-
gluon degrees of freedom. The first expression forms the
physical side of the sum rules H,I:,}}ys( p), whereas the second
one constitutes their QCD side IIOFE(p). In terms of the
tetraquark’s parameters the correlation function has the
following form:

T () <0|JE|Y(22><_YIE§)IJZT|O> e ()

Equation (7) is derived by saturating the correlation
function with a complete set of J*C = 1-~ states and
carrying out integration in Eq. (1) over x. As usual,
contributions arising from higher resonances and con-
tinuum states are denoted above by dots.

The correlator ITy"*(p) can be further simplified if one
introduces the matrix element,

(0177 1Y (p)) = fymye,. (8)

where €, is the polarization vector of the Y state. Then the

Phys

correlation function IT,,”"(p) takes the simple form

2 £2
meY pupu
7 | - + + -, 9
m%_p2<gﬂu m%/) ()

" (p) =

and contains the Lorentz structure corresponding to the
vector state. Because a part of this structure proportional to
gu Teceives contribution only from the vector states, we
work with this term and corresponding invariant ampli-
tude TT°¥s(p?).

The QCD side of the sum rules is given by the same
correlation function IT,, (p) but expressed in terms of the
quark propagators. Substituting the interpolating current
into Eq. (1), and contracting the quark fields, we get
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IOPE(p) = i / d*xeP*{Tr[ys S0P (=x)ysy, ¢ (—x)| Tr[S% (x)y5S2 (x)rs7,]
+ Tr[i/ﬂ}’sgf/b(—x)%sﬁ/a(—xﬂTr[Sﬁa/ (X)VDYSS'?H (x)7s]
+ Tr[S4 (x)y5 857 (x)ys] Trly,rs S b (—x) 57,54 % (—x)]
+ TrlysS2P (—x)ys 8% (—x) | Tr[See (x)y, 7582 (X)7s7,]}- (10)

where
§,(x) = CSI(x)C. (11)

In the formula above S, (x) is the light quark propagator, for
which we employ the expression

a . X m (79) .m
S§0) = gt = g dar =5 \ 1= 10 oy

x2 m

— = g 1—i—24\s
X205 ig,Gh,

- 5.0 — a
7776 <QQ> ab 302242 [Xo',w + oyuﬂ

_(39) (626 |

27648 b

mgygs

v —x2A\?
+ 3272 GZbG/w |:1n (T) + 2}’E:| +--,

(12)

where yr ~0.577 is the Euler constant and A is the QCD
scale parameter. In Eq. (12) G% = G%%,, where ! =
JA/2 with 14 being the Gell-Mann matrices and
A,B,C =1,2,...8. Let us note that the gluon field strength
tensor is fixed at x = 0, i.e., Géﬂ = Ggﬂ(O).

To find the required sum rules, we extract the invariant
amplitude IT9PE(p?) corresponding to the structure g,,,, and
equate it to TIPS (p?). We apply the Borel transformation to
both sides of the obtained equality, which is necessary to
suppress contributions of the higher resonances and con-
tinuum states. At the next stage, using an assumption on
quark-hadron duality, we carry out the continuum sub-
traction. After these standard manipulations the sum rule
depends on new parameters M2 and s,: the first of them M?
is the Borel parameter generated by the Borel transforma-
tion, whereas s is the continuum threshold parameter that
dissects contributions of the ground state and higher
resonances from each another. Remaining operations to
find the sum rules for my and f, are similar to ones
presented numerously in the literature, and therefore, we
skip further details. It is worth noting that calculation of
[I°PE(p?) in the present article is performed by taking into
account nonperturbative terms up to dimension 15.

|

The obtained sum rules contain various vacuum con-
densates, and depend on the s quark’s mass and on two
auxiliary parameters M? and s,. Values of the vacuum
condensates and the mass of s quark used in numerical
computations are collected in Table I. Here, we also write
down the parameters of the ¢, f,(980), i, and ' mesons
which are necessary to calculate partial widths of the decay
processes.

