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Abstract We analyze certain subgroups of real and complex forms of the Lie
group E8, and deduce that any “Theory of Everything” obtained by embedding
the gauge groups of gravity and the Standard Model into a real or complex form
of E8 lacks certain representation-theoretic properties required by physical reality.
The arguments themselves amount to representation theory of Lie algebras in the
spirit of Dynkin’s classic papers and are written for mathematicians.

1 Introduction

Recently, the preprint (1) by Garrett Lisi has generated a lot of popular interest.
It boldly claims to be a sketch of a “Theory of Everything”, based on the idea of
combining the local Lorentz group and the gauge group of the Standard Model in
a real form of E8 (necessarily not the compact form, because it contains a group
isogenous to SL(2,C)). The purpose of this paper is to explain some reasons why
an entire class of such models—which include the model in (1)—cannot work,
using mostly mathematics with relatively little input from physics.

The mathematical set up is as follows. Fix a real Lie group E. We are interested
in subgroups SL(2,C) and G of E so that:

G is connected, compact, and centralizesSL(2,C). (ToE1)

We complexify and then decompose Lie(E)⊗C as a direct sum of representations
of SL(2,C) and G. We identify SL(2,C)⊗R C with SL2,C×SL2,C and write

Lie(E) =
⊕

m,n≥1

m⊗n⊗Vm,n, (1.1)
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where m and n denote the irreducible representation of SL2,C of that dimension
and Vm,n is a complex representation of G⊗R C. (Physicists would usually write 2
and 2̄ instead of 2⊗1 and 1⊗2.) Of course,

m⊗n⊗Vm,n ' n⊗m⊗Vm,n,

and since the action of SL(2,C) ·G on Lie(E) is defined over R, we deduce that
Vm,n 'Vn,m. We further demand that

Vm,n = 0 if m+n > 4, and (ToE2)

V2,1 is a complex representation of G. (ToE3)

We recall the definition of complex representation and explain the physical mo-
tivation for these hypotheses in the next section. Roughly speaking, (ToE1) is a
trivial requirement based on trying to construct a Theory of Everything along the
lines suggested by Lisi, (ToE2) is the requirement that the model not contain any
“exotic” higher-spin particles, and (ToE3) is the statement that the gauge theory
(with gauge group G) is chiral, as required by the Standard Model. In fact, physics
requires slightly stronger hypotheses on Vm,n, for m + n = 4. We will not impose
the stronger version of (ToE2).

Definition 11 A candidate ToE subgroup of a real Lie group E is a subgroup
generated by a copy of SL(2,C) and a subgroup G such that (ToE1) and (ToE2)
hold. A ToE subgroup is a candidate ToE subgroup for which (ToE3) also holds.

Our main result is:

Theorem 12 There are no ToE subgroups in (the transfer of) the complex E8 nor
in any real form of E8.

Notation

Unadorned Lie algebras and Lie groups mean ones over the real numbers. We use
a subscript C to denote complex Lie groups—e.g., SL2,C is the (complex) group
of 2-by-2 complex matrices with determinant 1. We can view a d-dimensional
complex Lie group GC as a 2d-dimensional real Lie group, which we denote
by R(GC). (Algebraists call this operation the “transfer” or “Weil restriction of
scalars”; geometers, and many physicists, call this operation “realification.”) We
use the popular notation of SL(2,C) for the transfer R(SL2,C) of SL2,C; it is a
double covering of the “restricted Lorentz group”, i.e., of the identity component
SO(3,1)0 of SO(3,1).
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Strategy and main results

Our strategy for proving Theorem 12 will be as follows. We will first catalogue,
up to conjugation, all possible embeddings of SL(2,C) satisfying the hypotheses
of (ToE2). The list is remarkably short. Specifically, for every candidate ToE sub-
group of E, the group G is contained in the maximal compact, connected subgroup
Gmax of the centralizer of SL(2,C) in E. The proof of Theorem 12 shows that the
only possibilities are:

E Gmax V2,1
E8(−24) Spin(11) 32
E8(8) Spin(5)×Spin(7) (4,8)

E8(−24) Spin(9)×Spin(3) (16,2)
R(E8,C) E7 56
R(E8,C) Spin(12) 32⊕32′
R(E8,C) Spin(13) 64

(1.2)

We then note that the representation V2,1 of Gmax (and hence, of any G ⊆ Gmax)
has a self-conjugate structure. In other words, (ToE3) fails.

2 Physics Background

One of the central features of modern particle physics is that the world is described
by a chiral gauge theory.

Definition 21 Let M be a four-dimensional pseudo-Riemannian manifold, of sig-
nature (3,1), which we will take to be oriented, time-oriented and spin. Let G be
a compact Lie group. The data of a gauge theory on M with gauge group G
consists of a connection, A, on a principal G-bundle, P → M, and some “matter
fields” transforming as sections of vector bundle(s) associated to unitary repre-
sentations of G.

Of particular interest are the fermions of the theory. The orthonormal frame
bundle of M is a principal SO(3,1)0 bundle. A choice of spin structure defines a
lift to a principal Spin(3,1)0 = SL(2,C) bundle. Let S± → M be the irreducible
spinor bundles, associated, via the defining two-dimensional representation and
its complex conjugate, to this SL(2,C) principal bundle.

The fermions of our gauge theory are denoted

ψ ∈ Γ (S+⊗V ), ψ ∈ Γ (S−⊗V ),

where V → M is a vector bundle associated to a (typically reducible) representa-
tion R of G.

Definition 22 Consider, V , a unitary representation of G over C—i.e., a homo-
morphism G → U(V )—and an antilinear map J : V → V that commutes with the
action of G. The map J is called a real structure on V if J2 = 1; physicists call
a representation possessing a real structure real. The map J is called a quater-
nionic structure on V if J2 = −1; physicists call a representation possessing a
quaternionic structure pseudoreal.
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Subsuming these two subcases, we will say that V has a self-conjugate struc-
ture if there exists an antilinear map J : V → V commuting with the action of G
and satisfying J4 = 1. Physicists call a representation V that does not possess a
self-conjugate structure complex.

Remark 23 We sketch how to translate the above definition into the language of
algebraic groups and Galois descent as in (2) and (3, X.2). Let G be an algebraic
group over R and fix a representation ρ : G⊗C→GL(V ) for some complex vector
space V . Let J be an antilinear map V →V that satisfies

ρ(g) = J−1
ρ(g)J for g ∈ G(C). (2.1)

We define real, quaternionic, etc., by copying the second and third sentences ver-
batim from Definition 22.

