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Abstract. The predictions for all the cosmological observables of any inflationary model
depend on the number of e-foldings which is sensitive to the post-inflationary history of the
universe. In string models the generic presence of light moduli leads to a late-time period
of matter domination which lowers the required number of e-foldings and, in turn, modifies
the exact predictions of any inflationary model. In this paper we compute exactly the shift
of the number of e-foldings in Kähler moduli inflation which is determined by the magnitude
of the moduli initial displacement caused by vacuum misalignment and the moduli decay
rates. We find that the preferred number of e-foldings gets reduced from 50 to 45, causing a
modification of the spectral index at the percent level. Our results illustrate the importance
of understanding the full post-inflationary evolution of the universe in order to derive precise
predictions in string inflation. To perform this task it is crucial to work in a setting where
there is good control over moduli stabilisation.
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1 Introduction

Cosmological observations in the next decade are very likely to play an important role in
shaping our understanding of the universe. The adiabatic scale invariant spectrum has given
strong credence to the inflationary paradigm; upcoming observations are going to allow for
precision tests and also provide us with the data necessary to scan through the inflationary
model space. Thus on the theoretical front the time is ripe to develop the tools necessary to
compute inflationary predictions precisely.

In the inflationary paradigm, both the spectral tilt ns and the tensor-to-scalar ratio r
are determined by the slow-roll parameters at the time of horizon exit of the CMB modes.
Since the slow-roll parameters in turn are sensitive to Planck suppressed operators, this
necessitates the embedding of inflationary models in an ultraviolet complete theory. Thus
inflationary model building in string theory has received much attention [1–4].

Moduli fields are a generic feature of string models. They play a central rôle in infla-
tionary model building. Moduli vevs appear as parameters in the inflaton potential (which
itself can be one of the moduli), making moduli stabilisation a crucial input for the study
of inflationary dynamics. In particular, a precise understanding of the inflaton couplings is
necessary to address the η-problem.

Another important aspect of the interplay of moduli stabilisation and inflationary dy-
namics is “vacuum misalignment” of the moduli fields [5–7]. During inflation, the inflaton
is displaced from its global minimum — this affects the potential experienced by the mod-
uli fields. Thus the minimum of the potential for the moduli during inflation differs from
the minimum during the post-inflationary epoch. This implies that at the end of inflation
light moduli (moduli whose post-inflationary mass is less than the Hubble scale during in-
flation) are typically displaced from their post-inflationary minimum. When the Hubble
scale becomes smaller than the post-inflationary mass of the moduli, these fields start to
oscillate around their post-inflationary minima with an initial amplitude given by the dif-
ference between the inflationary and the post-inflationary minima of the moduli. This leads
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to an epoch in the post-inflationary history in which the energy density of the universe is
dominated by coherent oscillations of the moduli fields. The moduli eventually decay and
the universe reheats. This reheat temperature scales as a positive power of the mass of the
displaced modulus. Thus for moduli masses below a certain value the reheat temperature
can fall below what is necessary to account for the successes of big bang nucleosynthesis.
Thus considerations based on nucleosynthesis lead to a lower bound on moduli masses — the
“cosmological moduli problem” bound [5–7].

The epoch of modulus domination has another important implication: its effect on
the number of e-foldings of the universe Ne between horizon exit of the modes relevant for
CMB observations and the end of inflation. Recall that Ne plays a central rôle in making
inflationary predictions. Given an inflationary potential, the slow-roll parameters at the
time of horizon exit can be expressed in terms of Ne by studying the evolution of the scale
factor from the point of horizon exit to the end of the inflationary epoch. Since the slow-roll
parameters determine ns and r, this can be used to express ns and r in terms of Ne. On the
other hand, demanding that the energy density of the universe at the time of horizon exit
precisely evolves to the one observed today constrains a particular linear combination of the
number of e-foldings in the various epochs in the entire history of the universe (for a detailed
discussion see for e.g. [8]).

If one uses a theoretical prior on the history of the universe in the post-inflationary
epoch, this constraint turns into an equation for Ne and determines the preferred range
of Ne for the cosmology under consideration.1 This knowledge of Ne can be used in the
expressions for ns and r in terms of Ne to make inflationary predictions. We emphasise
that the above method to determine Ne is sensitive to the post-inflationary history of the
universe. In particular, if the post-inflationary history has an epoch in which the energy
density is dominated by cold moduli particles, as described in the previous paragraph, this
affects the value of Ne. Thus the computation of the preferred range of Ne requires a good
understanding of the dynamics of the epoch of modulus domination. More specifically, as we
will discuss in section 2.1, one needs to have a knowledge of the number of e-foldings Nmod

for which the epoch of modulus domination lasts.

As described earlier, the epoch of modulus domination arises as a result of “vacuum
misalignment”. Thus the magnitude of the “initial field displacement” caused by the mis-
alignment is a key input for determining the associated dynamics. Very generic arguments
based on effective field theory estimates give the value of this “initial displacement” to be of
order Mpl [10–14]. The other inputs that are necessary to determine Nmod are the widths of
the moduli fields, as these determine the duration of the epoch. The computation of Nmod

and its effect on Ne in models where there is a single modulus with post-inflationary mass
below the Hubble scale during inflation was carried out in [15]. The effect of this on the
predictions for ns and r of some prototypical models of inflation was studied in [16]. It was
found that the change in the preferred range of Ne has a significant effect for inflationary
predictions.2 Motivated by this, in this paper our goal is to carry out an explicit compu-
tation for the preferred range of Ne without making use of effective field theory estimates.

1For the standard cosmological timeline consisting of inflation, reheating, radiation domination, matter
domination and finally the epoch of domination by dark energy, this constraint yields Ne ' 55± 5 [8]. For a
discussion of the various effects that can cause Ne to deviate from this “standard range” see [9].

2Although it is possible to use effective field theory estimates for the initial displacement and moduli widths
for the purposes of determining the preferred range of Ne, it is certainly more appropriate to compute them
explicitly — particularly if one is interested in confronting precision cosmological data.
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Both the necessary inputs (the “initial displacement” and moduli widths) require a good
understanding of the moduli potential and their couplings. The only arena which allows to
compute the input information reliably is string compactifications with moduli stabilisation.
Thus the requirement of accurate determination of the preferred range of Ne naturally leads
us to the study of inflationary models in moduli stabilised string compactifications.

