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Abstract Solutions to Einstein’s field equations describing rotating fluid bodies
in equilibrium permit parametric (i.e. quasi-stationary) transitions to the extreme
Kerr solution (outside the horizon). This has been shown analytically for discs of
dust and numerically for ring solutions with various equations of state. From the
exterior point of view, this transition can be interpreted as a (quasi) black hole
limit. All gravitational multipole moments assume precisely the values of an ex-
tremal Kerr black hole in the limit. In the present paper, the way in which the black
hole limit is approached is investigated in more detail by means of a parametric
Taylor series expansion of the exact solution describing a rigidly rotating disc of
dust. Combined with numerical calculations for ring solutions our results indicate
an interesting universal behaviour of the multipole moments near the black hole
limit.

Keywords Black holes, Rotating fluids, Multipole moments, Kerr metric,
No-hair theorem

1 Introduction

A fascinating property of some equilibrium configurations of rotating fluid bodies
is the existence of a “black hole limit” when a well-defined parameter relation is
reached. This was first demonstrated by Bardeen and Wagoner [1] with their ap-
proximate solution to the problem of a uniformly rotating disc of dust in general
relativity. The exact solution to the disc problem found by Neugebauer and Meinel
[2; 3] confirmed this result, see [4; 5] for details. In the limit, the spacetime sepa-
rates: From the “exterior point of view”, the extreme Kerr metric outside the event
horizon is formed. From the “interior point of view”, a regular, non-asymptotically
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flat spacetime—containing the fluid body—with the extreme Kerr “near-horizon
geometry” (also called “throat geometry” [6]) at spatial infinity results. Similar
phenomena were observed for limiting solutions to the static Einstein-Yang-Mills-
Higgs and Einstein-Maxwell equations [7; 8; 9; 10; 11]. Strictly speaking, there
is not yet a horizon in the limit, and hence the denotation “quasi-black hole”
used by Lemos et al. [9] is also appropriate. However, as already discussed by
Bardeen [12], the slightest dynamical perturbation will lead to a genuine black
hole. Therefore, we continue to use the term “black hole limit”. Such a limit was
also found numerically for uniformly rotating fluid rings with various equations
of state [13; 14; 15].

It was shown in [16] that the black hole limit of a (uniformly) rotating fluid
body in equilibrium always leads to an extremal Kerr black hole.1 A necessary
and sufficient condition for the limit is the parameter relation [18]

M−2ΩJ → 0, (1)

where M denotes the total (gravitational) mass, J the angular momentum and
Ω the angular velocity.2 Note that Lemos and Zaslavskii [19] have shown in a
more general context that quasi-black holes are always extremal if infinite surface
stresses are excluded.

In [15] evidence for a universal behaviour of the Geroch-Hansen gravitational
multipole moments [20; 21] near the black hole limit of rotating fluid bodies was
reported. In the present paper, these results are confirmed and extended. In partic-
ular, for the disc of dust, a parametric Taylor series expansion of the exact solution
at the black hole limit is derived. The multipole moments can be calculated accord-
ing to the algorithm introduced by Fodor et al. [22] using the Ernst formulation of
the stationary and axisymmetric vacuum Einstein equations [23; 24].

2 The Ernst potential of the rigidly rotating disc of dust

2.1 The metric and the Ernst potential

The asymptotically flat spacetime of a rigidly rotating disc of dust surrounded by
a vacuum can be described using the metric

ds2 = e−2U
[
e2k (dρ

2 +dζ
2)+ρ

2dϕ
2
]
− e2U (adϕ +dt)2, (2)

where the functions e2k,e2U and a depend only on the canonical Weyl coordinates
ρ and ζ , and not on the time coordinate t and the azimuthal angle ϕ , corresponding
to stationarity and axial symmetry. The equatorial “plane” is given by ζ = 0 and
the axis of rotation by ρ = 0.

