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Preface

Cosmology deals with the studies on the structure and evolution

of the universe. The model of the universe formulated by Fried-

mann, Lemaitre, Robertson and Walker known as the standard model

(FLRW model) of the universe, which is based on the Einstein’s the-

ory of gravity, turned out to be the accepted model because of the

various observational supports. The major observational supports

to this model are the explanation for the Hubble’s law, primordial

nucleosynthesis, microwave back ground radiation etc.

Recent observations on Type Ia supernovae by teams led by S

Perlmutter, Brian P Schmidt and Adam G Riess led to the discovery

that the present universe is expanding in an accelerated manner. The

exotic form of matter which causes the acceleration is termed as dark

energy which produce negative pressure. Understanding the nature

and evolution of dark energy is a challenge for the cosmologists. In

addition to the evidences from supernovae, the anisotropy in CMBR

spectra, large scale structures and Baryon acoustic oscillations are

also supporting the discovery.

To explain dark energy, various theoretical models have been pro-

posed. One such model is the ΛCDM model, in which the universe

is assumed to be composed of dark energy and dark matter. In this
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model, Einstein’s cosmological constant is considered as dark energy.

It has a constant equation of state, ωΛ = pΛ

ρΛ
= −1. The model predicts

the values of cosmological parameters such as the Hubble parameter,

transition redshift and present deceleration parameter, having a very

good agreement with the observational constraints. But this model

has two major flaws, which are:

1. Cosmological constant problem:- Theoretically predicted value

of dark energy density as the vacuum constant Λ is, ρΛ ∼

1074GeV 4, while the observed value is ρΛ ∼ 10−47GeV 4. The

predicted value is greater than the observed value by 120 or-

ders of magnitude. This discrepancy between the theoretical

and observational values is known as the cosmological constant

problem.

2. Cosmological coincidence problem:- Energy densities of dark en-

ergy and dark matter are found to be of the same order even

though their evolutionary nature are different. This is known as

the coincidence problem which is not explained by the ΛCDM

model.

These led to the proposals of dynamical dark energy models by con-

sidering that the equation of state parameter is evolving with the ex-

panding universe. Scalar models of dark energy such as Quintessence,

K-essence, Phantom model, Chaplygin gas model and holographic
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dark energy model are examples of dynamic dark energy models.

Holographic dark energy model is based on the holographic prin-

ciple developed by Susskind and ’t Hooft. The principle says that

the degrees of freedom of a system resides on its surface rather than

in its volume. The total energy inside a region of size L must not

exceed the mass of a black hole of the same size. The holographic

dark energy density can then be formulated as,

ρΛ = 3c2M2
plL
−2 (1)

where 3c2 is a numerical constant, M−2
pl = 8πG is the reduced Planck

mass. Possible choices for L, the IR cut-off, are Hubble horizon, parti-

cle horizon and event horizon. The choices for the IR cut-off whether

it be Hubble horizon or particle horizon will not support an accel-

erating universe, while the third choice, the event horizon, violates

causality. Another alternative for the IR cut-off is the Ricci scalar,

which was first introduced by Gao et al. Later modified holographic

Ricci dark energy was proposed by Granda and Oliveros.

In the present thesis, the modified Ricci dark energy is studied

by considering its interaction with the dark matter present in the

universe. Owing to the lack of knowledge about the microscopic origin

of such an interaction, phenomenological interaction forms of non-

gravitational nature is assumed.
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The modified Ricci dark energy density is given by,

ρde = (2Ḣ + 3αH2)/(α− β) (2)

where α and β are parameters of the model. Interaction is defined

through the conservation equations for the entities inside the universe

given by

ρ̇de + 3H(ρde + pde) = −Q (3)

ρ̇m + 3H(ρm) = Q (4)

where Q is the interaction term with forms, Q = 3bH(ρde + ρm), Q =

3bHρm, and Q = 3bHρde, where b is the interaction parameter, b > 0

implies dark energy decaying into dark matter. The evolution of the

interacting modified holographic Ricci dark energy(IMHRDE) and

also the thermodynamics are studied, especially the status of the

Generalized second law(GSL) both at the apparent horizon and event

horizon of the universe.

The objectives of the thesis are the following:

1. To study the cosmology and thermodynamics of the modified

holographic Ricci dark energy model which is in interaction with

the dark matter corresponding to the three interaction forms.

2. To constrain the parameters of the model and hence to extract

the Hubble parameter using the Type Ia supernovae data.
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3. To check how the model solves the Cosmological constant prob-

lem.

4. To check how the model explain Cosmological coincidence.

5. To study the evolution of the entropy of the dark energy.

6. To study the status of GSL under both thermal equilibrium and

non equilibrium conditions by taking apparent horizon and also

event horizon as the boundary of the universe.

By solving the Friedmann equations using the equation for in-

teracting Ricci dark energy, the evolutions of Hubble parameter and

dark energy density can be studied. Subsequently the evolutions of

the equation of state parameter and decelerations parameter can be

obtained. From the Hubble parameter, the distance moduli of the su-

pernovae at respective redshifts are obtained and are compared with

the observational data, which is further checked for fitting of the the-

ory with observation. Statistical χ2 analysis were done to evaluate

the parameters of the model including the present value of the Hub-

ble parameter. These values can be used to generate the evolutionary

behavior of various cosmological parameters.

The comparison of the IMHRDE model with other models, espe-

cially the ΛCDM model were carried out by diagnosing the model

with statefinder (r, s) parameters.
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The entropy of the dark energy is evaluated and its evolution is

studied. The validity of the GSL is studied taking apparent hori-

zon as well as event horizon as the boundary of the universe. The

Gibb’s relation is used to calculate the entropy of the dark energy and

dark matter and Bekenstein’s relation is used to obtain the entropy

of the horizon. The entropy evolutions were studied under thermal

equilibrium and non-equilibrium conditions.

The present work entitled ”Studies on the cosmology and thermo-

dynamics of holographic dark energy” is organized into nine chapters.

The first chapter is a general introduction to the basic area of the cos-

mology and FLRW model.

The second chapter details different dark energy models like ΛCDM

model, Scalar field models such as Quintessence, K-essence, Phantom

model, fluid model like Chaplygin gas model, and Holographic dark

energy model. Their advantages and disadvantages are discussed in

this chapter.

The third chapter encompasses the history leading to the forma-

tion of holographic dark energy model.

Fourth chapter describes the non-interacting modified holographic

Ricci dark energy model. Its cosmology is discussed. The merits and

de-merits of the model are pointed out here.
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In Fifth chapter the interacting model is considered with inter-

action term Q = 3bH(ρde + ρm), termed as IMHRDE1 model. Co-

evolution of dark energy and dark matter is studied for interaction

parameter b = 0.001. The cosmology of the model is studied. The va-

lidity of GSL, which states that the total entropy of the fluid contents

inside the universe when added with the entropy of the cosmological

horizon must always increase, is checked under thermal equilibrium

and non-equilibrium conditions for a universe bounded by apparent

horizon and event horizon. The entropy evolution is studied assuming

a dark energy dominated universe. It is analyzed that the entropy of

the dark energy decreases as the universe expands while the entropy

of the horizon and the total entropy of the universe increase as the

universe expands.

In sixth chapter, the cosmology of second interaction model IMHRDE2

with interaction term Q = 3bHρm is analyzed. Co-evolution of

dark energy and dark matter is explained for interaction parame-

ter b = 0.003. Validity of GSL is checked under thermal equilibrium

condition and non-equilibrium conditions for a universe bounded by

apparent horizon and event horizon. The entropy evolution of the

dark energy is studied. The entropy of the dark energy is found to

be decreasing as the universe expands, the increase in the horizon en-

tropy compensates this loss resulting in the increase of total entropy
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as the universe expands implying the validity of the GSL.

Chapter seven details the cosmology and thermodynamics of the

third interaction model IMHRDE3 with Q = 3bHρde. Co-evolution

of dark energy and dark matter is analyzed for interaction parameter

b = 0.009. The characteristics of the equation of state parameter and

deceleration parameter are studied. The validity of GSL is checked

under thermal equilibrium condition and non-equilibrium conditions

for a universe limited by apparent horizon and event horizon. Evolu-

tion of entropy of dark energy under a dark energy dominated case is

studied.

Chapter eight comprises statistical analysis. The Chi square min-

imum method is used to extract the best fit parameters of the model.

Confidence contours are drawn in order to estimate errors in the best

fit parameters. Error plots are drawn comparing the theoretical and

observation values of the distance modulus.

Chapter nine incorporates conclusions and discussions.

Important findings of the study are:

1. A flat universe consisting two interacting components, the dark

matter and holographic Ricci dark energy are considered. The

evolution characteristics of the Hubble parameter, equation of

state parameter and deceleration parameter are obtained.



xvii

2. Statistical χ2 analysis is done using the Type Ia supernovae

data to constrain the parameters of the model and obtained the

present value of the Hubble parameter.Cosmological parameters

are also obtained and are in close agreement with the observa-

tional values.

3. It is found that the model is free from Cosmological constant

problem.

4. The model also explained the cosmological coincidence of the

densities of dark matter and dark energy.

5. Study of thermodynamics showed apparent horizon as the ther-

modynamic boundary of the universe.

6. The model with the interaction term Q ∝ ρde is having a poor

fit with the Type Ia observational data when compared to other

types of interaction.

The inferences from the present work are that the IMHRDE model

predicts the cosmological parameters which are in close agreement

with the observational values from WMAP observation. IMHRDE1

(Q ∝ ρm) and IMHRDE2 (Q ∝ ρde+ρm) are fitting with the observa-

tional data when compared to IMHRDE3 (Q ∝ ρde). The advantages

of the model are that the model solves cosmological constant problem

and explains the cosmological coincidence.
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1
Introduction to Cosmology

1.1 Introduction

Cosmology comprises the study of the dynamics of the universe at

large scale and it aims at understanding the origin and evolution of

the universe. Since the discovery by Edwin Hubble, in 1920’s, on

the recessional motion of distant galaxies, cosmology is overwhelmed

with various observational data which are all supporting the idea of an

expanding universe. Friedmann-Lamaitre-Robertson-Walker(FLRW)

model of the universe is considered to be the standard model due to

its success in explaining the evolution of the universe. This model is

effective in predicting the conditions prevailed in the universe after

the Planck time, i.e., 10−43 seconds after the Big Bang onwards[1].

At large scale the universe is taken to be homogeneous and isotropic.

1
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This is initially taken as an assumption called cosmological princi-

ple which is an extension of Copernican principle which states that

we are not privileged observers. The original motivation behind this

assumption was its simplicity that a homogeneous and isotropic dis-

tribution of matter is the simplest possible way using which a model of

the universe can be formulated based on either General Relativity or

Newton’s law. Later observational evidences confirmed this assump-

tion that the universe is in fact homogeneous and isotropic at scales of

the order of 100 Mpc or so. However the universe still seems to be in-

homogeneous at smaller scales, where it consists of local clustering of

masses like stars, galaxies etc. The strongest observational evidence

of homogeneity and isotropy came from the Cosmic Microwave Back-

ground Radiation(CMBR). The CMBR, the radiation left over from

the early stage of the universe, is observed to be the same in every

direction to within 1 part in 10−5[2]. Large scale redshift surveys [3]

and 2dFGRS[4–6] have all confirmed the homogeneity and isotropy

at large scales.

