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ABSTRACT 

An attempt is made to reduce the discussion of the quantum mechanical 
interference patterns predicted to occur when a beam of particles of mass 
M and momentum p. is incident on two slits to macroscopic dimensional 
measurements of the sizes of slits, detectors, and collimators, and the 
macroscopic time measurements of whether or not detectors fire during 
macroscopic time intervals. By introducing detectors in the slits, the 
same apparatus yields statistical information about both single and 
double slit interference patterns, whose intensities add without inter- 
ference, which can check the quantum mechanical prediction to arbitrarily 
high (statistical) precision. But discussion of the detectors themselves 
reveals that this scale invariant prediction (which depends only on ti and 
M) can be carried through only if the detecting systems in the detectors 
have masses m << M. The existence of a smallest mass (empirically, the 
electron mass) or the limiting velocity c and the mass-energy relation 
(via the Wick-Yukaw mechanism) break the scale invariance of the theory. 
We conclude, as did Bohr and Rosenfeld in their analysis of the measura- 
bility of the electromagnetic field, that the existence of a smallest 
mass prevents an operational definition of the meaning of space time 
intervals of order h/m,c or less. 

(To be published by the Philosophy of Science Association in a volume on 
quantum mechanics edited by P. Suppes.) 
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I. INTRODUCTION 

This paper illustrates the contention that quantum 
mechanical effects can be reduced to statistical distri- 
butions of yes-no events corresponding to counts in de- 
tectors. We claim that these distributions correspond to 
objectively distinguishable classes of events, and that 
their probabilities add without interference. In our 
view, noncommuting 'observables' and complementarity are 
confined to the model space employed by the quantum me- 
chanical formalism in the calculation of these probabil- 
ity distributions; our 'objective reality' resides in the 
individual events, the macroscopic measurements which 
specify their approximate spatial and temporal relations, 
and the finite distributions which result from any par- 
ticular test of the theory. All other aspects of the 
problem are discussed within the model space, and are 
posed under the restriction that the model space allows 
us to carry out the implied operations. 

We hold that classical physics also employs a model 
space. This space differs subtly from the model space of 
quantum mechanics in that it allows limiting points of 
space and velocity (or time) to be defined independently 
in terms of abstract 'particles'. In contrast, we will 
discover in our specific context that the model space 
of quantum mechanics, also using abstract 'particles', 
easily allows the velocity limit to be taken (given 
enough space) but can define short distances only in- 
directly. Hence the space-time points in the model space 
do not have the same operational significance as those in 
the model space of classical physics, even though both 
are treated formally as mathematical continua. 

We believe that one major source of confusion in dis- 
cussions about the foundations of quantum mechanics is 
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2 H. P. NOYES 

the often made but usually unstated assumption that the 
model space of classical physics is identical to 'real 
physical space'--whatever that means. This confusion 
becomes worse once it is also assumed that 'particles' 
are 'real physical objects' whose positions and veloci- 
ties can be defined in that space. For us this last 
assumption is patently a metaphysical assertion rather 
than a scientific statement. Once that assertion is 
made, or even worse assumed without explicit recognition 
of the fact that this has been done, the fact that quan- 
tum mechanics employs a model space with different prop- 
erties becomes distorted into a belief that quantum 
mechanics requires the 'real world' to have paradoxical, 
alogical, or even antilogical properties. All these 
problems can be avoided by not falling into that trap in 
the first place. 

It has been forcefully pointed out to us that by con- 
fining the essential discussion to the model spaces of 
classical or quantum physics we disengage just where the 
philosophical problems become most interesting. Our ex- 
cuse is that most of the problems we avoid are common to 
classical and quantum physics, at least from our own 
point of view. We are not willing to grant that physi- 
cists exist in the abstract, let alone the "Great Mathe- 
matician" of Jeans' cosmology. For us, either classical 
or quantum physics has the burden of showing that it is 
capable of a scientific retrodiction of the past which 
leads to physicists, using "historical" data compatible 
with the model in question; a brief effort of ours along 
these lines has been attempted (Noyes, Note 1). Most of 
this discussion does not involve explicitly the points at 
issue between classical and quantum physics. So far as 
we can see, any evolutionary or dialectical scheme which 
leads from physical cosmology through terrestrial biolog- 
ical development to the cultural evolution of physicists 
must, in current scientific context, use both conserved 
elements (matter in the broadest sense) and statistical 
elements on which selection can act in a unidirectional 
manner leading to increased complexity. We have argued 
elsewhere (Noyes, Note 2) that the absolute conservation 
laws for discrete quantum numbers coupled with the fixed- 
past uncertain-future interpretation of quantum mechanics 
(Noyes, 1975) form a more satisfactory scientific basis 
for such schemes than does classical continuum physics, 
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but obviously cannot pursue this further here. In what 
follows we assume that, to requisite accuracy, physicists 
can measure "real" macroscopic space and time intervals, 
and,agree whether counters fire or not whatever their 
basic beliefs about the models they correlate with these 
measurements. 

The paradigm we choose to illustrate our point of 
view is the double slit experiment. In order to bring 
out the objective nature of the predictions for this ex- 
periment, we employ particles of finite mass rather than 
'light quanta' and assume that the two slits enclose par- 
ticle detectors which sometimes detect the passage of 
a particle and sometimes do not. We then predict that 
three different statistical distributions will be de- 
tected in an array of particle detectors placed a suffi- 
cient distance behind the two slits. The usual double 
slit interference pattern corresponds to the case when 
neither of the slit detectors fires, while the two other 
patterns arise when one or the other of the slit detec- 
tors fires in addition to one of the detectors in the 
final array. These three distributions are predicted to 
add without interference, and to be objectively distin- 
guishable by making use of appropriate time gates on the 
detectors and (delayed) coincidences between the detector 
signals. 

Corrections to this initial prediction arise from 
nonuniform illumination of the slits and can be calcu- 
lated from a detailed discussion of the way in which the 
beam of particles striking the slits is prepared. Addi- 
tional corrections arise from the detection events in the 
detectors themselves and can be calculated from a model 
of the elementary process that activates the detector. 
We show that these corrections can, in principle, be made 
arbitrarily small, thus justifying the simpler treatment 
with which we start. We also discover that we do not 
actually have to perform coincidence measurements to dis- 
tinguish the three distributions, because these distribu- 
tions change in predictable ways as we change the density 
of the material in the detectors. This allows us to ex- 
trapolate our macroscopic thought experiment down to 
atomic dimensions and relate it to actual measurements 
of the interference effects observed between de Rroglie 
waves. Some known limitations on this extrapolation are 
discussed in our concluding section. 
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II. FIRST APPROXIMATION TO THE PROBABILITY DISTRIBUTIONS 

The model of the double slit experiment we consider 
is presented in Figure 1. We assume that particles of 
mass M and momentum close to some value pO (velocity VC 

