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In this short review, some theoretical and applicative aspects of random matrix theory are discussed. First,
the problem of determining the average eigenvalue density of a product of large random matrices with Gaus-
sian entries will be addressed and solved, and the possible applications of this result in different scientific
areas will be presented. After that, the random matrix analysis of financial correlation matrices will be
discussed. Namely, the common knowledge, according to which most part of the eigenvalue spectrum of
financial correlation matrices carries almost no information, will be challenged. This will be done by look-
ing at some “microscopic” spectral properties of empirical eigenvalue spectra, analyzed by means of the
relation, provided by random matrix theory, between a given correlation matrix and its empirically observed
estimator.

1 Introduction

The very first notion of a random matrix ensemble dates back to a 1928 paper by J. Wishart [1]. After
that, the topic remained almost undeveloped until the early fifties, when E. Wigner essentially threw the
theoretical foundations for modern random matrix theory (RMT) and its applications in Physics [2], mod-
eling the Hamiltonian of a heavy nucleus as a random matrix with statistically independent entries. Such
a simple approach was found to be extremely effective in reproducing experimental data, such as energy
level sequences, in the realm of nuclear Physics. Ever since then, RMT kept on developing through more
than five decades, eventually reaching the status of one of the most relevant tools in the analysis of complex
physical systems governed by very complicated, or even unknown, interaction laws. As a matter of fact,
nowadays the applications of RMT in Physics cover very diverse fields, ranging from quantum gravity [3]
and string theory [4, 5] to quantum chromodynamics [6], supersymmetric field theories [7], mesoscopic
Physics [8, 9], entanglement Physics [10] and information theory [11].

In recent years, RMT also found several applications outside pure Physics. The mathematical result
that gave rise to most of such applications was the one by V. A. Marčenko and L. A. Pastur [12], who
derived a closed-form expression for the eigenvalue distribution of the correlation matrix of a large system
of uncorrelated Gaussian random variables. This result established a benchmark in correlation analysis,
showing how the eigenvalues of a completely noisy system are distributed, and paved the way for several
statistical studies based upon the comparison of empirical correlation matrix spectra with the Marčenko-
Pastur distribution. A much celebrated example can be found in the groundbreaking papers by L. Laloux
et al. [13] and V. Plerou et al. [14] published in 1999, where a large portion of the correlation matrix
eigenvalue spectrum of stocks traded on the New York Stock Exchange was shown to be well fitted by
a Marčenko-Pastur distribution. This result also represents a beautiful example of the achievements that
Econophysics, i.e. the application to Economics of ideas and techniques commonly used in Physics [15,
16], can reach.
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The goal of this paper is to briefly sketch some recent results in RMT, focusing both on theoretical
developments and on their possible applications.

2 Random matrix theory: introductory notions

One of the typical problems to be faced in RMT is the one of computing the average eigenvalue density of a
given random matrix ensemble. So, suppose we are interested in studying the spectral properties of a given
ensemble H of N × N matrices, possibly characterized by some symmetry properties (e.g. Hermiticity),
whose matrix entries (whether real or complex) are independently drawn from some probability density.
The very first ingredient we shall need is a probability measure dµ(H) encoding all such properties. Quite
intuitively, the ensemble average eigenvalue density can be defined as

ρH(λ) =
1
N

N∑
i=1

〈δ(λ− λi)〉, (1)

where 〈. . .〉 =
∫

(. . .)dµ(H), and where the case of real eigenvalues (i.e. Hermitian matrices) has been
considered. Now, if we suppose to remove the expectation from the right hand side of equation (2.1), then
we are just looking at a single realization of the matrix ensemble H having eigenvalues λ1, . . . , λN : in
the absence of any randomness, in this case the eigenvalue density is simply given by a sequence of Dirac
deltas. On the other hand, when considering the average behavior of the eigenvalues, it is often convenient
to introduce the following matrix function:

GH(z) = 〈(Z−H)−1〉, (2)

where Z = z1N , z ∈ C and 1N is the N × N identity matrix. Taking the normalized trace of this
expression we obtain the ensemble’s Green’s function:

gH(z) =
1
N

GH(z) =
1
N

N∑
i=1

〈
1

z − λi

〉
. (3)

