
DISS. ETH Nr. 17914

Conformal Aspects of String Theory

A B H A N D L U N G
zur Erlangung des Titels

DOKTOR DER WISSENSCHAFTEN

der

ETH ZÜRICH
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Abstract

This thesis deals with aspects of conformal field theory in string theory. It investigates two
areas of string theory where two dimensional conformal field theory plays an important
role: First, the dynamics of strings and branes are described by their worldsheet CFT
and its boundary conditions. Second, the holographic dual of a string theory living on
2+1 dimensional anti-de Sitter space is also given by a two dimensional CFT.

The first part of this thesis investigates perturbations of the worldsheet CFT and
the resulting renormalisation group flows: If a bulk theory is perturbed by inserting
integrated marginal fields, a flow on the boundary may be induced which changes the
brane configuration in such a way that the resulting theory is again conformal. Also,
depending on the type of perturbation and the boundary condition, symmetries of the
theory may or may not be broken. Conversely, the branes themselves may backreact on
the bulk theory via contributions of higher order in the string coupling gs. These effects
are analysed and the corresponding RG equations are obtained.

In a second part, the role of dual CFTs in the framework of the AdS/CFT correspon-
dence is investigated. First, a proposal is made for the dual CFT of a specific configuration
of heterotic strings, NS5 branes and Kaluza-Klein monopoles. Second, the existence of
extremal CFTs is investigated. Extremal theories are proposed as holographic duals to
pure quantum gravity in 2+1 dimensions. Checking this proposal in the bosonic case, one
can use the formalism of Zhu to derive differential equations to test the consistency of a
given theory. In the N = 2 supersymmetric case, the mere existence of the elliptic genus
is already a non-trivial consistency test. Such methods are used to make statements on
the existence of extremal CFTs.





Zusammenfassung

Die vorliegende Dissertation behandelt Aspekte von konformen Feldtheorien in der String-
theorie. Es werden zwei Bereiche der Stringtheorie untersucht, in denen zweidimension-
ale konforme Feldtheorien eine wichtige Rolle spielen: Einerseits wird die Dynamik von
Strings und Branes durch ihre Weltflächen-CFT und die zugehörigen Randbedingungen
beschrieben. Andererseits ist die duale Randtheorie zu Stringtheorien, die auf 2+1 di-
mensionalem anti-de Sitter-Räumen leben, ebenfalls wieder eine zweidimensionale CFT.

In einem ersten Teil werden Störungen der Weltflächen-CFT und die dabei entstehen-
den Renormierungsgruppen-Flüsse untersucht: Wenn die Theorie mittels eingesetzter,
integrierter marginaler Felder gestört wird, kann ein Fluss auf dem Rand der Theorie
auftreten, der die Konfiguration der Branes dahingehend verändert, dass die resultierende
Theorie wieder konform ist. Zudem können abhängig von der Art der Störung und der
Randbedingung Symmetrien der ursprünglichen Theorie gebrochen werden. Andererseits
können die Branes auch eine Rückwirkung auf die Bulk-Theorie bewirken durch Beiträge
von Diagrammen höherer Ordnung in der String-Kopplungskonstante gs.

Im zweiten Teil wird die Rolle von dualen konformen Theorien im Rahmen der AdS/CFT-
Korrespondenz untersucht. Es wird ein Vorschlag präsentiert für die duale CFT einer
bestimmten Konfiguration von heterotischen Strings, NS5-Branen und Kaluza-Klein-Mo-
nopolen. Anschliessend wird die Existenz von extremalen CFTs untersucht. Solche The-
orien werden aufgestellt als holographische Dualtheorien zu reinen Quantengravitations-
theorien in 2+1 Dimensionen. Im bosonischen Fall kann man den Zhu’schen Formalismus
benutzen, um Differentialgleichungen herzuleiten, die die Konsistenz einer gegebenen The-
orie überprüfen. Wenn die Theorie hingegen N = 2-Supersymmetrie aufweist, ist schon
die Existenz des elliptischen Genus ein nicht-trivialer Konsistenztest.
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Introduction

String theory

In nature, the interaction of all particles are governed by just four forces: gravity, elec-
tromagnetism, the weak nuclear force, and the strong nuclear force. The laws of gravity
are given by Einstein’s theory of general relativity, a classical field theory. The other
three forces are described by quantum field theories (QFT). They are all explained by the
standard model of high energy physics. The standard model is one of the most successful
scientific theories of our time. It makes predictions on the interaction of particles which
have been tested to an extremely high level of precision.

Nevertheless, we know that the standard model does not describe nature completely.
In particular, it does not incorporate gravity. There have been many attempts to find a
theory which includes both the standard model and gravity, and so unifies all four forces.
Most candidate theories that have been found suffer from so-called non-renormalisability :
when calculating physical quantities, they give infinite expressions. For non-renormalisable
theories, these infinities cannot be removed by the usual prescriptions. It thus remains
an open problem to find a unified theory.

The most promising candidate for such a fully unified theory is string theory — see
e.g. [114, 166] for an introduction and overview of the subject. String theory contains
gravity in a very natural way. It also circumvents the problem of non-renormalisability
by abandoning the idea of pointlike particles. Instead, one-dimensional objects are in-
troduced: strings. There are two kinds of strings, closed strings and open strings. The
endpoints of open strings can be fixed to a geometric surface, a D-brane. If one follows
a string through time, it carves out a two-dimensional area of spacetime, the worldsheet.
The dynamics of a string is described by the two dimensional field theory that lives on its
worldsheet. This worldsheet theory will be the main focus of the first part of this thesis.

Conformal field theory

The field theory on the worldsheet not only has the usual Poincaré symmetries, but in
addition also possesses conformal symmetry. Such theories are called conformal field
theories (CFTs). They are invariant under rescaling, or, more precisely, under any map
that preserves angles. This means that such theories do not contain any intrinsic length
scale and no massive particles.

The size of the symmetry group depends greatly on the number of dimensions. For
d > 2 the number of symmetry generators is 1

2
(d+1)(d+2). Apart from the usual rotations
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R and translations T, they also contain dilatations D and so-called special conformal
transformations S. It is for d = 2 that the full power of the conformal symmetry group
appears. Writing the worldsheet as the complex plane C with coordinate z, all analytic
maps z 7→ f(z) are conformal. If we write down the Laurent series of f(z) we see that that
the symmetry group has an infinite number of generators. This gives an infinite number of
constraints on the correlation functions. Some of these theories are thus exactly solvable
by symmetry considerations alone. For an introduction to two dimensional CFTs, see
e.g. [105, 48].

The second advantage of the two dimensional case is that it is possible to divide the
theory into two sectors which are essentially independent of each other: the right-moving
sector and left-moving sector, or alternatively, holomorphic and anti-holomorphic sector.
Invariance under dilatation requires that the energy-momentum tensor T be traceless.
Moreover, we can separate it into its holomorphic part T (z) and its anti-holomorphic
part T̄ (z̄). We can then expand T (z) in terms of its modes,

T (z) =
∑

n∈Z

Lnz
−n−h .

The Virasoro generators Ln satisfy the Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n .

These commutation relations encode the conformal symmetry of the theory. In particular,
all states decompose into representations of the Virasoro algebra.

The second term on the right-hand side of the commutation relation, the central term,
can be viewed as a quantum effect. The central charge c is a very important quantity
when one tries to construct the worldsheet CFT of a string theory. It can be shown [114]
that bosonic string theory requires c = 26, whereas the superstring requires c = 15. In a
free theory, each boson gives a contribution of c = 1, whereas a fermion contributes c = 1

2
.

In the bosonic theory, we thus need 26 bosons, whereas in the supersymmetric theory we
need 10 bosons and 10 fermions. This is thus another way of phrasing the famous result
that string theory is consistent only in 26 or in 10 dimensions.

The CFTs discussed so far serve as worldsheet theories of closed strings. If we want
to describe worldsheet theories of open strings, we need to introduce boundaries into
the CFT. The boundary condition then relates the left-moving fields to the right-moving
fields, and the left-moving and right-moving Virasoro algebras are glued together so as
to produce a single Virasoro algebra. If the theory is to remain conformal, the bound-
ary condition must satisfy certain constraints. Nevertheless, there are in general many
allowed conformal boundary conditions. In open string theory, these families of bound-
ary conditions describe different configurations of D-branes. They form a moduli space,
parametrised by open string moduli.

We will also consider theories which have more symmetries than conformal symmetry.
Such additional symmetries are described by the chiral algebra, i.e. by fields which only
have a left- or right-moving component. Again, if a symmetry is to be preserved in
a theory with boundary, then the boundary condition must satisfy certain properties.
Many of these issues will be discussed in more detail in chapter 2.
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One symmetry which plays an important role in string theory is supersymmetry. Un-
like ordinary symmetries, it relates fermionic degrees of freedom to bosonic ones, and vice
versa. In ordinary quantum field theory, supersymmetry is very useful because it leads
to cancellations between fermionic and bosonic Feynman graphs and so eliminates some
of the divergences of the theory. In two dimensional CFT, N = (2, 2) supersymmetry
plays a special role; N = (2, 2) here signifies that there are two left- and two right-moving
supersymmetry charges. Combining the supersymmetry generators with the Virasoro
generators, one obtains the superconformal algebra. One important feature of this al-
gebra is the appearance of a U(1) current J , which corresponds to the R-charge of the
supersymmetry. Each state then not only has a definite conformal weight h, but also a
charge Q.

From the string point of view, N = (2, 2) supersymmetry on the worldsheet is inti-
mately linked to supersymmetry in spacetime [87, 14], which is phenomenologically very
important. On the other hand, from a purely CFT point of view supersymmetry places
strong constraints on the theory. Chapter 6 will make use of this extensively.

Perturbed CFT and moduli in string theory

The first part of this thesis deals with perturbed conformal field theory and its application
to string theory. Let us first motivate the interest in such questions from the point of
view of moduli and moduli stabilisation in string theory.

The original motivation for string theory is to construct models which reproduce the
standard model at low energies. To achieve this, one has to reconcile the fact that in the
real world there are only 4 dimensions, whereas (super-) string theory needs 10 dimensions.
The most common solution to this apparent paradox is to assume that 6 dimensions live
on very small compact manifolds. There are many families of possible manifolds and
backgrounds. They are parametrised by moduli, so that to each value of the moduli
corresponds a viable string model. Unfortunately, these moduli become massless scalars
in the low-energy theory. As we observe no such particles in nature, to obtain a realistic
string model we thus need to stabilise all moduli. For reviews on this question see [60, 19].

Most backgrounds of interest also involve D-branes, so that there are two kinds of
moduli to consider: the D-brane moduli that describe the different D-brane configurations
in a given closed string background, and the closed string moduli that characterise the
closed string background. These two moduli spaces are not independent of one another:
the moduli space of D-branes depends on the closed string background, and thus on the
closed string moduli. On the other hand, the D-branes ‘back-react’ on the background,
and thereby modify the original closed string background in which they were placed. In
order to make progress with stabilising all moduli in string theory, it is therefore important
to understand the interplay between these two moduli spaces better.

From the perspective of the worldsheet CFT, the moduli space is given by the space of
all conformal theories. The moduli are given by those deformations of the theory and its
boundary condition which preserve its conformal symmetry. Since the theory is deformed
by inserting perturbing operators, it is necessary to employ methods of perturbation
theory in CFT. A CFT can be subjected to a perturbation by inserting an operator in the
bulk of the theory and integrating over the entire plane. Similar to the usual perturbation
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theory used in QFT, this integral diverges. To render it finite, one has to introduce a
regulator. This regulator breaks scale invariance, which may mean that the perturbed
theory is no longer conformal.

More concretely, we add to the original action a term of the form

∆S = λ

∫
φ(z, z̄) d2z ,

where λ is the coupling constant of the perturbation. If φ has conformal weight (h, h̄) =
(1, 1), then ∆S is classically invariant under conformal transformations. Such operators
are called marginal. As mentioned above, the integrals that appear in the resulting
expressions are divergent if two fields come close to each other and must therefore be
regularised. The simplest way to do this is to cut out small circles of radius ℓ around
each field. Note that by that we have introduced a length scale; we are thus no longer
guaranteed that the resulting theory is conformal. If we change ℓ, we can compensate
the resulting change in the physical observables by changing the value of the coupling
constant λ. The renormalisation group equation

λ̇ = β(λ)

is a differential equation that describes the dependence of λ on ℓ. If β(λ) does not vanish,
then the theory flows; in particular, it is no longer conformal, since it now depends on a
length scale. If we let ℓ go to infinity, i.e. if we flow to the infrared, then we expect to
encounter a fixed point where the theory is again conformal.

On the other hand, if the β-function vanishes, then the perturbed theory is again
conformal. Operators φ for which this is the case are called exactly marginal. In the
terminology of string theory, such an operator is a closed string modulus, that is, a
modulus of the bulk theory. A necessary condition for a bulk field to be exactly marginal is
that it has conformal weight (1, 1), and that its three-point self-coupling vanishes [130, 30].
A brief introduction to this topic is given at the beginning of chapter 1.

The rest of chapter 1 then deals with the same analysis of the theory with boundary.
The boundary condition and the gluing map describe the brane configuration, and the
moduli of the branes, i.e. the open string moduli, are given by exactly marginal boundary
operators. The presence of a boundary then changes the analysis presented above. Indeed,
a bulk operator that is exactly marginal in the bulk theory may cease to be exactly
marginal in the presence of a boundary. It then induces a flow on the boundary, which
changes the boundary condition to a new configuration for which the perturbed theory is
again conformal.

In chapter 2 symmetries of perturbed conformal field theories are analysed. As was
mentioned before, CFTs can have additional symmetries. From a string theoretic point
of view, such configurations are often much more accessible than generic, unsymmetric
configurations. One can then start at a more symmetric point in the moduli space and
investigate which symmetries are broken if one moves away from this point. It is also
much easier to classify D-branes when they preserve a larger symmetry group of the
theory. Again, one can then investigate what happens to such branes away from the
point of enhanced symmetry.
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From the CFT point of view, symmetries of the bulk theory are given by the chiral
algebra, i.e. by fields of the theory which are purely left- or right-moving. The states of
the theory then decompose into representations of this chiral algebra. The question is
then which generators of the chiral algebras of the bulk theory survive a perturbation by
an exactly marginal bulk field. In chapter 2 we find a simple criterion for this.

For theories with boundary, the situation is a bit more subtle. The symmetry algebra
of the boundary is given by the set of local fields. It turns out that essentially the boundary
continues to preserve as much symmetry as it possibly can, that is as much as is preserved
in the bulk. The (somewhat technical) conclusions in this case can be found at the end
of chapter 2.

Above, we described how the bulk theory could change the brane configuration. Chap-
ter 3 then discusses the converse of this case, namely how a given brane can backreact on
the bulk theory and so induce a bulk flow. The motivation for this analysis is to develop
tools for calculating backreactions of branes, which are notoriously difficult to handle. We
obtain the corresponding backreaction term in the RG equations and, in several examples,
follow the resulting flow.

Note that this backreaction is no longer an effect of pure CFT, but appears only in the
full string theoretic context via the so-called Fischler-Susskind mechanism. Let us thus
briefly sketch the relationship of pure CFT to the full string theory. So far the CFTs we
have considered have lived on the Riemann sphere (in the closed case) or on the disk or
upper half plane (in the open case.) In principle, we can also define the theory on arbitrary
Riemann surfaces with or without boundaries. The correlators then depend only on the
conformal structure of the surface. For surfaces of genus g bigger than zero, the topology
does not uniquely fix this structure; there exists a moduli space M of different surfaces.

String perturbation theory then instructs us to sum over all topologically different
surfaces. Each diagram comes with a power of the string coupling constant gs, the power
given by the Euler character of the Riemann surface. Moreover, for each surface, we need
to integrate over all moduli ti. Note that these are worldsheet moduli which have nothing
to do with the open or closed string moduli discussed before.

If there are massless fields in the theory, so-called tadpoles, then the integral over the
ti diverges. Regularising the divergence again introduces a length scale which can induce
a renormalisation group flow. To put it another way, one has to introduce scale-dependent
counterterms on worldsheet surfaces of lower genus. In chapter 3 we will see that, at least
for the annulus, this backreaction can be incorporated in the RG equation.

The AdS/CFT-correspondence and dual CFTs

In the second part of this thesis we consider another application of two dimensional CFTs,
namely as holographic duals to string theory on anti-de Sitter space AdS. We will first
check the correspondence in one specific instance by explicitly constructing the dual CFT
of a heterotic string setup. In a second part we discuss a special kind of dual CFTs,
so-called extremal CFTs, and find strong evidence against their existence.

The AdS/CFT-correspondence is a special form of the so-called holographic principle.
One seeks to describe the dynamics of a theory on a certain spacetime by constructing a
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dual theory which lives on the boundary of said spacetime. In its original form ([146], see
e.g. [4] for a review) the correspondence describes the duality between a superstring theory
living on the curved spacetime AdS5 × S5 and four-dimensional N = 4 supersymmetric
Yang-Mills-theory living on the boundary of the spacetime geometry. Here, S5 is the five
dimensional sphere, and AdS5 is a maximally symmetric space of negative cosmological
constant. N = 4 supersymmetric Yang-Mills-theory is the supersymmetric generalisation
of gauge theory. Given the gauge group, supersymmetry fixes its field content completely.
Moreover, its beta function vanishes to all orders, so that it is in fact a conformal theory.

The AdS/CFT-correspondence is a strong-weak duality, as it relates the strong-coupling
limit of the CFT to the weak-coupling limit of the string theory. It can thus be used to
obtain results in the strong-coupling regime of the gauge theory. This is of particular
interest since many open questions in gauge theory such as quark confinement are strong-
coupling effects not accessible to perturbation theory. On the other hand, because of the
strong-weak nature of the duality, it is hard to perform test of the correspondence, as
one tries to compare weak coupling quantities to strong coupling quantities. One way to
circumvent this is to consider protected objects such as chiral fields whose behaviour does
not change drastically when the strength of the coupling changes. Recently, there has
also been much progress in this area by using integrable structures contained in N = 4
SYM [18] to obtain non-perturbative results. Another possibility is to consider a differ-
ent instance of the correspondence where one can calculate exact correlators and is not
restricted to the weak coupling limit.

It is for that reason that we are going to consider string theory on AdS3, i.e. on three
dimensional anti-de Sitter space. The dual CFT is then two dimensional. In this setup
is then possible to calculate the exact correlation functions of the dual CFT using the
methods of 2d CFT, and not just their perturbative expansion. Sometimes, one also
knows the exact worldsheet theory, so that it is possible to perform precision tests of the
AdS/CFT-correspondence.

In chapter 4 we perform such tests by investigating one specific instance of anAdS3/CFT2

correspondence, namely the heterotic three-charge model with (0, 4) target space super-
symmetry. We calculate in several different ways its central charge and check that they
agree.

Let us briefly sketch the specific setup under investigation. Heterotic string theory is
a theory in which the right-moving sector is supersymmetric, but the left-moving sector is
not. Instead, it contains 10 bosons, which correspond to the usual spacetime coordinates,
and 32 additional fermionic currents, which add up to the required central charge of 26.
Consequently, the resulting dual CFT then has supersymmetry in the right-moving sector
only. Three-charge model means that apart from the fundamental heterotic strings, which
produce the AdS3 geometry, we also have two more objects. In particular, there are NS5
branes, and so-called Kaluza-Klein monopoles. There are many dualities that relate this
particular heterotic setup to equivalent setups in type I, type II and M-theory — see
appendix B.1 for details. In our construction, we will make use of these dualities.

The worldsheet theory for heterotic strings for the near-horizon geometry we consider,
namely AdS3 × S3/ZN × T 4, has been worked out in [137]. Moreover, for the 2+1 di-
mensional instance of the AdS/CFT correspondence, the (super) Virasoro algebra of the
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boundary theory can be worked out explicitly in terms of worldsheet vertex operators
[111]. It is thus possible to directly identify operators of the two theories. In particular,
one can determine the chiral primaries and the central charge of the boundary CFT.

We are interested in finding the boundary CFT that corresponds to this setup. We
propose that it is given by a two-dimensional (0, 4) sigma model arising on the Higgs
branch of an orbifolded ADHM model. This generalises the models introduced in [184, 59].
To check this proposal, we compare the left- and right-moving central charges of the
infrared conformal field theory to those predicted by the worldsheet model. More precisely,
we need to flow the ADHM model, which we know in the UV, to its infrared fixed point.
One can show however that there is no renormalisation group flow [138], so that one can
simply count the massless degrees of freedom in the UV. Our counting is then in perfect
agreement with the prediction from the worldsheet side.

Pure gravity and extremal CFTs

Chapters 5 and 6 deal with a very specific kind of dual CFT, so-called extremal CFTs.
Their motivation comes from the analysis of Witten concerning pure gravity in AdS3 [186].
In particular, he proposes the existence of extremal dual theories, which could serve as
dual CFTs to pure gravity. We will give arguments that such extremal theories cannot
exist.

Let us first introduce some concepts needed later on. By pure gravity we mean that
the theory contains only the bare essentials necessary, and no additional matter or gauge
fields. The dual CFT then also only contains a very limited number of states, which is
why we call it extremal.

Our arguments will make use of modular properties of partitions functions. The
partition function or character of a CFT is defined as

χM(q) = TrM(qL0−c/24) ,

where the trace is taken over all states of the representationM of the theory. In particular,
χM counts the number of states at each level. Physically, it corresponds to the zero-point
function on the torus. The torus remains invariant under transformations of the modular
group SL(2,Z). All physical quantities that depend on τ should thus also be invariant
under modular transformations. This places strong constraints on the partition function.

Witten then suggested that the boundary theories that correspond to pure gravity
should be holomorphically factorising extremal bosonic conformal field theories of central
charge c = 24k. The integer k is proportional to the AdS radius of the spacetime geometry.
We are mainly interested in the case of large k where the curvature becomes weak.

There are only two kinds of excitations in pure gravity: perturbative excitations and
black holes. The perturbative excitations are identified with Virasoro descendants of the
vacuum following [23] while the BTZ black holes correspond to the new primaries. Since
black holes are parametrically heavy there is a large gap from the vacuum to the first
nontrivial primary. Extremality then means that the partition function of the boundary
CFT is as close as possible to the Virasoro character of the vacuum, i.e. that it starts to
differ from it only at a high level.
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The above constraints specify the potential character of such meromorphic conformal
field theories uniquely. For k = 1, the resulting character is the j invariant minus 744,

j(q) − 744 =
1

q
+ 196884 q + 21493760 q2 + . . . .

To see that this theory is extremal note that the coefficient of q0 is zero, so that there
are no states at level 1. The corresponding conformal field theory is the famous Monster
theory [83, 20]. For k ≥ 2 one can write down similar partition functions, but an explicit
realisation of these theories is so far not known. In chapter 5 we investigate if theories
corresponding to these characters can exist at all. Following [91], we use null vectors
and their associated modular differential equations to find consistency conditions for such
theories which go beyond the existence of the partition function.

More specifically, if a null vector is inserted in the trace over any representation,
one obtains a differential equation which annihilates the character. Moreover, the form
of this differential equation is independent of the representation, i.e. the same equation
annihilates all characters of a theory. The order of the equation depends on the level of
the null vector. On the other hand, if one knows all the characters of a theory, one can by
inspection find a modularly covariant differential equation which annihilates all of them.

In chapter 5 we show the converse, i.e. that each such equation must come from at
least one null vector. It is possible, however, that the level of the null vectors is higher
than the order of the differential equation, so that we cannot draw a direct conclusion
on its conformal weight. On the other hand, the bigger the difference between the two,
the more null vectors are needed. As long as the theory does not have an extremely high
number of null vectors, the differential equation has approximately the same order as the
level of the null vector.

For the proposed extremal theories this leads to a contradiction for k ≥ 42, since the
differential equation predicts null vectors at a level where they are excluded by extremality
[91].

In chapter 6 we take a step back and perform the analogue of the analysis of [186],
only this time for the N = (2, 2) supersymmetric case. Again, we only allow N = (2, 2)
descendants of the vacuum and primary fields which correspond to BTZ black holes. BTZ
black holes in this setup are characterised by their mass and charge, which we identify on
the CFT side with their conformal weight and U(1) charge. From classical supergravity,
we know that there exists a so-called cosmic censorship bound: if the charge ℓ of a black
hole is too big compared to its mass n, then the solution has a singularity which lies
outside its event horizon. To avoid this, we allow only black holes for which

4mn− ℓ2 ≥ 0 ,

where m is the analogue of k in the bosonic case, i.e. the AdS radius. The cosmic
censorship condition is the analogue of the requirement that the bosonic black holes be
parametrically heavy, that is it restricts the kind of primary fields that can be introduced
in the theory.

As was mentioned before, the N = 2 superconformal algebra has more structure than
the Virasoro algebra; in particular, it contains a U(1) current J . The zero mode J0 is then
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an additional element of the Cartan subalgebra and can thus be inserted in the character
much in the same way as L0. This construction leads to the elliptic genus of the theory,
the main object of interest in our analysis. The elliptic genus thus not only contains
information on the weight of states, but also on their charges.

Mathematically, the elliptic genus is a so-called weak Jacobi form. Its Fourier expan-
sion is given by

χ(q, y) =
∑

n≥0

∑

ℓ∈Z

c(n, ℓ) qnyℓ ,

and it has nice transformation properties under modular transformations and spectral
flow. The space of all possible weak Jacobi forms is a ring generated by four generators.
The terms for which 4mn− ℓ2 < 0 are called the polar part of χ. Note that this coincides
with the cosmic censorship bound introduced above.

By this argument, we know that BTZ black holes cannot change the number of states
below the cosmic censorship bound. This means that the coefficients of the polar terms
of χ are fixed by the N = 2 vacuum character. The number of polar terms however
is bigger than the number of allowed weak Jacobi forms, or, to put it another way, the
system of equations so obtained is overdetermined. Generically, we thus do not expect
an extremal elliptic genus to exist; using a rather technical analytical argument, one can
show that for large AdS radii this is indeed true. The only genera that do exist are in
fact m = 1, 2, 3, 4, 5, 7, 8, 11, 13.

On the other hand, one can show that an elliptic genus exists for all curvatures if one
relaxes the cosmic censorship bound somewhat. This leads to the notion of near-extremal
CFTs. In particular, since the original form of the bound is taken from a purely classical
calculation, one cannot rule out that quantum corrections could modify the bound in just
the right way to make the theory work. The N = 4 case however, for which one does not
expect any quantum correction, does not seem to work much better. Our arguments thus
give strong indications that pure supergravity theories on AdS3 are inconsistent.

Chapters 1 and 2 are based on [79] and [80] written in collaboration with S. Freden-
hagen and M. Gaberdiel. Chapter 3 is based on [134]. Chapter 4 is based on [121], written
in collaboration with S. Hohenegger and I. Kirsch. Chapter 5 is based on [94] written in
collaboration with M. Gaberdiel. Chapter 6 is based on [93] written in collaboration with
M. Gaberdiel, S. Gukov, G. Moore, and H. Ooguri.
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Part I

RG flows on the worldsheet
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Chapter 1

Bulk-induced boundary
perturbations

1.1 Overview

In the introduction we have seen that in CFT the closed string moduli space is described
by the exactly marginal bulk perturbations. A necessary condition for a bulk field to
be exactly marginal is that it has conformal weight (1, 1), and that its three-point self-
coupling vanishes [130, 30]. This condition was derived for conformal field theories without
boundary, but in the presence of a D-brane, the situation changes. Indeed, a marginal
bulk operator that is exactly marginal in the bulk theory may cease to be exactly marginal
in the presence of a boundary.

The simplest example where this phenomenon occurs, is the theory of a single free
boson compactified on a circle. For this theory the full moduli space of conformal D-
branes is known [97, 125] (see also [85, 169]). It depends in a very discontinuous manner
on the radius of the circle, which is one of the bulk moduli. We always have the usual
Dirichlet and Neumann branes, but if the radius is a rational multiple of the self-dual
radius, the moduli space contains in addition a certain quotient of SU(2). On the other
hand, for an irrational multiple of the self-dual radius the additional part of the moduli
space is just a line segment. The bulk operator that changes the radius is exactly marginal
for the bulk theory, but in the presence of certain D-branes it is not. In particular, it
ceases to be exactly marginal if we consider a rational multiple of the self-dual radius and
a D-brane which is neither Dirichlet or Neumann, but which is associated to a generic
group element g of SU(2). If we change the radius infinitesimally, it is generically not a
rational multiple of the self-dual radius any more, and thus the brane associated to g is
no longer conformal.

In order to understand the response of the system to the bulk perturbation we set
up the renormalisation group (RG) equations for bulk and boundary couplings. This
can be done quite generally, and we find that whenever certain bulk-boundary coupling
constants do not vanish, the exactly marginal bulk perturbation is not exactly marginal in
the presence of a boundary, but rather induces a non-trivial RG flow on the boundary. In
particular, this therefore gives a criterion for when an exactly marginal bulk deformation
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is also exactly marginal in the presence of a boundary.
For the above example of the free boson, the resulting RG flow equations can actually

be studied in quite some detail. We find that upon changing the radius the resulting flow
drives the brane associated to a generic group element g (that only exists at rational radii)
to a superposition of pure Neumann or Dirichlet branes (that always exist). Whether the
end-point is Dirichlet or Neumann depends on the sign of the perturbation, i.e. on whether
the radius is increased or decreased. At the self-dual radius, the theory is equivalent to
the SU(2) WZW model at level 1, and the analysis can be done very elegantly. In this
case we can actually give a closed formula for the boundary flow which is exact in the
boundary coupling (at first order in the bulk coupling).

Some of these results can be easily generalised to arbitrary current-current deforma-
tions of WZW models at higher level and higher rank. While we cannot, in general, give an
explicit description of the whole flow any more, we can still describe at least qualitatively
the end-point of the boundary RG flow.

1.2 CFTs with boundaries

Let us give a very brief introduction to CFTs with boundaries, fleshing out some of the
material mentioned in the introduction. More detailed introductions to conformal field
theory are for example [48, 105]. As mentioned before, we can separate the energy-
momentum tensor T into its holomorphic part T (z) and its anti-holomorphic part T̄ (z̄).
We can then expand T (z) in terms of its modes,

T (z) =
∑

n∈Z

Lnz
−n−h . (1.2.1)

The Virasoro generators Ln satisfy the Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n . (1.2.2)

Conformal symmetry requires that all states of the theory decompose into represen-
tations of the Virasoro generators Ln. So-called primary fields are fields which have good
transformation properties under conformal transformations. In particular, a primary field
φ(z, z̄) transforms as

φ(z, z̄) 7→ (f ′(z))
h (
f̄ ′(z̄)

)h̄
φ(f(z), f̄(z̄)) , (1.2.3)

where h and h̄ are the (holomorphic and anti-holomporphic) conformal weight of φ. Fur-
ther states, the so-called descendants, can be obtained by acting with Virasoro generators
on primary fields. Using conformal symmetry, one can reduce correlation functions of
descendants to correlation functions of primary fields.

Let us turn to CFTs with boundaries. It is often convenient to describe such theories as
living on the upper half plane H+ of the complex plane; the boundary is then the real axis
z = z̄. Boundary conditions are imposed by relating left-moving fields to right-moving

4



fields on said axis. If the theory is to remain conformal, it is in particular necessary to
identify

T (z) = T̄ (z̄) for z = z̄ . (1.2.4)

It is then possible to analytically continue T (z) to the lower half plane using the prescrip-
tion

T (z) =

{
T (z) Imz ≥ 0
T̄ (z) Imz < 0

. (1.2.5)

This means that we have essentially reduced the problem of a full CFT on the upper half
plane to the left-moving sector of a CFT on the entire complex plane.

The above description of boundary conditions is the open string picture. It is often
convenient to change to the closed string picture by performing a modular S transform
on the worldsheet. In this case, for instance the 1-loop diagram of an open string whose
endpoints lie on two D-branes becomes the diagram of a closed string propagating from
an initial state to a final state. This state is the so-called boundary state ||B〉〉. In this
language, the condition for conformal invariance is then

(Ln − L̄−n)||B〉〉 = 0 . (1.2.6)

Additional symmetries of the theory are described by its chiral algebra, i.e. by fields
which only have a left- or right-moving component. In a theory with boundary such
a symmetry is preserved if on the boundary the left- and right-moving chiral fields are
related by an automorphism, the so-called gluing map. Many of these questions will be
discussed in more detail in chapter 2.

1.3 The renormalisation group equation

In this section we shall analyse the RG flow involving bulk and boundary couplings.
Bulk perturbations by relevant operators for conformal field theories with boundaries
have been considered before in the context of integrable models starting from [37] and
further developed in [175, 88, 102]. In particular, these flows have been studied using (an
appropriate version of) the thermodynamic Bethe ansatz (see e.g. [141, 144, 56, 57, 54]),
in terms of the truncated conformal space approach (see e.g. [56, 57, 55]), and recently
by a form factor expansion [13, 34].

Let S∗ be the action of a conformal field theory on the upper half plane. We denote
the bulk fields by φi, and the boundary fields by ψj. Their operator product expansions
are of the form

φi(z)φj(w) = |z − w|hk−hi−hj Cijk φk(w) + · · · , (1.3.7)

ψi(x)ψj(y) = (x− y)hk−hi−hj Dijk ψk(y) + · · · , (1.3.8)

where Cijk and Dijk are the bulk and boundary OPE coefficients, respectively. We are
interested in the perturbation of this theory by bulk and boundary fields,

S = S∗ +
∑

i

λ̃i

∫
φi(z) d

2z +
∑

j

µ̃j

∫
ψj(x) dx . (1.3.9)
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Introducing the length scale ℓ, we define dimensionless coupling constants λi and µj by

λ̃i = λi ℓ
hφi−2 , µ̃j = µj ℓ

hψj−1 . (1.3.10)

Note that we do not assume here that φi and ψj are marginal operators.
Let 〈. . .〉 denote the correlators in the unperturbed theory; the perturbed correlators

are then defined as

〈φ1(z1, z̄1) · · ·φn(zn, z̄n)〉λ =
〈φ1(z1, z̄1) · · ·φn(zn, z̄n)e−∆S〉

〈e−∆S〉 , (1.3.11)

and similarly for correlators involving boundary fields. The expression on the right hand
side is divergent and has to be regularised. If we expand the exponential in powers of λi
and µj, we get terms of the form

λl11 · · ·µm1
1 · · ·

l1! · · ·m1! · · ·
∏

i

ℓ(hφi−2)li
∏

j

ℓ(hψj−1)mj

×
∫

〈φ1(z
1
1)φ1(z

1
2) · · ·φ2(z

2
1) · · ·ψ1(x

1
1) · · · 〉

∏
d2zik

∏
dxjk . (1.3.12)

Since (1.3.12) is divergent, we need to specify a regularisation scheme. The most straight-
forward one is to cut out little disks around operator insertions by introducing an UV
cutoff ℓ. More precisely, the prescription is

|zik − zi
′

k′ | > ℓ , |xjk − xj
′

k′| > ℓ , Imz >
ℓ

2
. (1.3.13)

The parameter ℓ thus appears in (1.3.12) both explicitly as powers in h, and implicitly
through the range of integration. In chapter 3 we will rederive the RG equations using a
different regularisation scheme somewhat resembling dimensional regularisation; but for
the moment, we shall use (1.3.13).

Following [30] we now consider a change of the scale ℓ, ℓ → (1 + δt)ℓ, and ask how
the coupling constants have to be adjusted so as to leave the free energy unchanged. The
explicit dependence of the expression (1.3.12) on ℓ leads to a change in λi and µj by

λi → (1 + (2 − hφi) δt)λi ,

µj → (1 + (1 − hψj) δt)µj . (1.3.14)

The implicit dependence of (1.3.12) on ℓ through the UV prescription (1.3.13) gives rise
to an additional change of the coupling constants. From the first inequality in (1.3.13),
which controls the UV singularity in the bulk operator product expansion, we obtain the
equation δλk = πCijkλiλjδt [30]. A similar calculation gives δµk = Dijkµiµjδt (see for
example [3]) for the contribution from the boundary operator product expansion (the
second inequality). Finally we have to consider the contribution from the third inequality
which controls the singularity that arises when a bulk operator approaches the boundary.
When we scale ℓ by (1+ δt) we change the integration region of a bulk operator by a strip
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parallel to the real axis of width ℓ δt/2. This changes the expression (1.3.12) by terms of
the form

−λi ℓhφi−2

∫
dx

∫ ℓ/2+ℓδt/2

ℓ/2

dy 〈· · ·φi(z) · · · 〉 , (1.3.15)

where we have written z = x + iy. In order to evaluate this contribution, we use the
bulk-boundary operator product expansion

φi(z, z̄) = (2y)hψj−hφi Bij ψj(x) + · · · , (1.3.16)

where Bij is the bulk-boundary OPE coefficient that depends on the boundary condition
in question. The change of the free energy described by (1.3.15) is then

−λi ℓhφi−2

∫
dx

ℓ δt

2
Bij ℓ

hψj−hφi 〈· · ·ψj(x) · · · 〉 = −1

2
Bij ℓ

hψj−1 λi δt

∫
dx 〈· · ·ψj(x) · · · 〉

(1.3.17)
which can be absorbed by a shift of δµj = 1

2
λiBijδt. Collecting all terms, we thus obtain

the RG equations to lowest order

λ̇k = (2 − hφk)λk + πCijk λiλj + O(λ3) , (1.3.18)

µ̇k = (1 − hψk)µk +
1

2
Bik λi +Dijk µiµj + O(µλ, µ3, λ2) . (1.3.19)

The flow of the bulk variables λk in (1.3.18) is independent of the boundary couplings µk
on the disc. The RG flow in the bulk therefore does not depend on the boundary condition
whereas the bulk has significant influence on the flow of the boundary couplings. Note
that the terms we have written out explicitly are independent of the precise details of the
UV cutoff (if the fields are marginal). Higher order corrections, on the other hand, will
depend on the specific regularisation scheme.

Suppose now that φi is an exactly marginal bulk perturbation. The perturbation by
φi is then exactly marginal in the presence of a boundary if the bulk boundary coupling
constants Bik vanish; this has to be the case for all boundary fields ψk (except for the
vacuum) that are relevant or marginal, i.e. satisfy hψk ≤ 1. Obviously, switching on the
vacuum on the boundary just leads to a rescaling of the disc amplitude; for irrelevant
operators, on the other hand, the flow is damped by the first term of (1.3.19), and thus
the bulk perturbation only leads to a small correction of the boundary condition.

The above condition is the analogue of the usual statement about exact marginality:
a necessary condition for a marginal bulk (boundary) operator to be exactly marginal is
that the three point couplings Ciik (Diik) vanish for all marginal or relevant fields φk (ψk),
except for the identity (see for example [130, 30, 169]).

If the bulk boundary coefficient Bik does not vanish for some relevant or marginal
boundary operator ψk, the corresponding boundary coupling µk starts to run, and there
is a non-trivial RG flow on the boundary. The bulk couplings λi are not affected by the
flow (λ̇i = 0), and we can thus interpret it as a pure boundary flow in the marginally
deformed bulk model. From that point of view it is then clear that the flow must respect
the g-theorem [3, 86]. In particular, the g-function of the resulting brane is smaller than
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that of the initial brane. This is in fact readily verified for the examples we are about to
study.

In chapter 2, we will rederive the above results using a somewhat different approach,
namely by analysing symmetries of the theory. As a special case, one can then check
under which conditions the conformal symmetry survives, and obtains the same result —
see 2.3.1 for more details.

1.4 The free boson theory at the self-dual radius

As an application of these ideas, we now consider the example of the free boson theory
at c = 1. We shall first consider the theory at the critical radius, where it is in fact
equivalent to the WZW model of su(2) at level 1. For this theory all conformal boundary
states are known [98], and are labelled by group elements g ∈ SU(2) (for earlier work see
also [26, 167]).

Suppose that we are considering the boundary condition labelled by g ∈ SU(2), where
we write

g =

(
a b∗

−b a∗

)
, (1.4.1)

and a and b are complex numbers satisfying |a|2 + |b|2 = 1. (Geometrically, SU(2) can be
thought of as a product of two circles — see figure 1.1.) We shall choose the convention
that the brane labelled by g satisfies the gluing condition1

(
g Jαm g

−1 + J̄α−m
)
||g〉〉 = 0 , (1.4.2)

where Jα are the currents of the WZW model (the corresponding Lie algebra generators
will be denoted by tα). We shall furthermore use the identification that g diagonal (b = 0)
describes a Dirichlet brane on the circle, whose position is given by the phase of a;
conversely, if g is off-diagonal (a = 0), the brane is a Neumann brane, whose Wilson line
on the dual circle is described by the phase of b.

1.4.1 Changing the radius

We want to consider the bulk perturbation by the field

Φ = J3J̄3 , where t3 =
1√
2

(
1 0
0 −1

)
. (1.4.3)

This is an exactly marginal bulk perturbation that changes the radius of the underlying
circle. With the above conventions, the perturbation λΦ with λ > 0 increases the radius,
while λ < 0 decreases it. At any rate, the perturbation by Φ breaks the su(2) symmetry
down to u(1). However, in the presence of a boundary, the bulk perturbation is generically
not exactly marginal any more. This is implicit in the results of [97, 125, 85] since the set
of possible conformal boundary conditions is much smaller at generic (irrational) radius

1Note that the labelling differs from the one used in [97].
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relative to the self-dual case. Here we want to study in detail what happens to a generic
boundary condition under this bulk deformation.

Even before studying the detailed RG equations that we derived in the previous sec-
tion, it is not difficult to see that the above deformation is generically not exactly marginal.
In particular, we can consider the perturbed one-point function of the field Φ in the pres-
ence of the boundary. To first order, this means evaluating the 2-point function

λ

∫

H+

d2z〈(JαJ̄α)(z) (JαJ̄α)(w)〉 , (1.4.4)

where the label α = 3 is not summed over. Using the usual doubling trick [28] this
amplitude can be expressed as a chiral 4-point function, where we have the fields Jα at z
and w, and the ‘reflected’ fields Jβ ≡ gJαg−1 at z̄ and w̄.
The chiral correlation functions of WZW models at level k can be calculated using the
techniques of [84, 92]. Let tα, α = 1, . . . , dim(g), be the Lie algebra generator (corre-
sponding to Jα) in some representation; we choose the normalisation

Tr(tα tβ) = k δαβ . (1.4.5)

To evaluate 〈Jα1(z1) · · · Jαn(zn)〉, consider then all permutations ρ ∈ Sn that have no
fixed points; this subset of permutations is denoted by S̃n. Each such ρ can be written as
a product of disjoint cycles

ρ = σ1σ2 · · ·σM . (1.4.6)

To each cycle σ = (i1 i2 · · · im) we assign the function

f
αi1 ···αim
σ (zi1 , . . . , zim) = − Tr(tαi1 · · · tαim )

(zi1 − zi2)(zi2 − zi3) · · · (zim − zi1)
, (1.4.7)

and to each ρ the product fσ1 · · · fσM . The correlation function is then given by summing
over all permutations without fixed points,

〈Jα1(z1) · · · Jαn(zn)〉 =
∑

ρ∈S̃n

fρ . (1.4.8)

In (1.4.4), ρ is either a 4-cycle or consists of two 2-cycles. In the latter case we get the
terms

(Tr(tαtβ))2

|z − z̄|2|w − w̄|2 +
(Tr(tαtβ))2

|z − w̄|4 +
Tr(tαtα)Tr(tβtβ)

|z − w|4 . (1.4.9)

Integration over the upper half plane gives (divergent) contributions proportional to
|w − w̄|−2, which can be absorbed in the renormalisation of Jα. The six terms that
come from the six different 4-cycles give a total contribution of

− Tr([tα, tβ]2)

(z − z̄)(w − w̄)|z − w̄|2 . (1.4.10)

Set w = i|w| and z = x+ iy. The resulting integral over the upper half plane is logarith-
mically divergent for y → 0. Introducing an ultraviolet cutoff ǫ, we get
∫

R

dx

∫ ∞

ǫ

dy
1

2iy2i|w|
1

x2 + (y + |w|)2
=

π

4|w|2 log ǫ− π

8|w|2 log |w|2 + O(ǫ) . (1.4.11)
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|a| = 1

(Dirichlet)

|b| = 1

(Neumann)

Figure 1.1: The moduli space of D-branes on the self-dual circle, SU(2), can be described
as a product of two circles S1 (given by the phases of a and b in (1.4.1)) fibred over an
interval where |a| runs between 0 and 1, and |a|2+ |b|2 = 1. The ends of the interval where
one of the circles shrinks to zero describe Dirichlet and Neumann branes, respectively.
If we start with a generic boundary condition and increase (decrease) the radius, the
boundary condition will flow to a Dirichlet (Neumann) boundary condition.

The first term has the right w dependence to be absorbed by a suitable renormalisation
of Jα. The second term, however, pushes the conformal weight away from (1, 1). Thus, if
Jα is to be exactly marginal, the expression Tr([tα, tβ]2) must vanish.

In the case above Tr([tα, tβ]2) equals

Tr([t3, g t3 g−1]2) = −8|a|2|b|2 . (1.4.12)

This only vanishes if either |a| = 0 or |b| = 0; the corresponding boundary conditions are
therefore either pure Dirichlet or pure Neumann boundary conditions. This ties in with
the expectations based on the analysis of the conformal boundary conditions since only
pure Neumann or Dirichlet boundary conditions exist for all values of the radius.

The argument above can also be used in the general case to derive a necessary criterion
for when a bulk deformation is exactly marginal in the presence of a boundary. It is not
difficult to see that it leads to the same criterion as the one given in section 1.3.