The FLRW model of the universe describes a homogeneous and isotropic

universe started with a big-bang hence called as the big-bang model.

The FLRW model is considered to be the widely accepted model of

the universe. The major observational supports of the model are the

prediction of the cosmic microwave background radiation (CMBR),
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prediction of the primordial abundance of light nuclei like Hydrogen,

Helium, Lithium etc and explanation of the Hubble law about the

recessional motion of distant galaxies. The model is also successful

in explaining the evolution of the large scale structure in the universe.

Recent observations of the type Ia supernova have revealed that the

present universe is accelerating and the acceleration have begun in the

recent past of the evolution of the universe[7, 8]. Later, observations

on CMBR [9], large scale structures [3, 10] etc have all confirmed

this result. In order to explain this recent acceleration of the uni-

verse within the frame work of the FLRW model[11–14], one has to

introduce some exotic component of fluid which can produce nega-

tive pressure that can drive the acceleration of the universe. This

exotic form of energy is called dark energy. One of the hopeful model

of dark energy which can explain this recent acceleration is called

ΛCDM (Lambda-cold dark matter) model, where the main compo-

nents of the universe are a cosmological constant(equivalent to dark

energy) and non-relativistic matter. But this model faces with severe

problem that the theoretically predicted value of the cosmological

constant is nearly 10120 times larger than the observed value. Only

with a fine tuning, the model can comply with the observational re-

sults. This motivates the introduction of models with time evolving

dark energy, where the density of dark energy varies as the universe
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expands. In the present thesis we are analyzing such a model of dark

energy called the holographic dark energy model and its feasibility in

explaining the late time acceleration of the universe. As a first step

we are making a review of the FLRW model of the universe in the

following section.

1.2 FLRW model of the universe

Gravity is the force that controls the universe at large scales and

is most accurately described by Einstein’s field equation in General

theory of Relativity( a modified theory of gravity)[15],

Rµν −
1

2
Rgµν ≡ Gµν = 8πGTµν , (1.1)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci

scalar, all representing the curvature of space, gµν is the space-time

metric tensor and Tµν is the energy-momentum tensor of the fluid

components in the universe like matter, radiation etc. This equation

tells us that the matter-energy component of the universe causes the

curvature and thus the geometry of space-time.

The universe at large scale is isotropic and homogeneous. Around the

middle of 1920’s Edwin Hubble proposed the idea of an expanding uni-

verse based on his observations on the redshift of galaxies. However

a theoretical model of an expanding universe was proposed by Fried-
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mann even before the discovery by Hubble. Friedmann model is pop-

ularly known as the Friedmann-Lamaitre-Robertson-Walker(FLRW)

model which describes a universe which is homogeneous and isotropic

in 3-space and is evolving along time direction. Such a universe is

basically described by the FLRW metric,

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

)
, (1.2)

where (r, θ, φ) are spherically symmetric co-moving co-ordinates which

are the co-ordinates carried along with the expansion of the universe

so that the real distance between two galaxies can be obtained by

multiplying the co-moving co-ordinate distance with the scale factor

of expansion a(t), t is the cosmic time and k is the curvature param-

eter of the 3-space which determines its geometry:

• k = +1 V positive curvature and a closed universe,

• k = 0 V zero curvature and a flat universe,

• k = -1 V negative curvature and an open universe.

1.3 Friedmann equations

The equations describing the dynamics of Friedmann universe can be

obtained from the Einstein’s field equation by substituting the FLRW
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metric and the energy-momentum tensor of the fluid components of

the universe. By assuming that the components of the universe are

perfect fluids at rest in the co-moving co-ordinate system, one can

write the energy-momentum tensor[15] as

Tµν = pgµν + (p+ ρ)UµUν , (1.3)

where p and ρ are the pressure and density of the fluid respectively

and are functions of time, Uµ is the four velocity with components,

U t = 1 U i = 0. (1.4)

The Friedmann equations are then obtained as,

ȧ2

a2
+
k

a2
=

8πG

3
ρ, (1.5)

2
ä

a
+
ȧ2

a2
+
k

a2
= −8πGp (1.6)

where over dot represents the derivative with respect to cosmic time.

Combining equations(1.6) and (1.5) one can obtain the equation,

ä

a
= −4πG

3
(ρ+ 3P ) , (1.7)

which gives the acceleration of expansion of the universe in relation

to the energy densities of the fluids and it’s pressure. The above three

equations are generally known as the Friedmann’s equations. We can

define the critical density as,

ρc =
3H2

8πG
, (1.8)
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which is the total energy density needed to make the universe flat. Its

present value is around ρc ≈ 1.9×10−29h2g/cm−3 ≈ 8.1×10−11h2eV 4 =

8.1h2 × 10−47GeV 4 where h = H0/(100km/s/Mpc) and H0 is the

present value of the Hubble parameter. When ρ = ρc, k = 0 corre-

sponds to flat universe, when ρ > ρc, k > 0 representing a positively

curved universe and when ρ < ρc, k < 0 corresponding to a negatively

curved universe.

When equation(1.5) is multiplied with a2 and differentiated with re-

spect to the cosmic time, then combining with equation(1.7), gives

ρ̇+ 3H(ρ+ P ) = 0, (1.9)

where H = ȧ/a, the Hubble parameter. The above equation is called

the conservation or continuity equation which describes the evolution

of energy density of the fluid components as the universe expands.

The evolution of the energy density depends on the equation of state

parameter defined as

ωi ≡
pi
ρi
, (1.10)

where i refers to the possible fluid components of the universe and

in general ω is a time dependent quantity. The evolution of energy

density of a given component is obtained by integrating the continuity

equation(1.9),

ρi ∝ exp

(
3

∫
(1 + ωi(z))d ln(1 + z)

)
. (1.11)
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For simple fluids where ω is a constant, the energy density become

ρi ∝ a−3(1+ωi). (1.12)

For radiation or relativistic particles, ωr = 1/3, then

ρr ∝ a−4, (1.13)

and for non-relativistic matter ωm = 0, then

ρm ∝ a−3. (1.14)

So the radiation density is decreasing faster than the matter density

as the universe expands, because unlike matter the radiation suffers

a decrease in density due to redshift(stretching of wavelength) also

as the universe expands. If one goes back in time the radiation den-

sity would be increasing and eventually dominate over that of matter.

This means that the early stage of the universe is dominated by ra-

diation, called radiation-dominated era and as the universe expands,

due to the faster decrease in the radiation density, the universe will

evolve into a later phase where matter is dominated over radiation

called matter-dominated era. The evolution of the scale factor with

cosmic time can be obtained from the Friedmann equation. For a flat

universe (with k = 0),

H2 ∝ ρ. (1.15)

For a radiation-dominated universe, the above equation becomes,

H2 ∝ a−4. (1.16)
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On integrating this, we get the evolution of a with cosmic time in the

radiation-dominated universe as,

a ∝ t1/2. (1.17)

Similarly for a matter-dominated universe one can obtain

a ∝ t2/3. (1.18)

The density behavior shows that the early universe was denser and

therefore hotter. In the radiation-dominated era ρr ∝ a−4. From ste-

fan’s law the density evolution with temperature follows the relation

ρr ∝ T 4. Therefore one can conclude that the temperature of the

universe T ∼ a−1. Hence the early universe was hotter compared to

the later phase. Initially the temperature was so great that matter

existed in plasma state, the particles were colliding and scattering

with one another frequently so that they reached an equilibrium. As

the temperature dropped due to the expansion of the universe, the

radiation energy decreased below the binding energy of the nuclei and

light elements such as deuterium, helium, lithium etc. were formed.

At around 10−13 seconds after big bang, the temperature of the ra-

diation was too high to allow the electrons to combine with nuclei to

form neutral atoms. After this period, electrons combined with nu-

clei to form neutral atom and subsequently radiation was decoupled
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from matter. It is this radiation leftover from the early stage called

as the Background radiation, having temperature around 2.7 Kelvin

at present.

1.4 Friedmann model with Cosmological constant

Cosmological constant term was introduced by Einstein basically to

create a static model of the universe. The term was abandoned due

to the discovery that Hubble made in 1929 of receding galaxies and

later the cosmological constant was resurrected after the discovery

of the acceleration of the universe. The Friedmann equations with

Cosmological constant are,

ȧ2

a2
+
k

a2
=

8πG

3
ρ+

Λ

3
, (1.19)

and

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (1.20)

Cosmological constant gives a positive contribution to the acceler-

ation, so unlike gravity it acts effectively as a repulsive force. An

effective energy density corresponding to cosmological constant can

be expressed as,

ρΛ = Λ/8πG. (1.21)

The continuity equation for the cosmological constant,

ρ̇Λ + 3H(ρΛ + pΛ) = 0, (1.22)
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which implies that the corresponding pressure is negative,

pΛ = −ρΛ. (1.23)

The physical interpretation of the Cosmological constant is coming

from some scalar field theories as vacuum constant or zero-point en-

ergy.

1.5 Solutions of the Friedmann equations

The Friedmann equations can be solved for different conditions gives

different models, (i)Closed, open and flat universes: In the case

of matter-dominated universe, the first Friedmann equation can be

recast in the form,(
ȧ

a

)2

= H2
0

[
Ωm0a

−3 + (1− Ωm0)a−2
]
. (1.24)

This equation can be solved for k = +1 in the parametric form,

a =
amax

2
(1− cosθ) ; amax = a(t0)

(
Ωm0

Ωm0 − 1

)
, (1.25)

and the corresponding time,

t =
tmax
π

(θ − sinθ) ; tmax =

(
Ωm

2H0(Ωm − 1)3/2

)
. (1.26)

The above equation shows that the universe starts at θ = 0 with big

bang, reaches maximum size at θ = π and collapses in a big crunch
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at θ = 2π. Such a universe is said to be closed universe.

For k = −1, the solutions become,

a =
amax

2
(coshθ − 1) ; amax = a(t0)

(
Ωm0

Ωm0 − 1

)
, (1.27)

and the corresponding time,

t =
tmax
π

(sinhθ − θ) ; tmax =

(
Ωm

2H0(Ωm − 1)3/2

)
. (1.28)

In this case the universe keeps expanding forever and is called as open

universe.

For k = 0, the solutions become much simpler that a ∝ t2/3 and is the

critical case where universe will expand forever. The corresponding

universe is then called as flat universe. (ii)de Sitter model: In this

model the universe consists of only cosmological constant, Λ and the

Friedmann equation become,(
ȧ

a

)2

=
Λ

3
. (1.29)

The solution is obtained as

a = a0e
√

Λ
3
t. (1.30)

The corresponding universe is eternally accelerating. (iii)ΛCDM

model: The components of the ΛCDM model are cold dark matter,

radiation and the cosmological constant with equation of states, ωm =

0, ωr = 1/3 and ωΛ = −1 respectively. The Friedmann equation of



Observational Parameters of the Friedmann universe 13

the model is,

H2 =
8πG

3
(ρm + ρr + ρΛ) . (1.31)

This is the simplest model that provides a reasonably good account

of the existence of CMBR, large scale structures and distribution of

galaxies, abundance of light elements like Hydrogen, Helium, Lithium

etc. in the universe and also the recent acceleration of the uni-

verse. Even though this is considered as the concordance cosmological

model, it is faced with the severe problems of cosmic coincidence and

cosmological constant problem when one tries to understand the re-

cent acceleration of the universe.

