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- 1. INTRODUCTION 
- 

e 

-. 

In this paper we present methods for studying transverse coupled-bunch insta- 

bilities, for the case in which the bunches are not necessarily spaced equally on the 

circumference of the ring, and in which the wakefields may be of quite general form. 

The major motivation for this work is the study of such instabilities in damping rings 

_ for a next-generation (- 1 TeV center of mass energy) linear collider.’ In order to 

maximize the luminosity and the energy efficiency, it is desirable to accelerate a train 

of bunches on each rf fill of the linacs, rather than just a single bunch. If this is to 

be feasible, then multibunch instabilities must be controlled in all subsystems of the 

_ collider; the transverse instability in the main linacs is potentially very severe and 

has been addressed elsewhere? It is envisioned that the damping rings of the collider 

will .._ __ - . contam several bunch trains at a time, to allow a higher repetition rate (where 

“repetition rate” denotes the number of rf fills per unit time). At a given time, the 

damping ring is to contain several such trains (- lo), each at a different stage of 

damping; on each rf fill, the “oldest” train gets extracted for acceleration to high 
- 

energy in the linac of the collider. 

The bunches within a train are rather closely spaced (typically l-2 rf wavelengths 

: -- at a damping ring rf frequency of 1.4 GHz); thus, the bunches toward the end of a 

train are strongly affected by the wakefields from the preceding bunches. While the 

trains themselves may be separated by many rf wavelengths, they can still affect each 

other through long-range wakefields, unless these wakefields are very heavily damped. 

Our formalism can also be used to study the coupled-bunch instabilities of ei- 

ther of the two oppositely-circulating beams in a storage ring. There are, of course, 

well-known methods for calculating the growth rates of the n normal modes of cou- 

pled oscillation of n symmetrically placed 3-5 bunches. Although the emphasis of 
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the present paper will be on damping rings containing bunches clumped into sev- 

- era1 trains, in the storage ring case there is also a motivation for using the present 
c 

-. 
formalism, since it is sometimes desirable to operate storage rings with gaps in the 

bunch pattern, for example, to counteract the build-up of ions. Using the techniques 

presented here, one may study the stability of various strategies for injection or ex- 

traction of intense trains of bunches from any ring, whether it be used for colliding 

- beams or for damping beams to be injected into a linear collider. Indeed, coupled 

bunch instabilities and their transient behavior are important considerations in the 

design of the new generation of heavy quark factories. Application of our formalism 

to such a case has been discussed elsewhere.! 

We present a semi-analytic, normal-modes approach, in which the bunches need 

not be symmetrically placed on the circumference. The focusing forces due to the ring .._ __ -- 

lattice are represented by a smooth focusing approximation. As the bunches circulate 

in the ring, they excite currents in components of the vacuum chamber, which can in 

turn produce fields that act back on the bunches. These forces can be expressed in 

- terms of a wakefield. The form of the wakefield can be quite arbitrary, for example, 

sums of resonant modes in rf cavities or other structures, and/or the resistive wall 

wake. The problem of finding the coherent frequencies and oscillation modes amounts 

to finding the eigenvalues and eigenvectors of a matrix; the elements of the matrix 

are derived analytically for the wakefields of interest. It is then straightforward to 

-- solve for the eigenvalues and eigenvectors numerically. The sign of the imaginary 

part of each eigenvalue determines the stability of the corresponding normal mode of 

oscillation. 

Even if there is sufficient damping present that all the normal modes of oscillation 

are stable, interference between modes can produce transient blow-up of the beam. 

This transient behavior can be important in damping rings since the storage times 
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are sh&. In addition, for sufficiently strong wakes and long trains of bunches, the 

- transient could be large enough to cause beam loss at injection. Thus, it is desirable 
c 

-. 
to be able to calculate the motion of each bunch as a function of time, given the 

initial conditions of all the bunches. We have developed two independent methods of 

studying this transient behavior: 

1. Given the coherent frequencies and normal modes, the Laplace transform can 

be used to obtain the motion of the bunches, taking the initial conditions into 

account. 

2. One may use a computer tracking method to obtain the offset of each bunch 

as a function of time. This is straightforward and computationally efficient 

. provided that the number of bunches is not too large and the wakefields do not 

~___ Ee-sist for too many turns. 

- 

The case of strongly damped wakefields is readily handled by the tracking method, 

since the wakes are negligible after few turns. Cases with long-range wakefields are 

most efficiently handled by the Laplace transform method. For a wide range of 

intermediate situations, both methods are applicable and give the same results. 

Note that in our analysis, we shall ignore any coupling between the two transverse 

: -- directions. This is reasonable since for the damping ring design of interest here, cou- 

pling of the vertical and horizontal directions is kept small in order to maintain a very 

flat beam. We also ignore coupling between the transverse and longitudinal direc- 

tions, which is justified since resonances can be avoided by choosing the synchrotron 

and betatron frequencies appropriately. 
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- 
2. EQUATIONS OF TRANSVERSE MOTION 

- 
e In this section we review some necessary definitions and obtain the equations 

-. governing the coherent transverse motion of the bunches circulating in a damping 

ring or other storage ring. By coherent motion we mean the motion of the centroid 

of each bunch; the equations of motion will be those of bunches each consisting of 

a single macroparticle. The internal “incoherent” motion of the particles making up 

the bunches is taken into account only when necessary, i.e. in the computation of the 

damping parameters that will appear in these equations of motion. 

We begin by considering a single particle moving in a focusing lattice. The equa- 

_ tion of motion for the transverse displacement z(s) of the particle is 
. 

5” + K(s)z(s) = 0 ) (24 

where K(s) represents the strength of the focusing lattice as a function of longitudinal 

coordinate s along the circumference. Here primes represent derivatives with respect 

- to s. Clearly K(s) is periodic in s, that is, 

IC(s + C) = K(s) ) (2.2) : .- 

where C is the circumference of the ring. Solutions to the homogeneous equation 

-- (2.1) may be written 

+> = PW2 cos[4(s) + $01 , P-3) 

where the Courant-Snyder beta junction ,8(s) satisfies7 

;PP1l - Jpq2 + K(s)p2 = 1 , 

5 

(24 



- 
z 

-. 

and thephase advance 4(s) f rom some reference point s = 0 is defined by 

0 

(2.5) 

The betatron tune of the ring is defined to be the total number of betatron oscillations 

around the ring: 

P-6) 

The transfer matrix relates the values of (x, z’) for a particle undergoing pure 

betatron motion, i.e., satisfying Eq. (2.1), b t e ween two points sr and s2 in the ring: 

(1;))) =M(:/o) * (2.7) 

Using Eq. (2.3), M is found to be 

M = 

( 

(jf)1/2(cos $12 + al sin $12) (PlP2)1/2 sin $12 

(ai-a2 cos&- l+cua2 sin&2 ’ 
(2.8) 

(P1P2)1’2 
(g)lj2(cos $12 - o2 sin $12) 

> 

Here pi - /?(s;), ai = o(si) where o(s) = -$p’(s), and ~$12 s Jsy & is the betatron 

phase shift between the two points. 