1.4.2 The renormalisation group analysis

Now we want to analyse what happens if g does not describe a pure Neumann or pure
Dirichlet boundary condition. In particular, we can use the results of section 2 to under-
stand how the system reacts to the bulk perturbation by λΦ.

In order to see how the boundary theory is affected by the perturbation we have
to compute the bulk boundary OPE of the perturbing field Φ. There are no relevant
boundary fields (except the vacuum), and the marginal fields are all given by boundary
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currents Jγ. We can thus determine the bulk boundary OPE coefficient BΦγ from the
two-point function

〈Jγ(x)(J3J̄3)(z)〉 = BΦγ |z − z̄|−1|x− z|−2 , (1.4.13)

which – employing the general formula (1.4.8) – leads to

BΦγ = −iTr(tγ[t3, g t3g−1]) . (1.4.14)

We see that the only boundary field that is switched on by the bulk perturbation is the
current Jγ whose (hermitian) Lie algebra generator tγ is proportional to the commuta-
tor [t3, g t3g−1]. The normalised tγ is given by

tγ =
i√
2

(
0 −eiχ
e−iχ 0

)
with a b∗ = |ab|eiχ . (1.4.15)

Its relation to the commutator is

−i[t3, g t3g−1] = −i
(

0 −2ab∗

2a∗b 0

)
= B tγ , (1.4.16)

where the bulk boundary coefficient B = BΦγ is given by

B = −2
√

2 |a| |b| . (1.4.17)

The boundary current proportional to tγ modifies the boundary condition g by

δg = i tγ g =
1√
2



−a |b|

|a| b∗ |a||b|

−b |a||b| −a∗ |b|
|a|


 . (1.4.18)

This leaves the phases of a and b unmodified, but decreases the modulus of a while
increasing that of b.

Since the operators are marginal, the renormalisation group equation to lowest order
in the coupling constants (1.3.19) is now

µ̇ =
1

2
B λ+ O(µλ, µ2, λ2) , (1.4.19)

where µ is the boundary coupling constant of the field Jγ. Thus if the radius is increased
(λ > 0), µ becomes negative, and the boundary condition flows to the boundary condition
with b = 0 — the resulting brane is then a Dirichlet brane whose position is determined
by the original phase of a. Conversely, if the radius is decreased (λ < 0), µ becomes
positive, and the boundary condition flows to the boundary condition with a = 0. The
resulting brane is then a Neumann brane whose Wilson line is determined by the original
value of the phase of b (see figure 1.1). This is precisely what one should have expected
since for radii larger than the self-dual radius, only the Dirichlet branes are stable, while
for radii less then the self-dual radius, only Neumann branes are stable.
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Actually, the renormalisation group flow can be studied in more detail. It follows from
(1.4.18) that to lowest order in µ

a(µ) = a0 − µ a0
|b0|√
2|a0|

+ O(µ2) , (1.4.20)

where the initial values of a and b have been denoted by a0 and b0, respectively. Since a
depends on the RG parameter only via µ, it thus follows that

ȧ = −µ̇ a |b|√
2|a|

= − B

2
√

2

|b|
|a| a λ = |b|2 a λ = (1 − |a|2) a λ . (1.4.21)

If we write |a| = sinψ, this simplifies to

ψ̇ = sinψ cosψ λ . (1.4.22)

Denoting the RG parameter by t, the solution to this differential equation is

tanψ(t) = tanψ(0) eλt . (1.4.23)

Thus for λ > 0 this flows indeed to |a∞| = 1, while for λ < 0 we find |a∞| = 0, as
expected.

Given the relation (1.4.20), we can deduce from the solution for a(t) a differential
equation for µ(t) which turns out to be

µ̇ = −
√

2 ψ̇ . (1.4.24)

This can be integrated to
µ(t) = −

√
2 (ψ(t) − ψ(0)) . (1.4.25)

We can thus determine the path on the group manifold as

g(t) = eiµ(t) tγ g . (1.4.26)

As a consistency check one verifies that

lim
t→∞

g(t) =





(
a
|a| 0

0 a∗

|a|

)
if λ > 0

(
0 b∗

|b|
− b

|b| 0

)
if λ < 0.

(1.4.27)

The path is actually a geodesic on SU(2), relating the point g to the nearest diagonal or
off-diagonal group element. In order to see this we write

g =

(
sinψ eiθ cosψ e−iϕ

− cosψ eiϕ sinψe−iθ

)
, (1.4.28)

where 0 ≤ ψ ≤ π
2

and 0 ≤ θ, ϕ < 2π. In these variables, the metric on SU(2) is

ds2 = dψ2 + sin2 ψ dθ2 + cos2 ψ dϕ2 . (1.4.29)

The above path in SU(2) is the path with θ and ϕ constant. The variable µ (see eq.
(1.4.25)) is simply proportional to ψ − ψ0, which is the arc length parameter along the
curve.
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1.5 Generalisations

It is not difficult to generalise the above analysis in a number of different ways.

1.5.1 The free boson away from criticality

If the radius of the free boson is a rational multiple of the self-dual radius, R = M
N
Rsd,

then a similar analysis applies. At this radius, the conformal boundary states are labelled
by elements in the quotient space

g ∈ SU(2)/ZM × ZN , (1.5.1)

where ZM and ZN act by multiplication by roots of unity on a and b, respectively, leaving
the absolute values unaffected [97] One way to arrive at this construction is to describe
the theory at radius R as a freely-acting orbifold by ZM×ZN of the self-dual radius theory
[179]. Under this orbifold action none of the generic SU(2) branes are invariant, and thus
the branes of the orbifold are simply the superpositions of MN branes of the SU(2) level
1 theory.

In particular, it therefore follows that the bulk-boundary OPE coefficients that were
relevant in the above analysis are (up to an MN dependent factor) unmodified. Therefore
the same conclusions as above hold: if the radius is increased, a generic brane flows to
M equally spaced Dirichlet branes (this is the interpretation of the branes with b = 0); if
the radius is decreased, a generic brane flows to N Neumann branes whose Wilson lines
are equally spaced on the dual circle (i.e. the branes with a = 0). Since the phases of a
and b are unchanged along the flow, the flow is obviously compatible with the ZM × ZN

orbifold operation that only acts on these phases.

1.5.2 The analysis at higher level

For SU(2) at level k, the branes that preserve the affine symmetry (up to an inner
automorphism by conjugation by a group element g ∈ SU(2)) are labelled by ||j, g〉〉,
where j = 0, 1

2
, 1, . . . , k

2
denotes the different representations of ŝu(2) at level k (that label

the different Cardy branes [29]), while g describes the automorphism

(
g Jαm g

−1 + J̄α−m
)
||j, g〉〉 = 0 . (1.5.2)

In addition there is the identification,

||j, g〉〉 = ||k
2
− j,−g〉〉 , (1.5.3)

where −g ∈ SU(2) is minus the 2 × 2 matrix (1.4.1).
The field Φ is an exactly marginal bulk field for any level k [36, 120]. We can thus ask

what happens to the boundary condition ||j, g〉〉 as we perturb the theory by Φ.
In fact, it is easy to see that the above analysis for level 1 still goes through — the only

place where k enters is in the overall normalisation of the bulk-boundary OPE coefficient
that is largely irrelevant for our analysis. Thus if we perturb the theory by the exactly
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marginal bulk perturbation J3J̄3, the brane labelled by ||j, g〉〉 flows to ||j, g0〉〉, where g0 is
either diagonal or off-diagonal (depending on the sign of the bulk coupling constant λ),
and the relevant phase of a0 or b0 agrees with the original phase of a or b in g, respectively.
In particular, this prescription therefore respects the identification (1.5.3). It is also worth
noting that it does not mix different j, and therefore does not produce any additional
flows that would reduce the K-theoretic charge group [5, 81].

The bulk perturbation breaks the SU(2) symmetry down to SU(2)/U(1)×U(1), where
the radius of the U(1) factor is deformed away from the original value of

√
k times the

self-dual radius. The branes corresponding to g0 (to which any brane will flow) describe
factorisable boundary conditions that define a standard Dirichlet or Neumann boundary
condition for the U(1) factor. It is then clear that these branes exist for arbitrary radius of
this U(1) (this has been analysed previously in [76, 77]). The resulting picture is therefore
again in agreement with expectations.

For large values of the level k we can give yet another geometric interpretation. The
current-current deformation of the WZW model can be understood as deforming the
metric, the B-field and the dilaton on the group. In particular, once the WZW model is
deformed the dilaton φ is not constant any more, but has the dependence (see [120, 108,
76])

e−2φ(ψ) =
1 − (1 −R2) cos2 ψ

R
, (1.5.4)

where R denotes the deformed radius of the embedded U(1) (R = 1 being the WZW
case). If we start with a D0-brane on the group at position g, then after the deformation
it will flow along the gradient of the dilaton to a maximum, such that its mass, which is
proportional to 1

gs
∼ e−φ, is minimal. Minimisation of (1.5.4) leads to the conditions

(1 −R2) sin 2ψ = 0 , (1 −R2) cos 2ψ > 0 . (1.5.5)

When the radius is increased (R > 1, corresponding to λ > 0), we find ψ = π
2
, i.e. |a| = 1.

For R < 1 we obtain on the other hand ψ = 0 (|b| = 1). This is thus in nice agreement
with our analysis of section 3.

1.5.3 Other bulk perturbations

So far we have only considered bulk perturbations by J3J̄3, but it should be clear how
to generalise this to the case where the perturbing bulk field is JαJ̄ ᾱ. In fact, if we write
tα = ht3h−1 and tᾱ = h̄t3h̄−1, then the above analysis goes through provided we replace
g by ĝ = h−1 g h̄. Indeed, the relevant tγ is in this case

itγ ∝ [tα, g tᾱ g−1] = h[t3, ĝ t3 ĝ−1]h−1 , (1.5.6)

and thus
δg = δ(h ĝ h̄−1) = h δĝ h̄−1 . (1.5.7)

At level 1, the perturbation by JαJ̄ ᾱ can again be interpreted as changing the radius of
a circle. Its embedding in SU(2) is described as

θ 7→ heiθt
3

h̄−1 . (1.5.8)
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1.5.4 Higher rank groups

Much of the discussion for SU(2) carries over to Lie groups of higher rank, though in
general it is not possible to give a closed expression for the integrated flow any more. For
simplicity we shall restrict the following discussion to the Lie groups G = SU(n).

Let us consider a D-brane that is characterised by the gluing condition (1.4.2) for a
given g ∈ SU(n). As in section 3.1, the perturbation JαJ̄α with α fixed and tα ∈ su(n)
is exactly marginal in the bulk [36, 120], but leads to a flow of the gluing parameter g as

ġ =
λ

2
[tα, tβ] g , (1.5.9)

where tβ = g tα g−1. This flow can be interpreted as a gradient flow,

ġ = −∇V (g) with potential V (g) = −λ
2
Tr(tα g tα g−1) . (1.5.10)

To see this, we first recall that the gradient is defined by

d

ds
V (g + istg)

∣∣∣∣
s=0

= −Tr(∇V (g) g−1 it) , (1.5.11)

where t is an arbitrary vector in the Lie algebra. Here the minus sign appears because the
trace is negative definite on the Lie algebra; the factors of g map it to a tangent vector
itg at g, and the tangent vector ∇V (g) to an element of the Lie algebra, ∇V (g) g−1.
Evaluating the directional derivative we find

d

ds
V (g + istg)

∣∣∣∣
s=0

= −λ
2
Tr
(
tα itg tαg−1 − tαgtα g−1it

)

=
λ

2
Tr
(
[tα, gtαg−1] g (g−1it)

)
. (1.5.12)

Comparing this with (1.5.11) we deduce that

∇V (g) = −λ
2

[tα, g tα g−1] g , (1.5.13)

which hence implies that (1.5.10) reproduces the flow equation (1.5.9).
In contradistinction to the SU(2) case, however, this flow is generically not a geodesic

flow. The change of the direction of the RG flow is

d

dt
[tα, tβ] ∝ [tα, [tβ, [tα, tβ]]] (1.5.14)

which is in general not proportional to [tα, tβ]. Thus the tangent to the flow is not parallel
to a fixed direction in the Lie algebra; this makes it hard to integrate the complete flow
in the generic case.

We can nevertheless describe at least qualitatively the end point of the flow. To this
end it is sufficient to understand the fixed points of the flow and their stability properties.
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A boundary condition corresponding to the gluing condition g is a fixed point of the
flow if [tα, tβ] = 0. This is only the case if the matrices tα and tβ have common eigenspaces.
Assume that tα is generic, i.e. that all its eigenvalues τi are distinct and all eigenspaces
Rvi are one-dimensional. Then [tα, tβ] = 0 if and only if g permutes the n eigenspaces
and multiplies each one by a phase ri. This means that there are n! discrete choices for
g, each coming with n− 1 continuous degrees of freedom (note that det g = ±∏i ri = 1).

This has a simple physical interpretation if the level of the WZW model is 1. Then the
theory is equivalent to a compactification on a torus described by the momentum lattice

{(pL, pR) ∈ ΛW ⊕ ΛW , pL − pR ∈ ΛR} , (1.5.15)

where ΛW and ΛR are the weight and root lattice of su(n), respectively. Without loss of
generality we may choose our Cartan subalgebra such that it contains tα. A group element
g ∈ SU(n) that permutes the eigenvectors vi acts by conjugation on the root lattice and
hence corresponds to some element wg of the Weyl group. The gluing condition (1.4.2)
for the currents Jβ then translates into the condition

wgpL = pR (1.5.16)

for the momenta. This is the gluing condition for the standard torus branes that couple
to all momenta pL (as wgpL − pL ∈ ΛR). The dimension of the brane is given by the
number of eigenvalues of wg that are not equal to 1 (this is the absolute length of wg).
The phases of g then correspond to the positions and Wilson lines of the brane.

These standard torus D-branes are the ones that are unaffected by a perturbation of
the size of the torus and they correspond to the fixed points g of the flow equation (1.5.9).

In order to understand where a generic brane flows to, it is furthermore important to
understand the stability of the fixed points. Suppose we start with a boundary condition
that is very close to one of the fixed points; if the brane is driven back to the fixed point
it is stable, if it flows away (to some other fixed point) it is unstable.

To simplify the discussion we shall work in the eigenbasis {vi} of tα. Using its spectral
decomposition tα =

∑
τi Pi, we can rewrite (1.5.9) as

ġ =
λ

2

∑

i,j

τiτj(Pi g Pj − g Pi g
−1Pj g) . (1.5.17)

To check the stability of a fixed point g = S, consider the ansatz

gij(t) = Sij + ǫ hij(t) . (1.5.18)

Here S is the matrix of a fixed point given by a permutation σ and phases ri, i.e.

S : vi 7→ ri vσ(i) . (1.5.19)

In particular, this means that
S Pi S

−1 = Pσ(i) . (1.5.20)
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Evaluating (1.5.17) to first order yields

ḣij =
λ

2
(τi − τσ(j)) (τj − τσ−1(i))hij . (1.5.21)

We easily see that ḣij = 0 for i = σ(j); these are the n−1 flat directions we have identified
before. In order for g = S to be stable, all other components hlm must have negative
eigenvalues. Without loss of generality, we may assume that the τi are ordered,

τ1 < τ2 < · · · < τn . (1.5.22)

Consider then the coefficient for i = σ(p). If λ > 0 the condition is

j < p⇒ σ(j) < σ(p) , (1.5.23)

i.e. σ grows monotonically, which is only the case for σ = id. For λ < 0, σ must be a
decreasing function, i.e.

σ : i 7→ n− i . (1.5.24)

We thus obtain a very simple result: if λ > 0, g flows to the identity component; if λ < 0,
the D-brane flows to the component where g inverts the order of the eigenvalues of tα.

In the torus picture (for k = 1), the identity component corresponds to the D0-branes.
This is what we expect: if the size increases (λ > 0) beyond the self-dual radius, the D0-
branes are the lightest branes and a generic brane will flow to one of them. If the size
decreases (λ < 0), the physical intuition is less clear, because there is a B-field on the torus
which complicates things. The torus branes which are described by the inverse ordering
of the eigenvectors correspond to the longest element w0 in the Weyl group.2 Its absolute
length (minimal number of reflections, or minimal number of transpositions) is given by
⌊n−1

2
⌋ which gives us the dimension of the D-brane on the torus. In the example of SU(3),

the branes which are stable under a perturbation with λ < 0 are thus D1-branes.

So far we have restricted our discussion to a generic perturbation tα. It is clear that
there are special directions tα for which the bulk perturbation breaks less symmetry. If
two or more eigenvalues of tα coincide, one observes from (1.5.21) that there are more
directions hij which are unaffected by the flow (ḣij = 0), i.e. the dimensions of the moduli
spaces of fixed points can grow beyond n− 1.

For other bulk perturbations JαJ̄ ᾱ with tᾱ 6= tα, the discussion is very similar to the
one above. Assume that tᾱ = h̄(

∑
τ̄iPi)h̄

−1 with eigenvalues τ̄1 < · · · < τ̄n. Then the
arguments above apply if we replace g by ĝ = gh̄. If the level is 1, we again have an
interpretation in terms of a torus in SU(n) which is obtained from the Cartan torus by
translation by h̄−1 from the right.

For large values of the level k, we can – as in the SU(2) case in section 4.2 – interpret
the perturbation as a deformation of the metric, the B-field and the dilaton on the group
(see [78]). One would then expect that the group values to which the branes flow are again
characterised by the property that they maximise the dilaton; it would be interesting to
check this directly.

2Here ’long’ refers to the standard length which is the minimal number of reflections at simple roots
needed to write w0, or, in terms of permutations, the minimal number of transpositions of neighbouring
elements.
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1.6 Outlook

It would be interesting to analyse the phenomena described in this chapter in a time-
dependent string theory context. Suppose, for example, that we deform the bulk theory of
some D-brane string background infinitesimally so that the D-brane is no longer conformal.
One would then expect that the background evolves in a time dependent process towards a
configuration in which the D-brane is again conformal. Neglecting closed string radiation,
time dependence is essentially incorporated by substituting the first order derivatives in
the RG equations by second order time derivatives (see e.g. [82, 113]). Since the models
we considered are compact, unlike the situation studied in [113] there is no open string
radiation that could escape to infinity. In particular, there is therefore no dissipation and
the model will undergo eternal oscillations. It would be interesting to study the effects
of closed string radiation in the examples we considered above. In particular, by suitably
controlling the bulk deformation λ, the process can be made arbitrarily slow .

Our analysis was originally motivated by trying to understand the interpretation of
the obstruction of [24]. There N = 2 supersymmetric B-type D-branes on the orbifold line
T 4/Z4 of K3 were studied using matrix factorisation and conformal field theory techniques.
It was found that a certain B-type brane (namely the brane that stretches diagonally
across the two T 2s that make up the T 4) is obstructed against changing the relative radii
of the two T 2s; this could be seen both from the matrix factorisation point of view, as
well as in conformal field theory.

The analysis above suggests that upon changing the relative radii the brane simply
readjusts its angle so that it continues to stretch diagonally across the two tori. From the
point of view of conformal field theory, there is no obstruction in this. The obstruction
that was observed in the matrix factorisation analysis only means that the resulting brane
breaks the B-type supersymmetry, as could also be seen in conformal field theory [24]; for
a discussion of such questions see chapter 2.

At least in this example the obstruction therefore does not ‘lift’ the corresponding
bulk modulus. While we have only analysed the disc amplitude, we do not expect any
higher order corrections since the brane remains supersymmetric (albeit not B-type su-
persymmetric). In general, however, one would expect that the backreaction of the brane
on the background geometry could lift bulk moduli. We will discuss some aspects of this
in chapter 3.
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Chapter 2

Symmetries of perturbed CFTs

2.1 Overview

Chiral symmetry algebras play an important role in the construction of exactly solvable
conformal field theories (see e.g. [157, 22, 89]). Often these symmetries are only present at
specific points in the closed string moduli space and are partially broken when the theory
is deformed away from these special points. An important example are Gepner models
which are rational conformal field theories with N = 2 supersymmetry at a special point
in the moduli space of Calabi-Yau compactifications of string theory. Starting from such
a highly symmetric point, one can explore the moduli space by perturbing the original
theory by some marginal operator (see e.g. [159, 160, 106, 173, 136]). In this context
it is important to know which part of the symmetry algebra survives the deformation.
In many situations of interest the string background also involves D-branes. It is then
equally important to understand how much symmetry the branes continue to preserve
under the bulk deformation.

The operators that describe changes of the closed string moduli are exactly marginal
bulk operators. As we have seen in the previous chapter, in the presence of boundaries
these operators may cease to be exactly marginal. If this is the case, the bulk perturbation
breaks the conformal invariance of the boundary condition and induces a renormalisation
group flow on the boundary. In general the resulting boundary condition is then ‘far away’
from the original boundary condition and it will be difficult to analyse the symmetries
it continues to preserve. We shall therefore always assume that no such renormalisation
group flow will be induced, i.e. that the boundary theory can be smoothly adjusted to the
deformation of the bulk. This is equivalent to the statement that the boundary condition
continues to be conformally invariant, i.e. that it continues to satisfy T (z) = T̄ (z̄) on the
boundary of the upper half plane.

But even if the conformal symmetry is maintained, other symmetries may be broken
by the deformation. Let us assume that in the unperturbed theory the boundary preserves
a chiral symmetry algebra A. This means that the holomorphic fields S ∈ A are related
to the anti-holomorphic fields S̄ ∈ Ā on the boundary of the upper half plane by

ω(S)(z) = S̄(z̄) . (2.1.1)

Here ω is an automorphism of the symmetry algebra A that describes how the left- and
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Figure 2.1: An illustration of the gluing of the left- and right-moving chiral algebras: By
the gluing condition (2.1.1), the subalgebra Āinv is glued to ω(Ainv), whereas Ainv is glued
to ω−1(Āinv). After the deformation, only the fields in Ainv and Āinv stay chiral, which
means that it only makes sense to glue the fields in Ac and ω−1(Āc).

right-moving chiral algebras are glued together at the boundary; we have also assumed
that the anti-chiral symmetry algebra Ā is isomorphic to A. If A continues to be a chiral
symmetry upon perturbation we can ask whether the gluing condition (2.1.1) is violated
or deformed by the perturbation.1 For the case of a current-current deformation of the
bulk we shall see that (2.1.1), with a suitably modified ω, will always continue to hold
even after the perturbation. Thus boundary conditions always continue to preserve as
much symmetry as they possibly can.

There is however an interesting subtlety that deserves a comment. If the bulk pertur-
bation breaks A down to Ainv, it only makes sense (see figure 2.1) to require that (2.1.1)
continues to hold for fields in2

Ac = Ainv ∩ ω(Ainv) . (2.1.2)

The above argument then only implies that the boundary theory preserves Ac ⊆ Ainv.
However, as we shall see, the actual symmetry of the boundary theory is in fact Ainv: the
spectrum of boundary fields always contains an algebra of mutually local boundary fields
associated to Ainv, and thus the full spectrum can be organised in (twisted) representations
of Ainv. The subalgebra Ac ⊆ Ainv also plays a special role: it consists precisely of those
fields that are actually local with respect to all other boundary fields; with respect to Ac

the full boundary spectrum then forms a conventional (untwisted) representation.

1For boundary perturbations a similar problem was studied in [26, 167, 169].
2Here we assume that the left- and right-moving algebras are broken in the same way, as is for example

the case for a current-current deformation by Φ = JJ̄ .
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We shall exemplify these findings (and subtleties) with a number of examples, most
notably branes on a torus and in a product of SU(2) WZW models. For these cases our
results agree with the geometric intuition about the behaviour of branes under bulk de-
formations. We also consider complex structure deformations of B-type branes in Gepner
models for which the perturbing field is not of current-current type. This problem can be
conveniently studied using the language of matrix factorisations; the results we obtain are
in nice agreement with the expectations based on our general analysis of current-current
deformations.

Our setup and notations are the same as in chapter ch:bbp. We will concentrate
mostly on a simple class of exactly marginal operators, the current-current deformations
Φ = JJ̄ with currents J and J̄ . In the presence of a boundary we shall also assume that
J = ω(J̄) at the boundary. The perturbation Φ is then exactly marginal on worldsheets
with boundary if the OPE of J and ω(J) does not contain a marginal or relevant field
(see chapter 1). Some of our statements also generalise to more general current-current
deformations of the form Φ =

∑
JiJ̄

′
i ; this will be briefly discussed in section 2.5.

We shall assume that the spectrum of L0 and L̄0 is bounded from below by zero, and
that the state with L0 = L̄0 = 0 is unique (the vacuum). Then it follows for example
that the exactly marginal bulk field Φ is a primary field with respect to both Virasoro
algebras.

2.2 Bulk symmetries

First we want to investigate under which conditions bulk symmetries are preserved by
an exactly marginal bulk deformation. Let us assume that the field S belongs to the
chiral symmetry algebra A before the perturbation. We want to ask whether the corre-
sponding symmetry is preserved under the deformation, i.e. whether S remains a chiral
field. Equivalently we can investigate whether the operator product expansion with the
anti-holomorphic stress-energy tensor T̄ remains trivial.

In order to study this question we consider the correlator 〈· · ·S(z)T̄ (v̄)〉 and look for
singularities in z̄ − v̄. To first order in the perturbation we find

λ

∫
d2w 〈· · ·S(z)T̄ (v̄)Φ(w, w̄)〉

∼ λ

∫
d2w

( 1

(v̄ − w̄)2
+

1

v̄ − w̄
∂w̄

)
〈· · ·S(z)Φ(w, w̄)〉

∼ λ

∫
d2w ∂w̄

( 1

v̄ − w̄
〈· · ·S(z)Φ(w, w̄)〉

)

∼ λ

2i

∮

|z−w|=ℓ
dw

1

v̄ − w̄
〈· · ·S(z)Φ(w, w̄)〉 . (2.2.1)

Here we have only kept the terms that could contribute to a singularity in v̄ − z̄. From
the last expression we see that — in the limit ℓ→ 0 — we get a contribution precisely if
there is a term proportional to (w− z)−1 (expanded in w around z); in that case we find
a singularity proportional to (v̄ − z̄)−1. [One might have expected that there could also
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be a term (v̄ − z̄)−2 which in the operator product expansion (OPE) would correspond
to a non-vanishing right-moving conformal weight h̄, but such a term can only arise at
second order.]

We can therefore conclude that the chiral symmetry S is preserved to first order in
the perturbation if

lim
ǫ→0

∮

|w−z|=ǫ
dw Φ(w, w̄)S(z) = 0 . (2.2.2)

By assumption this condition must be satisfied if we take S to be the chiral component
of the stress energy tensor S = T . Indeed, since Φ is marginal we have

Φ(w, w̄)T (z) =
1

(z − w)2
Φ(w, w̄) +

1

z − w
∂wΦ(w, w̄) + O(1) , (2.2.3)

from which (2.2.2) immediately follows.3

The condition (2.2.2) applies to general marginal deformations Φ. In the specific case
where Φ is a current-current deformation, Φ(w, w̄) = J(w)J̄(w̄), the above condition
simply amounts to the requirement that S does not carry any charge corresponding to J ,
so the symmetry algebra after deformation is Ainv = {S ∈ A, J0S = 0}. Similarly, the
unbroken anti-chiral symmetry algebra after the deformation is Āinv = {S̄ ∈ Ā, J̄0S̄ = 0}.

2.2.1 Higher order analysis

The above analysis has only been to first order in the perturbation, and the condition
(2.2.2) is therefore only a necessary condition. In order to analyse whether it is also
sufficient we have to check whether (2.2.2) remains true even after perturbation. If this
is the case, then at every order in perturbation theory we can use the above argument to
deduce that we do not obtain a non-trivial OPE between T̄ and S.

Unfortunately, the analysis is quite complicated in the general case, but we can say
something for the special case where the perturbation is a current-current deformation,
Φ = JJ̄ . We normalise the currents so that

J(z)J(w) =
1

(z − w)2
+ O(1) , J̄(z̄)J̄(w̄) =

1

(z̄ − w̄)2
+ O(1) . (2.2.4)

The condition (2.2.2) implies that the OPE of J and S is of the form

J(w)S(z) =

hS∑

n=1

1

(w − z)n+1
V (JnS, z) + O(1) , (2.2.5)

i.e. that the n = 0 term is not present. Here V (φ, z) denotes the field corresponding to
the state φ. We want to check whether the property (2.2.2) remains true to next order in
perturbation theory. To this end we consider the correlator

I = 〈· · ·Φ(w, w̄)S(z)

∫
d2vΦ(v, v̄)〉 , (2.2.6)

3In [174] the preservation of conformal symmetry was demonstrated by showing that the modes of the
deformed energy-momentum tensor still form a Virasoro algebra with the same central charge.
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and look for a term corresponding to a simple pole (w − z)−1. The integrand can be
calculated by expressing Φ in terms of the currents Φ = JJ̄ , and by using the operator
product expansion of J̄(w̄) with the other fields; this leads to

I =

∫
d2v

〈
· · · J(w)S(z)J(v)

1

(v̄ − w̄)2

〉
(2.2.7)

+

∫
d2v

〈(∑

i

· · ·
[
J̄(w̄)φi(zi, z̄i)

]
· · ·
)
J(w)S(z)J(v)J̄(v̄)

〉
, (2.2.8)

where we have denoted the singular contribution of the OPE of J̄(w̄) with the field
φi(zi, z̄i) by a square bracket. By the same trick as in (2.2.1), the first integral can be
written as a contour integral over dv which encircles the points w, z, as well as the other
insertion points zi, ∮

w,z,zi

dv 〈· · · J(w)S(z)J(v)〉 1

v̄ − w̄
. (2.2.9)

The contribution around w does not have any singularity in w− z, the contribution from
z vanishes by the above assumption (2.2.5), and the contribution from the zi cannot
generate any new pole in (w − z).

In the second integral (2.2.8), we replace J(w) again by the singular terms of its
operator product expansions. The contributions from the insertion points zi and v do not
have any singularity in w − z, and the contribution from z cannot produce a single pole
(w − z)−1 again because of (2.2.5).

Thus we can conclude that the condition (2.2.2) also holds in the deformed theory,
and the chirality of S is not spoiled at second order. Assuming that J and J̄ remain
currents along the deformation, this shows that the chirality is preserved to all orders in
perturbation theory.

2.2.2 An example: Gepner models

To illustrate the general condition (2.2.2) let us consider a Gepner model [101] corre-
sponding to the Calabi-Yau 3-fold W = 0 in weighted complex projective space, where

W =
5∑

i=1

xnii , and
5∑

i=1

1

ni
= 1 . (2.2.10)

The relevant Gepner model is then (an orbifold of) the tensor product of five N = 2
superconformal minimal models at level ki = ni − 2. The corresponding bulk conformal
field theory possesses the diagonal N = 2 superconformal symmetry at central charge
c = 9, but also the five individual N = 2 superconformal symmetries at

ci =
3ki
ki + 2

, ni = ki + 2 . (2.2.11)

Complex structure deformations of the Calabi-Yau manifold are described by polynomials
in xi that have the appropriate scaling behaviour in the weighted projective space (see
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e.g. the review [116]); in terms of conformal field theory, these deformations are described
by the (cc) fields

Φ̂ = φ1
l1l10 φ

2
l2l20 φ

3
l3l30 φ

4
l4l40 φ

5
l5l50 , where

5∑

i=1

li
ki + 2

= 1 . (2.2.12)

Here φilms denotes the bulk field corresponding to the representation (lms) ⊗ (lms) of
the ith N = 2 factor, and (lms) are the usual coset labels of the N = 2 superconformal
algebra — see for example [116]. The field Φ̂ has total conformal weight equal to h = 1/2,
and total u(1) charge 1, J0Φ̂ = Φ̂.

The actual perturbing field is obtained from Φ̂ by application of the N = 1 super-
charges G = G+ + G− and Ḡ = Ḡ+ + Ḡ−. Since Φ̂ is a cc field, G+

−1/2Φ̂ = Ḡ+
−1/2Φ̂ = 0,

and hence the perturbing field is Φ ≡ G−
−1/2Ḡ

−
−1/2Φ̂. Since Φ̂ has total u(1) charge equal

to q = q̄ = 1, it follows that Φ has total u(1) charge equal to zero,

J0 Φ = 0 , (2.2.13)

and similarly J̄0 Φ = 0.
We can now apply our condition (2.2.2) to the different generators of the diagonal

N = 2 superconformal algebra. Since Φ is (exactly) marginal, the conformal symmetry is
preserved (see the discussion following (2.2.2)). As for the total u(1) current of the N = 2
algebra, taking S = J , (2.2.2) vanishes because of (2.2.13). Finally, the operator product
expansion of G+ with Φ is a total derivative,

G+(z)Φ(w, w̄) =
1

(z − w)2
V (G+

1/2G
−
−1/2Φ̂, w) +

1

z − w
V (G+

−1/2G
−
−1/2Φ̂, w)

=
1

(z − w)2
V ((2L0 + J0)Φ̂, w) +

1

z − w
V (2L−1Φ̂, w) = 2 ∂w

(
1

z − w
V (Φ̂, w)

)
,

(2.2.14)

so that the residue integral (2.2.2) is zero. On the other hand, the OPE with G− vanishes
directly. It thus follows that the diagonal N = 2 superconformal algebra remains a sym-
metry under this perturbation. This is certainly what one expects since the perturbation
preserves spacetime supersymmetry.

On the other hand, it follows from a similar reasoning that the ith N = 2 superconfor-
mal symmetry is not preserved unless li = 0. This is obviously also in line with general
expectations.

2.2.3 Another example: WZW models and the free boson

As another example we consider a Wess-Zumino-Witten (WZW) model describing strings
on a Lie group G. The symmetry algebra A is generated from the affine Lie algebra
g corresponding to G. A current-current deformation Φ = JJ̄ singles out a subgroup
U(1) ⊂ G (for a discussion of current-current deformations of WZW models see [120, 78]).
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We can decompose the vacuum sector in terms of representations of the coset algebra
g/u(1) and the u(1) theory,4

Hg
0 =

⊕

m∈Z

Hg/u(1)
(0,m) ⊗Hu(1)

m . (2.2.15)

Projecting onto the states which are uncharged with respect to the u(1) leaves us with
the term with m = 0. Thus the subalgebra Ainv that is preserved under the deformation
is precisely the tensor product of the coset algebra and the u(1) algebra.

A particular example is the SU(2) WZW model at level k = 1. It describes the
same theory as the free boson compactified on a circle at the selfdual radius. The
marginal deformations have been investigated, and the complete connected moduli space
is known [106, 51]. When the theory is infinitesimally deformed away from the selfdual
radius, the symmetry is broken to the u(1) algebra. When we continue to deform the
theory, other points of enhanced symmetry will be reached: in fact at any rational value
of the radius squared (when the radius is measured in units of the selfdual radius) there
will be an enhanced symmetry. Similar considerations apply to the moduli space of N = 1
supersymmetric theories of a free boson and a free fermion on a circle [52].

2.3 Deformed gluing conditions

Up to now we have analysed whether symmetries of the bulk theory remain intact under
perturbations by exactly marginal bulk operators. We have seen that a necessary condition
for this is (2.2.2). For the case of current-current deformations we have furthermore shown
that this condition guarantees that S remains chiral to arbitrary order in perturbation
theory.

Now we want to analyse how symmetries of a boundary theory are affected by a bulk
perturbation. To this end we introduce a boundary into our theory and consider the
conformal field theory on the upper half plane H+. As we have seen in chapter 1, an
exactly marginal bulk perturbation can break the conformal invariance at the boundary
and induce a renormalisation group flow. If this is the case, it will be very difficult to
make predictions about the symmetries of the fixed point theory (since the fixed point will
be, in general, far away from the original boundary theory). We shall therefore restrict
ourselves to bulk deformations which do not induce a non-trivial RG flow, and which
therefore preserve the conformal invariance on the upper half plane. As has been shown
in chapter 1, this will be the case provided that certain bulk-boundary OPE coefficients
vanish. We shall give a second, independent proof of this result in the following subsection.

If this condition is satisfied, we can ask how the symmetries of a boundary theory (that
come from bulk symmetries) behave under a bulk perturbation. We shall give arguments
to suggest that the boundary condition always preserves those gluing conditions that
continue to make sense in the bulk.

4Here the u(1) algebra is just the Heisenberg algebra of one current, without the inclusion of any
charged fields.
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2.3.1 Preserving the conformal invariance

Let us begin by analysing whether the boundary condition remains conformally invariant
under a bulk perturbation. Conformal invariance of a boundary condition requires that
the energy momentum tensor satisfies the gluing condition

T (z) = T̄ (z̄) at z = z̄ . (2.3.1)

We want to study whether this condition remains true under the bulk perturbation, so
we have to look at the limit of correlators

lim
y→0

〈· · · (T (z) − T̄ (z̄))〉λ (2.3.2)

with z = x+ iy. The first order correction to the gluing condition comes from

∆T = lim
y→0

λ

∫

Imw>ℓ/2

d2w
(
T (z) − T̄ (z̄)

)
Φ(w, w̄) , (2.3.3)

where the expression is understood to be inserted into a correlator. Note that it is
important that we first make a Laurent expansion in the regulator ℓ before taking the
limit y → 0, as otherwise the expression vanishes trivially. Since Φ is primary, the singular
part of the OPE in the presence of the boundary is

(
T (z) − T̄ (z̄)

)
Φ(w, w̄) ∼ 1

(z − w)2
Φ(w, w̄) +

1

(z − w)
∂wΦ(w, w̄) − ((z, w) → (z̄, w̄))

+
1

(z − w̄)2
Φ(w, w̄) +

1

(z − w̄)
∂w̄ Φ(w, w̄) − ((z, w̄) → (z̄, w)) ,

where the second line arises from the mirror images that are required to guarantee that
(2.3.1) holds in all correlators. As before in (2.2.1) we can rewrite the right hand side in
terms of derivatives with respect to ∂w and ∂w̄; we can thus write ∆T as

∆T = lim
y→0

[
iλ

2

∫

Imw=ℓ/2

dw̄

{
1

z − w
Φ(w, w̄) − (z → z̄)

}

− iλ

2

∫

Imw=ℓ/2

dw

{
1

z − w̄
Φ(w, w̄) − (z → z̄)

}]

= lim
y→0

iλ

2

∫

R

du

{
1

z − u− iℓ/2
− 1

z − u+ iℓ/2
− (z → z̄)

}
Φ(u+ iℓ/2;u− iℓ/2)

= lim
y→0

iλ

2

∫

R

du

{
iℓ

(z − u)2 + ℓ2/4
− (z → z̄)

}
Φ(u+ iℓ/2, u− iℓ/2) . (2.3.4)

Here the minus sign in the second line arises because d2w = i
2
dw ∧ dw̄ = − i

2
dw̄ ∧ dw.

For small ℓ we can now use the bulk-boundary operator product expansion to write

Φ(u+ iℓ/2, u− iℓ/2) ∼
∑

i

ℓhψi−2Bi ψi(u) , (2.3.5)
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where ψi are boundary fields and the Bi are the bulk boundary coefficients. Since hψ ≥ 0,
the most singular term is proportional to ℓ−2; thus we may drop the ℓ2/4 term in the
denominator of the last line of (2.3.4). The limit y → 0 of the bracket in (2.3.4) is of the
form

lim
y→0

(
1

(x+ iy − u)n
− 1

(x− iy − u)n

)
= (−1)n

2πi

(n− 1)!
δ(n−1)(u− x) (2.3.6)

with n = 2, and hence leads to a derivative of a delta function. Altogether we therefore
find

∆T = −πiλ
∑

i

ℓhψi−1Bi∂xψi(x) . (2.3.7)

It follows that the gluing condition for T is violated if in the bulk-boundary operator
product expansion of Φ there are relevant or marginal boundary fields (hψi ≤ 1). The
only exception is the vacuum (h = 0), since then there is no x-dependence and the
derivative vanishes. This analysis reproduces precisely the condition that was found in
chapter 1.

In the case of current-current deformations Φ = JJ̄ , for which J̄ = ω(J) at the
boundary with ω(J) some chiral current, the above condition is simply the requirement
that the OPE of J with ω(J) does not contain a simple pole. In this case the argument
generalises to all orders: it is not difficult to show that the OPE of J and ω(J) will
not acquire a pole term under the deformation, so that ∆T = 0 also for finite λ. For a
general perturbation, however, the first order criterion only provides a necessary, but not
a sufficient condition for Φ to be exactly marginal.

2.3.2 Preserving a general symmetry

Let us now assume that the bulk deformation is exactly marginal on surfaces with bound-
ary so that no relevant or marginal field is switched on at the boundary. In this case the
boundary only adjusts infinitesimally to the bulk perturbation and we may hope to make
statements about the symmetries it will continue to preserve.

In the following we shall only consider current-current deformations Φ = JJ̄ for which
J̄ = ω(J) at the boundary. Here ω is an automorphism of the chiral algebra that is
preserved by the boundary. As we have just explained, in order for this perturbation to
be exactly marginal in the presence of the boundary, we need to have that the OPE of J
with ω(J) does not contain a simple pole.

Suppose now that the boundary condition preserves the symmetry associated to some
chiral field S,

ω(S)(z) = S̄(z̄) at z = z̄ , (2.3.8)

where ω is an automorphism of the preserved chiral algebra A. We want to ask whether
after the perturbation by Φ, (2.3.8) still holds, possibly for some adjusted ω. Obviously
for this to make sense we have to require that ω(S) continues to be a chiral field even
after the perturbation (ω(S) ∈ Ainv), and similarly for S̄; thus we want to assume that
(2.2.2) holds for ω(S), and similarly for S̄. Since Ā ∼= A the latter condition is equivalent
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to the statement that J does not have a simple pole with S. Altogether we thus require
that the OPEs of J with S and ω(S) do not have simple poles.

There is one subtle point that is worth mentioning. If ω(Ainv) 6⊂ Ainv, the field ω(S)
can only be chosen from the intersection Ac = Ainv ∩ ω(Ainv). The symmetry algebra on
the boundary that can arise from gluing bulk fields is then smaller than the symmetry
Ainv that is preserved in the bulk. As we shall explain in section 4, the boundary theory
actually still preserves (in a certain sense) the full symmetry algebra Ainv; for the time
being, however, we concentrate on the symmetries Ac that can be understood in terms of
gluing conditions.

Let us thus consider a field ω(S) ∈ Ac. As in the previous subsection we want to study
the expression (this is again to be understood to be inserted into an arbitrary correlator)

∆S = lim
y→0

λ

∫
d2w

(
ω(S)(z) − S̄(z̄)

)
Φ(w, w̄)

= lim
y→0

λ

∫
d2w

( hS∑

n=1

1

(w − z)n+1
V (Jnω(S), z) J̄(w̄)

+

hS∑

n=1

1

(w̄ − z)n+1
V (ω(J)nω(S), z) J(w) − (z → z̄)

)
(2.3.9)

= − lim
y→0

iλ

2

∫

R

du
( hS∑

n=1

1

n

1

(u− z)n
V (Jnω(S), z) ω(J)(u)

−
hS∑

n=1

1

n

1

(u− z)n
V (ω(J)nω(S), z) J(u) − (z → z̄)

)
. (2.3.10)

We now want to close the contour in the upper half plane. The poles at insertion points
of other fields in the correlator cancel in the expression in the limit y → 0. The only pole
that can give a contribution is at u = z. To determine its residue we use the full OPE of
the fields,

ω(J)(u) V (Jnω(S), z) =
∑

m≤hS−n

1

(u− z)m+1
V
(
ω(J)mJnω(S), z

)
. (2.3.11)

The residue thus comes from the term with m = −n, so that we obtain

∆S = πλ

hS∑

n=1

1

n

[
V
(
ω(J)−nJnω(S), x

)
− V

(
J−nω(J)nω(S), x

)]
. (2.3.12)

Introducing the operator

Kω = −i
∑

n>0

1

n

(
ω(J)−n Jn − J−n ω(J)n

)
, (2.3.13)

we can rewrite the result as

∆S = lim
y→0

λ

∫
d2w

(
ω(S)(z) − S̄(z̄)

)
Φ(w, w̄) = iπλV (Kωω(S), x) . (2.3.14)
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This suggests that we can absorb the change ∆S into a redefinition of the automorphism
ω, i.e. that we have to first order in the perturbation

ωλ(S) = ω(S) − iπλV (Kωω(S)) . (2.3.15)

We need to show that ωλ (to first order in λ) still defines an automorphism. Suppose that
we can write J = i∂X1 and ω(J) = i∂X2, where X1 and X2 are free boson fields. Then
Kω is precisely the rotation generator in the X1 −X2 plane, except that in the definition
of Kω the zero modes are missing. Since by assumption J0ω(S) = ω(J)0ω(S) = 0, these
zero modes can be added to Kω without modifying the action on ω(S). Thus we can
think of the correction term in (2.3.15) as an infinitesimal rotation generator, implying
that (2.3.15) defines indeed an automorphism of the chiral algebra.5 More generally, we
can prove without any further assumptions that (2.3.15) defines an automorphism if S is
a current; this is explained in appendix A.1.

2.3.3 Example: Diagonal torus branes

As an example of the results above we consider a diagonal one-dimensional brane on a
square torus with radii R1 = R2 = R, satisfying the gluing conditions

J1(z) = J̄2(z̄) , J2(z) = J̄1(z̄) , z = z̄ , (2.3.16)

where J l = i∂X l is the u(1) current corresponding to the lth direction. We now deform
the torus by changing the first of the two equal radii, setting Φ = J1J̄1.