In this paper we will focus on Kähler moduli inflation [17] which is a model of infla-
tion in the Large Volume Scenario (LVS) for moduli stabilisation [18, 19] of type IIB flux
compactifications [20]. In this model, the rôle of the inflaton is played by a blow-up Kähler
modulus. On the other hand, the lightest modulus is the volume mode. We explicitly anal-
yse the scalar potential of the theory to compute the vacuum misalignment for the volume
modulus in terms of the microscopic parameters of the compactification. We find that the
“initial displacement” of the canonically normalised field is of order 0.1–1Mpl, in keeping
with effective field theory estimates.3

This, to our knowledge, is the first explicit computation of an initial field displacement4

— in this sense it is a verification of the effective field theory arguments used to obtain
the order of magnitude estimate for the initial displacement. Having obtained the “initial
displacement” of the volume modulus we are able to precisely track the post-inflationary
history of the universe. This enables us to compute the preferred range of Ne for Kähler
moduli inflation. We find the central value of the preferred range to be 45 (below the central
value of 50 in the case of the standard post-inflationary cosmological timeline). Thus the
modified post-inflationary history has a significant effect on the inflationary predictions.

We would like to emphasise that even if, for typical values of the underlying parameters,
the volume modulus is heavy enough (has mass of the order 108–109 GeV) to evade the
cosmological moduli problem, it still plays an important rôle in determining inflationary
predictions. Our results clearly show the importance of taking post-inflationary moduli
dynamics into account while making inflationary predictions. Analysis similar to the one
carried out in this paper for Kähler moduli inflation should be carried out for all string and
supergravity models to obtain reliable inflationary predictions.

This paper is organised as follows. In section 2 we review cosmological moduli and the
effect they can have on Ne, while in section 3 we review Kähler moduli inflation and LVS
moduli stabilisation. In section 4 we study the precise predictions of Kähler moduli inflation
by first computing the “initial displacement” of the volume modulus during inflation, then
using it to determine the preferred range for Ne and finally generating the plot which relates
ns to Ne. The inflationary prediction for ns for Kähler moduli inflation is obtained from this
plot with Ne taken in the preferred range.

2 Cosmological moduli

A generic feature of string/supergravity models with moduli masses below the Hubble scale
during inflation is a cosmological timeline characterised by an epoch in which the energy
density of the universe is dominated by cold moduli particles. We briefly review this cosmo-
logical timeline and refer the reader to [5–7, 22–24] for more details. At the end of inflation,

3We also study the initial displacement of the other Kähler moduli, finding that for blow-up moduli other
than the inflaton the initial displacement is of order the string scale Ms (i.e well below Mpl). This again
is in keeping with general expectations since the wave-function of these moduli is localised in the internal
dimensions.

4See however [21] for an earlier attempt to compute moduli displacements in string-inspired supergravity
frameworks.
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light moduli are typically not present in their post-inflationary vacuum — this occurs since
the minimum of the modulus potential during the inflationary epoch differs from the min-
imum during the post-inflationary epoch. This “vacuum misalignment” arises because the
potential experienced by the moduli fields depends on the value of the inflaton. As the in-
flaton is displaced from its global minimum during the inflationary epoch, the minimum of
the moduli potential is shifted. Generic arguments based on effective field theory principles
give this initial field displacement to be of order Mpl [10–14].

For the purposes of review, let us consider the case when there is a single modulus ϕ
whose post-inflationary mass mϕ is below the Hubble scale during inflation. At the end of
inflation reheating occurs and the universe becomes radiation dominated.5 Although the
modulus is not at its post-inflationary minimum, the high value of the Hubble constant
keeps it pinned at its initial value. With the expansion of the universe, the Hubble constant
falls. The modulus begins to oscillate about its post-inflationary minimum when the Hubble
constant falls below the modulus mass. The time average of the energy density associated
with the oscillating modulus dilutes as matter, i.e. at a rate significantly slower than that of

radiation. If the initial displacement in Planck units is Y = ϕin

/
Mpl > 0.1

√
mϕ

/
Mpl, the

modulus eventually dominates the energy density of the universe. This epoch lasts until the
decay of the moduli particles. The universe reheats for a second time with the decay of the
modulus. The successes of big bang nucleosynthesis imply that the second reheat temperature
has to be sufficiently high so that the universe was thermal during nucleosynthesis. This
requirement yields a lower bound on the mass of order mϕ & 50 TeV [5–7, 25, 26]. This is
known as the cosmological moduli problem bound.

The above cosmological timeline is often called the modular cosmology timeline which
is caused by the non-trivial initial field displacement.6 As mentioned in the introduction, a
detailed understanding of the associated post-inflationary dynamics of the moduli is necessary
in order to obtain the preferred range of Ne. We will carry this out explicitly in section 4.1
for Kähler moduli inflation.

2.1 Range of e-foldings in modular cosmology

As discussed in the introduction, the number of e-foldings between horizon exit and the end
of inflation plays a central rôle in making predictions in inflationary cosmology. Given the
inflaton potential, the slow-roll parameters (like ns and r) can be expressed in terms of Ne by
tracking the evolution of the scale factor during the inflationary epoch. Thus the knowledge
of Ne allows one to make inflationary predictions.

The preferred range for Ne is determined by tracking the evolution of the energy den-
sity of the universe from horizon exit to the present epoch. The amplitude of the adiabatic

5There is also energy density associated with the modulus displaced from its minimum but at this stage
the radiation energy density dominates.

6In models with several light moduli there might be multiple epochs of moduli domination. However,
when there is a separation of scales between the mass of the lightest modulus and the mass of other moduli,
the lightest modulus outlives the others and sets the time scale for the epoch of modulus domination. The
dynamics of the system can then be effectively described by a model with a single modulus with the effect of
the heavy moduli being incorporated in the reheating epoch after inflation. In models in which there is no
distinct lightest modulus, the dynamics is more complicated to analyse. This was discussed briefly in [15]. In
this paper we will confine ourselves to situations in which there is a distinct lightest modulus.
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perturbations generated by quantum fluctuations in single field models of inflation is:

As =
2

3π2r

(
ρ∗
M4

pl

)
, (2.1)

where ρ∗ is the energy density of the universe at horizon exit for CMB modes with wavenum-
ber k ≈ 0.05 Mpc−1. The amplitude As remains constant until horizon re-entry and can
be related to the CMB temperature fluctuations. Thus the measurement of the strength of
temperature fluctuations gives us the value of the energy density of the universe at horizon
exit (modulo r). We also know the energy density today ρ0 via determination of the Hub-
ble constant. Thus any theoretical proposal for the history of the universe between horizon
exit and the present epoch must be such that ρ∗ evolves to ρ0. Applying this consistency
condition to the standard cosmological timeline (consisting of inflation, reheating, radiation
domination, matter domination and the present epoch of acceleration) yields (see for e.g. [8]):