(In the special case where G is compact, there is necessarily a positive-definite
invariant hermitian form on V and ρ arises by complexifying some map G →
U(V ); this puts us back in the situation of Def. 22. In the special case where G
is connected, the hypothesis from Def. 22 that J commutes with G(R)—which is
obviously implied by Eq. (2.1)—is actually equivalent to Eq. (2.1). Indeed, both
sides of Eq. (2.1) are morphisms of varieties over C, so if they agree on G(R)—
which is Zariski-dense by (2, 18.2(ii))—then they are equal on G(C).)

If V has a real structure J, then the R-subspace V ′ of elements of V fixed
by J is a real vector space and V is canonically identified with V ′⊗C so that
J(v′⊗z) = v′⊗z for v′ ∈V ′ and z∈C; this is Galois descent. Because ρ commutes
with complex conjugation (which acts in the obvious manner on G(C) and via J
on V ), it is the complexification of a homomorphism ρ ′ : G → GL(V ′) defined
over R by (2, AG.14.3). Conversely, if there is a representation (V ′,ρ ′) whose
complexification is (V,ρ), then taking J to be complex conjugation on V = V ′⊗C
defines a real structure on (V,ρ).

If V has a quaternionic structure J, then we define a real structure Ĵ on V̂ :=
V ⊕V via Ĵ(v1,v2) := (Jv2,−Jv1).

Finally, suppose that G is reductive and V is irreducible (as a representation
over C, of course). Then by (4, 7), there is a unique irreducible real representation
W whose complexification W ⊗C contains V as a summand. By Schur, EndG(W )
is a division algebra, and we have three possibilities:

• EndG(W ) = R, W ⊗C'V , and V has a real structure.
• EndG(W ) = H, W ⊗C'V ⊕V , and V has a quaternionic structure.
• EndG(W ) = C, W ⊗C'V ⊕V where V 6'V , and V is complex.

We have stated this remark for G a group over R, but all of it generalizes easily to
the case where G is reductive over a field F and is split by a quadratic extensions
K of F .

Definition 24 A gauge theory, with gauge group G, is said to be chiral if the
representation R by which the fermions (21) are defined is complex in the above
sense. By contrast, a gauge theory is said to be nonchiral if the representation R
in 21 has a self-conjugate structure.

Note that whether a gauge theory is chiral depends crucially on the choice of
G. A gauge theory might be chiral for gauge group G, but nonchiral for a subgroup
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H ⊂ G. That is, there can be a self-conjugate structure on R compatible with H,
even though no such structure exists that is compatible with the full group G.

Conversely, suppose that a gauge theory is nonchiral for the gauge group G. It
is also necessarily nonchiral for any gauge group H ⊂ G.

GUTs

The Standard Model is a chiral gauge theory with gauge group

GSM := (SU(3)×SU(2)×U(1))/(Z/6Z).

Various grand unified theories (GUTs) proceed by embedding GSM is some (usu-
ally simple) group, GGUT. Popular choices for GGUT are SU(5) (5), Spin(10), E6,
and the Pati-Salam group, (Spin(6)×Spin(4))/(Z/2Z) (6).

It is easiest to explain what the fermion representation of GSM is after embed-
ding GSM in GGUT := SU(5). Let W be the five-dimensional defining represen-
tation of SU(5). The representation R from 21 is the direct sum of three copies
of

R0 = ∧2W ⊕W .

Each such copy is called a “generation” and is 15-dimensional. One identifies each
of the 15 weights of R0 with left-handed fermions: 6 quarks (two in a doublet, each
in three colors), two leptons (e.g., the electron and its neutrino), 6 antiquarks, and
a positron. With three generations, R is 45-dimensional.

Definition 25 As a generalization, physicists sometimes consider the n-generation
Standard Model, which is defined in similar fashion, but with R = R⊕n

0 . The n-
generation Standard Model is a chiral gauge theory, for any positive n. Particle
physics, in the real world, is described by “the” Standard Model, which is the case
n = 3.

For the other choices of GUT group, the analogue of a generation (R0) is
higher-dimensional, containing additional fermions that are not seen at low en-
ergies. When decomposed under GSM ⊂ GGUT, the representation decomposes as
R0 +R′, where R′ is a real representation of GSM. In Spin(10), a generation is the
16-dimensional half-spinor representation. In E6, it is a 27-dimensional represen-
tation, and for the Pati-Salam group it is the (4,1,2)⊕ (4,2,1) representation. In
each case, these representations are complex representations (in the above sense)
of GGUT, and the complex-conjugate representation is called an “anti-generation.”

3 Lisi’s Proposal from [1]

In the previous section, we have described a chiral gauge theory in a fixed (pseudo)
Riemannian structure on M. Lisi’s proposal (1) is to try to combine the spin con-
nection on M and the gauge connection on P into a single dynamical framework.
This motivates Definition 11 of a ToE subgroup.

More precisely, following (1), we fix subgroups SL(2,C) and G—say, with
G = GSM—satisfying (ToE1) in some real Lie group E. The action of the central
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element −1 ∈ SL(2,C) provides a Z/2Z-grading on the Lie algebra of E. This
Z/2Z-grading allows one to define a sort of superconnection associated to E (pre-
cisely what sort of superconnection is explained in a blog post by the first author
(7)). In the proposal of (1), we are supposed to identify each of the generators of
Lie(E) as either a boson or a fermion. (See Table 9 in (1) for an identification of
the 240 roots.)

The Spin-Statistics Theorem (8) says that fermions transform as spinorial rep-
resentations of Spin(3,1); bosons transform as “tensorial” representations (rep-
resentations which lift to the double cover, SO(3,1)). To be consistent with the
Spin-Statistics Theorem, we must, therefore, require that the fermions belong to
the −1-eigenspace of the aforementioned Z/2Z action, and the bosons to the +1-
eigenspace.

In fact, to agree with 21, we should require that the −1-eigenspace (when
tensored with C) decomposes as a direct sum of two-dimensional representa-
tions (over C) of SL(2,C), corresponding to “left-handed” and “right-handed”
fermions, in the sense of 21.