Obviously this bulk perturbation preserves the chiral u(1)-symmetries, i.e. satisfies
(2.2.2). Furthermore, if we take the bulk perturbation Φ to the boundary we do not
switch on a marginal or relevant field since

Φ(z, z̄)|y→0 ∼ J1(x+ iy) J2(x− iy) ∼ O(1) . (2.3.17)

Thus the bulk perturbation is exactly marginal on the disk and we expect that the bound-
ary condition continues to preserve the above u(1)-symmetries. The gluing condition,
however, will get adjusted as detailed above. In fact, one can guess that the adjustment
of the gluing conditions will simply describe the fact that the brane will continue to
stretch diagonally across the torus. This motivates us to make the ansatz for the gluing
conditions

ωλ(J
1) = − cosϕλ J

1 + sinϕλ J
2 (2.3.18)

ωλ(J
2) = sinϕλ J

1 + cosϕλ J
2 , (2.3.19)

where ϕλ is a λ-dependent angle with initial condition ϕ0 = π
2
. Let us fix some value

for the parameter λ, and consider a small shift λ → λ + δλ. The change in the gluing
condition for J1 is then given by

iπ δλ V (Kωλωλ(J
1)) = −π δλ(sin2 ϕλ J

1 + sinϕλ cosϕλ J
2) , (2.3.20)

5As we shall see this is precisely what happens in the explicit example we are about to discuss.
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Figure 2.2: When one of the radii in the two-torus is deformed, the brane continues to
stretch diagonally and its inclination changes.

and similarly for J2. If our ansatz is correct, we must be able to absorb this shift into a
redefinition of ϕλ. Thus we obtain the differential equations for the angle ϕλ,

d

dλ
cosϕλ = −π sin2 ϕλ

d

dλ
sinϕλ = π sinϕλ cosϕλ . (2.3.21)

These are both equivalent to the differential equation for ϕλ

d

dλ
ϕλ = π sinϕλ or

d

dλ
ξ(λ) = πξ(λ) , (2.3.22)

where ξ(λ) = tan ϕλ
2

. The solution is

ξ(λ) = eπλ = tan
ϕλ
2
. (2.3.23)

The gluing condition ωλ then corresponds to a brane at angle ϕλ
2

which sits on the
diagonal of a torus with radii R1(λ) = Re−πλ and R2 = R, in precise agreement with the
geometrical intuition (see figure 2.2).

This is in perfect agreement with the λ-dependence of the deformed radius R1(λ), as
we shall now explain. The action for the free boson on the first circle of radius R1 has
the same form as the infinitesimal perturbation,

S + ∆S =
1

2π

∫
d2wΦ(w, w̄) − δλ

∫
d2wΦ(w, w̄) , (2.3.24)

with Φ = J1J̄1 as above. To get back to the standard normalisation of the action, we
have to rescale J1 to J ′

1 = J1(1 − π δλ) and similarly for J̄1. Since J = i∂X1 and X1 has
periodicity 2πR1, the rescaled X ′

1 has periodicity 2πR′
1, implying for the radius R1 the

differential equation
dR1(λ)

dλ
= −πR1(λ) , (2.3.25)

with the expected solution R1(λ) = Re−πλ.

2.4 Boundary symmetries

Up to now we have discussed the perturbed theory from the point of view of the bulk.
In particular, we have analysed whether gluing conditions of the chiral bulk fields may
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be adjusted upon a bulk deformation. Obviously every bulk field for which we can find a
gluing condition gives rise to a symmetry of the boundary theory. However, as we shall
see, the converse is not strictly true.

In the following we shall therefore study the boundary symmetries directly from the
point of view of the boundary theory. The symmetry algebra of the boundary theory is
described by the set of ‘holomorphic’ fields S (with integer conformal weight) that are
local with respect to all other boundary fields (in the sense that there are no branch cuts
in the boundary OPEs). The full spectrum of boundary fields then forms a representation
of this algebra. In a weaker sense, we can think of a boundary symmetry as an algebra
of boundary fields that are only mutually local (but not necessarily local with respect to
all the other boundary fields). This condition guarantees that these fields define a (con-
ventional) vertex operator algebra. It is then clear that the full boundary spectrum also
forms a representation of this vertex operator algebra, but in general the representations
that appear in the spectrum will be twisted rather than the usual untwisted representa-
tions. (Twisted representations are characterised by the property that the monodromy of
the operator in the vertex operator algebra, when taken around the field in question, may
not be trivial; the general theory of twisted representations of vertex operator algebras
has been developed in [53].)

To study the behaviour of the boundary symmetries under bulk deformations we thus
need to determine changes in the boundary operator product expansion of two boundary
fields. From this we will be able to read off changes in the conformal weights as well as in
the locality properties of these boundary operators. For simplicity we shall only analyse
current-current deformations Φ = JJ̄ for which J̄ = ω(J) at the boundary. The results
we shall obtain (see the following section) can then be summarised as follows:6

(i) A boundary field S retains its conformal weight if and only if J0 ω(J)0S = 0.

(ii) A boundary field S retains its conformal weight and remains self-local if and only
if J0S = 0 or ω(J)0S = 0.

(iii) Two mutually local fields S1, S2 that satisfy (i) and (ii) remain mutually local to
one another if and only if either J0S1 = J0S2 = 0 or ω(J)0S1 = ω(J)0S2 = 0.

(iv) A field S continues to be local with respect to all other boundary fields if J0S = 0
and ω(J)0S = 0.

Note that ω(J)0S = 0 is equivalent to J0 ω
−1(S) = 0 since ω is an automorphism of the

chiral algebra.
Case (iv) describes the strongest situation in which S remains a true symmetry of the

boundary theory. If S arises from the gluing of bulk fields, then condition (iv) coincides
with what we obtained in the last section, and the algebra of local fields is precisely
the algebra Ac = Ainv ∩ ω(Ainv). [Note that Ac consists of those fields S for which
J0S = 0 and J0 ω

−1(S) = 0.] On the other hand, we see that the condition to have
self-local fields (condition (ii)) or an algebra of mutually local fields (condition (iii)) is

6To prove that the conditions in (ii) and (iii) are necessary we have assumed that the perturbation is
hermitian.
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weaker. In particular the boundary has a symmetry algebra (in the above weak sense)
that may be larger than what we get from gluing bulk symmetries. For example, if in the
unperturbed theory the boundary preserves the full chiral algebra A of the bulk, then the
set of boundary fields {S ∈ A, J0S = 0} forms an algebra of mutually local fields that is
isomorphic to the algebra Ainv which is preserved in the bulk. In this sense, the boundary
preserves the same symmetries as the bulk under the deformation. We shall illustrate the
different conditions and their interpretation in an explicit example in section 2.4.3. We
shall also see that these results have interesting implications for the structure of the open
string moduli space; this will be explained in section 2.4.2.

2.4.1 The deformed boundary OPE

Let us now study the deformed OPE of two boundary fields S1(x1) and S2(x2). To this end
we insert these two fields into arbitrary perturbed correlators and look for singularities in
x1 − x2. To first order, the change in the OPE arises from the term

∫

H+

d2wS1(x1)S2(x2)Φ(w, w̄) , (2.4.1)

where the integral is regulated by the prescription Imw > ℓ/2. A change of the relative
locality is indicated by a logarithmic term log(x1 − x2).

As before we assume that Φ = JJ̄ with J̄ = ω(J) at the boundary. Furthermore, the
OPE of J and ω(J) does not have a simple pole (since otherwise the perturbation will
induce a non-trivial RG flow at the boundary); it is thus of the form

J(w)ω(J)(w̄) ∼ C

(w − w̄)2
+ O(1) , (2.4.2)

with some constant C.

By the usual recursive procedure, we can evaluate (2.4.1) by using the singular part
of the OPE of J(w) with the other fields. Since the singular term with J̄ is independent
of x1 and x2, it does not give rise to the term of interest. The other two OPEs on the
other hand lead to

∫

H+

d2w

[ hS1∑

m=0

1

(w − x1)m+1
V (JmS1, x1)S2(x2)ω(J)(w̄)

+

hS2∑

m=0

1

(w − x2)m+1
S1(x1)V (JmS2, x2)ω(J)(w̄)

]
. (2.4.3)

We then apply the same recursive procedure for ω(J). For each of the above two terms
there are in turn two terms, where the OPE of ω(J) with the fields at x1 and x2 is
considered. Since we are only interested in a contribution proportional to log(x1 − x2),
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only the mixed terms can contribute

∫

H+

d2w

hS1∑

m=0

hS2∑

n=0

(
V (JmS1, x1) V (ω(J)nS2, x2)

1

(w − x1)m+1

1

(w̄ − x2)n+1

+ V (ω(J)mS1, x1) V (JnS2, x2)
1

(w̄ − x1)m+1

1

(w − x2)n+1

)
. (2.4.4)

To evaluate the integrals, let us first consider the terms with n > 0. By the familiar trick
the integral can then be rewritten as an integral over the real axis,
∫

H+

d2w
1

(w − x1)m+1

1

(w̄ − x2)n+1
=

i

2n

∫

R+iℓ/2

dw
1

(w − x1)m+1

1

(w̄ − x2)n

=
i

2n

∫

R

dx
1

(x− x1 + i ℓ
2
)m+1

1

(x− x2 − i ℓ
2
)n

. (2.4.5)

As n > 0, the integral falls off fast enough so that we can close the contour in the lower
half plane. By the residue theorem, the result is then some inverse power of x1 − x2, but
certainly not logarithmic. The same argument applies for m > 0, thus we can concentrate
on m = n = 0.
In this case we have

∫

H+

dxdy
1

x+ iy − x1

1

x− iy − x2

=

∫ Λ

ℓ/2

dy
2πi

2iy + (x2 − x1)
(2.4.6)

= π log(2iy + (x2 − x1))
∣∣∣
Λ

ℓ/2
, (2.4.7)

where we have introduced an infrared cut-off Λ. For Λ → ∞, the corresponding term is
independent of x1, x2 and thus harmless. The ℓ-term however produces a (real) logarithmic
term in x1 − x2. As the second integral in (2.4.4) is just the complex conjugate of the
first, the condition that S1 and S2 stay mutually local is therefore

V (J0S1, x1) V (ω(J)0S2, x2) + V (ω(J)0S1, x1) V (J0S2, x2) = 0 . (2.4.8)

This should hold inside arbitrary correlators.
We can now use this result to derive the conditions (i) – (iv) from the beginning of

this section. A boundary field S = S1 will change its conformal weight if there exists
a boundary field S2 (its conjugate field) for which the two-point function picks up a
logarithmic term. For this to be absent we therefore require that the vacuum expectation
value of (2.4.8) vanishes. By a usual contour deformation argument we may move the zero
mode acting on the field at x2 to the field at x1; since J0 and ω(J)0 commute (because J
and ω(J) do not have a simple pole), we then obtain the condition

2〈V (J0 ω(J)0S, x1)V (S2, x2)〉 = 0 . (2.4.9)

Since the two-point function on the boundary is non-degenerate, this can only be the case
for all S2 if J0 ω(J)0S = 0, thus proving (i).
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A boundary field S will stay in addition self-local, if the OPE of S with itself does not
have any logarithmic coefficients. This must be the case in arbitrary correlators. Thus
the condition means that (2.4.8) with S = S1 = S2 must vanish as an operator identity.
By considering the OPE with an arbitrary field V (φ, z) in the limit where z → x1 and
z → x2, this can only be the case if either J0S = 0 or ω(J)0S = 0, or if J0S and ω(J)0S
are proportional to one another (so that the two terms in (2.4.8) cancel). In the last
case, using (i), it follows that J0J0S = 0 and ω(J)0 ω(J)0S = 0. If the perturbation is
hermitian, i.e. if both J0 and J̄0 are self-adjoint operators, we may diagonalise J0. Then
J0J0S = 0 implies that J0S = 0, and hence either J0S = 0 or ω(J)0S = 0, thus proving
(ii).

Now consider two mutually local fields S1 and S2 that satisfy (i) and (ii). The condition
that they remain mutually local is again that (2.4.8) holds inside an arbitrary correlator,
i.e. as an operator identity. Because of (ii), either J0S1 = 0 or ω(J)0S1 = 0, and either
J0S2 = 0 or ω(J)0S2 = 0. It is then obvious that (2.4.8) only vanishes if either J0S1 =
J0S2 = 0 or ω(J)0S1 = ω(J)0S2 = 0, thus giving (iii).

Finally if we want a field S to stay local relative to all fields S ′, (2.4.8) must hold
as an operator identity for S1 = S and S2 = S ′ arbitrary. This is obviously the case if
J0S = ω(J)0S = 0. Thus we obtain (iv).

All the given arguments can be generalised to higher orders; in appendix A.2 this is
explained for the analysis of (ii), but the line of arguments is similar in the other cases.

2.4.2 Open string moduli space

These considerations also have some interesting implications for the structure of the open
string moduli space. The moduli space is spanned by the exactly marginal boundary
fields. The fields S that keep conformal weight h = 1 and thus stay marginal under the
bulk deformation satisfy J0ω(J)0S = 0. This does not guarantee however that the fields
remain exactly marginal. As was shown in [169] a sufficient criterion for exact marginality
is that the marginal field is self-local. The criterion for self-locality (ii) thus provides a
characterisation of at least some of the exactly marginal boundary fields.

On the other hand, at least to first order in perturbation theory, the condition for exact
marginality of S is only that no non-trivial relevant or marginal fields appear in the OPE
of S with itself. Thus the space of exactly marginal boundary fields (that parameterise the
open string moduli space) could be bigger than just the self-local marginal fields. Actually,
from the above analysis of the perturbed OPE it is clear that the only modification of the
OPE of a marginal field S with itself appears in the form of terms containing a logarithm,
which implies that the only effect is to change the conformal weights of the fields that
appear in the OPE. If in the original theory the only fields that appear in the OPE of
S with itself have h > 1, then this will continue to be so, at least for some finite range
of λ. In particular, one should therefore expect that exactly marginal boundary fields
that retain their conformal weight h = 1 under the deformation (i.e. that satisfy (i)) will
continue to be exactly marginal for finite, but maybe small λ. In general there may thus
be more exactly marginal fields than those characterised by (ii); we shall see an example
of this phenomenon in section 2.4.3.
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One can also arrive at this conclusion from a different point of view. Suppose that S is
an exactly marginal boundary field before the deformation. Since we are only considering
bulk deformations Φ that are exactly marginal (in the presence of the boundary), we
know that no marginal or relevant boundary fields appear in the bulk-boundary OPE of
Φ. If the direction in the open string moduli space corresponding to S survives the bulk
deformation, then Φ must also remain exactly marginal with respect to the perturbed
boundary condition. To analyse the bulk-boundary OPE of Φ in the deformed boundary
theory, we look at the deformed correlators containing Φ(w, w̄) and look for singularities
in w − w̄. The first order contribution is

Φ(w, w̄)

∫

R

dxS(x) , (2.4.10)

where, as usual, the expression is understood as being inserted into correlators. Writing
Φ = JJ̄ , and using the OPE of J and ω(J) with S, we see that the only terms that could
change the singular terms in w − w̄ are

∫

R

dx
∑

m,n≥0
m+n≤1

V (ω(J)nJmS, x)
1

(w − x)m+1(w̄ − x)n+1
. (2.4.11)

Each summand gives a contribution ∼ (w − w̄)−m−n−1, so the only problematic term is
the one with m = n = 0. For this term to be absent, we need that ω(J)0J0S = 0. This
coincides with the condition (i) that S does not change its conformal weight under the
bulk deformation Φ.

2.4.3 Example: Deformed SU(2) × SU(2) permutation branes

Let us illustrate our analysis in an example. We consider the product of two SU(2) WZW
models at level k. On the upper half plane we impose permutation gluing conditions on
the currents (see [72, 168]) corresponding to the automorphism

ω(J (1)) = g J (2) g−1 , ω(J (2)) = h J (1) h−1 , (2.4.12)

where g and h are group elements in SU(2). Since this gluing condition preserves the
full su(2)k×su(2)k symmetry, the boundary spectrum of each permutation brane forms a
(conventional) representation of su(2)k×su(2)k. In the simplest case (the brane associated
to the identity representation with g and h being arbitrary) the spectrum takes the form

H =
k⊕

l=0

Hsu(2)k
l ⊗Hsu(2)k

l . (2.4.13)

Now we perturb the theory by the operator Φ = J
(1)
3 J̄

(1)
3 , i.e. we deform7 the U(1) sitting

inside the first SU(2). The symmetry in the bulk is broken to

Ainv = su(2)k/u(1)2k × u(1) × su(2)k . (2.4.14)

7The deformation of untwisted D-branes in a single copy of SU(2) has been analysed in [76, 77, 79].
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The chiral bulk symmetry thus only contains four fields of conformal weight one after
the perturbation; these are J

(1)
3 and J

(2)
a . We also note that the bulk deformation is

exactly marginal in the presence of the permutation boundary, because the OPE of J
(1)
3

and ω(J
(1)
3 ) = gJ

(2)
3 g−1 is non-singular.

As we have just seen, the chiral and anti-chiral fields J
(1)
± and J̄

(1)
± do not remain chiral

under the deformation. After the deformation we therefore cannot glue J
(1)
± to h−1J̄

(2)
± h

and J̄
(1)
± to gJ

(2)
± g−1 any more. The chiral algebra that can still be preserved by gluing

bulk fields is therefore only

Ac = Ainv ∩ ω(Ainv) =
su(2)k
u(1)2k

× u(1) × su(2)k
u(1)2k

× u(1) . (2.4.15)

Thus we are in the situation where Ac ( Ainv. Note that Ac has only two fields of
conformal weight one.

Now we turn to the boundary description of the system. The boundary fields that
belong to the SU(2) currents J

(1)
± and gJ

(2)
± g−1 keep their conformal weight: they satisfy

criterion (i) of section 2.4, because they are either annihilated by the zero mode of J
(1)
3

or by the zero mode of ω(J
(1)
3 ) = gJ

(2)
3 g−1. The boundary theory therefore continues

to have six marginal fields. Furthermore, since they are exactly marginal in the original
theory, they remain exactly marginal, at least for some finite perturbation. (As we shall
see momentarily, they will actually remain exactly marginal for arbitrary finite pertur-
bations.) This is in agreement with the arguments of section 2.4.2; the six-dimensional
moduli space of permutation branes should survive the perturbation, because the bulk
deformation Φ is exactly marginal for arbitrary g and h. In the perturbed theory, these
six degrees of freedom can be described as follows: two parameterise the choice of gluing
J

(1)
3 to any current of the second, undeformed su(2), similarly two come from gluing J̄

(1)
3 ,

and the remaining two come from the two u(1)s that are conserved by the brane.
Not all of these fields are however mutually local, and therefore arbitrary linear combi-

nations will not be self-local. Given the analysis of section 2.4 we expect that a subalgebra
of fields isomorphic to Ainv remains mutually local. For example we can take the mutually
local fields to be those that are annihilated by the zero mode of J

(1)
3 . This subalgebra

contains then four fields of h = 1, namely J
(1)
3 as well as the three fields J

(2)
a from the

second su(2)k.
Finally, the fields that are local with respect to all boundary fields are those that are

annihilated by both the zero mode of J
(1)
3 and J

(2)
3 ; this algebra is then precisely Ac and

contains only two fields of weight one, namely J
(1)
3 and J

(2)
3 .

We can check these assertions by computing the boundary spectrum. The deformed
theory is a Zk × Zk orbifold of the product of two parafermion theories su(2)k/u(1)2k

and a square torus, with permutation gluing conditions in the coset part and a diagonal
one-dimensional brane on the torus (similar to the situation in section 2.3.3). The permu-
tation boundary state on the parafermions is not affected by the perturbation, and it is
straightforward to determine the boundary states for the diagonal branes on the deformed
torus. It is then not hard to obtain the boundary states in the orbifolded theory and from
there the boundary spectra.
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Lb =
√
R2

1 +R2
2

Ls =
R1R2

Lb

Lb

Ls/2

R2 Ls/2

R1

Figure 2.3: The diagonal brane with length Lb and a string with length Ls that winds
perpendicular to the brane around the torus.

We shall take a shorter route here which uses geometric arguments. First we decom-
pose the boundary spectrum (2.4.13) of the unperturbed theory into representations of
su(2)k/u(1)2k and u(1)2k,

H =
⊕

l,m1,m2

H(l,m1) ⊗H(l,m2) ⊗Hu(1)2k
m1

⊗Hu(1)2k
m2

, (2.4.16)

where m1,m2 run from −k + 1 up to k (with the condition l +mi even). The product of
the u(1)2k representations can be explicitly expressed in terms of momentum and winding
modes. On the level of characters we have (m1 +m2 is even)

χm1(q)χm2(q) =
1

η2(q)

∑

n∈Z

∑

m=
m1+m2

2
+nk mod 2k

q
m2

2k
+(n−m1−m2

2k
)2 k

2 . (2.4.17)

Here, m corresponds to the momentum modes of the open strings, and n corresponds
to the winding modes. When we deform the radius of the first U(1), R1 → κR1, the
contribution of momentum and winding modes change. The length of the brane is
changed to

√
R2

1 +R2
2, which means that the conformal weight of a momentum mode

is changed by the factor 2/(1 + κ2). A string winding perpendicular to the brane has
length R1R2/

√
R2

1 +R2
2, so the conformal weight of a winding mode is changed by a

factor of 2κ2/(1 + κ2) (see figure 2.3). Hence the boundary partition function of the
permutation brane in the perturbed theory is

Z(q) =
∑

l,m1,m2

∑

n

∑

m=
m1+m2

2
+nk mod 2k

χ(l,m1)(q)χ(l,m2)(q)
1

η2(q)
q

m2

k(1+κ2)
+(n−m1−m2

2k
)2 kκ2

(1+κ2) .

(2.4.18)
In particular, the partition function can be written in terms of untwisted representations
of Ac, as anticipated. Given our analysis we expect, however, that we can also write the
partition function in terms of (twisted) representations of Ainv. To see that this is indeed
possible we rewrite the partition function as

Z(q) =
∑

l,m1,m2

∑

N,M

χ(l,m1)(q)χ(l,m2)(q)
1

η2(q)
q

[
(
m1+m2

2k
+M+N)2+(N−m1−m2

2k
−M)2κ2

]
k

1+κ2 ,

(2.4.19)
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where we introduced new summation variables M,N which replace the variables m,n
in (2.4.18) by m = m1+m2

2
+ (N + M)k, n = N −M . A simple transformation of the

exponent of q yields now

Z(q) =
∑

l,m1,m2

∑

N,M

χ(l,m1)(q)χ(l,m2)(q)
1

η2(q)
q

(m2+2Nk)2

4k
+

(m1+2Mk)2

4k
+ 1

2k
(m2+2Nk)(m1+2Mk) 1−κ2

1+κ2 .

(2.4.20)
The only effect of the deformation κ 6= 1 is the term that is a product of the two u(1)
charges. Introducing twisted su(2) characters,

χ̂l,θ(q) =
∑

m∈Z

χ(l,m)(q)
1

η(q)
q
m2

4k
+θm , (2.4.21)

we can rewrite the partition function as

Z(q) =
∑

l,m1

∑

M

χ(l,m1)(q) χ̂l,(M+
m1
2k

) 1−κ2

1+κ2
(q)

1

η(q)
q

(m1+2Mk)2

4k . (2.4.22)

Thus the partition function can indeed be written in terms of twisted su(2) characters,
coset characters and u(1) characters, giving strong support to our claim that the boundary
spectrum forms a (twisted) representation of Ainv.

Finally, we want to check our assertion that the two sets of SU(2) currents remain
marginal (and in fact exactly marginal). For concreteness let us consider the SU(2)

current J
(1)
+ that appears in the representation with l = 0, m1 = 2, m2 = 0, n = 0, m = 1.

We can easily evaluate the conformal weight of this mode in the perturbed theory,

h = h(0,2) + h(0,0) +
1

k(1 + κ2)
+

κ2

k(1 + κ2)
= 1 , (2.4.23)

where h(0,2) = 1− 1
k

and h(0,0) = 0. The analysis is similar for J
(1)
− and J

(2)
± . Thus it follows

that for all values of κ, there are six marginal fields which come from the SU(2)× SU(2)
symmetry of the undeformed theory. As we have explained before they describe the six
exactly marginal boundary fields that generate the six-dimensional moduli space of the
brane.

2.4.4 Matrix factorisation examples

As a final example we consider theories for which the perturbation is not a current-current
deformation. While we cannot study these cases in general, there is an interesting class of
examples for which we can test the above ideas. These are B-type branes in Gepner models
of Calabi-Yau 3-folds discussed in section 2.2.2. As was explained there, under complex
structure deformations, the diagonal N = 2 algebra continues to be a symmetry of the
bulk conformal field theory. Suppose we consider a B-type D-brane in this background.
Then we can ask whether it will continue to be a B-type N = 2 brane under these
complex structure deformations. This problem is very accessible since B-type branes in
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these theories can be described in terms of matrix factorisations (see [131, 25, 132] for
some early references and [123] for a review) of the associated Landau-Ginzburg model.

Our arguments above now suggest that the brane will remain B-type provided that the
bulk perturbation is exactly marginal in the presence of the brane, i.e. that no relevant or
marginal boundary field is induced by the bulk perturbation. As in the situation discussed
in [17], a non-trivial RG flow will be induced if and only if the bulk-boundary operator
product coefficient BΦψ 6= 0 for some boundary fermion ψ of u(1) charge 1. Thus we want
to show that the matrix factorisation is obstructed against the bulk perturbation by Φ if
and only if BΦψ 6= 0 for some boundary fermion ψ of u(1) charge 1.

From a matrix factorisation point of view a D-brane remains B-type if we can adjust
the matrix factorisation Q as Q(λ) = Q+λQ1 + · · · so that Q(λ) is a matrix factorisation
of W (λ) = W +λΦ. To first order in λ a necessary and sufficient condition for this is that
Φ is exact with respect to Q [124]. If Φ is exact, then the bulk-boundary correlator BΦψ

vanishes for all boundary fields ψ, as follows by standard Landau-Ginzburg arguments.
Thus if the matrix factorisation can be adjusted as above, the bulk-boundary correlator
BΦψ vanishes, and no marginal or relevant boundary field is turned on.

To show the converse direction we need to prove that if Φ is not exact with respect to
Q0 (so that the matrix factorisation adjustment is obstructed), then there is a boundary
field ψ of u(1) charge 1 such that BΦψ 6= 0. If Φ is not exact, this means that Φ taken
to the boundary induces a chiral primary field on the boundary. From conformal field
theory we then know that there is a non-trivial bulk boundary correlator involving these
two fields; since both are chiral primary fields, this amplitude is then also non-trivial in the
topologically twisted theory, and hence BΦψ 6= 0 for some boundary field ψ. Furthermore,
it follows from charge conservation considerations in the Landau-Ginzburg theory that
the bulk-boundary OPE can only be non-trivial if ψ is a fermion of charge 1. This then
proves our claim.

As an aside we note that the above analysis only applies to the Calabi-Yau 3-fold
case. For the case of K3 the charge conservation analysis implies that the only boundary
field that can have a non-trivial bulk-boundary correlator with the complex structure
deformation Φ is a boson of charge 0. Such a field does not correspond to an exactly
marginal boundary field. However, this does not invalidate our claim concerning the
symmetries of the boundary since in the K3 case there is in fact N = 4 supersymmetry,
and a brane need not remain B-type with respect to any N = 2 subalgebra even if it
continues to preserve the full N = 4 superconformal algebra — see [24] for an example.
Finally, we also note that the above point of view suggests how the criterion of [24] for
obstructions of matrix factorisations on K3 against complex structure deformations can
be sharpened: the matrix factorisation will be obstructed to first order if and only if
BΦψ 6= 0 for some boundary boson of charge 0. One easily checks that the examples of
[24] are in agreement with this criterion.

2.5 Summary

As the results of our analysis are somewhat subtle, we will briefly summarise the main
points. For a pure bulk theory, if the perturbation is a current-current field Φ = JJ̄ , then
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the surviving symmetry algebra Ainv is formed by the fields S ∈ A for which J0S = 0.
If there is a boundary, we have seen that if the boundary condition preserves Ainv before
deforming the bulk, it always does so after the deformation. Thus the boundary never
destroys any additional symmetries!

As we have seen the statement about the boundary symmetries is actually quite subtle,
and two cases need to be distinguished. In the first case the boundary condition originally
preserves the algebra Ainv in the sense that the fields in Ainv and Āinv are glued at
the boundary via some automorphism ω (that is an automorphism of Ainv). Then the
symmetries of the boundary theory actually arise from gluing preserved bulk symmetries
(see section 2.3.2). The prime example for this phenomenon is the diagonal brane on a
torus when the torus is deformed (see section 2.3.3).

In the second case, the automorphism ω of A actually does not define an automorphism
of the preserved subalgebra Ainv. Then only fields in Ac = Ainv ∩ ω(Ainv) can be glued
after the deformation. From the point of view of the gluing conditions of the bulk the
boundary symmetry thus appears to be reduced to Ac. However, as discussed in section 4,
the boundary theory still has mutually local boundary fields associated to all elements
of Ainv, and the spectrum of the boundary theory can be decomposed into (twisted)
representations of Ainv. The prime example for this phenomenon is the permutation
brane in the product of two SU(2) WZW models (see section 2.4.3).

These results were obtained for current-current deformations, but we believe that
the general observation — the boundary symmetry is not further reduced than the bulk
symmetry — is also true for a larger class of deformations. We gave one example in
section 2.4.4 using techniques from matrix factorisations in Landau-Ginzburg models.

We have only considered current-current deformations of the form Φ = JJ̄ with ω(J) =
J̄ at the boundary. It is straightforward to generalise our analysis to the more general
case where Φ = JJ̄ ′ with ω(J ′) = J̄ ′ at the boundary. We then have to distinguish
Ainv = {S; J0S = 0} and Ā′

inv = {S̄; J̄ ′
0S̄ = 0}. The gluing automorphism can be

deformed for fields in Ainv∩ω(A′
inv), and Ainv still plays the role of an algebra of mutually

local boundary fields.
Many results also carry over to the most general current-current deformation where

Φ =
∑

i JiJ̄
′
i . This deformation is exactly marginal in the bulk if the currents Ji do

not have simple poles among themselves, and similarly for the J̄ ′
i [36]. Using the same

arguments as in section 2.2 one easily shows that the symmetry algebra that is preserved
by such a deformation is Ainv = {S; Ji,0S = 0 for all i} and similarly Ā′

inv = {S̄; J̄ ′
i,0S̄ =

0 for all i}. In the presence of a boundary, the deformation Φ is exactly marginal if
J̄ ′
i = ω(J ′

i) at the boundary and if the Ji do not have simple poles with the ω(J ′
j). In

this case one can then also generalise straightforwardly our analysis of deformed gluing
conditions and boundary algebras.
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Chapter 3

Brane backreactions and the
Fischler-Susskind mechanism

3.1 Overview

In this chapter we want to extend extend the RG equations derived in chapter 1 to include
the backreaction of branes on the bulk theory. Whereas so far the entire analysis took
place in the framework of pure CFT, we will now need to consider effects arising from the
fact that we consider a complete string theory.

The idea for the mechanism underlying the backreaction goes back to [40, 38, 73, 74,
27]: in string theory, to calculate amplitudes one considers not only the disk diagram,
but also diagrams of higher genus. The total amplitude is obtained by summing over all
topologies and integrating over the moduli of the conformal structure of the diagrams.
This integration can lead to new divergences at the boundary of the moduli space M,
i.e. when the surface degenerates. More precisely, the spectrum of the theory may contain
tadpoles, i.e. massless modes, which give logarithmic divergences when integrated over M.
According to [73, 74], these can be absorbed by a suitable shift of the coupling constants
in lower genus diagrams, thus contributing to the RG flow of the bulk couplings. Since the
nature of the tadpoles depends on the boundary condition that is imposed, this describes
the backreaction of the brane on the bulk.

It turns out that this prescription works for the annulus diagram, i.e. that the tadpole
divergences can be compensated by local counterterms on the disk diagram, leading to
additional terms in the bulk RG equations of chapter 1. The brane backreaction can thus
be incorporated quite naturally in the language of renormalisation group flows.

We will then use the RG equations so obtained to study various examples. In many
cases, we know already from geometric considerations how the brane should deform the
bulk theory, so that we can compare our results. For instance, we expect that a D1-brane
wrapping a circle should shrink its radius. This is confirmed by the RG analysis. In
other, more complicated examples we also find agreement between the RG analysis and
geometric expectations or supergravity calculations.
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3.2 Renormalisation group equations

3.2.1 Dimensional regularisation on the disk

We will first rederive the renormalisation group equations (1.3.18) using a different regu-
larisation scheme. The divergent expression was given by

λl11 · · ·µm1
1 · · ·

l1! · · ·m1! · · ·
∏

i

ℓ(hφi−2)li
∏

j

ℓ(hψj−1)mj

×
∫
〈φ1(z

1
1)φ1(z

1
2) · · ·φ2(z

2
1) · · ·ψ1(x

1
1) · · · 〉

∏
d2zik

∏
dxjk . (3.2.1)

Note that the disk has the conformal symmetry group SU(1, 1). The integration measure
dµ must transform with conformal weight (−1,−1) under such transformations, so that
integrals of marginal (1, 1) fields

∫
dµφ(1,1) are invariant. Clearly, d2z satisfies this prop-

erty. Since we can use SU(1, 1) to map any point to 0, it follows that up to a constant
factor this is the only possible measure. Already because of the symmetry group, the
integrals in (3.2.1) are infinite. To render them finite, we use SU(1, 1) to fix the position
of one bulk and one boundary insertion. Alternatively, we can (formally) divide by the
volume of SU(1, 1). This will turn out to be important later on.

To regularise (3.2.1), we will not cut disks, but use a scheme which resembles dimen-
sional regularisation. To evaluate diverging integrals, we change the conformal dimension
of the fields involved to such values that the integral converges, and evaluate the original
integral by analytic continuation. One motivation for using this scheme comes from the
spacetime interpretation of the divergences that will show up in the modular integrals:
they can be interpreted as infrared divergences due to massless modes, so that a natural
regularisation is to introduce a small mass term. In the worldsheet theory, this corre-
sponds to a shift of the conformal dimension of the field. From a more technical point of
view, it is favourable to keep conformal covariance of all expressions, which is destroyed
if we cut out small disks.
Let us shift the conformal weight of boundary fields as hψ 7→ hψ − ǫ, and that of bulk
fields as hφ 7→ hφ− 2ǫ.1 As an example for how the scheme works, consider two marginal
bulk fields φi, φj that come close to each other to produce another marginal field φk,

λiℓ
−2ǫλjℓ

−2ǫφi(z)φj(0) ∼ λiλjℓ
−4ǫ φk(0)Cijk

|z|hi+hj−hk = λiλjℓ
−4ǫφk(0)Cijk|z|−2+2ǫ . (3.2.2)

For simplicity, we have fixed the position of φj to 0. We perform the d2z integral up to
some IR cutoff L to obtain

λiλjℓ
−2ǫφk(0) 2πCijk

ℓ−2ǫ

2ǫ
L2ǫ . (3.2.3)

We have pulled out a factor ℓ−2ǫ which will be absorbed in the shift of λk (see (3.2.5)).
The second factor ℓ−2ǫ gives

ℓ−2ǫ

2ǫ
L2ǫ =

1

2ǫ
− log ℓ+ logL+ O(ǫ) . (3.2.4)

1Note that for bulk fields in a theory with boundary h = hL + hR.
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In the limit ǫ→ ∞, only the second term gives a dependence on ℓ which contributes to the
RG flow. We see that the regularisation scheme has introduced an implicit dependence
of the integral on ℓ. As 〈e−S〉 must be independent of ℓ, we must compensate a shift in
log ℓ by shifting λi and µj. A combinatorial analysis shows that the shift needed is

λkℓ
−2ǫ 7→ λkℓ

−2ǫ + λiλjℓ
−2ǫπCijk · log ℓ . (3.2.5)

In a similar way, we treat the other types of divergences. The resulting renormalisation
group equations are then the same as (1.3.18), (1.3.19)

λ̇k = (2 − hφk)λk + πCijk λiλj + O(λ3) , (3.2.6)

µ̇k = (1 − hψk)µk +
1

2
Bik λi +Dijk µiµj + O(µλ, µ3, λ2) , (3.2.7)

where the dot indicates a derivative with respect to the flow parameter t = log ℓ.
Note that although the both the result and the flow parameter turn out to be same

for both schemes, the divergences themselves are quite different: in the first analysis, we
obtained divergences in ℓ itself, whereas here the divergence was in ǫ, the shift of the
conformal weight.

3.2.2 Higher genus: general strategy

To calculate amplitudes in string theory, we have to take into account higher genus dia-
grams as well. For simplicity assume that there is only one type of field φ in our theory. As
before, a string amplitude F can be expanded in powers of λ, F =

∑
n λ

nFn . Each term
Fn itself contains contributions from all topologically different diagrams with n insertions
of φ. Moreover, for a given topology we must integrate over all conformal structures,
parametrised by modular parameters ti. In full,

Fn =
∑

k

gχks

∫

Mk

dtiF
k
n (ti) , (3.2.8)

where gs is the string coupling constant and χk is the Euler characteristic of the diagram
F k. Integration over the moduli space Mk leads to new divergences due to marginal and
relevant modes in the spectrum of the theory. The divergences have to be regularised,
and we must try to compensate for them by introducing counterterms on diagrams of
lower genus. These ℓ-dependent terms then give the the backreaction terms in the bulk
RG equations.

3.2.3 The annulus diagram

We will now calculate the backreaction terms caused by the annulus diagram An = F 1
n .

The annulus has a single real modular parameter q, its inner radius. The integral over
q produces a divergence for q → 0. In this case there is an intuitive way to see how the
counterterm on the disk arises, as shown in figure 3.1: the divergent part of the annulus
diagram with n integrated insertions corresponds to a disk diagram with an additional
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q

1
φ

φ

φ

φ

q → 0 χ(0)
φ

φ

φ

φ

Figure 3.1: Divergences of the annulus diagram

field χ(0) inserted. A shift λ 7→ λ + δλ on the disk diagram Dn+1 = F 0
n+1 can thus

compensate the divergence. The corresponding term is of order gs.
Although we will only calculate the term of order gsλ

0, some comments on terms of higher
order in λ are necessary. The analysis on the disk showed that λ2 terms are produced by
two fields approaching each other, and that higher order terms appear when n fields come
close together. In the situation here, higher order corrections arise when additional fields
move close to the new field produced on the disk or to the boundary of the annulus. If
for instance a single φ moves close to the centre of the annulus An, the divergence can be
compensated by the disk diagram Dn, which produces a contribution of order gsλ. As we
are only interested in the lowest order correction, we can thus subtract divergences which
arise from fields moving close to each other or to the boundary.
Note that the symmetry group of the annulus is only U(1) — we can fix the position of one
boundary insertion, or alternatively we can divide the amplitude by 2π. This also means
that unlike on the disk, the conformal symmetry no longer uniquely fixes the integration
measure. Nevertheless, the correct measure is still d2z, see e.g. [115].
For a given radius q, the integrated n-point amplitude of the annulus is given by

An(q) =
1

π

n∏

i=1

∫ q

1

d2zi〈〈B||φ(z1) . . . φ(zn)q
L0+L̄0−2||B〉〉 . (3.2.9)

For simplicity, we have only included one type of marginal field φ. As usual, 〈〈B|| is
the boundary state at the outer radius 1. To obtain the boundary state at the inner
radius, we transport ||B〉〉 to the inner radius q using the propagator π−1qL0+L̄0−2, whose
normalisation is fixed by the construction of the boundary states. By inserting a complete
set of states, we expand the boundary state in a sum of fields inserted at the point 0. The
action of the propagator then gives

π−1qL0+L̄0−2||B〉〉 = π−1
∑

i

qhi+h̄i−2|φi〉〈φi||B〉〉 . (3.2.10)

Here 〈φi||B〉〉 is the disk one-point function with φi sitting at the point 0. Integrating
(3.2.9) over its moduli space using the measure q−1dq, we see from (3.2.10) that divergences
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arise for q → 0 for all fields with hi = h̄i ≤ 1. In a supersymmetric setup, we expect
no relevant, i.e. tachyonic fields. In the bosonic theories we will consider, the only such
field is usually the vacuum h = h̄ = 0. The vacuum only changes overall normalisations,
so that we will ignore it in what follows. The only divergences are then due to marginal
fields hi = h̄i = 1 − ǫ. Their contribution is

||B(q)〉〉 ≃ q−2ǫ

π

∑

i

〈φi||B〉〉φi(0) . (3.2.11)

For the moment, let us assume that there are no integrated bulk insertions. The integral
of (3.2.11) over moduli space converges if ǫ < 0, and we will use its analytic continuation,

∫ 1

0

q−1dq ||B(q)〉〉 = − 1

π

1

2ǫ

∑

i

〈φi||B〉〉φi(0) . (3.2.12)

The pole in ǫ will then contribute to the RG equations as in (3.2.3).
If the diagram contains integrated bulk insertions, the comparison is a bit more subtle:
in the disk diagram, the additional bulk insertions are integrated over the entire disk,
whereas on the annulus they are only integrated up to the inner radius q. The divergent
contribution of the tadpole, however, comes from the limit q → 0. We can thus concentrate
on annulus diagrams where q < |ǫ|. Indeed,

∫ 1

|ǫ|
dqq−1−2ǫ = − 1

2ǫ
(1 − e−2ǫ ln |ǫ|) = O(ln |ǫ|) (3.2.13)

is only a subleading contribution compared to (3.2.12). We claim then that to lowest
order in λ we can rewrite the annular integral as

∫ |ǫ|

0

dq

∫ 1

q

d2zi〈. . .〉 =

∫ 1

|ǫ|
d2zi

∫ |ǫ|

0

dq〈. . .〉 + O(ǫ2) . (3.2.14)

This holds because we can estimate the contribution of the fields φ integrated over the
small disk of radius |ǫ|: since we only calculate the lowest order term in λ, we subtract
all singular terms in φ. The remaining expression is then bounded by some constant B,
and we can estimate its contribution as ≤ πǫ2B. A similar argument shows that we can
cut out the same small disk in the disk diagram without changing the result. This shows
that we can compare annulus diagrams with disk diagrams even if they contain integrated
insertions.
So far, the fields φi introduced by the tadpoles are inserted at the point z = 0. In order to
be able to compensate them with a disk diagram, we need to rewrite them as integrated
insertions. To do this, we use the fact that the disk has a larger symmetry group than
the annulus. Consider the disk diagram with n integrated fields φ(zi) and one additional
field χ(z), each of them marginal. We can use part of the symmetry group SU(1, 1) to fix
the position of χ to 0. In particular, for each z choose fz ∈ SU(1, 1) such that fz(z) = 0.
Defining ẑi = fz(zi), conformal covariance tells us that the zi integral changes as

∫
d2ziφ(zi) →

∫
d2ẑi

∣∣∣∣
∂zi
∂ẑi

∣∣∣∣
−2ǫ

φ(ẑi) =

∫
d2ẑiφ(ẑi) + O(ǫ) . (3.2.15)
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Up to terms of order ǫ, the resulting integral is thus independent of z, and the additional
field χ(z) is fixed at the position z = 0. Formally, we can write this manipulation as

1

|SU(1, 1)|

∫
d2z

∫
d2zi〈χ(z)φ(z1) . . .〉 =

1

|U(1)|

∫
d2ẑi〈χ(0)φ(ẑ1) . . .〉 + O(ǫ) , (3.2.16)

where |G| denotes the volume of the respective symmetry group. On the right hand
side of (3.2.16), we divide by |U(1)| because we still have not fixed the entire symmetry:
after choosing fz, we can always rotate the disk around its centre. This remaining U(1)
symmetry however is exactly the symmetry group of the annulus, so that the right hand
side of (3.2.16) is the standard annulus diagram with one fixed insertion.
The upshot of this analysis is that the divergent part of An has the same form as Dn+1,
so that it can be compensated by introducing a counterterm on the disk diagram. As
before, we need to split off a factor ℓ−2ǫ to be included in λ. The annulus contribution to
the disk diagram is thus

−ℓ−2ǫ gs
π

ℓ2ǫ

2ǫ
〈φi||B〉〉

∫
d2z φi(z) = −ℓ−2ǫ gs

π

(
1

2ǫ
+ log ℓ+ O(ǫ)

)
〈φi||B〉〉

∫
d2z φi(z)

(3.2.17)
for each marginal field φi. The usual combinatorial analysis shows that this can be
compensated by shifting the coupling constant λi.
Putting everything together we obtain the modified bulk RG equations

λ̇k = (2 − hφk)λk +
gs
π
〈φk||B〉〉 + πCijk λiλj + O(gsλ, λ

3, g2
s) . (3.2.18)

3.3 WZW models and the free boson

We now apply equation (3.2.18) to some examples. First we consider the free boson
compactified on a circle, subject to Neumann or Dirichlet boundary conditions. Then we
turn to Wess-Zumino-Witten models based on compact Lie groups. These models and
their boundary states are very well understood and can be interpreted geometrically. We
can thus check RG flow results against geometric expectations.

3.3.1 The free boson on a circle

Let X(z, z̄) be the free boson compactified on a circle of radius R, X ∼ X + 2πR. Its
action is given by

S =
1

2π

∫
d2z ∂X∂̄X . (3.3.1)

Neumann and Dirichlet boundary conditions are given by identifying on the real axis
z = z̄

∂X = ∂̄X (Neumann) and ∂X = −∂̄X (Dirichlet).