Suppose again that we remove the expectation map from the previous equation: then, gH is a meromorphic
function whose poles are on the real axis and correspond to the eigenvalues of the particular H matrix one
is considering. Conversely, when the averaging operation is actually performed, and the N → ∞ limit
is taken, the poles of the Green’s function start to merge into continuous intervals of the real line. In this
limit the Green’s function becomes a holomorphic function everywhere in the complex plane except for the
aforementioned intervals. Remarkably, those are the intervals where the eigenvalue density (1) is actually
defined. As a matter of fact, using Sokhotsky’s formula limε→0+(λ+ iε)−1 = P(1/λ)− iπδ(λ), where P
denotes the principal value, one can see from equations (1) and (3) that the following holds:

ρH(λ) = − 1
π

lim
ε→0+

Im gH(λ+ iε), (4)

i.e. the Green’s function, in the infinite matrix limit, is by all means equivalent to the eigenvalue density and
encodes all of the spectral density of the matrix ensemble under study. Being holomorphic everywhere in
the complex plane except for some cuts on the real line, the Green’s function can be typically expanded into
a power series around infinite z, whose coefficients can be shown to be given by the following expression:

gH(z) =
∞∑
n=0

m
(n)
H

zn+1
, m

(n)
H =

∫
dλ ρH(λ) λn. (5)

The m(n)
H s are called matrix moments and are usually summed up in the M -transform, or moment gener-

ating function
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mH(z) = zgH(z)− 1 =
∞∑
n=1

m
(n)
H

zn
. (6)

3 Products of Gaussian random matrices

The formalism introduced in the previous section is suited to dealing with real eigenvalue spectra. When
switching to non-Hermitian random matrix ensembles, hence to complex eigenvalues, the previous frame-
work needs to be changed in a quite laborious way (see [17] for a review on this topic). This is essentially
due to the structure of the eigenvalue density in the complex plane. Generalizing equation (1), when dealing
with a non-Hermitian matrix ensemble A one can straightforwardly write

ρA(λ, λ∗) =
1
N

∑
i=1

〈
δ(2)(λ− λi, λ∗ − λ∗i )

〉
, (7)

where the two-dimensional Dirac delta function has been employed and the asterisk denotes complex
conjugation. When generalizing the Green’s function (3) to the complex domain a few problems arise, the
most relevant one being the non-linear structure of the Green’s function with respect to the ensemble A.
However, this drawback can be nicely circumvented by means of a linearization trick, first proposed in
[18]. Also, such a trick can be further generalized in order to compute the spectral densities of products of
random matrices.

In the past few years, products of random matrices have been increasingly employed in very different
scientific areas, ranging from statistical Physics [19] and Yang-Mills theories [20, 21] to wireless telecom-
munications [11]. In a recent paper [22], the average eigenvalue spectrum of a product of matrices of the
type

PL = A1A2 . . .AL, (8)

where each Al is a N × N matrix with independent complex Gaussian entries, was derived (taking the
infinite matrix size limit N → ∞) in closed-form for an arbitrary number of matrices L in the product.
Such a density was shown to be rotationally symmetric and bounded within a circular domain in the com-
plex plane. These results have recently been generalized to the case in which each Al in the product (8) is
a Nl × Nl+1 rectangular matrix [23] (assuming N1 = NL+1 in order for the product matrix to be square
and have eigenvalues). More precisely, in [23] each AL matrix was assumed to be a Ginibre matrix [24],
i.e. a random matrix with complex entries whose real and imaginary parts are independently drawn from a
Gaussian distribution with the following normalizations:

〈Re[Al]ij〉 = 〈Im[Al]ij〉 = 0 (9)

〈(Re[Al]ij)
2〉 = 〈(Im[Al]ij)

2〉 =
σ2
l

2
√
NlNl+1

=⇒ 〈|[Al]ij |2〉 =
σ2
l√

NlNl+1

where i = 1, . . . , Nl, j = 1, . . . , Nl+1 and σl > 0 is a real parameter. The infinite matrix size limit was
implemented in the form of a “thermodynamic” limit for matrices:

Nl →∞ , with Rl =
Nl

NL+1
= constant , l = 1, . . . , L. (10)