Ne +
1

4
(1− 3wre)Nre ≈ 57 +

1

4
ln r +

1

4
ln

(
ρ∗
ρend

)
, (2.2)

where Ne is the number of e-foldings between horizon exit and the end of inflation, wre the
effective equation of state parameter during the reheating epoch, Nre the number of e-foldings
during the reheating epoch which lasts from the end of inflation until the decay of the in-
flaton, ρ∗ the energy density at the time of horizon exit and ρend the energy density at the
end of inflation. Making generic assumptions regarding the reheating epoch, change in the
energy density of the universe during inflation and the scale of inflation, ref. [8] used (2.2) to
find the following preferred range for Ne in the standard cosmological timeline:

Ne = 55± 5 . (2.3)

As discussed in the introduction, the determination of the preferred range of Ne requires the
post-inflationary cosmological history as an input. Thus one expects the preferred range of
Ne in modular cosmology to be different from the usual range (2.3). Ref. [15] applied the
above mentioned consistency condition to the modular cosmology timeline described in this
section, finding the relation:7

Ne +
1

4
Nmod +

1

4
(1− 3wre)Nre ≈ 57 +

1

4
ln r +

1

4
ln

(
ρ∗
ρend

)
, (2.4)

where Nmod is the number of e-foldings that the universe undergoes during the epoch of mod-
ulus domination. This corresponds to a second reheating epoch where the equation of state
parameter is wmod = 0.8 The number of e-foldings of modulus domination was found to be:

Nmod ≈
4

3
ln

(√
16πMplY

2

mϕ

)
, (2.5)

7Our notation is slightly different from that of [15] which used Nk to denote the number of e-foldings
between horizon exit and the end of inflation.

8We work under the assumption of sudden thermalisation of the modulus decay products. This is a very
good approximation since the moduli decay when H ∼ Γmod. Given that the moduli are only gravitationally
coupled while the decay products have gauge interactions with width Γgauge, we have Γgauge > Γmod. Thus
when the modulus decays we have Γgauge > H, ensuring a very fast thermalisation process. Note that in
the version of eq. (2.4) derived in [15], a term which captures the effect of this thermalisation epoch was
incorporated. As argued above, here we drop this term since its inclusion has a negligible effect in the
determination of the preferred range of Ne.
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Figure 1. Comoving horizon (aH)−1 as a function of the scale factor a (the scale is arbitrary). The
green line represents a standard cosmological evolution whereas the blue and red lines describe the
cosmological evolution of our universe in the presence of light moduli. The red history is inconsistent
with present cosmological observations.

where Y is the initial displacement of the modulus from its post-inflationary minimum in
Planck units. Eq. (2.4) can be used to obtain the “preferred range” of Ne for modular cos-
mology. Making the same generic assumptions as in [8], eq. (2.4) gives the preferred range
for Ne to be: (

55− 1

4
Nmod

)
± 5 . (2.6)

Note that this can be thought of as a lowering of the central value of the preferred range of
Ne by Nmod/4. This can be clearly seen in figure 1 where the comoving horizon is plotted as a
function of the scale factor. The green line represents a standard cosmological evolution: infla-
tion, reheating, radiation- and matter-dominance. On the other hand, the blue and red lines
represent a cosmological evolution in the presence of moduli: inflation, reheating, radiation-,
moduli-, radiation- and matter-dominance. The difference between the blue and the red line is
in the duration of inflation. If inflation in the presence of light moduli lasts as in the standard
case (red line), the modes which would be entering the horizon today in a standard cosmology
(green line) would still be outside the horizon. In order to make these modes enter the horizon
today also in the cosmological evolution with moduli, inflation has to be shorter (blue line).

As mentioned in the introduction, one can use effective field theory estimates to deter-
mine Nmod but to compute it explicitly one needs to work in a setting where there is a good
understanding of moduli stabilisation. One of the primary goals of this paper is to emphasise
the importance of working in a concrete moduli stabilised setting in order to determine the
preferred range of Ne. We shall take Kähler moduli inflation as our model for this purpose.
The associated cosmological timeline will be discussed in detail in section 4.2, while here
we just note some important features. In the cosmological timeline there are two epochs
of modulus domination — the first in which the energy density is dominated by inflaton
quanta (which are produced during reheating) and the second in which the energy density is
dominated by coherent oscillations of the volume modulus. Following [15], eq. (2.4) is easily
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generalised to the situation in which there are two epochs of modulus domination:9

Ne +
1

4
Nmod1 +

1

4
Nmod2 ≈ 57 +

1

4
ln r +

1

4
ln

(
ρ∗
ρend

)
. (2.7)

Notice that each epoch of modulus domination has a contribution which is equal to one fourth
of the number of e-foldings in the epoch. The knowledge of the moduli potential and couplings
will provide us with the ingredients (the magnitude of the initial displacement of the volume
modulus and the widths of the moduli) necessary to determine the number of e-foldings
in the epochs of modulus domination. Another important feature is the contribution from
the term involving the tensor-to-scalar ratio r which in Kähler moduli inflation is extremely
small: r ∼ O(10−10). Thus, unlike most models of inflation, the term involving r makes a
large contribution in eq. (2.7) determining Ne.

3 Review of Kähler moduli inflation

Kähler moduli inflation [17] provides a simple realisation of inflation in string compactifica-
tions. The model is constructed in the LVS framework [18, 19] for moduli stabilisation in IIB
flux compactifications with a blow-up Kähler modulus playing the rôle of the inflaton. In
IIB flux compactifications the complex structure moduli appear in the Gukov-Vafa-Witten
superpotential [27], while the shift symmetry of the Kähler moduli implies that they ap-
pear in the superpotential only via non-perturbative effects. Thus Kähler moduli are ideal
candidates for playing the rôle of the inflaton — smallness of the non-perturbative effects
can be exploited to obtain the approximately flat potential necessary to satisfy the slow-roll
conditions.