1.6 Observational Parameters of the Friedmann universe

Different cosmological models were constrained by the observational

values of the parameters defined in such models. The most commonly

used parameters are: the Hubble parameter, the age of the universe,

mass-density parameters like Ωm, corresponding to non-relativistic

matter, Ωr, corresponding to radiation, ΩΛ, corresponding to cosmo-

logical constant, Ωde, corresponding to dark energy, equation of state

parameter for different components of the universe, ωi, deceleration

parameter q characterizing the speed up in the expansion of the uni-

verse.

The Hubble parameter H which gives the rate of expansion of the



14 Introduction to Cosmology

universe basically defined by the Hubble’s law, v = Hd, where v is

the velocity of the galaxies receding from the observer and d is the

physical distance towards the galaxy. It is usually parameterized by

its present value as,

H0 = 100hKms−1Mpc−1, (1.32)

where h is between 0.4 and 1. The present value of the Hubble pa-

rameter is around 72± 3 [3].

One of the important parameter that could be predicted by a cos-

mological model is the age of the universe. The approximate age can

be obtained from the Hubble’s law. Hubble’s law can be written as

d = H−1v, means that H−1 has got the dimension of time. Ignoring

the fact that v is changing with respect to time, one can write the

age of the universe as t ∼ H−1
0 . By considering the present value of

the Hubble parameter, the corresponding age is found to be less than

15 GYr. The latest concordance value of the age of the universe is

coming from the observational data of globular clusters and is[3]

t0 = 13.9± 0.6GY r (1.33)

The different density parameters specifies the densities of the different

components of the universe. The Friedmann equation can be recast
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in terms of the energy densities of all possible components as

H2 =
8πG

3

(
ρm + ρr + ρΛ − k/a2

)
, (1.34)

which can be expressed in terms of the mass-density parameters as

1 = [Ωm + Ωr + ΩΛ + Ωk] , (1.35)

where

Ωm =
ρm
ρc
, Ωr =

ρr
ρc
, ΩΛ =

ρΛ

ρc
, Ωk = − k

a2H2
, (1.36)

where ρc(t) is the critical density given by

ρc(t) =
8πG

3H2
. (1.37)

Ωm is the mass-density parameter of non-relativistic matter compris-

ing both baryonic and dark matter, Ωr is the mass-density parameter

of radiation,ΩΛ is the mass-density parameter corresponding to the

cosmological constant and Ωk is the density parameter corresponding

to curvature.

The concordance values of these parameters are given in Table 1

which are obtained from the combined data from SDSS and WMAP

[3].

The equation of state parameter characterizes the evolution of the

fluid components of the universe and its expression for ith component

is

ωi =
pi
ρi
. (1.38)
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Cosmological

parameters

Concordance

values

Ω0 1.003 ± 0.010

Ωm0 0.288 ± 0.030

Ωde 0.757 ± 0.020

ω0 -0.94 ± 0.100

q0 -0.64 ± 0.030

H0 72 ± 3

Table 1.1: values of the cosmological parameters

For pressureless non-relativistic matter, ωm = 0, for radiation with

p = ρ/3, ωr = 1/3, and for cosmological constant with p = −ρ ,

ωΛ = −1.

The Hubble parameter gives the idea of rate of expansion of the

universe. But the nature of the rate, whether it is increasing or de-

creasing, can be determined by the deceleration parameter, q defined

as

q = − äa
ȧ2

= −1− Ḣ

H2
. (1.39)

For q > 0, implies a decelerated expansion and q < 0 implies ac-

celerated expansion. For the standard Friedmann model, when the

universe dominated with radiation the deceleration parameter q ∼ 1

implies a decelerated universe and when the universe is dominated
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with non-relativistic matter, the deceleration parameter q ∼ 0.5 which

also implies a decelerating universe. So for an accelerating universe

with q < 0 the universe must be dominated with some form of matter

different from ordinary matter and radiation, which enable to produce

a negative pressure.

1.7 Accelerating Universe

Recent observations on type Ia supernovae(SN Ia) by two teams,

High-redshift Supernova Search Team[8] and the Supernova Cosmol-

ogy Project[7] independently shows that the present universe is ac-

celerating despite the presence of gravity and the acceleration began

in the recent past of the universe. The study of the luminosity dis-

tance of the type Ia Supernovae led to the above conclusion. This

discovery was further supported by the observational data on the

anisotropy in Cosmic Microwave Background radiation[16, 17], large-

scale structures[10] and Baryon acoustic oscillations(BAO)[18].

Evidence from Supernovae

The supernovae are the exploding stars having high luminosity. Su-

pernovae are mainly classified into two: Type I and Type II. Type

II are explosions of high massive stars having hydrogen lines in its

absorption spectrum while Type I does not have it. Type I super-
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novae again is classified into three: If there is singly ionized Silicon

absorption line in the spectrum, then it is Type Ia , If it is a He-

lium line then Type Ib and Type Ic does not have Silicon or Helium

line in its spectrum. Type Ia supernovae are formed from the ther-

monuclear explosion of a white dwarf in a binary system which when

absorbed gas from the companion star so that its mass crosses the

Chandrasekhar limit and explodes. Supernovae Ia is consensually

named as the ”standard Candle” due to its constancy in luminosity

at the peak of brightness because of the uniform masses of the ex-

ploding white dwarfs. Standard candles such as Cepheid stars whose

luminosity varies within a regular cycle used before have the limita-

tion that beyond 30 Mpc[19] they cannot be used. SN Ia have the

advantage of perceiving at large distances because of their higher de-

gree of brightness.

The comparison of the redshift and magnitude of Type Ia super-

novae provided the evidence for the acceleration in the expansion of

the universe. The apparent magnitude estimates the distance while

the redshift, which is the stretching of wavelength, corresponds to the

expansion. In fact, the magnitude- redshift relation gives the expan-

sion history of the universe. The magnitudes and luminosity of a star
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are related through

m−M = 5log10dL + 25, (1.40)

where the distance is expressed in Megaparsec, m is the apparent

magnitude and M is the absolute magnitude of the cosmological ob-

ject and dL is the luminosity distance. Since M is same for all SN

Ia, dL(Z) can be calculated using the above expression by knowing

m . The corresponding redshift is calculated from the measurement

of wavelength of light λ.

In Minkowski space the absolute luminosity Ls of the source and en-

ergy flux F at a distance d are related by Ls/(4πd
2). By generalizing

this to an expanding universe, the luminosity distance dL is defined

as

d2
L =

Ls
4πF

. (1.41)

Let the source is at a comoving distance χ = χs from the observer at

χ=0. The source is emitting energy ∆Es in a time interval ∆ts, then

the absolute luminosity Ls is given by

Ls =
∆Es
∆ts

. (1.42)

The corresponding energy received by the observer ∆E0 during ∆t0,

hence the observed luminosity L0 is given by

L0 =
∆E0

∆t0
. (1.43)
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The energy ∆Es ∝ νs and ∆E0 ∝ ν0 so that

∆Es
∆E0

=
νs
ν0

=
λ0

λs
= (1 + z). (1.44)

We have νs∆ts = ν0∆t0, then

Ls = L0(1 + z)2. (1.45)

Since light follows null path the co-moving distance χs to the source

can be expressed as,

χs =

∫ χ

0

dχ =

∫ to

t

dt

a(t)
=

1

a0H0

∫ z

0

dz

h(z′)
, (1.46)

where h(z) = H(z)/H0. The FRW metric using conformal co-ordinate

is given as,

ds2 = c2dt2 − a(t)2
(
dχ2 + fk(χ)2(dθ2 + sin2θdφ2)

)
. (1.47)

Then the area of the sphere at t = t0 is S = 4π (a0fk(χs)
2) and hence

the corresponding flux observed is given by,

F =
L0

4π (a0fk(χs))
2 . (1.48)

The luminosity distance now becomes,

dL = a0fk(χs)(1 + z) =
1 + z

H0

∫
dz
′

h(z′)
. (1.49)

Considering the universe with matter and cosmological constant con-

tributions only, the above equation can be written as,

dL =
1 + z

H0

∫
dz
′√

Ωm0(1 + z)3 + ΩΛ

. (1.50)
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Figure 1.1: [Luminosity distance in units of H−1
0 for a universe

with non-relativistic matter and cosmological constant(ωΛ=-1). Plots

A,B,C,D corresponds to ΩΛ = 0, 0.3, 0.7, 1 respectively.Courtesy[20]]

Then the function
∫ z

0
dz
′

h(z′ )
can be expanded around z = 0 as,∫ z

0

dz
′

h(z′)
= z − h

′
(0)

2
z2 +O(z3). (1.51)

Luminosity distance up to second order of redshift is

dL =
cz

H0

(
1 + (1− 3(1 + ΩΛ)

2− ΩΛ

)z

)
. (1.52)

When ΩΛ=0, the above relation will be reduced approximately to

dL ' z/H0 for small values of z. A plot of the luminosity distance

versus redshift is shown in figure(1.1) From the magnitude relation

one can calculate the luminosity distance knowing the apparent and

absolute magnitude m and M respectively. This has to be compared
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with the theoretical value of luminosity obtained using relation 1.52

with suitable values of ΩΛ. As an example consider supernovae1997ap

at a redshift z = 0.83 with M = −19.09 and m = 24.32. The cor-

responding luminosity distance from the magnitude relation is found

to be around

H0dL ' 1.16, for z = 0.83, (1.53)

where H−1
0 = 2998h−1Mpc with h = 0.72. The corresponding theo-

retical estimate of the luminosity distance is

H0dL ' 0.95, for Ωm0 = 1, (1.54)

and

H0dL ' 1.23, for Ωm0 = 0.3, ΩΛ0 = 0.7. (1.55)

This shows that the theoretical value is satisfying with the observed

value only for non-zero values of ΩΛ, the dark energy.

Evidence from CMBR anisotropy and Large scale structure

Observations on the anisotropy in the temperature of CMBR and

large scale structure provide indirect evidence for the existence of

dark energy.

The figure 1.2 shows the observed anisotropy in the CMB spectra

which was decoupled at an epoch around, z ' 1090. It was shown

that a theoretical prediction of this behavior would need a non-zero
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Figure 1.2: [Prediction of CMBR anisotropy[21, 22]. Courtesy [23].]

value for ΩΛ the dark energy component.

The angular power spectrum of CMBR shown above consist of acous-

tic peaks that arise from gravity-driven sound waves. These acoustic

oscillations are produced by the perturbations in the baryon density

which was existed in the early stage of the universe when radiation

and matter were in equilibrium. To predict these baryon acoustic os-

cillations using the standard model of cosmology will need the pres-

ence of dark energy. Apart from these there are evidences from the

observational data from the age of the universe for the existence of

dark energy. From the data of the oldest galactic globular clusters the
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age of the universe is constrained to 12Gyr ≤ t0 ≤ 15Gyr [24]. This is

compatible with the standard model of cosmology for 0.2 < ΩM < 0.3.



2
Dark Energy

2.1 Dark energy

The recent acceleration of the universe is caused by an exotic form of

energy called dark energy having a negative pressure. Many theoret-

ical models were proposed to understand the nature and evolution of

dark energy.