= PC/M) traveling in the z direction are produced by an 

accelerator or some other source. For simplicity we as- 
sume uniformity in the dimension perpendicular to the 
figure until we come to discuss corrections. To select 
particles with a known uncertainty in momentum we employ 
a collimator consisting of two slits (also containing 
particle detectors) of width W a distance S apart; the 
exit detector D C is in a slit a distance C from the 

double slit arrangement we are studying. If we pick our 
zero of time as the time when a particle from the source 
is supposed (classically) to pass through one of the two 
slits, the momentum of this particle is ensured to be 
close to PC by gating the detector DS closest to the 

source to be active at time t N -(S + C)M/p 0 and the de- 

tector DC to be active at time t N -CM/pO. We collect 

data only for cases in which DS and DC both fire while 

these time gates are open- Our third requirement is that 
the final detector array D3 

(Y2 + 2 ) 
2 l/2 

fire at time t N +rM/po, 

where r = is the distance from the center of 
the double slit arrangement to the coordinates y,z de- 
scribing the center of the detector in the array that 
fires. In addition to these three requirements (i.e., 
DS, DC, and D 3 must fire during the time intervals At 

set by the time gates centered around the two times given 
above) we also record whether or not Dl or D2 fires 

during a time interval At0 centered on t = 0. We assume 

that the intensity is low enough so that corrections due 
to pileup (e.g., Dl and D2 both firing during this time 

interval)'are not severe. 
The prediction of the quantum mechanical model is 

that we can distinguish three different distributions in 
the detector array D3. These are defined as: (IO) 9 



t---S----t---C--l 
Particles mass M 
momentum mpg 

Ds fires at t=-(S+C) M/pO+T 

Dc fires at t= -cM/pO%% 

(IO): D3 fires at t=rM/pOkq 

AtO At3 
(11): Dl fires at t=O+-2 D3 fires at t= rM/po+ 2 

At3 
1-77 (12): D2 fires at t=Ok$ D3 fires ot t=rM/po+F ,,,,.I 

FIGURE 1. Center section of the geometrical arrangement 
for the experiment. The minimal dimension of the de- 
tectors is AZ, so w, d, and W are larger. Dimensions 
of the detectors in the x direction (perpendicular to 
the plane of the figure) are 4 for the detectors in the 
slits and L for the detectors in the counters. The 
minimal time resolution At exceeds MAz/po (see text). 
If At0 and At 
which would be a 4 

are less than Atnin = MAz/po, events 
lowed in the data set as valid are ex- 

cluded. Optimal values for At0 and At3 depend on the 
intensity (i.e., number per unit time of valid events), 
since high intensity leads to an increase in the number 
of valid events, but also to a more rapid increase in 
the number of ambiguous events. The maximum value of 
At which will ensure the maximum value of T.ralid events 
al owed by the collimator is given in the text, but the 1 
optimization of this conjointly with the intensity is 
not performed. 



6 8. P. NOYES 

those events in which neither D1 nor D 2 fires when 

t - 00 , (Il), those events in which Dl fires when t N 0; 

and (I,), those events in which D2 fires when t N 0. We 

assume that both the slit widths w and the distance be- 
tween the two slits d are small compared to the distance 
to the detector array r. We further assume that the de- 
tector array D 3 subtends a finite angular aperture 20, 
that the angles 8 = tan-ly/z within this aperture are 
small compared to d/r, 
three functions 

and that r >> d/pa. We define 

ft@;w,k/p,d/r,@) = sin2[pw(e r d/2r)/41/NS(B =F d/2r)2 

(1) 

f,(e;w,d,?h/p,O) = sin2[p~~e/2~]cos2[pde/2Kl/Nde2 (2) 

with 
I4 

d8fS(g) ; Nd = P defdo3) l 

-)i 
0 

(3) 

Then the prediction for these three distributions, assum- 
ing a total of N data, is 

IO = N(l - e 1 - e2)fd(e;w,K/po,d/r,0) (4) 

I1 =-Nelf~(B;w,d,Yi/po,B) (5) 

I2 = Ne2fi(e;w,d&/po,0) . (6) 
. 

These are, of course, the usual double and single slit 
diffraction patterns for wavelength m/p, in the small 

angle approximation. The parameters el and e2 are simply 

the fraction of the total number of data for which Dl or 

D2 fires. The prediction is statistical; for large N it 

will be approached in the sense of the law of large num- 
bers. The fractions el and e2 are predicted to be 

proportional to 'the detector efficiencies, as will be 
discussed in Section IV. 
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We note that this single experimental arrangement 
suffices to provide data exhibiting both single slit and 
double slit interference patterns. This appears to con- 
flict with loose statements about complementarity, such 
as "an experiment which allows us to determine which slit 
the particle passes through is complementary to an exper- 
iment which yields the double slit pattern." We see that 
if by experiment we mean a single event, it is correct to 
say that the three possibilities belong to disjoint and 
objectively distinguishable classes of events and hence 
in that restricted sense are complementary. However, 
if the term 'experiment' means, as it usually does in 
physics, a system capable of producing numbers which can 
be compared with the theoretical prediction, the state- 
ment is palpably false. 

In order to test the prediction, we must accumulate 
enough data to compare the prediction, at some confidence 
level, with the large number limit; If it happens that 

el and e2 are very small, we will get a reasonable check 

on the prediction of IO for a smaller value of N than 

we need to check the predictions for 11 and 12; but if 

el + e2 is close to unity, the reverse will be true. 

Since el and e2 are adjustable by changing the density of 

the detecting systems in the detectors, we can obviously 
choose conditions such that our confidence in the test of 
all three predictions reaches roughly the same level for 
the same value of N. Further, for the same reason, if we 
collect data for various values of el and e2 we can 
verify the prediction without even making use of the time 
tagging of the three distributions. Hence, allowed this 
freedom, the experiment can be 'overdetermined'; this is 
important from an experimental point of view, since it 
allows us a check on some types of systematic error. 

We now derive the approximate results quoted above. 
Concentrating first on states of a single momentum p 
traveling in the +z direction, if there were no 
boundaries, the wave function would be $(z,t) = 

exp i(pzl6 - p2t/2M6>. The corresponding flux is j = 

wm) (Jr*aJr/aZ - JlaJr*/az) = p/M = v particles per u:it 
'area' per unit time; in our two-dimensional problem, 
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'area' is unit length perpendicular to the z direction, 
while in three dimensions it is area in the xy plane. We 
assume that our source and collimator are such that, to a 
first approximation, our two slits are illuminated with a 
plane wave of this type and that the detector does not 
significantly alter the momentum of the individual parti- 
cles in this beam. We also assume that the randomness 
in phase allowed by the first two time gates is uniform 
enough so that only the time-average value of Jr matters. 
All of these approximations will be justified subse- 
quently. They allow us to look for a solution of the 

time-independent SchrSdinger equation (a2/az2 + a2/ay2 

+ p2/K2)g(y,z) = 0 in the half space 052 <CO, 
-cQ<y<m which vanishes on the line z = 0 except for 
two uniform distributions of equal magnitude for y lying 
in the two slit intervals (d + w)/2 > y > (d - w)/2 and 
-(d - w)/2 > y > -(d + w)/2. 