3.1 Large volume scenario

As discussed in the introduction, the inflationary dynamics in string compactifications is
closely tied to moduli stabilisation. We therefore begin by reviewing LVS moduli stabilisa-
tion. The Large Volume Scenario provides a very general algorithmic procedure for moduli
stabilisation in IIB Calabi-Yau (CY) compactifications with h2,1 > h1,1 and one of the Kähler
moduli being a blow-up mode [28]. The superpotential takes the form:

W =

∫
G3 ∧ Ω(za) +

∑
i

Ai e
−aiTi , (3.1)

where G3 is the complex three-form flux, Ω(za) is the CY holomorphic three-form expressed
in terms of the complex structure moduli za and Ti are the Kähler moduli:

Ti = τi + ici , (3.2)

where τi are four-cycle volumes and ci the associated axionic partners. Upon integrating out
the complex structure moduli, the first term in (3.1) gives a constant which we denote by W0:〈∫

G3 ∧ Ω

〉
= W0 . (3.3)

9Again we work under the good assumption of sudden thermalisation of the moduli decay products.
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In the LVS framework W0 is an O(1) quantity. The tree-level Kähler potential is given by
(neglecting the terms which depend on the dilaton and complex structure moduli):

Ktree = −2 ln

(
V(Ti)

)
, (3.4)

where V is the Einstein frame CY volume in string units. The simplest LVS realisations are
provided by CY manifolds whose volume takes the Swiss-cheese form:

V = α

(
τ
3/2
1 −

n∑
i=2

λiτ
3/2
i

)
. (3.5)

Here τ1 controls the overall volume. On the other hand, τ2, . . . , τn are blow-up modes pa-
rameterising the size of holes in the compactification. As in [17] we will confine ourselves to
CY manifolds with a Swiss-cheese structure (we refer the reader to [28–30] for LVS realisa-
tions in more general CY cases). The leading α′ correction to the Kähler potential (3.4) is
proportional to the CY Euler number χ. After its inclusion K takes the form [31]:

K = −2 ln

(
V +

ξ̂

2

)
, (3.6)

where ξ̂ = χ

2(2π)3g
3/2
s

. With this, in the regime V � 1 and τ1 � τi (for i > 1), the superpo-

tential (3.1) and Kähler potential (3.6) yield the scalar potential:

VLVS =
2∑
i=2

8(aiAi)
2√τi

3Vλi
e−2aiτi −

n∑
i=2

4aiAiW0

V2
τie
−aiτi +

3ξ̂W 2
0

4V3
. (3.7)

Note that the negative sign of the second term in the above potential arises from minimisation
of the axionic fields ci. Minimising the potential (3.7) with respect to τi one finds:

aiAie
−aiτi =

3αλi
2V

(1− aiτi)
(12 − 2aiτi)

√
τi , (3.8)

which motivates the following large volume limit:

V → ∞ with aiτi ≈ lnV . (3.9)

In this limit, the potential for the volume is:

VLVS = −3W 2
0

2V3

(
n∑
i=2

[
λiα

a
3/2
i

]
(lnV)3/2 − ξ̂

2

)
. (3.10)

From the structure of the potential it is easy to see that the potential has an AdS minimum.
To obtain an approximately Minkowski minimum (as is necessary to describe the universe
in the present epoch), we need to incorporate other ingredients in the effective action. The
necessary ingredients can arise from various microscopic phenomena such as anti-D3 branes
in warped throats [32], magnetised D7-branes [33–35], dilaton-dependent non-perturbative
effects [36, 37] or the effect of D-terms [38]. The inclusion of such an effect can be captured
by the addition in (3.10) of an uplift term of the form:

Vup =
D

Vγ
with D > 0 , (3.11)

– 8 –



J
C
A
P
0
8
(
2
0
1
6
)
0
0
6

with the value of γ (1 ≤ γ ≤ 3) depending on the uplift mechanism. The coefficient D has
to be tuned so that the potential:

V = VLVS + Vup =
n∑
i=2

8(aiAi)
2√τi

3Vλi
e−2aiτi −

n∑
i=2

4aiAiW0

V2
τie
−aiτi +

3ξ̂W 2
0

4V3
+
D

Vγ
(3.12)

has an approximately Minkowski vacuum. We will discuss the tuning of D in greater detail in
section 4.1. We will refer to the global minimum of the potential (3.12) as the LVS minimum.
This will be relevant for describing the universe in the post-inflationary epoch. The masses
of the moduli in this vacuum will be important for us later. In the large volume limit, the
mass acquired by the small Kähler moduli (τi, i = 2, . . . , n) is:

m2
τi '

W 2
0 (lnV)2M2

pl

V2
. (3.13)

On the other hand, the mass acquired by the overall volume modulus is:

m2
V '

W 2
0M

2
pl

V3 lnV
, (3.14)

making the volume mode the lightest geometric modulus.

3.2 Kähler moduli inflation

Here we briefly review Kähler moduli inflation and refer the reader to [17] for details. The
basic idea of Kähler moduli inflation is that one of the “small moduli” (without loss of
generality we will take this to be τn) is displaced from its global minimum and plays the rôle
of the inflaton. For eanτn � V2 the potential (3.12) is well approximated by:

Vinf =

n−1∑
i=2

8(aiAi)
2√τi

3Vλi
e−2aiτi −

n−1∑
i=2

4aiAiW0

V2
τie
−aiτi +

3ξ̂W 2
0

4V3
+
D

Vγ
− 4anAnW0

V2
τne
−anτn .

The last term is an exponentially flat potential for the inflaton τn. The other terms can be
thought of as providing a potential for the fields V and τi (i = 2, . . . , n− 1). Taking τi to be
at their minimum during the inflationary epoch, we obtain:

Vinf = −3W 2
0

2V3

(
n−1∑
i=2

[
λiα

a
3/2
i

]
(lnV)3/2 − ξ̂

2

)
+
D

Vγ
− 4anAnW0

V2
τne
−anτn . (3.15)

Comparing the above with (3.10) we conclude that the volume direction is not tachyonic and
heavy during the inflationary epoch if the ratio:

R ≡ λn a
−3/2
n∑n

i=2 λi a
−3/2
i

� 1 . (3.16)

Notice that for non-perturbative effects generated by gaugino condensation on D7-branes
wrapping a four-cycle ai = 2π/Ni, where Ni are the ranks of the gauge groups, while for
non-perturbative effects from Euclidean D3-branes ai = 2π. Thus arbitrarily small values of
R are unnatural. On the other hand, R ∼ 0.1− 0.01 can be obtained from natural choices of
the microscopic parameters. The phenomenological interesting value of the volume modulus
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for Kähler moduli inflation is V ∼ 105 − 106 [17].10 It is easy to check that R ∼ 0.1 − 0.01
does not destabilise the potential for values of the volume modulus in this range. Minimising
(3.15) with respect to V we find:

Vinf(τn) = V0 −
4τnW0anAn
V2in

e−anτn with V0 =
βW 2

0

V3in
, (3.17)

where Vin is the value of the volume during the inflationary epoch and β an O(1) constant
which we will determine in the next section. The field τn is not canonically normalised. Eqs.
(3.5) and (3.6) imply that in the large volume limit the canonically normalised field σ is:

σ

Mpl
=

√
4λ

3Vin
τ

3
4
n . (3.18)

In terms of the canonically normalised field the inflationary potential in Planck units is:

V = V0 −
4W0anAn
V2in

(
3Vin
4λ

)2/3

σ4/3 exp

[
−an

(
3Vin
4λ

)2/3

σ4/3

]
. (3.19)

Note that the scale of inflation is set by V0. As discussed in [17], the model is very similar
to the textbook example of inflation driven by an exponentially flat potential: V (σ) =
C0(1− e−bσ) (but with a large coefficient b rather than a large field σ during inflation). We
will discuss the detailed phenomenology of the model in section 4.3. Finally, we would like to
mention that Kähler moduli inflation suffers from an η-problem arising as a result of potential
loop corrections to the Kähler potential. These corrections may have power law dependence
on the inflaton, and so could dominate over the exponentially flat potential (3.19) and lead
to a large mass term for the inflaton [1, 2, 39]. For the purposes of this paper, we will assume
that this problem can be addressed by concrete configurations that suppress these corrections
or in general by tuning microscopic parameters of the compactification. We stress that this
tuning does not affect our final results on the precise predictions of Kähler moduli inflation.