As usual, we can switch to the closed string picture by mapping the upper half-plane to
the disk. The boundary condition is then described by the boundary states ||N〉〉 and
||D〉〉, respectively.
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The ground states of the system are parametrised by momentum and winding numbers
n,w ∈ Z such that

(pL, pR) =
( n

2R
+ wR,

n

2R
− wR

)
, (3.3.2)

with conformal weight given by (1
2
p2
L,

1
2
p2
R). At a generic radius R, the only marginal

operator is ∂X∂̄X. Its one-point function is given by

〈∂X∂̄X||N〉〉 = 1 and 〈∂X∂̄X||D〉〉 = −1 . (3.3.3)

We will also have to deal with the relevant fields that are present in theory.
Let us analyse the Neumann case first. The one-point function vanishes unless pL = −pR,
i.e. n = 0, so that only pure winding modes couple. If we take R big enough, (3.3.2)
shows that all these modes become irrelevant. It is thus sufficient to only consider the
perturbation by ∂X∂̄X,

S =
1

2π

∫
d2z ∂X∂̄X − λ

∫
d2z ∂X∂̄X . (3.3.4)

We see that (3.2.18) yields λ̇ = gs/π > 0. An increase in λ means that the circle shrinks,
as can be seen from (3.3.4): to maintain the correct normalisation of the action, we
have to introduce rescaled fields X ′ =

√
1 − 2πλX, which satisfy X ′ ∼ X ′ + 2πR′ =

X ′ + 2πR
√

1 − 2πλ.
This shows that a Neumann brane that wraps the circle shrinks its radius. Similar rea-
soning shows that the D0 brane given by ||D〉〉 increases the radius of the circle.
When R becomes of the order of the self-dual radius R0 = 1/

√
2, new relevant and

marginal fields appear, and the above analysis breaks down. To analyse this case, we
will use the fact that the free boson at the self-dual radius is equivalent to the SU(2)
Wess-Zumino-Witten-model at level 1. We therefore turn our attention to WZW-models.

3.3.2 Renormalisation group flows in general WZW models

Wess-Zumino-Witten models are often described as σ-models on a group manifold of
a Lie group G [181]. A different, more algebraic approach is to define them via their
operator content and correlation functions. For the moment, we will use this more abstract
formulation, before changing to a more geometric picture in the next section.
The currents of the WZW model of a Lie group G at level k correspond to elements of
the Lie algebra g of G and satisfy the operator product expansion

Ja(z)J b(w) ∼ kδab

(z − w)2
+ ifabc

J c(w)

(z − w)
, (3.3.5)

where fabc are the structure constants of g. The marginal fields of the theory are given
by all possible combinations JaJ̄ b of left-moving and right-moving currents. We consider
branes that preserve the affine symmetry up to conjugation by g ∈ G [98, 26, 167]. In the
closed string picture this means that the boundary state ||B〉〉 has to satisfy the gluing
condition

(gJamg
−1 + J̄a−m)||B〉〉 = 0 , (3.3.6)
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whereas in the open string picture the left and right moving currents are identified at the
boundary as

gJa(z)g−1 = J̄a(z̄) for z = z̄ . (3.3.7)

The one-point function is best evaluated in the open string picture and gives [84, 92]

〈(JaJ̄ b)(u)〉B = k
tr (JagJ bg−1)

(u− ū)2
= −k tr (JagJ bg−1)

|u− ū|2 , (3.3.8)

so that 〈JaJ̄ b||B〉〉 = −ktr (JagJ bg−1). Note that the currents are normalised such that
tr (JaJ b) = δab. The orthonormal marginal fields are thus

φab(z) = k−1JaJ̄ b . (3.3.9)

Let us start from the model which is initially unperturbed. To lowest order, (3.2.18) gives
then

λ̇ab = −gs
π

tr (JagJ bg−1) . (3.3.10)

Higher order contributions in the bulk come from evaluating connected n-point functions.
They are given [84, 92] by the product of traces ktr (Ja1 . . . Jan)ktr (J̄ b1 . . . J̄ bn), so that in
the normalisation (3.3.9) they go as k2−n. In the limit k → ∞ they only give subleading
contributions.
Let us make a side remark. We can choose an orthogonal basis Ja, a = 1, . . . , r for the
left moving currents, and a corresponding basis J̄ b := g−1J bg, b = 1, . . . , r for the right
moving currents. (3.3.10) then shows that only the fields φaa are switched on. Note that
these fields leave the boundary conditions unchanged, as

[ta, gt̄ag−1] = [ta, ta] = 0 , (3.3.11)

which means that all Bik in (3.2.7) vanish, so that no boundary fields are switched on
[79]. The brane changes the bulk without inducing a backreaction on itself.

3.3.3 Geometric interpretation of SU(2)k

To get a geometric picture of the brane backreaction, we switch to a more geometric
description of WZW models. We will concentrate on G = SU(2). We can write this
theory as a σ-model on the group manifold, using the parametrisation [120]

g = ei(θ+θ̃)σ2/2eiφσ1/2e−i(θ−θ̃)σ2/2 , (3.3.12)

or explicitly

g =

(
cos φ

2
cos θ̃ + i sin φ

2
sin θ cos φ

2
sin θ̃ + i sin φ

2
cos θ

− cos φ
2

sin θ̃ + i sin φ
2

cos θ cos φ
2

cos θ̃ − i sin φ
2

sin θ

)
. (3.3.13)

At level k the action then becomes

S0(φ, θ, θ̃) =
k

2π

∫
d2z

(
1

4
∂̄φ∂φ+ sin2 φ

2
∂̄θ∂θ + cos2 φ

2
∂̄θ̃∂θ̃ + cos2 φ

2
(∂̄θ∂θ̃ − ∂̄θ̃∂θ)

)
.

(3.3.14)

48



For later use, we also derive explicit expressions for the currents J = −k∂g g−1 and
J̄ = kg−1∂̄g,

J1 = −k i√
2
(∂φ cos(θ̃ + θ) − ∂θ sinφ sin(θ̃ + θ) + ∂θ̃ sinφ sin(θ̃ + θ)

J2 = −k i√
2
(∂θ(1 − cosφ) + ∂θ̃(1 + cosφ))

J3 = −k i√
2
(∂φ sin(θ̃ + θ) + ∂θ sinφ cos(θ̃ + θ) − ∂θ̃ sinφ cos(θ̃ + θ)

and

J̄1 = k
i√
2
(∂̄φ cos(θ̃ − θ) + ∂̄θ sinφ sin(θ̃ − θ) + ∂̄θ̃ sinφ sin(θ̃ − θ))

J̄2 = k
i√
2
(∂̄θ(−1 + cosφ) + ∂̄θ̃(1 + cosφ))

J̄3 = k
i√
2
(−∂̄φ sin(θ̃ − θ) + ∂̄θ sinφ cos(θ̃ − θ) + ∂̄θ̃ sinφ cos(θ̃ − θ)) .

The boundary states are given by ||j, g〉〉. For each gluing condition g there are k + 1
possible branes, labelled by j = 0, 1

2
, . . . , k

2
. [6] gives a geometric interpretation for these

branes in terms of conjugacy classes: if g is the identity e, then ||j, e〉〉 is the S2 that
wraps the conjugacy class given by

h

(
e2πij/k 0

0 e−2πij/k

)
h−1 . (3.3.15)

In particular, for j = 0 and j = k
2
, the conjugacy class collapses to a point and the brane

describes a D0 brane sitting at the point e and −e, respectively. If the gluing map is
given by a general g, the position of the brane shifts accordingly.
To go to the geometric limit, we fix j and let k → ∞. Independent of j the brane thus
becomes a D0 brane sitting at the point g. Also, (3.3.10) shows that the flow induced
depends only on g. We can therefore suppress the index j and parametrise the brane only
by g = g(Φ,Θ, Θ̃). Note that we denote its position by capital letters Φ,Θ, Θ̃, as opposed
to small letters for the coordinates of the manifold.
In the geometric limit the SU(2)k model corresponds to a non-linear σ-model on S3 with
radius r ∼

√
k. We can read off the target space metric G and the field B from the

coefficients of the action. In the unperturbed case (3.3.14) this gives

G0 =




k/4 0 0

0 k sin2 φ
2

0

0 0 k cos2 φ
2


 , B0 =




0 0 0

0 0 k cos2 φ
2

0 −k cos2 φ
2

0


 . (3.3.16)

3.3.4 Minimising the brane mass

Let us now calculate the RG flow and try to interpret it. (3.3.10) shows that the marginal
fields J iJ̄ j are turned on with the respective strength

λ̇ij(Φ,Θ, Θ̃) = −gs
π

tr (J igJ jg−1) =: −gs
π
Kij(Φ,Θ, Θ̃) . (3.3.17)
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The coefficients Kij depend on the position of the brane and are given by

Kij = 2




cos 2Θ̃ cos2 Φ
2 + cos 2Θ sin2 Φ

2 sin(Θ + Θ̃) sin Φ sin 2Θ sin2 Φ
2 − sin 2Θ̃ cos2 Φ

2

− sin(Θ − Θ̃) sin Φ cos Φ cos(Θ − Θ̃) sin Φ

sin 2Θ sin2 Φ
2 + sin 2Θ̃ cos2 Φ

2 − cos(Θ + Θ̃) sin Φ cos 2Θ̃ cos2 Φ
2 − cos 2Θ sin2 Φ

2


 .

(3.3.18)
This flow has a nice geometric interpretation. The mass of a brane is given by the value of
the dilaton ϕ. Perturbing the metric of S3 induces a non-constant dilaton and so changes
the mass of the brane. [79] showed that in the case of an induced boundary flow, the
brane deformed in such a way as to minimise its mass. We will show that a similar thing
happens here: this time, the brane remains at the same place, but it deforms the geometry
in such a way that its mass is minimised.
To show this, let us first find the change in geometry that decreases the mass of the brane
as much as possible. The most general current-current deformation of the original theory
is

S = S0 − α

∫
d2z
∑

i,j

aijJ
i(z)J̄ j(z̄) , (3.3.19)

where the aij are real coefficients. This gives a new metric G′(φ, θ, θ̃) = G0 − αG1 and a
new B-field. The new, nontrivial dilaton ϕ can be calculated by [120, 76]

e−2ϕ0
√

detG0 = e−2ϕ(φ,θ,θ̃)

√
detG′(φ, θ, θ̃) . (3.3.20)

The mass of the brane at g = g(Φ,Θ, Θ̃) is proportional to g−1
s ∼ e−ϕ(Φ,Θ,Θ̃). We thus

want to maximise the increase of detG−1
0 G′ at the point (Φ,Θ, Θ̃). Its derivative is given

by
∂α det(1 − αG−1

0 G1)|0 = −trG−1
0 G1 . (3.3.21)

A straightforward calculation then shows

trG−1
0 G1(Φ,Θ, Θ̃) = k

∑

i,j

aijKij(Φ,Θ, Θ̃) , (3.3.22)

where Kij is the same expression as in (3.3.18). Introducing a Lagrange multiplier term
ν
∑

i,j a
2
ij shows that the expression is extremised by aij = −Kij(Φ,Θ, Θ̃). Comparing to

(3.3.17) we find perfect agreement.

We can try to follow the flow further and describe the geometry of the deformed manifold.
By the symmetry of the problem, it is sufficient to consider the brane sitting at θ = 0, θ̃ =
02 so that

g =

(
eiΦ/2 0

0 e−iΦ/2

)
. (3.3.23)

(3.3.18) then turns on the fields

λij = −2
gs
π




1 0 0
0 cos Φ sin Φ
0 − sin Φ cos Φ


 . (3.3.24)

2We could simply restrict to g = e, but e is a coordinate singularity in the parametrisation chosen.
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They change the metric G0 by some expression 2 gs
π
GΦ

1 (φ, θ, θ̃). At the point of the brane,
GΦ

1 simplifies:

GΦ
1 (Φ, 0, 0) =




k2/2 0 0
0 2k2 sin2 Φ

2
0

0 0 2k2 cos2 Φ
2


 = 2kG0(Φ, 0, 0) . (3.3.25)

The effect of the backreaction is simply to rescale the original metric. We can continue
to use our original reasoning even away from the point t = 0 to obtain the differential
equation

ĠΦ(Φ, 0, 0) ∼ G0(Φ, 0, 0) . (3.3.26)

The geometric analysis only gives the direction of the flow, so that we are free to choose
the actual flow parameter. Writing

GΦ
µν(t) = G0µν + 4

gs
π
ktGΦ

1µν (3.3.27)

we fix t so that it agrees with the conformal field theory flow parameter at t = 0.
Note that this analysis agrees with the observation in section 3.3.2, where we argued that
in the limit k → ∞, only the zero order term is important, and that thus no new bulk
fields are turned on. This translates to the statement that (3.3.26) remains valid away
from the starting point.
We can now try to understand how the geometry of the S3 changes as we start to flow,
and we can also try to estimate how far we should trust our analysis. Define a new flow
parameter t′ = 4gst/π. Take the metric GΦ

µν(t
′) and calculate the associated Ricci scalar

R(t′). At the point g it is given by

R(t′) =
6 + 84kt′

k(1 + 2kt′)2
. (3.3.28)

The curvature thus increases at first, in agreement with the intuition that the brane warps
the space around it.
The geometric picture breaks down as soon as the curvature becomes too big. In fact,
if one considers R(t′) on all of S3, it turns out that at kt′ = 1

2
the curvature becomes

singular at some points. The geometric approximation thus becomes unreliable as soon
as kt′ ∼ 1. In particular, one should not trust (3.3.28) for values kt′ ∼ 5

14
, where R(t′)

seemingly starts to decrease.

3.4 Flat space

The last example we consider is the bosonic string in flat space in the presence of a Dp-
brane. In this case, one can consider the low-energy supergravity limit of the theory. The
D-brane is then given by a p-brane, a solution of the corresponding supergravity equation.
[49] performed a boundary state calculation and found agreement with the supergravity
results. We will reproduce their results using the extended RG equations.
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3.4.1 The boundary state

The conformal field theory is described by 26 free bosons with ladder operators aµn, ā
ν
n. A

Dp-brane located at y is described by the boundary state [49]

||Dp; y〉〉 =
Tp
2

∫
dd⊥k⊥
(2π)d⊥

eik⊥y exp

[
−

∞∑

n=1

aµ−nSµν āν−n

]
|0; k‖ = 0, k⊥〉 . (3.4.1)

The diagonal matrix Sµν is given by

Sµν = (ηαβ,−δij) , (3.4.2)

where α, β run over the d‖ = p + 1 dimensions parallel to the brane, and i, j over the
d⊥ = 26 − p− 1 transverse dimension. Its tension is

Tp =

√
π

2(d−10)/4
(4π2α′)(d−2p−4)/4 . (3.4.3)

Again, we will ignore the tachyon and concentrate on marginal fields. The corresponding
states are of the form

aµ−1ā
ν
−1|0; k〉 . (3.4.4)

Here |0; k〉 is the ground state of momentum k, normalised as 〈k|k′〉 = 2πδ(k − k′), with
(2π)dδ(d)(0) = V . The conformal weight of (3.4.4) is (1 + α′k2/4, 1 + α′k2/4), and it
couples to the Dp-brane centred at y = 0 as

Aµνk := 〈0; k|aµ1 āν1||Dp; 0〉〉 = −Tp
2
δ(d‖)(k‖)Sµν . (3.4.5)

We see that only states with k‖ = 0 couple to the brane. It is thus necessary to consider
states with non-vanishing transverse momentum, which means k2

⊥ > 0, such that k2 > 0.
This poses a problem, as in string theory vertex operators have to be marginal, so that
k2 = 0.
This analysis indicates that we need to go off-shell to find states that couple to the brane.
From the CFT point of view such this means that we need to consider states (3.4.4) that
are almost marginal.

3.4.2 Applying the RG equations

We would like to apply (3.2.18) and find the fixed point to which the theory flows. Al-
though we derived (3.2.18) only for marginal fields, the argument also works for almost
marginal fields with h = 1 + δh. δh then takes the role of ǫ, and the counterterm needed
is ∼ ℓδh(δh)−1. The contribution to (3.2.18) is again gs

π
〈φk||B〉〉. It is clear however that

several steps of the derivation depended on taking ǫ→ 0 in the end. We should therefore
trust (3.2.18) only for almost marginal fields with δh≪ 1.
A fixed point of (3.2.18) is given by

0 = λ̇µν = (2 − h)λµν +
gs
π
Aµνk + O(gsλ, λ

3, g2
s) , (3.4.6)
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so that to lowest order

λµν =
2gs
πα′

Aµνk
k2
⊥

=
gsTp(2π)p+1Vp+1

πα′
Sµν
k2
⊥
. (3.4.7)

To compare to the metric in the supergravity solution, we calculate the expectation value
of the graviton, i.e. its one-point function. Assuming that the fields φµν(k) were orthonor-
mal in the original theory, the perturbed one-point function of aµ−1ā

ν
−1|0; k〉 is

〈φµν(k)〉λ = λσρ〈φσρ(k)φµν(k)〉0 +O(λ2) = λµν +O(λ2) . (3.4.8)

To obtain the expectation value of the graviton, we have to extract the symmetric traceless
part of (3.4.7), as has been done in [49]. (3.4.7) then agrees with their results, up to a
constant factor due to different normalisations.
Our analysis is only valid if α′k2

⊥ ≪ 1, since else δh is too big. Moreover gsTp
α′k2

⊥
≪ 1 is

needed, since otherwise higher order terms will become important. Geometrically this
means that we can only consider weakly curved configurations, and only probe the long
distance limit. Our analysis is thus valid in the same range of parameters as the super-
gravity calculation.
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Part II

Dual CFTs
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Chapter 4

Heterotic AdS3/CFT2 duality with
(0, 4) spacetime supersymmetry

4.1 Introduction

In this chapter we study a specific instance of the AdS3/CFT2 duality. Several authors
[109, 176, 42, 127, 140, 135, 8] have studied the possibility of an AdS3/CFT2 duality for
the fundamental heterotic string. Heterotic strings are dual to type I D1-branes whose
low-energy effective field theory is expected to be conformally invariant. The dual near-
horizon geometry of the heterotic string should therefore contain an AdS3 factor. This
was confirmed in [31, 32] (see also [33]) in which an AdS3 × S2 factor was found in an
N = 2, d = 5 R2-corrected supergravity solution corresponding to heterotic strings in five
dimensions.

In general, heterotic string setups may contain additional charged objects such as
NS5-branes and Kaluza-Klein monopoles. Such setups generically have (0, 4) target space
supersymmetry. It has been found however that in the absense of some or all of these ad-
ditional charges the target space supersymmetry is enhanced to (0, 8) [176, 127, 140, 135]
(see also [7]). Such theories are expected to be very different from those with only (0, 4)
supersymmetry. For one thing, there are no linear superconformal algebras with more
than four supercurrents. Indeed, it has been argued in [140, 135] that the global super-
group of the boundary CFT is Osp(4∗|4), whose affine extension is given by a nonlinear
N = 8, d = 2 superconformal algebra. For another, it is not clear if these theories possess
unitary representations.

In this chapter we we will address the construction of a heterotic AdS/CFT duality
with only (0, 4) target space supersymmetry. For this we revisit a heterotic three-charge
model previously studied in [137]; this setup consists of p fundamental strings embedded in
the worldvolume of N ′ NS5 branes and N Kaluza-Klein (KK) monopoles. The worldsheet
theory for string theory on the corresponding near-horizon geometry AdS3 ×S3/ZN ×T 4

turns out to be essentially the product of an SL(2) WZW model and a “twisted” SU(2)
WZW model corresponding to the asymmetric orbifold S3/ZN . In contrast, not much is
known about the dual conformal field theory on the boundary of the AdS3 space.

In this chapter we construct the dual two-dimensional boundary conformal field the-
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ory. To achieve this, we first apply heterotic/type I duality to map the three-charge
configuration to an intersection of p D1-branes and N ′ D5-branes plus N KK monopoles
in type I string theory. In the absence of any KK monopoles the low-energy effective
theory corresponds to Witten’s ADHM sigma model of Yang-Mills instantons [184], as
shown by Douglas in [59]. To also include KK monopoles, which have a C2/ZN near-core
geometry, it is natural to construct a ZN orbifold theory of the massive ADHM sigma
model. (Refs. [177, 161] also use an orbifold construction to obtain the boundary CFT
dual to type II string theory on AdS3 × S3/ZN × T 4.)

Our proposal is then that the sought-after boundary conformal field theory arises on
the Higgs branch of the orbifolded ADHM model, which corresponds to the bound state
phase of the D-brane setup. We will perform a consistency check for the proposal by the
following line of reasoning. Lambert has shown in [138] that, even though the ADHM
model is classically not conformal, it is ultraviolet finite to all orders in perturbation
theory. There is no renormalisation group flow, and anomalous conformal dimensions are
absent [138]. The conformal Higgs branch theory can therefore be obtained by integrating
out the massive degrees of freedom in the ADHM model [139]. Moreover, the central
charges of the Higgs branch theory can be determined by counting the massless degrees
of freedom of the ultraviolet theory. In other words, they are given by the dimension of
the instanton moduli space of the ADHM model. Repeating these steps for the orbifold
version of the ADHM model, we determine the central charges of the low-energy theory
of the three-charge model and match them to those predicted by the worldsheet theory.

4.2 Heterotic AdS3/CFT2 duality

4.2.1 Three-charge model for heterotic strings

We consider heterotic string theory compactified on S1 × T 4 which we take along the
directions {x5} and {x6, x7, x8, x9} respectively. In particular, following [137], we study
the following brane setup:

• p fundamental strings F1 infinitely stretched in the x1 direction,

• N ′ NS5-branes wrapped around the T 4 and infinitely stretched along x1,

• N KK monopoles wrapped around T 4 and extended in x1.

We can depict this configuration schematically in the following table:

0 1 2 3 4 5 6 7 8 9
p F1 • •
N ′ NS5 • • • • • •
N KKM • • • • • •

From a 5-dimensional spacetime point of view this configuration looks like an infinitely
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stretched string in the x1 direction, which preserves (0, 4) supersymmetry, i.e. it is non-
supersymmetric in the left sector and contains four supercharges in the right sector. Let
us recall the classical solution as given in [137]. The metric is given by

ds2 =F−1(−dt2 + dx2
1) +H5

[
H−1
K (dx5 + PK(1 − cos θ)dϕ)2

+HK(dr2 + r2(dθ2 + sin2 θdϕ2))
]
+

9∑

i=6

dx2
i , (4.2.1)

with the following harmonic functions

H5 = 1 +
P5

r
, HK = 1 +

PK
r
, F = 1 +

Q

r
. (4.2.2)

Here we use spherical coordinates (r, θ, ϕ) for the directions (x2, x3, x4). The corresponding
gauge fields and the dilaton read

Bt1 = F , Bϕ5 = P5(1 − cos θ) , e−2[Φ10(r)−Φ10(∞)] =
F

H5

. (4.2.3)

The quantities P5, PK , Q are related to N ′, N, p by

P5 =
α′

2R
N ′ , PK =

R

2
N , Q =

α′3e2Φ10(∞)

2RV
p , (4.2.4)

where R is the asymptotic radius of the S1, V the volume of the torus and Φ10(∞) the
asymptotic value of the dilaton.

In the near-horizon limit r → 0, the metric (4.2.1) reduces to

ds2 =
r′2

4P5PK
(−dt2 + dx2

1) +
P5

PK
(dx5 + PK(1 − cos θ)dϕ)2

+ P5PK

(
4dr′

2
+ (dθ2 + sin2 θdϕ2)

)
+

9∑

i=6

dx2
i , (4.2.5)

where we have defined r′ by

r =
4P5PKr

′2

Q
. (4.2.6)

In [137] this metric was interpreted as describing the space

AdS3 × S3/ZN × T 4 , (4.2.7)

with AdS radius and six-dimensional string coupling

R2
AdS, uncorr = α′NN ′ , g2

6 = e2Φ
hor
6 =

N ′

p
. (4.2.8)

Obviously, string theory on this background is weakly-coupled for N ′ ≪ p. Note that
so far we have only discussed an uncorrected supergravity solution, i.e. a solution to an
action at the two derivative level.
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4.2.2 Lift to M-theory

In order to understand why the supergravity solution (4.2.5) is expected to receive α′ cor-
rections, we now determine the central charges of the boundary CFT. We begin by map-
ping the heterotic setup to M-theory compactified on CY3 = K3 × T 2. For this, we first
dualize to type IIA theory, from where (after additional S and T dualities) we may lift to
M-theory — see appendix B.1 for details. We obtain the following setup of M5 branes:

0 1 2 3 4 5 6 7 8 9 10
p M5 • • • • • •
N ′ M5 • • • • • •
N M5 • • • • • •

Our convention will be that the internal T 2 is spanned by the directions {x5, x10} while
the K3 resides in {x6, x7, x8, x9}.

A general method for determining the central charges of the low-energy effective theory on
M5-branes wrapping a 4-cycle in a Calabi-Yau three-fold CY3 is given in [148]. The low-
energy effective field theory is given by a two-dimensional (heterotic) sigma model with
the M5-brane moduli space as target space. The left- and right-moving central charges
cL,R of this sigma model are given by

cL = 6D + c2 · p , cR = 6D +
1

2
c2 · p ,

D =
1

6
cIJKp

IpJpK , (4.2.9)

where cIJK are the intersection numbers of CY3, and pI is the (magnetic) charge of the
M5-brane wrapping the Ith 4-cycle [148]. The product c2 · p contains the second Chern
class of CY3.

1

Let us apply these formulae to the present case2 and identify

p1 = p , p2 = N , p3 = N ′ . (4.2.10)

Denoting the single modulus of the T 2 by p1, the only non-vanishing intersection numbers
are c1ij = cij, where cij is the intersection matrix for K3. For p M5-branes wrapping K3,
c2 · p = c2(K3)p = 24p [31, 32], and (4.2.9) provides the central charges

cL = 6NN ′p+ 24p ,

cR = 6NN ′p+ 12p . (4.2.11)

Since D 6= 0, this three-charge model preserves only (0, 4) supersymmetry [148]. For
N = N ′ = 0, we have D = 0 and (cL, cR) = (24p, 12p). These are the central charges of

1For an exact definition of the product c2 · p see [148].
2In contrast to what is assumed in [148] for the four-cycle inside the CY3, K3 is not a very ample

divisor in K3×T
2. Nevertheless, we may still use (4.2.9), since b1(K3) = 0, even though b1(K3×T

2) 6= 0.
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the (0, 8) low-energy effective field theory describing a stack of p heterotic strings.

Let us compare the central charges cL,R with that obtained from the supergravity solution
by applying the Brown-Henneaux formula [23],

c =
3RAdS

2G
(3)
N

, (4.2.12)

where G
(3)
N is Newton’s constant in three dimensions. Substituting the AdS radius (4.2.8)

of the uncorrected supergravity solution into (4.2.12), we get

c = 6NN ′p , (4.2.13)

as was already found in [137]. We notice that (4.2.13) agrees with (4.2.11) only to leading
order in the charges. The reason for the absence of the subleading term in (4.2.13) is the
fact that it is computed from an uncorrected supergravity solution. Taking into account
higher derivative terms in the action as well, one recovers the full expression (4.2.11), as
was recently shown for a dual setup [31, 32]. This result has also been reproduced with
somewhat different methods in [121].

4.2.3 N = (0, 2) worldsheet theory

We now discuss heterotic string theory on the AdS3 ×S3/ZN ×T 4 near-horizon geometry
of the F1-NS5-KKM three-charge model introduced in section 4.2.1. The corresponding
worldsheet theory has been constructed in [137], and we will only review some of its
features relevant for the construction of the boundary conformal field theory.

The worldsheet theory is expected to be the product of a heterotic SL(2) WZW model,
a conformal field theory on S3/ZN and a free U(1)4 CFT on the four-torus T 4. As a het-
erotic model, the product theory is bosonic in the left-moving sector and supersymmetric
in the right-moving sector. The heterotic SL(2) WZW model therefore has a bosonic
affine SL(2) algebra of level kb in the left-moving sector and a supersymmetric one of
level ks = kb − 2 in the right-moving sector. Accordingly, the right-moving sector is gen-
erated by three bosonic and three fermionic currents, J̄A and ψ̄A (A = 1, 2, 3), while the
left-moving sector contains only JA. Similarly, the right-moving CFT on T 4 is constructed
from four bosonic fields Ȳ i and four fermions λ̄i (i = 1, 2, 3, 4). The left-moving sector
contains only the bosonic currents Y i.

In the unorbifolded case, the S3 factor of the geometry would be described by an
SU(2) WZW model with levels k′b and k′s = k′b + 2 in the left- and right-moving sector,
respectively. The right-moving sector of the SU(2) model contains three bosonic currents,
K̄a, and three fermions χ̄a (a = 1, 2, 3). The left-moving sector has the same bosonic
currents Ka (a = 1, 2, 3), but again no fermions.

Let us now implement the ZN orbifold. We start from the SU(2) WZW model in
which we parameterise the SU(2) group manifold in terms of the Euler angles

0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , 0 ≤ ξ ≤ 4π , (4.2.14)
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where ξ parameterises the fibre, and θ, φ are the base coordinates. As in [137], we consider
an SU(2) model at level

k′b = NN ′ (4.2.15)

and identify

ξ ∼ ξ +
4π

N
. (4.2.16)

The orbifold acts asymmetrically in the near-horizon geometry. We therefore turn the
SU(2) WZW model into a coset model of the type

SU(2)L × SU(2)R
(ZN)L

, (4.2.17)

where the orbifold is embedded in SU(2)L: ZN acts on the currents as

K± → e±
4πi
N K± , K3 → K3 ,

K̄±,3 → K̄±,3 , χ̄±,3 → χ̄±,3 . (4.2.18)

For N > 2, the effect of the asymmetric orbifold is to break the SU(2) of the left-moving
sector down to U(1), whose current K3 is invariant under the orbifold action.3

The consistency of the theory requires that the worldsheet central charges are (cws
L , c

ws
R ) =

(26, 15). The central charges in the right-moving sector are

cws
R (AdS3) =

3

2
+

3kb
kb − 2

, cws
R (S3/ZN) =

3

2
+

3k′b
k′b + 2

, cws
R (T 4) = 6 , (4.2.19)

which adds up to cws
R = 15 provided that

kb = k′b + 4 . (4.2.20)

Similarly, for the left-moving sector we have

cws
L (AdS3) =

3kb
kb − 2

, cws
L (S3/ZN) =

3k′b
k′b + 2

, cws
L (T 4) = 4 , (4.2.21)

which adds up to ten. Heterotic string theory also contains 32 left-moving current algebra
fermions, i.e. 16 for each E8. We thus get cws

L = 10 + 16 = 26, as required.

The worldsheet theory also provides some information on the boundary conformal
field theory. As shown in [111], the left- and right-moving (super)Virasoro algebras of the
boundary CFT can be constructed from the worldsheet affine SL(2) Lie algebra. Their
central charges are

(cL, cR) = (6kbp, 6ksp) , (4.2.22)

3In the related S
2 theory of [103] the orbifold is embedded in the supersymmetric (right) sector, and

(0, 2) worldsheet supersymmetry relates N and N
′. In the present case N and N

′ are independent since
the orbifold is embedded in the non-supersymmetric (left) sector.
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where, as before, kb and ks = kb−2 are the levels of left- and right-moving SL(2) algebras,
and p is the number of heterotic strings. Substituting (4.2.15) and (4.2.20) in (4.2.22),
we find the central charges

(cL, cR) = (24p+ 6NN ′p, 12p+ 6NN ′p) (4.2.23)

which agree with (4.2.11) and satisfy the constraint cL − cR = 12p as also found in
[137, 135].

Let us finally consider the amount of worldsheet and target space supersymmetry.
From the geometry we expect that the worldsheet model preserves a (0, 4) target space
supersymmetry. Since T 4 is Kähler, the heterotic worldsheet CFT on T 4 has (0, 2) super-
symmetry. The Kähler structure also ensures that the (0, 2) worldsheet supersymmetry
leads to (0, 4) spacetime supersymmetry. The heterotic SL(2) model and the “twisted”
SU(2) model separately preserve only (0, 1) supersymmetry. Only the product of both
models has a chance to have (0, 2) worldsheet supersymmetry. In order to enhance N = 1
to N = 2 supersymmetry in the right sector, one must find a U(1)R current JN=2, which
is part of the N = 2 algebra. The existence of such a current is guaranteed by the fact
that the orbifold is embedded in SU(2)L such that the right sector remains unaffected by
it. The N = 2 U(1)R current therefore has the same structure as in the (unorbifolded)
type II case, see [111].

4.3 Two-dimensional boundary sigma model

4.3.1 General remarks

In this section we discuss the two-dimensional (0, 4) conformal field theory living on the
boundary of the AdS3 space. Our starting point is the heterotic brane setup introduced
in the previous section. We first T-dualize in x5 to go from E8 × E8 to SO(32) heterotic
string theory and then use heterotic/type I duality in order to obtain the following type I
brane configuration:

0 1 2 3 4 5 6 7 8 9
p D1 • •
N ′ D5 • • • • • •
N KKM • • • • • •
32 D9 • • • • • • • • • •

Let us consider the type I setup in detail. Since the heterotic/type I duality involves
a strong-coupling transition, the heterotic F1 and NS5-branes naturally map to D1 and
D5-branes. Moreover, since we are dealing with a type I string theory we are also required
to introduce 32 D9-branes and perform an orientifold projection. In order to understand
the contribution of the KK monopoles, we recall that the approximation of the near-core
region of N KK monopoles is a C2/ZN orbifold. This instructs us to study a ZN orbifold
in the directions x2,3,4,5 of the D1-D5-D9-brane theory.
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In order to set up our notation we remark that the D1-D5-D9 brane configuration breaks
ten-dimensional Lorentz symmetry to SO(1, 1) × SO(4)E × SO(4)I , where SO(4)E and
SO(4)I rotate x2,3,4,5 and x6,7,8,9, respectively. We will use the standard decomposition

SO(4)E × SO(4)I ≃ SU(2)A × SU(2)Y × SU(2)A′ × SU(2)Ã′

to label the appearing representations in terms of doublet representations with (A′, Ã′,
A, Y = ±). The orbifold is embedded in SU(2)Y .

We will start out our construction by reviewing the low-energy effective theory of the
type I D1-D5-D9 intersection. In the absence of any KK monopoles this theory was
shown in [59] (for p = 1) to be equivalent to Witten’s ADHM model of Yang-Mills
instantons. In section 4.3.2 we will review the model for p > 1 as constructed in [145].
In section 4.3.3 we will include the effect of the KK monopoles by orbifolding the ADHM
model. Subsequently, in section 4.3.4 we discuss its instanton moduli space and determine
the central charges of the Higgs branch theory.

4.3.2 Spectrum of D1-D5-D9 and the ADHM model

Let us briefly recall some basic facts. Spacetime fermions arise in the Ramond sector,
and spacetime bosons in the Neveu-Schwarz sector. If the boundary conditions on both
ends of the string are the same, then the worldsheet fermions of the R sector have integral
modes, and those in the NS sector half-integers. If the boundary conditions are different,
the additional signs introduced exchange the moddings, which also changes the ground
state energy of the sector. In particular, the NS ground state energy in the case of NDN

mixed boundary conditions is given by

−1

2
+
NDN

8
, (4.3.1)

whereas the ground state energy in the R sector is always zero.

Let us now discuss the strings stretching between the various types of branes.

1-1 strings

In the NS-sector, the massless modes form a ten-dimensional vector Aµab, the Chan-Paton
indices running over a, b = 1, . . . , p. Considered as an object on the D1, it splits into a
2d vector Aµab and 8 scalars biab. The orientifold projection Ω maps Aµab 7→ −Aµba. We are
thus left with the gauge bosons Aµ[ab] in the adjoint of the gauge group SO(p). On the
other hand, the vertex operator of b picks up no sign under Ω, as it contains no derivative
along the boundary. This leaves 8 bosons bi(ab) in the symmetric representation of SO(p)

which we group in a pair of 4 bosons, bAY(ab) and bA
′Ã′

(ab) .
In the R-sector, the GSO projection restricts to modes which are invariant under

Γ̄ := Γ0 . . .Γ9, where Γµ denotes the fermionic zero modes. To obtain the action of Ω,
note that the fermionic modes ψ2, . . . , ψ9 reflect from the boundary with an extra minus
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sign, so that they pick up an additional minus sign under exchange of right and left
movers. Ω thus acts on massless fermions as Ω = −Γ2Γ3 . . .Γ9. The massless spinors thus
must satisfy the two conditions

ψab = Γ̄ψab = −Γ2 . . .Γ9ψba . (4.3.2)

The first condition simply states that ψ is in the 16 of SO(1, 9). To obtain the worldsheet
behaviour of ψ, we need to decompose 16 into representations of SO(1, 1)×SO(8), which
gives 16 = 8′

+ ⊕ 8′′
−, where 8′, 8′′ are the two spinor representations of SO(8) and ±

denotes the chirality with respect to SO(1, 1). The second condition in (4.3.2) then states
that ψ(ab) transforms as 8′′

−, and ψ[ab] as 8′
+. The ψ(ab) are the right-moving superpartners

of the b(ab). Due to the D5-branes each 8 decomposes into a pair of 4’s of the SO(4)’s.

Following [59], these will be denoted by ψA
′Y

− (ab),ψ
AÃ′

− (ab) and ψA
′A

+ [ab], ψ
Y Ã′

+ [ab]. The left-moving
fermions ψ+ [ab] are antisymmetric and therefore do not appear in the case of a single
D1-brane.

1-5 strings

The analysis of this sector has been performed in [58]. Since NDN = 4, the ground state
energy is also zero in the NS-sector, so that there appear both bosons and fermions. In
total, we obtain bosons φA

′m
a in the (p, 2N ′, 1) of SO(p) × Sp(2N ′) × SO(32), and their

right- and left-moving fermionic superpartners χAm− a and χY m+ a . The index m runs over
m = 1, ..., 2N ′.

1-9 strings

Since NDN = 8, the ground state energy of the NS-sector is strictly positive, so that
there are no bosons. In the R-sector there are two massless modes Γ0,Γ1. The GSO
projection eliminates one of them, leaving only the left moving mode. We thus obtain
32p left-moving fermions λM+a, where M = 1, ..., 32 is the Chan-Paton index of SO(32).

5-5 strings, 5-9 strings

The analysis of the remaining sectors has been performed in [59]. Since their field content
is not very important in what follows, we only cite the results. The 5-brane fields form a
Sp(2N ′) gauge theory, a hypermultiplet in the antisymmetric representation with scalar
component XAY

[mn], and “half-hypermultiplets” in (1, 2N ′, 32) with scalar component hAmM .

We summarise the results by listing the relevant fields in the following table (see also
[145]):

We have not listed fields coming from 5-5 and 5-9 strings, since here we are only interested
in the case of vanishing instanton size which corresponds to setting the 5-9 fields to zero
(see [185, 139]). Moreover, the 5-5 fields XAY

mn denote the position of the D5-branes in the
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strings bosons fermions SO(p) rep.

1-1 Aµ[ab] ψA
′A

+ [ab], ψ
Y Ã′

+ [ab] adj.=anti-sym.

bAY(ab) ψA
′Y

− (ab) sym.

bA
′Ã′

(ab) ψAÃ
′

− (ab) sym.

1-5 φA
′m

a χAm− a fund.

χY m+ a fund.

1-9 λM+ a fund.

Table 4.1: Summary of fields in the ADHM model.

transversal space, which we treat as parameters of the low energy theory.4

The Lagrangian describing the low-energy physics of the type I D1-D5-D9 intersection
can now be written in terms of the fields of table 4.1. For p ≥ 1, it is convenient to divide
the Lagrangian into three parts,

L = Lkin + Lpot + Lint , (4.3.3)

where Lkin contains the kinetic terms for all fields in table 4.1, and Lpot describes their
potential. In general, Lpot contains Yukawa couplings of the type bψ+ψ− and D-terms for
the scalars b. For details, see ref. [145].
The Lagrangian Lint describes the interaction of 1-1 with 1-5 string modes and is given
by [59, 145]

Lint = Tr

(
im

2

(
ψA

′Y
− χ+Y m + ψAA

′

+ χ−Am

)
φA′

m +
im

2
χ+Y m(XAY

mn − bAY δmn)χ
An
−

+
m2

8
(XAY

mn − bAY δmn)
2φA′mφ

A′n

)
+ c.c. , (4.3.4)

where the trace is taken over the SO(p) indices. As first found in [59] for p = 1, this
Lagrangian corresponds to Witten’s ADHM model [184] describing an Sp(2N ′) instanton
with instanton number one. It is believed that for p ≥ 1 the ADHM model describes the
moduli space of Sp(2N ′) instantons with instanton number p.

4.3.3 ADHM orbifold theory

Field content of the orbifold theory

Let us now include the effect of the KK monopoles in the ADHM model. This requires
us to consider the D1-D5-D9 intersection at the origin of a C2/ZN orbifold acting along

4As we will explain in more detail when discussing the orbifolded theory in section 4.3.3, the D5-
branes will all be clustered at the orbifold fixed point (x2 = x

3 = x
4 = x

5 = 0), which instructs us to set
X

AY
mn = 0.
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x2,3,4,5. Following Refs. [61, 128, 126], we start with pN D1-branes intersecting 2N ′N D5-
branes and 32N D9-branes in flat space and take the corresponding ADHM Lagrangian
with gauge group U(Np)×U(2NN ′)×U(32N) as the parent theory.5 The ADHM orbifold
theory is then obtained by projecting out the degrees of freedom which are not invariant
under the ZN orbifold group.

The C2/ZN orbifold is realized as follows. Denote the matrix bAY by

b = (bAY ) =

(
b1 −b̄2
b2 b̄1

)
, (4.3.5)

where b1 = x2 + ix3 and b2 = x4 + ix5. Then the action of (gA, gY ) ∈ SO(4)E =
SU(2)A × SU(2)Y along x2,3,4,5 is realized by

b 7→ gY bgA . (4.3.6)

We now embed the ZN action in SU(2)Y by choosing gY = diag(ω, ω−1) with ω = e2πi/N .
Then,

b1 7→ ωb1 , b2 7→ ω−1b2 , (4.3.7)

or, alternatively, bAY 7→ ωY bAY . The scalars bA
′Ã′

(along x6,7,8,9) remain unaffected by
the orbifold. The origin of x2,3,4,5 is the only fixed point of the orbifold.

The orbifold therefore acts on the fields of the ADHM model as follows (gauge indices
suppressed):

1 − 1 : bAY → ωY g1(ω)bAY g†1(ω) , ψA
′Y

− → ωY g1(ω)ψA
′Y

− g†1(ω) ,

ψY Ã
′

+ → ωY g1(ω)ψY Ã
′

+ g†1(ω) ,

bA
′Ã′ → g1(ω)bA

′Ã′

g†1(ω) , ψAÃ
′

− → g1(ω)ψAÃ
′

− g†1(ω) ,

ψA
′A

+ → g1(ω)ψA
′A

+ g†1(ω)

1 − 5 : φA
′ → g1(ω)φA

′

g†5(ω) , χA− → g1(ω)χA−g
†
5(ω) ,

χY+ → ωY g1(ω)χY+g
†
5(ω)

1 − 9 : λ+ → g1(ω)λ+g
†
9(ω) . (4.3.8)

Here g1(ω), g5(ω), g9(ω) denote the usual embeddings of the ZN orbifold group in the
gauge groups U(Np), U(2NN ′) and U(32N), respectively. We choose a basis such that
the embedding matrices have the block-diagonal form gi(ω) = diag(1, ω1, ω21, ..., ωN−11),
where 1 denotes a p × p, 2N ′ × 2N ′ and 32 × 32 unit matrix for i = 1, 5, 9, respectively.
The fields thus decompose into N orbifold sectors which we denote by j, j′ = 0, . . . , N−1.

5Formally, we begin with the type IIB version of the ADHM model [59] and perform the orientifold
projection in the next subsection. The overall factor 2 in U(2NN

′) reflects the pairing of the D5-branes
for invariance under Ω.
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We observe that all fields carrying an index Y transform non-trivially under the orbifold
group, i.e. the transformation law contains an additional factor ωY .

Substituting the embeddings gi(ω) into (4.3.8), we get the following transformation
behaviour in component form:

1 − 1 : bAYj,j′ 7→ ωY+j−j′bAYj,j′ , ψA
′Y

− j,j′ 7→ ωY+j−j′ψA
′Y

− j,j′ ,

ψY Ã
′

+ j,j′ 7→ ωY+j−j′ψY Ã
′

+ j,j′

bA
′Ã′

j,j′ 7→ ωj−j
′

bA
′Ã′

, ψAÃ
′

− j,j′ 7→ ωj−j
′

ψAÃ
′

− j,j′ ,

ψA
′A

+ j,j′ 7→ ωj−j
′

ψA
′A

+ j,j′

1 − 5 : φA
′m

j,j′ 7→ ωj−j
′

φA
′m

j,j′ , χAm− j,j′ 7→ ωj−j
′

χAm− j,j′ ,

χY m+ j,j′ 7→ ωY+j−j′χY m+ j,j′

1 − 9 : λM+ j,j′ 7→ ωj−j
′

λM+ j,j′ (4.3.9)

where Y = ±1.

The fields invariant under the orbifold action (4.3.9) are thus

• 1-1: (bA
′Ã′

j,j , ψAÃ
′

− j,j, ψ
A′A
+ j,j) and (bAYj,j+Y , ψ

A′Y
− j,j+Y , ψ

Y Ã′

+ j,j+Y )

• 1-5: (φA
′m

j,j , χAm− j,j, χ
Y m
+ j,j+Y )

• 1-9: λM+ j,j

Another important question concerns the gauge groups and representations under which
these fields transform. Due to the Ω-projection of type I string theory, this issue is more
intricate than in type II theories and will now be discussed at length.