The condensates characterize nonperturbative features
of the vacuum and do not depend on a problem under
consideration. On the contrary, the Borel and continuum
threshold parameters M? and s, should be chosen for each
sum rule computation individually and must meet restric-
tions imposed on them by the QCD sum rule method. The
main constraints on M? and s, are connected with con-
vergence of the operator product expansion (OPE) which
we fix by means of the ratio

HDimN (MZ , SO)

R(M?) = (M2, 5,)

, (13)
and with the restriction on the pole contribution (PC)

. H(Mz, So)

PC = M o0) (14)

In Egs. (13) and (14) TI(M?, 5,) is the invariant amplitude
MT9PE(p?) obtained after the Borel transformation and

TABLE I. Vacuum condensates and spectroscopic parameters
of the mesons used in numerical computations.

Quantity Value

) —(0.24 £ 0.01)3 GeV?
(5s) 0.8(79)

m3 (0.8 +0.1) GeV?
(q9,0Gq) m(qq)
(5g,0Gs) mi(ss)

aTGZ> (0.012 4 0.004) GeV*
my 93! MeV

mg (1019.461 £ 0.019) MeV
my (990 £ 20) MeV

m, (547.862 + 0.018) MeV
my (957.78 £ 0.06) MeV
fo (215 £+ 5) MeV
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subtraction procedures, and [1PimN (M2, so) denotes a last
term (or a sum of last few terms) in OPE. At the minimum
of the working window for the Borel parameter, we require
R(M?)~0.01 and use a sum of three terms DimN =
Dim(13 4 14 + 15) to estimate R(M2. ). At maximum
allowed value of M2, we demand fulfillment of the
condition PC > 0.2.

In general, my and fy extracted from the sum rules
should not depend on the Borel parameter M?. But in
actual computations the best thing one can do is find a
plateau where dependence of physical quantities on M? is
minimal. The continuum threshold parameter s, separates
a ground-state contribution from the ones due to higher
resonances and continuum states. In other words, s
should be below the first excited state of the particle
under discussion Y. In the case of conventional hadrons,
masses of excited states are known either from exper-
imental measurements or from alternative theoretical
studies. For exotic particles the situation is more com-
plicated: there is not information on their radial and/or
orbital excitations. It is worth noting that for tetraquarks
this problem was addressed only in few publications
[32-34]. Therefore, one chooses s, by demanding maxi-
mum for PC and, at the same time, a stability of an
extracting physical quantity. In such analysis very impor-
tant is control over self-consistency of the prediction for
my and s, used for these purposes: /s, may exceed my
approximately [0.3,0.6] MeV to be below a first excited
state of Y. Uncertainties in the choice of the M? and s,
are the main sources of theoretical errors in the sum rule
calculations, which however can be systematically kept
under control.

Numerical analysis allows us to fix the regions

M? € [1.2,1.7] GeV?, 5o € [6,6.5] GeV?  (15)
as ones which obey the constraints imposed on M? and s.
Thus, at M? = 1.2 GeV? the convergence of the OPE is
fulfilled, because a contribution of the last three terms to the
Borel transformed and subtracted invariant amplitude
[1(M?, sy) does not exceed 0.3% of its value. At M? =
1.2 GeV? the pole contribution forms 60% of IT1(M?, s,),
whereas at M? = 1.7 GeV? it amounts to approximately
30% of the whole result.

The mass my and coupling fy are plotted in Figs. 1 and 2
as functions of M? and s: one can inspect their dependence
on the Borel and continuum threshold parameters which is
considerable for fy.

Our results for the spectroscopic parameters of the
tetraquark Y are

my = (2173 £+ 85) MeV,
fr = (284+0.5) x 1073 GeV*. (16)

my(Ge'

M?*(GeV?)

FIG. 1. The mass my of the tetraquark Y as a function of the
Borel and continuum threshold parameters.

0.35

Jrx10%GevY) 55

M*(GeV?)
FIG. 2. Dependence of the coupling fy on M? and s,.

Comparing my with /s) we see that /so—my =
[0.28,0.38] MeV is a reasonable mass gap to separate Y
from its excitations.

As is seen, the my is in excellent agreement with the
datum of the BABAR collaboration (2175 + 10+ 15) MeV.
It is lower than the new result (2200 +6 +5) MeV
reported by BESIIIL, but within errors of calculations is
compatible with this measurement as well. In this situation
decays of the tetraquark Y become of special interest,
because predictions for partial widths of the different
channels and for the full width of the Y are important to
verify our assumption on its structure.

