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The equilibration dynamics of strongly interacting matter has a computationally favorable holo-
graphic description in terms of dynamical processes in higher dimensional gravity theories. One
can exploit this holographic description to study the response of a strongly coupled confining
gauge theory to time dependent perturbations by a relevant scalar operator. Gravitationally, this
involves solving a set of non-linear Einstein-Dilaton equations subject to particular time depen-
dent boundary conditions. The solutions to this system allow one to comment in some detail on
the thermalization time for various perturbations, as well as to quantify the properties of the final
state in terms of the perturbation parameters. We discuss the role of the dual gauge theory’s con-
finement scale on these results, and highlight a realization of a previously anticipated universal
scaling regime in the "abrupt quench" limit.
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1. Overview

Dynamical properties of strongly interacting matter are interesting both because of the the-
oretical challenges encountered in any attempt to quantify them, as well as the fact that they are
increasingly accessible in the laboratory. One of the most reliable methods of performing com-
putations in strongly coupled field theories is to regularize the theory on a lattice. This method,
however, employs a Euclidean formulation of the field theory and hence it is difficult (if not im-
possible) to make contact with real-time dynamics. Finding a way to circumvent such obstacles
takes special importance in the context of ongoing programs in relativistic heavy ion collisions.
At the energy scales currently realized, the hot, dense matter produced in such collisions of heavy
nuclei behaves as a strongly interacting plasma and thus novel theoretical approaches are needed
to describe its behavior. One such approach is based on a holographic duality between gauge theo-
ries and string theories. This approach was employed in [1] to model the dynamical response of a
confining gauge theory at strong coupling, a work which forms the basis for these proceedings.

2. Thermalization in Holography

Given any strongly coupled medium, a useful characterization of its properties is provided by
its response to a variety of external perturbations. A quantum field theory effectively described by
the Lagrangian LQFT couples to an operator O in a manner described by the source f0 as

LQFT→LQFT + f0O. (2.1)

Then if the source is isotropic in space and changes only in time, the probe will do work on the
system as dictated by the following Ward identity:

∇
t〈Ttt〉= ḟ0〈O〉. (2.2)

Here the “dot" denotes a partial derivative with respect to time and T is the stress-energy tensor.
The response of the system to the insertion of the time dependent perturbation can be measured

in any of a number of distinct ways. A particularly natural option is provided by the one point
functions of the various gauge invariant operators of the field theory. By examining the dependence
of these expectation values on time, one can access both the endpoint of the dynamical evolution,
as well as the route the system takes to arrive there.

It may happen that the late time endpoint of the evolution is independent of time, and the
various one point functions take the form

〈O(t→ ∞)〉 ∼ trρO, (2.3)

where ρ is a thermal distribution. If this is the case, then the endpoint of the evolution is a thermal
state, and the equilibration process is called “thermalization".

For strongly coupled field theories with a holographic dual the thermalization process can
alternatively be described in terms of the weakly coupled bulk variables of a gravitational theory in
one higher dimension. In terms of these variables, thermalization in a 3+1 dimensional field theory
is understood to be the same as black brane formation in a 4+1 dimensional theory with gravity.
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Figure 1: Generic response of a holographic system to a time dependent perturbation. After the time
τ the system is driven out of equilibrium, and may pass through any number of non-linear regimes TNL

before “ringing down" to thermal equilibrium with characteristic time scale TRD. The ring-down regime is
anticipated from the well known fact that black branes respond to small perturbations much like a system of
damped oscillators (inset).

The formulation of the dynamical process in terms of the dual gravity theory offers benefits
both in terms of computation and intuition. In figure 1, a generic expectation for the dynamical
evolution of a holographic one point function is shown. To characterize the evolution, it is con-
venient to divide the response into different regimes controlled by characteristic time scales. For
example, if one imagines varying the source f0 over a timescale τ , then τ roughly characterizes the
amount of time taken to drive the system out of equilibrium. The subsequent non-equilibrium dy-
namics will evolve according to the non-linear gravitational equations of motion, and thus it could
be possible that the system will pass through a highly non-linear regime, TNL. This time scale may
in principle be further subdivided into any number of distinct regimes.