The quantity 

J+2+ (/?&$)“] (2.9) 

is readily shown to be is an invariant for the motion specified by Eq. (2.1), in the 

absence of synchrotron radiation. At any location on the circumference, 27rJ is equal 

to the area in the xx’ plane enclosed by the ellipse specified by Eq. (2.9), whose 

coordinates are all the possible values of (x,x’) reached by the particle on successive 

turns. The shape and orientation of the ellipse may change with location on the 

circumference, but its area is the same at all locations. 
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A b%nch consists of many such particles; we define the emittance of the bunch to 

- be 
c 

c= (J) , (2.10) 
-. 

i.e., the average of J over all the particles in the bunch. The normalized emittance 

ye, where y is the Lorentz factor 5, is often quoted instead of E, since it remains 

_ invariant even when acceleration is present. In referring to a bunch, the transverse 

offset x is of course the offset of the bunch centroid. We assume there are a total of 

n bunches in the ring, each consisting of N elementary charges e. 

We assume the bunches are fully relativistic. Thus, we may equally well use time 

t in place of s as the independent variable, that is, s = ct + so. We number the 

bunches from 1 to n, and denote the spacing between bunches i and j by L;j, taking 

Lij > 0 for i > j, and L;j = -Lj;. It is also convenient to introduce a new variable 

- 

S that .has a unique value between 0 and the circumference ~7’0, to make explicit the 

dependence of location on time for each -bunch: 

- 
Sj(t) = ct - Ljr - CTO . mod(ct - Ljl, CTO) . (2.11) 

Here mod(a, b) d enotes : .- the integer part of a/b. Note that we have chosen B = 0 for 

bunch 1 at t = 0, and that 

Lij 
Sj(t - C - aTO) = S;(t) . (2.12) 

for any integers i, j, and Q. 

As each bunch travels through the ring, it excites fields in various components of 

the vacuum chamber. These fields subsequently act back on other bunches that pass 

these components. Let us now include this coherent force on the right hand side of 
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Eq. (2.r). The dominant part of the coherent force affecting the transverse motion 

- can be conveniently expressed in terms of the offsets of the bunch centroids and a 
c 

899 transverse wake junction, using the standard transverse dipole wakefield formalism. 
-. 

The wake function Wl(z,Z) is essentially a Green’s function for the interaction be- 

tween two relativistic bunches via the surrounding vacuum chamber. It depends on 

z, the separation between the “exciting bunch” (which produces a disturbance at any 

- given location S) and the “spectator bunch” (which reaches s at the later time z/c). 

It also depends on the location s along the circumference, since the strength of the 

excitation differs in the various structures (cavities, vacuum chamber, bellows, etc.) 

present in the ring. The wake function is zero when the argument z is less than or 

equal to zero, by causality (since the bunches are assumed to be travelling at essen- 
. 

tially the speed of light). Th e t ransverse dipole wake force acting on a particle of 
_ _ _ _ - 

charge e in the spectator bunch is proportional both to the wake function and to the 

transverse offset that the exciting bunch had when it was at the present location of 

the spectator bunch. Including the effects of all bunches on all previous turns, the 

- coherent force (per unit mass) on bunch i due to the transverse dipole wake takes the 

form 

: -- 
F(t) = Lij + qTOC,zj(t - L;j/C - qTi))Xj(t - L;j/C - QTo) 

= F f: 2 Wl(L;j + qTOC,Z;(t))Xj(t - L;j/C - qT0) . 
j=lq=O 

(2.13) 

Note that W_L(Z,S) is the transverse dipole wake function per unit length, with units 

[V/(C m2)], and E 0 is the energy of a particle on the design orbit. 

Putting everything together and including an exponential damping term, we have 

for the equation of motion of bunch i: 
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i(t) + 2&;(t) + c2K(Si(t))z;(t) = 

- 
* -. F &-&v&j + qToc,S;(t))zj(t - L;Jc - qTo) (2.14) . 

j=l q=o 

The parameter 5 represents the contributions from all sources of coherent damping 

of the transverse motion. The computation of 5 requires consideration of the internal 

structure of the bunches, as will be discussed later. In the general formulation of 

Eq. (2.14), th e f ocusing function and the wake function both may depend upon loca- 

tion s in the ring. We shall make two further simplifying approximations, removing 

these dependences. 

First, we shall replace the beta function p(s) with a constant “average” betatron 

- function p. This is reasonable for the damping ring designs to be considered here, 

sinc.e t&.-actual ,8(s) d oes not depend too strongly on s. The p is chosen to keep the 

tune v the same as in the actual ring, so that 

c. - wpTo 
y=2?rp= 27r ’ (2.15) 

- 

thus, from the definition (2.6), l/p is actually the average around the ring of l//?(s). 

The betatron angular frequency is just wp = c/p, and K(Z) in Eq. (2.14) is replaced 
: -- 

bY (wp142* 

Second, although much of the long-range transverse wake force is localized to the 

. rf cavities (and any other high-Q structures), we may treat it as though an averaged 

force were distributed around the ring, provided that the effect of the transverse wake 

force on the betatron frequency is small enough. The criterion for obtaining the same 

result for a localized and a distributed force is that the coherent betatron tune shift 

due to the wake force be small compared to &, and that the betatron tune not be 

near an integer or half-integer resonance. In this case, the coherent tune shift is the 
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same fey a localized wake as it is for the equivalent distributed wake (see Appendix), 

- and thus the corresponding calculations of the coupled-bunch motion give the same 
c 

result. Thus, we shall make the replacement 
I. 

W&j + qToc,%(t)) - W&j + QTOC) 
CTO 7 

where 

W_L(z) = W&,3-)ds . 
f 

The units of W_L(Z) are [V/(C m)]. 