3.1 Interpretations of Vm,n and (ToE2)

In the notation of (1.1), the Vm,n, with m + n odd, correspond to fermions; those
with m + n even correspond to bosons. In Lisi’s setup, the bosons are 1-forms
on M, with values in a vector bundle associated to the aforementioned Spin(3,1)0
principal bundle via the m⊗n representation (with m+n even). The Vm,n with m+
n = 4 are special; they correspond to the gravitational degrees of freedom in Lisi’s
theory. (3⊗1)⊕(1⊗3) is the adjoint representation of SL(2,C); these correspond
to the spin connection. The 1-form with values in the 2⊗ 2 representation is the
vierbein1.

It is a substantial result from physics (see Sects. 13.1, 25.4 of (9)) that a unitary
interacting theory is incompatible with massless particles in higher representations
(m + n ≥ 6). Our hypothesis (ToE2) reflects this and also forbids gravitinos (m +
n = 5). In 10, we will revisit the possibility of admitting gravitinos.

3.2 Explanation of (ToE3)

Our hypothesis (ToE3) says that the candidate “Theory of Everything” one ob-
tains from subgroups SL(2,C) and G as in (ToE1) must be chiral in the sense of
Definition 24.2

1 In making this identification, we have tacitly assumed that V2,2 is one-dimensional. This is,
in fact, required for a unitary interacting theory. We will not, however, impose this additional
constraint. Suffice to say that it is not satisfied by any of the candidate ToE subgroups (per
Definition 11) of E8.

2 Of course, there are many other features of the Standard Model that a candidate Theory
of Everything must reproduce. We have chosen to focus on the requirement that the theory
be chiral for two reasons. First, it is “physically robust”: Whatever intricacies a quantum field
theory may possess at high energies, if it is non-chiral, there is no known mechanism by which
it could reduce to a chiral theory at low energies (and there are strong arguments (10) that no
such mechanism exists). Second, chirality is easily translated into a mathematical criterion—
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In private communication, Lisi has indicated that he objects to our condition
(ToE3), because he no longer wishes to identify all 248 generators of Lie(E) as
particles (either bosons or fermions). In his new—and unpublished—formulation,
only a subset are to be identified as particles. In particular, V2,1 is typically a re-
ducible representation of G and, in his new formulation, only a subrepresentation
corresponds to particles (fermions). This is not the approach followed in (1), where
all 248 generators are identified as particles and where, moreover, 20-odd of these
are claimed to be new as-yet undiscovered particles—a prediction of his theory.
As recently as April 2009, Lisi reiterated this prediction in an essay published in
the Financial Times, (11).

Our paper assumes that the approach of (1) is to be followed, and that all 248
generators are to be identified as particles, hence (ToE3). In any case, even if one
identifies only a subset of the generators as particles, all the fermions must come
from the (−1)-eigenspace, which is too small to accommodate 3 generations, as
we now show.

3.3 No-go based on dimensions

The fermions of Lisi’s theory correspond to weight vectors in Vm,n, with m + n
odd. In particular, the weight vectors in V2,1 and V1,2 correspond (as in 21) to
left- and right-handed fermions, respectively. Since there are 3× 15 = 45 known
fermions of each chirality, V2,1 must be at least 45-dimensional, and similarly for
V1,2. Thus, the −1-eigenspace of the central element of SL(2,C), which contains
(2⊗1⊗V2,1)⊕ (1⊗2⊗V1,2), must have dimension at least 2×2×45 = 180.

When E is a real form of E8, the −1-eigenspace has dimension 112 or 128
(this is implicit in Elie Cartan’s classification of real forms of E8 as in (12, p. 518,
Table V)),3 so no identification of the fermions as distinct weight vectors in Lie(E)
(as in Table 9 in (1)) can be compatible with the Spin-Statistics Theorem and the
existence of three generations.

These dimensional considerations do not, however, rule out the possibility of
accommodating a 1- or 2-generation Standard Model (per Definition 25) in a real
form of E8. That requires more powerful considerations, which are the subject of
our main theorem. We now turn to the proof of that theorem.

4 sl2 Subalgebras and the Dynkin Index

The Dynkin index

In (15, 2), Dynkin defined the index of an inclusion f : g1 ↪→ g2 of simple complex
Lie algebras as follows. Fix a Chevalley basis of the two algebras, so that the
Cartan subalgebra h1 of g1 is contained in the Cartan subalgebra h2 of g2. The

our (ToE3). This allows us to study a purely representation-theoretic question and side-step the
difficulties of making sense of Lisi’s proposal as a dynamical quantum field theory.

3 Alternatively, Serre’s marvelous bound on the trace from (13, Th. 3) or (14, Th. 1) implies
that for every element x of order 2 in a reductive complex Lie group G, the −1-eigenspace
of Ad(x) has dimension ≤ (dimG + rankG)/2. In particular, when G is a real form of E8, the
−1-eigenspace has dimension ≤128.
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Chevalley basis identifies hi with the complexification Q∨
i ⊗C of the coroot lattice

Q∨
i of gi, and the inclusion f gives an inclusion Q∨

1 ⊗C ↪→Q∨
2 ⊗C. Fix the Weyl-

invariant inner product ( , )i on Q∨
i so that (α∨,α∨)i = 2 for short coroots α∨.

Then the Dynkin index of the inclusion is the ratio ( f (α∨), f (α∨))2/(α∨,α∨)1
where α∨ is a short coroot of g1. For example, the irreducible representation sl2 →
sln has index

(n+1
3

)
by (15, Eq. (2.32)).

sl2 subalgebras

We now consider the case g1 = sl2 and write simply g and Q∨ for g2 and Q∨
2 .

The coroot lattice of sl2 is Z and the image of 1 under the map Z ↪→ Q∨ is an
element h ∈ h called the defining vector of the inclusion. In 8 of his paper (or
see (16, VIII.11)), Dynkin proved that, after conjugating by an element of the
automorphism group of g, one can assume that the defining vector h satisfies the
strong restrictions:

h = ∑
δ∈∆

pδ δ
∨ for pδ real and non-negative [15,Lemma8.3],

where ∆ denotes the set of simple roots of g and further that

δ (h) ∈ {0,1,2} for all δ ∈ ∆ . (4.1)

But note that for each simple root δ , the fundamental irreducible representation of
g with highest weight dual to δ∨ restricts to a representation of sl2 with pδ as a
weight, hence pδ is an integer.