The dynamics of τn (the inflaton) immediately after the end of inflation was analysed
in detail in [40]. It was found that there is non-perturbative production of τn quanta with
very high efficiency — the entire energy density associated with the inflaton is converted into
τn quanta within two/three inflaton oscillations around the minimum. The primary decay
channel for any of the small moduli is matter on the D7-branes wrapping the associated cycle.
Thus unless the inflaton cycle is the same as the cycle supporting Standard Model degrees of
freedom, most of the inflaton energy gets dumped into hidden sector fields when the inflaton
quanta decay [41]. This is not necessarily a problem since, as we have already explained,
these degrees of freedom get diluted due the entropy released by the late-time decay of the
volume modulus.11 Moduli fields usually decay via Planck suppressed interactions, thus their
characteristic width is given by:

Γmod '
m3

mod

16πM2
pl

. (3.20)

However the decay of a small cycle Kähler modulus to matter fields associated with branes
wrapping the cycle provides an exception to this. The wave-functions of the matter fields are

10We will discuss the derivation of this range in section 4.3.
11Another potential problem could arise from thermal corrections which could destabilise the volume mode

potential, leading to a decompactification limit [42]. However this can be shown to be never the case for
Kähler moduli inflation [43].
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localised on the cycle, hence the couplings are suppressed only by the string scale Ms. These
couplings were determined and the width of τn quanta was computed in [41, 44]:12

Γτn ' 0.1
m3
τn

M2
s

. (3.21)

On the other hand, the volume modulus decays via Planck suppressed interactions, and so
its decay rate is [41, 45, 46]:

ΓV '
m3
V

16πM2
pl

, (3.22)

in keeping with (3.20). These widths will play an important rôle when we discuss the post-
inflationary history of the universe.

4 Precise predictions of Kähler moduli inflation

In this section we derive the precise predictions of Kähler moduli inflation by determining
the new range for Ne in a non-standard cosmological evolution with a late-time epoch of
matter domination due to the presence of light moduli.

4.1 Shift of the volume mode during inflation

As discussed in the introduction and section 2, arguments based on general principles imply
that at the end of inflation light moduli find themselves displaced from their post-inflationary
minimum as a result of “vacuum misalignment”. This displacement occurs since the potential
experienced by the modulus depends on the inflaton; the minimum of the modulus during the
inflationary epoch differs from the minimum in the post-inflationary epoch. The displacement
plays a central rôle in determining the post-inflationary history of the universe. In Kähler
moduli inflation, the volume modulus is displaced from its post-inflationary minimum during
inflation, hence there is an epoch in the post-inflationary history of the universe where the
energy density is dominated by coherent oscillations of the volume modulus.13 In this section,
we explicitly compute this field displacement, finding that the result is in keeping with
effective field theory expectations [10–14]. This initial displacement will be used as an input
for the determination of the preferred range for Ne.

We begin our analysis by determining the coefficient D of the uplift term in the potential
(3.12). Recall that the value of D is set by the requirement that the post-inflationary vacuum
is Minkowski. To impose this condition, we can first use (3.8) to eliminate τi from (3.12)
(the minimisation conditions (3.8) are unaffected by the addition of the uplift term since this
term depends only on the volume modulus). After doing so, the potential is a function of
only the volume and is given by:

V = −3W 2
0

2V3

(
n∑
i=2

[
λiα

a
3/2
i

]
(lnV)3/2 − ξ̂

2

)
+
D

Vγ
. (4.1)

12Other blow-up modes have similar decay widths.
13We will also compute the displacement of the other Kähler moduli. These displacements will be extremely

small. This, together with the fact that the other Kähler moduli have masses (both in the inflationary and
post-inflationary epoch) greater than the Hubble constant during inflation, implies that they relax to their
minimum along with the inflaton and hence do not affect the post-inflationary cosmology.
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If V = V∗ is the post-inflationary minimum we need to impose:

V (V∗) =
∂V (V∗)
∂V

= 0 . (4.2)

It is useful to define:

φ ≡ lnV and P ≡ α
n∑
i=2

λi a
−3/2
i =

α

R
λn a

−3/2
n . (4.3)

The conditions in (4.2) then read:

−3W 2
0

2
e−3φ∗

(
Pφ

3/2
∗ −

ξ̂

2

)
+De−2φ∗ = 0 , (4.4)

3W 2
0

2
e−3φ∗

(
3Pφ

3/2
∗ −

3

2
Pφ

1/2
∗ −

3ξ̂

2

)
− 2De−2φ∗ = 0 , (4.5)

where for simplicity we have set γ = 2.14 Combining (4.4) and (4.5) we have:

φ
3/2
∗ −

3

2
φ
1/2
∗ −

ξ̂

2P
= 0 , (4.6)

which determines φ∗.
15 Making use of the above in (4.4) we conclude:

D =
9W 2

0

4
Pe−φ∗φ

1/2
∗ . (4.7)

In summary, after adjusting the coefficient of the uplift term so that there is a Minkowski
minimum in the post-inflationary epoch, the potential (3.12) is given by:

V (φ) = −3W 2
0

4
e−3φ

(
2Pφ3/2 − ξ̂ − 3Pφ

1/2
∗ e(φ−φ∗)

)
, (4.8)

with φ∗ given in (4.6).
Let us now examine the potential during the inflationary epoch which is given by (3.15).