Type I effective action

The type I effective theory is obtained by imposing, in addition to the ZN orbifold pro-
jection, the orientifold Ω [61]. Let us denote the embedding of Ω into the gauge groups
U(Np), U(2NN ′) and U(32N) by g1(Ω), g5(Ω) and g9(Ω), respectively. A generic (scalar)
field y then transforms under worldsheet parity according to

y 7→ g(Ω)ytg(Ω)−1 , (4.3.10)

while an element U of one of the above gauge groups satisfies

Ug(Ω)U tg(Ω)−1 = 1 . (4.3.11)

Here t denotes the transpose and g is one of the embeddings g1, g5, g9.
To determine g, we have to solve various consistency conditions [61]. The first condi-

tion is

g(Ω)ij = χ(ω,Ω)ωi+jg(Ω)ij . (4.3.12)
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We choose the phase χ(ω,Ω) = 1 which then implies that only g(Ω)i,N−i is non-vanishing.6

A second condition requires

g(Ω)i,N−i = χ(Ω)g(Ω)tN−i,i , (4.3.13)

with some phase factor χ(Ω) = ±1. To reproduce the standard type I action, which has
an SO(32) gauge group for the D9-branes, we choose the phases χ(Ω) = +1,−1,+1 for
g = g1, g5, g9, respectively.7 The solutions of (4.3.13) can be brought into the form

g1,9(Ω)0,0 = 1 , g5(Ω)0,0 = ǫ ,

g1,9(Ω)i,N−i = 1 , g5(Ω)i,N−i = 1 , 0 < i < N/2 ,

g1,9(Ω)N−i,i = 1 , g5(Ω)N−i,i = −1 , N/2 < i < N , (4.3.14)

where 1 is the corresponding p× p, 2N ′ × 2N ′ or 32× 32 unit matrix. For even orbifolds,
we have in addition

g1,9(Ω)N/2,N/2 = 1 , g5(Ω)N/2,N/2 = ǫ .

Let us now determine the unbroken gauge groups from (4.3.11). We distinguish be-
tween even and odd orbifolds:

• even N
For g = g1, the gauge group of the D1-branes is

G1
even = {(U0, U1, ..., UN−1) : UiU

t
N−i = 1, 0 ≤ i ≤ N}

= SO(p) × U(p)N/2−1 × SO(p) , (4.3.15)

while for the D5-branes, it is

G5
even = {(U0, U1, ..., UN−1) : UiU

t
N−i = 1, 0 ≤ i ≤ N − 1, i 6= N/2}

= Sp(2N ′) × U(2N ′)N/2−1 × Sp(2N ′) . (4.3.16)

• odd N
For g = g1, we get the gauge group

G1
odd = {(U0, U1, ..., UN−1) : UiU

t
N−i = 1, 1 ≤ i ≤ N − 1}

= SO(p) × U(p)
N−1

2 , (4.3.17)

while for g = g5, it is

G5
odd = {(U0, U1, ..., UN−1) : UiU

t
N−i = 1, 1 ≤ i ≤ N − 1}

= Sp(2N ′) × U(2N ′)
N−1

2 . (4.3.18)

6For even orbifolds one could also choose χ(ω,Ω) = ω, which would not invalidate our final conclusion.
We will therefore not consider this case here.

7In fact, once we have set χ9(Ω) = +1, which is necessary to get a consistent SO(32) type I string
theory, the other values follow (see [104]).
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The effect on the matter fields is as follows. For the bAY , equation (4.3.10) reads

(bAYN−i−Y,N−i)
t = bAYi,i+Y . (4.3.19)

For N even, this relates one half of the fields to the other half, but gives no additional
constraints. The same holds true for the fermions ψY Ã

′

+ and ψA
′Y

− . If N is odd, there is
the additional condition

(bAY(N−Y )/2,(N+Y )/2)
t = bAY(N−Y )/2,(N+Y )/2 , (4.3.20)

so that these particular b transform in the symmetric instead of the bifundamental. The
situation is analogous to the analysis in section 4.3.2, so that their fermionic partners
ψA

′Y
− (N−Y )/2,(N+Y )/2 and ψY Ã

′

+(N−Y )/2,(N+Y )/2 transform in the symmetric and antisymmetric,
respectively.

The bA
′Ã′

are subject to

(bA
′Ã′

i,i )t = bA
′Ã′

N−i,N−i (4.3.21)

for all i = 0, . . . , (N − 1)/2 for N odd and i = 0, . . . , N/2 for N even. Note that

the fields bA
′Ã′

00 (and also bA
′Ã′

N/2,N/2 if N is even) are symmetric. Again, the situation is

exactly as described above such that the corresponding fermionic modes, ψAÃ
′

− 0,0 and ψA
′A

+0,0

(and ψAÃ
′

−N/2,N/2 and ψA
′A

+N/2,N/2 for N even), are in the symmetric and anti-symmetric
representation, respectively.

We omit the corresponding relations for the φA
′m

i,i , as they again only relate half of the
fields to the other half [61].

Quiver theory

So far we have determined the spectrum of fields that survive the orientifold projection
along with the gauge groups of the world-volume theories of the various branes. It remains
to determine the representations under which the matter fields transform. In fact they
are given by

bA
′Ã′

j,j , ψAÃ
′

− j,j, ψ
A′A
+ j,j adjoint rep. if G1

j = U(p) ,

rep. as in table 4.1 if G1
j = SO(p) ,

bAYj,j+Y , ψ
A′Y
− j,j+Y , ψ

Y Ã′

+ j,j+Y bifundamentals of G1
j ×G1

j+Y ,

φA
′m

j,j , χAm− j,j bifundamentals of G1
j ×G5

j ,

χY m+ j,j+Y bifundamentals of G1
j ×G5

j+Y .

The gauge groups and matter content of the theory can now be encoded in a quiver
diagram, see figure 4.1 for examples.8

Each node in the inner circle corresponds to a gauge group G1
j (D1-branes), while an

outer node represents a gauge group G5
j (D5-branes). In principle, there are also nodes

8A similar quiver diagram was also found in [39] for the (0, 4) quiver theory located on a D3/D3′

intersection at a C2
/ZN orbifold.
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(a) Z5
χY m+ (b) Z6

χAm−

bAY , ψA
′Y

− , ψY Ã
′

+

bA
′Ã′
, ψAÃ

′

− , ψA
′A

+

φA
′m

SO(p)

Sp(2N ′)

U(p) or U(2N ′)

Figure 4.1: Quiver diagrams for odd (Z5) and even (Z6) N . The detail view in the centre
shows the notation for the fields. For simplicity, we have not included the fields λM+ .

corresponding to SO(32) gauge groups (D9-branes). The latter are not needed for the

interaction Lagrangian and are therefore not shown in figure 4.1. The fields bA
′Ã′

j,j , ψAÃ
′

− j,j,

ψA
′A

+ j,j transform under a single gauge group and are represented as brown circles. The bi-

fundamentals bAYj,j+Y , ψ
A′Y
− j,j+Y , ψY Ã

′

+ j,j+Y (shown as black lines), φA
′m

j,j , χAm− j,j (green lines), and
χY m+ j,j+Y (blue lines) connect different nodes. We have omitted bifundamentals connecting
the outer nodes. These are generated by 5-5 strings which decouple at low-energies, as
already discussed earlier.

We may now write down the corresponding quiver Lagrangian which descends from the
ADHM Lagrangian in flat space, Eq. (4.3.3). Upon projecting out the degrees of freedom
which are not invariant under the orbifold, we obtain

L = Lkin, quiv + Lpot, quiv + Lint, quiv (4.3.22)

with the quiver interaction

Lint, quiv =

Tr

(
im

2
(χ+Y m)j,j+Y (φA′

m)j+Y,j+Y (ψA
′Y

− )j+Y,j +
im

2
(ψAA

′

+ )j,j(χ−Am)j,j(φA′
m)j,j

+
im

2
(χ+Y m)j,j+Y (χAm− )j+Y,j+Y (bA

Y )j+Y,j +
m2

8
(bAY bAY )j,j(φ

A′mφA′m)j,j

)
+ c.c. ,

and, similarly, Lkin, quiv and Lpot, quiv are the projections of Lkin and Lpot in (4.3.3), re-
spectively. The range of summation over j and Y is restricted by the Ω projection. For
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instance, for N even, consider again the quiver diagram shown in figure 4.1. Each Yukawa
coupling corresponds to a triangle in the quiver diagram. The field identifications of the
previous section introduce a kind of reflection axis, which vertically divides the quiver in
two parts. The SO(p) gauge groups at j = 0, N/2 lie on the Z2 reflection axis. Due to
constraints such as (4.3.19), each field on the right hand side of the axis is identified with
one on the left hand side. In (4.3.22) we therefore sum only over j = 0, ..., N/2 and set
Y = +1 at j = 0 and Y = −1 at j = N/2, Y = ±1 otherwise. The gauge groups are
chosen as in (4.3.15) and (4.3.16). For N odd, the Lagrangian is constructed in a similar
way.

4.3.4 Higgs branch theory and instanton moduli space

Higgs branch theory

In this section we investigate the infrared fixed point theory of the ADHM quiver model
(4.3.22). This theory will be interpreted as the boundary conformal field theory dual to
the worldsheet theory described in section 4.2.3. For its construction, we first have to
choose a vacuum solution which sets the potential of (4.3.22) to zero. Inspecting the term
m2b2φ2 in (4.3.22), we find two different possibilities for the scalars bAY and φA

′m and
their vacuum expectation values 〈bAY 〉 and 〈φA′m〉 [184]:9

• Coulomb branch: 〈bAY 〉 6= 0 and 〈φA′m〉 = 0
On the Coulomb branch the D1-branes are transversely displaced from the D5-
branes with 〈bAY 〉 proportional to the distance. In this case the φA

′m become mas-
sive.

• Higgs branch: 〈bAY 〉 = 0 and 〈φA′m〉 6= 0
On the Higgs branch the D1-branes and D5-branes form a bound state with 〈φA′m〉
proportional to the binding strength between the two. In this case the bAY become
massive.

In the following we are interested in the situation where all branes form stacks located at
the orbifold fixed point. We will therefore consider the Higgs branch of the theory.

In principle, we could now proceed as in [139] and integrate out all massive modes of
the quiver theory. As in [139], this would lead to a (0, 4) sigma model whose target space
is the instanton moduli space M of the ultraviolet theory. The actual construction would
be along the lines of [139] and involves a non-trivial gauge field F pq

mn jj which is defined in

terms of the bifundamentals φA
′m

jj . Although straightforward, we will not do this explicitly
here. Instead we only determine the left- and right-moving central charges of the infrared
theory and compare them to those expected from the dual worldsheet model.

As outlined in the introduction, our strategy to find these charges is as follows. The
ADHM quiver model is classically not conformally invariant, but ultraviolet finite such
that there is no renormalisation group flow. This follows from the fact that the one-loop
diagrams cancel, and all higher loop diagrams are finite [138]. The massless fields of the

9We will not discuss the rather delicate case 〈bAY 〉 = 〈φA′m〉 = 0.
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quiver model therefore do not acquire anomalous conformal dimensions and contribute
to the central charges of the infrared conformal field theory. This allows us to determine
the left- and right-moving central charges of the infrared conformal field theory from the
number of massless modes in the ultraviolet quiver theory.

Number of massless modes for N even

We begin by counting the massless degrees of freedom in the case of even orbifolds: First,
there are the bifundamental fields (φA

′m
a )j,j descending from 1-5 strings and their left- and

right-moving fermionic partners (χAm− a )j,j and (χY m+ a )j,j+1. These fields are not constrained
by any D-term relations and thus contribute 2 ·N · 2N ′ · p = 4NN ′p scalars and an equal
number of left- and right-moving fermions. The 5-1 string modes are related to the 1-5
modes by the Ω reflection and therefore do not contribute any additional massless modes.

Second, consider the bosons (bAYab )j,j+Y which are massive on the Higgs branch. Since
the theory has (0, 4)-supersymmetry, we know immediately that an equal number of right-
moving fermions (ψA

′Y
− ab)j,j+Y has to obtain mass. However, since only non-chiral fermions

can be massive, it follows that also all left-moving (ψAA
′

+ ab)j,j become massive. The mass
terms for the latter arise due to couplings of the type ψ+χ−φ in (4.3.22). This sector thus
has no massless modes.

Third, consider the scalars (bA
′Ã′

ab )j,j. Those fields (bA
′Ã′

ab )j,j which are adjoints of a U(p)

gauge group do not contribute to the counting: The 4p2 degrees of freedom of (bA
′Ã′

ab )j,j
(for fixed j 6= 0, N/2) are removed by 3p2+p2 conditions coming from the vanishing of the
corresponding D-term and U(p) gauge equivalence. By supersymmetry, the same number

of (ψAÃ
′

− ab)j,j are removed, and by the same pairing mechanism as described above also all

of the (ψY Ã
′

+ ab)j,j+Y . These fields thus give no contribution.

For j = 0 and j = N/2, however, the gauge group is SO(p), and the counting is

similar as in the unorbifolded case [58, 16]: the fields (bA
′Ã′

(ab) )0,0 and (bA
′Ã′

(ab) )N/2,N/2 are in the

symmetric representation of SO(p) and contribute 4p(p+1)/2 real scalars each. However,
there are also 4p(p− 1)/2 constraints due to D-term relations and gauge equivalences. In

total, (bA
′Ã′

(ab) )0,0 and (bA
′Ã′

(ab) )N/2,N/2 thus contribute 2(4p(p+1)/2−4p(p−1)/2) = 8pmassless

bosons. Supersymmetry then dictates that of the 8p(p + 1)/2 right-moving fermions

(ψA
′Ã′

−(ab))0,0 and (ψA
′Ã′

−(ab))N/2,N/2 only 8p survive. To eliminate the remaining 8p(p−1)/2, we

need to pair up all of the 8p(p− 1)/2 left-moving fermions (ψA
′Ã′

+[ab])0,0 and (ψA
′Ã′

+[ab])N/2,N/2.
This leaves us with no left-moving massless fermions.

Number of massless modes for N odd

Much of the above analysis carries over to odd orbifolds. The fields (φA
′m

a )j,j again con-
tribute 4NN ′p massless bosonic degrees of freedom and an equal number of left- and
right-moving fermions. For j 6= 0, the (bA

′Ã′

ab )j,j of the U(p) gauge groups are eliminated

by D-terms, and for j = 0 (bA
′Ã′

(ab) )0,0 give 4p degrees of freedom. Note that we only have one

SO(p) gauge group and we therefore get only half as many massless degrees of freedom
from these fields as required.

73



Since we are on the Higgs branch, all the (bAYab )j,j+Y become massive, except for the
fields (bA+

ab )(N−1)/2,(N+1)/2 and (bA−ab )(N+1)/2,(N−1)/2 shown by red arrows in figure 4.2. These
fields are special and essentially take on the role played by the second SO(p) gauge group
in the even case. By (4.3.20) these particular bAY fields and their superpartners ψ− are
symmetric fields with 4p(p+ 1)/2 components each, while the corresponding left-moving
fermions ψ+ are antisymmetric fields with 4p(p−1)/2 components. From the type II theory
we know that the only other left-moving fermions, the χ+, remain massless. We can thus
only form 4p(p − 1)/2 Yukawa terms so that of the ψ−, 4p(p + 1)/2 − 4p(p − 1)/2 = 4p
remain. By supersymmetry, the same number of bosons b must remain massless. The
total number of bosonic degrees of freedom is thus again 4NN ′p + 8p (for N > 1), the
same as in the even case.

SO(p)

U(p)

0

1

2

4

3

(bA
′Ã′

(ab) )0,0

(bA−ab )3,2

(bA+
ab )2,3

Figure 4.2: Inner circle of the quiver diagram for an odd type I orbifold (Z5). The special
fields that contribute to the counting are denoted by red arrows.

In the degenerate case N = 1 there is one SO(p) gauge group, but no bifundamentals
bAY of the type described above. We therefore get only 4NN ′p + 4p bosonic massless
degrees of freedom, in agreement with the unorbifolded ADHM model.

Central charges of the Higgs branch theory

From the above counting of massless degrees of freedom, we find that the moduli space
of the ultraviolet theory is spanned by the 4NN ′p fields (φA

′m
a )j,j and the 8p independent

degrees of freedom provided by (bA
′Ã′

(ab) )j,j (j = 0, N/2). Its dimension is therefore given by

dimM = 4NN ′p+ 8p . (4.3.23)

Recalling that the target space of the conformal sigma model on the Higgs branch is
the instanton moduli space of the ADHM quiver model, we may now also determine the
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central charges of the infrared theory. For N ≥ 2 we find

(cL, cR) = (6NN ′p+ 24p, 6NN ′p+ 12p) (4.3.24)

in agreement with (4.2.11) and (4.2.22). The leading term, 6NN ′p, is given by the ADHM
instanton fields φA

′m
jj and their fermionic partners (1-5 strings). The subleading term in

the right sector, 12p, is given by the conformal charges of the 8p independent degrees of
freedom of the scalars bA

′Ã′

jj and their fermionic superpartners (1-1 strings). One contribu-
tion to the term 24p in the left-moving sector is given by the 8p bosonic fields descending
from the bA

′Ã′

jj . The remaining 16p are given by the 32 fermions λM+a (1-9 strings).

In conclusion, we propose the (0, 4) sigma model on the Higgs branch of the type I quiver
model (4.3.22) as the appropriate candidate for the boundary conformal field theory of
heterotic string theory on AdS3 × S3/ZN × T 4 (N ≥ 2).

4.4 Heterotic two-charge models

In view of a possible heterotic string duality with (0, 8) spacetime supersymmetry [140,
135], it is an interesting question whether we can systematically switch off charges in the
present (0, 4) duality. Clearly, the worldsheet theory for strings on AdS3 × S3/ZN × T 4

requires at least one KK monopole and is not applicable for vanishing KK monopole
charge. Since the KK monopoles break supersymmetry down to (0, 4) there seems to be
no obvious way to generalise the model to (0, 8). Nevertheless, it is interesting to consider
models with less charges such as the F1-KKM and the NS5-KKM intersection.

4.4.1 F1-KKM intersection N ′ = 0

We shall first consider a heterotic two-charge model consisting of a stack of p fundamental
strings in the background of a KK monopole with charge proportional to N ≥ 2. The
setup is the same as in section 2.1, but now N ′ = 0 (no D5-branes). From (4.2.11), we
find the central charges of the boundary conformal field theory to be (cL, cR) = (24p, 12p).
Remarkably, the central charges do not depend on the charge of the KK monopole since
the leading term cubic in the charges (∝ NN ′p) is absent. This has some interesting
consequences.

Let us first have a look at the supergravity solution. Classically, the solution has a
horizon of zero area leaving a naked curvature singularity at the origin. This corresponds
to a vanishing Bekenstein-Hawking entropy on the classical level. It is however believed
that higher-derivative corrections to the supergravity solution resolve the classical singu-
larity leading to a finite entropy. The corrected supergravity solution presented in the
previous section is valid for large NN ′ and thus cannot be applied to this case.

The heterotic worldsheet theory for this case has some peculiar features. The left
sector of the CFT on the S3/ZN has collapsed to a trivial theory with bosonic level
k′b = cws

L (S3/ZN) = 0. The supersymmetric level corresponding to the right sector is
k′s = k′b + 2 = 2, and we have cws

R (S3/ZN) = 3
2
. We are thus left with a trivial theory

in the left sector and three fermions χ̄a (a = 1, 2, 3) in the right sector. The AdS3 part
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of the geometry is described by a heterotic SL(2) WZW model with levels kb = 4 and
ks = 2. The full (supersymmetric part of the) background is thus

SL(2,R)2 × {χ̄1, χ̄2, χ̄3} × T 4 , (4.4.1)

and the central charges of the worldsheet model are:

cws
L (SL(2)) = 6 , cws

L (S3/ZN) = 0 , cws
L (T 4) = 4 ,

cws
R (SL(2)) = 15/2 , cws

R (S3/ZN) = 3/2 , cws
R (T 4) = 6 , (4.4.2)

ensuring criticality, (cws
L , c

ws
R ) = (26, 15), given that cws

L (E8 × E8) = 16. The worldsheet
model also gives the correct central charges for the boundary CFT, cf. Eq. (4.2.23).
Related heterotic models involving three fermions can be found in [109, 42].

We conclude with some comments on the dual boundary conformal field theory. Re-
moving the D5 branes in the quiver ADHM theory corresponds to the removal of the
outer circle and the spikes in the quiver diagram in figure 4.1. The ADHM part of the
quiver action disappears, leaving only that part of the action which corresponds to the
inner circle of the quiver diagram. Nevertheless, the counting of the massless degrees
of freedom in the remaining quiver theory seems to yield the correct central charges,
(cL, cR) = (24p, 12p) (for N ≥ 2). It is interesting to observe that the independence of
cL,R on N is reflected by fact that varying N changes only the number of sites in the
quiver diagram corresponding to U(p) gauge groups. Recall, however, that the fields of
the U(p) gauge groups do not contribute to the central charges of the infrared conformal
field theory. Certainly, it would be interesting to study this field theory in more detail.

4.4.2 Heterotic NS5-KKM intersection p = 0

For completeness, we also consider the NS5-KKM intersection which can be obtained from
the three-charge model of section 4.2.1 by setting p = 0.

Let us approach this setup from a slightly different point of view. In [140] Lapan,
Simons and Strominger suggested to start from a four-dimensional monopole black hole
with near-horizon geometry

Rt × Rφ × S2 × T 6 , (4.4.3)

where Rt denotes time and Rφ a real line labelled by φ with linear dilaton. Decompactify-
ing one of the compact directions, i.e. replacing Rt×S1 by a two-dimensional Minkowski
space R1,1 leads to the geometry

R1,1 × Rφ × S2 × T 5 . (4.4.4)

The CFT on (4.4.4) is then expected to describe a monopole string in five dimensions
[140]. Ref. [140] also suggested that the S2 factor could be described by the coset model
of [103].

Here, however, we deviate from the proposal of [140] and include a KK monopole
charge by replacing S2×T 5 by S3/ZN×T 4. Of course, we thereby break half of the target
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space supersymmetry. Heterotic string theory in the background of a five-dimensional
monopole string with additional KK monopole charge is then expected to be given by the
CFT on

R1,1 × Rφ × S3/ZN × T 4 . (4.4.5)

In fact, the thus derived background is nothing but the near-horizon geometry of the F1-
NS5-KKM set-up for vanishing electrical F1 charge, p = 0. This can be seen by setting
F = 1 in (4.2.1) and taking the limit r → 0.

Heterotic string theory on the background (4.4.5) can be described by a linear dilaton
theory with central charges

cws
L (R1,1 × Rφ) = 2 + (1 + 3Q2

D) , cws
R (R1,1 × Rφ) = 3 + (3

2
+ 3Q2

D) , (4.4.6)

and dilaton chargeQD. The internal part of the geometry, S3/ZN and T 4, will be described
as before, see section 2.3. By criticality, the linear dilaton charge QD is related to the
bosonic level k′b of the S3/ZN theory as

Q2
D =

2

k′b + 2
, (4.4.7)

where k′b = k′s − 2 = NN ′, if we assume k′s = NN ′ + 2.

Finally, as explained in [110], there is a simple relation between linear dilaton and
SL(2) models. Adding p D1-branes along the R1,1 and taking the near-horizon limit
amounts to replacing the factor R1,1 × Rφ by AdS3. The level of SL(2) is related to the
dilaton charge by ks = 2/Q2

D (kb = ks + 2). This leads back to AdS3 × S3/ZN × T 4, as
expected.

In summary, the proposed heterotic duality obviously requires further investigation.
The evidence given here is based on the counting of the massless degrees of freedom of the
ultraviolet orbifold theory. These modes are not renormalised and therefore also constitute
the Higgs branch theory. Its actual construction is expected to be straightforward along
the lines of [139] by integrating out the massive modes in the UV theory. This procedure
will be made more complicated by the fact that the Higgs branch metric will receive α′

corrections and seems to be divergent at the origin [139].
Another interesting check of our proposal would then be to work out the dictionary

between the chiral primaries of the boundary CFT and those of the worldsheet model [137].
The primaries of the boundary CFT will be composite operators of the massless fields of
the ultraviolet ADHM quiver model. A comparison of the corresponding n-point functions
should then provide further evidence for the duality. Such tests have been performed in
the type II AdS3/CFT2 duality in [95, 43, 163, 178, 107].
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Chapter 5

Modular differential equations and
null vectors

5.1 Overview

Every rational conformal field theory possesses a modular differential equation. This is to
say, the different characters of the finitely many irreducible highest weight representations
satisfy a common differential equation in the modular parameter. This fact was first
observed, using the transformation properties of the characters under the modular group,
in [62, 11, 151, 152]; later developments of these ideas are described in [67, 66, 69, 68,
75, 15]. Following the work of Zhu [187], the modular transformation properties of the
characters were derived from first principles (see also [158]). Zhu’s derivation suggests
that the modular differential equation is a consequence of a null-vector relation in the
vacuum Verma module [91], see also [75]. The main result of this chapter is that this idea
is indeed correct.

The recent interest in this problem arose from the analysis of Witten concerning pure
gravity in AdS3 [186]. He suggested that the corresponding boundary theories should
be holomorphically factorising bosonic conformal field theories at c = 24k with k =
1, 2, . . ., where k → ∞ describes the classical limit of the AdS3 theory. Furthermore, the
corresponding chiral theories should be extremal, meaning that up to level k + 1 above
the vacuum, the theory only consists of Virasoro descendants of the vacuum state. For
k = 1, the resulting conformal field theory is the famous Monster theory [83, 20], but for
k ≥ 2 an explicit realisation of these theories is so far not known. The above constraints,
however, specify the character of these meromorphic conformal field theories uniquely
[122, 186].

It was proposed in [91] that the analysis of their modular differential equations could
answer the question whether such theories exist for k ≥ 2. Since these theories are
self-dual, they only have a single highest weight representation, and thus only a single
character. One can then obtain an estimate for the order s of the differential equation
that annihilates this character; this is proportional, for large k, to s ∼

√
k. On the other

hand, if there is a direct relation between modular differential equations and null-vectors
in the vacuum Verma module, a modular differential equation at order s should imply
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that the vacuum Verma module has a null-vector at conformal weight 2s. This would then
lead to a contradiction for k ≥ 42 since the extremal theories do not have any null-vectors
at such low levels [91].

In [91] a specific conjecture was made (and supported by some evidence). It was
suggested that if a conformal field theory satisfies an order s modular differential equation,
then Ls−2Ω ∈ O[2]. (In particular, this conjecture implies the weaker statement that the
vacuum Verma module has a null-vector at level 2s.) The original form of the conjecture
has turned out to be incorrect: the example of Gaiotto [99] involving tensor products of
the Monster theory demonstrates this fact. This example is however not in conflict with
the weaker statement that the vacuum Verma module possesses a null-vector at level 2s
— albeit one that is of a somewhat different form. In fact, the tensor products of the
Monster theory have many null-vectors at levels that are even below the one suggested
by the order of the modular differential equation!

In this chapter we show that every modular differential equation comes from a null-
vector in the vacuum Verma module (see (5.3.13)). We shall explain under which condi-
tions this leads to a relation of the form Ls−2Ω ∈ O[2], thus giving in particular a null-vector
at level 2s. We shall also explain in detail how the counterexample of Gaiotto avoids this
conclusion; as we shall see, this is intimately related to the fact that the tensor product
of two (or more) Monster theories has many other null-vectors. We also comment on the
fact that the existence of these additional null-vectors can be seen from an analysis of the
Monster theory character; the same is true for Witten’s theory at k = 2, but, at least from
the point of view of the character, there are no indications that the theories with k ≥ 3
should have sufficiently many null vectors to avoid a contradiction along these lines.

5.2 The modular differential equation

Let us begin by explaining the structure of torus amplitudes in a rational conformal
field theory. It is usually believed (and it follows in fact from the analysis of Zhu [187])
that the torus amplitudes can be described in terms of the characters of the highest
weight representations of the conformal field theory. These characters satisfy a modular
differential equation [151, 152] (for earlier work see [62, 11]). In this section we want to
explain the origin of this differential equation from the point of view of Zhu [187].

Let V be a meromorphic conformal field theory (or vertex operator algebra). For each
state a ∈ V we have a vertex operator V (a, z), whose modes we denote by an (using the
usual physicists’ conventions). The zero mode of a plays a special role, and we denote
it by o(a) ≡ a0. On the torus, it is more advantageous to use different coordinates; the
associated modes are then denoted by a[n]. All of this is explained in more detail in
appendix C.1.

It follows from an elementary (but somewhat tedious) calculation due to Zhu (Propo-
sition 4.3.5 of [187] — we sketch an outline of the argument in appendix C.2) that

TrH
(
o(a[−ha]b) q

L0

)
= TrH

(
o(a) o(b) qL0

)
+

∞∑

k=1

G2k(q)TrH
(
o(a[2k−ha]b) q

L0

)
. (5.2.1)

80



Here the trace is taken in any highest weight representation H of the chiral algebra, and
Gn(q) denotes the nth Eisenstein series; our conventions for the Eisenstein series (as well
as their main properties) are summarised in appendix C.3. Next we apply (5.2.1) with
a replaced by L[−1]a, and use that (L[−1]a)[n] = −(ha + n)a[n] (as follows from (C.1.4)
upon taking a derivative), as well as o(L[−1]a) = (2πi) o(L−1a + L0a) = 0, which is a
consequence of (C.1.7); this leads to (see Proposition 4.3.6 of [187])

TrH
(
o(a[−ha−1]b) q

L0

)
+
∑

k≥1

(2k − 1)G2k(q) TrH
(
o(a[2k−ha−1]b) q

L0

)
= 0 . (5.2.2)

The term with k = 1 does not contribute here since the trace of o(a[−ha+1]b) vanishes —
as follows from (C.2.11) in the appendix, it is a commutator and hence vanishes in the
trace.

Equation (5.2.2) motivates now the following definition. Let V [G4(q), G6(q)] be the
space of polynomials in the Eisenstein series with coefficients in V . This is a module over
the ring R = C[G4(q), G6(q)] which carries a natural grading given by the modular weight
of each monomial; since G4 and G6 generate all modular forms, we have in particular that
G2k(q) ∈ R for k ≥ 2. Then we define Oq(V ) to be the submodule of V [G4(q), G6(q)]
generated by states of the form

Oq(V ) : a[−ha−1]b+
∑

k≥2

(2k − 1)G2k(q) a[2k−ha−1] b , (5.2.3)

where a, b ∈ V . Here the sum is finite, as a[n] annihilates b for sufficiently large n. By
(5.2.2), it is now clear that

TrH
(
o(v) qL0

)
= 0 if v ∈ Oq(V ). (5.2.4)

This is true for every character, i.e. independent of the highest weight representation H
that is being considered. For later convenience we also note that

a[−ha−n]b− (−1)n
∑

2k≥n+1

(
2k − 1

n

)
G2k(q) a[2k−ha−n]b ∈ Oq(V ) , ∀n ≥ 1 , (5.2.5)

as can be seen by evaluating the above identity repeatedly with a being replaced by L[−1]a.

Suppose now that for a conformal field theory we can find an integer s and modular
forms gr(q) of weight 2(s− r) such that 1

(
L[−2]

)s
Ω +

s−2∑

r=0

gr(q)
(
L[−2]

)r
Ω ∈ Oq(V ) . (5.2.6)

1As is explained in [187], the existence of such a vector follows for example from the C2 condition that
is believed to hold for every rational conformal field theory — see also appendix A.2.
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We then claim that all the characters χH(q) := TrH
(
qL0− c

24

)
of the conformal field theory

satisfy a common modular covariant differential equation, i.e. an equation of the form

[
Ds +

s−2∑

r=0

fr(q)D
r

]
χM(q) = 0 . (5.2.7)

Here Ds is the order s differential operator (see appendix C.3)

Ds = D2s−2D2s−4 · · ·D2D0 , with Dr = q
d

dq
− r

4π2
G2(q) = q

d

dq
− r

12
E2(q) ,

(5.2.8)
and fr(q) is a modular form of weight 2(s− r).2

To show this, note that because of the defining property of Oq(V ) (5.2.4), we know
that the character of the zero mode of the left hand side of (5.2.6) vanishes. On the other
hand, each term in this expression can be turned into a differential operator

TrH
(
o
(
(L[−2])

rΩ
)
qL0− c

24

)
= Pr(D)TrH

(
qL0− c

24

)
, (5.2.9)

where Pr(D) is a modular covariant differential operator of order r with modular weight
2r. To see (5.2.9) we note that for r = 1 we obtain directly

TrH
(
o(L[−2]Ω) qL0− c

24

)
= (2πi)2TrH

((
L0 −

c

24

)
qL0− c

24

)
= (2πi)2

(
q
d

dq

)
TrH

(
qL0− c

24

)
,

(5.2.10)
which is modular covariant since the character has modular weight 0. The case of general
r follows by applying (5.2.1) (which clearly still works if we replace qL0 by qL0−c/24)

TrH
(
o(L[−2](L[−2])

rΩ) qL0− c
24

)
= (2πi)2q

d

dq
TrH

(
o((L[−2])

rΩ) qL0− c
24

)

+2rG2(q) TrH
(
o((L[−2])

rΩ) qL0− c
24

)
(5.2.11)

+
∑

k≥2

G2k(q) TrH
(
o(L[2k−2](L[−2])

rΩ) qL0− c
24

)
.

In the last line we commute the positive L[2k−2] modes to the right, using the Virasoro
commutation relations. The final result is a vector of the form (L[−2])

r+1−kΩ, which leads
to a differential operator of lower order, multiplied by the modular form of appropriate
weight. The first two terms, on the other hand, just produce the covariant derivative D2r

for a form of weight 2r. Collecting all terms, we get the desired operator Pr(D). Note
that the leading term of Pr(D) is proportional to Dr; for the first few values of r, the
explicit formula for Pr(D) is given in appendix B.1. This completes the derivation of the
modular differential equation.

2We shall use two different conventions for the Eisenstein series, namely Gn(q) and En(q), in this
chapter; the two functions only differ by an overall normalisation constant, see appendix C.
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5.2.1 A simple example

Let us illustrate this construction with a simple example, the Yang-Lee minimal model
at c = −22

5
. This is the ‘simplest’ minimal model since it only has two highest weight

representations, the vacuum representation at h = 0 as well as the representation at
h = −1

5
. The vacuum representation has a null-vector at level 4,

N =

(
L[−4] −

5

3
L2

[−2]

)
Ω . (5.2.12)

We want to use N to obtain an expression of the form (5.2.6). To this end we observe
that L[−4]Ω is already in Oq(V ) since (5.2.5) implies that

Oq(V ) ∋ L[−4]Ω −
∑

k≥2

(
2k − 1

2

)
G2k(q)L[2k−4]Ω = L[−4]Ω . (5.2.13)

Since N is a null-vector, the sought-after relation is then simply

L2
[−2]Ω ∈ Oq(V ) . (5.2.14)

Using the explicit expression for (5.2.9) derived in appendix C.2.1, we obtain the differ-
ential equation

0 = TrH
(
o(L[−2]L[−2]Ω) qL0− c

24

)
= (2πi)4

[
D2 − 11

3600
E4(q)

]
χH(q) . (5.2.15)

The two characters of the Yang-Lee model are explicitly given as (see for example [48])

χ0(q) =
1

η(q)

∑

n∈Z

(
q

(20n−3)2

40 − q
(20n+7)2

40

)
(5.2.16)

χ−1/5(q) =
1

η(q)

∑

n∈Z

(
q

(20n−1)2

40 − q
(20n+9)2

40

)
, (5.2.17)

where η(q) is the usual Dedekind eta function

η(q) = q
1
24

∞∏

n=1

(1 − qn) . (5.2.18)

One easily checks (using for example Mathematica) that the two characters are indeed
the two solutions of this second order differential equation. We have also performed the
analogeous analysis for the Ising model.

5.2.2 Relation to the null-vector

In the above example, the vector of the form (5.2.6) in Oq(V ) was a direct consequence of
a null-vector relation in the vacuum representation, see (5.2.12). This is actually generally
true: a vector of the form (5.2.6) in Oq(V ) can only exist if the vacuum representation
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has a null-vector at level 2s. To see this we recall that V [G4(q), G6(q)] carries two grades:
the conformal weight of the vectors in V (with respect to L[0]), and the modular weight of
the coefficient functions (that are polynomials in G4 and G6). Furthermore, the relations
that define Oq(V ) are homogeneous with respect to the grade that is the sum of these
two grades, as is manifest from (5.2.3).

Since the relation (5.2.6) is a relation in V [G4(q), G6(q)] it must hold separately for
every conformal weight and every modular weight. If we consider the component at
conformal weight 2s and modular weight zero, we therefore get a relation of the form

(
L[−2]

)s
Ω +

∑

j

aj
[−h(aj)−1]

bj = 0 , (5.2.19)

where h(aj) is the conformal weight (with respect to L[0]) of aj. This is necessarily a
non-trivial relation in the Verma module since L[−2] is not of the form a[−ha−1] for any a.
Such a non-trivial relation is usually called a null-vector. We mention in passing that it
implies that

(
L[−2]

)s
Ω vanishes in the C2 quotient space of Zhu (that is briefly discussed

in appendix A.2), as was already mentioned in [91].

5.3 Reconstructing the null-vector

As we have seen above, a vector of the form (5.2.6) in Oq(V ) implies that the characters
of the theory satisfy a common order s modular differential equation. We have also shown
that such a relation in Oq(V ) can only exist if the vacuum representation has a null-vector
at conformal weight 2s, see (5.2.19).

We would now like to show a partial converse to these statements, namely that every
modular differential equation implies that the vacuum Verma module has a null-vector.
We shall assume that Zhu’s algebra is semisimple, as is known to be the case for rational
conformal field theories (in the mathematical sense) [187]. In particular, this is the case
for the self-dual theories, for which Zhu’s algebra is one-dimensional, consisting only of
the identity.

5.3.1 The underlying vector

Suppose now that we have a modular covariant differential equation of the form (5.2.7)
that annihilates all characters of the conformal field theory. Using the arguments of
section 2 in reverse order, it is easy to see that there is then a vector K(q) of the form

K(q) ≡
(
L[−2]

)s
Ω +

s−2∑

r=0

gr(q)
(
L[−2]

)r
Ω (5.3.1)

that has the property that

TrH
(
o(K(q)) qL0− c

24

)
= 0 (5.3.2)

for all characters of the conformal field theory. Let us consider the limit

lim
q→0

q
c
24

−hTrH
(
o(K(q)) qL0− c

24

)
= 0 , (5.3.3)
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where h is the conformal weight of the highest weight state in H. In this limit only the
highest weight states H0 in H contribute, and we conclude that

TrH0

(
o(K(0))

)
= 0 . (5.3.4)

5.3.2 Using Zhu’s Theorem

The above argument has shown that K(0) acts trivially in the trace of an arbitrary
highest weight representation. The action of the elements of V on highest weight states is
captured by Zhu’s algebra (for a brief introduction see appendix C.1.1). If Zhu’s algebra
is semisimple (as we shall assume) then the fact that K(0) is trivial in all traces implies
that K(0) must equal a commutator in Zhu’s algebra. This follows for example from
a standard theorem of associative algebras, the Wedderburn structure theorem [71]. It
states that every semisimple associative algebra is isomorphic to the product of algebras
of n× n matrices over C,

A(V ) ∼=
N∏

i=1

Mni(C) , (5.3.5)

where ni is the dimension of the ith irreducible representation Mi of A(V ). Assume we are
given a ∈ A(V ) such that TrMi

(a) = 0 for all irreducible representations Mi. By (5.3.5),
a is isomorphic to a blockdiagonal matrix whose blocks all have vanishing trace. It is
then a straightforward exercise to show that each such matrix can be written as a sum of
commutators, i.e. that up to elements in O[1,1]

2πi · a = 2πi
∑

l

(dl ∗ el − el ∗ dl) =
∑

l

dl[−h(dl)+1] e
l . (5.3.6)

In the last equation we have used the identity (C.1.12).
This argument thus implies that up to commutator terms (5.3.6), K(0) lies in O[1,1],

the subspace by which we quotient to obtain Zhu’s algebra A(V ). On the other hand,
O[1,1] is closely related to Oq(V ): for any state in Oq(V ),

a[−ha−1]b+
∑

k≥2

(2k − 1)G2k(q)a[2k−ha−1]b , (5.3.7)

we can formally take the limit q → 0, i.e. we can consider its constant part only. Then
we obtain (see [187], Lemma 5.3.2)

πi

6
a[−ha+1]b+ 2πi

∮
dz

(
V (a, z)

(1 + z)ha

z2
b

)
, (5.3.8)

i.e. up to a commutator term, the limit is in O[1,1]. In fact, it is obvious that every element
in O[1,1] can be obtained in this manner.

Taking these two statements together they now imply that K(0) equals the sum of
commutator terms (5.3.6) and the q → 0 limit of elements in Oq(V ),

K(0) −
∑

l

dl[−h(dl)+1] e
l −
∑

j

Hj(0) = 0 , (5.3.9)
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where

Hj(q) = aj
[−h(aj)−1]

bj +
∑

k≥2

(2k − 1)G2k(q) a
j
[2k−h(aj)−1]

bj ∈ Oq(V ) . (5.3.10)

This relation now holds in the full vacuum representation V . Next we define the element
N(q) ∈ V [G4, G6] by

N(q) ≡ K(q) −
∑

l

dl[−h(dl)+1] e
l −
∑

j

Hj(q) . (5.3.11)

By construction, N(0) = 0, and hence N(q) is proportional to q. We can then divide by
q, and repeat the above argument. Recursively this allows us to prove that

K(q) −
∑

l

fl(q) d
l
[−h(dl)+1] e

l −
∑

j

hj(q)H
j(q) = 0 (5.3.12)

in V [q], where fl(q) and hj(q) are power series in q. (Here V [q] consists of vectors in
V with coefficients that are formal power series in q.) If we assume that the theory is
C2-finite we can furthermore show that only finitely many terms appear and that the
power series have a non-trivial radius of convergence; however, this will not be important
in the following.

Putting everything together, we can now use (5.3.12) as well as (5.3.1) and (5.3.10)
to arrive at the identity

(L[−2])
sΩ +

s−1∑

i=0

gi(q)(L[−2])
iΩ (5.3.13)

=
∑

l

fl(q)d
l
[−h(dl)+1]e

l +
∑

j

hj(q)
(
aj

[−h(aj)−1]
bj +

∑

k≥2

(2k − 1)G2k(q) a
j
[2k−h(aj)−1]

bj
)
.

This defines the sought after ‘null-vector’ relation in the vacuum Verma module. Ob-
viously, the full expression is not homogeneous with respect to conformal weight, and
therefore each component (i.e. the terms of each fixed conformal weight) must vanish
separately (and indeed for any value of q). Some of these relations may be trivial in the
Verma module, but not all of them can if the original modular differential equation from
which we started was non-trivial.

5.3.3 Consequences

We have thus shown that every modular differential equation comes from a null-vector
in the vacuum Verma module. We would now like to obtain more detailed information
from (5.3.13). For the application to the extremal self-dual conformal field theories, it is
for instance also important to determine the conformal weights of the constituent null-
vectors. In particular, one may expect that the term of highest conformal weight on the
left-hand-side — this is the vector (L−2)

sΩ — should be part of a non-trivial null-vector
relation.
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In order to motivate this proposal we observe that the coefficients of the vectors of the
left-hand-side of (5.3.13) are all analytic functions in q on the unit disc, |q| < 1. Therefore
the same has to be true for the coefficients on the right-hand-side. Generically, one should
then expect that the functions fl(q) and hj(q) will also be analytic functions on |q| < 1;
as we shall discuss later on, there are however situations where this is not the case.

Now we recall that V [G4(q), G6(q)] has two gradings, namely the ones given by con-
formal weight and modular weight. By construction (L[−2])

sΩ has modular weight 0 and
conformal weight 2s. If fl(q) and hj(q) are indeed analytic, then the only terms of mod-
ular weight 0 on the right hand side of (5.3.13) have constant coefficients. Moreover,
comparing the conformal weights, only terms of L[0]-weight 2s can contribute. Thus we
can conclude that we have an identity of the form

(L[−2])
sΩ =

′∑

j

aj
[−h(aj)−1]

bj +
′∑

l

dl[−h(dl)+1]e
l , (5.3.14)

where the prime over the sum indicates that we only include states of L[0]-weight 2s,
i.e. terms with h(aj) + h(bj) + 1 = 2s and h(dl) + h(el) − 1 = 2s. Because of the
‘commutator terms’, i.e. the first sum in (5.3.14), this identity does not quite imply that
Ls[−2]Ω ∈ O[2]. However, for the case of the extremal self-dual theories at c = 24k we

can show (see section 4 below) that this is so, and hence that (5.3.14) defines indeed a
non-trivial null-vector relation.

In the above argument we have used that there are no holomorphic functions of neg-
ative modular weight; in particular, this implied that hj(q)G2k(q) had modular weight
greater or equal to 2k, and hence could not contribute to the identity (5.3.14). However,
as soon as we allow hj to be meromorphic, we can no longer guarantee this. For example,
we can then construct other contributions to (5.3.14) from terms with k 6= 0 by choosing
hj(q) = G2k(q)

−1. We will now discuss an example of such a situation.

5.3.4 A counterexample

It was observed in [99] that for the tensor product of two (or more) Monster theories,
there exist modular differential equations that do not come from relations of the type
(5.3.14). As we shall explain in the following, this ‘counterexample’ to (5.3.14) can be
traced back to the failure of hj to be holomorphic. We shall also see that this is only
compatible with the holomorphicity of (5.3.13) because the Monster theory (and indeed
the tensor products of the Monster theory) has many other null-vectors at low levels.
These null-vectors are necessary to guarantee that the apparent non-holomorphic terms
on the right-hand-side of (5.3.13) in fact vanish in the vacuum representation. Thus it
seems that (5.3.14) can only be avoided if the theory has other non-trivial null-vectors at
low levels.