III. THE DECAY Y — ¢f(980)

The process ¥ — ¢f((980) is one of dominant strong
decays of the tetraquark Y. To calculate partial width of this
channel, we extract the strong coupling Gy, of the vertex
Y¢£,(980) in the context of the LCSR method and express
it in terms of various vacuum condensates and distribution
amplitudes (DAs) of the ¢ meson.

To derive the light-cone sum rule for the coupling Gy,
we start from analysis of the correlation function,

074012-5
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m,(p.q) = i/d4xe””“<¢(Q)IT{Jf(x)J;fT(O)}Io% (17)

where J}(x) is the interpolating current of Y introduced
in Eq. (6).

As it has been emphasized above, we consider the scalar
meson f,(980) [in formulas we use f = f,(980)] as a pure
H state. Interpolating current for such state is given by
expression

I (x) = —={[uf (x) Cyssp ()] (x)75C5L (x)]

where €& = e?abedee,

Then, the phenomenological side of the sum rule is
determined by the formula

(0l71£(p))

2 2

— 5= (f(P)e ()Y (p))
V4 ny

(Y(p")|"10)
Y

L™ (p. q) =

where p’, and p, g are 4-momenta of the initial and final
particles, respectively. To simplify l'[,,hys (p,q) we express
the matrix elements in terms of physical parameters of
the particles involved into the decay process. The matrix

element (Y(p')|J}|0) is given by Eq. (8), whereas for
(0171£(p)) we use

(O1771£(p))

We parametrize the vertex (f(p)¢(q)|Y(p’)) by means of
the expression

(f(p)d(a)Y(p"))

= Gyysl(p' - q)(e" - €)
—(q-€)(p"- &), (21)

where Gy, is the strong coupling which should be
determined using the sum rule, and ¢, is the polarization
vector of the ¢ meson. This information on the matrix
elements is enough to get the phenomenological side of the
sum rule which reads

Ph
L, (p. q)
myfymfFf
my)(p* — m3)
m% + m% - m?/)

‘ P-€q,l.
m? K

= S0

X (m} —m} - mﬁ))ef, +

(22)

It is seen that the function HPhys( P, q) contains two Lorentz

structures which can be employed to derive the required
sum rule. In the present study we choose the structure
proportional to the polarization vector &,

The second component of the sum rule TI?"(p, g) is
obtained by substituting the interpolating currents into the
correlation function (17), contracting the relevant quark
fields, and expressing a final expression in terms of quarks’
light-cone propagators S, (x), and distribution amplitudes
of the ¢ meson.

After contracting the quark fields the matrix element in
Eq. (17) contains numerous terms of the forms

=)
—~
=
=
35
<
—~~
<
~—
=Y
—~
=
~
2}

5(x)[0), (23)

where a and f are the spinor indices. Here A(x) and
B(x) are some combinations of the propagators S, (+x),

Sq(ix) = CS}(+x)C, and ys(,) matrices. In calculations

we use the light-cone propagator of the u, d, and s quarks,
which is determined by the formula

ix mg (9q) .My
= 2t 45“”_4n2x25”_ o \1 i o

.X2
1 GH
—lg‘/ du{x ab(u‘x)gﬂl/ iux H le(ux)y
0

167%x2 47252
i

im ) _XZAZ
32;2 G, (ux)o,, [ln( 1 ) + 27/5} }
(24)

The first two terms in (24) are the perturbative components
of the propagator, whereas others are nonperturbative con-
tributions. The terms ~G** appear due to expansion of
S,(x) on the light cone and describe interactions with the
gluon field. In our analysis, we neglect terms proportional
to m,, but, at the same time, take into account the
ones ~i;.