The last term in (3.15) makes a negligible contribution to the potential for the volume in
comparison to the others (since eanτn � V). Hence the minimum of the volume modulus
during inflation is determined by the potential (with R as defined in (3.16)):

Vin(φ) = −3W 2
0

4
e−3φ

[
2P (1−R)φ3/2 − ξ̂ − 3Pφ

1/2
∗ e(φ−φ∗)

]
. (4.9)

This gives that φin (the minimum during the inflationary epoch) is determined by:

(
1−R

)
φ
3/2
in −

1

2

(
1−R

)
φ
1/2
in − e

(φin−φ∗)φ
1/2
∗ −

ξ̂

2P
= 0 . (4.10)

Recall that φ∗ (the minimum of the volume in the post-inflationary epoch) is determined by
(4.6) and hence is a function of ξ̂

/
P . Thus for a given value of the volume, (4.10) determines

14It can be easily checked that our results have very mild sensitivity to the value of γ.
15This implies that to leading order in the large volume expansion φ∗ '

(
ξ̂
/

2P
)2/3

.
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φin as a function of R. As discussed in section 3, the existence of a stable minimum during
inflation requires R� 1. The shift δφ = φin−φ∗ can be obtained by working in a perturbative
expansion in this parameter. For this, it is useful to write the potential during the inflationary
epoch as:

Vin(φ) = V (φ) + δV (φ) , (4.11)

with V (φ) as given in (4.8) and δV (φ) =
3W 2

0
2 e−3φPRφ3/2. The shift in the location of the

minimum is then given by:

δφ = −δV
′(φ∗)

V ′′(φ∗)
= 4R

φ∗ + ξ̂
2P φ

1
2
∗

2φ∗ − 1
' 2Rφ∗ , (4.12)

where we have made use of the large volume limit in the approximation. Recall that for Kähler
moduli inflation Vin ∼ 105–106 and for typical values of microscopic parameters R ∼ 0.01–
0.1. This gives δφ ∼ 0.1–1. Note that the volume during the inflationary epoch is greater
than the volume in the post-inflationary epoch (since R > 0) but it is smaller than the local
maximum of the potential (since R � 1) and therefore the field will roll towards the local
minimum and not to the decompactification minimum after inflation. We are interested in

the displacement of the canonically normalised field which is ϕ
Mpl

=
√

2
3φ. Thus we conclude:

Y =
δϕ

Mpl
=

√
2

3
δφ ' 2

√
2

3
Rφ∗ ' 0.1− 1 , (4.13)

consistent with the effective field theory expectations based mostly on dimensional analysis.
Having obtained the shift in the volume modulus, we can use (3.9) to obtain the shift in the
other Kähler moduli finding:

aiδτi ≈ δφ ' 2Rφ∗ . (4.14)

Recall that the fields τi are not canonically normalised, while the canonically normalised fields
are given by (3.18). We can easily see that the displacement of the canonically normalised
blow-up modes is of order δσ ∼ Mpl/

√
V ∼ Ms (i.e. significantly less than Mpl). Again,

this behaviour is expected as the wave-functions of blow-modes are localised in the internal
dimensions. The small initial displacement together with the fact that the blow-up modes
(during both inflationary and post-inflationary epochs) are much heavier than the Hubble
scale, imply that at the end of inflation they relax to their minimum along with the inflaton
and do not have an effect on the post-inflationary dynamics.

Next, let us compute V0 to leading order in R. V0 is the expectation value of Vinf(φ)
during the inflationary epoch. Since both V (φ) and its first derivative vanish at φ∗, to leading
order in the shift this is given by:

V0 = Vinf(φin) ≈ 1

2
V ′′(φ∗)(δφ)2 + δV (φ∗) ≈

3W 2
0

2
e−3φ∗PRφ

3/2
∗ . (4.15)

This gives the quantity β in (3.17) to be:

β =
3

2
PRφ

3/2
∗ =

3

2
PR (lnV)3/2 . (4.16)

Note that for typical values of the microscopic parameters β is an O(1) parameter. Eqs.
(4.12) and (4.15) provide expressions for the displacement of the volume modulus and the
vacuum energy during inflation to leading order in R.
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4.2 Number of e-foldings

We now have the necessary ingredients to compute Ne in Kähler moduli inflation. The
dynamics right after the end of inflation at the time t1 was analysed in [40]. It was found
that there is a very violent non-perturbative production of τn (inflaton) quanta, and so the
inflaton energy density is converted almost completely into inflaton quanta. Thus the energy
density associated with τn quanta is approximately equal to the energy density at the time
of inflation computed in (4.15):

ρτn(t1) ≈
M4

plW
2
0 β

V3
, (4.17)

with β as given in (4.16). At this stage, there is also energy density associated with the
volume modulus arising as a result of vacuum misalignment. This energy density is given by:

ρV(t1) ≈
1

2
m2
Vϕ

2
in ≈

M4
plW

2
0 Y

2

V3 lnV
, (4.18)

where Y is the initial displacement in Planck units (4.13). Thus the ratio of the two energy
densities is given by:

ρV(t1)

ρτn(t1)
≈ Y 2

β lnV
≡ θ2 . (4.19)

Since Y 2 � 1, we have ρV(t1) � ρτn(t1) or θ2 � 1. The Hubble constant at the end of
inflation can be obtained from (4.17):

H(t1) ≈
MplW0β

1/2

V3/2
. (4.20)

Given that this is of ordermV , the volume modulus executes coherent oscillations immediately
after the end of inflation, and the associated energy density dilutes as matter. Note that since
both the energy densities (associated with τn and V) dilute as matter, the universe has a
matter dominated epoch (we will refer to this as the first matter dominated epoch). This also
implies that during this period the ratio of the two energy densities remains constant. This
epoch lasts until the decay of the τn quanta (that have a shorter lifetime than the volume)
which takes place at the time t2. Let us obtain the number of e-foldings of the universe
during this epoch. Using the width of τn given in (3.21), this becomes:

Nmod1 = ln

(
a(t2)

a(t1)

)
=

1

3
ln

(
ρτn(t1)

ρτn(t2)

)
' 2

3
ln

(
H(t1)

Γτn

)
' 2

3
ln

(
10β1/2V1/2

W 2
0 (lnV)3

)
. (4.21)

With the decay of the τn modulus, the associated energy is converted to radiation. However
the energy associated with the coherent oscillations of the volume modulus continues to evolve
like matter. Note that since the ratio of the energy densities associated with the τn quanta and
the volume modulus remains a constant during the first epoch of matter domination, the ratio
of the radiation energy density to the energy density associated with coherent oscillations of
the volume modulus at t2 is the same as its value at t1 given in (4.19). At this stage, the
universe enters an epoch of radiation domination (since θ2 � 1). However, as the universe
evolves, the energy density associated with radiation dilutes much faster than the energy
density associated with the coherent oscillations of the volume modulus (as the later dilutes
like matter), and so the universe eventually enters a second epoch of matter domination which
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lasts until the decay of the volume modulus. Similar to the estimate for Nmod1, the number
of e-foldings during the second epoch of matter domination is approximately equal to:

Nmod2 '
2

3
ln

(
H(teq)