Since we also need the single slit pattern, we first 
consider a single slit of width w centered at y = 0, and 
then show how the desired result can be derived from 
that. Our boundary condition for this simpler problem 

1s that: $w(y,O) = + rely + w/2) - 6(y - w/2)1. The solu- 
tion must be of the form 

qr,(Y,Z) = d9f,($le 
ip cos +/Jieip sin #y/45 . 

(7) 

Hence, by taking the Fourier transform of the boundary 
condition we find that 

fw(4) = (l/flw)sin(pw sin +/Ui)cot #I (8) 

or, letting 5 = sin 4, that the single slit wave function 
iS 

dw(Yd = 2 J la sin(pwf/2K)e ipz 1-52/t5eiPY5/45 f- 
-1 B 

(9) 

or, in polar coordinates, 
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e,(r sin 6,r cos e) = 2 d sin(pw5/2%) 
5 

. ei(pr/&)(Jl-<2 
(10) 

cos e + 5 sin e). 

If we had used a rectangular aperture of finite length 1 
in the x direction as well as finite width w, we could 
clearly have obtained a similar result using two angles 
for the resolution of 2 in the x, y, and z directions, 
and ended up with a somewhat more complicated double 
integral representing Jr,,. 

In order to obtain the desired result we now make use 
of our assumption that the detector array D3 .is so far 
away from the slits that pr/& >> 1. We can then evaluate 
the integral by the method of stationary phase, as ex- 
plained, for example, by Jeffries and Jeffries (1950), 
obtaining 

~, +. [2"(1p; 50,,1,,, sin(p~~~2') ei(pr/a-fi/4) 

+ ON/pr) (11) 
where 

50 = sin 8 . (12) 

If detector 1 fires, we know that the particle passed 
through the upper slit. We can therefore obtain the wave 
function for this case by using the method just developed 
with our boundary condition displaced upward by d/2, 
rather than being centered at y = 0. The result is again 
Equation 11 with 5, + fl, defined by 

(sin 9 - d/2r) 2 

c0s2e + (sin 8 - d/2r)2 
. (13) 

If detector 2 fires the result is obviously given in the 
same way with go + s2 and 

Q212 = 
(sin 8 I d/2rj2 

cos2e + (sin 8 + d/2rj2 
. 

(14) 
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If neither 1 nor 2 fires, our boundary condition spreads 
the same intensity over the two slits, and the two con- 
tributions add coherently, yielding the wave function 

$2w d(r cos 8,r sin e) , 

1 =- 
s 

ld sin(pwg/W;) 

IX -1 w5 
cos(pd5/fi) 

g 
l e 

i(pr%)( l-s2 cos e + 5 sin e) . f- 

415) 

For this wave function the stationary phase is given by 
5 = sin 8. Using these three wave funFions to calculate 
the flux through D3 and neglecting 8 compared to 8, we 

finally obtain the three results given in Equations 1-3, 
ag was to be proved. 

III. CORRECTIONS DUE TO THE STRUCTURE 
OF THE COLLIMATOR AND THE SOURCE 

This section and the next deal with what is custom- 
arily called 'preparation of the initial state' and *mea- 
surement'. Elementary treatments simply assume, as we 
have done in the last section, that it is possible to 
start with a beam of particles with precisely defined 
momentum J-J+, and that the measurement corresponds to 

the detection events in D3 assumed proportional to $*Q 

integrated over the space-time volume defined by that 
detector and its tine gate. I made these assumptions my- 
self in my own derivation of the scattering formalism 
starting from quantum mechanical particles and particle 
detectors (Noyes, 1976). Yet this definition of neasure- 
ment as proportional to $*Jr is hard to relate to the 
abstract formulation of quantum mechanics as given by 
von Neumann, as will be readily appreciated after reading 
the discussion of this problem given by Nancy Cartwright 
in another article prepared for this volume. The assump- 
tion that the initial momentum is well defined is known 
to be suspect because of the uncertainty principle. 
Qualitatively we can argue that with all past time avail- 

. 
. 
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able to prepare the beam, both its energy and direction 
can be defined as sharply as we wish. More precise 
treatment, for example, that by Goldberger and Watson 
(19641, estimates the size of the wave packet allowed by 
the uncertainty principle, and shows that this introduces 
no problems for the particle beams in actual use, but im- 
plicitly assumes that some function f(p - po) used to 

define the wave packet centered on p. can itself be known 
to arbitrarily high precision. We have gone to consider- 
able trouble to show that this assumption can indeed be 
justified using only particle detectors to measure momen- 
tum distributions. 

Because of the complexity of the argument, I have 
found it useful to break my analysis into three parts. 
First, I assume that the geometrical configuration of the 
two detectors in the collimators and the time gates ap- 
plied to them define the momenta which emerge and, under 
the assumption that the detection events are uniformly 
distributed over these space-time volumes, calculate the 
probability distribution of the momenta of the particles 
thus selected. Then I ask under what restrictions the 
quantum mechanical model allows us to treat this calcula- 
tion as a first approximation, with bounded corrections 
that can be made arbitrarily small, still assuming that 
the detection events themselves within these geometri- 
cal and temporal limits can be treated as punctiform. 
Finally, I discuss assumptions which suffice to allow the 
quantum mechanical detection events to be approximated in 
this manner. 

Returning to Figure 1 and the statement of the condi- 
tions for data collection, we see that the firing of the 
two detectors D s and D c guarantees (except for the acci- 

dental coincidences that will occur if the flux of parti- 
cles is too intense) that the probability of the particle 
being in the two space-time volumes 

-+<xs<+, -;<ys<p, 

-s-c-~<zs<-s-c+~ 

_ M(S + C) 

PO 
-%<t <- S 

M(S + Cl + & 
pO 2 (16) 

. - .  I - - -  - . - - .  ..-_ 
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and 

-L<x !i 
2 C'2' -;<yc<y, 

-c +<z ,<-c++$ 

MC At -----<t <- 
PC 2 C 

(17) 

is unity; this implies that the baffles around the slits 
and the interior walls of the volumes containing the de- 
tectors are 'perfectly absorbing', or in other words that 
any particle that fails to meet these boundary conditions 
does not reach the two slits under study or return to 
either detector in the collimator. CorrectiKs due to 
the failure of this approximation constantly harass the 
experimental physicist but do not concern us in this 
thought experiment. 