Apart from propagators the function HSPE( p. q) depends
also on nonlocal matrix elements of the quark operator ss
sandwiched between the vacuum and ¢ state. To express
these matrix elements using the ¢ meson’s distribution
amplitudes, we expand 5(x)s(0) [this analysis is valid for
5(0)s(x) as well] over the full set of Dirac matrices I/ and
project them onto the color-singlet states,

Sg(x)

E(3)85(0) — OSSO, (29)
where IV

= 1’ V5 Vo i}/S}//u O-/w/\/i' (26)
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Y(2175)

FIG. 3. The leading order diagram contributing to II?PE(p, g).
The matrix element of the operators 5(x)[Vs(0) can be
expanded over x*> and written down in terms of the ¢

meson’s two- and three-particle DAs of different twist. In
the case IV = 1 and iy,ys we use the definitions

(O[5 (x)5(0)|b(g)) = —if e~ xm? / Lduemeryl),  (27)
and
1
O ()7,r55(0)1A(9)) = 5 fympunape’4*
1 o
X/o due™ Pyt (u). (28)

For the structures I'V = v, and o, we have

(0[5 (x)7s(0)[h(9))

1 a 2.2
— ryme{ 2, [ duems i)+ )

£-x 1 A_
+l&—¢q —>/ due™* 3 (u
<” “q-x) Jo s ()

1 .
3 mé/ due™*C(u) + - - -}, (29)
0

—_
™
=

and
0150)050)9a)
m2x2
=i e - aa) [ anee o 0+ g w]

2
my

—ex )_/1 due™ [y (u) — ¢y (u)]
vtp q.x 0 4 2

(&4

| =

+

€-x ! ingx
+ (‘]yxy - qyxﬂ)mmﬁ,l due'd D(u) 4. }
(30)

respectively. Here i = 1 — u, and my and ¢ are the mass
and polarization vector of the ¢ meson, respectively. In the
equations above the functions C(u) and D(u) denote the
combinations of the two-particle DAs

Cu) = yh(u) + P (u) — 29 (u),

D) = i) 5930 gyt G

The twists of the distribution amplitudes are shown as
subscripts in the relevant functions. It is seen that the C(u)
and D(u) include the two-particle leading twist DAs

g(”(u), the twist-3 distribution amplitudes (ﬁ!(L)(u)

and W!(L)(u), as well as twist-4 distributions qﬁﬂm(u)

and wl(l)(u). Expressions of the matrix elements
(0|5(x)IVG,, (vx)s(0)|¢(q)) in terms of the higher twist
DAs of the ¢ meson, as well as detailed information on
their properties, were reported in Refs. [35-39].

The main contribution to IT?*(p, ¢) comes from the
terms (23), where all of the propagators are replaced by
their perturbative components (see Fig. 3). Contribution of
this diagram can be computed using the ¢ meson two-
particle distribution amplitudes. The one gluon-exchange
diagrams shown in Fig. 4 are corrections, which can be
expressed and calculated by utilizing three-particle DAs of
the ¢ meson. An analytic expression of the II?P5(p, ¢) in

00000000000

FIG. 4. The one-gluon exchange diagrams, which can be expressed in terms of the ¢» meson’s three-particle DAs.
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terms of the ¢ meson’s DAs is rather cumbersome, there-
fore we do not provide it here.

In our analysis we employ the invariant amplitude
IT°PE(p'2, p?) proportional to & and match it to the
corresponding function from H,Ijhy *(p, q). These amplitudes
depend on p’> and p?, therefore one should perform the

double Borel transformation over the variables p’> and p?:

= BB (02 7). (32)

HOPE M% , M2

The Borel transformed amplitude IT°PE(M2, M3) can be
calculated in accordance with a scheme explained in
Ref. [40], and expressed as a double dispersion integral.
But to simplify manipulations following after the Borel

transformation, we can relate the parameters M? and M3 to
. M? m? .
each other using 77 = - and introduce a common param-
2 f

eter M? through the relation

1 1 1

— =—4+—. 33
R (33)

This implies replacements

M> (34)

in the sum rules, and allows us to perform integration
over one of variables in the double dispersion integral.
The obtained expressions in this step depend also on the
parameter u, with

2 2
M7 my

M} + M3 mi+my

Uy = (35)

As a result of the above procedure we get a single integral
representation for TT°PE(M?) which considerably simplifies
the continuum subtraction: formulas necessary to carry out
this procedure can be found in Appendix B of Ref. [40].