The spectral problem was then solved in the form of a polynomial equation for the M -transform mPL
of

the PL matrix ensemble:
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L∏
l=1

(
1 +

mPL
(z, z∗)
Rl

)
=
|z|2

σ2
, (11)

where σ = σ1σ2 . . . σL. Once this equation has been solved (whether analytically or numerically, depend-
ing on the value of L), the Green’s function can be immediately recovered (as gPL

(z, z∗) = (mPL
(z, z∗)+

1)/z, see equation (6)), then the corresponding eigenvalue density ρPL
can be derived. In [23] this result

was thoroughly tested against numerically obtained eigenvalue densities of product matrices, always find-
ing an excellent agreement. However, a few things about the density ρPL

can be inferred from equation
(11) without actually solving it. Namely, it can be shown that ρPL

is rotationally symmetric and bounded
within a circle of radius σ in the complex plane, and both these facts generalize the square matrix case
solved in [22]. Moreover, it can also be shown from equation (11) that, close to the origin of the complex
plane, one has ρPL

(λ, λ∗) ∼ |λ|−2(1−1/s), where s is the number of rectangularity ratios Rl being equal
to one.

Before concluding this section, it is important to mention that the aforementioned generalization of
the spectral problem from square to rectangular matrices is far from being a mere mathematical exercise,
being actually quite relevant from the viewpoint of practical applications. As a matter of fact, products
of rectangular Gaussian matrices are very important for the information theoretical description of multiple
antenna channels known as MIMO (multiple-input / multiple-output) links [11, 25]. Also, the previously
illustrated results recently found interesting applications to the problem of composing quantum operations
[26] and generating random density matrices [27]. Moreover, as it will be discussed in the next section,
when the product of two matrices (i.e. L = 2 in equation (8)) the eigenvalue density can actually be derived
in closed-form, and this result has quite relevant applications in multivariate statistics.

4 Random matrix analysis of financial data

As already mentioned in the introduction, in two well known papers [13, 14] it was shown that most of the
eigenvalue spectrum of a financial correlation matrix can be well fitted by a Marčenko-Pastur distribution
(see Figure 1), and this fact is robust with respect to changes in the data time scale, ranging from intra-day to
daily data. Moreover, in the two aforementioned papers it was also shown that typically one has a very large
(O(N), N being the number of stocks) and isolated eigenvalue plus a few other large eigenvalues “leaking
out” of such bulks. Performing a principal component analysis (see for example [28] for an introduction
to this topic) easily shows that the former can be interpreted as a “market eigenvalue”, emerging as a
consequence of global fluctuations involving the market as a whole. On the other hand, the remaining
large eigenvalues can be interpreted as “sector eigenvalues”, i.e. a reflection of the presence of clusters of
correlated stocks belonging to the same market sector (e.g. financial, pharmaceutical). Thus, according to
this picture, the large majority of the observed eigenvalue spectrum of a financial correlation matrix, being
close to the eigenvalue density of a completely noisy system, carries no information at all, whereas all
the information about correlations amongst stocks is encoded within a few large eigenvalues. Let us now
analyze these observation from a more formal point of view.

When studying the correlations in a set of N random variables r1, . . . , rN , one can reasonably assume
that a “true” correlation Cij exists between the i-th and j-th variable. The best one can do in order to
obtain an empirical estimate of Cij is then to collect T equally spaced (in time) observations of the ran-
dom variables under study, and to compute Pearson’s estimator for the correlation coefficient, which for
standardized data (i.e. zero mean and unit variance) reads

cij =
1
T

N∑
t=1

ritrjt, (12)
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Fig. 1 Left: eigenvalue spectrum of the covariance matrix for T = 3400 daily returns of N = 396 assets belonging
the S&P500 index over the years 1996-2009. Right: the main eigenvalue bulk of the S&P data used in the left plot
is compared with three different Marčenko-Pastur densities: the one obtained with with the “natural” values of the
parameters (q = N/T = 0.116, σ = 1, green line), the one obtained by the subtracting the market eigenvalue’s
contribution to σ and fitting q (q = 0.313, σ = 0.885, blue line) and the one obtained by fitting both q and σ
(q = 0.287, σ = 0.778, purple line).