ΓV

)
, (4.22)

where teq is the time at which equality of radiation and matter energy density (associated
with the volume modulus) takes place, while ΓV is the lifetime of the volume modulus given
in (3.22). To determine the Hubble constant at teq, first note that (4.21) can be used to
determine the Hubble constant at t2 in terms of Nmod1 as:

H(t2) = H(t1)

(
a(t1)

a(t2)

)3/2

= H(t1) e
− 3

2
Nmod1 ' H(t1)W

2
0 (lnV)3

10β1/2V1/2
. (4.23)

In the subsequent evolution, matter-radiation equality is determined by the condition:

ρrad(t2)

(
a(t2)

a(teq)

)4

= ρV(t2)

(
a(t2)

a(teq)

)3

. (4.24)

Since ρV(t2)
/
ρrad(t2) = θ2, this yields a(t2)/a(teq) = θ2. Thus the energy density at the time

of equality is ρ(teq) ' ρrad(t2) θ
8 which implies H(teq) ' H(t2) θ

4. Combining this result
with (4.23) we obtain:

H(teq) =
H(t1)W

2
0 (lnV)3θ4

10β1/2 V1/2
. (4.25)

Finally, combining (3.22), (4.22) and (4.25) we obtain:

Nmod2 ≈
2

3
ln

(
16πV5/2(lnV)5/2Y 4

10β2

)
≈ 2

3
ln

(
16πV5/2Y 4

10P 2R2(lnV)1/2

)
, (4.26)

where we have used the expression for β as given in (4.16). Eqs. (4.21) and (4.26) determine
Nmod1 and Nmod2 in terms of the microscopic parameters of the compactification (with the
expression for Y given in (4.13)). These can then be used in (2.7) as inputs to determine
the preferred range of Ne which, in turn, determines all the inflationary predictions. In
particular, in the next section we will obtain the ns-Ne plot.

Before concluding this section, let us estimate the reheat temperature of the universe
after the decay of the volume modulus. For this, we need the Hubble constant at the time
of decay which is given by:

H(tdec) = H(teq) e−
3
2
Nmod2 '

MplW
3
0

16πV9/2(lnV)3/2
' ΓV . (4.27)

The reheat temperature can now be obtained by using:

3M2
plH

2(tdec) = ρ(tdec) '
π2

30
g∗ T

4
rh , (4.28)

where g∗ is the effective number of degrees of freedom that thermalise. For the volume in the
range V ∼ 105 - 106 and g∗ ≈ 100, this gives Trh & 103 GeV showing that there is no tension
with the successes of big bang nucleosynthesis.
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4.3 Inflationary phenomenology

In the inflationary epoch, the field τn rolls down the potential (3.19). The volume effectively
remains at constant value Vin and the dynamics can be approximated in the framework of
single field slow-roll inflation. The slow-roll parameters (which need to be small during the
inflationary epoch) are given by [17]:

ε =
M2

pl

2

(
V ′

V

)2

=
32V3in

3β2W 2
0 λn

a2nA
2
n

√
τn (1− anτn)2 e−2anτn , (4.29)

η = M2
pl

V ′′

V
= − 4V2in

3βW0λn
√
τn
anAn

[(
1− 9anτn + 4a2nτ

2
n

)
e−anτn

]
. (4.30)

Inflation ends when the slow-roll conditions are violated. This happens when the inflaton
reaches the approximate value anτ

end
n ' O(2 lnVin). The number of e-foldings as function of

the field excursion is given by (σ is the canonically normalised inflaton field):

Ne(σ) =

∫ σ

σend

1√
2ε(σ)

dσ . (4.31)

This yields:

Ne(τn) =
3βW0λn

16V2inanAn

∫ τn

τendn

eanτn
√
τn(anτn − 1)

dτn . (4.32)

The integral (4.32) can be evaluated exactly in the large volume limit anτn > anτ
end
n '

O(2 lnVin)� 1, finding:

Ne =
3βW0λn

8V2ina
3/2
n An

[
eanτn
√
anτn

+ i
√
π erf (i

√
anτn)

]τendn

τn

, (4.33)

where erf(x) is the error-function. Due to the asymptotic expansion of the error-function:

i
√
π erf (i

√
anτn) = − eanτn

√
anτn

(
1 +

1

2anτn
+ · · ·

)
for anτn � 1 , (4.34)

the expression (4.33) for the number of e-foldings can be approximated as:

Ne =
3βW0λn

16V2ina
3/2
n An

[
eanτn

(anτn)3/2

]τn
τendn

' 3βW0λn

16V2ina
3/2
n An

eanτn

(anτn)3/2
, (4.35)

where we evaluated the primitive function just at the upper limit of integration due to the
presence of an exponential. Substituting (4.35) in (4.29) and (4.30) for anτn � 1, we obtain:

ε '

(
3λn

8a
3/2
n Vin

)
1

N2
e
√
anτn

and η ' − 1

Ne
. (4.36)

For anτn � 1 we have:

ε�

(
3λn

8a
3/2
n Vin

)
1

N2
e

'

(
3λn

8a
3/2
n Vin

)
η2 , (4.37)
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implying that ε � η for η � 1 and Vin � 1. Now matching the COBE normalisation for
density fluctuations requires:

V 3/2

M3
pl V

= 5.2× 10−4 , (4.38)

which in our set up translates to (including the correct normalisation factor of V as derived
in appendix A of [47]):(

gs e
Kcs

8π

)
3λnβ

3W 2
0

64
√
τn(anτn − 1)2

(
W0

anAn

)2 e2anτn

V6in
= 2.7× 10−7 , (4.39)

where Kcs is the vev of the tree-level Kähler potential for the complex structure moduli.
Using (4.35) and working in the limit anτn � 1, (4.39) can be rewritten as:

τn ' 7.31 · 10−14
(

6πλn
gs β eKcs

)2( V4in
W 4

0 a
4
n

)
1

N4
e

. (4.40)

After performing a choice of the underlying parameters, (4.40) gives a relation between τn
and Ne which guarantees the matching of the COBE normalisation at horizon exit. If we
use (4.40) in (4.36), we realise that the slow-roll parameter ε does not depend on the number
of e-foldings Ne since we obtain:

ε ' 3.7 · 106
(
gs β e

Kcs

16π

)(
W 2

0

V3in

)
. (4.41)

This implies that the prediction for the tensor-to-scalar ratio r = 16ε in this model is inde-
pendent of the post-inflationary cosmological history. To be more precise, this is true only at
leading order since any choice of the underlying parameters has to be such that (4.40) gives
τn � 1. This gives an upper-bound for r that depends on Ne:

r = 16ε� 3.12 · 10−3
(

6π

gs β eKcs

)1/2 λ
3/2
n

W0 a3nN
3
e

. (4.42)