(2.16) 

(2.17) 

Thus, our “smoothed” equation of motion for bunch i is 

-. 2;(t) + 2&i;(t) + w$-G(t) = 

$$ p F W,(Lji + qToc) q(t - qTo - L;j/c) (‘.l*) . 
34 q=o 

As an aside, we note that if the betatron function were to vary strongly with location S, 

_ then this would not necessarily be a good approximation, since the effect of Wl(z,S) 
- 

will be enhanced when the local value of the beta function, /3(S), is large. 

Alternatively, we may go to the other extreme of a localized kick approximation, 

as will be discussed later in the section on tracking. Both formulations give the same 

result in the regime of interest here, where the change in betatron tune due to the 

wakefield is small. 

The set of all xi(t) g ives a “snapshot” of all the bunch positions at time t. Another 

convention that is sometimes useful is to interpret time t to have a different fixed offset 

for each bunch, such that each bunch passes some reference location (for instance, 

the injection point) at t = 0. In this case, one should take xj(t - qT0) in place of 

xj(t - qT0 - &j/c) in Eq. (2.18), in which case the time variable for bunch i runs 
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&r/c b%hind th e rme variable for bunch 1 - this is merely an incorporation of the t’ 

- difference in the spatial positions of the bunches into their time coordinates. 
c 

3. EXPLICIT FORMS OF THE WAKE FUNCTION 

Before proceeding further, we give in this section the explicit expressions for the 

transverse dipole wake functions W_L(Z) of important ring components (Refs. 5 and 

8). 

3.1. RESONANT STRUCTURE 

The transverse dipole wake function of a resonant structure may be written as a 

- sum of modes of the form: 

{ 
c ?7%%k ik,z -e 

K(4 = 
-iy (2 > 0) 

o 
(2 < 0) . 

(34 

where the W, are constants, and the k, are allowed to be complex to take damping of 

- the modes into account. Clearly, each mode is a damped sine. The wake function may 

be calculated numerically for resonant structures, using one of a number of existing 

computer codes, for example, URMEL lo or TRANSVRS. l1 
: -- 

Note that since the bunches have a finite length, there is a cutoff for wakefield 

modes of sufficiently high frequency. For Gaussian bunches of rms length err, the 

cutoff factor is eekku2; we assume such factors are absorbed into the coefficients W,. 
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3.2. RESISTIVE WALL 
- 

r The transverse dipole resistive wall wake function may be written12 

-. 
W&z) = 3 c ( > 

112 

47rGyY 
z-w (3.2) 

This is a wake per unit length, multiplied by the total length L, of the resistive wall. 

Here b is the radius to the resistive wall, cr is the conductivity of the wall, and co is the 

permittivity of free space. This expression for the resistive wall wake is valid except 

for very small and very large z, and suffices for our purposes. For z + 0, Wl(z) t 0. 

4. NORMAL MODES SOLUTIONS . 

IX?us look for solutions to the equations of motion (2.18) in the form of normal 

modes: - 

xc;(t) =-u;cint . (4-l) 
Here the ai are constants, and 0 is the coherent frequency of the mode. Then, upon 

substituting into (2.18), the equations for the a;‘s are obtained: 

: -- 
(!-I2 + ai@-l - w;,ui + &(-in)uj = 0 ) 

j=l 

-- where we define 

x/(s) E Ne2ce 
EoTo -““” ~ W_C(QTOC + L;j)e-‘TDS . 

q=o 

(4.2) 

(4.3) 

Let us substitute a transverse wake function for a resonant structure, of the form 

(3.1). To ensure convergence of the sums over Q we may assume a small positive real 
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- 
f 

part to<; the solution may then be extended by analytic continuation. The result is 

i,ikmLi, i,-ikkLij 

1 _ &ik,c-s)To - 1 _ ,o(-ik$c-s)To 1 -. 
(i>.i> , 

-SLij/C 
ieik,Lije(ik,c-s)To i,-ikhLi, e(-ik&c-s)To 

1 _ ,o(ikmc--s)To - 1 _ e(-ik&c-s)To 1 
(i 5.i) . 

(4.4) 
Alternatively, substituting the expression (3.2) f or a resistive wall wake, we would 

obtain: 

112 cm 
e-SLij/C 

C( 
qToc + L;j)-1/2e-qTos . (4.5) 

_ _ _ _ q={ ;: i;; 

Note that although the sum over q in Eq. (4.5) d oes not converge absolutely, it does 

converge for s = -iwp, which is all that we shall need. The resistive wall contribution 

(4.5) should f o course be added to the resonant-cavity J&(S) given by (4.4), if both 
- 

types of wakefield are significant. 

Note that if we use the convention with t = 0 for all bunches at a fixed spatial 

: -- reference point, so that zj(t - qTo) is used in place of zj(t -qTo - L;j/c) in Eq. (2.18), 

then the factor e- sLijlc does not appear in the expressions for X$(S). 

Eq. (4.2) involves a sum over bunches j and, via ~6, over turns q. The term with 

i = j and q = 0 comes from the local effect of the ith bunch’s wake on itself. We 

are justified in dropping this term since the transverse wake function W_L(Z) + 0 as 

z + 0; this is reflected in the above expressions for ~6. 

If the coherent force terms are small compared to the external focusing forces, 

then we expect IR 1 t o b e close to the unperturbed betatron frequency wp. Then in 
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Eq. (4.3, it is convenient to approximate: 

- 

5. 
R2+2i(R-w$z 2wp(n-wp+iC) . (4.6) 

-. 

We also replace x6( -in) by x6( -iwp) in Eq. (4.2). These are excellent approxima- 

tions in the cases of interest to us. Then we can obtain a set of n coherent frequencies 

_ R, each with corresponding eigenvector 5, by solving the linear eigenvalue problem 

Mii=Ra’ , (4-V 

where the elements of the matrix M are given by 

. 

Mq = (wp - i()S;j - 
x$(-iwp) 

2w , 
P 

(4.8) 

and a’is the vector (al, . . . . a,). 