Einstein’s vacuum field equations, in the case of stationarity and axial symme-
try, are equivalent to the complex Ernst equation [23; 24]

(ℜ f )∇2 f = ∇ f ·∇ f , (3)

1 See [17] for a discussion of the extension of the Kerr uniqueness proof to the case with a
degenerate horizon.

2 Throughout the paper we use units in which the speed of light as well as Newton’s gravita-
tional constant are equal to 1.
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where f (ρ,ζ ) is a complex function called the Ernst potential, and ∇2 and ∇ are,
respectively the Laplace and the gradient operators in a three dimensional Eu-
clidean space, as if ρ,ζ and ϕ were cylindrical coordinates. The metric potentials
can then be calculated from:

e2U = ℜ f , (4)

a,ρ = ρe−4U b,ζ , (5)

a,ζ =−ρe−4U b,ρ , (6)

k,ρ = ρ

[
U,2ρ −U,2

ζ
+

e−4U

4

(
b,2ρ −b,2

ζ

)]
, (7)

k,ζ = 2ρ

[
U,ρ U,ζ +

e−4U

4
b,ρ b,ζ

]
, (8)

where b(ρ,ζ ) is the imaginary part of the Ernst potential b := ℑ f (so f = e2U +
ib). For asymptotically flat solutions with the gravitational mass M and angular
momentum J, the behaviour of the Ernst potential at infinity is

f = 1− 2M
r

+
2
(
M2− iJ cosθ

)
r2 +O

(
1
r3

)
, (9)

where r :=
√

ρ2 +ζ 2 and tanθ := ρ/ζ .

2.2 The rigidly rotating disc of dust

The thin disc of dust is represented in Fig. 1. It is located at ζ = 0,ρ ≤ ρ0 and
rotates with the constant angular velocity Ω with respect to infinity about the ζ -
axis. It is useful to introduce a potential V by

e2V = e2U [(1+Ωa)2−Ω
2
ρ

2e−4U].
For any uniformly rotating fluid body in equilibrium3 the function V is constant
(V ≡V0) along the surface of the body (the disc “consists” of a surface only). This
constant V0 is related to the relative redshift Z0 of photons (without ζ -component
of orbital angular momentum) emitted from the surface and received at infinity via

e−V0 −1 = Z0. (10)

The surface mass density is not constant within the disc: it must vary in a unique
way such that each particle of dust can follow a geodesic of constant ρ , all with
the same Ω , by the sole effect of gravitation. The physical parameters that we just
mentioned can be combined into a “relativistic parameter” called µ:

µ := 2Ω
2
ρ

2
0 e−2V0 . (11)

3 While for the disc of dust the metric (2) can be used globally, it can only be introduced in
the exterior (vacuum) region in case of genuine fluid bodies.
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Fig. 1 The thick line is the infinitesimally thin disc of dust. The disc has a radius ρ0 and rotates
about the ζ -axis

The disc has a set of solutions that can be specified by fixing two parameters. But
by using normalized and dimensionless coordinates, the disc can be characterized
by a single parameter. Thus, from its Ernst potential we can extract dimensionless
combinations of physical parameters as functions of µ alone. The gravitational
mass M, the angular momentum J, the imaginary part b0 of the Ernst potential at
the centre of the disc (ρ = 0,ζ = 0+) and the previously introduced parameters
are given by

e2V0 =
h′cn2

(
Î,h′
)

h
, (12a)

b0 =−
sn
(
Î,h′
)

dn
(
Î,h′
)

h
, (12b)

Ω0 ≡Ωρ0 =
1
2

√
1− h′2

h2 cn
(
Î,h′
)
, (12c)

M̃ ≡ 2ΩM =−b0−Ω0c1, (12d)

J̃ ≡ 4Ω
2J =−b0−2Ω0c1, (12e)

where sn(u,k),cn(u,k) and dn(u,k) are the Jacobian elliptic functions, and h,h′, Î
and c1 are the following functions of µ:

h =

√√√√1
2

(
1+

1√
µ−2 +1

)
, h′ =

√√√√1
2

(
1− 1√

µ−2 +1

)
, (12f)

Î =
4
√

1+ µ2

π

µ∫
0

g(x)√
µ− x

dx, g(x) =
ln
(√

1+ x2 + x
)

√
1+ x2

, (12g)

c1 =
1
√

µ

{
2 4
√

1+ µ2 E
(
am
(
Î,h′
)
,h′
)
−
(

µ +
√

1+ µ2
)

I0 + I1

}
(12h)

and

In =
1
π

µ∫
0

g(x)xn
√

µ− x
dx. (12i)