For simplicity we will ignore the lateral (x,y) 
dimensions and calculate the probability distribution in 

Pz = M(z C - z,)/(t, - ts) implied by these boundary con- 

ditions. We further assume, to begin with, that the 
probability of finding a particle within the specified 
ranges of time and distance is uniform- The quantity of 
physical interest, the probability distribution in the 
momentum p z' depends only on the intervals zc - zs, and 

% - 5' This fact allows us to define two new vari- 

ables z = z - z c s - S and t = tC - tS - MS/pO, and inte- 

grate over 
obtain 

the uniform distributions in tS and zs to 

dP(z,t) = o( 2 )o( s )(I - % 1 s (18) 

where 

O( 2 ) = e( 2 + 1) - e( 2 - 1) l (19) 

The final step is then to change variables to p, and 

some second variable which can be integrated out. In 
order to bring out more clearly the physical magnitudes 
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involved, we introduce the dimensionless parameters and 
variables 

E = poAth% f = AZ/&, 

Q = (P, - po)/~po, 5 = At/t . 
cw 

The time a particle of velocity pa/M takes to cross a 

length AZ is MAz/po= If the time resolution At were less 

than this value, we could use the timing device to reduce 
the spatial resolution AZ. We therefore assume that At 2 
MAdpo, which implies that f is less than or equal to 

unity. The momentum p. and the mass M are specified in 

advance. As we will see in the next section, the thick- 
ness of the detector AZ depends on what we are willing to 
assume about its construction. However, the length of 
the collimator S is still at our disposal, which allows 
us to make t as small as we like if we are willing to go 
to a large enough apparatus for preparing the beam. For 
similar obvious geometrical reasons, the lateral spread 
in momentum is proportional to W/S and L/S, and these two 
dimensions (if bigger than the limiting dimension AZ) are 
also at our disposal. We can therefore guarantee that 
the momentum p is well defined in direction as well as in 
magnitude, if there are no additional wave mechanical 
restrictions. 

Making use of these definitions, we can change vari- 
ables from z,t to q,5 and using 

Z 
K=f 1 [q(l + EQ - 51 (21) 

find that the probability distribution in q is 

dP(q) 

=dq 
s 

1 

f -1 
dS(1 + eE)(l - 151)(5>(1 - t 4 [q(l + E%) - 51) 

l ($ [q(l + es> - 51) (22) 

l+f 
= [e(q + 1 + e -) 

l+f - e(q - G )lF(q)dq . 
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For f= 1 (optimum time resolution) and small E 

F(q) = 5 - 5 Isl + 2q2 - Id3 Isl < 1 
(23) 

= $ (2 7 hII3 1 < lql < 2 . 

The net effect of the calculation is to show that the 
collimator does indeed produce a momentum distribution 
peaked about p. with the limits 

l+f l+f 
PO - EPO 1 + E < p, < PI-J + EPO 1 - E l 

(24) 

If the source illuminating the collimator does not pro- 
vide an absolutely uniform distribution of momenta p, in 

this range, the assumption that the spatial and temporal 
distributions within the counters are uniform is not jus- 
tified due to the correlations between them introduced by 
this fact. However, the classical calculation is easy 
to correct if we know the source distribution Ps(pz), 

the obvious result being PS(p,)F( (p - pO)/EpO)dpZ/~, Z 
where P is the integral of PSF over the interval in 

Equation 24. Since we can construct collimators of arbi- 
trarily high quality by making them long enough, we can 
measure the probability distribution Ps to any requisite 

accuracy. This is part of what any experimental physi- 
cist would do to calibrate the equipment used in the ex- 
periment and so is usually assumed without question. The 
difficulty from the point of view of this paper is that 
the calibration so far described uses classical physics 
and hence cannot be invoked by us if we aim at a self- 
consistent operational analysis. Even careful treatments 
such as that of Goldberger and Watson (1964) content 
themselves with the assumption that the source provides a 

wave packet (Ps(pz))1'2 = fS(pz) whose size can be esti- 

mated from the size of the source and with showing that 
quantum mechanical corrections due to 'wave packet 
spreading' are, under current conditions, unimportant 
until the apparatus extends from the earth to the moon or 
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farther. We try to provide below a somewhat more careful 
analysis. However, to do this we find that it is neces- 
sary to invoke some background material which, though 
familiar to physicists, cannot be expected to form part 
of the background philosophers and mathematicians invari- 
ably bring to the study of the foundat.ions of quantum 
mechanics. 

In classical wave motion, the maximum amplitude A of 
a monochromatic wave A sin [(z - vt)/x + 61 and the phase 
6 are physically measurable quantities. For instance, 
for a vibrating string, A is the maximum displacement of 
the string from its equilibrium configuration at position 
Z along the string, and 6 can be determined, if the mo- 
tion is slow enough, by measuring the displacement as a 
function of time relative to some clock. However, for 
sound waves in which the amplitude is the average dis- 
placement of the air molecules from their equilibrium 
position, or for light waves in which it is the maximum 
strength of the electromagnetic field vector, neither A 
nor 6 is experinentally accessible from a practical point 
of view. Usually for any pitch, the ear, and for all 
colors, the eye, respond not to the displacement (whose 
average value is obviously zero) but to the intensity I, 
which is the square of the displacement averaged over 

one cycle; clearly, I L l/2 AL. Therefore, it is conve- 
nient to represent the wave by a complex function 
I1/2 exp i[(z - -Jt)/X + 61 = $, whose absolute square 
$*$ = I performs the averaging automatically. Clearly, 
if we measure only the intensity of a single wave, the 
phase 6 remains unobservable. 

At this point, one might well ask how the wave char- 
acter of either sound or light can be demonstrated. For 
instance, the source of light might be a candle flame 

containing -10 18 individually excited molecules emitting 
wave trains randomly phased with respect to each other. 
If.we bring beams from two different candles together, 
there is no interference; the intensities simply add. 
But if we use a single candle to illuminate a single slit 
(through a collimator or lens, or far enough away so that 
the candle can be geometrically approximated by a point 
source) and look on a far screen, the path length through 
different points across the width of the slit to the 
point on the screen can differ by a wavelength; we then 
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can observe the single slit diffraction pattern due to 
the interference between elements of a single wave train 
coming from a single atomic source. If the sources are 
effectively at a point, the intensities on the screen add 
to give the visible pattern predicted for each separate 
wave train. The calculation is equivalent to the deriva- 
tion we gave in Section 11. If we use two slits illumi- 
nated by a single source, we can observe the double slit 
pattern. We see that the quantum mechanical calculation 
for a single particle is like the classical calculation 
for a single wave train of unknown phase. All that our 
detectors DS, DC, and Do do in the particulate case is to 

ensure, by our time tagging, that we are dealing with a 
single wave train with the further simplification, if 
AZ/S is small, of a well-defined wavelength. However, if 
either D or D 1 2 fires in addition, we destroy any possi- 

bility of phase coherence between the two slits, and 
obtain only the appropriate single slit pattern. The 
quantum mechanical character of the calculation is thus 
restricted to the discrete (yes-no) character of the in- 
dividual particulate detection events, as claimed in our 
introduction. 