The imaginary part of the coherent. frequency, Im(R), gives the growth rate (if 

- ~positive) or damping rate (if negative) of the corresponding mode of coherent oscilla- 

tion, that is to say, l/IIm(fi)l is just th e c aracteristic e-folding time. The components h 

of the corresponding eigenvector are of course complex, and give the relative phase 
: -- 

and amplitude of each bunch in that oscillation mode. 
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5. DAMPING MECHANISMS 

z The purpose of a damping ring is to reduce the transverse emittance of the bunches 

-. of electrons or positrons circulating in it. This occurs as each particle in a bunch emits 

synchrotron photons essentially along its direction of motion (which has a small trans- 

verse betatron component), and then regains the lost energy via purely longitudinal 

acceleration by the rf system. This is an incoherent process - each particle gains 

and loses energy independently of what the other particles are doing. 

It can be shown under quite general assumptions that the longitudinal and trans- 

verse oscillations of an individual particle in a bunch are exponentially damped by 
13 

_ synchrotron radiation, with damping time constants given by 

. 

2EoTo _ _ _ _ - 
ri=JicTo , (5.1) 

and where the damping partition numbers J; satisfy 
14 

J, + Jy + J, = 4 . (54 

Here Us is the radiation loss per orbital period To, and Eo is the energy, for a particle 

on the design orbit. In the damping ring designs that we shall consider, the damping 

times are a few milliseconds. Radiation damping does not result in arbitrarily small 

emittances in either the longitudinal or transverse direction, since the radiation is 

emitted as discrete photons. Ultimately, the equilibrium emittance is determined by 

the interaction between the radiation damping and the “quantum excitation” due to 

the discrete nature of the photon emission. 

However, the bunches cannot be injected exactly onto the equilibrium orbit, and 

thus each bunch also starts out with a small coherent betatron oscillation. It is of 
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course &is coherent bunch motion that we are really concerned with here, and which 

- -we have approximated as the dipole oscillations of a rigid bunch. The transverse offset 
T: 

of a bunch induces a transverse wakefield, which can further excite the coherent 

betatron motion of trailing bunches. However, there are some additional damping 

mechanisms that can play an important role in counteracting this wakefield excitation. 

One such mechanism is “Landau damping”, which occurs when there is a spread in 

- the oscillation frequencies of different particles in a bunch. Thus, even if a bunch starts 

out with a coherent oscillation as shown in Figure l(a), after awhile the individual 

oscillations lose coherence. If the particles have spread out in phase space as shown 

in Figure l(b), th ere is no longer any coherent oscillation, but the effective emittance 

-is blown up. However, synchrotron radiation eventually reduces the emittance as 

shown in Figure l(c). Ob viously, this particular figure is drawn assuming that the ~.._ __ _- 

decoherence time scale is much faster than the synchrotron damping time scale. Also, 

note that the size of the coherent offset has been exaggerated in the figure for clarity; 

in reality it would be closer to the bunch size. 

The usual criterion for Landau damping to be effective at stopping an instability 

with coherent frequency R is 
15 

: .- 
IO---wl<Aw , (5.3) 

where w is the unperturbed oscillation frequency (betatron in the present case), and 

Aw is the incoherent frequency spread within the bunch. In other words, the spread 

in frequencies Aw gives a threshold for the coherent frequency shifts, below which 

Landau damping can be expected to wash out the exponential growth of an unstable 

coherent oscillation. 

One source of such an incoherent frequency spread, and thus Landau damping, is 
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the am$tude dependence of the betatron tune of individual particles in the bunch. 

- This is most significant right after injection, when it could be quite large. 
% 

-. There is also a tune spread due to space charge.16 For a bunched beam, this tune 

spread may be written 

1 pr,NcTo F 
Au = p43/2 y3,z,2 * (5.4) 

Here r, E e2/mc2 M 2.82 x 10-15m, p is the average horizonal or vertical beta function 

- in the ring, and gZ is the bunch length. For a round bunch, a is the bunch radius 

_ and the form factor F is equal to 1. For a flat bunch (R >> 1, where R is the ratio of 

the bunch width to the bunch height), we take a to be the horizontal bunch width, 

in whiZcase F N 2 horizontally and F - 2R vertically.” Other symbols are as 

previously defined. In the damping ring design example to be considered here, the 

bunch starts out round and ends up with a final aspect ratio R N 10. The tune spread 

given by Eq. (5.4) may b e si ni g fi cant at or soon after injection. For a - 100 pm and 

F - 1, taking other parameters from those in Table 1, we obtain Au - 0.0006. With 

this value of tune spread, the bunch would decohere completely as in Fig. l(b), after 

: -- about 2000 turns. This is only a small fraction of the more than 50000 turns that a 

bunch spends in the ring. 

Thus, one possibility is that there is strong Landau damping of the coherent 

betatron oscillation soon after injection, if the tune spread is large enough. However, 

there is another mechanism which may both preserve the coherence of the bunch 

yet damp the coherent oscillation. This is the head-tail effect:’ which is a result of 

the circulation of particles between the head and tail of the bunch as they undergo 

synchrotron oscillations. The damping (or anti-damping) rate is proportional to the 
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c 

-- 

magn itude of the chromaticity f, def ined by 

(5.5) 

Here SV is the change in tune due to the deviation Ap from the design-orbit momen-  

tum po; the last equality follows from the assumption that the particles are highly 

relativistic. For positive chromaticity there is damp ing, and  for negative chromaticity 

there is anti-damping; for this and other reasons, the focusing lattice will be  designed 

to give positive chromaticity. The  damp ing rate can be  calculated from the short 
18-20 

- range wakefield, given the impedance of the vacuum chamber.  For our damp ing 

_  ring design example, and  using a  simple broad-band impedance mode l, one  obtains 

a- coherent head tail damp ing rate more than ten times faster than the synchrotron 

dam$ng~rates, for a  typical (- 1) value of the chromaticity. 

The  two regimes of 1) large tune spread with rapid decoherence via Landau damp-  

ing, and  2) coherent head-tail damp ing, have been observed experimentally in existing 

21  storage rings. W h ich mechanisms dominate in future damp ing rings will depend on  
- 

their detailed design. Here we shall use the coherent head-  tail damp ing as an  estimate 

of the damp ing parameter < that one  m ight expect. Note that the coherent head tail 

: _- damp ing is exponential. Landau damp ing, if important, may lead to much faster (and 

non-expontial) damp ing of an  injected coherent betatron oscillation. 

18 
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- 
6. LAPLACE TRANSFORM SOLUTION 

- 

5. We turn now to the discussion of the methods for obtaining the motion of the 

I .  
bunches as a function of time (or number of turns through the ring). This enables us 

to study the transient behavior, which is of particular interest in damping rings. In 

this section we discuss the first such method, namely the use of the Laplace transform. 