2.1.1 Cosmological constant

The simplest realization of dark energy is through cosmological con-

stant [20, 25, 26] which was first introduced by Einstein[27]. A uni-

verse with cosmological constant alone will be eternally accelerating

and corresponds to the de Sitter model of the universe. On the other

hand the universe consisting of both dark matter and cosmological

25
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constant have an early decelerated epoch followed by an accelerated

epoch began in the recent past. This model is often called as the

ΛCDM model which almost satisfactorily explaining the recent accel-

eration of the universe. Theoretically cosmological constant can be

realized as the vacuum energy. In spite of its simplicity and success

in explaining the recent acceleration, the model faces two severe flaws

which are:

(i)Cosmological constant Problem: The value of the cosmolog-

ical constant can be obtained from the present value of the Hubble

parameter, H0 as[28]

Λ ≈ H2
0 . (2.1)

The corresponding critical density of the cosmological constant is,

ρΛ ≈
ΛM2

pl

8π
≈ 10−47GeV 4 ≈ 10−123M4

pl, (2.2)

where H0 = 100hKmsec−1Mpc−1 = 2.1332h × 10−42GeV, h = 0.7

and Mpl = 1.22 × 1019GeV. In terms of the vacuum energy field of

mass m and momentum p, the zero-point energy is E = 1
2
~ω =

1
2

√
p2c2 +m2c4, but if ~ = c = 1 and p = ~k, then E = 1

2

√
k2 +m2.

When these zero-point energies are summed up to a cut-off scale of

kmax � m(to avoid divergence), the energy density becomes,

ρvac =

∫ kmax

0

d3k

(2π)3

1

2

√
k2 +m2 =

∫ kmax

0

4πk2dk

(2π)3

1

2

√
k2 +m2 =

k4
max

16π2
.

(2.3)
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Within the framework of General Relativity, the kmax = Mpl = 1.22×

1019GeV. Hence,

ρvac ' 1074GeV 4, (2.4)

which is about 10121 times greater than the observational value of the

cosmological constant given by the equation(2.2). This discrepancy

between the observational and theoretical values of the cosmological

constant poses a challenge to any model of dark energy.

(ii)Cosmic coincidence Problem: The present value of the energy

density of the cosmological constant is found to be around 0.73ρc.[7]

On the other hand the present matter density is found to be 0.28ρc.

This shows that the dark energy and matter densities are of same

order. Any model of dark energy must be able to predict this coinci-

dence of energy densities and is often called the coincidence problem.

The ΛCDM model of dark energy failed to explain both the problems.

These drawbacks of the ΛCDM model motivates the introduction of

dynamical dark energy models. We will discuss a few of these models

in the following sections.

2.1.2 Quintessence Model

In this model[20, 28–31] a scalar field φ with a potential V (φ) is as-

sumed to cause the recent acceleration. The scalar field is coupled
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with gravity through a minimal coupling constant. Unlike the cos-

mological constant, the equation of state of quintessence varies with

time hence it is a dynamical dark energy model. The model can be

defined by the action,

S ≡
∫
d4x
√
−g
[

1

2κ2
R + Lφ

]
+ SM , (2.5)

where Lφ is the Lagrangian of the field given by,

Lφ = −1

2
gµν∂µφ∂νφ− V (φ), (2.6)

κ2 = 8πG, R is the Ricci scalar and SM is the said action of matter.

For a flat FLRW universe, the variation of the aforesaid action leads

to the equation of motion,

φ̈+ 3Hφ̇+
dV

dφ
= 0. (2.7)

The energy momentum tensor Tµν is obtained from the variation of

the action with respect to gµν and from which the energy density

ρ = −T 0
0 and the pressure density p = T ii can be obtained as,

ρ =
1

2
φ̇2 + V (φ),

p =
1

2
φ̇2 − V (φ). (2.8)

The Friedmann equations using these expressions for the ρ and p of

the field φ is obtained as

H2 =
κ2

3

[
1

2
φ̇2 + V (φ) + ρM

]
,

ä

a
= −κ

2

3

[
φ̇2 − V (φ)

]
. (2.9)
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The above expression indicates that for acceleration to take place

φ̇2 < V (φ). The corresponding equation of state will take the form,

ωφ =
p

ρ
=

1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (2.10)

The physical nature of the quintessence field is not exactly known

and hence the nature of interaction with dark matter are also un-

known. The coincidence problem can be explained only by choosing

suitable values for the coupling constant of the interaction between

the quintessence field and dark matter. So the model does not have

a natural explanation for the coincidence of dark energy and dark

matter.

2.1.3 K-essence model

K-essence is another scalar field model of dark energy[32–34] with

a non-canonical form of kinetic energy whose modification accounts

for the accelerated expansion and this model is different from the

quintessence model where the potential of the scalar field determines

the acceleration. The action of the K-essence model is defined to be,

S =

∫
d4x
√
−g
[

1

2κ2
R + P (φ,X)

]
+ SM . (2.11)

where P (φ,X) = f(φ)P (X) is a function relating the scalar field φ

and its kinetic energy X = −(1/2)gµν∂µφ∂νφ = −(1/2)(∇φ)2. In or-

der to explain the coincidence problem, one needs to fine-tune f(φ) to
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be of the order of the present energy density of the universe. Without

this fine-tuning the model fails to explain the coincidence.

2.1.4 Phantom model

The recent observations indicating that the equation of state param-

eter of dark energy is slightly less than −1.[35, 36] This was theo-

retically studied by Alam et al.[37] If the equation of state is less

than −1, such models are collectively known as Phantom models.

For example, K-essence model with positive energy density gives rise

to an equation of state parameter less than −1. The cosmological

evolution of such a field leads to future singularity which results in

a Big-Rip[38, 39]. Since the equation of state parameter, ω < −1 for

phantom model[40–42], the energy density of dark energy increases

with time which is a violation of dominant energy condition[43]. The

scale factor of expansion thus blows up, dissociating the bounded sys-

tem and causes the stripping of the bodies, which eventually leads to

the ”Big Rip.”[44]

2.1.5 Chaplygin gas model

This is a widely studied model[45–47] in explaining dark energy with

an exotic equation of state for a perfect fluid in simple terms written
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as,

p = −A
ρ
. (2.12)

Later this was generalized known as the generalized Chaplygin gas

with an equation of state,

p = − A
ρα
, (2.13)

where A is a positive constant and 0 ≤ α ≤ 1. In a flat FLRW

universe the energy density ρ of the fluid evolve as,

ρ =

(
A+

B

a3(1+α)

)1/(1+α)

, (2.14)

where B is the integration constant. At early epoch when a is very

much small,

ρ ∼
√
B

a3
. (2.15)

For α = 1, the expression implies a universe with pressure-less dust

corresponding to the conventional matter-dominated universe. In the

late stage of the evolution of the universe, when a is very large, then

ρ ∼
√
A, p = −ρ. (2.16)

This implies a behavior similar to a universe dominated with cosmo-

logical constant and therefore an accelerating universe. This means

that Chaplygin gas acts as non-relativistic matter in the early stage

and as cosmological constant in the late stage of the universe. Hence

Chaplygin gas provides an interesting possibility for a unified model
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for dark energy and dark matter. However the Chaplygin gas with

α = 1 often called as the standard Chaplygin gas model have been

ruled out by many others[48, 49] by contrasting it with cosmological

data like Supernovae data, CMB data etc[50]. But generalized gas

models with α values other than 1 is also faced with severe draw-

backs. The parameter α is severely constrained to produce the late

acceleration[51–53]. A much serious problem is regarding the CMB

anisotropies. The Jeans instability of perturbations predicted by the

generalized Chaplygin gas models behave similar to the cold dark

matter fluctuation in the early deceleration phase, but these fluc-

tuations will disappear in the accelerating phase. This will lead to

power loss in the CMB anisotropies and hence is incompatible with

the observed CMB anisotropy.

2.1.6 An alternative model based on holographic principle

This model represents another dynamic dark energy model. The con-

cept of holographic model was proposed by Gerard ’t Hooft[54] while

studying black holes thermodynamics which was elaborated and de-

veloped by Leonard Susskind[55]. The model is based on the principle

of holography says that the degrees of freedom of a system scales with

its area rather than with its volume. In other words, Susskind says

that the nature can be explained using two-dimensional lattice at the

spatial boundaries of the world in the place of a three-dimensional
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lattice[55]. The model considers the relation connecting UV and IR

cut-off, so that if ρΛ is the zero point energy density of a quantum

system which is caused by a short-distance cut-off, then the total en-

ergy inside the region L should not exceed the mass of the black hole

of the same size[56]. The maximum value L can take saturates the

inequality,

ρΛ = 3c2M2
pL
−2, (2.17)

where c is a dimensionless numerical constant, Mp is the reduced

Planck mass such that M−2
p = 8πG. Considering L to be the size of

the present universe the above equation can be taken as the equation

for the dark energy density. It is this model which is the subject of

our study. In the further chapters we have shown that the model

succeeds in explaining the cosmic coincidence and the fine tuning

problem to a satisfactory extent compared to other standard models

of dark energy.
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Holographic Dark Energy Model

3.1 Holographic Dark energy Model

The history of the concept of the holographic model way backs to

the black hole thermodynamics developed by S W Hawking and J

D Bekenstein. The concept of holography was introduced by Ger-

ard ’t Hooft, which was later developed as a principle by Leonard

Susskind taking into consideration the views of Bekenstein’s and t’

Hooft’s views. Later, holographic principle was applied to cosmology

by Fischler and Susskind [57].

35
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3.1.1 Black hole thermodynamics and generalized second

law of thermodynamics

The black hole dynamics is explained with the help of thermodynam-

ics. From the study of the black holes, Hawking showed that the area

of the black hole event horizon never decreases with time. Even when

two black holes merges with each other, the area of the event hori-

zon of the new black hole will be greater than the sum of the event

horizon areas of the individual black hole[58, 59]. This property of

the black hole area resembles the entropy in thermodynamics. Later

Bekenstein proposed that entropy of the black hole is proportional to

the area of the event horizon of the black hole and has shown that

black hole entropy[60–62] is given by

Sbh =
A

4G
(3.1)

This was later verified by Hawking[63][Sbh = KAc3/4G~].

Ordinary second law of thermodynamics says that the entropy of an

isolated system never decreases. Hawking showed that the entropy

inside the black hole cannot be determined by an external observer.

Since the black hole can accrete mass from the surrounding space it

can act as the sink of entropy. Thus the second law of thermodynam-

ics becomes violated. To reconcile the situation, on taking account of

the fact that the black hole entropy is proportional to its horizon area,
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Bekenstein proposed the generalized second law(GSL) of thermody-

namics which says that entropy of the black hole Sbh plus entropy of

the exterior universe Sex, never decreases, that is

∆Sbh + ∆Sex ≥ 0, (3.2)

where ∆Sbh and ∆Sex are the change in entropy of the black hole and

the change in entropy of the exterior respectively.

This black hole entropy which is characterized by its area later lead

to the holographic principle by ’t Hooft and Susskind [54, 55]. They

proposed that the entropy bound for any form of matter localized in

a spherical region is given by

Sm ≤
A

4G
(3.3)

where A is the area of the event horizon of the black hole of the same

size. Since entropy represents the degrees of freedom measured in

Planck units, the complete information regarding a system can be

obtained from the degrees of freedom residing in its surface, which is

known as the holographic principle. This principle was later used to

propose the holographic dark energy in cosmology.
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3.1.2 UV/IR connection

The entropy of the black hole is given by

Sbh =
A

4G
(3.4)

The above relation also holds, as an entropy bound in a spherical

region of space, with any kind of matter [47] as

Sm ≤
A

4G
(3.5)

This equation implies that the entropy of any material other than

black hole have an entropy less than that of the black hole of the

same size because black hole is the one which has maximum entropy

among the cosmic bodies. Hence the entropy relation above saturates

only in the case of a black hole and every other form of matter will

be having comparatively a lesser entropy.