The Monster theory

To set up the notation we first recall a few facts about the case of a single Monster theory;
for an introduction to these matters see for example [100]. The Monster theory has no
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fields of conformal dimension one, and 196884 fields of conformal dimension 2. The latter
consist of the stress-energy tensor whose modes Ln satisfy a Virasoro algebra at central
charge c = 24,

[Lm, Ln] = (m− n)Lm+n + 2m(m2 − 1)δm,−n . (5.3.15)

The remaining 196883 fields W i transform in an irreducible representation of the Monster
group and satisfy the commutation relations

[Lm,W
i
n] = (m− n)W i

m+n

[W i
m,W

j
n] =

1

6
δijm(m2 − 1)δm,−n +

1

12
δij(m− n)Lm+n

+hijk (m− n)W k
m+n + f ijα V

α
m+n , (5.3.16)

where V α
l are the modes of the primary fields at conformal weight three that transform

in the 21296876-dimensional irreducible representation of the Monster group. The coeffi-
cients hijk are totally symmetric in all three indices, and define the structure constants of
the so-called Griess algebra. In our conventions, the metric on the space of the W i fields
is orthonormal, so we can raise and lower the i, j, k indices freely.

The Monster conformal field theory has many non-trivial relations; the first non-trivial
relation already occurs at level four since we have the identity (see for example [153])3

N4 = L2
−2Ω +

36

11
L−4Ω − 12

30503

∑

i

W i
−2W

i
−2Ω = 0 . (5.3.17)

This null-relation does, however, not directly lead to a differential equation since it is not
of the form (5.3.14). As was already explained in [91], the character of the Monster theory
χM(q) satisfies only a third order differential equation

[
D3 +

16

31
E6(q) −

290

279
E4(q)D

]
χM(q) = 0 . (5.3.18)

This differential equation can be obtained from the null-vector at level six (see again [153])

N6 = L3
−2Ω +

41

8
L2
−3Ω +

15623

1488
L−4L−2Ω +

873

31
L−6Ω− 1

124

∑

i

W i
−4W

i
−2Ω = 0 . (5.3.19)

In fact, it is easy to see that evaluating the trace of V0(N6) as in section 2 (where in the
definition of N6 we replace the L−n modes by L[−n] modes) leads to the above modular dif-
ferential equation. (In order to do this calculation, one also needs to use the commutation
relations of the W i-modes.)

3This follows from the equation after (2.9) in [153] upon rewriting his modes x
i with i = 1, . . . , 196884

in terms of the W
i and L.
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There is an independent null-vector at level eight, which is of the form4

N8 = hijkW
i
−4W

j
−2W

k
−2Ω −H0

[ 503352

8072203
L−8Ω +

81048

8072203
L−6L−2Ω

+
34565

8072203
L−5L−3Ω +

26403

16144406
L−4L−4Ω +

110221

96866436
L−4L−2L−2Ω

+
3193

16144406
L−3L−3L−2Ω +

5210

24216609
L−2L−2L−2L−2Ω

]
, (5.3.20)

where H0 = hijkh
ijk, which equals in our conventions H0 = 196883 6929

6
= 1364202307

6
. By

the same token as above (and with somewhat more effort — in particular, we now also
have to use the null-vector N4 in order to express the term hijkW

i
[0]W

j
[−2]W

k
[−2]Ω that

appears in the course of this calculation in terms of Virasoro generators) it leads to the
fourth order modular differential equation

[
D4 − 73421

93780
E4(q)D

2 +
527029

562680
E6(q)D − 1259

2605
E2

4(q)

]
χM(q) = 0 . (5.3.21)

This differential equation is actually linearly independent from the other fourth order
modular differential equation of the Monster theory, namely the one coming from the
null-vector L−2N6. The latter differential equation equals

[
D4 − 290

279
E4(q)D

2 +
722

837
E6(q)D − 8

31
E2

4(q)

]
χM(q) = 0 , (5.3.22)

which is in fact simply equal to the D-derivative of (5.3.18). Taking the difference of
(5.3.21) and (5.3.22) the Monster theory therefore also satisfies a modular differential
equation of order two,

[
E4(q)D

2 +
71

246
E6(q)D − 36

41
E2

4(q)

]
χM(q) = 0 . (5.3.23)

[Another way of saying this, is that this is the modular differential equation that comes
from the nullvector

M8 = (2πi)−8 16151

2982996

(24216609

5210H0

N8 − L−2 N6

)
.
]

(5.3.24)

Note that the existence of this second order modular differential equation is not in conflict
with what was said above (or in [91]), since (5.3.23) is not holomorphic in the above
sense: if we divide by E4(q) to obtain a differential equation whose leading term is D2,
the coefficient of the term proportional to D is not holomorphic but only meromorphic.
If we allow for meromorphic coefficients, every self-dual conformal field theory obviously
also satisfies a first order modular differential equation (see also [15]).

4Such a null-vector must exist since, up to level 10, all states that are Monster invariant can be
expressed in terms of Virasoro descendants of the vacuum. The coefficients can then be fixed by evaluating
the inner products with all Virasoro descendants.
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Tensor products of Monster theories

Now let us turn to the case of the tensor product of two Monster theories. (As we shall
see momentarily, the answer for the tensor product of an arbitrary number of Monster
theories can be understood once we have done so for the two-fold tensor product.) It is
not difficult to show that if (5.3.14) was true, an order s modular differential equation for
the tensor product of the two Monster theories would imply that

(
L

(1)
−2 + L

(2)
−2

)s
Ω ∈ O[2] . (5.3.25)

Given the arguments of [91, 99] it is easy to see that (5.3.25) can only hold for s ≥ 5.
On the other hand, one finds that the tensor product of two Monster theories actually
satisfies a fourth order differential equation [99], namely

[
D4 − 175117

45756
E4(q)D

2 +
47539165

11255976
E6(q)D − 12838

52111
E2

4(q)

]
χ2
M(q) = 0 . (5.3.26)

We now want to explain how to obtain this differential equation from a null vector in the
vacuum Verma module. First we observe that the leading term D4 in (5.3.26) comes from
the vector

(
L

(1)
[−2] + L

(2)
[−2]

)4

Ω =
[(
L

(1)
[−2]

)4

+ 4
(
L

(1)
[−2]

)3

L
(2)
[−2] (5.3.27)

+6
(
L

(1)
[−2]

)2(
L

(2)
[−2]

)2

+ 4L
(1)
[−2]

(
L

(2)
[−2]

)3

+
(
L

(2)
[−2]

)4]
Ω .

In the following we want to show how this vector can be expressed, up to terms of lower
conformal weight, in terms of elements in Oq(V ). The terms in Oq(V ) vanish inside any
trace, and the terms of lower conformal weight can be expressed in terms of Virasoro
generators, and hence give rise to the lower coefficients in (5.3.26).5

The various terms in (5.3.27) can now be rewritten as follows. First of all, we observe
that every element in Oq(V ) is of the form

Oq(V ) : v +
∑

n≥2

Gn(q)vn , where v ∈ O[2] , (5.3.28)

and that for any v ∈ O[2], there is such an element in Oq(V ). We call v the ‘head’, and
the remaining terms the ‘tail’. Note that the conformal weights of the terms in the tail
are always strictly smaller than that of v.

Now we can use the null vector N8 (or L[−2]N6) to express (L
(i)
[−2])

4Ω, where i = 1, 2,

in terms of a vector in O[2]. This can be taken to form the head of an element in Oq(V ),

and hence we can rewrite (L
(i)
[−2])

4Ω, up to elements of lower conformal weight that come

from the tail, as an element of Oq(V ). Similarly, we can reduce (L
(1)
[−2])

3L
(2)
[−2]Ω by using

5Strictly speaking we also have to guarantee that the resulting terms of lower conformal weight can

be expressed in terms of powers of (L
(1)
[−2] + L

(2)
[−2]), but this can indeed be arranged — this is again a

consequence of the fact that there are two independent null-vectors at level eight.
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the null-vector N (1)
6 ⊗ L

(2)
[−2]Ω, and likewise for the term L

(1)
[−2](L

(2)
[−2])

3Ω. The only difficult

term is (L
(1)
[−2])

2 (L
(2)
[−2])

2Ω for which this is not possible — in fact, this is the reason why

(5.3.25) with s = 4 does not hold. We now want to explain how this can be circumvented
by making use of the null vector M8.

As we have seen above, the single Monster theory has a null-vector at level 8, M8, that
lies entirely inside O[2], M8 ∈ O[2]. Let us denote by OM8 its tail, so that M8 + OM8

∼=
OM8 ∈ Oq(V ); this is explicitly given (up to an overall normalisation) as

OM8 =
[
G4(q)L

2
[−2] −

497

41
G6(q)L[−2] −

26412

41
G4(q)

2
]
Ω , (5.3.29)

where we have made use of the null vector N4 at level four to rewrite the term W i
[−2]W

i
[−2]Ω

that appeared in the course of this calculation in terms of L2
[−2]Ω.

The same argument also applies to the null vector M10 := L[−2]M8. Up to an overall
constant, its tail is

OM10 =
(
G4(q)L

3
[−2] + λ1G6(q)L

2
[−2] + λ2G

2
4(q)L[−2] + λ3G4(q)G6(q)

)
Ω , (5.3.30)

where

λ1 =
2334255

1158254
, λ2 = −451255338

579127
, λ3 = −10493019690

579127
, (5.3.31)

and we have used the null-vector relation N̂6 = 0 with

N̂6 = hijkW
i
−2W

j
−2W

k
−2Ω −H0

[ 20403

196883
L−6Ω +

5607

393766
L−4L−2Ω (5.3.32)

+
279

196883
L−3L−3Ω +

8837

2362596
L−2L−2L−2Ω

]
.

Now we can combine these null-vectors to write

[(
L

(1)
[−2]

)2(
L

(2)
[−2]

)2

+
497

41λ1

(
L

(1)
[−2]

)3(
L

(2)
[−2]

)]
Ω + terms of lower conformal weight

=
1

G4(q)

{(
L

(1)
[−2]

)2

Ω(1) ⊗O
(2)
M8

+
497

41λ1

O
(1)
M10

⊗
(
L

(2)
[−2]

)
Ω(2)

}
∈ O(q) . (5.3.33)

Generically, such an identity will involve coefficients that are not holomorphic in q, since
the terms in the bracket on the right-hand-side will not automatically be divisible by
G4(q). However, for the specific linear combination that we have chosen — i.e. for the
relative coefficient 497

41λ1
— the expression is actually holomorphic. To see this we observe

that the the coefficients that appear in the bracket are proportional to Eisenstein series
Gn with n = 6, 8, 10. Except for G6, these Eisenstein series are automatically divisible
by G4. Thus we only need to guarantee that the coefficient of G6 vanishes, and this is
precisely achieved by the above linear combination.

It should be clear from this analysis that in order to avoid the coefficients fl and hj
to be holomorphic, one needs a sufficiently large number of null-vectors to guarantee that
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all non-holomorphic terms in (5.3.13) are actually zero. (In the above case we had to
use, for both theories, the null-vector at level four, the two null-vectors at level six, and
the null vector at level eight.) For larger conformal weight the situation becomes even
more constraining since then the tail will generically also involve Eisenstein series Gn with
n > 14, none of which are divisible by G4. Thus there will be even more coefficients that
will need to be cancelled!

Finally, let us comment on the question of how this analysis generalises to higher
tensor powers of the Monster theory. It is clear from the above analysis that for the
k-fold tensor product we can always construct a modular differential equation of order
k + 2. To see this we expand out

(
k∑

i=1

L
(i)
−2

)k+2

Ω . (5.3.34)

Then each term will either be proportional to (L
(i)
−2)

3Ω for some i — such terms lie in O[2]

by virtue of the null-vector N6 — or to terms of the form (L
(i)
−2)

2(L
(j)
−2)

2Ω which can be
dealt with as explained above. Thus using the above methods we can construct a modular
differential equation at order k + 2. On the other hand, this seems to be the minimal
order for which such a differential equation exists [99]. Thus there do not seem to be any
additional cancellations beyond what is already visible for the case of the tensor product
of two Monster theories. Finally, we should stress that the k-fold tensor product has a
plethora of low-lying null-vectors: there are at least k linearly independent null-vectors at
level 4, 2k at level 6, k additional ones at level 8, etc, that are relevant for this analysis.

5.4 Application to extremal self-dual CFTs

In this final section we want to comment on the implications of these considerations for the
existence of the extremal self-dual conformal field theories at c = 24k that were proposed
by Witten [186]. As was shown in [91], these theories satisfy a modular differential
equation of degree s where, for large k, s ∼

√
k.

As we have shown in section 3 above, every modular differential equation comes from
a null-vector in the vacuum Verma module, see (5.3.13). Provided that fl and hj are
holomorphic for |q| < 1, the null-vector relation (5.3.13) implies that (5.3.14) holds. We
now want to show that (5.3.14) leads to a contradiction for k ≥ 42. Thus the extremal
conformal field theories can only be consistent for large k, provided that the assumption
about the analyticity of fl and hj is not satisfied; we shall comment on this possibility
further below.

Suppose then the the extremal conformal field theories have a ‘null-vector-relation’
of the form (5.3.14) at conformal weight 2s. For k ≥ 42 this relation is at L[0]-weight
2s ≤ k, and thus arises at a weight where the proposed conformal field theory only
possesses Virasoro descendants of the vacuum. This then leads to a contradiction: by
the above argument, the right hand side can only contain Virasoro operators, which we
may bring to the standard Poincaré-Birkhoff-Witt basis. We now claim that no term

92



(L[−2])
sΩ can arise in the process. Consider first the terms a[−h(a)−1]b. Since b can only

be a Virasoro descendant of the vacuum, we can write it as a sum of terms

L[−n1] · · ·L[−nN ]Ω , (5.4.1)

where all nl ≥ 2. Since the level of b is h(b), we have necessarily that N ≤ ⌊h(b)
2
⌋, where

⌊·⌋ denotes the truncated part. Similar statements also hold for a. We now have to the
evaluate the (−h(a) − 1)-th mode of a and apply it to b. The crucial point is that this
mode contains at most as many L[−n] as a, see e.g. [96]. a[−h(a)−1]b thus has at most

⌊h(b)+h(a)
2

⌋ = ⌊s− 1
2
⌋ = s− 1 L[−n]. Since going to the standard basis only decreases their

number, it is clear that we cannot obtain (L[−2])
sΩ from this term.

If we apply the same argument to d[−h(d)+1]e, it seems that we could obtain s Virasoro
operators. Note however that d[−h(d)+1] annihilates the vacuum and must therefore contain
at least one L[−n] with n ≤ 1. Bringing this operator to the right, commuting through
the modes of e, we decrease the number of Virasoro operators at least by one, so that we
are again left with at most s− 1 Virasoro generators.

It therefore follows that the right hand side of (5.3.14) does not contain the term
(L[−2])

sΩ. To satisfy the equality the theory must therefore have a non-trivial null-vector.
At c > 1, however, we know that the pure Virasoro theory does not have any non-trivial
null-vectors. This then leads to the desired contradiction.

5.4.1 A way out?

This leaves us with the possibility that (5.3.13) does not imply (5.3.14), i.e. that fl and hj
are not holomorphic for |q| < 1. As we have seen in section 3.3, this can only be the case
if the theory has many additional null-vectors (that guarantee that all coefficients of the
meromorphic functions that would generically appear are actually zero). It is certainly
conceivable that this can be achieved with only null-relations at h > k,6 and we do not
have any hard argument against this possibility. There is however a curious observation
that seems to throw some doubt on this scenario.

As we have explained above, the extremal theory at k = 1, the Monster theory, has
many low-lying null-vectors. This property is something one can actually read off from
the character. To explain this, let us recall that the partition function of the Monster
theory is

ZM(q) = q−1 + 196884 q + 21493760 q2 + 864299970 q3 + · · · . (5.4.2)

We can read off from this formula that there are N1 = 196884 states at level two; these
consist of the stress energy tensor L, as well as the fields W i we have introduced before.
Now consider the N2

1 = 38 763 309 456 states

L−2L−2Ω , L−2W
i
−2Ω , W i

−2L−2Ω , W i
−2W

j
−2Ω . (5.4.3)

6This is not, though, what happened in the example of the tensor products of the Monster theories:
there the null-vectors that are responsible for this cancellation appear at or below the level suggested by
the order of the differential equation.
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These states appear at level four. On the other hand, we know from the partition function
(5.4.2) that the total number of states at conformal weight four (above the vacuum) is

M1 = 864 299 970 ≪ 38 763 309 456 = N2
1 . (5.4.4)

Thus it follows from this simple counting argument that there must be many ‘null’-
relations among the states (5.4.3); one of them is for example the null-vector relation
(5.3.17).

One may ask how this counting argument works for the other extremal self-dual the-
ories. For general k we define Nk and Dk by

Zk(q) = q−k + · · · +Nk q + · · · +Mk q
k+2 , (5.4.5)

where Zk(q) is the extremal partition function. By the same token as above, the theory
will have many null-vectors if Mk − N2

k < 0. For the first few values of k we find the
following numbers:

k Nk Mk Mk −N2
k

k=1 196884 864299970 -37899009486
k=2 42987520 802981794805760 -1044945080944640
k=3 2593096794 378428749730548169825 371704598747495091389
k=4 81026609428 141229814494885904705260482 141223249183450507046773298

Table 5.1: The coefficients Nk and Mk for the extremal self-dual theories at c = 24k.

We have checked these numbers for up to k = 150, and the pattern seems to continue
— in fact it appears that N2

k ≤ d1 e
−d2kMk for some constants d1 and d2. Thus this

counting argument explains why the Monster theory has many low-lying null-vectors. It
also predicts that the same is true for the theory with k = 2, but at least from this point
of view, there are no indications that the theories with k ≥ 3 should have many low-lying
null-vectors. We regard this as evidence against the possibility that the extremal theories
avoid the above contradiction.

5.5 Summary

To sum up, we have shown that every modular differential equation of a rational conformal
field theory comes from a non-trivial null vector in the Verma module — see (5.3.13).
Generically, the functions fl and hj that appear in this identity are analytic in |q| < 1,
and then (5.3.13) implies that there is a relation of the form (5.3.14). At least for the
extremal self-dual theories at c = 24k this relation is a non-trivial null relation. This then
implies, following the arguments of [91], that these theories are inconsistent for k ≥ 42.

This analysis is however not completely conclusive since it is possible that the functions
fl and hj appearing in (5.3.13) are non-holomorphic — indeed, this is what happens for
the example of Gaiotto [99] concerning tensor products of the Monster theory. However,
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this then requires that the non-holomorphic terms that appear on the right-hand side
of (5.3.13) must actually vanish, thus indicating that there are many other null vector
relations (albeit none of the form (5.3.14)). This is indeed what happens for the case of
the tensor product of the Monster theories.

Finally, we have seen from the analysis of the partition functions, that the theories at
k = 1, 2 must have many non-trivial null-vector relations, but that there are no indications
(from this point of view) that this should be the case for k ≥ 3. Taken together we regard
this as suggestive evidence for the assertion that the extremal self-dual theories at c = 24k
are inconsistent for k ≥ 42.
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Chapter 6

Extremal N = (2, 2) 2D CFTs and
constraints of modularity

6.1 Overview and summary of the main results

In the last chapter we have refined the original analysis of pure bosonic gravity in [186].
In this chapter we take a step back and address questions for pure quantum gravity with
extended N = 2 supersymmetry. Our main tool will be the elliptic genus of an N = 2
superconformal field theory. As we recall below, this is a weak Jacobi form, and its
modular properties impose tight constraints on the partition function. The advantage of
this approach is that, unlike the bosonic case, we do not have to assume the complete
holomorphic factorization of the partition function. The holomorphy and modularity of
the elliptic genus holds for any conformal field theory with N = 2 supersymmetry. Thus,
we can test the hypothetical existence of a theory of pure AdS3 supergravity without
relying on the additional assumption of holomorphic factorization. It turns out that there
is some tension between these modular properties and the notion of extremality.

A brief summary of our results is the following:

1. In section 6.3.1 we give a definition of an extremal (2, 2) superconformal field theory
which, one might expect would constitute a holographic dual to “pure (2, 2) AdS3

supergravity.” In any case, it is a natural generalization of the notion of extremality
to (2, 2) supersymmetry. We will restrict attention to theories with integral U(1)R
charges for the left- and right-moving N = 2 algebras.

2. In section 6.4 we give numerical evidence that only a finite number of “sporadic”
examples of extremal (2, 2) theories can exist. Then in section 6.5 we give an analytic
proof that this is indeed the case.

3. In section 6.6 we then introduce the notion of a “nearly extremal (2, 2) superconfor-
mal theory,” whose spectrum only approximates that of pure (2, 2) supergravity. We
show that if the degree of approximation is relaxed then candidate elliptic genera
do indeed exist.
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4. By quantifying the degree of approximation required to produce candidate elliptic
genera we are able to constrain the spectrum as follows. Consider states (in the
NSNS sector) which are right-chiral-primary and left N = 2 primary with (L0, J0)
eigenvalue (h, ℓ). Suppose the central charge is c = 6m. In section 6.6.1, equation
(6.6.128) we show that for m large any theory with modular elliptic genus must
have some such state with

h <
m

4
+

ℓ2

4m
− 1

8
+ O(m−1/2) . (6.1.1)

This result is conjectural. It is supported by numerical evidence described in sec-
tion 6.6. Finding a rigorous justification of (6.6.128) (or a counterexample) is an
interesting open problem.

5. On the other hand, in section 6.7 we show that it is possible to construct an elliptic
genus which is compatible with the spectrum of an extremal (2, 2) superconformal
theory for conformal weights h ≤ m

4
.

6. In section 6.9 we comment on a partial generalization of our results to N = 4
theories.

In the remainder of the chapter we discuss some implications of the above results.
First, in section 6.8 we discuss the implications for the existence of pure (2, 2) AdS3

supergravity. While our results cast some doubt on the existence of such theories, they
are not conclusive. It is conceivable that quantum corrections to the cosmic censorship
bound for the existence of black holes imply that one should identify a near-extremal
rather than an extremal (2, 2) CFT as a holographic dual of pure supergravity.

A second motivation for the present work is that constraints on conformal field theory
spectra implied by modular invariance might have interesting applications to flux com-
pactifications of string theory and M-theory. This is briefly explained in section 6.10.
Again, the development of this idea is left to future work.

6.2 Polar states and the elliptic genus

We will focus on theories with N = (2, 2) two-dimensional superconformal symmetry.
It will be convenient to parametrize the (left = right) central charge as c = 6m. A
simple example of such a theory that the reader might wish to keep in mind is an N =
(2, 2) sigma-model based on a Calabi-Yau target space of complex dimension 2m. In the
present paper we only consider integer values of m, and thus the relevant Calabi-Yau
manifolds have even complex dimension.1 In particular, the smallest non-trivial value of
m corresponds to a Calabi-Yau 2-fold, that is a torus T 4 or a K3 surface.

We assume that the Hilbert space of our theory is a direct sum of unitary highest
weight representations of the N = 2 algebra. This allows us to define the RR-sector

1A generalization to half-integer values of m should be possible, but we will not attempt it in the
present paper.
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partition function

ZRR(τ, z; τ̄ , z̄) := TrHRR
qL0−c/24e2πizJ0 q̄L̃0−c/24e2πiz̄J̃0eiπ(J0−J̃0) (6.2.2)

which has good modular properties under the SL(2,Z) action (τ, z) → (aτ+b
cτ+d

, z
cτ+d

). Here,

as usual, q = e2πiτ and y = e2πiz, and similarly for q̄ and ȳ.
In these conventions, the elliptic genus of an N = (2, 2) superconformal field theory C

is defined to be
χ(τ, z; C) := ZRR(τ, z; τ̄ , 0) . (6.2.3)

It is holomorphic in (τ, z) by the standard properties of the Witten index. For references
on the elliptic genus see [10, 9, 63, 133, 142, 143, 162, 164, 165, 171, 170, 180, 182].

N = 2 algebras have the crucial spectral flow isomorphism [172], which allows us to
relate the NS and R-sector partition functions. Recall that spectral flow SFθ for θ ∈ 1

2
Z

is an isomorphism of N = 2 superconformal algebras which maps eigenvalues

L0 → L0 + θJ0 + θ2m (6.2.4)

J0 → J0 + 2θm . (6.2.5)

The spectral flow operators act on Z = ZRR as:

(SFθS̃F θ̃Z) = e

(
mθ2τ + 2mθ(z +

1

2
)

)
· e
(
mθ̃2τ̄ + 2mθ̃(z̄ − 1

2
)

)
Z(τ, z + τθ; τ̄ , z̄ + θ̃τ̄),

(6.2.6)
where e(x) := e2πix. For simplicity we restrict our attention to theories with integral
spectrum of left- and right-moving U(1) charges J0, J̃0. Again, it should be possible,
and would be interesting, to relax this assumption. Spectral-flow invariant theories with
integral U(1) charges satisfy

ZRR = (SFθS̃F θ̃)ZRR θ, θ̃ ∈ Z (6.2.7)

ZNSNS = (SFθS̃F θ̃)ZRR θ, θ̃ ∈ Z +
1

2
. (6.2.8)

As is well-known [133], the modularity properties of ZRR together with spectral flow
invariance and unitarity imply that the elliptic genus is a weak Jacobi form of index m
[70]. A weak Jacobi form φ(τ, z) of weight w and index m ∈ Z, with (τ, z) ∈ H × C,
satisfies the transformation laws

φ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)we2πim

cz2

cτ+dφ(τ, z)

(
a b
c d

)
∈ SL(2,Z) , (6.2.9)

φ(τ, z + ℓτ + ℓ′) = e−2πim(ℓ2τ+2ℓz)φ(τ, z) ℓ, ℓ′ ∈ Z , (6.2.10)

and has a Fourier expansion

φ(τ, z) =
∑

n≥0,ℓ∈Z

c(n, ℓ)qnyℓ (6.2.11)
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n

m

ℓ

Figure 6.1: A cartoon showing polar states (represented by “•”) in the region P(m).
Spectral flow by θ = 1

2
relates these to states in the NS sector of an N = 2 superconformal

field theory which are holographically dual to particle states in AdS3.

with c(n, ℓ) = (−1)wc(n,−ℓ). It follows from the spectral flow identity that c(n, ℓ) = 0
for 4mn− ℓ2 < −m2. Following [70], we denote by J̃w,m the vector space of weak Jacobi
forms of weight w and index m. A Jacobi form is then a weak Jacobi form whose polar
part vanishes (see below).

Suppose we are given an integer m ∈ Z+. If (ℓ, n) ∈ Z2 is a lattice point we refer
to its polarity as p = 4mn − ℓ2. If φ ∈ J̃0,m let us define the polar part of φ, denoted
φ−, to be the sum of the terms in the Fourier expansion corresponding to lattice points
of negative polarity. By spectral flow one can always relate the degeneracies to those in
the fundamental domain with |ℓ| ≤ m. If we impose the modular transformation (6.2.9)
with −1 ∈ SL(2,Z), which implements charge conjugation, then c(n, ℓ) = c(n,−ℓ) and
therefore the polar coefficients which cannot be related to each other by spectral flow and
charge conjugation are c(n, ℓ) where (ℓ, n) is valued in the polar region P (of index m),
defined to be

P(m) := {(ℓ, n) : 1 ≤ ℓ ≤ m, 0 ≤ n, p = 4mn− ℓ2 < 0} . (6.2.12)

For an example, see figure 6.1.
Given any Fourier expansion

ψ(τ, z) =
∑

ℓ,n∈Z

ψ̂(n, ℓ)qnyℓ (6.2.13)

we define its polar polynomial (of index m) to be the sum restricted to the polar region
P(m):

Pol(ψ) :=
∑

(ℓ,n)∈P(m)

ψ̂(n, ℓ)qnyℓ . (6.2.14)

Let us moreover denote by Vm the space of polar polynomials, i.e. the vector space gen-
erated by the monomials qnyℓ with (ℓ, n) ∈ P(m).
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The key mathematical fact we need is that one can reconstruct a weak Jacobi form of
weight zero from its polar polynomial, as explained in [50, 156, 150]. The results of [150]
imply that there is a sequence

0 → J̃0,m
Pol→ Vm

Per→ S5/2 (6.2.15)

exact at Vm, where Per is a “period map” to a certain space of vector-valued cusp forms of
weight 5/2. A nonzero image in the space of cusp forms means that the polar polynomial
cannot be realized by a true Jacobi form. In the next two sections we will show that there
can indeed be nontrivial obstructions by computing the dimensions of J̃0,m and Vm.

Returning to the conformal field theory C, an eigenstate of L0, J0 is called a polar state
if it has negative polarity:

p = 4mL0 − J2
0 −m2 = 4m(L0 −

c

24
) − J2

0 < 0 . (6.2.16)

One checks that 4mL0 − J2
0 is spectral flow invariant, so we can speak of polar states

in both the R and NS sector. Using the mathematical results explained above we see
that the significance of polar states is that the polar degeneracies of the elliptic genus
determine all the other Fourier coefficients of the elliptic genus.

6.2.1 Counting weight zero weak Jacobi forms

Let J̃ev,∗ = ⊕w∈2Z,m∈ZJ̃w,m denote the bigraded ring of weak Jacobi forms of even weight.
According to [70], Theorem 9.3, J̃ev,∗ is a polynomial algebra on four generators of degree

(w,m) = (4, 0), (6, 0), (−2, 1), (0, 1) . (6.2.17)

The first two generators correspond to the Eisenstein series E4 and E6 as defined in
appendix C.3. A generalization of Eisenstein series to Jacobi forms is described in [70]:

Ek,m(τ, z) =
1

2

∑

c,d∈Z,(c,d)=1

∑

ℓ∈Z

(cτ + d)−ke
2πim

“

ℓ2 aτ+b
cτ+d

+2ℓ z
cτ+d

− cz2

cτ+d

”

. (6.2.18)

In terms of these generalized Eisenstein series one can write the remaining two gener-
ators in (6.2.17) as

φ̃−2,1 =
φ10,1

∆
∈ J̃−2,1 φ̃0,1 =

φ12,1

∆
∈ J̃0,1 , (6.2.19)

where the first subscript on φ̃ denotes the weight and the second denotes the index. Here,
∆ = q

∏∞
n=1(1 − qn)24 and

φ10,1 =
1

144
(E6E4,1 − E4E6,1)

= (y − 2 + y−1)q + (−2y2 − 16y + 36 − 16y−1 − 2y−2)q2 + . . . ,

φ12,1 =
1

144
(E2

4E4,1 − E6E6,1)

= (y + 10 + y−1)q + (10y2 − 88y − 132 − 88y−1 + 10y−2)q2 + . . . .

(6.2.20)
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Thus the two weak Jacobi forms φ̃−2,1 and φ̃0,1 have the series expansion

φ̃−2,1 =
(
y − 2 + y−1

)
+
(
−2y2 + 8y − 12 + 8y−1 − 2y−2

)
q + . . . ,

φ̃0,1 = (y + 10 + y−1) +
(
10y2 − 64y + 108 − 64y−1 + 10y−2

)
q + . . . .

(6.2.21)

Much useful information about Jacobi forms can be found in [70].
To summarize, a natural vector space basis of J̃0,m is given by

(φ̃−2,1)
a(φ̃0,1)

bEc
4E

d
6 , (6.2.22)

where a, b, c, d are nonnegative integers such that a + b = m, and a = 2c + 3d. It is
straightforward to compute the number of solutions to these constraints and thereby
show that

j(m) := dim J̃0,m =
m2

12
+
m

2
+

(
δs,0 +

s

2
− s2

12

)
, (6.2.23)

where m = 6ρ+ s with ρ ≥ 0 and 0 ≤ s ≤ 5. Specifically,

j(m) =





m2/12 +m/2 + 1 m = 0 mod 6

m2/12 +m/2 + 5/12 m = 1, 5 mod 6

m2/12 +m/2 + 2/3 m = 2, 4 mod 6

m2/12 +m/2 + 3/4 m = 3 mod 6 .

(6.2.24)

6.2.2 Counting polar monomials

Let us now compute the dimension of the space Vm, and compare it to j(m). In other
words, we wish to count the number of integer points in the (ℓ, n) plane bounded (on one
side) by the parabola 4mn− ℓ2 = 0, as shown in figure 6.1. We have

P (m) := dimVm =
m∑

ℓ=1

⌈ ℓ
2

4m
⌉ . (6.2.25)

Note that we want the ceiling function and not the floor function, as we include n = 0
up to the largest n with n < ℓ2/(4m) for each ℓ = 1, . . . ,m.

To compute this we follow [70] and write our sum as a sum of three terms.

m∑

ℓ=1

⌈ ℓ
2

4m
⌉ =

m∑

ℓ=1

ℓ2

4m
−

m∑

ℓ=1

((
ℓ2

4m
)) +

1

2

m∑

ℓ=1

(
⌈ ℓ

2

4m
⌉ − ⌊ ℓ

2

4m
⌋)
)
, (6.2.26)

where

((x)) := x− 1

2
(⌈x⌉ + ⌊x⌋) =

{
0 x ∈ Z

α− 1
2

x = n+ α, 0 < α < 1 .

Note that ((x)) is the sawtooth function. It is periodic of period 1.
Now we evaluate the three terms. The main term comes from the elementary formula

m∑

ℓ=1

ℓ2

4m
=
m2

12
+
m

8
+

1

24
. (6.2.27)
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Next, note that the number of integers ℓ with 1 ≤ ℓ ≤ m with ℓ2 = 0 mod 4m is ⌊ b
2
⌋

where b is the largest integer with b2|m. This follows from the prime factorization of m.
Thus, we obtain:

m∑

ℓ=1

⌈ ℓ
2

4m
⌉ −

m∑

ℓ=1

⌊ ℓ
2

4m
⌋ = m− ⌊ b

2
⌋ . (6.2.28)

Finally we come to the most subtle term
∑m

ℓ=1((
ℓ2

4m
)). The numbers (( ℓ

2

4m
)) are, very

roughly speaking, randomly distributed between −1/2 and +1/2, Therefore, the average
will go to zero. In fact, they roughly make a random walk so we expect a quantity on the
order of m1/2. To be more precise the discussion of [70], pp. 122-124 shows that

m∑

ℓ=1

((
ℓ2

4m
)) = −1

4

∑

d|4m
h′(−d) +

1

2
((
m

4
)) ,

where h′(−d) is the class number of a quadratic imaginary field of discriminant −d.
Putting the three terms together we obtain:

P (m) =
m2

12
+

5m

8
+ A(m) (6.2.29)

where A(m) is the arithmetic function

A(m) =
1

4

∑

d|4m
h′(−d) − 1

2
⌊ b
2
⌋ − 1

2
((
m

4
)) +

1

24
. (6.2.30)

The first few values of P (m) and j(m) are:

m dim J̃0,m dimVm

m = 0 1 0

m = 1 1 1

m = 2 2 2

m = 3 3 3

m = 4 4 4

m = 5 5 6

m = 6 7 8

m = 7 8 9

m = 8 10 11

m = 9 12 13

m = 10 14 16

m = 11 16 18

m = 12 19 21

(6.2.31)
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Note that P (m) > j(m) for m ≥ 5. Roughly speaking,2 A(m) grows like O(m1/2) so
for large m we have

P (m) − j(m) =
m

8
+ O(m1/2) . (6.2.32)

The important conclusion that we draw is that for large m there are on the order of m
8

linear constraints on the polar coefficients of the elliptic genus expressing modularity.

Remarks

1. The action of charge conjugation together with spectral flow defines an action of D∞
on the (ℓ, n) plane which preserves the space Q of polar values −m2 ≤ 4mn−ℓ2 < 0.
A fundamental domain is given by the polar region P(m), but the quotient Q/D∞
has fixed points: for ℓ = −m the spectral flow to ℓ = +m can be undone by charge
conjugation. Therefore, if we compute the orbifold Euler character of Q/D∞ the
line of states (ℓ, h) with ℓ = m should be counted with weight 1

2
. There are precisely

m/4 states on this line and hence χorb(Q/D∞) = P (m) − m/8, which is a much
closer approximation to j(m).

2. Recently, J. Manschot [149] has reproduced the formula for P (m)−j(m) by directly
computing the dimension of the image of the period map Per in (6.2.15).

6.3 Extremal N = (2, 2) conformal field theories

6.3.1 Definition

In [186] Witten suggested that the holographic dual of pure 2+1 dimensional quantum
gravity should be an “extremal conformal field theory.” The latter is defined to be a
conformal field theory whose modular invariant partition function is “as close as possible”
to the Virasoro character of the vacuum. When c = 24k the vacuum character is

χ
(k)
V ac(τ) = q−k

∞∏

n=2

1

1 − qn
. (6.3.33)

The partition function Zk(τ) has weight zero. Unlike the elliptic genus case, there is no
obstruction to completing an arbitrary polynomial in q−1 to a modular function by adding
nonpolar terms. Therefore, Witten defines Zk(τ) to be the unique modular function with
no singularities for τ ∈ H such that the expansion around the cusp at infinity satisfies

Zk(τ) :=

[
q−k

∞∏

n=2

1

1 − qn

]

q≤0

+ O(q) . (6.3.34)

2A theorem of Siegel states that limd→∞

log h′(−d)
log d = 1

2 as d runs through discriminants of quadratic

imaginary fields, but h
′(−d) itself does not have a simple asymptotic expansion. This follows from its

relation to the Dirichlet Series Ld(s) at s = 1. For a discussion of these and related matters, together
with their possible applications to black holes and with references to the math literature see [154].
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Following [50], Witten interprets the first Virasoro primary above the vacuum represen-
tation to be a state corresponding to the lightest possible BTZ black hole in AdS3.

Following Witten [186] let us consider “pure N = (2, 2) supergravity” with negative
cosmological constant. This is the hypothetical quantum theory whose classical action is
a supersymmetric completion of the Einstein-Hilbert action,

Isugra =
1

16πG

∫
d3x

√
g

(
R(g) +

2

R2
+ . . .

)
. (6.3.35)

Here, R is the AdS length scale and the ellipses denote contributions of other fields in
the N = 2 supergravity multiplet. Specifically, apart from the metric, these fields include
real spin-3

2
gravitino fields, ψiL and ψiR, i = 1, 2 as well as two abelian gauge fields, aL and

aR. In general, if we were interested in N = (p, q) supergravity theory, the corresponding
gauge group would be SO(p)× SO(q). Thus, in the present context of N = (2, 2) theory
we have SO(2) × SO(2) gauge fields.

In fact, by enlarging the gauge group one can write the entire supergravity action
(6.3.35) as the Chern-Simons action [1, 2]:

ICS =
kL
4π

∫
tr

(
AL ∧ dAL +

2

3
AL ∧ AL ∧ AL

)

− kR
4π

∫
tr

(
AR ∧ dAR +

2

3
AR ∧ AR ∧ AR

) (6.3.36)

where the gauge fields AL and AR take values in the Lie algebra of the supergroup

G = GL ×GR = OSp(2|2)L ×OSp(2|2)R . (6.3.37)

Since the bosonic part of the supergroup OSp(2|2) is SO(2)× SL(2,R), the gauge group
(6.3.37) contains the classical symmetry3 group, SL(2,R)L × SL(2,R)R, of the three-di-
mensional AdS space. In the simple case kL = kR, which will be of interest to us in the
present paper, one finds the following relation between the parameters:

kL = kR =
R

16G
. (6.3.38)

Combining this with the Brown-Henneaux formula cL = cR = 3R
2G

and using our expression
for the central charge cL = cR = 6m, we can conveniently write (6.3.38) as

kL = kR =
m

4
. (6.3.39)

Since we takem to be integer, it follows that kL and kR take values in 1
4
Z. This is consistent

with the fact that the bosonic part of our supergroup OSp(2|2) contains SL(2,R), which
is a double cover of SO(2, 1); see section 2.1 of [186] for further details on the allowed
values of kL and kR.

The equivalence of N = (2, 2) supergravity and Chern-Simons theory based on the
supergroup (6.3.37) is valid not only classically, but to all orders in perturbation theory, as

3This symmetry group is the gauge group of the analogous formulation of N = 0 gravity theory.
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long as the perturbative expansion starts with a non-degenerate classical solution. This
way of formulating perturbative N = (2, 2) supergravity will be useful to us in what
follows, in particular, in section 6.8 where we discuss quantum corrections.

The N = (2, 2) case is similar to the N = 0 case of Chern-Simons gravity: There are
no local degrees of freedom, but the Chern-Simons theory does give rise to “edge states.”
These are N = 2 descendants of the vacuum representation, that is, the irreducible highest
weight representation defined by (h = 0, q = 0).

The natural generalization of Witten’s proposal to (2, 2) supergravity in 2 + 1 di-
mensions is that the holographic dual should be an “extremal (2, 2) superconformal field
theory,” where we define the latter to be a theory whose partition function is “as close as
possible” to the vacuum character of the N = 2 algebra. The vacuum character of the
N = 2 algebra is [21]

χ(m)
vac (τ, z) := TrV0,0q

L0−c/24e2πi(z+
1
2
)J0

= q−m/4(1 − q)
∞∏

n=1

(1 − yqn+1/2)(1 − y−1qn+1/2)

(1 − qn)2
.

(6.3.40)

We have shifted z by 1/2 relative to the standard definition for later convenience. The
expression in (6.3.40) is neither spectral flow invariant, nor modular invariant.

It has been observed that in N = (2, 2) supergravity the cosmic censorship bound for
charged black holes is given by p, p̃ ≥ 0, where p and p̃ refer to the polarity of the left-
and right-moving states (i.e., p = 4mn − ℓ2) [41, 50]. It is thus natural to only allow
new states with non-negative polarity. By explicitly enforcing spectral flow invariance,
we take our definition of an N = (2, 2) extremal conformal field theory to be:

Definition: An N = (2, 2) extremal conformal field theory of level m (“N = 2 ECFT”
for short) is a hypothetical theory whose partition function is of the form:

ZNSNS(τ, z; τ̄ , z̄) := TrHNSNS
qL0−c/24e2πizJ0 q̄L̃0−c/24e2πiz̄J̃0eiπ(J0−J̃0)

=
∑

s,s̄∈Z

SFsχ
(m)
vac (τ, z)SFs̄χ̄

(m)
vac (τ̄ , z̄)

+
∑

s∈Z

SFsχ
(m)
vac (τ, z)f̄(τ̄ , z̄) +

∑

s̄∈Z

f(τ, z)SFs̄χ̄
(m)
vac (τ̄ , z̄)

+
∑

p,p̃≥0

a(n, ℓ; ñ, ℓ̃)qnyℓq̄ñȳℓ̃ .

(6.3.41)

Here the coefficients a(n, ℓ; ñ, ℓ̃) are integers, and the sum over nonpolar states in the last
line means that both the left and right polarity of the state is non-negative. The functions
f(τ, z) and f̄(τ̄ , z̄) describe the contribution of terms with non-negative polarity with
respect to the left and right polarity, respectively. We need to include such terms since
states with either p ≥ 0 or p̃ ≥ 0 are not polar and are allowed by the extremality
condition.

Using spectral flow (6.2.3) we can compute ZRR(τ, z; τ̄ , z̄) for an N = 2 ECFT from
(6.3.41). The elliptic genus is then obtained upon setting z̄ = 0. In this limit only those
terms contribute that have q̄0. All of these terms are polar, with the exception of the q̄0ȳ0
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term that has polarity zero. Thus the elliptic genus of an N = 2 ECFT of level m is of
the form

(2(−1)m + k)
∑

θ∈Z+ 1
2

SFθχ
(m)
vac + Nonpolar , (6.3.42)

where k is the coefficient of the q̄0ȳ0 term coming from f̄(τ̄ , z̄). The factor 2(−1)m is the
limit z̄ → 0 of the first term in (6.3.41), as we will see momentarily. Using (6.5.92) below
one can determine the constant to be k = 12m− 2. For convenience we drop the overall
constant factor from the right-movers and define:

χ
(m)
ext (τ, z) :=

∑

θ∈Z+ 1
2

SFθχ
(m)
vac + Nonpolar . (6.3.43)

We will call a weak Jacobi form that satisfies (6.3.43) an extremal elliptic genus.
Because the only unknown terms in (6.3.43) are nonpolar terms we can compute the
polar polynomial of such an extremal elliptic genus. We will give an explicit formula for
it in section 6.3.2. Then, in section 6.4 we investigate whether such a polar polynomial is
consistent with modularity.

6.3.2 The extremal polar polynomial

Let us compute the polar polynomial of a would-be extremal elliptic genus. We begin by
demonstrating the following useful fact:

Pol
( ∑

θ∈Z+ 1
2

SFθχ
(m)
vac

)
= Pol(SF1/2χ

(m)
vac ) . (6.3.44)

Indeed, if we apply the spectral flow by θ = l + 1
2

to the vacuum character (6.3.40) we
obtain an expression of the form

(−1)m ql(l+1)my(2l+1)m(1 − q)
∞∏

n=1

(1 − yqn+l+1)(1 − y−1qn−l)

(1 − qn)2
. (6.3.45)

We wish to show that this expression contains no polar terms in the fundamental domain
(6.2.12) for l 6= 0. Without loss of generality, we can assume l > 0. Note that it is not
true that (6.3.45) has no polar terms. In fact, already the first term ql(l+1)my(2l+1)m is
polar for every l; it has polarity p = −m2. However, it does not belong the polar region
P(m) since the power of y is not in the allowed range 1 ≤ ℓ ≤ m.