Defining 
00 

z&(s) G 
J 

emstsi(t)dt , (6.1) 

0 

performing the Laplace transform on Eq. (2.18), and rearranging terms we obtain 

n 
. 

CL 
(s2 + 25s + W$Sij - x6(s) Fj(S) = (s + 2+(o) + i;(O) . ~.._ __ _- j=l 1 (6.2) 

Let us define A;j(s) to be the quantity in square brackets divided by 2wp. The 

roots of det A = 0 are easily seen to be s = iflk, where the Rk’S are the coherent 

frequencies obtained in the normal modes analysis. Here we assume, consistent with 

that analysis, that the roots -ifltl, are near -iwp, so that 

2wpAij M [-2iwp(s + iwp) - 2iwp<]Sij - x$(-iwp) , (6.3) 

from which, as one would expect, we get 

Aij( -iR) = Mij - R&j . (6.4) 

Solving Eq. (6.2) t o obtain the ZZi yields 

Zi(S) = - ’ 2 *[(S + 2<)Xj(O) + ij(O)] 
2wp j=l det A 

. (6.5) 
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c 

Here cJT(s) is the jith cofactor of the matrix A, that is, for det A f 0, 

(cji/ det A) = (A-‘)ij . 
-. 

Taking the inverse Laplace transform we obtain 

Xi(t) = & est n Cji(S)[(s + X)zj(O) + kj(O>l 
Jc j=l 2q3( -4” nZ=l<s + iok) ’ 
c 

(6.6) 

(6.7) 

where the contour C is parallel to the imaginary axis and to the right of all the 

poles. Closing the contour to the left and applying the residue theorem, we obtain 

the solutions for the offsets as a function of time: 

n Cy=l cji(-Q)[(-ifh + 2C)zj(0) + ij(0)l -iRlt 
-_- xi(f) = C (-2iWp) nt=l (-a[ + RI,) e + (6.8) 

I=1 k#l 

This can be evaluated numerically once we have obtained the coherent frequencies 

Q as discussed earlier. This solution is valid provided that all n of the coherent 

-frequencies are different from each other, as is normally the case. If all the wakefields 

were very strongly damped, then some of the Ri’s could become nearly degenerate. 

In this event, there will be problems attempting to solve Eq. (6.8) numerically. In 

practice, even if the cavity wakes are strongly damped, the resistive wall wake is 

strong enough to prevent this degeneracy. Obviously, if there is a true degeneracy in 

the problem, then Eq. (6.8) must be modified appropriately. 
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- 
7. TRACKING 

- 
c An alternate method of obtaining the individual bunch offsets as a function of 

turn number is to use tracking. This method is useful when studying rings in which -. 

the cavity transverse wakefield is strongly damped. 

In our tracking simulation, the force due to the wakefield is represented by a 

localized kick at one point in the ring. As was shown in Appendix A, this is justified 

even if the wake force is actually distributed around the ring, provided that the 

coherent tune shift due to the wake is much less than &. Then the wakes due to 

rf cavities at more than one location and/or the resistive wall wake can be lumped 

together into a kick at a single point. 

-. We look at the offset and slope of each bunch at the rf cavity. The motion of 

a bunch-on a given turn is divided into two parts, the first part being a mapping 

around the ring, in accordance with Eq. (2.8), f rom just after the kick point all the 

way around the ring to where the bunch is about to get kicked again (for simplicity 

we assume p’ = 0 at the kick point): 

(:I) ---+e-cTo (-?, t:“) (;;) * (74 

: -- Primes denote derivatives with respect to longitudinal distance, and p is the coherent 

betatron phase advance around the ring. Recall that To is the orbital period, and 5 

is the coherent damping parameter. 

The present turn through the ring is completed by the localized kick: 

Xi --) Xi 

xi + xi + gqfJeWl(Lij+qC)Xj,q 9 
q=O j=l 

(7.2) 

Passing through the kick point changes the slope, but not the offset of the bunch. 
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Here xTq denotes the offset at the kick point of the jth bunch q turns ago (note that 

- q = 0 is just the present turn). 
c 

The value of qmaz must be large enough that the wakefields are negligible after 
-. 

qmaz turns; therefore this method is less practical than the Laplace transform method 

when there are many bunches and very long-range wakes. 

8. COMPARISON OF LAPLACE TRANSFORM 

AND TRACKING METHODS 

For n = 100 bunches, the tracking method is slow, especially if one needs to 

- keep track of wakefield effects persisting for more than a turn. Generally we do want 

to. keep track of wakes from preceding turns, since even if we strongly damp all the 

transverse modes in the rf cavities, there is still a resistive wall wake that only falls 

off .as z-l12. 

However, the computation of the coherent frequencies and eigenmodes by the 

formalism presented here takes relatively little time for 100 bunches. The results 

of this computation may then be used to compute the offset of any of the bunches 

as a function of turns through the ring, using a program implementing the Laplace 
: -- 

transform method discussed earlier. The plots of bunch offset versus turns obtained 

using the Laplace transform method are indistinguishable from those obtained using 

the tracking method. 

For some purposes, a knowledge of the maximum growth rates to be expected is 

all that is needed. However it is possible to have transient blow-up due to interference, 

even when the imaginary parts of all coherent frequencies are negative (illustrations 

of this behavior will be seen later in some of the examples). In designing a damping 

ring, it is essential to have a large enough aperture to accomodate such transients, 
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or, be&r still, reduce the wakefields (and/or increase the coherent damping) so that 

- transient blow-up is eliminated. 
5. 

Note that there is also another type of transient behavior due to the fact that 

trains are being injected or extracted one at a time, while the other trains in the ring 

are at various intermediate stages of damping. Although the cavity wakefields may 

be strongly damped, there can still be a small but significant coupling between trains 

- due to the resistive wall wakefield. This means that the effect on a train due to the 

injection and extraction of other trains must be taken into account. Using either the 

tracking method or the Laplace transform method, one may study the details of this 

behavior. 

9. DAMPING RING PARAMETERS 

In the remainder of this paper, we give examples of the application of our methods 

to the study of a damping ring design with ten trains of ten bunches each. Parameters 

for a such a damping ring, suitable for a next-generation linear collider 
22,23 are given 

in Table 1. This design utilizes wigglers to reduce the damping times. 