In Quantum field theory, a system of size L, with ultraviolet(UV) cut-

off Λ will have an entropy scaling extensively as S = L3Λ3[64]. But

from Bekenstein’s relation the entropy scales non-extensively. Ac-

cording to Susskind and ’t Hooft any form of matter have entropy

less than that of the black hole. The system in Quantum field theory

have energy density ρ ∼ Λ4. The total energy of this system given by

Es = L3Λ4, must be less than the total energy of the black hole of

the same size give by E = LM2
pl. That is,

L3Λ4 ≤ LM2
pl (3.6)



Possible candidates for L, the IR cut-off 39

In terms of the energy density corresponding to the largest value of

L(IR cut-off) which saturates the inequality, the relation becomes

ρΛ = 3c2M2
plL
−2 (3.7)

where c is a numerical constant. This vacuum energy density is later

proposed as the holographic dark energy[47, 65]. The problem then

arise is the proper choice of L, the IR cut-off.

3.1.3 Possible candidates for L, the IR cut-off

The possible choices for the IR cut-off are Hubble horizon[65], future

event horizon etc. When Hubble horizon is taken as the IR cut-off,

the model will not give an accelerating universe. When future event

horizon[56] is taken as the IR cut-off, two major problems arose, it

violates causality [47, 66] and it also fails to account for the age of

the universe. In hope of resolving the above problems, Granda and

Oliveros proposed Ricci scalar as the IR cut-off [67] to define the

holographic dark energy.

(i)Hubble radius as the IR cut-off: The IR cut-off, L = 1/H

where H is the Hubble horizon size. Friedmann equation can be read

as

H2 =
8πGρ

3
=

ρ

3M2
pl

(3.8)
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where reduced Planck mass Mpl = (8πG)−2. Hence from the above

equation,

3M2
plH

2 = ρ (3.9)

If the universe is assumed to be composed of matter and dark energy,

then the total energy density of the universe is given by

ρ = ρm + ρΛ (3.10)

From equation(3.7), ρΛ = 3c2M2
plL
−2. When size L = 1

H
is substituted

in the expression for the energy density of vacuum, then the above

equation can be obtained as

ρΛ = 3c2M2
plH

2 (3.11)

From equation(3.9), we have ρm + ρΛ = 3M2
plH

2, if the expression for

ρΛ is substituted from equation(3.11), then the energy density for the

matter is obtained as,

ρm = 3M2
plH

2(1− c2) (3.12)

Comparing equations(3.11) and (3.12), it can be deduced that ρm and

ρΛ both behave similarly except for the constant factor c. Both ρm

and ρΛ are explicitly proportional to H2. From the continuity equa-

tion, ρm ∼ a−3, hence it can be assumed that dark energy density

also behaves like this. Since matter is pressureless so must be dark

energy, then the equation of state for dark energy ωde = p
ρ

= 0. But
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for an accelerating universe, the pressure must be negative and the

equation of state must be ω < −1
3
. This implies the holographic dark

energy with present IR cut-off will not cause acceleration in the late

time of the universe.

Hsu[65] has shown that Λ ∼ L−2 using holographic principle. When

the current Hubble size L is chosen as the size of observed uni-

verse Ltoday ∼ 10Gyr, then the cosmological constant is found to

be 10−10eV 4, which is very much near to the today’s observed dark

energy density. Thus the cosmological constant problem can be re-

solved. But the corresponding equation of state is found to be zero.

This implies the model fails to explain the recent acceleration.

(ii)Future event horizon as the IR cut-off: Another choice for

the IR cut-off is future event horizon[56, 66] defined by the expression,

Rh = a(t)

∫ ∞
t

dt

a(t)
= a(t)

∫ ∞
a

da

a2H
(3.13)

It is clear from the above expression that the future event horizon

depends upon the future evolution of the scale factor a(t), so it is a

global concept. Consider a flat universe, let a sphere of radius Rh have

the total energy 4/3πR3
hρΛ where ρΛ is the energy density inside the

sphere. The mass of a black hole of size Rh is Rh/(2G). When these

two energies are equated in reference to the holographic principle, the

energy density is obtained as

ρΛ = 3c2M2
plR
−2
h (3.14)
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Adopting the future event horizon as the IR cut-off in calculating

the dark energy density, it seems that the present value of the dark

energy depends upon the future evolution of the universe[68]. Hence

it violates causality.

Another problem in taking event horizon as the IR cut-off is that it

is not predicting the age of the universe. The age of the universe can

be calculated by the general formula,

t =

∫ ∞
z

1

(1 + z)H
dz (3.15)

Wei and Zhang[69] have calculated the age of the universe by consid-

ering event horizon as the IR cut-off of the holographic dark energy.

They found that the model fails to predict the age of the universe.

Yet another drawback pointed by Li[56] that this model is not ex-

plaining the cosmic coincidence of dark energy and dark matter in its

full sense. So it seems that taking event horizon as the IR cut-off is

no longer a viable solution for explaining the dark energy.



4
Holographic Ricci

Dark Energy Model

4.1 Holographic Ricci dark energy model

Holographic dark energy model is formulated in accordance with holo-

graphic principle based on the validity of the effective local quantum

field theory where a short distance(UV) cut-off is related to a long

distance cut-off(IR) due to the limit set by the formation of a black

hole [47, 64]. Following this formalism the dark energy density can

be expressed as,

ρΛ = 3c2M2
plL
−2, (4.1)

where 3c2 is a convenient numerical constant used[56], Mpl is the

reduced Planck mass and L is the IR cut-off. Possible choices for

IR cut-off include Hubble horizon, particle horizon and future event

43
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horizon[69]. The Hubble horizon and particle horizon as the IR cut-

off did not support an accelerating universe [56] while event horizon

as the IR cut-off had serious flaws that it violates causality[70] and

it could not explain the age of the universe also, however it could

explain the late acceleration of the universe.

Following the noted drawbacks of particle horizon and event hori-

zon in using to define the holographic dark energy, Gao et al. pro-

posed a new IR cut-off which is proportional to the local quantities,

the Hubble parameter and it’s time derivative. In their proposal they

in fact replaced the future event horizon with the inverse of Ricci

scalar curvature L ∼ R−1/2[68], which implies that ρΛ ∝ R. This

model is called as the Ricci dark energy model and is said to be well

fitted with the observational data, explained the coincidence problem

and the cosmological constant problem. Hence it is said to be a phe-

nomenologically viable model. The age of the universe is explained

satisfactorily. The problem of causality violation is avoided in this

model. The Ricci scalar curvature is given by

R = −6
(
Ḣ + 2H2 + k/a2

)
, (4.2)

where over dot implies the derivative with respect to the cosmic time.

In the study of Gao et al., the co-evolution of dark matter and dark

energy is explained neglecting the phase transitions between them.

The qualitative study shows that the densities of dark energy and
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dark matter are comparable in the past and the acceleration began

only recently at lower redshift thus solves the coincidence problem.

The model evaluates the evolution of equation of state parameter

ω = p/ρ which is nearly zero at higher redshift where it behaves as

non-relativistic dark matter and become −1 when z → 0. In the far

future, the equation of state approaches the value ω = −1.12, which

shows that this dark energy evolves to phantom nature in the future

evolution of the universe. The study of the deceleration parameter

shows that the redshift at which the acceleration began to be z '

0.55. Even though holographic dark energy model suffer from failure

of predicting the age of the universe, holographic Ricci dark energy

model predicts it fairly well.

Later Granda and Oliveros considered the modified form of the new

IR cut-off[67] which include square of the Hubble parameter and its

time derivative also which is contained in the term Ricci scalar, then

the density of holographic dark energy is expressed as,

ρΛ ≈ αH2 + βḢ, (4.3)

where α and β are the model parameters. Using the Friedmann equa-

tion which has an additional term for ρΛ, they studied the equation of

state which starts from nearly zero at higher redshift to −1 as z → 0

for β = 0.5, the evolution of deceleration parameter showed z = 0.67

as the redshift at which acceleration began for β = 0.5. Thus the
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theory is consistent with the observational data when β is taken to

be closer to 0.5, and when β is fixed at a transition redshift value zT ,

the parameter α also gets constrained, since the parameter α can be

expressed in terms of β. The transition from deceleration phase to

an accelerating phase for the fixed model parameters is shown to be

fitting with the observational data. Hence the proponents consider

this model viable even though there remains much to evaluate about

the form of the IR cut-off which is proportional to the time derivative

of Hubble parameter.

The non-interacting and interacting model of holographic Ricci dark

energy are discussed in this work. The coming section describes the

non-interacting modified holographic Ricci dark energy model.

4.2 Non-interacting modified holographic Ricci dark en-

ergy model

In the work [71], the authors have studied the modified holographic

Ricci dark energy, without considering its interaction with other cos-

mic components, in a flat FLRW universe. The evolution of the uni-

verse with modified holographic Ricci dark energy is studied by the

qualitative analysis of the Hubble parameter, equation of state pa-

rameter and deceleration parameter, which characterizes the nature

of dark energy. The present value of equation of state parameter and
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deceleration parameter and the transition redshift zT , at which the

universe enters the accelerating phase is found. They have used the

statefinder diagnostic to distinguish the model from other dark en-

ergy models.

In the non-interacting case, the normalized Hubble parameter is given

as in [71],

h2 = Ωm0 exp(−3x) +
α− 1

1− β
Ωm0 exp(−3x)+[

α− βΩm0

β − 1
+ 1

]
exp(−3βx),

(4.4)

where h = H/H0, H0 is the present value of the Hubble parameter.

The general expression for the equation of state parameter ωde is,

ωde = −1− 1

3

d ln Ωde

dx
, (4.5)

where Ωde is the dark energy density parameter. The evolution of the

equation of state ωde with respect to redshift z is shown in the figure

4.1. The present values of equation of state parameter is found to

be around ωde0 ' −0.70, for model parameters (α, β) = (1.01, 0.15),

while WMAP observation value is ωde0 = −0.93. The evolution of

equation of state showed that ωde starts from nearly zero at higher

redshifts implying dark energy behaved like dark matter in the past,

and reaching negative values as z → 0.

The deceleration parameter q, is expressed as

q = − Ḣ

H2
− 1 = − 1

2h2

dh2

dx
− 1. (4.6)
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Figure 4.1: [Evolution of equation of state parameter ωde with redshift

z for best fit values (α, β) = (1.01,0.15).]

The evolution of the deceleration parameter q with respect to the red-

shift z is shown in the figure 4.2. The present value of deceleration

parameter, and the transition redshift are q0 = −0.45 and zT = 0.76

respectively for model parameters (α, β) = (1.01, 0.15), while WMAP

observation values are q0 = −0.60 and zT = 0.45 − 0.73. The evolu-

tion of deceleration parameter shows that in the remote past it is 0.5,

mimicking the nature of cold dark matter, then enters the negative

value region such that the acceleration occurs when z < 1. Thus it

is seen that the predictions of the model is not in good agreement

with the observational constraints and at the same time the parame-

ter values are not too far away from them.