The DAs of the ¢ meson depend on numerous param-
eters. For example, the leading twist DAs of the longitu-
dinally and transversely polarized ¢ meson are given by the
expression

(u) = 6uil [1 + Z S C3/2(2u -1, (36)
where C%(2u—1) are the Gegenbauer polynomials.

@ (u). In

with a

Equation (36) is the general expression for ¢!
our calculations we employ twist-2 DAs

nonasymptotic term aQ(L) # 0. The models for the higher
twist DAs and values of the relevant parameters at the
normalization scale py,=1GeV are taken from
Refs. [38,39] (see Tables 1 and 2 in Ref. [39]).

The sum rule for the coupling Gy, contains the quark,
gluon and mixed condensates and the s-quark mass which
are moved to Table I. The spectroscopic parameters of the
particles involved into the decay Y — ¢f((980) are also
input information of computations. The mass and coupling
of the tetraquark Y have been evaluated in the present work.
For the mass of the ¢ and f,(980) mesons we use their
experimental values (see Table I). The coupling F; of the
meson f(980) is borrowed from Ref. [21], where it was
treated as the four-quark system,

F;=Fyg=(135+£034)x 107 GeV*.  (37)

Finally, the sum rule depends on the Borel and continuum
threshold parameters: M? and s, are auxiliary parameters
of computations, and the result should be insensitive to
their choices. But in real analysis we can only minimize
these effects and fix convenient working windows for the
M? and s:
2 e 2.4,3.4] GeV?, sy € [6,6.5] GeV2.  (38)
In accordance with our studies the strong coupling Gy,
is equal to

Gyyr = (1.62 4+ 0.41) GeV~. (39)

The width of the decay ¥ — ¢f(980) is determined by the
expression

GYymi 22
(Y - ¢f) = Sy M3+— ], (40)

mgy
where

1
A= Amy,my,my) = ~— [m}, + mj, + m‘;
, .

2m
— 2(mymy + mym3 + mim7)|'/2. (41)

Then computations yield

LY - ¢f) =

The prediction for T'(Y — ¢f) is the main result of this
section which will be used to estimate the full width of the
tetraquark Y.

(49.2 + 17.6) MeV. (42)

IV. THE DECAYS Y — ¢ AND Y — ¢y

The next two strong decays of the tetraquark Y are the
channels Y — ¢n and Y — ¢n'. Here, we consider in a
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detailed form the dominant process Y — ¢, and write
down final results for the second mode Y — ¢’

In the framework of the LCSR method the correlation
function necessary to study the vertex Y¢n is given by the
expression

M (p.q) = i / e (n(q)| TV (0)}[0).  (43)

where J,‘f’ (x) is the interpolating current for the vector ¢
meson

IR (x) = 5(x)p,5(x). (44)

The phenomenological side of the sum rule can be written
down in the form

Phys _ {01E14(p))
Huuy (p.q) = fmé

(1 (0)

R (45)
p/2_m%

(@ (p)n(q)[Y(p))

and simplified further using the matrix elements:

(0172 1p(p)) = fympe,. (46)

and

<¢(P)’I(CI)|Y(P/)> = ngﬁngﬂuaﬁpﬂqye*ae/ﬁ? (47)

where €’ is the polarization vector of the tetraquark Y,
and gyg, is the strong coupling corresponding to the
vertex Y¢n.

Simple manipulations allow us to recast ITL.""(p, ¢) into
the form

f¢m(/)fymy
5. (p. q) = gy,
" " (p? = m3)(p? = m})
X gpuaﬂpaqﬁ T (48)

where the only term is the contribution arising from the
ground-state particles: effects of the higher resonances and
continuum states are denoted by dots. The correlation
function IT,”*(p. ¢) has a simple Lorentz structure. The
invariant amplitude TT"™S(p", p?), which will be used to
derive the sum rule for the coupling gy,,, can be obtained
from Eq. (48) by factoring out the structure &, piqP.