On the other hand, there are terms in (6.3.45) with 1 ≤ ℓ ≤ m but, as we show
momentarily, these terms are not polar. We can simplify the problem a little bit and omit
the denominator in (6.3.45) and the factor (1 − q) which can only increase the polarity.
Then, our goal is to show that

ql(l+1)my(2l+1)m

∞∏

n=1

(1 − yqn+l+1)(1 − y−1qn−l) (6.3.46)
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has no polar terms in the range 1 ≤ ℓ ≤ m. From the above discussion, we already
know that the term ql(l+1)my(2l+1)m is polar. We can combine it with the terms from
factors (1−yqn+l+1) and (1−y−1qn−l) for various n to bring the power of y to the desired
range. Since l is assumed to be positive, it is easy to see that the terms coming from
factors (1 − yqn+l+1) can be ignored, while from

∏∞
n=1(1 − y−1qn−l) we need to collect at

least 2lm factors of y−1 to bring the overall power of y to the desired range. The most
economical way to do this (which yields the minimal increase in polarity) is to collect the
factors in the infinite product with the smallest powers of q. These are the terms with
n = 1, . . . , 2lm:

ql(l+1)my(2l+1)m

2lm∏

n=1

y−1qn−l = q(2lm−l+2)lmym . (6.3.47)

The resulting term has polarity p = 4(2lm− l+ 2)lm2 −m2 which satisfies p > 0 for any
l,m ≥ 1. It is easy to see that including other factors from the infinite product in (6.3.46)
only increases the polarity further.

Having proven (6.3.44) we now define

p
(m)
ext := (−1)m PolSF1/2χ

(m)
vac . (6.3.48)

On the other hand, setting l = 0 in (6.3.45) one finds

(−1)mSF1/2χ
(m)
vac = (1 − q)ym

∞∏

n=1

(1 − yqn+1)(1 − y−1qn)

(1 − qn)2
. (6.3.49)

The Fourier expansion of (6.3.49) begins:

ym + q(ym − ym−1) + q2(−2y−1+m + 3ym − y1+m) + · · · . (6.3.50)

The first few polar polynomials follow easily from (6.3.50) since the polar terms for
index m have n ≤ ⌊m

4
⌋. In this way we find that the first few polar polynomials are:

p1
ext = y (6.3.51)

p2
ext = y2 (6.3.52)

p3
ext = y3 (6.3.53)

p4
ext = y4 (6.3.54)

p5
ext = (1 + q)y5 (6.3.55)

p6
ext = (1 + q)y6 − qy5 (6.3.56)

p7
ext = (1 + q)y7 − qy6 (6.3.57)

p8
ext = (1 + q)y8 − qy7 (6.3.58)

p9
ext = (1 + q + 3q2)y9 − qy8 (6.3.59)

p10
ext = (1 + q + 3q2)y10 − (q + 2q2)y9 (6.3.60)

p11
ext = (1 + q + 3q2)y11 − (q + 2q2)y10 (6.3.61)

p12
ext = (1 + q + 3q2)y12 − (q + 2q2)y11 . (6.3.62)
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6.4 Experimental search for the extremal elliptic genus

Since P (m) > j(m) for m ≥ 5, and since eq. (6.3.49) does not have any obvious modular
properties, it is far from obvious that (6.3.44) is the polar polynomial of a true weak
Jacobi form. In this section we describe numerical results suggesting that in fact, for all
but finitely many m it is not in the image of Pol applied to J̃0,m. We will find that there
are actually some “sporadic” cases where it is in the image for m ≥ 5. In section 6.5 we
will show analytically that there can only be a finite number of such sporadic cases. That
might seem to obviate the need for the present section, but the methods we employ here
will prove very useful when we come to describe nearly extremal theories in section 6.6.

Choose a basis φi, i = 1, . . . , j(m) for J̃0,m. We are searching for real numbers xi such
that

j(m)∑

i=1

xiPol(φi) = p
(m)
ext . (6.4.63)

A useful way of trying to solve this equation is the following. We choose a polarity-
ordered basis of monomials qnyℓ for Vm, that is the basis monomials qn(a)yl(a) where
a = 1, . . . , dimVm = P (m) so that polarity increases as a increases, and terms with the
same polarity are ordered in increasing powers of y. For example for a = 1 the most polar
term is ym. A polarity-ordered basis for V5 would be

y5, y4, y3, qy5, y2, y1 (6.4.64)

with a = 1, . . . , 6. The polarity-ordered basis will be very useful for our discussion of
β-extremal N = 2 conformal field theories in section 6.6.

Having chosen these two bases we can define a matrix Nia of dimensions j(m)×P (m)
from the expansion

Pol(φi) =

P (m)∑

a=1

Niaq
n(a)yℓ(a). (6.4.65)

Similarly, we can define coefficients da by

p
(m)
ext =

P (m)∑

a=1

daq
n(a)yℓ(a). (6.4.66)

Thus, we are trying to solve the linear equations

j(m)∑

i=1

xiNia = da, a = 1, . . . , P (m). (6.4.67)

It should be stressed that even if we can find a solution xi to (6.4.67) we are far from
establishing the existence of an N = 2 extremal theory. If a solution exists then the
next test we should apply is to see whether the resulting form

∑
xiφi has integral Fourier

coefficients. Integrality is clearly a necessary condition for any candidate elliptic genus
since it arises in conformal field theory from the trace on a Hilbert space.
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Using a computer (and the explicit basis (6.2.22) above) we have examined equation
(6.4.67) for 1 ≤ m ≤ 36. We have found that there is a solution xi in rational numbers
for 1 ≤ m ≤ 5 and for m = 7, 8, 11, 13, but there is no solution for m = 6, 9, 10 and
14 ≤ m ≤ 36.4 Moreover, remarkably, for those values of m which give a solution, the
Fourier coefficients we have explicitly evaluated turn out to be integral.

The simplest example is the case m = 1, in which case χ
(1)
ext = φ̃0,1. The next simplest

case, m = 2 yields

χ
(2)
ext =

1

6
(φ̃0,1)

2 +
5

6
(φ̃−2,1)

2E4 . (6.4.68)

Although it is not obvious, one can prove that the Fourier coefficients are all integral.
Indeed, the claim that this expression has integer Fourier coefficients is equivalent to the
statement

(φ̃0,1)
2 + 5(φ̃−2,1)

2E4 = 0 mod 6 . (6.4.69)

In order to prove this, it is convenient to note (see (C.3.15) and (C.3.16)) that:

E4 = 1 mod 6 , E6 = 1 mod 6 .

Moreover, from (6.2.20) it also follows that φ10,1 = φ12,1 mod 6, which in turn implies
φ̃−2,1 = φ̃0,1 mod 6, cf. (6.2.21). Substituting this into (φ̃0,1)

2 + 5(φ̃−2,1)
2 and using the

fact that φ̃0,1 and φ̃−2,1 have integer Fourier coefficients we therefore demonstrate (6.4.69).
When we use the basis (6.2.22) the solutions xi are rational numbers with increasingly

large denominators as m increases. For example, already the next case, m = 3, looks like

χ
(3)
ext =

1

48
(φ̃0,1)

3 +
7

16
φ̃0,1(φ̃−2,1)

2E4 +
13

24
(φ̃−2,1)

3E6 . (6.4.70)

Even though the coefficients xi of every monomial (φ̃−2,1)
a(φ̃0,1)

bEc
4E

d
6 are rational num-

bers, the Fourier coefficients c(n, ℓ) are integers. In order to show this, as in the previous
example, we express this as the following statement

(φ̃0,1)
3 + 21φ̃0,1(φ̃−2,1)

2E4 + 26(φ̃−2,1)
3E6 = 0 mod 48 . (6.4.71)

Then, using (C.3.15) we note that E4 = 1 mod 48, so we can ignore E4 in this computation.
It is not true, however, that E6 = 1 mod 48. Instead, from (C.3.16) we find that E2

6 = 1
mod 48. According to (6.2.19) and (6.2.20), this implies the following identity,

φ̃−2,1 = φ̃0,1E6 mod 48 ,

which, after substituting in the LHS of (6.4.71), proves the desired result.
Using the basis of weak Jacobi forms described in section 6.7 below one can check that

for the “miraculous” values m = 5, 7, 8, 11, 13 the solution does indeed have the property
that all the Fourier coefficients c(n, ℓ) are integers.

4The arguments of section 5 demonstrate that there can only be finitely many solutions. Using the
constraints of that section it is easy to check that there are no further solutions up to m ≤ 400. This
suggests that the above list is in fact complete.
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6.5 The extremal elliptic genus does not exist for m

sufficiently large

In this section we give an analytic proof that there is no weak Jacobi form in J̃0,m satisfying
(6.3.43) for m sufficiently large. Since this section is rather long and technical let us
summarize the main idea here. Using the spectral flow symmetry one can determine the
NS sector character (without an insertion of yJ0 or (−1)F ) from the elliptic genus. This
character is a modular form for a congruence subgroup Γθ of the modular group. It is
therefore highly constrained, and as in the case discussed in [186], determined by the
coefficients of the negative powers of q, which in turn are fixed by the polar terms of the
original elliptic genus. On the other hand, given the full NS sector character, we can also
determine from it, by a suitable modular transformation, the R-sector character (without
an insertion of (−1)F ), and thus, in particular, its leading term in the q-expansion. This
coefficient is however also directly determined by the extremal hypothesis and a sum rule
(6.5.91) for Fourier coefficients. The two ways of evaluating the same coefficient lead to
a non-trivial constraint on m, equation (6.5.90). Using properties of modular forms one
can show that this constraint is violated for sufficiently large m. The argument must be
broken up into cases: m odd, m = 2 mod 4 and m = 0 mod 4, of which the last case
is technically the most difficult. In this section we will give the main line of argument,
whereas the technical details can be found in appendix D.1.

6.5.1 NS-sector elliptic genus

Suppose χ(τ, z) is the elliptic genus of a CFT with χ ∈ J̃0,m. By spectral flow we define
the “NS sector elliptic genus” to be5

χNS(τ, z) := e

[
m

(
τ

4
+ z +

1

2

)]
χ

(
τ, z +

τ

2
+

1

2

)
. (6.5.72)

Using the transformation properties of a Jacobi form it follows easily that

χNS(−1/τ, z/τ) = (−1)me

(
mz2

τ

)
χNS(τ, z)

χNS(τ + 2, z) = (−1)m χNS(τ, z) .

(6.5.73)

If we put z = 0 we thus obtain simple transformation laws for χNS(τ) := χNS(τ, 0) under
the congruence subgroup Γθ = 〈T 2, S〉. For m even we have a strict modular function and
for m odd we have a function with multiplier system given by −1 on the two generators.

To begin, let us sketch a few mathematical facts. The group Γθ is a genus zero subgroup
of Γ. It has modular domain Fθ = F ∪ T · F ∪ TS · F shown in figure 6.2. Note there are
two cusps, equivalent to τ = i∞ and τ = 1.

Since H/Γθ is genus zero the function field has a generator K̂(τ) which can be uniquely
specified (up to an additive and multiplicative constant) by demanding that K̂ takes i∞

5Note that unlike the NS vacuum character (6.3.40), χNS(τ, z) does not involve the shift of z by 1/2.
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−1 0 1 2

Figure 6.2: The fundamental domain Fθ of the genus zero subgroup Γθ of Γ.

to ∞.6 An explicit choice is:

K̂ :=
ϑ12

3

η12
=

∆2(τ)

∆(2τ)∆(τ/2)
= q−1/2 + 24 + 276q1/2 + · · · . (6.5.74)

The expansion of K̂ around the cusp at τ = 1 is obtained by writing τ = 1 − 1
τr

and
observing that

K̂(τ) := K̃(τr) = −ϑ
12
2

η12
(τr) = −212qr + · · · , (6.5.75)

where qr = e(τr).
In order to work with the case of m odd it will be useful to consider the index two

subgroup7 Γ̃θ := 〈T 4, ST 2〉 such that Γθ = Γ̃θ∪S ·Γ̃θ. This is again a genus zero subgroup,
and its Hauptmodul is the NS-sector character of φ̃0,1 (i.e. the elliptic genus forK3 divided
by two). Applying (6.5.72) to φ̃0,1 one finds

κ(τ) :=

(
2ϑ4

ϑ2

)2

−
(

2ϑ2

ϑ4

)2

= q−1/4(1 − 20q1/2 + · · · ) . (6.5.76)

This function satisfies κ|S = −κ and κ|T 2 = −κ, and is thus odd under the Deck trans-
formation H/Γ̃θ → H/Γθ. Indeed,

κ2(τ) = K̂(τ) − 64 , (6.5.77)

giving the explicit double cover. Near the Ramond cusp κ has the expansion

κ(1 − 1/τr) := κ̃(τr) = −4i

[(
ϑ3

ϑ4

)2

+

(
ϑ4

ϑ3

)2]
(τr) = −8i

(
1 + 32qr + O(q2

r)
)
. (6.5.78)

6Such a function for a genus zero congruence subgroup is often referred to as a “Hauptmodul.”
7To prove the subgroup is index two note that for all n ∈ Z, T

4n, ST
4n+2, T

4n+2
S and ST

4n
S are in

Γ̃θ. Then use induction on the length of the word in S, T
2.

112



Now, χNS has no singularities for τ ∈ H, and, moreover, using again the transformation
laws of a Jacobi form

χNS(1 − 1/τr) = e
(
−m

4

)
χ(τr,

1

2
) = e

(
−m

4

) ∑

n,ℓ

c(n, ℓ) (−1)ℓ qnr . (6.5.79)

By unitarity the sum is over n ≥ 0 and hence χNS(τ) must be a polynomial in κ(τ). This
polynomial will be even for m even and odd for m odd. Moreover, the polynomial is fixed
by the coefficients of the nonpositive powers of q. Those coefficients in turn are related
to the polar contributions to χ(τ, z). To demonstrate the relationship note that

χNS(τ) =
∑

n,ℓ

c(n, ℓ) (−1)m+ℓ q
m
4

+n+ ℓ
2 . (6.5.80)

Now write:

4mn− ℓ2 = 4m

(
m

4
+ n+

ℓ

2

)
− (m+ ℓ)2 . (6.5.81)

The nonpolar terms in χ(τ, z) have 4mn− ℓ2 ≥ 0 and therefore from (6.5.81) contribute
only nonnegative powers of q in (6.5.80). In fact, they always contribute positive powers
with precisely one exception: when 4mn − ℓ2 = 0 and ℓ = −m. In that case n = m/4.
Note that this cannot happen if m 6= 0 mod 4 because n is integral.

6.5.2 A nontrivial constraint

In this subsection we assume m 6= 0 mod 4. We return to a discussion of the case m =
0 mod 4 in subsection 6.5.3 below.

Our conclusion thus far is that for m 6= 0 mod 4, χNS(τ) is a modular function for Γ̃θ
such that

χNS(τ) =
∑

θ∈Z

SFθχ
(m)
vac (τ, z)|z= 1

2
+ O(q1/4) . (6.5.82)

One easily finds that only θ = 0 can contribute to negative powers of q and hence we can
simplify this equation to

χNS(τ) = q−m/4(1 − q)
∞∏

n=1

(1 + qn+1/2)2

(1 − qn)2
+ O(q1/4) . (6.5.83)

This has expansion

q−m/4
(
1 + q + 2q3/2 + 3q2 + 4q5/2 + 6q3 + · · ·

)
. (6.5.84)

While the expression on the RHS of (6.5.83) is not modular, it can be written as:

χNS(τ) = q−m/4
1 − q1/2

1 + q1/2
q1/8ϑ3

η3
+ O(q1/4) . (6.5.85)

Now we can write an explicit formula for χNS(τ). Define expansion coefficients:

q−m/4q1/8 1 − q1/2

1 + q1/2

ϑ3

η3
=

∞∑

α=−m/4
h̃(α)qα . (6.5.86)
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Note that h̃(α) is only nonzero for α ∈ 1
2
Z, for m even and 1

4
+ 1

2
Z for m odd. For α ∈ 1

4
Z+

let ℘α be the unique polynomial of degree 4α such that

℘α(κ) = q−α + O(q1/4) , α ∈ 1

4
Z+ . (6.5.87)

Then for m 6= 0 mod 4

χNS =
0∑

α=−m/4
h̃(α)℘−α(κ) . (6.5.88)

On the other hand, if we expand around the cusp τ = 1 then, by (6.5.79)

0∑

α=−m/4
h̃(α)℘−α(κ̃(τr)) = e−iπm/2

∑

n,ℓ∈Z

c(n, ℓ) (−1)ℓ qnr . (6.5.89)

In particular, if we take τr → i∞, then we arrive at the key constraint:

L :=
0∑

α=−m/4
h̃(α)℘−α(−8i) = e−iπm/2

∑

ℓ

c(0, ℓ) (−1)ℓ . (6.5.90)

The argument for the non-existence of the extremal elliptic genus is based on showing that,
for large m, the left-hand side and right-hand side of (6.5.90) have different growth rates.
As we shall see momentarily, the right-hand side is always an affine linear function of m,
while the left-hand side grows exponentially for m = 2 mod 4; for m odd, the left-hand
side grows also linearly in m, but the coefficient is different.

Let us first establish the growth property of the right-hand side. By the ansatz for pure
supergravity we know that the only nonzero polar coefficients c(0, ℓ) occur for ℓ = ±m
and are given by 1. The coefficient c(0, 0) is not polar. Fortunately, Gritsenko has proven
a useful identity for the Fourier coefficients of weak Jacobi forms of index m [117]: 8

m
∑

ℓ

c(0, ℓ) = 6
∑

ℓ

ℓ2c(0, ℓ) . (6.5.91)

Using (6.5.91) and (6.3.49) we can solve for c(0, 0) to get c(0, 0) = 12m− 2, and therefore

∑

ℓ

c(0, ℓ)(−1)ℓ = 12m− 2 + 2(−1)m =

{
12m m even

12m− 4 m odd.
(6.5.92)

In particular, the right-hand side of (6.5.90) grows linearly with m.
Now let us turn to the left-hand side of (6.5.90). Observe that this is the q0 term in

the q-expansion of 
 ∑

α≥−m/4
h̃(α)qα



(
∑

n≥0

qn/4℘n/4(−8i)

)
. (6.5.93)

8The proof is very simple: exp[−8π
2
mG2(τ)z2]χ(τ, z) transforms as a weight zero modular form.

Therefore the coefficients of z
2n in the Taylor series around z = 0 transform like forms of weight 2n. In

particular the coefficient of z
2 must vanish, since there are no modular forms of weight two.
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On the other hand, using the fact that κ is a Hauptmodul one can show, that 9

∞∑

n=0

qn/4℘n/4(z) =
4q d

dq
κ

z − κ
. (6.5.94)

In order to apply this to our problem we use the identities 10

24q
d

dq
log ϑ4 = E2 − (ϑ4

2 + ϑ4
3)

24q
d

dq
log ϑ3 = E2 + (ϑ4

2 − ϑ4
4)

24q
d

dq
log ϑ2 = E2 + (ϑ4

3 + ϑ4
4)

(6.5.95)

to compute 4q d
dq
κ = −4ϑ8

3/(ϑ
2
2ϑ

2
4). Using the “abstruse identity” ϑ4

3 = ϑ4
2 + ϑ4

4 it follows
that ∞∑

n=0

qn/4℘n/4(−8i) = (ϑ2
4 − iϑ2

2)
2 . (6.5.96)

Thus, we need to estimate the large m behavior of

L :=

[
q−

m
4

+ 1
8
1 − q1/2

1 + q1/2

ϑ3

η3
(ϑ2

4 − iϑ2
2)

2

]

q0
. (6.5.97)

We estimate the growth behavior of L in appendix D.1, and it turns out to be quite
different for even and odd.

For m odd, eiπm/2L is positive, and is bounded below by

eiπm/2L ≥ 4πm− 8π

√
m− 5

2
− 6π . (6.5.98)

Since 4π > 12, this will asymptotically (i.e. for m ≥ 2000) grow more quickly than
(6.5.92). We have checked that among the first 2000 terms, the two numbers only agree

9Write ℘α(z) =
∮

C
℘α(ℓ)
ℓ−z

dℓ
2πi where the contour is on a large circle C in the ℓ plane. Now make the

change of variables ℓ → ℓ(r) := r
−1 − 20r + · · · so that ℓ(q1/4) = κ. This gives a one-one map of C to

a small circle C
′ around the origin. Using ℘α(ℓ(r)) = r

−4α + O(r), and taking the circle to be small we

see ℘α(z) = −
∮

C′

ℓ′(r)r−4α

ℓ(r)−z
dr
2πi . It is now straightforward to sum the series and apply Cauchy’s theorem

to arrive at (6.5.94). We thank Terry Gannon for pointing out this crucial identity to us.
10To prove these identities note that (24q

d
dq −E2)ϑ2 must be a weight 5/2 modular form for Γ(2) and

hence is a polynomial of degree 5 in ϑ2, ϑ3, ϑ4. Moreover, the q expansion has only coefficients q
1

8
+n with

n integer. Together with the transformation property under τ → τ + 1 this fixes it to be of the form
ϑ2(a(ϑ4

3 + ϑ
4
4) + bϑ3ϑ4(ϑ

2
3 + ϑ

2
4) + cϑ

2
3ϑ

2
4) for some constants a, b, c. Now, matching the first 3 coefficients

of the q expansion on the left and right hand sides we find a = 1, b = c = 0. The other two equations now
follow by modular transformations. These identities also have nice interpretations in terms of massless
free fermions on a two-dimensional torus. One can compute the expectation value of their energy either
by differentiating their partition function or by evaluating the energy-momentum tensor using the fermion
two-point function. Requiring that these two methods produce the same answer implies these identities
[62].
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for m = 1, 3, 5, 7, 11, 13, 19, 31, 41. For m = 1, 3, 5, 7, 11, 13 there exists indeed a sugra
elliptic genus, while for m = 19, 31, 41 there does not, as we have verified explicitly. (Note
that the fact that the two numbers agree does not imply that there must exist a sugra
elliptic genus!)

For m = 2 mod 4, L turns out to grow exponentially, so that (6.5.90) cannot be
satisfied for m large enough. For details of the calculation, see again appendix D.1.

6.5.3 A constraint for m = 0 mod 4

We now turn to the case m = 0 mod 4. As we have pointed out above, in this case
non-polar terms contribute to the constant term of χNS. We thus need to make the more
general ansatz

χNS(τ, z) = q−
m
4

+ 1
8

1 − q

(1 + yq1/2)(1 + y−1q1/2)

ϑ3(τ, z)

η3
+ d+ O(q1/2) . (6.5.99)

Instead of (6.5.88) we obtain

χNS =
0∑

α=−m/4
h̃(α)℘−α(κ) + d . (6.5.100)

The argument of section 6.5.2 can then be used to fix the value of d:

d = 12m−
[
q−

m
4

+ 1
8
1 − q1/2

1 + q1/2

ϑ3(τ)

η3
(ϑ4

4 − ϑ4
2)

]

q0
. (6.5.101)

We obtain an additional constraint on the theory in the following way: Let

D̂ :=

(
y
d

dy

)2

− m

6
E2 . (6.5.102)

Then χ̂NS(τ) := D̂(χNS(τ, z))|z=0 is a weight two weakly holomorphic modular form for
Γθ which moreover satisfies

χ̂NS(1 − 1/τr) = τ 2
r D̂(χ(τ, z))|z=1/2 . (6.5.103)

The qr → 0 limit of the coefficient of τ 2
r of the right-hand-side of (6.5.103) is

∑

ℓ

c(0, ℓ)(−1)ℓℓ2 − m

6

∑
c(0, ℓ)(−1)ℓ = 2m2 − m

6
12m = 0 . (6.5.104)

On the other hand, weakly holomorphic modular forms of weight two for Γθ are of the
form

(ϑ4
2 − ϑ4

4) × L(K̂) , (6.5.105)

where L(K̂) is a Laurent series in K̂. By examining the Ramond cusp we see that L(K̂)
must be a polynomial in K̂. Define polynomials Pa(K̂) = q−a/2 + O(q1/2) for a ≥ 0 and

P̃a(K̂)(ϑ4
2 − ϑ4

4) =

{
1 + O(q1/2) a = 0

aq−a/2 + O(q1/2) a > 0 .
(6.5.106)
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Using (6.5.95) we find

2q
d

dq
K̂ = K̂(ϑ4

2 − ϑ4
4) , (6.5.107)

from which we deduce

P̃a(z) =

{
−1 a = 0

−zP ′
a(z) a > 0 .

(6.5.108)

Define expansion coefficients

χ̂NS(τ) =
∑

α=−m/4
(−2α)x(α)qα +X(0) . (6.5.109)

If the extremal elliptic genus exists then

χ̂NS(τ) =
∑

α<0

x(α)P̃−α(K̂)(ϑ4
2 − ϑ4

4) −X(0)(ϑ4
2 − ϑ4

4) . (6.5.110)

Evaluating at the Ramond cusp we have

τ 2
r

(
X(0)(ϑ4

4 + ϑ4
3) −

∑

α<0

x(α)P̃−α(K̃)(ϑ4
4 + ϑ4

3)

)
, (6.5.111)

and evaluating at qr → 0 the coefficient of τ 2
r becomes simply 2X(0) since P̃α(0) = 0 for

α > 0. Therefore, X(0) = 0.
On the other hand, we can deduce the coefficient X(0) directly from the q0 term of

D̂χNS. Expressing χNS by (6.5.99) and (6.5.101) and then using

(y∂y)
2 1

(1 + yq1/2)(1 + y−1q1/2)

∣∣∣
y=1

= − 2q1/2

(1 + q1/2)4
, (6.5.112)

y∂yϑ3

∣∣∣
y=1

= 0 , (6.5.113)

(y∂y)
2ϑ3

∣∣∣
y=1

= 2q∂qϑ3 , (6.5.114)

and (6.5.95), we obtain the constraint

0 =
[
D̂χNS

]
q0

=
[
(y∂y)

2χNS −
m

6
E2 χNS

]
q0

= −2m2 +

[
q−m/4+1/8 1 − q1/2

1 + q1/2

−2q1/2

(1 + q1/2)2

ϑ3

η3

]

q0

−(4m− 2)

[
q−m/4+1/8 1 − q1/2

1 + q1/2

q∂qϑ3

η3

]

q0

= −2m2 −R1 − (4m− 2)R2 , (6.5.115)

where R1 and R2 are defined as

R1 =

[
2 q1/2 (1 − q1/2)4

(1 − q)3

ϑ3

η3

]

q
m
4 − 1

8

(6.5.116)

R2 =

[
(1 − q1/2)2

1 − q

q∂qϑ3

η3

]

q
m
4 − 1

8

. (6.5.117)
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In appendix D.1 we show that for large enough m both R1 and R2 are positive. It is then
clear that (6.5.115) cannot be satisfied.

6.6 Near-extremal N = 2 conformal field theories

In section 6.5 we showed that N = 2 ECFT’s, as we have defined them, at best exist only
for a finite number of sporadic values of m. One might object that our definition is too
narrow, and that we should simply modify the definition of an extremal theory.

In this section we consider one way of modifying the notion of an extremal theory, by
demanding only that some “significant” fraction of the polar degeneracies c(n, ℓ) coincide
with those predicted from the vacuum character.

Returning to the system of equations (6.4.67), for fixed m define k(m) to be the largest
integer such that

j(m)∑

i=1

xiNia = da , a = 1, . . . , k(m) (6.6.118)

admits a solution xi for which the elliptic genus
∑
xiφi has an integral Fourier expansion.

We would like to show that we can choose k(m) to be “close” to P (m).
Turning again to a numerical analysis, we studied the truncation of (6.6.118) to the

first j(m) equations: 1 ≤ a ≤ j(m) where we ordered the polar terms via their polarity.
We found that in all cases 1 ≤ m ≤ 36 there is indeed a solution xi in rational numbers.
Moreover, for all m except m = 17 the Fourier expansion coefficients are integral — in so
far as we have tested them. This indicates that k(m) = j(m) + O(1).11 We conjecture
that this is the case in general, and in section 6.6.1, assuming this conjecture to be true,
we derive an interesting constraint on the spectrum of N = 2 CFTs.

For the analysis in section 6.6.1 it turns out to be more convenient to define a “β-
extremal N = 2 CFT” by imposing the less restrictive condition of only requiring that
polar degeneracies are predicted from the vacuum character in the β-truncated polar
region:

Pβ := {(ℓ, n) : 1 ≤ ℓ ≤ m,n ≥ 0, 4mn− ℓ2 ≤ −β} . (6.6.119)

We know that for suitable β candidate elliptic genera exist. For example, if we take β = m2

then we can always construct a candidate elliptic genus. We get a better approximation
to an extremal theory by lowering the value of β. Therefore, let Pβ(m) be the number
of independent polar monomials of polarity ≤ −β, and let β∗ be the smallest integer β
such that

j(m)∑

i=1

xiNia = da , a = 1, . . . , Pβ(m) (6.6.120)

admits a solution xi for which
∑
xiφi has integral coefficients in its Fourier expansion.

According to our conjecture Pβ∗(m) ∼= j(m). We would therefore like to estimate the
value of β for which Pβ(m) = j(m) + O(m1/2) for large m. The computation follows
closely the analysis of section 6.2.2.

11Note that at least for the sporadic solutions m = 7, 8, 11, 13 we have k(m) > j(m).
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We now have

Pβ(m) =
m∑

r=r0

⌈r
2 − β

4m
⌉ , (6.6.121)

where r0 := ⌈√β⌉. As before, we write this as a sum of three terms,

Pβ(m) =
m∑

r=r0

r2 − β

4m
−

m∑

r=r0

((
r2 − β

4m
)) +

1

2

m∑

r=r0

(
⌈r

2 − β

4m
⌉ − ⌊r

2 − β

4m
⌋
)
. (6.6.122)

The first term is

m∑

r=r0

r2 − β

4m
=
m2

12
+
m

8
+

1

24
− r0(2r0 − 1)(r0 − 1)

24m
− β

(m− r0 + 1)

4m
. (6.6.123)

Denote the number of integers r such that r0 ≤ r ≤ m with r2 = β mod 4m by ν(m,β).
Unlike the case β = 0 we cannot write down an exact formula, but it is clear that
asymptotically ν(m,β) ∼ m1/2. The second term is

m∑

r=r0

⌈r
2 − β

4m
⌉ −

m∑

r=r0

⌊r
2 − β

4m
⌋ = m+ 1 − r0 − ν(m,β) . (6.6.124)

For the third term we again use the argument that the numbers ((r
2−β
4m

)) are randomly
distributed. We thus have a random walk between −1/2 and +1/2 and the sum is expected
to be of order m1/2.

To conclude, note that for β = αm with α a constant 0 < α < 1 we have r0 ∼ m1/2,
so the large m asymptotics are

Pβ(m) =
m2

12
+

(
5

8
− α

4

)
m+ O(m1/2) . (6.6.125)

Comparing to (6.2.24) we see that for large m the reduction of polarity to obtain the
truncated supergravity elliptic genus is given by β = 1

2
m+ O(m1/2).

6.6.1 A constraint on the spectrum of N = 2 theories with inte-

gral U(1) charges

In the previous sections we have found strong evidence that we must have Pβ∗(m) ∼= j(m),
and hence by (6.6.125)

β∗ ≥
m

2
+ O(m1/2) (6.6.126)

for large m.
Now a monomial qnyℓ of polarity β corresponds by spectral flow to a state in the NS

sector that contributes as qh−
m
4 yℓ with

h =
m

4
+

ℓ2

4m
− β

4m
. (6.6.127)
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Therefore, if we accept (6.6.126) then we can obtain an interesting constraint on the
spectrum of a (2, 2) AdS3 supergravity with a holographically dual CFT: It must contain
at least one state which is a left-moving N = 2 primary (not necessarily chiral primary)
tensored with a right-moving chiral primary such that

h <
m

4
+

ℓ2

4m
− 1

8
+ O(m−1/2) . (6.6.128)

It would be interesting and useful to sharpen this bound. However, we will show in section
6.7 below that it is possible to construct elliptic genera, which, after spectral flow, do
match the spectrum of the vacuum character for all conformal weights with h ≤ m

4
. There

is no contradiction between this result and (6.6.128) because under 1/2 unit of spectral
flow 0 ≤ |ℓ| ≤ 2m and hence ℓ2

4m
could be as large as m, and thus the bound can be as

large as 5m
4
− 1

8
+ O(m−1/2).

6.7 Construction of nearly extremal elliptic genera

In this section we consider an alternative basis for the weak Jacobi forms which has a
“triangular” nature, allowing us to replace the polar region P(m) by an alternative region
S. We will see that for large m, S “approximates” P(m). In the next section we discuss
the possible physical significance of this fact.

It is shown in [117] that there is an integral basis of the ring of weak Jacobi forms of
weight zero with integral coefficients

J̃Z

0,∗ = Z[φ0,1, φ0,2, φ0,3, φ0,4]/I , (6.7.129)

where I is the ideal generated by the relation

φ0,1φ0,3 = 4φ0,4 + φ2
0,2 . (6.7.130)

The generators are elliptic genera of Calabi-Yau manifolds, and explicit formulae are given
in [117]. In the basis (6.2.22) they can be expressed as12

φ0,1 = φ̃0,1 (6.7.131)

φ0,2 =
1

24
φ̃2

0,1 −
1

24
φ̃2
−2,1E4 (6.7.132)

φ0,3 =
1

432
φ̃3

0,1 −
1

144
φ̃0,1φ̃

2
−2,1E4 +

1

216
φ̃3
−2,1E6 (6.7.133)

φ0,4 =
1

6912
φ̃4

0,1 −
1

1152
φ̃2

0,1φ̃
2
−2,1E4 +

1

864
φ̃0,1φ̃

3
−2,1E6 −

1

2304
φ̃4
−2,1E

2
4 .(6.7.134)

To make the triangular nature of this basis manifest it is useful to consider the NS
sector images of the generators,

φ̂0,m = (−1)mqm/4ymφ0,m(τ, z +
τ

2
+

1

2
) . (6.7.135)

12We have redefined φ0,4 in [117] by a factor of −1.
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We now consider ordering the q, y expansion by the leading power of q and, for each power
of q by the largest positive power of y. (Recall that χNS(τ, z) is an even function of z, so
the positive powers of y determine the negative powers of y.) With this ordering of terms
we have

φ̂0,1 = q−1/4 + O(q1/4)

φ̂0,2 = (y + y−1) + O(q1/2)

φ̂0,3 = q1/4(y − y−1)2 + O(q3/4)

φ̂0,4 = 1 + O(q1/2) .

(6.7.136)

By (6.7.129) an overcomplete linear basis of J̃0,m is given by

(φ̂0,1)
i(φ̂0,2)

j(φ̂0,3)
k(φ̂0,4)

l (6.7.137)

with i + 2j + 3k + 4l = m, i, j, k, l ≥ 0. In order to obtain a set of linearly independent
basis vectors we distinguish the monomials in (6.7.137) according to whether i > k or
i ≤ k and then use identity (6.7.130) to eliminate φ̂0,3 or φ̂0,1, respectively. The result is
that there exists a vector space basis for J̃0,m which is a disjoint union of two sets A∐B
with

A := {(φ̂0,1)
i(φ̂0,2)

j(φ̂0,4)
l| i > 0, j ≥ 0, l ≥ 0 i+ 2j + 4l = m} , (6.7.138)

B := {(φ̂0,2)
j(φ̂0,3)

k(φ̂0,4)
l| j ≥ 0, k ≥ 0, l ≥ 0 2j + 3k + 4l = m} . (6.7.139)

A tedious but elementary counting argument shows that

|A| =

{
m2

16
+ 3m

8
− s2

16
+ s

8
+ 1

2
m = s mod 4, s = 1, 3

m2

16
+ m

4
− s2

16
+ s

4
m = s mod 4, s = 0, 2

(6.7.140)

and |A| + |B| = j(m).
Now note that the leading expression in the q, y expansion of an element in the set A

is q−i/4yj, while that in the set B is qk/4yj+2k. It thus follows that an (NS-sector) Jacobi
form of weight zero and index m with integral Fourier coefficients is uniquely determined
by the coefficients of qnyℓ where (ℓ, n) run over the set:

S = SA ∐ SB (6.7.141)

where

SA =
{

(ℓ, n)|n < 0, 0 ≤ ℓ, n+
m

4
≥ ℓ

2

}
(6.7.142)

and

SB =
{

(ℓ, n)|0 ≤ n, 8n ≤ ℓ, n+
m

4
≥ ℓ

2

}
. (6.7.143)

In both SA and SB the (ℓ, n) are in the lattice (ℓ, n) ∈ Z× 1
4
Z, subject to the quantization

condition (
n+

m

4

)
− ℓ

2
= 0 mod 1 . (6.7.144)
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Figure 6.3: A comparison of the polar region P(m) and the region S. The NS sector polar
region is bounded by ℓ ≥ 0, h ≥ ℓ/2, h ≤ m

4
+ ℓ2

4m
. The region S is the triangular region,

ℓ ≥ 0, h ≥ ℓ
2
, h − m

4
≤ ℓ

8
, which itself is a union of two triangular regions SA and SB,

where SA is the subregion of S with h < m
4
. The polar region contains SA, while SB is an

“approximation” to the remainder.

(This quantization is equivalent to the statement that in the Ramond sector the elliptic
genus has a Fourier expansion in q, y with integral powers of q, y.) The regions SA and
SB in the (ℓ, h) plane are triangles and their union is a triangle. The full region S can
serve as a surrogate for the polar region P(m), as explained in figure 6.3.

Recall that n, the power of q in the NS sector character, is related to h as n = h− m
4
.

It then follows from (6.7.142) that SA contains all possible points with h < m/4 that
occur in the NS vacuum character (6.3.40). Thus it is possible to construct a weak Jacobi
form with integral coefficients whose q-expansion agrees with that of an extremal theory
for all NS-sector Virasoro weights up to h = m/4 (for m even) and h = (m− 1)/4 (for m
odd). This fits in very nicely with the bound (6.6.128), which puts an upper bound on
the range of h where all states can be descendants of the vacuum.

6.8 Discussion: quantum corrections to the cosmic

censorship bound

If the pure N = (2, 2) supergravity is a consistent quantum theory, its Hilbert space
should be spanned by states which can be identified as excitations of the supergravity
fields. One class of such states are perturbative and normalizable excitations of the
supergravity fields in AdS3, which generate the vacuum representation in the boundary
CFT [23]. It is expected that these are the only states up to the cosmic censorship bound.
We define this bound to be the boundary of the region in the space of energy and charges
in which states corresponding semiclassically to black hole solutions can exist. In the
classical limit the cosmic censorship bound is the condition on mass and charges of a
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black hole such that there is a regular horizon.
It turns out that the classical cosmic censorship bound is exactly equal to the upper

bound of the polar part of the CFT spectrum [50]. This was the motivation for the defi-
nition of N = (2, 2) extremal conformal field theory in section 6.3.1. On the other hand,
in section 6.5, we proved that such a conformal field theory does not exist for sufficiently
large m. This result, however, does not immediately rule out the conjectured existence of
pure N = (2, 2) supergravity since the cosmic censorship bound might receive quantum
corrections. That is, there might be quantum corrections to the relation between the
values of the mass and charges of those quantum states whose semiclassical manifestation
are black holes. There are two potential sources for such corrections, and we will discuss
each of them below.

As far as perturbative effects are concerned, the pure supergravity theory can be
treated as the Chern-Simons gauge theory with the gauge group (6.3.37). Since the
classical equations of motion of the Chern-Simons theory imply vanishing of the gauge
field strength and since any perturbative corrections to the equations of motion can be
expressed as a polynomial of the field strength and its covariant derivatives, black hole
solutions are not corrected to all orders in the perturbative (i.e. 1/m) expansion. However,
values of the mass and charge of a given black hole solution can receive corrections since
computing them requires knowing the action as well as the equations of motion. In
particular, the “level” m, whose inverse appears in front of the action, can be corrected.
The leading discrepancy between the dimension of the space of polar polynomials, P (m),
and the dimension of the space of weak Jacobi forms, j(m),

P (m) − j(m) =
m

8
+ O(m1/2) , (6.8.145)

can be explained if m is shifted by an appropriate constant by quantum effects. Such a
shift is known to occur in perturbative Chern-Simons gauge theory [183], where the level
k is shifted at one loop by the dual Coxeter number of the gauge group, C2(G). For the
supergroup OSp(2|2), we have C2 = −2, so that in the present case both kL and kR are
shifted as13

kL → kL − 2 . (6.8.146)

Combining this with equation (6.3.39), we can express this as the shift of m,

m→ m− 8 , (6.8.147)

which, unfortunately, does not account for the difference in (6.8.145). Furthermore, it
seems difficult to attribute sub-leading terms in (P (m)−j(m)) to higher order perturbative
effects since sub-leading terms in P (m) contains the arithmetic function A(m), which does
not have a nice 1/m expansion (see footnote 2).

13One way to think about this shift is as follows. The supergroup OSp(2|2) is the superconformal group
of AdS2, and its dual Coxeter number, C2, can be thought of as the beta-function of the world-sheet
sigma-model defining AdS2 space-time. If instead of AdS2 we consider a positive curvature space, that
is a 2-sphere S

2, the contribution to the beta-function of the world-sheet theory should have opposite
sign and, hence, the opposite shift of k. In particular, for S

2, which has the isometry group SU(2), the
shift k → k + 2 is familiar in the study of SU(2) Chern-Simons theory [183]. In the case of OSp(2|2)
Chern-Simons theory the shift should have opposite sign, therefore justifying (6.8.146).
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There is another source of corrections which are non-perturbative in nature. To see
this, we note that conformal weights h for states counted by the elliptic genus are inte-
gers, as required by modular invariance. This granularity, which is smeared out in any
perturbative analysis, gives rise to an intrinsic ambiguity in the cosmic censorship bound
of O(1) in h. Since the boundary of the polar region in the (L0, J0) plane has a length of
order m, it is possible that the discrepancy of P (m) and j(m) mentioned in the above is
entirely attributed to this granularity. For example, the bound on h for a new primary
state found in (6.6.128) is within O(1) of the cosmic censorship bound.

It is possible that a combination of these two effects resolves the apparent contradiction
between the conjectured existence of pure N = (2, 2) supergravity and the properties of
the elliptic genus we found in this paper. It is even conceivable that the fully quantum
corrected cosmic censorship bound is in fact the region SA ∪ SB identified in section 6.7.
One way to falsify this conjecture would be to exhibit a quantum state which is in the
region SB, but not in the polar region, and which is described semiclassically as a black
hole.

6.9 Extremal N = 4 theories

The analysis for the case of the pure N = (2, 2) supergravity theories is somewhat in-
conclusive since we cannot rule out that there are quantum corrections to the classical
supergravity ansatz. The situation is sharper for the case with N = (4, 4) superconformal
symmetry since the possible quantum corrections of these theories are well constrained
[44]. Therefore, in this section we shall begin to address whether modular invariance al-
lows for a pure N = (4, 4) supergravity theory. Unfortunately, our results are somewhat
incomplete.

Following the earlier definition we define an extremal N = (4, 4) theory to be a theory

whose partition function is of the form (6.3.41) where χ
(m)
vac is now the vacuum character

of the N = 4 algebra [64, 65]:

χ(m)
vac = q−m/4

∞∏

n=1

(1 − yqn−1/2)2(1 − y−1qn−1/2)2

(1 − qn)
χ(q, y) , (6.9.148)

with

χ(q, y) =
∞∏

n=1

1

(1 − qn)(1 − y2qn)(1 − y−2qn−1)

×
∑

j∈Z

q(m+1)j2+j
( y2(m+1)j

(1 − yqj+1/2)2
− y−2(m+1)j−2

(1 − y−1qj+1/2)2

)
. (6.9.149)

As in the case of the N = 2 vacuum character, we have evaluated this expression at
z+ 1

2
. To get rid of the negative powers of q in the denominator, we can rewrite it as two
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separate sums over positive j,

χ(q, y) =
∞∏

n=1

1

(1 − qn)(1 − y2qn)(1 − y−2qn−1)
×

[∑

j≥0

q(k+1)j2+j
( y2(m+1)j

(1 − yqj+1/2)2
− y−2(m+1)j−2

(1 − y−1qj+1/2)2

)

+
∑

j≥1

q(m+1)j2+j−1
( y−2(m+1)j−2

(1 − y−1qj−1/2)2
− y2(m+1)j

(1 − yqj−1/2)2

)]
.(6.9.150)

It is straightforward to read off the polar polynomial from this expression.
Using the same methods as in section 6.4, we have analyzed whether this polar

polynomial can be completed to a weak Jacobi form. We have performed the analy-
sis for 1 ≤ m ≤ 20, and we have found that the only cases where this is possible are
m = 1, 2, 3, 4, 5. (Note that for 1 ≤ m ≤ 4 this is automatic since P (m) = j(m).) Thus,
apart from a few low level exceptions, we expect that the pure N = (4, 4) sugra ansatz is
incompatible with modular invariance. It might be possible to prove this assertion by suit-
ably modifying the methods of section 6.5, but the expressions appear to be challenging
and we have not attempted to do so.