As a consequence of these generalities and specifically (15, Lemma 8.2), one
can identify an sl2 subalgebra of g up to conjugacy by writing the Dynkin diagram
of g and putting the number δ (h) from Display (4.1) at each vertex; this is the
marked Dynkin diagram of the sl2 subalgebra.

Here is an alternative formula for computing the index of an sl2 subalgebra
from its marked Dynkin diagram. Write κg and m∨ for the Killing form and dual
Coxeter number of g. We have:

(Dynkin index) =
1
2
(h,h) =

1
4m∨ κg(h,h) =

1
2m∨ ∑

positive roots α of g

α(h)2, (4.2)

where the second equality is by, e.g., (17, 5), and the third is by the definition of
κg. One can calculate the number α(h) by writing α as a sum of positive roots
and applying the marked Dynkin diagram for h.

Lemma 41 For every simple complex Lie algebra g, there is a unique copy of sl2
in g of index 1, up to conjugacy.

This is (equivalent to) Theorem 2.4 in (15). We give a different proof for the
convenience of the reader.
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Proof The index of an sl2-subalgebra is (h,h)/2, where the defining vector h be-
longs to the coroot lattice Q∨. If g is not of type B, then the coroot lattice is not of
type C, and the claim amounts to the statement that the vectors of minimal length
in the coroot lattice are actually coroots. This follows from the constructions of
the root lattices in (18, 12.1).

Otherwise g has type B and is son for some odd n ≥ 5. The conjugacy class
of an sl2-subalgebra is determined by the restriction of the natural n-dimensional
representation; they are parameterized by partitions of n (i.e., ∑ni = n) so that the
even ni occur with even multiplicity and some ni > 1, see (19, 5.1.2) or (20, 6.2.2).
The index of the composition sl2 → son → sln is then ∑

(ni+1
3

)
; we must classify

those partitions such that this sum equals the Dynkin index of son → sln, which is
2. The unique such partition is 2+2+1+ · · ·+1 > 0. ut

In the bijection between conjugacy classes of sl2 subalgebras and orbits of
nilpotent elements in g from (19, 3.2.10), the unique orbit of index 1 sl2’s corre-
sponds to the minimal nilpotent orbit described in (19, 4.3.3).

If g has type C, F4, or G2, then the argument in the proof of the lemma shows
that there is up to conjugacy a unique copy of sl2 in g with index 2, 2, or 3 re-
spectively. For g of type Bn with n ≥ 4, there are two conjugacy classes of sl2-
subalgebras of index 2. This amounts to the fact that there are vectors in the Cn
root lattice that are not roots but have the same length as a root—specifically, sums
of two strongly orthogonal short roots, cf. Exercise 5 in 12 of (18).

5 Copies of sl2,C in the Complex E8

We now prove some facts about copies of sl2,C in the complex Lie algebra e8 of
type E8. Of course, the 69 conjugacy classes of such are known—see (15, pp. 182–
185) or (21, pp. 430–433)—but we do not need this information.

Fix a pinning for e8; this includes a Cartan subalgebra h, a set of simple roots
∆ := {αi | 1≤ i≤ 8} (numbered

1 3 4 5 6 7 8
2 (5.1)

as in (22)), and fundamental weights ωi dual to αi. As all roots of the E8 root
system have the same length, we can and do identify the root system with its
coroot system (also called the “inverse” or “dual” root system).

Example 51 Taking any root of E8, one can generate a copy of sl2,C in e8 with
index 1. Doing this with the highest root gives an sl2,C with marked Dynkin dia-
gram

index 1: 0 0 0 0 0 0 1
0 .

Every index 1 copy of sl2 in e8 is conjugate to this one by Lemma 41.

Example 52 One can find a copy of sl2,C× sl2,C in e8 by taking the first copy to
be generated by the highest root of E8 and the second copy to be generated by the
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highest root of the obvious E7 subsystem. If you embed sl2,C diagonally in this
algebra, you find a copy of sl2,C with index 2 and marked Dynkin diagram

index 2: 1 0 0 0 0 0 0
0 .

Proposition 53 The following collections of copies of sl2,C in e8 are the same:
(1) copies such that ±1 are weights of e8 (as a representation of sl2,C) and no

other odd weights occur,
(2) copies such that every weight of e8 is in {0,±1,±2},
(3) copies such that the inclusion sl2,C ⊂ e8 has Dynkin index 1 or 2,
(4) copies of sl2,C conjugate to one of those defined in Examples 51 or 52.

Proof One easily checks that (4) is contained in (1)–(3); we prove the opposite
inclusion.

For (3), we identify h with the complexification Q⊗C of the (co)root lattice
Q, hence h with ∑αi(h)ωi. By Eq. (4.2), the index of h satisfies:

1
60 ∑

α

α(h)2 =
1

60 ∑
α

(
∑

i
αi(h)〈ωi,α〉

)2

≥∑
i

(
αi(h)2

∑
α

〈ωi,α〉2

60

)
,

where the sums vary over the positive roots. We calculate for each fundamental
weight ωi the number ∑α 〈ωi,α〉2/60:

2 7 15 10 6 3 1
4 . (5.2)

As the numbers αi(h) are all 0, 1, or 2, the numbers in Display (5.2) show that h
for an sl2,C with Dynkin index 1 or 2 must be ω1 (index 2) or ω8 (index 1).

For (2), the highest root α̃ of E8 is α̃ = ∑i ciαi, where c1 = c8 = 2 and the
other ci’s are all at least 3. As α̃(h) is a weight of e8 relative to a given copy of
sl2,C, we deduce that an sl2,C as in (2) must have h = ω1 or ω8, as claimed.

Suppose now that we are given an h for a copy of sl2,C as in (1). As ±1 occur
as weights, there is at least one 1 in the marked Dynkin diagram.

But note that there cannot be three or more 1’s in the marked Dynkin diagram
for h. Indeed, for every connected subset S of vertices of the Dynkin diagram of
E8, ∑i∈S αi is a root (22, VI.1.6, Cor. 3b). If the number of 1’s in the marked
diagram of h is at least three, then one can pick S so that it meets exactly three of
the αi’s with αi(h) = 1, in which case ∑i∈S αi(h) is odd and at least 3, violating
the hypothesis of (1).