We extract the second component of the sum rule, i.e.,
the invariant amplitude TT°PE(p'2, p?) from the correlation
function ITOFE(p, ¢). In the case under analysis it is given
by the following expression:

MO%E (. g) = i / x5S ()7, 30 (=x)rsts
7,755 (X)7,88 (=x)5) 05
x (n(q)|7(0)u3(0)0). (49)

As is seen, the correlation function is written down in
terms of the s quark propagators and local matrix elements
of the 7 meson. Dependence of IO E(p., g) on the local
matrix elements of a final meson is the distinctive feature of
the LCSR method when applied to tetraquark-meson-
meson vertices. Treatment of such vertices requires some
additional manipulations, which we are going to explain
below. But before that we have to find IO (p, ¢) by
rewriting the matrix elements (1(g)|u5(0)uj(0)[0) in terms
of the # meson’s parameters. To this end, we expand
it (0)ug(0) and determine the standard matrix elements of

the # meson that contribute to the correlation function.
These operations have been discussed in the previous
section, therefore here we omit further details.

The performed analysis shows that the matrix element
(n(q)|ity,ysu|0) contributes to the correlation function
HOPE(p, q). It is defined by the formula

(n(q)|ay,ysul0) = —i \%qw (50)

where fj is the decay constant of the 7 meson’s g
component. The matrix element (50) differs from similar
expressions of other pseudoscalar mesons. This is con-
nected with the mixing in the # — 5’ system which can be
described using either the octet-singlet or quark-flavor
basis of the flavor SU,(3) group. The latter is more
convenient and simple for applications, and was used in
Refs. [41-43] to explore different exclusive processes. This
scheme is utilized in the present work as well.

In the quark-flavor basis the decay constants of the
mesons 7 and 7’ can be extracted from the equality

fi f;‘;) (fq 0 >
=U , 51
( o) =ve(y ) (51)
where U(gp) is the mixing matrix
Ulep) = <Cf)w _Siw>, (52)
sing  cos¢g

with ¢ = 39°.3 £ 1°.0 being the mixing angle in the quark-
flavor basis. The constants f, and f in Eq. (51) are given
by the formulas

fq = (1.07 £0.02)f,, fs=(1.34£0.06)f,, (53)

where f, = 131 MeV is the pion decay constant.
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Using Egs. (49) and (50), we can obtain the invariant
amplitude TI°PE(p”2, p?) which should be equated to
1Py (p”2, p?) in order to derive the sum rule for the strong
coupling gy,,. But, as we have been emphasized above,
a treatment of tetraquark-meson-meson vertices in the
context of the LCSR method differs from standard analysis
of the previous section [28]. In fact, the LCSR for vertices
of conventional mesons depends on distribution amplitudes
of one of final mesons, which contain all information
about nonperturbative dynamical features of the meson.
The same arguments are valid for the tetraquark-tetraquark-
meson vertices as well [40]. But in the case of the
tetraquark-meson-meson vertices, after contracting relevant
quark fields, due to a four-quark structure of the tetraquark,
the correlation function contains only local matrix elements
of one of final mesons. Then the momentum of this meson
should be set ¢ = 0 which is necessary to satisfy the four-
momentum conservation at the vertex. This leads to
essential modifications in the calculational scheme,
because now we have to complete the LCSR method with
technical methods of the soft-meson approxima-
tion [26,28].

In the soft limit ¢ — 0, we get p’ = p, as a result we
have to perform one-variable Borel transformation of the
invariant amplitudes [28]. For the physical (phenomeno-
logical) side this leads to the formula

2 M2
em/M

7_’_...’ (54)

BHPhyS(Pz) = GygnS pMeSymy

where m* = (mg +my)/2.

In the soft-meson approximation the phenomenological
side of the sum rule has a more complicated organization
than in the case of the full LCSR method. The reason is that
in the soft limit contributions connected with higher
resonances and continuum states demonstrate complicated
behavior. Indeed, some of these terms even after the Borel
transformation remain unsuppressed and appear as con-
taminations in the phenomenological side [26]. Therefore,
before carrying out the continuum subtraction they should
be excluded from BITP"(p?) by means of some manip-
ulations. This problem is solved by acting on the phenom-
enological side of the sum rule by the operator [26,27]

d 2 2
P(M?* m?) = <1 - M? W)M%M‘/M‘, (55)
which eliminates contaminating terms. Then contributions
of higher resonances with regular behavior can be sub-
tracted from the QCD side by benefiting from the quark-
hadron duality assumption.
The operator P(M?, m*) should also be applied to the
QCD side of the sum rule. Then the strong coupling gy,
can be determined from the sum rule