The point I hope to have brought out by this digres- 
sion is that for quantum mechanics the absolute phase of 
the wave is in principle unknowable, in contrast to the 
classical 7- situation where the 'random phase approxima- 
tion' is simply a practical method for dealing with phys- 
ical situations in which a well-defined quantity happens 
to be -beyond the reach of direct experimental measure- 
ment. In my previous discussion of the scattering pro- 
cess (Noyes, 1976), I made use of this principle to 
derive the conventional scattering formalism by noting 
that if the absolute coordinates of the positions where 
scattering takes place entered the theory, they would 
have to enter the theory as 'quantum mechanical hidden 
variables' unless the sum over all such processes is per- 
formed in a particular way. This enabled me to separate 
the kinematic (i.e., descriptive) aspect of scattering 
theory from the dynamical aspect (i.e., the calculation 
of scattering amplitudes, including relative but not ab- 
solute phases). But in that treatment I still assumed 
that an incident beam of precisely defined momentum could 
be used as a starting point, an assumption which the dis- 
cussion presented here is intended to justify. 
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As we will discuss in more detail in the next sec- 
tion, the detector can be so designed (under restrictions 
which turn out to be conceptually important) that the de- 
tection event does not in itself significantly perturb 
the incident wave's momentum. Thus if we know fS(p,), 

but not its phase, we can assume that the scattering 
event that initiates the detection in DS results in a 

wave function, for t > tS, which can be written as 

'Pc(z,t) = Jmdpei"(P)fs(p)e 
i r (z-z,)p/~-(t-t,)p2/2tarl 

. 
-0 

(25) 

Under our assumption that this process is incoherent with 
respect to the source, the phase 6 can have any value, 
and, as just discussed, the parameters z s and t s can be 

known only to the extent that they lie within the ranges 
given by Equation 16. To justify this assumption a for- 
tiori, we must be able to show that by making this posit 
the collimator can be used to measure the probability 

distribution Ps(p) = f:(p) independent of any knowledge 

of 6(p); clearly we are assuming both fS and 6 are real 

and that fS is appropriately bounded. As in the classi- 

cal calculation, we assume that all values of zs and tS 

are equally probable within the specified ranges. 
If we are correct in assuming that this is the wave 

function that results from the first detection event, we 
can then use it to calculate the probability of the sec- 
ond detector (DC) firing during the gated time interval 

as proportional to J'c*~c when z and t are in the 

ranges specified by Equation 17. Hence, 

l [ s m dp dkfs(p)fs(k)ei(b(p)-6(k)) 

i[(zc~~s)(p-k)/?i-(tc-tS)(p2-k2)2/~~l 
l e . (26) 
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As in the classical calculation, we can immediately inte- 
grate over tS and zs to obtain 

dp(z,t) =s (1 -%)(l - G )O( 2 )O( 2 ) 

l ' J-Jp J,"" fs(f)fs(k) 

i6(p-k) 11 - 

l * e 
1(6(p)-6(k)), 

(27) 

0 e i[z(p-k)/ti-t(p2-k2)/2MU, 

But this result can be evaluated by the method of sta- 
tionary phase, and we recover immediately the classical 
result provided only that S >>4/po or, in words, that 

the distance between the two counters in the collimator 
is a large number of de Broglie wavelengths. Thus, pro- 
vided the detectors themselves act as point detectors, 
when integrated over the active volumes and time gates, 
we'have given a rigorous justification of the classical 
approximation and have proved that we can measure momen- 
tum in a quantum mechanical system to arbitrarily high 
precision. 

The extension of the discussion to three dimensions 
is straightforward and contains no new conceptual points 
so far as the time dependence goes, so we will not at- 
tempt it here. With regard to the lateral dimensions, 
physicists will recognize that, in order to avoid dif- 
fraction effects, the dimensions W and L will also have 
to be large when measured in de Broglie wavelengths. In 
a thought experiment we can always ensure this while 
still keeping W/S and L/S small simply by scaling every- 
thing up in all three dimensions; in any case, the calcu- 
lation of the intensity of the diffraction patterns 
across the faces of the counters is a straightforward 
problem in physical optics, for which standard methods 
can be used. These can then be used to weight the inte- 
grals needed in the probability calculation. Optimiza- 
tion of the counting rates so as to reduce ambiguities 
due to pileup, now that we have reduced the problem to a 
classical one, is again a familiar experimental task and 
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provides no conceptual problems. All that remains is to 
show that, given an initial momentum distribution whose 
magnitude is knowable to arbitrarily high accuracy, we 
can indeed construct detectors that will fit into the 
slits of width w whose diffraction patterns (single and 
double) we are trying to measure. 

IV. CORRECTIONS DUE TO THE STRUCTURE OF THE DETECTOR 

The detector we assume to complete our design con- 
sists of particles of mass m << M, struck by the massive 
particles under study and recoiling. If the recoil ener- 

gy p2/2m is greater than some critical energy Ed, the 

recoil particle can activate a secondary process, which 
is amplified by the detector and eventually leads to the 
signal that we have referred to so far as the firing of 
the detector. In practice, the energy EC could be the 

ionization energy of the atoms in the detector, and the 
amplification process could be an electron and ion cas- 
cade, as in a Geiger tube; alternatively, the ionization 
could produce a photon when the atom that has been ion- 
ized recombines, and the amplification could be provided 
by a photosensitive surface and a photomultiplier tube. 
But for our purposes all we need is the kinematics of the 
initiating event, the threshold energy, and the cross 

section Irai which each initial event has with respect to 
the incident beam. 

Given this model for the detector, our first step is 
to calculate the kinematics of the initial scattering 
process. Assuming that the particles m are free, we 
can calculate the angular dependence of the momentum and 
energy of the (scattered) beam and (recoil) detector par- 
ticles from the conservation of momentum and energy by 
solving the three equations 

P sin $ = P sin 8 

p cos + + P cos 8 = PC (28) 
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with the result 

1 +m/M 
(29) 

sin2e + m - - cos 0 m 
M ;- sin20 

2 1 
Pw = M(1 + m/M)2 

. 
We see immediately that the maximum angle of scattering 

of the beam particles is Sx = sin-'m/M and hence that 

simply by using detector particles of small enough mass 
we can guarantee that the detector does not introduce 
significant corrections into our analysis so far as angu- 
lar distributions go. Since the final detector array has 
angular aperture 0, all we need require is that m/M << 0. 