An important loophole in our argument is the possibility that there are zero-modes
making the elliptic genus vanish. This might happen when there is an extension of the
chiral algebra and m is odd. In order to demonstrate this write the character expansion
of the RR sector partition function as

ZRR =
∑

1≤ℓ,ℓ̃≤m

cℓℓ̃χℓχℓ̃ + c00χ0χ0 +
∑

1≤ℓ≤m
cℓ0χℓχ0 +

∑

1≤ℓ̃≤m

c0ℓ̃χ0χℓ̃ + · · · (6.9.151)

Here χℓ denote the characters of the unitary massless representations, with 0 ≤ ℓ ≤ m
denoting twice the spin of the highest weight vector, and + · · · refers to terms with a
massive representation on the left or the right. The reason for separating out the ℓ = 0
spin as special is that its highest weight vector is not a polar state, whereas the highest
weight vectors of all the other massless representations are polar states. An extremal
theory must have an expansion of the form

ZRR = χmχm̃ + c00χ0χ0 +
∑

1≤ℓ≤m
cℓ0χℓχ0 +

∑

1≤ℓ̃≤m

c0ℓ̃χ0χℓ̃ + · · · (6.9.152)

since χm is the spectral flow image of the NS vacuum. Now, the elliptic genus of χℓ is
(−1)ℓ(ℓ+ 1), while that of the massive representations is zero. Thus, if the elliptic genus
vanishes then, comparing the coefficient of the left-moving vacuum character χm we see
that

cm0 = (−1)m+1(m+ 1) . (6.9.153)

Note that a non vanishing coefficient cm0 implies that the right-moving chiral algebra is
enhanced, as claimed. Also, since cm0 is a positive integer this can only happen when m
is odd. Moreover, by comparing the coefficients of the other left-moving characters we
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find the constraints cℓ0 = 0 for 1 ≤ ℓ ≤ m − 1 and
∑m

ℓ̃=0 c0ℓ̃(−1)ℓ̃(ℓ̃ + 1) = 0. Since our
no-go theorem would apply if either the holomorphic or anti-holomorphic elliptic genus is
nonvanishing we might as well assume the anti-holomorphic elliptic genus also vanishes.
In this case we find that c0ℓ = 0 for 1 ≤ ℓ ≤ m − 1 and hence c00 = (m + 1)2, so that
ZRR = |χm + (m + 1)χ0|2 + · · · . Thus, for extremal theories of this type our arguments
fail, and further investigation is necessary.

It should be noted that a vanishing elliptic genus does indeed occur in some important
examples. One example arises in AdS3 × S3 × T 4 compactifications [147]. A second
example is in the MSW conformal field theory with (0, 4) supersymmetry, which is dual
to an AdS3×S2×X compactification, where X is Calabi-Yau [148, 155]. In all these cases
there is an extended chiral algebra due to singleton modes. In such a case one must take
derivatives with respect to z̄ and set z̄ = 0 [35, 147]. The resulting modular object is a
non-holomorphic generalization of a Jacobi theta function [45, 47]. A similar phenomenon
happens in the analog of the elliptic genus for the large N = 4 superconformal algebra
[118]. Of course, the examples we have just cited are not extremal theories. However,
these examples do suggest that it would be useful to extend the investigation of extremal
theories to the cases of vanishing elliptic genera, or (0, 4) supersymmetry, or large N = 4
supersymmetry.

6.10 Applications to flux compactifications

Flux compactifications of M-theory and string theory have been a very popular subject
of investigation in recent years [60, 46]. Unfortunately, these compactifications are in
general very complicated and it is difficult to be sure that they are valid solutions of string
theory within a controlled approximation scheme. The demonstration of holographically
dual conformal field theories would definitively settle such difficulties, at least for flux
compactifications to anti-de Sitter spacetimes. The considerations and techniques of this
paper might put interesting constraints on the allowed spectra of some classes of flux
compactifications, namely compactifications to AdS3 with a holographically dual (2, 2)
conformal field theory. One could imagine, for example, flux compactifications of M-
theory on a suitable Calabi-Yau 4-fold, where one includes M5 instanton effects, in order
to exclude no-scale compactifications.

The compactifications of greatest interest are those with a small cosmological constant
and a large gap from the ground state to the Kaluza-Klein scale. These simple aspects of
the spectrum already have implications for the conformal field theory. If the cosmological
constant is small then the Brown-Henneaux central charge c = 3

2
RM

(3)
pl is large. This

implies that the level

m =
RM

(3)
pl

4
(6.10.154)

is large.

Now let us consider the spectrum of the theory. The supergravity multiplet corre-
sponds to the super-Virasoro descendants. Next, if V8 is the volume of the Calabi-Yau
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4-fold in 11-dimensional Planck units then

[V8(M
(11)
pl )8]M

(11)
pl = M

(3)
pl (6.10.155)

and therefore, M
(11)
pl ∼ M

(3)
pl unless V8 is unnaturally large, and hence in AdS units, the

KK scale is of order m. Thus, we naturally expect a large gap to the primary fields
corresponding to the KK modes.

In addition to the supergravity multiplet and the KK modes there will typically be
other primary fields, for example the moduli fields, many of which might have acquired
masses in the compactification scheme. Our conjectured bound (6.6.128) can be viewed
as putting constraints on the masses which the moduli acquire. For scalar fields in AdS3

the relation between the conformal weight h and the mass M of a corresponding particle
of spin zero is

(MR)2 = h(h− 3) , (6.10.156)

with similar formulae for particles of other spins. (See section 3.3.1 of [4].) For a large
gap we have MR ∼ h for all spins, and hence we estimate

h ∼MiR = 4m
Mi

M
(3)
pl

.

Let M∗ be the lightest conformal primary other than the identity. If m is very large we
clearly should have

M∗

M
(3)
pl

<
5

16
− 1

32m
+ O(m−3/2)

or we will rule out the compactification. This can be interpreted as putting an upper
bound on the gap to the lightest stabilized moduli field.

It would clearly be of interest to make these considerations more precise, and moreover
to extend them to theories with holographic duals with only (1, 1) supersymmetry. We
believe the techniques used in section 6.5 can be usefully applied to this question, but we
leave that for future work.
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Appendix A

A.1 Automorphism for current algebras

In the case of current algebras, let us explicitly check that the modified map ωλ (2.3.15) is
in fact an automorphism. Let S(1), S(2) be two currents such that ω(S(i)) commute with
J and ω(J), so that there is no single pole in their OPE. The effect of ωλ on the modes

S
(i)
m is to first order

S(i)
m 7→ ω(S(i)

m ) − πλ
(
J, ω(S)(i)

)
ω(J)m + πλ

(
ω(J), ω(S(i))

)
Jm . (A.1.1)

Here, (J, S) denotes the inner product of the generators corresponding to J and S. Now
let us check that the commutation relations of the current algebra are preserved under
the map ωλ, so we have to check whether

[ωλ(S
(1)
m ), ωλ(S

(2)
n )] = ωλ([S

(1)
m , S(2)

n ]) . (A.1.2)

Evaluating the left hand side, we find

[ωλ(S
(1)
m ), ωλ(S

(2)
n )] = ω([S(1)

m , S(2)
n ]) . (A.1.3)

We used here that in the commutators of ω(S(i)) with J, ω(J) only central terms appear;
the total central term is then easily seen to vanish.

The commutator on the right hand side is just the one that we would have got with
the unchanged automorphism ω. Therefore ωλ is an automorphism if it acts in the same
way as ω on the commutator [S

(1)
m , S

(2)
n ]. By definition

ωλ([S
(1)
m , S(2)

n ]) = ω([S(1)
m , S(2)

n ]) − πλ
(
ω(J), [ω(S(1)), ω(S(2))]

)
Jm+n

+ πλ
(
J, [ω(S(1)), ω(S(2))]

)
ω(J)m+n . (A.1.4)

Here, [S(1), S(2)] denotes the Lie algebra bracket corresponding to the currents S(i). Since
(J, [ω(S(1)), ω(S(2))]) = ([J, ω(S(1))], ω(S(2))) = 0 and similarly for the other term, the two
additional terms in (A.1.4) cancel, and we have shown that ωλ is an automorphism.

A.2 Higher order analysis of boundary locality

In this appendix we shall analyse under which conditions the self-locality of a boundary
field S remains unaffected by higher order perturbations. This continues the analysis of
(ii) in section 4.1 to higher orders.
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Suppose that J(w)J̄(w̄) is exactly marginal on the disk, i.e. that

J(w)J(z) =
1

(w − z)2
+ O(1) , J̄(w̄)J̄(z̄) =

1

(w̄ − z̄)2
+ O(1) , (A.2.1)

and

J(w)ω(J)(z̄) =
C

(w − z̄)2
+ O(1) , (A.2.2)

where C is some constant (that may be zero). Moreover we assume that S does not
change its conformal weight to first order in the perturbation. The analysis in section 4.1
then tells us that either J0S = 0 or ω(J)0S = 0. For definiteness let us assume in the
following that the first case holds, J0S = 0.
The contribution to the deformed OPE at order n is given by

λnS(x1)S(x2)
n∏

i=1

∫
d2wi J(wi)ω(J)(w̄i) , (A.2.3)

which as usual is understood to be inserted into arbitrary correlators. By the usual
arguments this can be evaluated by summing the singular terms that arise from the OPE
of the currents with the other fields. Note that the integral in (A.2.3) is regularised by
|wi−wj| > ℓ (and of course Im(wi) > ℓ/2). The regularisation is obviously only important
if there actually is a pole in wi − wj; otherwise it will only lead to terms of order ℓ that
we can neglect.

Let us now discuss the different pole terms that arise. In the following we will not
distinguish between J and ω(J), and w and w̄, unless stated otherwise. We will denote
the singular contribution from the operator product expansion between operators at u
and v by the symbol u → v; with these conventions there are the following terms to
consider:

(1) wk → w̄k: The pole (wk − w̄k)
−2 only gives a (divergent) overall renormalisation.

(2) wk → w̄j and w̄k → wj: Again the wk and wj integrals are independent of all other
variables and thus only give an overall normalisation factor. The same applies for
wk → wj and w̄k → w̄j.

(3) wk → wj but w̄k → wl: Evaluate
∫
d2wk (wk − wj)

−2(w̄k − wl)
−2 =

∫

∂H+,wi

dwk (wk − wj)
−2(w̄k − wl)

−1 , (A.2.4)

where the integral is taken along the real axis, as well as around little circles sur-
rounding the points wi. The contour integral around wi with i 6= j, l is zero since
the function is regular at that point. Similarly, the integral around wj and wl gives
zero. The integral along the real axis can be evaluated by closing the contour. De-
pending on whether wj and wl are in the upper or in the lower half plane (or more
precisely, whether we consider w or w̄), it gives either zero or a term ∼ (wl−wj)

−2.
Effectively we have thus reduced the problem to the one where J(wk) is absent, and
we are considering the pole contribution from wl → wj.
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This deals with all the poles between the different currents J and ω(J). It remains to
analyse the poles that involve at least one S. There are two more cases to consider:

(4) wk → xi and w̄k → xj: This is the situation discussed in section 4.1. Note that we
can still use translation invariance, as the integrand is regular at all points wk = wi.
A logarithmic term in x1 − x2 could only be produced if both zero modes J0 and
ω(J)0 act on the fields S, but this gives zero, because we assumed J0S = 0. We
thus obtain meromorphic terms in x1, x2, and new operators of the form V (JmS;xi)
and V (ω(J)nS;xj), m > 0, n ≥ 0. Obviously [J0, Jn] = 0, and because of (A.2.2)
[J0, ω(J)n] = 0. This means that the new fields do not have any simple pole with
the current J , so that we can continue to use the same arguments as before.

(5) wk → x1, but w̄k → w̄l: By the same arguments as in (3) above we do not get
anything new if wl → wj, so we may assume that wl → xi. If wl → x1, then the wk
and wl integrals only depend on x1 and no other variables. By translation invariance
this is just a constant factor.

The only remaining cases are thus wk → x1, w̄k → w̄l, wl → x2, and similar situations
with w and w̄ exchanged. Let us consider first the contribution

∫
d2wl d

2wk [J(wk)S(x1)][J(wl)S(x2)]
1

(w̄k − w̄l)2
, (A.2.5)

where we denote the singular part of the OPE by square brackets. The domain of integra-
tion is restricted by |wl − wk| > ℓ and Imwl, Imwk >

ℓ
2
. Write wl = ul + ivl and redefine

ŵk = wk − ul. The variable ul is integrated over the real axis without any restrictions.
The integrand has poles in ul at ul = x2 − ivl and at ul = x1 − ŵk which both lie on
the lower half plane. By closing the contour in the upper half plane we thus see that this
contribution vanishes.

The same argument applies for the case w̄k → x1, wk → wl, w̄l → x2, so the only
remaining contribution that we need to consider comes from w̄k → x1, wk → w̄l, wl → x2,
which is of the form

∫
d2wl d

2wk
1

(wk − w̄l)2

hS∑

m=0

hS∑

n=1

1

(w̄k − x1)m+1

1

(wl − x2)n+1
V (ω(J)mS, x1)V (JnS, x2) .

(A.2.6)
Note that there is no term with n = 0. It is not hard to see that the integral for each
summand produces a contribution ∼ (x1 − x2)

−(m+n), so that a logarithmic term could
only appear for m = n = 0.

In summary, we have thus shown that there will be no logarithmic terms to any order
in perturbation theory if they do not arise at first order.
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Appendix B

B.1 Web of Dualities

In this appendix we display the various dualities leading from the heterotic theory on T 5

(along x5,6,7,8,9) to M-theory on K3 × T 2 (along x6,7,8,9 and x5,10). For a review of string
dualities see e.g. [12]. In order to facilitate keeping track of the various steps, we have
depicted a schematic overview in the following web

M-theory

p M5 01 6789
N ′ M5 01 567 10
N M5 01 5 8910

l lift

Type IIB

p KK 01 6789
N ′ D1 01
N D5 01 6789

T567↔
Type IIA

p NS5 01 6789
N ′ D4 01 567
N D4 01 5 89

Type I

p D1 01
N ′ D5 01 6789
N KK 01 6789

l S l het/type I

Type IIB

p KK 01 6789
N ′ F1 01
N NS5 01 6789

T5↔
Type IIA

p NS5 01 6789
N ′ F1 01
N KK 01 6789

↔
heterotic

p F1 01
N ′ NS5 01 6789
N KK 01 6789

We start in the lower right corner with the heterotic theory as described in section 4.2.1.
Following the first arrow to the left1, heterotic-type IIA duality takes us to a setup with
NS5-branes, fundamental strings and KK monopoles as described in the corresponding

1The arrow pointing upwards is just included for completeness and represents the heterotic-type I
duality which we exploit in section 4.3.
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box. Going further to the left (using the arrow labelled T5), we perform a T-duality along
the isometry direction of the KK monopoles (direction x5), which exchanges the KK
monopoles and the NS5-branes but leaves the F1 untouched. Since we have performed
the T-duality only along a single direction, the setup is now in the type IIB theory.
Following the next arrow upwards (labelled by S), we perform S-duality in the type IIB
framework, which turns the NS5-branes and F1 into D5- and D1-branes, respectively. Next
we follow the arrow labelled T567 to the right, which represents T-duality transformations
along x5,6,7. Since again the isometry direction of the KK monopoles is affected, they are
transformed to NS5-branes, while the D1 and D5-branes are mapped to D4-branes. Since
we have performed the duality transformation in an odd number of dimensions, we are
back to the type IIA framework. The final arrow pointing upwards is the M-theory lift,
which takes us to the setup of three stacks of M5-branes described in section 4.2.2.

138



Appendix C

C.1 Vertex operator algebras and Zhu’s algebra

The vacuum representation of a (chiral) conformal field theory describes a meromorphic
conformal field theory [112]. In mathematics, this structure is usually called a vertex
operator algebra (see for example [83, 129] for a more detailed introduction). A vertex
operator algebra is a vector space V =

⊕∞
n=0 Vn of states, graded by the conformal weight.

Each element in V of grade h defines a linear map on V via

a 7→ V (a, z) =
∑

n∈Z

an z
−n−h (an ∈ End V ) . (C.1.1)

In this paper we follow the usual physicists’ convention for the numberings of the modes;
this differs by a shift by h − 1 from the standard mathematical convention that is also,
for example, used in [187]. We also use sometimes (as in [187]) the symbol

o(a) = a0 . (C.1.2)

Every meromorphic conformal field theory contains an energy-momentum tensor L with
modes

V (L, z) =
∑

n

Ln z
−n−2 . (C.1.3)

The modes Ln satisfy the Virasoro algebra.
Since much of our analysis is concerned with torus amplitudes it will be convenient

to work with the modes that naturally appear on the torus; they can be obtained via a
conformal transformation from the modes on the sphere. More specifically, we define (see
section 4.2 of [187])

V [a, z] = e2πizha V (a, e2πiz − 1) =
∑

n

a[n] z
−n−h . (C.1.4)

The explicit relation is then

a[m] = (2πi)−m−ha
∑

j≥m
c(ha, j + h− 1,m+ h− 1) aj , (C.1.5)

where
(log(1 + z))m(1 + z)ha−1 =

∑

j≥m
c(ha, j,m) zj . (C.1.6)
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This defines a new vertex operator algebra with a new Virasoro tensor whose modes L[n]

are given by

L[n] = (2πi)−n
∑

j≥n+1

c(2, j, n+ 1)Lj−1 − (2πi)2 c

24
δn,−2 . (C.1.7)

The appearance of the correction term for n = −2 is due to the fact that L is only
quasiprimary, rather than primary. Since the two descriptions are related by a conformal
transformation to one another, the new modes S[n] satisfy the same commutation relations
as the original modes Sn. In particular, the modes L[n] satisfy a Virasoro algebra with
the same central charge as the modes Ln.

C.1.1 Zhu’s algebra

One of the key results of Zhu [187] is his characterisation of the highest weight represen-
tations of a vertex operator algebra in terms of representations of an associative algebra
A[1,1], usually now called Zhu’s algebra. This algebra is defined as the quotient space of
V by the subspace O[1,1], where O[1,1] is spanned by elements of the form

∮
dz

(
V (a, z)

(z + 1)ha

z2
b

)
. (C.1.8)

This definition is motivated by the observation (see for example [92, 90] for a more detailed
exposition) that

〈
φ1

∣∣∣φ2(1)

∮
dz

(
V (a, z)

(z + 1)ha

z2
b
)〉

= 0 (C.1.9)

provided only that φ1 and φ2 are highest weight states, i.e. are annihilated by all an with
n > 0. Thus any combination of two highest weight states defines an element in the dual
space of A[1,1]. Zhu showed that also the converse is true; more specifically he proved that
A[1,1] carries the structure of an associative algebra with product

a ∗ b =

∮
dz

(
V (a, z)

(1 + z)ha

z
b

)
, (C.1.10)

and that the representations of this associative algebra are in one-to-one correspondence
with the highest weight representations of the vertex operator algebra. The product
structure (C.1.10) describes the multiplication of the zero modes on highest weight states;
in particular, if ψ is a highest weight state, then

o(a)o(b)ψ = o(a ∗ b)ψ . (C.1.11)

For future reference we also note that in Zhu’s algebra (see [187], p.296)

a ∗ b− b ∗ a =
1

2πi
a[−ha+1] b . (C.1.12)

Finally, if V is a rational vertex operator algebra, A[1,1] is a semisimple algebra.
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C.1.2 The C2 space

The states of the form (C.1.8) are not homogeneous with respect to the L0 grading, even
if a and b are. The ‘leading term’, i.e. the term with the highest conformal weight is the
term of the form a−ha−1b. Let us denote the subspace that is generated by states of this
form by O[2]. (We are using here the same conventions as in [96].) A vertex operator
algebra is said to satisfy the C2 criterion if the quotient space A[2] = V/O[2] is finite
dimensional. It is easy to see (and proven in [187]) that the C2 condition implies that
Zhu’s algebra is finite dimensional. In fact, the dimension of A[2] provides an upper bound
on the dimension of Zhu’s algebra. Actually, in many cases these two dimensions agree,
but this is not always the case: in particular, the dimension of the C2 space is always at
least two [91], while Zhu’s algebra is for example one-dimensional for self-dual theories.

Similarly, the leading term of the generating vectors of Oq(V ) in (5.2.3) is a[−ha−1]b;
since the vertex operator algebras defined by an and a[n] are isomorphic, the C2 condition
(formulated for either a−ha−1b or a[−ha−1]b) then also implies that the C[G4(q), G6(q)]-ideal
of Oq(V ) in V [G4(q), G6(q)] has finite codimension. From this it follows that there is a
relation of the type (5.2.6).

C.2 Torus recursion relations

In this appendix we briefly sketch the derivation of the recursion relation (5.2.1); for the
detailed argument see [187]. Let us introduce the notation

FH
(
(a1, z1), . . . , (a

n, zn); q
)

= zh1
1 . . . zhnn TrH

(
V (a1, z1) · · ·V (an, zn) q

L0

)
. (C.2.1)

The derivation of (5.2.1) consists of several steps. We first need the following proposition:

FH
(
(a1, z1), (a, w), (a2, z2), . . . , (a

n, zn); q
)

= z−h1
1 . . . z−hnn TrH

(
o(a)V (a1, z1) . . . V (an, zn) q

L0

)

+
∑

m∈N0

Pm+1

(z1

w
, q
)
× FH

(
(a[m−ha+1]a

1, z1), (a
2, z2), . . . , (a

n, zn); q
)

(C.2.2)

+
n∑

j=2

∑

m∈N0

Pm+1

(zj
w
, q
)
× FH

(
(a1, z1), (a

2, z2), . . . , (a[m−ha+1]a
j, zj), . . . , (a

n, zn); q
)
.

Note that there is actually no difference between the terms in the third line and the fourth
line — we have only distinguished between them to clarify the derivation below. In fact,
it is easy to show that FH is actually independent of the order in which the (aj, zj) (or
(a, w)) appear, as must be the case.

Sketch of proof: The proof is in principle simple: expand out V (a, w) in modes as in
(C.1.1). Commute the zero mode o(a) to the left to get the second line in (C.2.2); the
commutator will eventually be absorbed into the P1(

z1
w
, q) of the third line, using (C.3.3).

For the other terms in the mode expansion of V (a, w) we commute each mode ak through
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the other fields, using

[ak, V (aj, zj)] =
∑

m∈N

(
h+ k − 1

m

)
V (am−ha+1a

j, zj) z
h+k−1−m
j . (C.2.3)

As ak is taken past qL0 , we pick up

ak q
L0 = qk qL0ak . (C.2.4)

Thus when ak comes back to its original position, it is multiplied by qk. We can therefore
solve for the original expression to get

TrH
(
V (a1, z1) ak · · ·V (an, zn) q

L0

)

=
1

1 − qk

n∑

j=2

∑

l∈N

(
ha − 1 + k

l

)
zha−1+k−l
j (C.2.5)

×TrH
(
V (a1, z1) · · ·V (al−ha+1a

j, zj) · · ·V (an, zn) q
L0

)

+
qk

1 − qk

∑

l∈N

(
ha − 1 + k

l

)
zha−1+k−l
1 TrH

(
V (al−ha+1a

1, z1) · · ·V (an, zn) q
L0

)
.

We can then plug this into the original expansion and use the identity

∑

l∈N

∞∑

k=1

((
ha − 1 + k

l

)
1

1 − qk
xk +

(
ha − 1 − k

l

)
1

1 − q−k
x−k
)
al−ha+1a

j

=
∑

m∈N

Pm+1(x, q) a[m−ha+1]a
j , (C.2.6)

where Pm+1(x, q) is the Weierstrass function, see appendix C. For the terms with j 6= 1,
x = zj/w, so that we obtain directly the last line of (C.2.2). For j = 1, x = qz1/w, and
we apply (C.3.3) to get the third line. Note that for m = 0 the shift by 2πi is exactly
compensated by the commutator term that comes from the second line. �

We will now use (C.2.2) to calculate the action of a[−ha] on one of the inserted operators.
We claim that

FH
(
(a[−ha]a

1, z1), (a
2, z2), . . . , (a

n, zn); q
)

= zh1
1 . . . zhnn TrH

(
o(a)V (a1, z1) · · ·V (an, zn) q

L0

)

−πi FH
(
(a[−ha+1]a

1, z1), (a
2, z2), . . . , (a

n, zn); q
)

+
∞∑

k=1

G2k(q)FH
(
(a[2k−ha]a

1, z1), (a
2, z2), . . . , (a

n, zn); q
)

(C.2.7)

+
n∑

j=2

∑

m∈N0

Pm+1

(
zj
z1

, q

)
FH
(
(a1, z1), . . . , (a[m−ha+1]a

j, zj), . . . , (a
n, zn); q

)
.
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Proof: We can write the first line of (C.2.7) as

∫

C

w−1

(
log

(
w

z1

))−1

FH
(
(a, w), (a1, z1), . . . , (a

n, zn); q
)
dw . (C.2.8)

This can be seen by rewriting a[−ha] in terms of the original modes, using

V (al a
1, z1) =

∮
dw(w − z1)

−l−ha V (a, w)V (a1, z1) (C.2.9)

and by the definition of the c(h, j,m),

∑

j≥−1

c(h, j,−1) (w − z1)
jzh−1−j

1 w−h = w−1

(
log

(
w

z1

))−1

. (C.2.10)

We then use (C.2.2) to evaluate FH. From (C.2.8) we see that in the terms that are
regular in w = z1, we simply need to replace w by z1. To evaluate the third line of (C.2.2)
we substitute z1 = exp(2πiz′1), w = exp(2πiw′), which shows that we obtain the constant
term in the w′ expansion of Pm+1(e

2πiw′
) , which can be read off directly from (C.3.6). �

To get (5.2.1), we specialise (C.2.7) to the case n = 1. Furthermore we use that (see [187])

[o(a), V (b, z)] = V (a[−ha+1]b, z) , (C.2.11)

implying that FH((a[−ha+1]b, z); q) = 0. If we consider the terms of (C.2.7) of power z0,
we thus obtain

TrH
(
o(a[−ha]b) q

L0

)
= TrH

(
o(a) o(b) qL0

)
+

∞∑

k=1

G2k(q, y)TrH
(
o(a[2k−ha]b) q

L0

)
. (C.2.12)

C.2.1 Differential operators

For the determination of the modular differential equation, one of the key steps is the
calculation of the differential operators Ps(D), see (5.2.9). In the following, we give explicit
formulae for them for the first few values of s

P2(D) = (2πi)2D (C.2.13)

P4(D) = (2πi)4D2 +
c

2
G4(q) (C.2.14)

P6(D) = (2πi)6D3 +

(
8 +

3c

2

)
G4(q) (2πi)2D + 10cG6(q) (C.2.15)

P8(D) = (2πi)8D4 + (32 + 3c)G4(q) (2πi)4D2 + (160 + 40c)G6(q) (2πi)2D

+

(
108c+

3

4
c2
)
G4(q)

2 . (C.2.16)

Here c is the central charge of the corresponding conformal field theory.
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C.3 Weierstrass functions and Eisenstein series

Let us define the function

Pk(qz, q) =
(2πi)k

(k − 1)!

∞∑

n=1

(
nk−1qnz
1 − qn

+
(−1)knk−1q−nz qn

1 − qn

)
, (C.3.1)

which converges for |q| < |qz| < 1. Since qz
d
dqz

Pk(qz, q) = k
2πi

Pk+1(qz, q), we will concen-

trate on P1(qz, q). In what follows, we shall be interested in the behaviour around qz = 1.
PQ

1 (qz, q, y) has a simple pole at qz = 1, but we can find a meromorphic continuation on
|q| < |qz| < |q|−1 by rewriting

P1(qz, q) =
2πi

1 − qz
− 2πi+ 2πi

∞∑

n=1

(
qnz q

n

1 − qn
− q−nz qn

1 − qn

)
. (C.3.2)

A straightforward calculation then shows the identity

P1(qqz, q) = P1(qz, q) + 2πi . (C.3.3)

Introducing the new variable z by qz = e2πiz, we want to calculate the Laurent expansion
in z around 0. The crucial point is that the coefficients of this Laurent expansion are
essentially the Eisenstein series G2k(q) that will eventually appear in (5.2.1). In fact,
expanding qz in z and using the definition of the Bernoulli numbers,

x

ex − 1
=

∞∑

n=0

Bn

n!
xn , (C.3.4)

along with the identity

B2n =
(−1)n−12(2n)!

(2π)2n
ζ(2n) , (C.3.5)

we obtain

P1(qz, q) = −1

z
− πi+

∞∑

k=1

G2k(q)z
2k−1 , (C.3.6)

where the Eisenstein series are defined by

G2k(q) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑

n=1

n2k−1qn

1 − qn
. (C.3.7)

The Laurent expansions of the higher Pk(qz, q) functions can be directly obtained by

∂zPk(qz, q) = kPk+1(qz, q) . (C.3.8)
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C.3.1 The Eisenstein series

The Eisenstein series G2k(τ) can also be alternatively defined by

G2k(τ) =
∑

(m,n) 6=(0,0)

1

(mτ + n)2k
k ≥ 2 , (C.3.9)

G2(τ) =
π2

3
+

∑

m∈Z−{0}

∑

n∈Z

1

(mτ + n)2
. (C.3.10)

For k ≥ 2, G2k(τ) is a modular form of weight 2k, i.e.

G2k

(
aτ + b

cτ + d

)
= (cτ + d)2kG2k(τ) , (C.3.11)

whereas G2(τ) transforms with a modular anomaly

G2

(
aτ + b

cτ + d

)
= (cτ + d)2G2(τ) − 2πic(cτ + d) . (C.3.12)

We can use G2 to define a modular covariant derivative: If f(q) is a modular form of
weight s, then Dsf(q) is a modular form of weight s+ 2, where

Ds = q
d

dq
− s

4π2
G2(q) . (C.3.13)

The space of modular covariant functions is given by the ring C[G4(q), G6(q)] that is
freely generated by G4(q) and G6(q). In particular, all higher G2k(q) can be written as
polynomials in G4(q), G6(q).

It is also sometimes convenient to work with a different normalisation for the Eisenstein
series, so that the constant term is 1; the corresponding series will be noted by En(q).
For the first few values of n, they are explicitly given as

E2(q) = 1 − 24 q − 72 q2 − 96 q3 − 168 q4 − 144 q5 − · · · , (C.3.14)

E4(q) = 1 + 240 q + 2160 q2 + 6720 q3 + 17520 q4 + 30240 q5 + · · · , (C.3.15)

E6(q) = 1 − 504 q − 16632 q2 − 122976 q3 − 532728 q4 − 1575504 q5 − · · · .(C.3.16)

The relation between the Gn(q) and En(q) is simply Gn(q) = 2ζ(n)En(q); for the first
few values of n, we have explicitly

G2(q) = −(2πi)2

12
E2(q) , G4(q) =

(2πi)4

720
E4(q) , G6(q) = −(2πi)6

30240
E6(q) . (C.3.17)

Finally, we mention that we have the identities

DE4 = −1

3
E6 , DE6 = −1

2
E2

4 , DE2
4 = −2

3
E4E6 . (C.3.18)
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Appendix D

D.1 Growth properties

D.1.1 Analysis of the constraint for m odd

For m odd we have

L =

[
−2iq−

m
4

+ 1
8
1 − q1/2

1 + q1/2

ϑ3(τ)

η3
ϑ2

2ϑ
2
4

]

q0
. (D.1.1)

where L was defined in (6.5.97). We can simplify this significantly using the triple product
identity ϑ2ϑ3ϑ4 = 2η3. Next, shifting τ → τ + 1 (which cannot change the q0 coefficient)
we obtain:

L = 4e−iπm/2
[
q−

m
4

+ 1
8
1 + q1/2

1 − q1/2
ϑ2ϑ3

]

q0
. (D.1.2)

Now use the usual sum formula for ϑ2 and ϑ3 to obtain

ϑ2ϑ3 =
∑

r,s∈Z

q(r−1/2)2/2+s2/2 =
∑

r,s∈Z

q(2r−1)2/8+(2s)2/8 =
∑

n∈N0

B(n)qn/8 , (D.1.3)

where B(n) is the number of ways of writing n as a sum of an even and an odd integer
squared, i.e. n = (2r − 1)2 + (2s)2 with both r and s integer. We also observe that the
series expansion of the other factor is

1 + q1/2

1 − q1/2
= 1 + 2

∞∑

ℓ=1

qℓ/2 . (D.1.4)

Thus the exact result for (6.5.97) is

L = 4e−iπm/2


B (2m− 1) + 2

2m−1
4∑

ℓ=1

B (2m− 1 − 4ℓ)


 . (D.1.5)

The dominant contribution comes from the second term. This sum is precisely equal to
all combinations of an odd and an even integer whose square sum up to a number less or
equal to 2m − 5. Now draw a rectangular lattice whose unit cell is a square with length
2, where we shift the lattice by one unit in the x1-direction say, so that the centers of the
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Figure D.1: The grey area is given by those boxes whose centers lie within the outer
circle of radius

√
2m− 5. The inner circle has radius

√
2m− 5 −

√
2 and is completely

contained in the grey area.

cells are at (x1, x2) = (2r − 1, 2s). Consider the area of all those unit cells for which the
corresponding center point (2r− 1, 2s) has the property that (2r− 1)2 + (2s)2 ≤ 2m− 5.
It follows from elementary geometry that this area is bigger than the area of the disk with
radius

√
2m− 5 −

√
2 (see figure D.1). Since each unit cell has area 4, it follows that

2m−1
4∑

ℓ=1

B (2m− 1 − 4ℓ) ≥ 1

4
π
(√

2m− 5 −
√

2
)2

=
π

2
m− π

√
m− 5

2
− 3

4
π . (D.1.6)

Thus it follows that eiπm/2L, which is positive, is bounded below by

eiπm/2L ≥ 4πm− 8π

√
m− 5

2
− 6π . (D.1.7)

D.1.2 Analysis of the constraint for m = 2 mod 4

In the case of m odd we saw that L only grew linearly. Since the original expression
contained exponentially growing function such as η−3, this means that there had to occur
cancellations. We will now show that for m = 2 mod 4 such cancellation do not occur,
i.e. that

L =

[
q−

m
4

+ 1
8
1 − q1/2

1 + q1/2

ϑ3

η3
(ϑ4

4 − ϑ4
2)

]

q0
(D.1.8)

grows exponentially with m. To this end, use (6.5.95) to write

[
q−

1
2
+ 1

8
(1 − q1/2)2

1 − q

(
−24

q∂qϑ3

η3
+
E2ϑ3

η3

)]

qN
, (D.1.9)
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where N = m/4 − 1/2. The following form of E2 will be useful:

E2(τ) = 1 − 24
∞∑

k=1

σ1(k)q
k , (D.1.10)

where σ1(k) is the divisor function.
Let us first consider the second term of (D.1.9). We will show that this is negative

and grows exponentially fast with N . We introduce the expansion coefficients of ϑ3/η
3,

ϑ3

η3
= q−1/8

∑

n≥0

(F1(n)qn + F2(n)qn+1/2) . (D.1.11)

From these we obtain the discrete derivative (1 − q1/2)2ϑ3/η
3,

q−
1
2
+ 1

8 (1 − q1/2)2ϑ3

η3
=
∑

n≥0

(
K(n)qn +K ′(n)qn−1/2

)
(D.1.12)

with K(n) = F2(n) − 2F1(n) + F2(n− 1), and, including E2,

q−
1
2
+ 1

8E2(1 − q1/2)2ϑ3

η3
=
∑

n≥0

(
K̂(n)qn + K̂ ′(n)qn−1/2

)
(D.1.13)

with

K̂(n) = K(n) − 24
n∑

s=1

σ(s)K(n− s) . (D.1.14)

Finally, the desired second term of (D.1.9) is
∑N K̂(n). It will therefore suffice to show

that K̂(n) grows exponentially and is negative for large n.
To examine the large n behavior we begin with the Rademacher expansions for F1(n)

and F2(n). These are summarized in appendix D.2 with the result that

F1(n) = (8n)−5/4eπ
√

2n

(
1 − 15 + π2

8
√

2π
n−1/2 +

105 + 10π2 + π4

256π2
n−1 + O(n−3/2)

)
,

F2(n) = (8n)−5/4eπ
√

2n

(
1 +

3 (π2 − 5)

8
√

2π
n−1/2 +

3 (35 − 10π2 + 3π4)

256π2
n−1 + O(n−3/2)

)
.

From this we compute the discrete derivative:

K(n) = π2(8n)−9/4eπ
√

2n(1 +O(n−1/2)) . (D.1.15)

Note the exponential growth with n. Now write

K̂(n) = K(n) − 24K(n− 1) − 24S (D.1.16)

with S :=
∑n

s=2 σ(s)K(n − s). It is straightforward to see that the sum S is positive
definite for large n: first note that because of (D.1.15) K(n) is negative for at most finitely
many n. Since K(n) grows exponentially and σ(s) only grows like σ(s) ∼ eγs ln ln s,
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where γ is the Euler-Mascheroni constant [119], it follows that the first terms of the sum
dominate the (potentially negative) terms at its tail. The first two terms on the RHS of

(D.1.16) clearly grow like −23π2(8n)−9/4eπ
√

2n, hence K̂(n) is negative and exponentially
growing for large n. Therefore the same is true for

∑N K̂(n).

In the analysis of the case m = 0 mod 4 below we will show that the first term of
(D.1.9) is negative, so that there can be no cancellations between the two. We thus
conclude that (D.1.9) grows exponentially.

D.1.3 Analysis of the constraint for m = 0 mod 4

Define

R1 =

[
2 q1/2 (1 − q1/2)4

(1 − q)3

ϑ3

η3

]

q
m
4 − 1

8

(D.1.17)

R2 =

[
(1 − q1/2)2

1 − q

q∂qϑ3

η3

]

q
m
4 − 1

8

. (D.1.18)

We shall show that for large enough m both R1 and R2 are positive. Consider first R2.
Note that the only negative coefficients that can appear are due to the factor (1− q1/2)2.
It will suffice to show that the coefficients

[
(1 − q1/2)2

(1 − q)3(1 − q2)3
q∂qϑ3

]

qN
(D.1.19)

are positive for N large enough. We have dropped the factor of (1 − q)−1 and included
only the first two factors of η3, which will turn out to be sufficient to ensure positivity.
Defining

1

(1 − q)3(1 − q2)3
=

∞∑

n=0

b(n)qn , (D.1.20)

it is straightforward to calculate

b(n) =

{
1

1920
(2 + n)(4 + n)(6 + n)(8 + n)(5 + 2n) n even

1
1920

(1 + n)(3 + n)(5 + n)(7 + n)(13 + 2n) n odd.
(D.1.21)

Note in particular that

b(n) =
n5

960
+

3n4

128
+

19n3

96
+ O(n2) . (D.1.22)

We now want to calculate the coefficients p(N) of

1

(1 − q)3(1 − q2)3
q∂qϑ3 =

∑

N∈ 1
2

N

p(N)qN . (D.1.23)
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We need to distinguish the cases N ∈ N and N ∈ N + 1
2
:

N ∈ N : p(N,K) =
K∑

s=0

b(N − 2s2) 4s2 (D.1.24)

N ∈ N +
1

2
: p(N,K) =

K∑

s=0

b(N − (2s+ 1)2/2) (2s+ 1)2 (D.1.25)

In principle, the upper bound K is given by the requirement that the argument of b be
non-negative, and its explicit expression will involve some floor function of a square root
of N . For the moment, we will leave K as an auxiliary integer parameter. One can then
evaluate the sums explicitly to obtain polynomials in both N and K, again distinguishing
the cases N odd and N even. As the resulting expressions are rather lengthy, we refrain
from writing them down explicitly. To determine the Nth coefficient of (D.1.19), we then
need to evaluate

p(N,K1) − 2p(N − 1/2, K2) + p(N − 1, K3) . (D.1.26)

In principle, we would now have to determine the exact values ofKi, which are complicated
step functions of N1/2. For our purposes however it is enough to know their leading

behavior. In particular, we know that Ki =
√

N
2
− ǫi, where 0 ≤ ǫi < 2, so that ǫi is of

order one. We then obtain for (D.1.26) the expression

N9/2

1890
√

2
+ O(N7/2) . (D.1.27)

Note that this holds for all N ∈ 1
2
N. (Hence, our estimates can also be applied to the

analysis of section D.1.2.) This shows that the leading term has a positive coefficient and
that it is independent of the ǫi, which only appear in the subleading terms. This then
shows that (D.1.19) has positive coefficients for N large enough.

Note that for low values of N the coefficients of (D.1.19) can still be negative. To
complete the argument, we thus have to show that after convolution with the remain-
ing factors in (D.1.18) the potentially negative coefficients for N < N0 cannot render
negative the coefficients at arbitrarily large N . To see this, note that it follows from
the Rademacher expansion that, for any set of positive integers a1, . . . , ak, the Fourier
coefficients of

(1 − q)a1(1 − q2)a2 · · · (1 − qk)akη−3 (D.1.28)

will have the asymptotic behavior ∼ npeπ
√

2n. For example in the appendix we show that
for the case of interest, (1 − q)3(1 − q2)3η−3 the leading asymptotics is given by

π6

8
√

2
n−9/2eπ

√
2n . (D.1.29)

We approximate the convolution sum as the integral

∫ N

ds s9/2(N − s)−9/2 eπ
√

2(N−s) . (D.1.30)
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The position of the saddle point of this integral grows as

s0 ∼ N1/2 . (D.1.31)

This means that for N large enough the contribution of the negative coefficients around
s ∼ 1 will be negligible, so that the total coefficient is positive.

Turning to R1, we need to consider

(1 − q)−3(1 − q2)−3(1 − q3)−3(1 − q4)−3 =
∞∑

n=0

b̃(n)qn . (D.1.32)

A straightforward, but somewhat tedious calculation then gives expressions similar to
(D.1.21) whose explicit forms depend on n mod 12. Again, the leading terms are inde-
pendent of this, so that we can write

b̃(n) =
n11

551809843200
+

n10

3344302080
+

29 n9

1337720832
+

5 n8

5505024
+

16949 n7

696729600
+ O(n6) .

(D.1.33)
We can now define p̃(N,K) analogously to (D.1.24), (D.1.25) and evaluate

p̃(N,K1)−4p̃(N −1/2, K2)+6p̃(N −1, K3)−4p̃(N −3/2, K4)+ p̃(N −2, K5) , (D.1.34)

which leads to
N15/2

1751349600
√

2
+ O(N13/2) . (D.1.35)

Since sums of terms of order n6 give contributions of at most N7, this also shows that it
was sufficient to consider (D.1.33) only up to n6. The coefficients of the truncated η−3

expansion grow as in (D.2.56), and the rest of the argument is then completely analogous
to the case of R2.

D.2 Rademacher expansions

The proofs in appendix D.1 require some asymptotic expansions for coefficients of some
modular forms. We collect these here.

First, we apply the expansion to the modular vector

f1(τ) =
1

2

ϑ3 + ϑ4

η3
= q−1/8

∞∑

n=0

F1(n)qn (D.2.36)

f2(τ) =
1

2

ϑ3 − ϑ4

η3
= q3/8

∞∑

n=0

F2(n)qn (D.2.37)

f3(τ) =
ϑ2

η3
=

∞∑

j=0

F3(n)qn . (D.2.38)
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We have weight w = −1, the representation is manifest for T , and for S it is computed
from

f1(−1/τ) = (−iτ)−1 1

2
(f1 + f2 + f3) (D.2.39)

f2(−1/τ) = (−iτ)−1 1

2
(f1 + f2 − f3) (D.2.40)

f3(−1/τ) = (−iτ)−1(f1 − f2) . (D.2.41)

(D.2.42)

We now have convergent expansions

F1(n) =
π

8
(n− 1/8)−1I2(4π

√
1

8
(n− 1

8
)) + O(e2π

√
n/8) (D.2.43)

F2(n) =
π

8
(n+ 3/8)−1I2(4π

√
1

8
(n+

3

8
)) + O(e2π

√
n/8) (D.2.44)

F3(n) =
π

8
(n)−1I2(4π

√
1

8
n) + O(e2π

√
n/8) . (D.2.45)

Now use

Iν(x) ∼
1√
2πx

ex
(

1 − 4ν2 − 1

8x
+

(4ν2 − 1)(4ν2 − 9)

128x2
+ · · ·

)
(D.2.46)

for x→ +∞ to get

F1(n) = (8n)−5/4e4π
√

n
8

(
1 − π2 + 15

8
√

2π

1

n1/2
+
π4 + 70π2 + 105

256π2

1

n
+ · · ·

)
(D.2.47)

F2(n) = (8n)−5/4e4π
√

n
8

(
1 +

3(π2 − 5)

8
√

2π

1

n1/2
+

3(3π4 − 70π2 + 35)

256π2

1

n
+ · · ·

)
. (D.2.48)

We also need the asymptotic expansion of functions that are obtained from η−3 by
dropping the first few factors in the product formula. Defining

η−3 = q−1/8
∑

n

p3(n)qn (D.2.49)

(with p3(n) = 0 for n < 0 ), we have the Rademacher formula

p3(n) = 2π(8n− 1)−5/4I3/2(π
√

2(n− 1/8)) + O(eπ
√
n/2) . (D.2.50)

Note that the Bessel function is elementary

I3/2(x) =
2√
2πx

(coshx− sinh x

x
) . (D.2.51)
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Define
(1 − q)3(1 − q2)3η−3 = q−1/8

∑

n

p̂3(n)qn , (D.2.52)

which is a kind of sixth-order discrete derivative:

p̂3(n) = p3(n) − 3p3(n− 1) + 8p3(n− 3)

− 6p3(n− 4) − 6p3(n− 5) + 8p3(n− 6) − 3p3(n− 8) + p3(n− 9) . (D.2.53)

Substituting the asymptotic expansion (D.2.50) one finds after some algebraic manipula-
tions

p̂3(n) =

(
π6

8
√

2
n−9/2 + O(n−5)

)
eπ

√
2n . (D.2.54)

Similarly, the coefficients

(1 − q)3(1 − q2)3(1 − q3)3(1 − q4)3η−3 = q−1/8
∑

n

p̃3(n)qn (D.2.55)

have leading asymptotics

p̃3(n) ∼
(

27π12

√
2
n−15/2 + O(n−8)

)
eπ

√
2n . (D.2.56)
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