The Ernst potential for a uniformly rotating disc of dust is given in [25; 26] for
the whole spacetime in terms of hyperelliptic theta functions and quadratures.
Since the multipole moments of stationary and axisymmetric configurations—
which contain all the information about the exterior gravitational field—can be
obtained from the Ernst potential on the symmetry axis, it is sufficient to restrict
ourselves to this axis, where the potential becomes simpler, see [27]. The repre-
sentation of the potential that we will use is considerably different from the one
given in [27], but all the necessary relations are provided in detail in [5; 28].
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To make the Ernst potential of the disc a function of one physical parameter, in
our case µ , we begin by introducing the normalized and dimensionless coordinates
x := ρ/ρ0 and y := ζ/ρ0. The potential on the axis is obtained by evaluating it in
the limit x → 0; it then becomes a function of two variables: f (µ;x = 0,y) →
f (µ;y). By restricting ourselves to the positive part of the axis (y > 0), the Ernst
potential can be written as follows:

f (µ;y) =
1− iNQ−
N + iQ+

(13a)

with the following functions defined as real functions of µ and y:

Q± =
1−2Ω 2

0

(
y2 +1+

√
(y2 +1)2 + µ−2

)
−b0∓2Ω0y

, (13b)

N = exp
{

L−2Î(S +H +Z +A)+T
}
, (13c)

L =
y
√

µ

π
√

(y2 +1)2 + µ−2

µ∫
0

x(y2 +1)+ µ−1

µ(y2 +1)− x
· g(x)√

µ− x
dx, (13d)

S =
h′
(
y2− τ2

)
2
√

(y2 +1)2 + µ−2
, (13e)

H = sign(y− τ)
h
√

P(1−hP)(P−h)
1−hP−h′

, (13f)

Z = X− E(h′)
K(h′)

Y, (13g)

A =
π

4K(h)

(
2Y

K(h′)
−1
)

, (13h)

T = lnϑ2

(
W+,−π

K(h′)
K(h)

)
− lnϑ2

(
W−,−π

K(h′)
K(h)

)
, (13i)

W± =
π

2K(h)

[
Î±
(

Y − K(h′)
2

)]
, (13j)

X = sign(y− τ)E(υ ,h′), (13k)
Y = sign(y− τ)F(υ ,h′), (13l)

υ = arcsin
[√

1−hP
h′

]
, (13m)

P =

√
(y2 +1)2 + µ−2 +2hτy

(y+ τ)2 (13n)

with

τ = 4
√

µ−2 +1

and ϑ2 being the Jacobian theta function defined by

ϑ2(x;B) =
∞

∑
n=−∞

exp

{[
1
2
(2n+1)

]2

B+(2n+1)x

}
.
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The disc solution is physically relevant from the Newtonian limit given by µ → 0
to the ultra-relativistic limit, i.e. the black hole limit, given by the smallest positive
value of µ for which cn(Î,h′) = 0. This “upper limit” of µ is called µ0, i.e.

0 < µ ≤ µ0 = 4.6296618434743420427 . . . (14)

2.3 The black hole limit of the disc

In the black hole limit, the source shrinks to the origin of the Weyl coordinate
system, i.e. for the disc we have ρ0 → 0. Therefore, it is appropriate to introduce
two new pairs of dimensionless Weyl coordinates in addition to x and y, one nor-
malized with twice the angular velocity Ω and a second one normalized with the
mass M (note that 2ΩM → 1 in the black hole limit, hence the two normalizations
become identical in the limit):
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ρ̃ := 2Ωρ, ζ̃ := 2Ωζ (15a)

and

ρ̂ :=
ρ

M
, ζ̂ :=

ζ

M
. (15b)

We will also use this “tilde” and “hat” notation to make some physical parameters
dimensionless. The logic of this notation is that a “tilde” introduces powers of
2Ω such that the parameter becomes dimensionless (mass M̃ ≡ 2ΩM, angular
momentum J̃ ≡ 4Ω 2J, etc.), and the “hat” notation does the same with powers of
M (mass M̂ ≡ 1, angular momentum Ĵ ≡ J/M2 etc.).

These normalized coordinates can be introduced in the Ernst potential of (13)
by rewriting y with the help of 2ΩM = M̃(µ) and Ωρ0 = Ω0(µ) in one of the
following two ways:

y =
ζ

ρ0
=

2ΩM
2Ωρ0

ζ

M
=

M̃(µ)
2Ω0(µ)

ζ̂ , (16a)

y =
ζ

ρ0
=

2Ωζ

2Ωρ0
=

ζ̃

2Ω0(µ)
. (16b)

The black hole limit of the disc is reached for µ → µ0, or equivalently for eV0 → 0.
As discussed in the Introduction, there is a separation of spacetime in the limit.
We are interested here in the “outer world” given by the extreme Kerr metric
outside the horizon. Note that the horizon of the extreme Kerr metric is situated
at ρ = ζ = 0. On the axis, the outer world corresponds to finite values of ζ̃ or ζ̂ ,
while the “inner world” is described by finite values of y. If we evaluate all the
functions from (13a) in the black hole limit for ζ̂ > 0, we find:

N = 1, Q± = 1± ζ̂ . (17)

This gives a potential which is identical to the Ernst potential of the extremal Kerr
black hole on the (upper part of the) axis:

f
(

µ0; ζ̂

)
=

ζ̂ −1− i

ζ̂ +1− i
. (18)

This potential can uniquely be extended off the axis and reads

f =
r̂−1− i cosθ

r̂ +1− i cosθ
, (19)

where r̂ :=
√

ρ̂2 + ζ̂ 2 and tanθ := ρ̂/ζ̂ .
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2.4 Leading order behaviour of the solution close to the black hole limit

Taking the Ernst potential of any asymptotically flat solution at ρ = 0, one can
expand it at ζ →+∞ in the following way:

1− f (ζ )
1+ f (ζ )

=
∞

∑
n=0

mn

ζ n+1 .

The coefficients mn are the same as those used in [22] to compute the multipole
moments defined by Geroch [20] and Hansen [21]. The first two coefficients are
m0 = M and m1 = iJ. Let us rewrite the coefficients in a normalized and dimen-
sionless form:

m∗
n :=

mn

kn
with kn := M

(
iJ
M

)n

=
mn

1

mn−1
0

.

Note that the kn correspond exactly to the coefficients mn of a Kerr solution with
mass M and angular momentum J, meaning that m∗

n = 1 for black holes.
It turns out that the following relations hold in the black hole limit:

dm∗
n

d µ

∣∣∣∣
µ=µ0

= 0, (20a)

d2m∗
n

d µ2

∣∣∣∣
µ=µ0

= 0 (20b)

or, equivalently,

dm∗
n

deV0

∣∣∣∣
V0→−∞

= 0, (21a)

d2m∗
n

d (eV0)2

∣∣∣∣∣
V0→−∞

= 0. (21b)

Actually, numerical evidence suggests strongly that (21) holds for a large class of
solutions (not only the disc) with parametric transition to a black hole.4 Indeed,
(21a) was verified in [15] (in a different but equivalent form) for several sequences
of numerical solutions describing rotating fluid rings reaching the black hole limit.
We have checked that the second property (21b) holds for these sequences as well.
Note that the relations (21) also hold for the normalized Geroch-Hansen multipole
moments (m∗

n replaced by the Geroch-Hansen moments normalized with the kn).
This follows directly from the structure of the expressions given in [22].

It can easily be concluded that the Ernst potential of any fluid configuration
having a black hole limit

(
eV0 → 0

)
and fulfilling the conditions (21) can be de-

composed into an Ernst potential fKerr of the Kerr solution with the same mass

4 It was shown in [18] that eV0 → 0 is necessary and sufficient for reaching a black hole limit.
An equivalent condition is the relation (1).
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and angular momentum and a residual potential R of order e3V0 :

f (M,J;ζ ) = fKerr(M,J;ζ ) + R(M,J;ζ ), (22a)

fKerr(M,J;ζ ) =
M(ζ −M)− iJ
M(ζ +M)− iJ

, (22b)

R(M,J;ζ ) = O
(
e3V0

)
. (22c)

Note that fKerr is not restricted to J ≤ M2 as it is for black holes. Indeed, rings
and discs have J ≥M2, thus fKerr is given here by the axis potential of a “hyperex-
treme” Kerr solution. In the above equations one may take M as one parameter and
consider J as a function of M and of the second parameter eV0 , i.e. J = J

(
M,eV0

)
.

For the disc solution, J/M2 is a function of eV0 alone. At the black hole limit,
eV0 = 0,J = M2 and R vanishes. Comparing (22) with (9) one can see that R must
also decay rapidly in the far field, R = O

(
ζ−3

)
, corresponding to the fact that

fKerr already contributes the correct first two multipole moments. Equation (22)
can be extended off the axis with fKerr as the Ernst potential of the general Kerr
solution. While f and fKerr are then both solutions to the Ernst equation, R is of
course not—due to the non-linearity.

3 Taylor series at the black hole limit

Our aim is to expand the Ernst potential f
(

µ; ζ̂

)
or f

(
µ; ζ̃

)
of the disc solution

at the black hole limit (µ → µ0) in terms of powers of (µ−µ0). Such an expansion
can then easily be transformed to an expansion in terms of the more universal
parameter eV0 .