If the density of detector particles in the volume of 

the detector V is p grams/cm3, the number of particles 
is pV/m, and the cross-sectional area they present to the 

beam is npVai/m. Since the volume of the detector 

is WJ?& , and the area presented to the beam is WI,, the 
fraction-of the time one beam particle incident on this 

area will activate the counter is npatAz/m. If p = py 
the density of detector particles in Dl, this fraction 

is simply el, i.e., the fraction of the time that, on the 

average, the detector will fire when (as our procedure 
for data collection ensures) exposed to one particle 
passing through the system. Clearly we must make the 
density low enough so that el + e2 < 1 for the exper- 

iment to work as designed, which also ensures that the 
corrections due to the beam striking more than one parti- 
cle within the detector will be small. Thus our detector 
design ensures the conditions assumed in our initial dis- 
cussion, and justifies the assertion that we can get 
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equivalent results simply by using particles of known 
mass m, density p, and cross section a0 in the slits 

without actually recording whether or not individual data 
points in the final distribution correspond one by one to 
the three distributions predicted. 

A number of corrections are needed before we can di- 
rectly confront theory with experiment even under these 
restrictions. The kinematical equations show us that the 
momentum of the detector particles varies from 0 when the 
particle of mass 14 continues to move in the forward di- 

rection (sin 8 = 0) to p X = (m/M)[2m/M(l + m/M)1 pi/2 
when sin 8 = m/M = sin 8 . In order to activate the X 
detector at ail, we must clearly require that 

(mpo/W2/M(1 + m/M) > co9 but there will also be a criti- 

cal angle Bc, defined by 

PO C 
sin2ec + m M:-cOsec/m] = f4(1 + f )EO , 

(30) 

within which the detector will not be activated. If the 
differential cross section for scattering is o(e), with 

2 8, 
na = 0 I d te>de, then the fraction of the time the 

O- 

detector will not be activated even though scattering 
occurs is 

s 

BC 
fb,ao) = u (e)de/na~ l (31) 

0 

But, as we saw in our last section, the scattering de- 
stroys the phase coherence necessary for the double slit 
interference pattern even though the scattering is not 
directly observed (i.e., does not activate the detector). 
Consequently, we must modify our initial prediction to 
read 
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IO - N[(l - e 1 - e2)fd + f(m,80)(elf: + e2fi)l 

I1 - Nel(1 - f (m,ao))f: (32) 

I2 = Ne2(l - f(m,ao))f~ . 

This makes the comparison with experiment slightly more 
complicated in practice but does not change anything in 
principle, except that the correction to IO blurs the 

double slit pattern by includin g a single slit contamina- 
tion from those particles which actually scattered from a 
detector particle in one of the two slits but were not 
demonstrated to' do so because of this detection ineffi- 
ciency. 

In using this expression, we should note that the 
fractions 
expressions 

el and e2 which occur are the theoretical 

el =xplaiAz/m , e2 = rp2aiAz/m (33) 

for any scattering event and not the experimental frac- 
tions actually measured in any particular experimental 
run. The statistical prediction for the experimental 
fractions (i.e., the number of times the detectors Dl and 

D2 fire compared to the total number of events in which 

DSs DC, and D3 fire) is obviously 

eexP 
1 =-el(1 - f(m,ao)), eyP = e2(l - f(m,ao)) l (34) 

Comparison between these predictions and the experimental 
results therefore gives us an internal check on the con- 
sistency of our assumptions about the detectors; failure 
of this check would point to systematic error in the 
overall setup and suggest that we make independent mea- 
surements of pi, ao, f(m,ao), the momentum distribution 

emerging from the collimator or arriving at the detector 
array D 3 , etc., in order to resolve them. Since we have 

already demonstrated that we can, in principle, construct 
collimators that allow us to measure momenta to arbi- 
trarily high precision in both magnitude and direction, 
these experimental checks can all be carried out. They 
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are part of the procedure in any carefully designed ex- 
periment, and will not concern us further here. 

So far we have not discussed the length of the time 
gate At3 during which we need to keep the counter D3 

open. We saw in the last section that the collimator 
does not provide a precisely monochromatic (single momen- 
tum) beam but introduces a spread in monentum given by 
Equation 24. This means that the slowest particles will 
arrive at D 3 still farther behind the center of the \. 
pulse than they leave the collimator and the fastest par- 
ticles still farther ahead of it. This is a classical 
'wave packet spreading' produced by our finite spatial 
and temporal resolutions and has nothing to do with the 
quantum mechanical effect of the same name. So long as 
our time gate is centered on t = rX/po we will catch the 

central portion of the pulse, so using the time gate that 
will catch all particles that have passed our collimation 
conditions and the two slits can be simply a matter of 
optimization of design to increase the counting rate of 
useful events. Dowever, since this time is necessarily 
longer than At, and hence determines the probability that 
an'event we assign to a particular DS + DC trigger is in 

fact correctly assigned, we need this number to optimize 
the overall intensity of the incident beam. This number 
iS 

At3 = ( 
S+C+r s+Az )(At+*) l 

PO 

(35) 

For similar reasons we should set the time gate At0 
on the detectors Dl and D2 to be long enough to accom- 

modate the full pulse defined by the collimator. If we 
make it shorter, we can also make At 3 shorter; this sug- 

gests that we could simplify the overall design by omit- 
ting the counter DC and using the time gate on the array 

D3 to define the momentum. We have not done this, be- 

cause we thought it simpler conceptually to separate the 
action of the collimator from the rest of the experiment, 
rather than present an integrated and optimized design. 
Another correction, due to the fact that the detection 
process (even for 8 < (3,) robs the beam particles of 
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energy and hence slows them down compared to the parti- 
cles in the double slit pattern, should also be included 
for completeness. However, this correction, which in 
principle would require us to use an angle-dependent time 
gate on D3 correlated with the firing of Dl or D2, and 

with a corresponding modification of f(m,ao), would take 

us into the problem of detecting the time structure in 
the counts at D3' It also would give us still another 
experimental handle on the discrimination between the 
three patterns IO, 11, and 12; but since we started only 

with the problem of measuring intensity distributions, we 
will not pursue the analysis further. 