9.1. THE RF SYSTEM 

We shall use two examples of rf cavity design. First we shall consider a typical 

cavity with nose cones, namely the PEP cavity scaled to the desired rf frequency of 

about 1.4 GHz. We shall assume that the parasitic modes are damped by conventional 

means to Q values of about 500. In the following discussions, we shall refer to this 

cavity design as the “conventional cavity”. 

Next we shall consider a newer type of cavity design, that strongly damps the 
24-26 

parasitic modes by means of slots coupled to radial waveguides. Our particular 
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exampie is a pillbox cavity with a relatively large ratio of iris radius to rf wavelength 

- wb, M 0.2); the cavity is assumed to have very low Q’s (see below) obtained by 
c 

-. 
means of such damping slots. We shall refer to this design as the “damped cavity”. 

More detailed information on the modes for each cavity is given in Appendix B. 

The voltage cg specified for the rf system is 0.75 MeV (Refs. 22 and 23). The 

number Nce.ls of rf cells required is given by 

3 = NceusLcc& , (94 

A A 
where V is the peak cavity voltage, Lcell is the length of a cell and &z is the average 

accelerating field experienced by a relativistic particle as it traverses the structure (on 

the crest of the rf wave). For normal rf, & should not be more than about 1 MeV/m, 

in which case the required number of rf cells is Ncells M 10. This is the number of 

cells we shall assume in our examples; however, note that if it were necessary to have 

more voltage or fewer cells, one could use a superconducting rf system (or normal 

rf with superconducting cavity shape), which could sustain a much higher gradient. 

This could considerably reduce the required number of cells and hence the transverse 

wakefield of the rf system. 

: -- 
Note that the coupled-bunch growth rates due to the rf system can be scaled 

by multiplying those for a single cell by the total number of cells, so long as we 

are assuming strongly damped transverse wake modes. Cavity-to-cavity frequency 

spreads, which would effectively broaden the cavity resonances for high-Q modes, are 

irrelevant here since the higher-order resonances are already broadened due to the 

strong damping. 
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9.2. SMOOTH FOCUSING FUNCTION 

c 
For our purposes, we represent the focusing lattice by a constant average beta 

function. Taking the value of betatron tune for the y-direction, vY = 11.27, and ring 

circumference C = 155.1 m from Table 1, we obtain p = 2.2 m, which is the value 

that we shall use in our examples. The average focusing is about twice as strong in 

_ the x-direction. 

9.3. EMITTANCE AND INJECTION REQUIREMENTS 

The normalized emittance ye; of the injected positron beam is about 3 mmrad in 

- both the x and y directions, and the normalized emittance of the injected electron 

beam-is-.about an order of magnitude smaller. The required normalized emittances 

upon extraction from the damping rings are yeZ = 3.0 pmrad and ye, = 30 nmrad. 

The damping rings are designed to be able to handle the worst case, namely the 

positrons. 
- 

The transverse rms sizes oZ = m and CT~ = && of an injected positron 

bunch are thus about 0.6 mm (taking the beta function to be 2.2 m). To avoid signif- 

: -- icantly diluting the positron emittance via initial decoherence of the beam particles, 

the beams must be injected to within less than a positron beam size of the axis; it 

is expected that they can easily be injected to within less than 0.1 mm. Given that 

the electrons are injected to within a similar absolute tolerance, they will also have 

sufficient time to damp even if they should suffer some dilution, since their emittance 

is much smaller to begin with. 

Assuming the above design emittances, the transverse rms dimensions at extrac- 

tion are gZ M 40 pm and gY M 4 pm. The amplitude of the coherent betatron 
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oscillat?& of a bunch is 

i = [x2 + (px’)2]112 = [x2 + (+a)2]112 . (9.2) 

This amplitude at the time of extraction from the damping ring needs to be much 

smaller than the vertical bunch size cry M 4 pm, to avoid position jitter downstream. 

9.4. INITIAL CONDITIONS 

We assume that the bunches in a train each have the same offset, x0, at the time 

when the train is injected into the damping ring. As already noted, only one train at 

a time is to be injected or extracted from a damping ring containing multiple bunch 

trains, so each bunch train will be at a different stage of damping, depending on how 

long it has been in the ring. For simplicity in the simulation, all the bunches in all 

trains are started out with the offset x0, and enough injection and extraction cycles 

are performed so that transients from this artificial initial condition have died away. 

It is assumed that a given train is extracted and replaced with a new train of offset 

x0; the order of replacement of trains is assumed to be in the direction of motion of 

the bunches, so that a train that is about to be extracted is not disturbed by injecting 

: -- a new train of offset x0 (and thus larger wakefields) right in front of it. 

Since the equations of motion are linear, we do not yet specify the actual size of 

the offset; the simulation results may be expressed in terms of x/x0. 

9.5. THE VACUUM CHAMBER 

For our calculations, we shall assume the vacuum chamber outside the rf cavities 

to be a smooth metal pipe of constant radius b. The larger b is, the weaker the 

wakefields will be; note from Eq. (3.2) that the dependence of the transverse wakefield 
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on b is-quite pronounced (- bm3). H owever, smaller b is less expensive, and we would 

- like to keep the radius b to about a centimeter. 
T 

-. 
The resistive wall wakefield also scales as o--1/2, where Q is the conductivity of 

the wall. The conductivities of materials one might consider using for the wall are: 

copper, about 5.9 x 10’ mho/m, aluminum slightly less (2.5 x 10’ n&o/m), and 

stainless steel more than an order of magnitude less (1.4 x lo6 mho/m). 

We have calculated the coherent frequencies of the 100 modes of transverse oscil- 

lation of 100 bunches, using the parameters in Table 1 and assuming only a resistive 

wall wakefield. Using the conductivity of copper and radius 1 cm, the largest growth 

rate among the 100 modes is about 430 set -l. We can scale with conductivity and 

- wall radius to obtain the characteristic growth times due to any resistive wall of the 

same length. Thus we obtain 

T m (2.3 msec) 
(~)1’2(i&)3 * (9.3) 

We see that the contribution of the transverse resistive wall wake can be significant, 
- 

even for the relatively favorable case of copper. 