For the sake of contradiction, suppose that there are two 1’s in the marked
diagram for h, say, corresponding to simple roots αi and α j with i < j. For each
i, j, one can find a root β in the list of roots of E8 of large height in (22, Plate VII)
such that the coefficients of αi and α j in β have opposite parity and sum at least 3.
(Merely taking β to be the highest root suffices for many (i, j).) This contradicts
(1), so there is a unique 1 in the marked diagram for h, i.e., αi(h) = 1 for a unique
i.

If αi(h) = 1 for some i 6= 1,8, then we find a contradiction because there is
a root α of E8 with αi-coordinate 3. Therefore αi(h) = 1 only for i = 1 or 8 and
not for both. By the fact used two paragraphs above, β := ∑i αi is a root of E8, so
β (h) = ∑αi(h) is odd and must be 1. It follows that h = ω1 or ω8. ut
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Observation 54 (Centralizer for index 1) The sl2,C of index 1 in e8 has centralizer
the obvious regular subalgebra e7 of type E7. (A subalgebra is regular if it is
generated by the root subalgebras corresponding to a closed sub-root-system (15,
no. 16).) Indeed, it is clear that e7 centralizes this sl2,C. Conversely, the centralizer
of sl2,C is contained in the centralizer of h = ω8—i.e., e7 ⊕Ch—but does not
contain h.

Technique 55 (Decomposing e8) Suppose we are given a copy of sl2,C in e8 spec-
ified by a defining vector h. By applying the 240 roots of e8 to h (and throwing in
also 0 with multiplicity 8), we obtain the weights of e8 as a representation of sl2,C
and therefore also the decomposition of e8 into irreducible representations of sl2,C
as in, e.g., (18, 7.2).

Extending this, suppose we are given a copy of sl2,C× sl2,C in e8, where the
two summands are specified by defining vectors in h. (Here we want the defining
vectors to span the Cartan subalgebras in the images of the two sl2,C’s. In partic-
ular, they need not be normalized in the sense of Display (4.1).) Computing as in
the previous paragraph, we can decompose e8 as a direct sum of irreducible rep-
resentations m⊗n of sl2,C× sl2,C. It is easy to write code from scratch to make a
computer algebra system perform this computation. We remark that applying this
recipe in the situation from the Introduction gives the dimension of Vm,n as the
multiplicity of m⊗n.

6 Index 2 Copies of sl2,C in the Complex E8

Lemma 61 The centralizer of the index 2 sl2,C in e8 from Example 52 is a copy
of so13 contained in the regular subalgebra so14 of e8.

Proof The centralizer of the sl2,C of index 2 in e8 is contained in the centralizer of
the defining vector h; this centralizer is reductive with semisimple part the regular
subalgebra so14 of type D7. The centralizer of sl2,C contains the centralizer of the
sl2,C×sl2,C from Example 52, which is the regular subalgebra so12 of type D6, as
can be seen by the recipe from (15, pp. 147, 148). Computing as in 55, we see that
the centralizer of sl2,C has dimension 78 (as is implicitly claimed in the statement
of the lemma), so it lies properly between the regular so12 and the regular so14.

For concreteness, let us suppose that the structure constants for e8 are as in
(23). Define a copy of sl2,C by sending

(
0 1
0 0

)
to the sum of the elements in the

Chevalley basis of e8 spanning the root subalgebras corresponding to −α8 and the
highest root in the obvious D7 subdiagram. This copy of sl2,C has defining vector
α2 + α3 + 2α4 + 2α5 + 2α6 + 2α7. One checks using the structure constants that
this sl2,C centralizes the index 2 sl2,C we started with, and that together with so12
it generates a copy of so13. In particular, the coroot lattice of this so13 has basis
β∨

1 , . . . ,β∨
6 , embedded in the (co)root lattice of e8 as in the table:

so13 β∨
1 β∨

2 β∨
3 β∨

4 β∨
5 β∨

6
e8 α3 α4 α5 α6 α7 −α2−α3−2α4−2α5−2α6−2α7

. (6.1)

We remark that the numbering of the coroots β∨
1 , . . . ,β∨

6 corresponds to a num-
bering of the simple roots of so13 as in the diagram



12 J. Distler, S. Garibaldi

Dimension count shows that this so13 is the centralizer. ut

The claim of the lemma is already in (24, p. 125). We gave the details of a proof
because it specifies an inclusion of so13 in e8 and a comparison of the pinnings of
the two algebras as in Table (6.1).

The index 2 sl2 and the copy of so13 give an sl2× so13 subalgebra of e8. We
now decompose e8 into irreducible representations of sl2 × so13. We can do this
from first principles by restricting the roots of e8 to the Cartan sublagebras of sl2
(using the marked Dynkin diagram from Example 52) and so13 (using Table (6.1)).
Alternatively, we can read the decomposition off the tables in (25) as follows. As
in the proof of Lemma 61, sl2 is contained in the regular subalgebra sl2×sl2×so12
of e8, and the tables on pages 301 and 305 of ibid. show that e8 decomposes as a
sum of

the adjoint representation, 2⊗1⊗S+, 1⊗2⊗S−, and 2⊗2⊗V, (6.2)

where S± denotes the half-spin representations of so12 and V is the vector repre-
sentation. We can restrict the representations of sl2×sl2 to the diagonal sl2 subal-
gebra to obtain a decomposition of e8 into representations of sl2×so12. Consulting
the tables in ibid. for restricting representations from type B6 to D6 allows us to
deduce the decomposition

1⊗ so13,C ⊕ 2⊗ (spin) ⊕ 3⊗1 ⊕ 3⊗ (vector) (6.3)

of e8 as a representation of sl2×so13. From this it is obvious that so13,C is the Lie
algebra of a copy of Spin13 in E8.

The main result of this section is the following:

Lemma 62 Up to conjugacy, there is a unique copy of SL2,C×SL2,C in E8,C so
that each inclusion of SL2,C in E8,C has index 2. The centralizer of this SL2,C×SL2,C
has identity component Sp4,C×Sp4,C.

Proof As in the proof of Lemma 41 (or by the method used to prove Prop. 53),
there are two index 2 copies of sl2 in so13, corresponding to the partitions

(a) 3+1+1+ · · ·+1 and (b) 2+2+2+2+1+1+ · · ·+1

of 13. The recipe in (19, 5.3) gives defining vectors for these sl2’s, which we can
rewrite in terms of the E8 simple roots using Table (6.1):

(a) 2β∨
1 +2β∨

2 +2β∨
3 +2β∨

4 +2β∨
5 +β∨

6 =−α2 +α3,
(b) β∨

1 +2β∨
2 +3β∨

3 +4β∨
4 +4β∨

5 +2β∨
6 =−2α2−α3−2α4−α5.