To find an explicit form of the Taylor series, we make use of the computer
algebra systems Maple and Mathematica and we divide the work in two steps.
First, we write down the series of all functions that depend on µ alone. Then, we
do the same for the remaining functions which depend on µ and ζ̂ or ζ̃ .

3.1 Series of functions of µ

The set of functions that depend on µ alone is listed in (12). For each of these
functions, the resulting derivatives with respect to µ in the limit µ → µ0 give pure
numbers.

The direct computation of a series for Î with the form given previously is im-
practicable because zeros come out for some denominators. To avoid this pathol-
ogy, we rewrite the function with the substitution x = µ sin2

φ . This also has the
effect of removing the µ-dependence of the upper limit of integration:

Î(µ) =
4
√

1+ µ2

π

µ∫
0

g(x)√
µ− x

dx =
2 4
√

µ2 + µ4

π

π/2∫
0

g
(
µ sin2

φ
)

sinφ dφ . (23)
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Table 1 First coefficients a j of the expansions defined in (25) for the functions e2V0 ,b0,Ωρ0
and 2ΩM

j e2V0 b0 Ωρ0 2ΩM
0 0 −1 0 1
1 0 0 −1.1979704×10−1 1.2563637×10−1

2 6.1997318×10−3 2.8702661×10−2 8.2373333×10−3 −2.2207483×10−2

3 −2.1917290×10−3 −3.9472326×10−3 4.3533289×10−4 1.1246071×10−3

4 4.5766410×10−4 3.5824068×10−4 −1.9230828×10−4 1.7087311×10−5

5 −7.5851829×10−5 −2.0388433×10−5 3.8239383×10−5 −1.4784817×10−5

6 1.1139165×10−5 −9.6924305×10−7 −6.5882003×10−6 3.0205335×10−6

7 −1.5243204×10−6 6.0947891×10−7 1.0947125×10−6 −5.0848591×10−7

8 1.9941471×10−7 −1.4423676×10−7 −1.8180382×10−7 8.0708022×10−8

9 −2.5296376×10−8 2.7737508×10−8 3.0627438×10−8 −1.2616141×10−8

10 3.1381072×10−9 −4.9011518×10−9 −5.2656087×10−9 1.9805535×10−9

The series reads

Î(µ) = 1.5752+0.24046(µ−µ0)−0.017245(µ−µ0)2

+0.0017270(µ−µ0)3 +O
[
(µ−µ0)4], (24)

where decimal numbers are truncated after 5 significant digits (we omit the ellipsis
after each number from here on). Similarly, the derivatives of all other functions
of µ that we need for the Ernst potential can be calculated recursively. Thus we
can already present Taylor series of a few relevant parameter functions such as the
Ernst potential at the centre of the disc, given by f (ρ = 0,ζ = 0+)≡ f0 = e2V0 +
ib0, as well as the dimensionless products Ωρ0 and 2ΩM. These functions need
to be expanded with high numerical precision since they enter into the remaining
series expansions.

Let us now introduce the following notation for the nth order Taylor approxi-
mation An of a function of µ near the black hole limit:

An (b0(µ)) =
n

∑
j=0

a j(µ−µ0) j, (25)

where b0(µ) is used as an example. For the short list of functions that we have in-
troduced, we show their first expansion coefficients a j in Table 1. The same func-
tions are also plotted in Fig. 2 with their respective Taylor approximations of order
n = 5 and n = 10. This figure allows us to assess the quality of the Taylor series.
Approximations with n = 5 and n = 10 are indistinguishable from the exact func-
tion on the plot for µ > 2, while polynomials of higher orders (n = 10 versus n = 5
on the plot) improve the approximation near the Newtonian limit (µ → 0) reason-
ably well. In Fig. 3, one can see that the Taylor series seem to converge to their
respective exact functions from the black hole limit (µ → µ0) all the way down to
the Newtonian limit (µ → 0). The convergence is readily seen in the figure with
e2V0 , while for the three other functions, one must take into account the logarithmic
scale to appreciate it. Since the function e2V0 is related to the redshift parameter
as given in (10), we can calculate how wrong the redshift becomes from the ap-
proximations. In the Newtonian limit, where the Taylor approximations have the
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Fig. 2 Four exact functions of µ compared to their Taylor approximations with orders n = 5 and
10. On the right side of the plot, the functions are from the top to the bottom: 2ΩM,Ωρ0,e2V0