Our treatment so far is not explicitly wave mechani- 
cal. We now show that, provided the range R of forces 
between the beam and detector particles is small compared 
to the dimensions of the detector, the same approxima- 
tions suffice. We introduce the relative coordinate 5 = 

EM - zrn between the detector and beam particles, with 

conjugate momentum & = (mP - Mp)/(M + m) and center of 
mass coordinate X = @lag + mrm)/(M + m) conjugate to the 

total momentum & = g + 2. Then the wave function out- 
side the range of forces (i.e., for x > R) is simply 

iK-'X/J5 $(&c) = e-- [ 

ik+) l ?J/ti f(IiO.~)eikXM 
e + - 1 . X (36) 

In the- usual treatments of scattering we are interested 
in the second term, which we examine outside the region 
to which the initial beam is geometrically confined. In 
fact, this is how we would measure the crgg;Osection for 

the detection process, since .a: = (Jr/21 s %if (5) 12- 
-1 

In order for our detector not to fire every time a 

particle goes through we must require that Kai < wa 
(even if there is only one particle in the detector) 
and l/n of that value if there are n particles. But 
our geometrical conditions already require us to have 
wSd<<r, so that by the time the scattered wave 
reaches D 3 the scattered amplitude is down by -so/r N d/r 
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(and the intensity by Iao/r12) compared to the lead- 

ing term, which is just the initial free particle wave 
function (times the detector particle wave function). 
Further, simply for geometrical reasons, the range of 
forces R within which Equation 36 has to be modified must 
be much smaller than w in order to fit the detecting sys- 
tems into the slit without introducing significant wall 
effects. We conclude that, if n/14 << 0, a0 < w, and 

R << w, the detector will function as postulated in Sec- 
tion II and that the calculation of corrections, though 
complicated in detail, can be carried out in terms of ex- 
perimentally accessible quantities. Further corrections 
due to nonuniform distribution of the density p of detec- 
tor particles across the slits, momentum dependence of 
the cross section, nonuniformity of the amplification 
process which starts from the recoil particle of mass m 
and ultimately determines in practice the time-resolution 
characteristics of the detector, not to mention other 
woes that will occur to an experimental physicist, can 
also be included. They enter the calculation in the in- 
tegration of the probability of detection over the detec- 
tor volumes and the time gates. Since we have already 
discussed in the last section how these integrals are to 
be calculated from a quantum mechanical wave function, 
assuming uniform distributions, we do not repeat the dis- 
cussion here using these experimental resolution func- 
tions; they are simple multiplicative factors of the 
integrand from a mathematical point of view. 

v. DISCUSSION AND CONCLUSIONS 

We have now completed our operational analysis of how 
the double slit experiment can be divided into three ob- 
jectively distinguishable classes of events, how these 
are related to counts in detectors with finite spatial 
and temporal resolutions, and to a limited extent how the 
corrections to the simple prediction can be either mea- 
sured or bounded. Our analysis proceeded by two steps- 
In the first, we showed that we can, in fact, measure 
momentum to arbitrarily high precision by an appropriate 
collimator design and hence make the beam incident on the 
slits as 'monochromatic' as we wish. We then showed 
that, provided only that the events which initiate the 
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firing of the detectors are single scatterings from par- 
ticles of mass m much smaller than the mass M of the beam 
particles under study, the cross section for these scat- 
terings 37.: is much smaller than the cross-sectional 

area of the detectors in the slits and that the range of 
force R between the beam particles and the detector par- 
ticles is small compared to the smallest limiting geo- 
metrical dimension (usually AZ, the thickness of the 
detectors in the beam direction), we can also make the 
perturbation due to the detectors as small as we wish. 

This last restriction on the operation of the experi- 
ment, which requires us, in principle, to be able to 
imagine the existence of particles with arbitrarily small 
masses and dimensions, is, we believe, the most interest- 
ing result to emerge from our analysis. For a strict 
operationalist (Bridgman, 1928), the concept of length is 
not the same at atonic dimensions as for lengths that can 
be measured by laying down a standard ruler a certain 
number of times. Our attitude is somewhat different. We 
are exploring the properties of a model space by perform- 
ing thought experiments and endeavoring to discover what 
physical model systems are needed to give operational 
meaning to the theory in question. We reserve discussion 
of whether this model space is connectable to physical 
phenomena until this discussion of the model space is 
completed. Thus, our preliminary conclusion is that, 
under the restrictions given above, the double slit ex- 
periment can be given an objective, operational descrip- 
tion. -The reason this is possible is that nonrelativis- 
tic quantum mechanics, as a theory, makes no assertions 
about the values of the masses, the cross sections, the 
range of forces, or the.geometrical dimensions that are 
allowed; the only universal constant that enters is 4, 
and, if we concentrate on a particular type of particle, 
M. In other words, the structure of the theory is com- 
pletely independent of the units we use for mass, length, 
and time; nonrelativistic quantum mechanics is scale in- -- 
variant. This is not so obvious in terms of historical 
development, since the theory developed out of study of 
the Bohr model for the atom using first electrostatic and 
later electrodynamic forces as an integral part of the 
theory. You will note that I have carried through the 
above discussion without invoking any electromagnetic 
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effects, partly for reasons of simplicity, but also just 
to nake this point. 

To put the matter more graphically, for the experi- 
ment we have described, we could, given world enough and 
time, perform the experiment with cannonballs, the slits 
being holes in armor plate, the surfaces covered with tar 
so as to make them 'absorbing'. For a detector we could 
shoot a stream of buckshot across the openings for a 
finite time (the 'time gates' At), with a detection cor- 
responding to one of the buckshot being knocked out of 
the stream and either detected separately or found mis- 
sing by weighing or counting the ones that arrive on the 
other side of the slit. Someone may object that with 
cannonballs (at 18th-century speeds) we could simply see 
which slit the ball went through and thus force the para- 
dox which some see by finding that even so there is (or 
is not) a double slit interference pattern. But this 
does not work. If there is sufficient illumination to 
see each cannonball as it passes through one or the other 
slit, the radiation pressure on the cannonball is suf- 
ficient to destroy the phase coherence needed for the 
interference pattern to appear. We could use an optical 
detector, but only at such low light intensity that there 
is a finite probability that not a single quantum will 
be absorbed by the cannonball throughout its entire 
trip through the apparatus. In other words, we are con- 
strained by the theory to perform the experiment in the 
dark! 

Turning now to physics, the least massive particle 
known is. (and has been for nearly a century during which 
hosts of other 'particles' have been discovered) the 
electron. Allowing for the moment the possibility of 
much less massive particles, our conceptual analysis 
is still adequate, and we can ask what size apparatus 
we would need to measure, say, the single and double 
slit diffraction patterns of two slits 0.1 cm wide and 
5 cm apart, using electrons in the lowest easily acces- 
sible experimental range of velocities, which gives a 

de Broglie wavelength of about 10 -8 cm. In order to give 
sufficient intensity to the double slit pattern, we ask 
that the first minimum of the single slit pattern from 
slit 1 fall at the position of the maximum from slit 2. 
This requires us to choose r = xpwd/2i = 78.5 km! Thus, 
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unless we go to supercooled systems (which would allow us 
to an order of magnitude shorter wavelength) and micro- 
scopic slits, we could hardly expect to raise the funds 
for a direct experimental test of macroscopic de Broglie 
wave interference. Microdesign and low velocity pose 
additional problems, since electrostatic image forces 
induced in the slits by the charge of the electrons, 
whether the slits are made of conducting or insulating 
material, would probably override the quantum effect we 
are seeking. Even so, we could not perform the experi- 
ment as described above, since we lack detecting parti- 
cles smaller than the electron. 