(6.4)

We can pair each of (a) and (b) with the copy of sl2 from Example 52 to get
an sl2× sl2 subalgebra of e8 where both sl2’s have index 2. Clearly, these repre-
sent the only two E8-conjugacy classes of such subalgebras. With Display (6.4)
in hand, we can calculate the multiplicities of the irreducible representations of
sl2× sl2 in e8 as in 55.

In case (a), every irreducible summand m⊗n has m + n even. Therefore, this
copy of sl2×sl2 is the Lie algebra of a subgroup of E8 isomorphic to (SL2×SL2)/(−1,−1).
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(An alternative way to see this is to note that the simple roots with odd coefficients
are the same in Display (6.4a) and the defining vector in Example 52.)

In case (b), we have the following table of multiplicities for m⊗n:

1 2 3 m
1 20 20 6

n 2 20 16 4
3 6 4 0

. (6.5)

In particular, it is the Lie algebra of a copy of SL2×SL2 in E8. The centralizer of
(b) in Spin13 has been calculated in (26, IV.2.25), and the identity component is
Sp4×Sp4, as claimed. ut

We can decompose e8 into a direct sum of irreducible representations of the
sl2×sl2×sp4×sp4 subalgebra from Lemma 62 by combining the decomposition
of e8 into irreducible representations of sl2× so13 from Decomposition (6.3) with
the tables in (25). Specifically, we restrict representations from so13 to an sp4 ×
so8 subalgebra and then from so8 to sp4 × sl2, where this sl2 also has index 2.
Recall that sp4 has two fundamental irreducible representations: one that is 4-
dimensional symplectic and another that is 5-dimensional orthogonal; we denote
them by their dimensions. With this notation and 1.1, we find:

V2,1 ' 5⊗4, V1,2 ' 4⊗5, V2,3 ' 1⊗4, V3,2 ' 4⊗1, and V2,2 ' 4⊗4.

(6.6)

7 Copies of SL(2,C) in a Real Form of E8

Suppose now that we have a copy of SL(2,C) inside a real Lie group E of type
E8. Over the complex numbers, we decompose Lie(E)⊗C into a direct sum of ir-
reducible representations of SL(2,C)⊗C ' SL2,C×SL2,C; each irreducible rep-
resentation can be written as m⊗ n where m and n denote the dimension of an
irreducible representation of the first or second SL2,C respectively. The goal of
this section is to prove:

Proposition 71 Maintain the notation of the previous paragraph. If Lie(E)⊗C
contains no irreducible summands m⊗n with m+n > 4, then the identity compo-
nent Z of the centralizer of SL(2,C) in E is a subgroup isomorphic to

(1) Spin(7,5) if E is split; or
(2) Spin(3,9) or Spin(11,1) if the Killing form of Lie(E) has signature −24.

In either case, Lie(Z)⊗C is the regular so12 subalgebra of Lie(E)⊗C.

Proof Complexifying the inclusion of SL(2,C) in E and going to Lie algebras
gives an inclusion of sl2,C× sl2,C in the complex Lie algebra e8. The hypothesis
on the irreducible summands m⊗n implies that each of the two sl2,C’s has index 1
or 2 by Proposition 53. As complex conjugation interchanges the two components,
they must have the same index.

Suppose first that both sl2’s have index 2. When we decompose e8 as in 1.1,
we find the representation 2⊗3 with positive multiplicity 4 by Table (6.5), which
violates our hypothesis on the SL(2,C) subgroup of E.



14 J. Distler, S. Garibaldi

Therefore both sl2’s have index 1. Lemma 41 (twice) gives that this sl2×sl2 is
conjugate to the one generated by the highest root of E8 from Example 51 (so the
second sl2 belongs to the centralizer of type E7) and by the highest root of the E7
subsystem and makes up the first two summands of an sl2×sl2×so12 subalgebra,
the same one used to find decomposition (6.2). That is, so12 centralizes sl2× sl2.
Conversely, the centralizer of the defining vectors of the two copies of sl2 has
semisimple part so12; it follows that Lie(Z)⊗C is isomorphic to so12.

From this and decomposition (6.2), we see that Z is a real form of Spin12. As
Lie(E) is a real representation of Z, we deduce that V is also a real representation
of Z but S+ and S− are not; they are interchanged by the Galois action. The first
observation shows that Z is Spin(12−a,a) for some 0≤ a≤ 6. The second shows
that a must be 1, 3, or 5, as claimed in the statement of the proposition.

It remains to prove the correspondence between a and the real forms of E8.
For a = 5, this is clear: the subgroup generated by SL(2,C) and Spin(7,5) has
real rank 6, so it can only be contained in the split real form.

Now suppose that a = 3 or 1 and that SL(2,C) is in the split E8; we will show
that the Killing form of E has signature −24. Over C, SL(2,C) is conjugate to the
copy of SL2,C×SL2,C in E8,C generated by the highest root of E8 and the highest
root of the natural subsystem of type E7. Writing out these two roots in terms of the
E8 simple roots, we see that α3 and α5 are the only simple roots whose coefficients
have different parities. It follows that the element −1 ∈ SL(2,C)—equivalently,
(−1,−1) ∈ SL2×SL2—is hα2(−1)hα3(−1) in the notation of (27), where hαi :
C× → E⊗C is the cocharacter corresponding to the coroot α∨

i . Now, α2 and
α3 are the only simple roots with odd coefficients in the fundamental weight ω1,
so the subgroup of E⊗C fixed by conjugation by this −1 is generated by root
subgroups corresponding to roots α such that 〈ω1,α〉 is even. These roots form
the natural D8 subsystem of E8, and in this way we see SL(2,C) ·Spin(12−a,a)
as a semisimple subgroup of maximal rank in a copy of a half-spin group H in 16
dimensions—the identity component of the centralizer of −1.