The advantage of the model is that the coincidence of the densities of
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Figure 4.2: [Evolution of deceleration parameter q for best fit model

parameters (α, β) = (1.01,0.15).]

dark energy and dark matter is explained for the model parameters

(α, β) = (1.01, 0.15). The co-evolution of the densities of the dark

energy and dark matter is dealt with which has showed that their

densities were comparable at the past, and the acceleration began

only recently.

Statefinder analysis is carried out employing the statefinder param-

eters (r, s) introduced by Sahni et al.[72, 73], to discriminate the

MHRDE model from other dark energy models. The statefinder pa-

rameters are given as

r =
¨̇a

aH3 , s = r−1
3(1−q)/2

The analytical expression for the (r, s) parameters in terms of the
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weighted Hubble parameter is

r =
1

2h2

d2h2

dx2
+

3

2h2

dh2

dx
+ 1 (4.7)

and

s = −
1

2h2
d2h2

dx2 + 3
2h2

dh2

dx
3

2h2
dh2

dx
+ 9

2

. (4.8)

From the analysis, they have found that the present position of the

universe corresponds to (r0, s0) = (0.59, 0.15) in the r − s plane for

the model parameters (α, β) = (1.01, 0.15). The ΛCDM point have

(r, s) = (1, 0), while general quintessence model have s > 0, r < 1,

for Chaplygin gas s < 0, r > 1, and for holographic dark energy with

event horizon as the IR cut-off, s = 2/3, r = 1. Hence the MHRDE

model is distinguished from other models.

It is more logical to expect that the cosmic components might have

interacted with each other during the evolution of the universe. So

a realistic approach is to consider an interaction between the dark

energy and dark matter components. The interaction picture of the

model is also studied in many works[74–77].
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Interacting modified holographic

Ricci dark energy model

5.1 Interacting modified holographic Ricci dark energy

model

In this chapter we study the Interacting modified holographic Ricci

dark energy(IMHRDE) model[74, 78, 79]. The results presented in

this chapter is partly published in the papers[79] and [80]. We have

made an analysis of the cosmological parameters. Statefinder diag-

nostic method is employed to differentiate the IMHRDE model from

other dark energy models. The work [80] studies the thermodynam-

ics of the model also. We consider a non-gravitational interaction

between Ricci dark energy and dark matter in a flat expanding uni-

verse. Since the components, dark energy and dark matter, the cos-

51
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mic fluids, co-exists in the universe, it is logical to expect that they

may interact with each other. More over the non-interacting model

is not fairly accurate in predicting the cosmological parameters in

comparison to the observational results, so it can be expected that

the interaction between dark energy and dark matter is plausible to

achieve a better the matching of the model with observational results.

We assume the nature of interaction in a phenomenological way as

given below

ρ̇de + 3H (ρde + pde) = −Q, (5.1)

ρ̇m + 3Hρm = Q, (5.2)

where Q is the interaction term. The Friedmann equation for a flat

FLRW universe is given as

3H2 = ρm + ρde. (5.3)

Owing to the lack of knowledge about the microscopic origin of

the interaction, three phenomenological forms of interaction are used

in our analysis, Q = 3bH(ρde + ρm), Q = 3bHρm and Q = 3bHρde[75,

78, 81]. The proportionality constant is b, known as the interaction

parameter, which when positive (b > 0) implies dark energy decaying

into dark matter and vice versa when b is negative. The ρde is the

energy density of modified holographic Ricci dark energy which has
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the expression[74],

ρde =
2

α− β

(
Ḣ +

3

2
αH2

)
. (5.4)

The expression for Ricci dark energy density is substituted in the

Friedmann equation for various interaction terms to obtain the cos-

mological parameters defining the characteristics of holographic Ricci

dark energy. In the next section we discuss the first interaction model

with the interaction term Q ∝ H(ρde + ρm), its cosmology and later

the thermodynamical behavior for a universe dominated by the mod-

ified holographic Ricci dark energy. In the work [74] Chimento et al.,

have studied the non-linear interaction of the modified holographic

Ricci dark energy with dark matter.

5.2 Interacting modified holographic Ricci dark energy

model with Q = 3bH(ρde + ρm)-IMHRDE1

IMHRDE1 considers the interaction term Q = 3bH(ρde+ρm) between

Ricci dark energy and cold dark matter. Using the equation for the

holographic Ricci dark energy as well as Friedmann equation, the

expression for normalized Hubble parameter h is obtained as,

h2 =
ρm

3H2
0

+
2

3∆

(
1

2

dh2

dx
+

3α

2
h2

)
, (5.5)

where ∆ = α − β and x = ln a. When the above equation is differ-

entiated again and substituting ˙ρde from the conservation equation,
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leads to a second order differential equation for h2 as,

d2h2

dx2
+ 3 (1 + β)

dh2

dx
+ 9 (β + b∆)h2 = 0. (5.6)

The solution of this second order differential equation is found to be,

h2 = c1e
3
2
m1x + c2e

3
2
m2x, (5.7)

where

m1,2 = −1− β ∓
√

1− 4bα− 2β + 4bβ + β2. (5.8)

The coefficients c1 and c2 are calculated using the initial conditions,

h2|x=0 = 1,
dh2

dx
|x=0 = 3Ωde0∆− 3α. (5.9)

where Ωde0 is the present value of the dark energy density, which for a

flat universe become, Ωde0 = 1−Ωm0. Hence the coefficients become,

c1 =
2 (Ωde0∆− α)−m2

m1 −m2

, c2 = 1− c1. (5.10)

The equation for the density parameter of dark energy using the so-

lution for h2 and the Friedmann equation turns out to be

Ωde = c1e
3
2
m1x + c2e

3
2
m2x − Ωm0e

−3x. (5.11)

The general expression for the equation of state parameter for the

holographic Ricci dark energy is[71],

ωde = −1− 1

3

d ln Ωde

dx
. (5.12)
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After finding the derivative of Ωde, the above equation becomes,

ωde = −1− 1

2

(
c1m1e

3
2
m1x + c2m2e

3
2
m2x + 2Ωm0e

−3x

c1e
3
2
m1x + c2e

3
2
m2x − Ωm0e−3x

)
. (5.13)

For the case of non-interaction between the dark sectors, i.e. b = 0,

at which, m1 = −2,m2 = −2β, c1 = 0 and c2 = 1 and the expression

for ωde reduces to

ωde = −1 + β. (5.14)

This is in agreement with the non-interaction model studied by Titus

et al.[71]. The co-evolution of the holographic Ricci dark energy den-

sity and dark matter density is plotted for b = 0.001 with parameter

values (α, β) = (1.01,−0.01). It is found that for these parameter val-

ues, holographic Ricci dark energy and dark matter evolved together

as shown in the figure 5.1 almost in a similar fashion in the past, but

at later stage dark energy dominated over the dark matter. It is found

that this domination of the dark energy is a recent phenomenon. The

parameter set (1.01,−0.01) is taken as the best fit parameters among

different parameter sets by quantitative analysis, since it seems to

give almost right values of the transition redshift.

The evolution of the equation of state parameter is plotted against

redshift z for different model parameters, by taking Ωde0 = 0.7,

Ωm = 0.3 as shown in figure 5.2. The analysis of the character-

istics of the ωde showed that it’s value starts from nearly zero in

the remote past and evolves to negative value in the further evolu-
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Figure 5.1: [Evolution of IMHRDE1 in comparison with the cold

dark matter, with parameters (α, β) = (1.01,-0.01) and b=0.001. The

continuous line which is deviating represents IMHRDE1 and the other

one represents cold dark matter.]

tion. For the parameter values (α, β) = (1.01,−0.01), as z → −1,

the equation of state ωde → −1. For the parameter sets (1.15,0.15),

(1.2,0.1), (4/3,0.05), as z → −1, the equation of state saturate to

values higher than −1, i.e., ωde > −1. For (α, β) = (1.2,−0.1), as

z → −1, ωde < −1. So it can be concluded that in the remote past of

the evolution of the universe, the interacting holographic Ricci dark

energy mimics the behavior of the cold dark matter. For certain pa-

rameters, as shown above, the equation of state is greater than -1,

i.e. ωde > −1, where dark energy shows a quintessence behavior. But

for the model parameters, (α, β) = (1.2,−0.1), the equation of state

crosses the phantom divide ωde = −1, the dark energy evolves in to a



Interacting modified holographic Ricci dark energy model
with Q = 3bH(ρde + ρm)-IMHRDE1 57

-1 0 1 2 3 4 5

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

redshiftHzL

Ω
de

HzL

Figure 5.2: [Variation of the equation of state parameter ωde with

redshift z for the model parameters (α, β)=(1.2,-0.1)-thin continu-

ous, first from the left bottom; (4/3,-0.05)-thick continuous, 2nd from

left bottom; (1.01,-0.01)-dotted, 3rd from left bottom; (1.2,0.1)-large

dashed, 4th from left bottom; (4/3,0.05)-small dashed, 5th from left

bottom and (1.15,0.15)-dot-dashed, 6th from left bottom; all with

b=0.001.]

phantom nature. The present value of the equation of state param-

eter is found to be around ωde0 is −0.96 for (α, β) = (1.01,−0.01).

WMAP observational value for the present equation of sate parame-

ter of dark energy is around ωde0 = −0.93 [16]. Thus the predicted

and observational values are in much concordance with each other.

However some latest observational results, for instance the Planck re-

sult in which ωde = −1.49±+0.65
−0.57[36], favors phantom behavior for the

dark energy (but due to comparatively higher error ranges, a definite
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conclusion regarding this remains still doubtful.)

Deceleration parameter q, is that which explains the nature of expan-

sion of the universe i.e., whether the universe is decelerating or an

accelerating one. For acceleration, q < 0. The deceleration parameter

can be obtained using the expression[71],

q = − 1

2h2

dh2

dx
− 1. (5.15)

Using the expression for h2, from equation (5.7), q becomes,

q = −
3
(
c1m1e

3
2
m1x + c2m2e

3
2
m2x
)

4
(
c1e

3
2
m1x + c2e

3
2
m2x
) − 1. (5.16)

When the case of non-interaction is considered, i.e., b = 0, and also by

avoiding the contribution from dark matter, the deceleration parame-

ter, q = (3β− 2)/2, as shown in [71]. The evolution of q parameter is

plotted with respect to redshift z as seen in figure 5.3. The plot shows

the characteristics of q for different parameter sets. It starts from

0.5 and enters negative region at later stage of the expansion. The

transition redshift zT , at which the universe transits from an early de-

celerating phase to an accelerating one is found to be 0.47 for param-

eters (4/3,−0.05), 0.55 for (1.2,−0.1), 0.70 for (1.01,−0.01), 0.44 for

(4/3, 0.05), 0.50 for (1.2, 0.1) and 0.52 for (1.15, 0.15). WMAP obser-

vations point to a transition redshift value in the range 0.45−0.73[82].

The present value of deceleration parameter is found to be q0 = −0.56,

for (α, β) = (1.01,−0.01), while WMAP observational value of q0 is
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Figure 5.3: [Evolution of the q-parameter with redshift. The plots

for (α, β)=(1.2,-0.1)-thin continuous, first from the bottom of the

left side; (4/3,-0.05)-large dashed line, 2nd from the bottom of the

left side; (1.01,-0.01)-thick continuous, third from the left bottom;

(4/3,0.05)-dash-dot, 4th from the left bottom; (1.2,0.1)-dotted line,

5th from the left bottom and (1.15,0.15)- small dash line, 6th from

left bottom, all with coupling constant b = 0.001.]