and b0

Fig. 3 These figures show the deviations of the nth order Taylor approximations An from their
respective exact functions. The Taylor series are truncated to order n = 1 . . .15 for the functions
e2V0 and b0, and to n = 0 . . .15 for Ωρ0 and 2ΩM. The lines are ordered from the smallest n to
the largest when one follows the abcisssa from right to left. The parameter µ is shown on the
abscissae and the ordinates show on a logarithmic scale the absolute value of the deviations. The
plunges to zero for a few curves only mean that the corresponding polynomials An intersect the
exact function at that point

greatest deviations, the redshifts, approximated by Z(n)
0 =

[
An
(
e2V0

)]−1/2−1, be-
come Z0 = 0.17691,9.0567×10−3,4.2302×10−4 for n = 5,10,15, respectively,
while of course Z0 → 0 is the correct result.

3.2 Series of functions of µ and ζ̃

The next step to obtain a series of the disc’s axis potential is to expand the remain-
ing terms which depend on both µ and ζ̃ . To this end, we introduce the normal-
ized coordinate ζ̃ ≡ 2Ωζ in every function given in (13). By computing series at
µ = µ0 for L

(
µ, ζ̃

)
,S
(

µ, ζ̃
)

,H
(

µ, ζ̃
)

,Z
(

µ, ζ̃
)

,A
(

µ, ζ̃
)

and T
(

µ, ζ̃
)

, we

can then determine the series of N
(

µ, ζ̃
)

, which can be combined with the series

of Q±
(

µ, ζ̃
)

to obtain the Ernst potential of the disc on the axis.

For the function L
(

µ, ζ̃
)

, it is helpful to carry out the substitution x = µ sin2
φ ,

as in (23), in order to calculate it numerically:

L
(

µ, ζ̃
)

=
4Ω0ζ̃

π

√(
ζ̃ 2 +4Ω 2

0

)2
µ2 +16Ω 4

0

π/2∫
0

(
ζ̃ 2 +4Ω 2

0

)
µ2 sin2

φ +4Ω 2
0

ζ̃ 2 +4Ω 2
0 cos2 φ

×g
(
µ sin2

φ
)

sinφ dφ ,

where Ω0 is a function of µ already expanded before. Once the integrand is ex-
panded in a series in (µ − µ0), the integral becomes easier to perform on each
individual term of the expansion. This series contains polynomials of 1/ζ̃ with
odd exponents and reads

L
(

µ, ζ̃
)

= −0.24697

ζ̃

(µ−µ0)−
0.015102

ζ̃

(µ−µ0)2

+

(
0.0063269

ζ̃

+
0.0021138

ζ̃ 3

)
(µ−µ0)3 +O

[
(µ−µ0)4], (26)



12 A. Kleinwächter et al.

where numbers are again truncated after five significant digits. The next functions
to expand, S

(
µ, ζ̃

)
and P

(
µ, ζ̃

)
, do not require anything other than a direct

computation of the series from the computer. The series for S reads

S
(

µ, ζ̃
)

= 0.053082−0.011080(µ−µ0)

+

(
0.0022735− 0.0061646

ζ̃ 2

)
(µ−µ0)2

+

(
−4.5822×10−4 +

0.0021646

ζ̃ 2

)
(µ−µ0)3 +O

[
(µ−µ0)4] .

(27)

The function H
(

µ, ζ̃
)

is not difficult to expand by calling P
(

µ, ζ̃
)

where
needed. Note that the sign from the factor “sign(y− τ)” has to be chosen to be
positive since y→ ∞ for finite ζ̃ at the black hole limit. Of course, our series will
diverge in a certain region near the disc. This is related to the previously discussed
“separation of spacetime” as µ → µ0. The result for H is

H
(

µ, ζ̃
)

= −0.055908+

(
0.012264+

0.0013618

ζ̃

)
(µ−µ0)

+

(
−0.0026412− 6.6713×10−4

ζ̃

+
0.0064947

ζ̃ 2

)
(µ−µ0)2

+

(
5.5869×10−4 +

2.1410×10−4

ζ̃

− 0.0023506

ζ̃ 2

−2.3723×10−4

ζ̃ 3

)
(µ−µ0)3 +O

[
(µ−µ0)4]. (28)

The remaining functions Z
(

µ, ζ̃
)

,A
(

µ, ζ̃
)

and T
(

µ, ζ̃
)

all depend on the el-

liptic integrals given by X
(

µ, ζ̃
)

and Y
(

µ, ζ̃
)

. Since we restrict ourselves from
now on to the above mentioned “plus sign”, the latter functions become simply
X = E(υ ,h′) and Y = F(υ ,h′). A good strategy to produce series of these func-
tions is given by expanding the right hand sides of

υ = am(Y,h′) = arcsin
[√

1−hP
h′

]
,

sin(υ) = sn(Y,h′) =
√

1−hP
h′

,

cos(υ) = cn(Y,h′) =

√
h(P−h)

h′
,√

1−h′2 sin2(υ) = dn(Y,h′) =
√

hP.