_ .- 10. RESULTS FOR CONVENTIONAL CAVITY 

In this section we discuss results on the transverse coupled-bunch instability, 

assuming an rf system utilizing the conventional cavity design with Q = 500. Ring 

parameters are as given in Table 1. We begin by considering a single train of ten 

bunches injected into the ring. For comparison, we first show in Fig. 2 plots of the 

transverse offset vs. turn number, for the first and last bunch in the train, with 

no resistive wall wake included. The coherent damping assumed is 5 = 900 set-‘, 

i.e., a characteristic coherent damping time l/c z 1 msec. We see that there is a 
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transient blow-up of about a factor of four, in the last bunch in the train, even though 

- it is long-term stable (the imaginary part of each of the ten coherent frequencies is 
5. 

negative). 
-1 

In Fig. 3, we include the resistive wall wake due to a copper vacuum pipe with a 

1 cm radius; other than this, all parameters are the same as in Fig. 2. The transient 

blow-up of the last bunch has increased to about 6.5, and there is some noticeable 

blow-up of the first bunch in the train since it is now feeling the transverse resistive 

wall wake left by previous passages of the bunch train. 

If we try to put ten such bunch trains into the ring, then even the long term 

stability is lost - all the bunches have blown up completely before 10000 turns. The 

- coherent damping parameter is expected to be larger than the value we have used in 

thisexample, but it would still be wise to reduce the size of the wakefields in order to 

strongly attenuate the coupling between bunch trains. Although we will still have the 

long-range resistive wall wake to contend with, we can virtually eliminate the cavity 

contribution to the long-range wake by using damped cavities. Thus we turn to the 
- - use of this cavity design in our remaining examples. 

-. ._ 11. RESULTS FOR MODE-DAMPED CAVITY 

For the examples in this section, we shall assume an rf system consisting of 

damped acceleration cavities (Refs. 24, 25, and 26). Calculation of the Q’s of the 

transverse modes in such cavities shows that they can be very low. We shall take a 

conservative value Q = 30 for all these modes, although at least some of them may be 

” significantly lower. Ten resonant cavity dipole modes were included, of which the 

first (lowest frequency) is strongly dominant because of the large iris. The transverse 

growth and damping rates will be sensitive to the frequency of this dominant mode. 
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Even though its frequency could be tuned to a more favorable value, we choose the 

- somewhat pessimistic situation in which the wakefield is near a peak of its oscillation 
f 

at one bunch spacing. With Q = 30, there is about 0.13 e-folding of the fundamental 
-: 

transverse mode between adjacent bunches within a train, and nearly 10 e-foldings 

between bunch trains (and more e-foldings for the higher-order modes). There is still, 

however, the resistive wall wake producing some coupling between bunch trains. 

At a repetition rate of 360 Hz, there are 5369 turns between successive injections 

and extractions. Thus each of the ten trains spends a total of 53690 turns in the ring. 

_ For computational convenience, the bunches are all started out with the same offset 

~0, and we shall show the results beginning after all bunch trains have been extracted 

- and replaced at least once. 

In our first example using this cavity we use the same coherent damping as was 

used in the conventional cavity examples just discussed, namely 5 = 900 set-‘. Thus 

the characteristic damping time in this example, l/S = 1 msec, is roughly four times 

faster than the synchrotron radiation damping times (see Table 1). Fig. 4(a) shows 

the first bunch and Fig. 4(b) the last b unch in a train, where there are a total of 

ten such trains. Fig. 4(c) and Fig. 4(d) are the same as Fig. 4(a) and Fig. 4(b) 

z .- respectively, except for an expanded vertical scale to show the size of the offsets after 

damping. In Fig. 5, the coherent damping has been increased to about ten times the 

synchrotron radiation damping rate, that is, [ = 2500 set-‘. 

In both of these cases, there is long-term stability, however we must examine 

whether the coherent betatron oscillation at extraction is small enough compared 

to the extracted beam size. For 5 = 900 set-‘, the coherent betatron oscillation 

amplitude calculated from Eq. (9.2) is approximately 2 x 10B2 (dimensionless) at 

extraction, for the bunch in the train which has the largest offset; that is, the ratio of 
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the fir&coherent oscillation amplitude to the initial offset is about 2 ~10~~. Assuming 

- that the initial offset is about 0.1 mm, the final coherent oscillation amplitude of the 
i 

extracted bunches may be as large as 2 pm. This is comparable to the vertical beam 
-: 

size gy and thus too large to be acceptable. 

For 5 = 2500 set-‘, the largest coherent betatron oscillation amplitude at ex- 

traction is about 0.02 pm, again assuming an initial amplitude of 0.1 mm. This 

gives an acceptable result since it is much less than the vertical extracted beam size 

gY = 2 pm. As noted earlier, the contribution of coherent head-tail damping to the 

value of 5 was calculated to be at least as large as the value used in this example. 

. 12. CONCLUSIONS 

Wehive presented a formalism for calculating the growth and damping rates of 

the normal modes of transverse coupled-bunch oscillation, suitable for a very general 

form of the transverse dipole wakefield and arbitrary placement of the bunches. Two 

methods of obtaining the “time-domain” behavior (transverse offsets of the bunches 

versus turns in the ring) were also given, one utilizing the results of the normal 

modes formalism and one a simple (but in some cases, much more computationally 

-. ._ expensive) tracking. Examples of applications to the study of the damping rings of 

future linear colliders were discussed. It is found that with the expected amount 

of coherent damping and with an rf system based on mode-damped cavities, the 

instability is adequately controlled. 
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- 
APPENDIX A 

- 
c We wish to show that the coherent tune shift SV due to the wakefield is the same 

.-. whether we represent the wake by a localized kick or by an equivalent distributed 

force, provided that 27rSv < 1. 

We write the tune as u = ~0 + SV, where ~0 is the tune due to the lattice beta 

function. As in the main body of the paper, we replace the alternating gradient 

focusing lattice by an average beta function /3 that is a constant all around the ring, 

so that vo = C/(27r,B), h w ere C is the ring circumference. First, note that SV would 

not be small if the ring were running near an integer or half-integer resonance, i.e., if 

sin 277-14 is near zero; clearly we must assume the ring is away from such resonances. 

-. For simplicity, we consider the case of a single bunch, for the two extremes of a 

delta function wake and the equivalent constant wake distributed over the entire ring 

circumference. The equation of motion for the transverse offset IC, for the case of the 

distributed wake, is of the form: 

2” + -x + UlX = 0 
i 

) 

where al is a constant representing the effective force due to the wake. The equivalent 
: -- 

equation of motion for a delta-function kick is 

x” + ‘x + U~S(S)X = 0 
P2 

) 

where a2 = alC. 