−0.60[16]. Thus the predictions of the IMHRDE1 using the model

parameters (α, β) = (1.01,−0.01), are in close agreement with the

WMAP observational data.

Statefinder analysis

Statefinder method is a geometrical diagnostic tool, other than H and

q, employed to characterize the properties of dark energy and also to

contrast a given model with other dark energy models. Statefinder
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parameters (r, s) are dimensionless parameters which are functions of

the scale factor of the universe and its derivatives. It was introduced

by Sahni et. al. [72, 73] and are defined as

r =
1

2h2

d2h2

dx2
+

3

2h2

dh2

dx
+ 1, (5.17)

and

s = −

(
1

2h2
d2h2

dx2 + 3
2h2

dh2

dx
3

2h2
dh2

dx
+ 9

2

)
. (5.18)

When the expression for h2 is used, the above equations become,

r = 1 +
9
(
c1m

2
1e

3
2
m1x + c2m

2
2e

3
2
m2x
)

8
(
c1e

3
2
m1x + c2e

3
2
m2x
) +

9
(
c1m1e

3
2
m1x + c2m2e

3
2
m2x
)

4
(
c1e

3
2
m1x + c2e

3
2
m2x
) ,

(5.19)

and

s = −[(c1m
2
1e

3
2
m1x + c2m

2
2e

3
2
m2x) + 2(c1m1e

3
2
m1x

+c2m2e
3
2
m2x)]/[2(c1m1e

3
2
m1x + c2m2e

3
2
m2x)

+4(c1e
3
2
m1x + c2e

3
2
m2x)]. (5.20)

In the case of non-interaction(b=0), the equations for r and s become

r = 1 + (9β(β − 1))/2 and s = β, which is in quite correspondence

with earlier results[71].

The evolution of r − s parameters, of IMHRDE1 for the model pa-

rameters (α, β) = (4/3,-0.05), (1.2, -0.1) and (1.01,-0.01) is shown in

figure 5.4. The plot depicts the nature of evolution which starts from

right to left as the universe expands for the model parameters with
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Figure 5.4: [r − s evolutionary trajectories for the model for param-

eters, (α, β)=(1.2,-0.1)-the thin continuous line (extreme left), (4/3,

-0.05)-the dashed line (the middle one) and (1.01,-0.01)-the thick con-

tinuous line (extreme right), all with b=0.001]

negative beta values. The present position of the universe as predicted

by the IMHRDE1 model(IMHRDE1 point), the ΛCDM point which

corresponds to r = 1, s = 0 and the future direction are noted. The

present values (r0, s0) for the model parameters are, (1.31,−0.098)

for (α, β) = (1.2,−0.1), (1.14,−0.048) for (α, β) = (4/3,−0.05), and

(1.03,−0.008) for (α, β) = (1.01,−0.01). It can be inferred from the

plot that as the β value increases, the distance between the ΛCDM

point and the IMHRDE1 point decreases and the r value increases. It

is also seen that the trajectory progresses through the ΛCDM point.

From the figure 5.5 for positive β values, it is seen that the trajec-

tory evolves from right to left as the universe expands. The present

position as predicted by the IMHRDE1 model(IMHRDE1 point) for
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Figure 5.5: [Evolutionary trajectories of r − s plane for parame-

ters (α, β)=(4/3,0.05)-thick continuous, left line; (1.2,0.1)-thin con-

tinuous, middle line and (1.15,0.15)-dashed, rightmost line; all with

b=0.001]

positive values of β parameters, the ΛCDM point and the future

point are noted. As β increases r value decreases. The ΛCDM point

is out of the r − s trajectory.

The statefinder diagnosis thus distinguishes IMHRDE1 model from

other dark energy models. For example, for Quintessence model the

statefinder parameters trajectory is in the region r < 1, s > 0, for

Chaplygin gas model the parameters lie in the region r > 1, s < 0. For
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holographic dark energy model with event horizon as the IR cut-off

the r − s trajectory evolves from s = 2/3, r = 1 to reach ΛCDM

point at the end. In the present model it is found that r > 1, s < 0

for negative β values.

The characteristics of the r−q parameters are also studied for IMHRDE1

model for the model parameters (α, β) = (1.01,−0.01) and is shown

in the plot 5.6. From the plot it can be made out that the trajec-
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Figure 5.6: [r − q plots for parameters (α, β) = (1.01.-0.01) with

interaction constant b=0.001, the diagonal like line representing r− q

trajectory of IMHRDE1 and the horizontal line with arrow is for the

ΛCDM as comparison]

tory starts from q = 0.5, r = 1 which is the SCDM point, then it

evolves through present position of the universe, which has the value

(r0, q0) = (1.03,−0.56) for the model parameters (1.01,−0.01). The

present value of deceleration parameter q0 = −0.56, is comparable to

the WMAP value q0 = −0.60. The ΛCDM point is out of the r − q
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trajectory, which can be seen explicitly. Thus the statefinder analysis

proves that the IMHRDE1 model differs from other models and the

behavior of the holographic Ricci dark energy is almost in accordance

with the observational results.

5.3 Thermodynamics of IMHRDE1 model

In the previous section the IMHRDE1 model is studied by analyz-

ing its cosmological parameters and found that the model is almost

satisfying with the values of WMAP observations. In this section we

present the study on the thermodynamical aspects of the interacting

dark energy model. The universe is assumed to be composed of dark

energy and dark matter and is bounded by the horizon. The possi-

ble horizons taken for the study are apparent horizon and absolute

horizon ( event horizon). Study of thermodynamics comprises the

analysis of generalized second law of thermodynamics, the evolution

of entropies of the dark sectors in particular and the universe as a

whole, in general. Generalized second law of thermodynamics(GSL)

[62, 83] demands that the change in entropies of the components inside

the universe when added together with that of the horizon bounding

the universe must be greater than or equal to zero. In other words,

the total entropy comprising that of the dark energy, dark matter
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added with that of the horizon must not decrease. That is,

Ṡde + Ṡm + Ṡh ≥ 0, (5.21)

where Ṡde is the change in entropy of dark energy with respect to

cosmic time, Ṡm is the entropy change for dark matter and Ṡh is the

change in entropy of the horizon. The subsections below, consists of

the analysis on the validity of GSL under thermal equilibrium and

non-equilibrium conditions.

5.3.1 GSL validity under thermal equilibrium conditions

Thermal equilibrium condition means that the cosmic components

were in thermal equilibrium with each other. So the temperatures of

the dark energy and the dark matter are equal to each other, and are

taken to be equal to the temperature of the horizon. That is,

Tde = Tm = Th, (5.22)

where Tde, Tm, Th are the temperatures of dark energy, dark matter

and horizon respectively. Under this condition we have studied the

thermodynamics by first taking apparent horizon as the boundary of

the universe, and in the second case we take event horizon as the

boundary.

(i)Apparent horizon as the thermodynamic boundary: Ap-

parent horizon is taken as the boundary of the universe. Then the
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GSL demands that the entropy change of dark energy, dark matter

when added together with that of the apparent horizon must increase.

The apparent horizon distance, ra is defined as[84, 85]

ra =
1√

H2 + k/a2
, (5.23)

where ra is the apparent horizon radius. When k = 0, that is for a

flat universe the expression becomes,

ra =
1

H
, (5.24)

which may be equivalent to Hubble horizon. The temperature of the

horizon is given by Ta = |κ|/2π where κ is known as the surface

gravity. For a flat universe this reduces to

Ta =
H

2π
. (5.25)

The entropy of the horizon is expressed as S = Aa/4G[86] where

Aa = 4πr2
a is the area of the horizon and G is the gravitation constant.

Taking 8πG = 1, it can be further shown that the equation of entropy

takes the form,

Sa =
8π2

H2
, (5.26)

For dark energy and dark matter, the entropy can be found using

Gibb’s relation given below,

TdS = dE + PdV, (5.27)
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where V = 4
3
πr3

a is the volume, E = 4
3
πr3

a(ρde + ρm) is the total

energy of dark energy and dark matter. Using these expressions and

conservation equations, the change in the total entropy in relation to

x = log a, is

S
′
=

16π2

H2
+

16π2

H2

(
1 +

3

2
(1 + ωdeΩde)

)
q, (5.28)

where prime denotes derivative with respect to x, thus for the GSL

to be valid, S
′ ≥ 0. It is clear from the expression that as H2 > 0,

the condition q ≥ −1

(1+ 3
2

(1+ωdeΩde))
must be satisfied for the GSL to be

valid. The expression for S
′

can be simplified using the relation for q

which is,

q = −1− Ḣ

H2
=

1

2
(1 + 3ωdeΩde) . (5.29)

The change in the total entropy will finally takes the form,

S
′
=

16π2

H2
(1 + q)2 . (5.30)

From the above equation it can be seen that as all terms are squares

there is no possibility for S
′

to become negative. Hence the condition

S
′ ≥ 0 is always valid for a universe with apparent horizon as the

boundary. The plot showing the validity of GSL for the IMHRDE1

model with model parameters having positive β values is shown in

figure 5.7. and that for negative values of β parameters is shown

in figure 5.8 The plots showed that S
′

is positive for all model pa-

rameters. This implies that the condition for the validity of GSL is
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Figure 5.7: [The behavior of S
′

inside the apparent horizon under

thermal equilibrium conditions for the parameters (α, β) = (1.2, 0.1)

(thick continuous line), (α, β) = (1.3, 0.3) (thin continuous line), and

(α, β) = (1.4, 0.3) (dashed line). The interaction coupling constant b

= 0.001 for all the plots.]

satisfied. Conclusively, the GSL is always valid inside apparent hori-

zon.

(ii)Event horizon as the thermodynamic boundary: Event

horizon is a kind of absolute boundary beyond which no information

can be received by an observer. Considering the FLRW universe with

dark energy and dark matter bounded by event horizon, for the GSL

to be valid, the entropy of dark energy, dark matter added with that

of the event horizon must not decrease. The event horizon distance

is given by

RE =
1

1 + z

∫
z

dz

H
. (5.31)
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Figure 5.8: [The behavior of S
′

inside the apparent horizon un-

der thermal equilibrium conditions for the parameters (α, β) =

(1.01,−0.01) (thick continuous line), (α, β) = (1.2,−0.1) (thin con-

tinuous line), and (α, β) = (1.3,−0.05) (dashed line). The interaction

coupling constant b = 0.001 for all the plots.]

where RE is the event horizon radius. The integration is performed

for the IMHRDE1 model and the result is

Rh =
K1(1 + z)3m2+1

c1(1 + z)
3
2
m2−m1

2F1

[
g+, 0.5, 1 + g+,

c1

c2

(1 + z)
3
2
m2−m1

]
,

(5.32)

for positive values of β and

Rh =
K2(1 + z)3m2+1

√
c2

2F1

[
g−, 0.5, 1 + g−,

c1

c2

(1 + z)
3
2
m2−m1

]
, (5.33)

for negative values of β. 2F1 is the hypergeometric function which

arises as the solution. The constants, K1, K2, g+, and g− are having

different values for different model parameters. The g+ = 0.185, 0.238,



70

Interacting modified holographic
Ricci dark energy model

0.238 for (α, β) = (1.2, 0.1), (1.2, 0.3), (4/3, 0.3), respectively, andK1 =

8.484 × 1017 for positive values of β. g− = 0.345, 0.349, 0.349 for

(α, β) = (1.01,−0.01), (1.2,−0.1), (4/3,−0.1), respectively and K2 =

−4.227 × 1017. The temperature and area of the event horizon are

given by

T = 1/4πRE,

A = 4πR2
h.