where rit represents the time t observation of the i-th variable. The two sets of numbers (Cij and cij) can
then be collected into N × N symmetric and positive definite correlation matrices C and c. So, in this
framework, the Marčenko-Pastur distribution can be seen as the empirically observed, i.e. noise-dressed,
version of the correlation matrix C = 1N of an N -dimensional set of uncorrelated Gaussian random
variables. The Marčenko-Pastur distribution reads

ρc(λ) =
1

2πqσ2

√
(λ+ − λ)(λ− λ−)

λ
, λ± = σ2(1±√q)2, (13)

where q = N/T is the ratio between the number of variables and the depth of the time series employed
to compute the estimator c, while σ is the standard deviation of the variables in use. So, as one can
immediately realize, whenever some dataset has been chosen there is actually no flexibility in the definition
of the Marčenko-Pastur distribution, whose parameters q and σ are fixed once and for all by the dimensions
and normalizations of the data being analyzed. However, as already mentioned, the Marčenko-Pastur
distribution usually needs to be fitted on the empirically observed eigenvalue bulks of financial correlation
matrices, allowing q and σ to differ from their “natural” values (see Figure 1). This fact seems to suggest
that the aforementioned simple picture (i.e. one “noisy” eigenvalue bulk plus a few eigenvalues carrying all
relevant information on correlations) is actually quite simplistic. As a matter of fact, a few authors recently
questioned and critically revised such a framework (see for example [29, 30, 31]).

In a recent paper [32], the Marčenko-Pastur framework was challenged from a “microscopic” point of
view. The starting point of that work was the random matrix description of the relation between a “true”
correlation matrix C and its estimator (12). In a nutshell, it can be proven that the moment generating
functions of the two matrices, which we denote as µC and mc respectively, are related as follows [33, 34,
35]:

mc(z) = µC(Z) where Z =
z

1 + qmc(z)
, (14)

where q = N/T as before1. As a matter of fact, the Marčenko-Pastur eigenvalue density (13) can be
derived from equation (14) when posing C = 1N . Equation (14) allows in principle to compute, at least

1 It is worth remarking that equation (14) is derived under the thermodynamic limit N, T →∞ keeping their ratio q fixed.
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Fig. 2 Filtered correlation matrices for the S&P500 (left) and FTSE350 (right) datasets (see [32] for more details on
the filtering technique employed).

Fig. 3 Comparison between the empirical eigenvalue spectra of the filtered correlation matrices shown in Figure 2
and the eigenvalue densities obtained from the noise dressing, via equation (14) of the spectrum in equation (15).

numerically, the average eigenvalue density ρc of the noise-dressed estimator of a given correlation matrix.
In [32] such a framework was employed to study in detail the correlation matrices of two financial datasets
made of stocks belonging to the S&P500 and FTSE350 indices, respectively. More specifically, such
correlation matrices were filtered in order to end up with the block-diagonal matrices shown in Figure 2,
displaying a very clear structure with one cluster of strongly correlated stocks, plus additional stocks very
weakly correlated with the cluster and amongst themselves. Such a structure can be approximated with a
block-diagonal matrix: a first block in which elements belonging to the correlated cluster are all mutually
correlated via the same coefficient ρ, computed as the average correlation in the cluster, and a second block
simply assumed to be equal to the identity matrix. Now, the eigenvalue spectrum of such a block-diagonal
matrix can be easily computed, and it reads

det(C− λ1N ) = [λ− (1− ρ)]N̄−1(λ− 1)N−N̄ [λ− (N̄ρ+ (1− ρ))] = 0, (15)

where N̄ is the number of stocks belonging to the correlated cluster. So, apart from one large eigenvalue
(∼ N̄ρ), one has two groups of degenerate eigenvalues. The moment generating function µC of this
type of spectra can be computed very easily, and plugging it into equation (14) yields the spectrum of the
corresponding estimator. In Figure 3 the eigenvalue densities obtained in such a way are compared with the
empirical ones obtained by diagonalizing the correlation matrices shown in Figure 2. A few considerations
are in order. First, the two degenerate eigenvalues in equation (15), equal to 1 − ρ and 1, are observed as