The tune v for the distributed wake case is given by 

( > w 
27ru = L$Ul c . 

P2 

(A.3 

(A-3) 
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Using C = 27rvo,B, this becomes 

- 
i 

u = 2% + 6u = uo( 1 + p%#2 . 

Provided that SV << ~0, we can expand the square root to obtain 

yoP2u1 @Cal pcL2 SUM-=-=--. 
2 4lr 4?r 

(A-4) 

(A4 

The tune for the delta-function wake case (A.2) is related to the trace of the 

corresponding transfer matrix as follows: 

[( cos(2~~0) /? sin(27rvo) 
. cos(2nv) = :Tr 

-$ sin(27rvo) cos(27Wo) ) ( -L2 e)] * CA4 

This yields 
- 

cos( 27rVl-J) cos( 27&V) - a2P sin(27rvs) sin(2nSv) = cos(27rv0) - - 2 sin(27rvs) . (A-7) 

- -- 

For 27rSv << 1, this becomes 

Pa2 6u M - 
47r ’ (A4 

which is the same as the distributed wake case (A.5). 

Typically vo is considerably larger than $, so the more stringent of the assump- 

tions made is that SV << & (as noted already, a necessary condition is that the ring 

be sufficiently far from resonances). Given that this holds, we have shown that it 

doesn’t matter whether the wake force is lumped or distributed; the resulting tune 

shift is the same in either case. 
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APPENDIX B 

5. The coefficients W, in Eq. (3.1) may be expressed in terms of the transverse loss 

-- factors K,, the spatial frequencies k,, and the iris radius a, as follows (see Ref. 8): 

wm=g . 
m  

P.1) 

where the transverse loss factors are evaluated at the iris radius. For the conventional 

cavity, a = 1.25 cm, and for the damped cavity a = 4.16 cm. 

The loss factor has units [V/C], and is related to the transverse shunt impedance 

R of the mode by 

wR . 
K=z G * 0 

P-2) 

(Caution: If the “circuit definition” rather than the “accelerator definition” is used 

for the shunt impedance R, then the factor l/4 on the right hand side of Eq. (B.2) 

becomes l/2.) 

The frequencies and loss factors for the transverse dipole modes of these cavities 

are shown in Table 2 for the conventional cavity, and in Table 3 for the damped 

cavity. As noted previously, the Q’s of the conventional cavity are all assumed to be 

damped by conventional means to a value of 500, while the Q’s of the damped cavity 

are assumed to be 30, although they could in reality be much lower. 
l 

In both cases, there are assumed to be a total of 10 rf cells. 
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- TABLE CAPTIONS 

T: 1: Damping ring parameters for examples given in text. 

.-. 2: Frequencies and loss factors of the the transverse dipole modes for the conven- 

tional cavity. 

3: Frequencies and loss factors of the the transverse dipole modes for the damped 

cavity. 

- 
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Number of bunch trains 10 

Number of bunches per train 10 

lumber of particles per bunch, N 2 x 1010 

Particle energy, Eo 1.8 GeV 

Damping ring circumference 155.1 m 

rf frequency 1.428 GHz 

Bunch spacing within a train 1 X,f M 21.0 cm 

Horizontal betatron tune 24.37 

Vertical betatron tune 11.27 

tiomentum compaction factor, o 1.2 x 10-3 

Peak rf generator voltage, cg 0.75 MeV 

Horizontal synchrotron 

damping time, rZ 2.50 msec 

Vertical synchrotron 

damping time, rY 3.98 msec 

Longitudinal synchrotron 

damping time, rC 2.82 msec 

Synchrotron radiation loss 

per turn, Uo 468 KeV 

Bunch length, CT~ 4.6 mm 

Fractional energy spread, CY~ 0.00104 

Repetition rate 360 Hz 
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5. 

-. 

- 

prequency f (GHz) Loss factor K (V/PC) 

2.022669 0.0056 

2.533394 0.0076 

3.095458 0.1408 

3.401970 0.0040 

3.866890 0.0144 

4.185043 0.0120 

4.361010 0.0720 

4.373034 0.2328 

4.884713 0.0144 

4.968498 0.0428 

5.464145 0.2440 

5.568161 0.0012 

5.847952 0.0016 

6.411544 0.0052 

6.419560 0.0920 

6.563463 0.0052 

6.783327 0.2000 
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b requency f (GHz) 

1.836724 

3.041532 

3.616563 

3.789505 

4.464128 

4.783138 

5.339451 

5.581285 

5.831103 

6.450126 

0.046032 

0.020256 

0.015430 

0.029499 

0.035627 

0.011505 

0.038116 

0.013636 

I 0.037458 
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FIGURE CAPTIONS 
c 

-- 1) Phase space of a bunch ( ) p a u on injection with a coherent oscillation, (b) after 

decoherence due to a tune spread, (c) after synchrotron radiation has damped 

the incoherent oscillations. 

2) Transverse bunch offset (divided by the initial offset x0 of the bunches) vs turn 

number for (a) the first bunch, and (b) the last bunch in a single train of ten 

bunches, assuming the conventional cavity design and no resistive wall wake. 

The coherent damping assumed is 5 = 900 set-‘. 

3) Transverse bunch offset (divided by x0) vs turn number for (a) the first bunch, 

. and (b) the last b unch in a single train of ten bunches, assuming the conven- 

~---tiu~al cavity design and a resistive wall wake. The coherent damping assumed 

is .[ = 900 set-l. 

4) Transverse bunch offset (divided by x0) vs turn number for (a) the first bunch, 

and (b) the last bunch, in the last of ten trains of ten bunches, including the 

mode-damped-cavity and resistive wall wakes. The coherent damping assumed 

is [ = 900 see-’ . Parts (c) and (d) are the same as parts (a) and (b) respectively, 

except for an expanded vertical scale. 

5) Transverse bunch offset (divided by x0) vs turn number for (a) the first bunch, 

and (b) the last b unch, in the last of ten trains of ten bunches, including the 

mode-damped-cavity and resistive wall wakes. the coherent damping assumed is 

< = 2500 set-‘. Parts (c) and (d) are the same as parts (a) and (b) respectively, 

except for an expanded vertical scale. 
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