1

———P(M?*, m*TIPE(M?, 5), (56
f¢m¢fymy( JIPE(ME, 50), - (56)

gY(/m =

where TT°PE(M?, s4) is the invariant amplitude TTOPE(p?)
after the Borel transformation and continuum subtraction
procedures. Our calculations carried out by taking into
account nonperturbative terms up to dimension 5 yield

TTOPE (M2, 54) = fims /"0 dse=s/M*

827 Jam?
qm2 fq
+ 2 (55) + —2— (59,6Gs).
6\@”2( ) 12\/§M2<g‘ )
(57)

The width of the decay Y — ¢ is given by the following
expression:

9%45;1/13(7”% mg, mn)

ry = 58
v = ¢n) o (58)
Numerical analysis leads to the results
Gygn = (1.85 £0.38) GeV~!,
I'(Y - ¢n) = (35.8 £ 10.4) MeV. (59)

It is worth noting that in computations of gy,,, we have
used the following working regions for M? and s:

M*>€[13,18 GeV?, 50 € 6,65 GeV2.  (60)

The partial width of the second process Y — ¢’ can be
computed by utilizing the expressions obtained for the first
decay. The corrections are connected with mass of the #/
meson and coupling fZ” and required replacements,

[y =fqsing, A= Amy,my,my),  (61)

can be easily implemented into analysis. For the parameters
of the second process we obtain

Gygy = (159 +£031) GeV~,
I(Y > ¢y') = (6.1 £ 1.7) MeV. (62)

Saturating the full width of the Y resonance by three
decay channels considered in the present work, we get

T = (91.1 +20.5) MeV. (63)
This estimate coincides neither with the BABAR data nor

with measurements of the BESIII collaboration, but is close
to the latter.
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V. ANALYSIS AND CONCLUDING NOTES

We have explored the resonance Y by modeling it as a
light vector tetraquark with the content [su][5&]. In the
tetraquark model it was considered until now as a vector
[s5][55] or (s5)(s5) particles. Our treatment is motivated by
the dominant decay channel Y — ¢f(980) of the Y, where
it was observed as a resonant structure in the ¢f(980)
invariant mass distribution. A suggestion on the quark
content of the Y depends on the structures of the final-state
particles: one can consider the f((980) either as a scalar
meson Ss or as a particle composed of the four valence
quarks. In the second picture the vector compound Y =
[su][si] emerges as a quite natural assignment for this
resonance. Calculations carried out in the present work lead
to the following predictions for my and 'y of such a state:

my = (2173 4 85) MeV, Cran = (91.1 £20.5) MeV.

(64)

The result for the mass my is in accord with the BABAR
data, but is compatible with BESIII measurements as well.
The full width I'y;; has the small overlapping region with
I' = (58 £ 16 £ 20) MeV extracted in Ref. [1], but agree-
ment with data of the BESIII collaboration is considerably
better. In calculations of the Iy, we have taken into
account only three strong decays of the resonance Y. But
decay modes Y — ¢rn, KTK-ntn~, K*(892)°K*(892)°
of Y (seen experimentally and/or theoretically possible)
and other channels have not been included into analysis.

Partial width of these decays may significantly improve the
present prediction for gy,
Encouraging is our estimate for the ratio

T(Y - ¢n)
LY = ¢f)
which almost coincides with its experimental value ~0.74.

The latter has been extracted from available information on
the ratios [44] [Y is denoted there ¢(2170)]

~0.73, (65)

[(Y - ¢n) xT(Y - ete™)

1—‘total

=17+07+13, (66)

and

[(Y - ¢f) xT(Y - ete)

l—‘total

=234+03+03. (67)

Unfortunately, precision of the experimental data and
uncertainties of the theoretical results do not allow us to
make more strong statements about decay modes of the
tetraquark Y.

As is seen, our suggestion on a nature of the resonance
Y(2175) as the vector tetraquark with the content [su][5]
has led to reasonable agreements with existing experimen-
tal data. Theoretical analyses of decay channels left beyond
the scope of the present work, as well as their detailed
experimental studies, will be of great help to answer open
questions about the structure of the resonance Y (2175).
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