c© 2011 Università degli Studi di Pavia



Scientifica Acta 5, No. 1, Ph 3-10 (2011) 9

separate bulks (since strong correlations in the cluster ensure a small value of 1− ρ). This fact represents
a clear phenomenological evidence that the mere assumption of a Marčenko-Pastur (which represents the
noise-dressing of one single eigenvalue) is not enough to provide a realistic description. However, as
one can immediately see, the agreement between the empirical densities and the theoretically predicted
ones for the approximated block-diagonal correlation matrices is rather poor: as shown in [32], this is due
to unresolved correlation structures in the filtered correlation matrices, the “gray shadings” in Figure 2.
However, despite the poor agreement, Figure 3 suggests that the noise-dressing mechanism for degenerate
eigenvalues described by the map (14) is actually acting on real financial data. All in all, in the light of these
considerations, one is quite tempted to conjecture that the empirically observed eigenvalue bulks emerge
from the superposition and subtle interplay between different cluster structures like the ones in Figure
2. Some further evidence in this respect can be found in [32], where it was shown, by means of Monte
Carlo simulations, that eigenvalues bulks which are very well fitted by Marčenko-Pastur distributions can
actually emerge from properly defined sets of correlated random variables.

As a conclusion to this section, let us mention a possible generalization of this type of analysis. In
the previous section, an equation for the M -transform of the product of L rectangular Gaussian random
matrices was derived. As already mentioned, such equation can be solved analytically when the product
of two matrices is considered, eventually obtaining an equation for the corresponding eigenvalue density.
So, if we consider the product k = A1AT

2 , where A1 and A2 are two N × T matrices, we are essen-
tially introducing a generalized correlation matrix between two systems. Therefore, the eigenvalue density
computed in [22] for this case when A1 and A2 are both random Gaussian matrices represents the gener-
alization of the Marčenko-Pastur distribution to two systems having no self-correlations of their own and
no correlations between them.

5 Conclusions and outlook

In this review, a few different aspects of RMT were presented, both from a theoretical and an applicative
viewpoint. The main theoretical contribution that was discussed is the solution of the spectral problem
for products of an arbitrary number of large rectangular Gaussian random matrices. An equation for the
moment generating function of the product matrix ensemble PL = A1A2 . . .AL was introduced. The
solution of this equations, to be found numerically except for one notable exception, leads to the average
eigenvalue density of the PL matrix. From the viewpoint of possible applications, the spectral analysis
of products of Gaussian matrices is quite relevant to the information theoretical approach to multiple an-
tenna channels in wireless telecommunications. Moreover, the eigenvalue density for the product of two
Gaussian random matrices can be derived in closed-form, and this result is quite important to correlation
analysis, since it represent the generalization of the Marčenko- Pastur density as a pure noise benchmark
for two separate systems.

The possible applications of RMT to financial data analysis were also discussed. The simplified picture,
according to which most of the eigenvalue spectrum of a financial correlation matrix essentially carries no
information, was critically revised. As a matter of fact, the main evidence against such a viewpoint is the
fact that the empirically observed eigenvalue bulks, representing the large majority of eigenvalue spectra,
need to be fitted by a Marčenko-Pastur distribution whose parameters differ from the “natural” ones fixed
by the data under study. The relation (14) between a “true” correlation matrix and its empirically observed
estimator was employed to study some properly filtered correlation matrices of financial datasets displaying
a very clear cluster structure. This analysis revealed some of the “microscopic” structure of the observed
eigenvalue bulks, confirming the Marčenko-Pastur framework not to be suited to a realistic description of
the data.

The ultimate application of RMT to financial data analysis would be the one of inspiring and proposing
cleaning recipes for empirical correlation matrices, something which would be of huge usefulness for
practical applications in portfolio management. In this respect, a lot of work still needs to be done. As

c© 2011 Università degli Studi di Pavia



10 G. Livan: Spectral properties of products of random matrices

a matter of fact, the current knowledge in RMT only leads to correlation matrix cleaning procedures that
only slightly outperform more traditional ones. However, the analytical and technical difficulties of RMT
would still reasonably lead one to prefer the latter. Thus, a more application-oriented program of random
matrix financial data analysis seems to be needed in years to come.
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[24] J. Ginibre, Journal of Mathematical Physics 6, 440 (1965).
[25] E. Telatar, European Transactions on Telecommunications and Related Technologies 10, 585 (1999).
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