Assuming a horizon forms in the bulk, and thus that the dual theory thermalizes at late times, it
is natural to expect that a “ring-down" regime defines the system’s near-equilibrium behavior. This
expectation is based on the fact that the linearized response of the final state black brane to small
perturbations is governed by the lowest lying quasi-normal mode in the spectrum at late times.

In light of the preceding discussion, one can define a thermalization time

TTHERM = TNL + . . .+TRD (2.4)

as the sum of all the characteristic time scales defining the dynamic evolution except the time scale
characterizing the duration of the applied external source. Thus defined, the thermalization time
depends only on the non-equilibrium dynamics of the strongly coupled matter. In the majority of
holographic examples of thermalization in a strongly coupled field theory, the thermalization time
is dominated by the ring-down regime, i.e TTHERM ≈TRD.

3. Dynamical Quenches in a Confining Gauge Theory

One ingredient missing from previous holographic investigations of thermalization is the pres-
ence of a confinement scale analogous to the ΛQCD of quantum chromodynamics. It is natural to
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wonder if the existence of such an additional characteristic energy scale could lead to more com-
plicated thermalization processes in the dual field theory. Dynamical response to perturbations
in a confining gauge theory has been previously studied in the so-called hardwall model [2, 3].
The hardwall model is a conceptually useful, but somewhat ad hoc implementation of holographic
confinement in which the geometry is cut-off by hand at some slice in the radial direction. An
obvious next step is to determine whether or not something similar can happen in more realistic
holographic models of confining gauge theories. An example of one such class of models is the
Einstein-Dilaton class, whose solutions arise from an action of the form

S =
1

2κ2

∫
d5x
√
−g
(

R− 4
3
(∂ϕ)2 +V (ϕ)

)
− 1

κ2

∫
∂

d4x
√
−γK . (3.1)

The second term in this action is the familiar Gibbons-Hawking-York boundary term, while the first
term describes the interactions of a scalar field ϕ coupled to gravity, subject to the scalar potential
V .

In a “bottom up" holographic model, the scalar potential V is arbitrary and can be tuned to
induce the desired dual physics. In the present case, we will choose V such that the dual boundary
gauge theory is confining at low temperatures and such that solutions with non-zero scalar cor-
respond to relevant deformations by a dimension three scalar operator (for details, see [1]). An
example of a scalar potential that satisfies these conditions is given by

V (ϕ) =
12(1+aϕ2)1/4 cosh 4

3 ϕ−bϕ2

L2 (3.2)

with the parameter choice (a,b) = (1/500,10009/1500) and L the AdS scale.
The solutions to this model describe the various phases available to the dual boundary theory.

At zero temperature, the dual gravitational solution is a horizon-less geometry with a running scalar
and a rather innocuous naked singularity deep within the throat. Ideally, we would like to perturb
this geometry by varying the source for the dual scalar operator in time. In practice, the rapidly
diverging bulk scalar complicates the numerical analysis and it is necessary to introduce an infrared
cutoff deep in the throat region of the geometry.

One sensible option for introducing such a cutoff is to turn to another branch of solutions for
the initial state. A particularly well suited branch contains the “small black hole" solutions, which
shield the singularity behind a very small horizon. This horizon regulates the IR, but not without
introducing some drawbacks. First, the introduction of a horizon in the initial state obviously
renders any information related to horizon formation inaccessible. Second, the small black holes
are never the thermodynamically preferred solutions in the holographic dual. Nonetheless, they
have the distinct advantage of retaining much of the flavor of the zero temperature solution (for
example a scalar which grows very large in the IR) while shielding the numerical methods from
the existence of the IR singularity.

Roughly, our computational strategy will be as follows. Beginning from a small black hole
initial state, we turn on a time dependent source of the form

f0(t) = f̃0

(
1+ δ̃ e−

v2

2τ̃2

)
, (3.3)
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which can be tuned by varying δ̃ and τ̃ . This change in the scalar at the boundary propagates
into the bulk, backreacting on the geometry. This process is encoded in the non-linear Einstein
equations, which must be solved numerically time step by time step until a final steady state solution
has been obtained. At each time step, a standard application of the holographic dictionary allows
one to read off the one-point functions in the dual gauge theory.