For an = 2π, gs ∼ 0.1 and O(1) values of eKcs , W0, λn and β we obtain:

r � 10−4N−3e , (4.43)

which gives r � 5 ·10−10 for Ne = 60 and r � 1 ·10−9 for Ne = 40. We therefore realise that
the tensor-to-scalar ratio is undetectable in this inflationary model. On the other hand, the
prediction for the spectral index is more interesting since we obtain:

ns = 1 + 2η − 6ε ' 1− 2

Ne
. (4.44)

This result has two important generic implications: (i) the prediction for the spectral index
does not depend on the choice of underlying parameters as long as they satisfy τn � 1; (ii)
models with a smaller number of e-foldings give a smaller value of ns. The ns-Ne plot is
shown in figure 2. The preferred value for Ne is determined from (2.7). Typical values of
the volume in this model are Vin ∼ 105–106 which give r = 16ε ∼ 10−10–10−11 from (4.41)
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Figure 2. Scalar spectral index ns in terms of the number of e-foldings Ne. The black dot shows the
value of Ne in a standard cosmological history while the red dot indicates the value of Ne needed in
the presence of a late-time period of modulus domination.

and Nmod1 ∼ 1 from (4.21). Therefore (2.7) yields (the difference between ρ∗ and ρend gives
a negligible contribution):

Ne ' 57 +
1

4
ln r − 1

4
Nmod2 ' 50− 1

4
Nmod2 . (4.45)

Note that, as emphasised earlier, the low value of the tensor-to-scalar ratio has a significant
effect on determining the preferred range of Ne. Let us now come to the effect of the epoch
of matter domination due to coherent oscillations of the volume mode. If we neglected
this effect, we would need Ne ' 50 which gives ns ' 0.96. However, generic choices of
the microscopic parameters in (4.26) give Nmod2 ∼ 25, lowering the number of e-foldings
to Ne ' 45 which, in turn, implies ns ' 0.955. This is not a big shift of the spectral
index and both results are compatible with Planck 2015 data within 2σ [48]. However,
future cosmological observations [49–53] have the prospect of being able to appreciate this
difference.

We conclude this section by presenting the exact numerical results for a benchmark
example. Choosing W0 = α = λi = 1, ai = 2π ∀i = 2, . . . , n = 11 and gs = 0.06 as in
ref. [43], we find Vin ' 1.38 · 105, β ' 3.88 and a value of τn at the minimum 〈τn〉 ' 2.26.
Substituting these values in (4.40) and (4.41) for eKcs = 1, we find:

τn ' 1.12 · 108N−4e and r = 16ε ' 1.04 · 10−10 . (4.46)

The values of Nmod1 and Nmod2 can instead be obtained from (4.21) and (4.26), yielding:

Nmod1 ' 0.99 and Nmod2 ' 25.4 . (4.47)

Plugging these results in (2.7) we obtain:

Ne ' 44.65 +
1

4
ln

(
ρ∗
ρend

)
' 45 ⇒ τn ' 27.3 and ns ' 0.955 . (4.48)

In summary, the combined effect of having a low value of r and the epoch of modulus domina-
tion is to bring the preferred range of the number of e-foldings to a very low value: Ne ' 45.
Correspondingly, the spectral index becomes ns ' 0.955. We would like to emphasise that
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there is a significant shift in the number of e-foldings Ne even for a heavy volume modulus
mass mV ∼ 108 − 109 GeV. Note that, despite the presence of many parameters (W0, ai, λi,
Kcs), we have been able to extract the relevant information for the region of parameter space
that is consistent with observations and obtain precise information on physically measurable
quantities such as the spectral index ns.

5 Conclusions

In this paper we have studied the inflationary predictions for Kähler moduli inflation. To
do so, we have determined the preferred range of the number of e-foldings between horizon
exit and the end of inflation for the model. This required an analysis of the post-inflationary
history of the universe (in particular we determined the number of e-foldings in the epochs
of modulus domination). The epoch of modulus domination for the volume modulus results
from “vacuum misalignment”. Taking advantage of having knowledge of the moduli stabil-
ising potential in the setup, we have been able to compute explicitly the associated “initial
displacement”. Given that the initial displacement is a key input for analysing the post-
inflationary history of the universe, being able to compute it explicitly should be considered
as an advantage of working in a scenario where there is good control over moduli stabil-
isation. This we believe is the first explicit computation of “initial displacement” caused
by misalignment. The magnitude of the displacement of the volume modulus agrees with
the generic expectations from effective field theory which put it at the order of Mpl using
mostly dimensional analysis. This has been one of the main assumptions in formulating the
cosmological moduli problem, and so our results strengthen the arguments which are used in
the discussion of this problem.

We have found that for Kähler moduli inflation the post-inflationary cosmological dy-
namics of the moduli has a significant effect on the determination of Ne — its central value
is lowered from approximately 50 to 45. We would like to emphasise that even if the mass
of the lightest modulus in the model is well above the bound set by the cosmological mod-
uli problem (mV ∼ 108–109 GeV), its effect on inflationary predictions via post-inflationary
dynamics is still large. The ns-Ne plot for Kähler moduli inflation was given in figure 2.
This clearly exhibits that the shift in Ne leads to a shift in ns at the percent level. Future
experiments [49–53] are expected to significantly improve on the sensitivity of ns, making
analysis in the spirit of this paper all the more relevant. This adds to the motivation of
studying inflationary model building in moduli stabilised string compactifications. We hope
to carry out detailed analysis similar to this paper for various models in future work.

In this context, a natural model to study is Fibre Inflation [39, 54]. In this case, however,
there is no epoch of late-time modulus domination since the volume mode decays before the
inflaton due to the fact that its mass is larger than the mass of inflaton at the end of inflation.
We may also consider extensions of Kähler moduli inflation in which the lightest modulus is
not the volume mode but a fibre or another non-blow-up modulus field. This field would also
be generically misaligned during inflation and behave similarly to the volume modulus in this
paper, giving rise to two late-time periods of modulus domination in the post-inflationary
history. The combined effect of these two epochs of modulus domination might result in a
larger reduction of the required number of e-foldings. It would be interesting to carry out an
explicit analysis of the vacuum misalignment of these fields along the lines of this paper.

Another interesting direction for future work is to carry out a numerical study of the
detailed cosmological evolution of the inflaton and the volume mode. This can be used to
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determine Y (the initial displacement of the volume modulus) without resorting to pertur-
bation theory. It would also be interesting to correlate our findings with other phenomeno-
logical implications of modular cosmology [55–68]. Finally, there have also been studies of
non-standard scenarios for primordial fluctuations and non-Gaussianities [47, 69] in the LVS
setting. It would be interesting to study the implications of our analysis for these models.
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