We claim that H is isogenous to SO(12,4). As H is a half-spin group with a
half-spin representation defined over R, it is isogenous to SO(16−b,b) for b = 0,
4, or 8 or it is quaternionic; these possibilities have Killing forms of signature
−120, −24, 8, or −8 respectively, as can be looked up in (28), for example. The
adjoint representation of H, when restricted to SL(2,C) ·Spin(12−a,a), decom-
poses as the adjoint representation of SL(2,C) ·Spin(12−a,a) and 2⊗2⊗V by
decomposition (6.2). The Killing form on H restricts to a positive multiple of the
Killing form on SL(2,C) ·Spin(12− a,a) (as can be seen over C by the explicit
formula on p. E-14 of (26))—i.e., has signature −44 or −12 for a = 1 or 3—and
a form of signature ±2(12− 2a) on 2⊗ 2⊗V ; the sum of these has signature 0,
−24, or −64 since a = 1 or 3. Comparing the two lists verifies that H is isogenous
to SO(12,4).

The Killing form on H has signature −24. The invariant bilinear form on
the half-spin representation is hyperbolic (because H is isogenous to spin of an
isotropic quadratic form of dimension divisible by 8, see (29, 1.1)). As a represen-
tation of H, Lie(E) is a sum of these two representations, and we conclude that
the Killing form on Lie(E) has signature −24, as claimed. ut

Remark 72 We can determine the centralizer and the real form of E8 also in the
excluded case in the proof where both sl2’s have index 2. As in Lemma 62, the
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centralizer is a real form of Sp4,C×Sp4,C. Decomposition (6.6) shows that com-
plex conjugation interchanges the two Sp4,C terms, so the centralizer is R(Sp4,C).
Complex conjugation interchanges the irreducible representations appearing in
Eq. (1.1) in pairs (contributing 0 to the signature of the Killing form κE of E),
except for 2⊗ 2⊗V2,2, which has dimension 82. This last piece breaks up into a
36-dimensional even subspace, and a 28-dimensional odd subspace, contributing
8 to the signature of κE and proving that the resulting real form of E8 is the split
one.

8 No Theory of Everything in a Real Form of E8

In the decomposition of Lie(E)⊗C from Eq. (1.1), the integers m,n are positive,
so (ToE2) implies

Vm,n = 0 if m≥ 4 or n≥ 4. (ToE2’)

We prove the following strengthening of the real case of Theorem 12:

Lemma 81 If subgroups SL(2,C) and G of a real form E of E8 satisfy (ToE1) and
(ToE2’), then V1,2 is a self-conjugate representation of G, i.e., (ToE3) fails.

Proof As in the proof of Proposition 71, over the complex numbers we get two
copies of sl2 that embed in E8 with the same index, which is 1 or 2.

If the index is 1, we are in the case of that proposition. The −1-eigenspace
in Lie(E) (of the element −1 in the center of SL(2,C)) is a real representation
of SL(2,C) ·G, and G is contained in a copy of Spin(12− a,a) for a = 1, 3, or
5. As in the proof of the proposition, there is a representation W of SL(2,C)×
Spin(12−a,a) defined over R that is isomorphic to

(2⊗1⊗S+) ⊕ (1⊗2⊗S−)

over C. Now G is contained in the maximal compact subgroup of Spin(12−a,a),
i.e., Lie(G) is a subalgebra of so(11), so(9)× so(3), or so(7)× so(5). The re-
striction of the two half-spin representations of Spin(12− a,a) to the compact
subalgebra are equivalent (25, p. 264), and we see that in each case the restriction
is quaternionic. (To see this, one uses the standard fact that the spin representation
of so(2`+1) is real for `≡ 0,3 (mod 4) and quaternionic for `≡ 1,2 (mod 4).)
That is, the restrictions of S+, S−, and their complex conjugates to the maximal
compact subgroup are all equivalent (over C), hence the same is true for their
further restrictions to G, and (ToE3) fails.

If the index is 2, then G is contained in a real form of Sp4,C × Sp4,C by
Lemma 62. When we decompose e8 as in Eq. (1.1), we find V2,1 and V1,2 as in
decomposition (6.6). As complex conjugation interchanges these two represen-
tations, it follows that complex conjugation interchanges the two Sp4,C factors,
i.e., the centralizer of SL(2,C) has as identity component the transfer R(Sp4,C) of
Sp4,C. Its maximal compact subgroup is the compact form of Sp4,C (also known
as Spin(5)), all of whose irreducible representations are self-conjugate. Therefore,
(ToE3) fails. ut
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Remark 82 It is worthwhile noting that, in each of the three cases in Proposition
71 (the three cases where (ToE2) holds), it is possible to embed GSM in the cen-
tralizer, thus showing that (ToE1) is satisfied. Given such an embedding, a simple
computation verifies explicitly that S+ has a self-conjugate structure as a repre-
sentation of GSM.

First consider Spin(11,1). There is an obvious embedding of GGUT := Spin(10).
Under this embedding, S+ decomposes as the direct sum of the two half-spinor
representations, i.e., as a generation and an anti-generation.

For Spin(7,5), there is an obvious embedding of the Pati-Salam group, GGUT :=
(Spin(6)×Spin(4))/(Z/2Z). Again, S+ decomposes as the direct sum of a gen-
eration and an anti-generation.

Finally, Spin(3,9) contains (SU(3)× SU(2)× SU(2)×U(1))/(Z/6Z) as a
subgroup. Under this subgroup,

S+ = (3,2,2)1/6⊕ (3,2,2)−1/6 +(1,2,2)−1/2 +(1,2,2)1/2,

where the subscript indicates the U(1) weights, and the overall normalization is
chosen to agree with the physicists’ convention for the weights of the Standard
Model’s U(1)Y . Embedding the SU(2) of the Standard Model in one of the two
SU(2)s, we obtain an embedding of GSM ⊂ Spin(3,9) where, again S+ has a self-
conjugate structure as a representation of GSM.

9 No Theory of Everything in Complex E8

We now complete the proof of Theorem 12 by proving the following strengthening
of the complex case.

Lemma 91 If subgroups SL(2,C) and G of R(E8,C) satisfy (ToE1) and (ToE2’),
then V1,2 is a self-conjugate representation of G, i.e., (ToE3) fails.

First, recall the definition of the transfer R(HC) of a complex group HC as
described, e.g., in (30, 2.1.2). Its complexification can be viewed as HC ×HC,
where complex conjugation acts via

(h1,h2) = (h2, h1).

One can view R(HC) as the subgroup of the complexification consisting of ele-
ments fixed by complex conjugation.