The response reveals an energy density which changes markedly on the time scale of the
quench τ̃ , followed by a rapid equilibration to its final state value. To gain a better understanding
of the rapid approach to thermal equilibrium, it is useful to look into the late time response of the
system. In figure 2 the evolution of the scalar one point function is plotted on a logarithmic scale.
One notes immediately that after a short time (again controlled by the quench width τ̃), the system
oscillates with a well defined frequency ω∗ while simultaneously approaching its equilibrium value
exponentially with decay constant Γ. This is exactly as one might expect from a linear system
controlled by an excited mode of the form ω1 = ω∗− iΓ. Evidently, even in the confining model of
(3.1-3.2) the thermalization time appears to be dominated by the linear regime, TTHERM ≈TRD.

Figure 2: Typical late-time behavior of the magnitude of a one-point function’s deviation from its equi-
librium value. After the quench time ∼ τ̃ the response equilibrates like a damped oscillator. The damped
oscillations correspond to the excitations of the gravitational system’s lowest quasi-normal mode.

Beyond thermalization times, the holographic approach also provides some insight into the
dependence of the final state on parameters of the quench. In figure 3 the final state energy den-
sity is plotted as a function of quench duration with fixed (large) amplitude, and as a function of
quench amplitude at fixed (short) duration. The appearance of simple power law scaling regimes is
pronounced. Combining the results of the two plots, one finds that in the limit of abrupt quenches
(those whose quench width is much smaller than all other dimensionful scales)

〈Ttt〉FINAL ∼

(
δ̃

τ̃

)2

. (3.4)

In fact this simple scaling relation was already anticipated on general grounds, and is a special
case of the universal scaling formula in [4] for a dimension three scalar operator. That the scal-
ing should be universal readily follows from the fact that for very fast quenches, the perturbation
does not have time to propagate far from the boundary before the quench terminates. Since the
near boundary region of many holographically relevant spacetimes is asymptotically AdS, abrupt
quenches are indifferent to the IR features of the geometry distinguishing different holographic
spacetimes.
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Figure 3: Final state energy density 〈Ttt〉 as a function of quench parameters. In the left plot the quench
amplitude is held fixed, while in the right plot the quench duration is fixed.

4. Discussion

Perhaps the most important observation from our analysis is that in every quench we per-
formed, the thermalization time continued to be dominated by the linear response time scale. Thus,
even the presence of a confinement scale was insufficient to induce a new non-linear time scale in
the dynamical response. This might be a consequence of our choice of initial state. For technical
reasons alluded to before, our numerical stability suffers as we decrease the size of the initial state
black hole. One might expect that the confinement scale becomes important to the dynamical re-
sponse when it is large compared to all other energy scales in the problem. The smallest black hole
we can reliably perturb has an energy density comparable to the confinement scale. In other words
〈Ttt〉/ f0

4 ∼ O(1). Accordingly, it is perhaps not so surprising that we see no deviation from the
ubiquitous quasi-normal mode driven thermalization familiar from other holographic models.

Ultimately, we would like to perform these dynamical quenches in initial states with 〈Ttt〉/ f0
4�

1, and ideally in the zero temperature solution itself. It is here that we expect the response to the
probe to be most sensitive to the diverging scalar potential and the effects of the confinement scale
in the dual theory. Understanding whether or not the properties of the scalar potential are suffi-
ciently similar to the hardwall to give rise to scattering solutions which never thermalize would
be very interesting. If such scattering solutions exist, identifying the location in parameter space
which separates perturbations which thermalize from those that do not would permit a scaling
analysis analogous to that performed in the well known case of the Choptuik phenomena [5].

Finally, it may be interesting to explore other probes of the thermalization process in this
holographic theory. One obvious class of candidates are non-local probes such as Wilson loops
and two-point correlators of large dimension operators. These probes share the feature that their
holographic computation involves the study of bulk worldlines or worldsheets that sag into the bulk
spacetime. The depths they probe in the geometry are controlled by the boundary separations of
operators in space and time. In this way these probes are capable of sampling the response of the
gravitational system at various locations in the radial direction, thus characterizing the equilibration
process of the field theory at different length scales.
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