On the black hole limit of rotating discs and rings 13

Then, the Taylor series of F(υ ,h′) and E(υ ,h′) can be computed as series contain-
ing derivatives of the Jacobian elliptic functions. Each time that such derivatives
need to be evaluated, the answer can easily be picked up in the four series obtained
from above. By properly combining the series of F(υ ,h′),E(υ ,h′),K(h),K(h′)
and E(h′), we obtain:

Z
(

µ, ζ̃
)

= 0.0028257+

(
−0.0011830+

1.9350×10−6

ζ̃

)
(µ−µ0)

+

(
3.6763×10−4− 1.7626×10−6

ζ̃

− 3.3002×10−4

ζ̃ 2

)
(µ−µ0)2

+

(
−1.0047×10−4 +

9.5848×10−7

ζ̃

+
1.8595×10−4

ζ̃ 2

− 3.3836×10−7

ζ̃ 3

)
(µ−µ0)3 +O

[
(µ−µ0)4], (29)

A(µ, ζ̃ ) = −0.066452

ζ̃

(µ−µ0)+
0.0085785

ζ̃

(µ−µ0)2

+

(
−7.1026×10−4

ζ̃

+
0.0012715

ζ̃ 3

)
(µ−µ0)3 +O

[
(µ−µ0)4],

(30)

T (µ, ζ̃ ) = −0.20935

ζ̃

(µ−µ0)−
0.0042719

ζ̃

(µ−µ0)2

+

(
0.0038072

ζ̃

+
0.0040061

ζ̃ 3

)
(µ−µ0)3 +O

[
(µ−µ0)4]. (31)

Note that we obtained the series of T by the calculation of a series of dT/dµ using
several relations for derivatives of the theta function ϑ2 and subsequent integra-
tion. At this stage, the remaining computations are straightfoward. The series of
N
(

µ, ζ̃
)

is obtained by combining together the series from (24) and (26 – 31):

N
(

µ, ζ̃
)

= 1− 0.25127

ζ̃

(µ−µ0)+

(
−0.012990

ζ̃

+
0.031568

ζ̃ 2

)
(µ−µ0)2

+

(
0.0056452

ζ̃

+
0.0032641

ζ̃ 2
+

2.1819×10−4

ζ̃ 3

)
(µ−µ0)3

+O
[
(µ−µ0)4]. (32)
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And the expansions of Ω0(µ) and b0(µ) are needed for Q±
(

µ, ζ̃
)

, which gives:

Q±
(

µ, ζ̃
)

=1± ζ̃−0.028702(µ−µ0)2 +0.0039472(µ−µ0)3+O
[
(µ−µ0)4].

(33)

3.3 Series of the Ernst potential of the disc

Both real series (32) and (33) can now be combined into the complex Ernst poten-
tial given by (13a). The series takes the following form:

f
(

µ; ζ̃

)
=

ζ̃ −1− i

ζ̃ +1− i
− 0.25127 ζ̃(

ζ̃ +1− i
)2 (µ−µ0)

+

 0.063137i(
ζ̃ +1− i

)3 −
0.012845+0.012990i(

ζ̃ +1− i
)2 +

0.044414

ζ̃ +1− i

(µ−µ0)2

+

 0.015864(
ζ̃ +1− i

)4 +
−0.0065282+0.0064556i(

ζ̃ +1− i
)3

+
0.0034840−0.022452i(

ζ̃ +1− i
)2 +

−0.0066618+0.0033960i

ζ̃ +1− i

−0.0022492

 (µ−µ0)3

ζ̃

+ O
[
(µ−µ0)4] . (34)