Now consider an inclusion φ : SL(2,C) = R(SL2,C) ↪→ R(E8,C). Complexify-
ing, we identify R(SL2,C)⊗C with SL2,C×SL2,C and similarly for R(E8,C), and
write out φ as

φ(h1,h2) = (φ1(h1)φ2(h2),ψ1(h1)ψ2(h2)) (9.1)

for some homomorphisms φ1,φ2,ψ1,ψ2 : SL2,C → E8,C. As φ is defined over R,
we have:

φ(h1,h2) = φ(h2,h1) = (ψ1(h2)ψ2(h1),φ1(h2)φ2(h1)),

and it follows that ψ1(h1) = φ2(h1) and ψ2(h2) = φ1(h2). Conversely, given any
two homomorphisms φ1,φ2 : SL2,C → E8,C (over C) with commuting images, the
same equations define a homomorphism φ : SL(2,C)→ R(E8,C) defined over R.
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Proof of Lemma 91 Write Z for the identity component of the centralizer of the
image of the map φ1 × φ2 : SL2,C×SL2,C → E8,C from Eq. (9.1). Clearly, G is
contained in the transfer R(Z) of Z. In each of the cases below, we verify that

Z is semisimple and−1 is in the Weyl group of Z. (9.2)

It follows from this that the maximal compact subgroup of R(Z) is the compact
real form ZR of Z and that ZR is an inner form. Hence every irreducible repre-
sentation of ZR is real or quaternionic; hence every representation of ZR is self-
conjugate. That is, (ToE3) fails, which is the desired contradiction.

Case 1 φ1 or φ2 is trivial. Consider the easiest-to-understand case where φ1 or φ2

is the zero map, say φ2. In the notation of Eq. (9.1), φ(h1,h2) = (φ1(h1),φ1(h2)),
i.e., φ is the transfer of the homomorphism φ1 : SL2,C → E8,C. By Proposition 53,
φ1 has index 1 or 2. If φ1 has index 1, then Z is simple of type E7 by Example 54,
hence Property (9.2) holds. If φ1 has index 2, then Lie(Z) is isomorphic to so13,C
by Lemma 61, and again Property (9.2) holds.

Case 2 Neither φ1 nor φ2 is trivial. Now suppose that neither φ1 nor φ2 is trivial.
Again, Proposition 53 implies that φ1 and φ2 have Dynkin index 1 or 2.

If φ1 and φ2 both have index 1, then (over C) the homomorphism φ1×φ2 is the
one from the proof of Proposition 71 and Z is the standard D6 subgroup of E8,C
and Property (9.2) holds.

Now suppose that φ1 and φ2 both have index 2. As φ is an injection, it is
not possible that φ1 and φ2 both vanish on −1 ∈ SL2,C, and it follows from the
proof of Lemma 62 that φ1×φ2 is an injection as in the statement of Lemma 62.
In particular, Z has Lie algebra sp4,C× sp4,C of type B2×B2 and Property (9.2)
holds. Note that (ToE2) fails in this case by Table (6.5).

Suppose finally that φ1 has index 1 and φ2 has index 2. We conjugate so that
φ2(sl2) is the copy of sl2 from Example 52, and (by Lemma 41 for the centralizer
so13 of φ2(sl2)) we can take φ1(sl2) to be a copy of sl2 generated by the highest
root of so13. Calculating as described in 55 gives the following table of multiplic-
ities for the irreducible representation m⊗n of sl2× sl2 in e8:

1 2 3 m
1 39 18 1

n 2 32 16 0
3 10 2 0

. (9.3)

In particular, the A1×B4 subgroup of Spin13 that centralizes the image of φ1×φ2
is all of the identity component Z of the centralizer in E8. Again Property (9.2)
holds. (Of course, Table (9.3) shows that (ToE2) fails.) ut

10 Relaxing (ToE2) to (ToE2’)

Combining Lemmas 81 and 91 gives a proof not only of Theorem 12, but of the
following stronger statement.
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Theorem 101 There are no subgroups SL(2,C) ·G satisfying (ToE1), (ToE2’),
and (ToE3) in the (transfer of the) complex E8 or any real form of E8.

We retained hypothesis (ToE2) in the Introduction because that is what is de-
manded by physics. Technically, it is possible for V2,3 and V3,2 to be nonzero in
an interacting theory—so (ToE2) is false but (ToE2’) still holds—but only in the
presence of local supersymmetry (i.e., in supergravity theories) (31). Lisi’s frame-
work is not compatible with local supersymmetry, so we excluded this possibility
above.

For real forms of E8, weakening (ToE2) to (ToE2’) only adds the case of E8(8),
with Gmax = Spin(5), where we find

V3,2 'V2,3 = 4, V2,1 'V1,2 = 4⊕16, (10.1)

and we have indicated the irreducible representations of Spin(5) by their dimen-
sions. Because the gravitinos transform nontrivially under Gmax and because of
their multiplicity, the only consistent possibility would be a gauged N = 4 super-
gravity theory (for a recent review of such theories, see (32)). Unfortunately, the
rest of the matter content (it suffices to look at V2,1) is not compatible with N = 4
supersymmetry. Even if it were, N = 4 supersymmetry would, of course, neces-
sitate that the theory be non-chiral, making it unsuitable as a candidate Theory of
Everything.

To summarize the results of this section, the previous subsection, and Remark
72, weakening (ToE2) to (ToE2’) adds only three additional entries to Table 1.2.

E Gmax V3,2 V2,1
E8(8) Spin(5) 4 4⊕16

R(E8,C) Spin(5)×Spin(5) (4,1)⊕ (1,4) (4,5)⊕ (5,4)
R(E8,C) SU(2)×Spin(9) (2,1) (2,9)⊕ (2,16)

. (10.2)

In each case the fermion representations, V2,1 'V1,2 and V3,2 'V2,3, are pseudoreal
representations of Gmax.

11 Conclusion

In Subsect. 3.3 above, we observed by an easy dimension count that no proposed
Theory of Everything constructed using subgroups of a real form E of E8 has
a sufficient number of weight vectors in the −1-eigenspace to identify with all
known fermions. The proof of our Theorem 12 was quite a bit more complicated,
but it also gives much more. It shows that you cannot obtain a chiral gauge theory
for any candidate ToE subgroup of E, whether E is a real form or the complex
form of E8. In particular, it is impossible to obtain even the 1-generation Standard
Model (in the sense of Definition 25) in this fashion.
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