The actual tests of the de Broglie wavelength hy- 
pothesis are therefore much less less direct than the ex- 
periment we have been discussing. They have to assume 
that the particles under study can be used as 'detectors' 
by calculating the probabilities of interaction using the 
wave functions as functions of space and time coordinates 
(unmeasurable in operational terms) defined by electro- 
magnetic forces. As Bridgman pointed out, so long as 
only electromagnetic forces are available, it is not 
clear that these space-time coordinates that occur in the 
theory have an 'objective' significance, since the oper- 
ations that define them can only be performed in one way. 
Fortunately for us, Colella, Overhauser, and Werner 
(1975) have recently obtained clear de Broglie interfer- 
ence patterns between neutron beams that have passed 
through regions of different gravitational potential and 
are then recombined coherently. Thus, the spatial coor- 
dinates of the gravitational potential act empirically in 
the same way as the spatial coordinates of the electro- 
static potential in the usual nonrelativistic treatments 
of atomic effects. This gives us some confidence in ex- 
trapolating macroscopic ideas about space and time, as 
they occur in the model space of quantum mechanics down 

to atomic (10 -8 cm) dimensions. 
Granted this, the tests of de Broglie interference 

patterns performed initially by Davisson and Germer, and 
repeated for many situations and types of particles (neu- 
tral atoms, neutrons, etc., as well as electrons) since, 
can be invoked as giving evidence close to that of our 
thought experiment. Typically these are performed not by 
transmission through slits but by reflection from the 
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surface of a crystal. Since we can use x-rays, cali- 
brated in wavelength against mechanically ruled gratings, 
to measure the spacing between the atoms on the surface 
of the crystal, we can argue that the coherent interfer- 
ence from this regular array containing many sites rather 
than just two is good evidence for the de Broglie wave- 

-length hypothesis. We also can use data from such sys- 
tems to obtain information analogous to the detectors in 
the slits in our thought experiment, since we get indi- 
vidual scatterings from individual atomic sites as well 
as the interference pattern. These are analogous to the 
single slit patterns of our experiment. We can even per- 
form the analogue of checking this hypothesis by changing 
the density of detecting particles, since the single 
atomic patterns (which add incoherently) change with the 
temperature of the sample in a different way than the 
blurring that increasing temperature introduces into the 
coherent interference pattern. 

We therefore believe that, although the evidence is 
indirect, the concept of well-defined geometrical struc- 
ture and well-defined momenta (subject of course to the 
restrictions of the uncertainty principle when we try to 
define both at once) can be self-consistently defined at 
the atomic level. We think it is probably not often 
realized, however, that conceptually this implies the 
existence of particles of much smaller mass and cross 
section than those under study, if we want to feel C~Q- 
fortable in using all the concepts of the space-time 
continuum usually assumed without comment in writing down 
nonrelativistic wave functions. The reason we can get 
away with this is that we can, by using sufficiently 
large macroscopic apparatus, define monentum to arbi- 
trarily high precision. This in turn enables us to mea- 
sure short distances indirectly through quantum mechani- 
cal effects which can also be blown up to macroscopic 
size by going to sufficiently large detecting apparatus. 
For instance, we might view our double slit experiment as 
a measurement of the distances w and d. If these were 
parameters in a molecular model which was free to move 
under the impact of our beam particles 14, rather than 
being part of the massive baffles which hold the openings 
under study rigidly in place, the analysis would be less 
direct but in a reasonably objective sense would still 
count as a measurement of (quantum mechanical, not clas- 
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sical) distance. From this point of view, the main dif- 
ference between quantum mechanical and classical model 
space is that in the quantum mechanical space we can re- 
fine either our momentum or our distance measurements as 
much as we please separately, or sequentially, or accept 
indirect consequences when our measurement gives some 
information about each, but not both simultaneously; in 
the classical model space we are allowed to imagine 
limiting procedures without these restrictions. But both 
spaces have limiting procedures and hence conceptually 
define continua. 

The main reason for questioning these limiting proce- 
dures, and hence raising doubts about the operational 
meaningfulness of the space-time concept itself at short 
distances, comes for me from an effect we have so far not 
mentioned. This comes from the coupling of relativity to 
quantum mechanics and was first clearly and succinctly 
discussed by Wick (1938) in his explanation of the range 
of nuclear forces given by Yukawa's (1935) meson theory. 
I have used this insight as one of the starting points in 
my attempts (Noyes, 1975, 1976, 1977; Note 3) to reformu- 
late elementary particle physics in more operational lan- 
guage. Briefly, the problem is that in a relativistic 
theory, once one tries to define distances shorter than 
the compton wavelength (h/me) of the lightest particle 
involved, the corresponding momenta are sufficiently 

energetic to provide the full rest energy (mc2 > of this 
particle, and additional particles appear in the system. 
Even if_. we are well below the energetic threshold for 
particle creation, the uncertainty principle allows such 
particles to be present for short times with finite prob- 
ability. These 'virtual particles' produce indirectly 
observable effects, such as the nuclear force already al- 
luded to, 'vacuum polarization', etc. Thus, the limiting 
procedures we have defined above fail at short distance 
or for sufficiently high momenta. 

By now there is considerable experimental evidence 
that, except for a few absolute conservation laws 
(charge, baryon number, lepton number, exclusion princi- 
pie), all known types of particles can be transformed 
into each other more or less readily at sufficiently high 
energy. It therefore seems very unlikely that a massive 
particle less massive than the electron will be discov- 
ered in the near future. Thus, in a relativistic quantum 
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theory with this empirical fact added, the units of mass, 
length, and time are fixed by Xi, c, and me, and the 

theory is no longer scale invariant. So far as we can 
see, this is a powerful argument against using model 
spaces that allow indefinitely small (continuum) limits 
to be taken. This is not a new stricture. Bohr and 
Rosenfeld (1933) analyzed the much more conplicated case 
of the quantum theory of the electromagnetic field in a 
manner similar in spirit to my presentation here. In 
that case one has two universal constants (c anda) but 
is allowed to use arbitrarily large masses and charges. 
Since the theory is scale invariant, they consider them- 
selves at liberty to invoke an arbitrarily complicated 
apparatus within a wavelength (and it gets pretty compli- 
cated) but do finally succeed in rederiving the commuta- 
tion relations for the electromagnetic field operators. 
They note in their paper that the argument breaks down in 
any theory with an intrinsic mass and hence that the same 
argument cannot be applied to the second quantization of 
the matter field. In a sense, this current effort of 
mine can be considered as an addendum to their paper, in 
which I attempt to give precise operational meaning to 
nonrelativistic quantum mechanics but end up with the 
conclusion that this is inevitably frustrated by the 
Wick-Yukawa mechanism. 
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