We only wrote down the beginning of our results and with only five significant
digits, since the space needed for further orders inflates rapidly. But the method
that we used to compute the Ernst potential allows us to generate the series be-
yond ten orders with more then ten significant digits in a reasonable amount of
time; e.g. a personal computer with a 2.2 GHz CPU takes around 2 min to com-
pute all series up to ten orders and ten significant digits. In Fig. 4, the series of
the Ernst potential is shown as Taylor polynomials for n = 3, 6 and 9 at different
positions on the axis, and it is compared to the exact potential. One can see that
for large ζ̃ -distances from the disc (in Fig. 4, ζ̃ = 10 or 2), the series seems to
converge for any value of µ . Closer to the disc (ζ̃ = 0.5 in Fig. 4), the series does
not converge any more for values of µ too much smaller than µ0. One can also see
that for very relativistic discs (µ > 2), the series with orders like n = 3 or 6 give
excellent approximations as long as the series is evaluated for sufficiently large ζ̃ .
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Fig. 4 Real and imaginary parts of the Ernst potential and their respective Taylor approximation
as function of µ for ζ̃ = 10, 2 and 0.5. The solid lines are from the exact Ernst potential, while the
dotted, dash-dotted and dashed lines are Taylor polynomials with orders n = 3,6,9, respectively

The Taylor series using the other normalized and dimensionless coordinate,
ζ̂ ≡ ζ/M, reads as follows:

f
(

µ; ζ̂

)
=

ζ̂ −1− i

ζ̂ +1− i
− 0.025836i(

ζ̂ +1− i
)2 (µ−µ0)2

+
−0.0062737+0.0032261i ζ̂

ζ̂

(
ζ̂ +1− i

)2 (µ−µ0)3 +O
[
(µ−µ0)4] . (35)

Another useful representation is related to (22)—taking into consideration that
eV0 = O[(µ−µ0)]:

f
(

µ; ζ̂

)
= fKerr

(
µ; ζ̂

)
+ R

(
µ; ζ̂

)
(36)

with

fKerr

(
µ; ζ̂

)
=

ζ̂ −1− iĴ(µ)

ζ̂ +1− iĴ(µ)
, Ĵ(µ) =

−b0(µ)−2Ω0(µ)c1(µ)

[b0(µ)+Ω0(µ)c1(µ)]2
,

R
(

µ; ζ̂

)
=

−0.0062737

ζ̂

(
ζ̂ +1− i

)2 (µ−µ0)3 +O
[
(µ−µ0)4] .

Note that

Ĵ(µ) = 1+0.012918(µ−µ0)2−0.0016130(µ−µ0)3 +O
[
(µ−µ0)4] .

The three representations of the series of the disc’s Ernst potential given above
show that the solution near the limit differs from the extreme Kerr solution with
the mass MBH = 1/2Ω by a term of order (µ − µ0) [see (34)], from the extreme
Kerr solution with the same mass M by a term of order (µ − µ0)2 [see (35)] and
from the Kerr solution with the same mass M and angular momentum J by a term
of order (µ−µ0)3 [see (36)].

4 Discussion

The expansion of the axis potential f
(

µ; ζ̂

)
of the disc solution as given in (35)

has a remarkably simple structure: the contributions at each order of (µ − µ0)
are given by rational functions of ζ̂ . However, the most interesting aspect of our
results is the fact that the solution near the limit is approximated very well by the
(hyperextreme) Kerr solution with the same M and J as the disc—up to a residual
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term of order O
(
e3V0

)
, see (22) and (36). A precise formulation of this statement

is that all multipole moments differ from those of the Kerr solution with the same
M and J only by terms of order O

(
e3V0

)
. The fact that the Kerr black hole, which

is the unique stationary black hole surrounded by an asymtotically flat vacuum
region, is completely characterized by the two parameters M and J is called the
“no-hair theorem”. Accordingly, all multipole moments of the Kerr spacetime are
unique functions of M and J. When approaching the black hole limit of the disc,
the deviations of the multipole moments from those of the corresponding Kerr
spacetime (same M and J) decay ∝ e3V0 . Thus one can say, in a sense, that the
“hair” vanishes in this way. As already stressed in subsect. 2.4 this seems to hold
for all fluid bodies in equilibrium that permit a black hole limit. We also mention
that, according to our experience, the exterior spacetime of a uniformly rotating
fluid body is never described by the Kerr metric—except for the black hole limit(
eV0 → 0

)
. As long as eV0 6= 0, all “higher” multipole moments (beyond M and J)

always seem to be greater than those of the corresponding Kerr spacetime [29].
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29. Filter, R., Kleinwächter, A.: On the multipole moments of a rigidly rotating



18 A. Kleinwächter et al.
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