The Gibb’s relation is used to find the rate of entropy of dark energy

and dark matter as,

T
(
S
′

de + S
′

m

)
= H−1 (ρde + ρm + pde) 4πR2

E

(
ṘE −HRE

)
. (5.34)

In the above equation, the expression for temperature is substituted

and considering ṘE = HRE − 1, the equation become,(
S
′

de + S
′

m

)
= −H−1 (ρde + ρm + pde) 8π2R3

E. (5.35)

When dominant energy condition (ρ+ p) > 0 persists, the above sum

of rate of entropies can be negative when RE > 0. But when the rate

of change of horizon entropy is added with these, the rate of total

entropy is obtained as,

S
′
= H−1

[
16π2RE

(
ṘE −

R2
E

2
(ρde + ρm + pde)

)]
. (5.36)

When the expression

Ḣ = −(1/2)(ρde + ρm + pde), (5.37)
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is used the equation (5.36) becomes

S
′
= H−1

[
16π2RE

(
ṘE + ḢR2

E

)]
. (5.38)

For the GSL to be valid ṘE +ḢR2
E ≥ 0, which in terms of Friedmann

equation becomes,

ṘE ≥
3

2
(1 + ωdeΩde)H

2R2
E. (5.39)

More clearly,

HRE − 1− 3

2
(1 + ωdeΩde)H

2R2
E ≥ 0. (5.40)

The above condition is plotted in the figures 5.9 and 5.10. The
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Figure 5.9: [Plot for the parameters (α, β) = (1.2, 0.1) (thick con-

tinuous line), (α, β) = (1.3, 0.3) (thin continuous line), and (α, β) =

(4/3, 0.3) (dashed line), with the interaction coupling constant b =

0.001 inside the event horizon under thermal equilibrium conditions.]
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Figure 5.10: [Plot for the parameters (α, β) = (1.01,−0.01) (thick

continuous line), (α, β) = (1.2,−0.1) (thin continuous line), and

(α, β) = (4/3,−0.1) (dashed line), with the interaction coupling con-

stant b = 0.001 inside the event horizon under thermal equilibrium

conditions.]

figures show that the GSL is only partially satisfied in the case of

positive β parameters, while the GSL is completely violated in the

case of negative β parameters.

Substituting the relation for q, the above inequality for the validity

of GSL becomes,

q ≤ −1 +
ṘE

H2R2
E

. (5.41)

It is to be noted that the critical condition is satisfied for de-Sitter

universe, for which ṘE = 0 resulting in q = −1.
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5.3.2 GSL validity under thermal non-equilibrium condi-

tions

Thermal non-equilibrium implies that the temperatures of the dark

energy, dark matter and the horizon are different i.e. Tde 6= Tm 6= Th.

Here apparent horizon is taken as the viable thermodynamic bound-

ary of the universe. Using Gibb’s relation the total entropy change of

the universe comprising of the dark energy, dark matter and apparent

horizon in terms of deceleration parameter q can be expressed as,

S
′
= H−1

[
4π

H2

(
ρde + ρm + Pde

Tde

)
q +

8π

Th
(1 + q)

]
+

8π

Th
(1+q), (5.42)

which can be reduced to

S
′
= H−18π(1 + q)

(
q

Tde
+

1

Th

)
+ 12πqΩm

(
1

Tm
− 1

Tde

)
. (5.43)

If one assumes that, equilibrium existing between dark energy and

dark matter alone, then Tde = Tm, hence the second term in the

above equation vanishes. When (q+1) ≥ 0, which corresponds to the

quintessence nature of dark energy, the GSL is valid if Tde
Th
≥ −q. This

means that the temperature of dark energy must be greater than that

of the horizon. On the other hand if (1 + q) ≤ 0, which corresponds

to the phantom nature of dark energy, then the temperature of dark

energy must be less than that of the horizon for the validity of GSL.

Considering the second case in which the universe is completely dom-

inated by the dark energy, and hence the dark matter density contri-
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bution to the total energy density be neglected, then the equation for

change of entropy becomes

S
′
= 8π(1 + q)

(
q

Tde
+

1

Th

)
− 12πqΩm

Tde
. (5.44)

It is clear from the above equation that the GSL will be satisfied only

if,

Tde
Th

> −3(1 + ωde)Ωde

2

(
q

1 + q

)
. (5.45)

For quintessence type of dark energy with q < 0, (1 + ωde) > 0 and

(1 + q) > 0, the above condition demands that the temperature of

the dark energy must be greater than that of the horizon. Even for

the phantom type of universe with (1 + ωde) < 0 and (1 + q) < 0 the

above said condition holds for the validity of GSL.

5.4 Entropy evolution of IMHRDE1

In the previous section we have shown that, the GSL is valid if the

dark energy temperature is greater than that of the horizon. Here

it is assumed that the dark energy temperature is proportional to

the temperature of the horizon, Tde ∝ Th and more specifically let

Tde = kTh, where k is a constant. The equation for entropy of the

dark energy is obtained using the standard relation S = (ρ+p)V
T

[1].

On substituting the density, pressure and temperature of the dark
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energy, the entropy become,

Sde =
8π2

kH2
Ωde (1 + ωde) , (5.46)

and the total entropy, which include the entropy of dark energy and

that of the horizon, is

S =
8π2

kH2
Ωde (1 + ωde) +

8π2

H2
. (5.47)

The evolution of the entropy of dark energy and total entropy with re-

spect to x = ln a are plotted and are shown in the below figures (5.11)

and (5.12). The figure 5.11 shows that the entropy of dark energy
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Figure 5.11: [Evolution of entropy of holographic Ricci dark energy

against x ln a]

decreases as the universe expands, while the second plot shows that

the entropy of the horizon increases and total entropy also increases

as universe expands. Thus it can be explained that the decrease in
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Figure 5.12: [Evolution of apparent horizon entropy and total en-

tropy against x = ln a. The thick continuous line represents the total

entropy Stot while the thin line represents the horizon entropy Sh.]

entropy of the dark energy is compensated by the increase in the

entropy of the horizon. Hence the total entropy increases.

5.5 Conclusions

The interacting model of holographic Ricci dark energy is studied for

a flat FLRW universe, in which the interaction between dark energy

and dark matter is taken as proportional to (ρde + ρm) (IMHRDE1).

The evolution of the cosmological parameters and thermodynamics

of the IMHRDE1 model are analyzed for different model parameters.

We have shown that the model IMHRDE1 is explaining co-evolution

of dark matter and dark energy with interaction parameter b =

0.001. At late stages, the dark energy dominates over the dark matter
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and hence the universe transit into an accelerating phase of expan-

sion. The evolution of the equation of state parameter shows that

IMHRDE1 behaves almost like cold dark matter in the remote past.

As the universe expands, it has evolved to negative values. For the

best fit parameters (1.01,−0.01), the equation of state ωde → −1

as z → −1. However, in general, the equation of state may cross

the phantom divide for certain model parameters. The present value

of the equation of state parameter is almost in agreement with the

WMAP data.

The evolution of the deceleration parameter starts from the value 0.5

in the remote past, mimicking the behavior of dark matter. In the

further stage of evolution, there occur transition into an accelerating

phase for all parameter values. For the best fit parameters, q → −1 as

z → −1. The present value of the deceleration parameter, q0 is almost

in agreement with the value of WMAP observation.

The validity of generalized second law of thermodynamics(GSL) is

checked for a universe with dark energy, dark matter bounded by

horizon (for both apparent horizon and event horizon), under ther-

mal equilibrium and also under non-equilibrium conditions. When

thermal equilibrium prevails between the entities inside the universe

and the horizon, the GSL is valid only if apparent horizon is the

boundary, while the GSL is violated if event horizon is the boundary.

Many other works also support these results[87–90]. Under thermal
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non-equilibrium case where the contents inside the universe are not

in thermal equilibrium with the apparent horizon, the temperature of

dark energy must be greater than that of the horizon for the GSL to

be valid. Works like [91] show similar results.

Further the entropy evolution of the IMHRDE1 is examined in a uni-

verse dominated by dark energy. It is found that the entropy of the

dark energy decreases while the horizon entropy increases leading to

the increase in the total entropy.
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6.1 Interacting modified holographic Ricci dark energy

model with interaction term Q ∝ Hρm - IMHRDE2

The IMHRDE2 model considers the interaction between dark energy

and dark matter defined through the interaction term Q = 3bHρm,

where b is the interaction parameter, H is the Hubble parameter and

ρm is the energy density of dark matter. The evolution of the densities

is governed by,

ρ̇de + 3H (ρde + pde) = −Q, (6.1)

ρ̇m + 3Hρm = Q. (6.2)

79
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where Q is the interaction term. The whole analysis presented in this

section is based on the paper given by[79].

The Friedmann equation for a flat FLRW universe is,

3H2 = ρm + ρde, (6.3)

where ρde is the energy density of the dark energy. The expression

for modified holographic Ricci dark energy[74] is,

ρde =
2

α− β

(
Ḣ +

3

2
αH2

)
. (6.4)

Using the Friedmann equation, the interaction equation and the ex-

pression for the dark energy density, the differential equation for nor-

malized Hubble parameter h is found out to be

d2h2

dx2
+ 3 (β − b+ 1)

dh2

dx2
+ 9β (1− b)h2 = 0, (6.5)

which is a second order differential equation with respect to the vari-

able x = ln a. The general solution of the above differential equation

is obtained as,

h2 = k1e
−3βx + k2e

3(b−1)x, (6.6)

where the constant coefficients k1 and k2 are evaluated using initial

conditions

h2|x=0 = 1,
dh2

dx
|x=0 = 3Ωde0∆− 3α, (6.7)

and thus,

k1 =
Ωde0(α− β)− α− b+ 1

1− β − b
, k2 = 1− k1. (6.8)
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The dark energy density parameter Ωde is then found to be,

Ωde = k1e
−3βx + k2e

3(b−1)x − Ωm0e
−3x. (6.9)

The equation of state ωde of the dark energy is found out, using the

general expression given by

ωde = −1− 1

3

d ln Ωde

dx
, (6.10)

which becomes,

ωde = −1 +

[
k1βe

−3βx + k2(1− b)e−3(1−b)x − Ωm0e
−3x

k1e−3βx + k2e−3(1−b)x − Ωm0e−3x

]
, (6.11)

and the expression for pressure p whose basic expression is p = ωde×

ρde is obtained as,

pde = −
[
(1− β)k1e

−3βx + bk2e
−3(1−b)x] . (6.12)

If there is no interaction, i.e., b = 0, then the constants, k1 = 1, and

k2 = 0, then the equation of state reduces to ωde = −1 + β, in a

dark energy dominated universe and is in confirmation with the ear-

lier result regarding a flat FLRW universe consists of non-interacting

Ricci dark energy and dark matter[71]. An important fact is the co-

evolution of the dark energy and dark matter. We have found that the

present model with interaction between the dark sectors is very well

explaining this. The co-evolution of the dark energy density given

by equation(6.9) and dark matter density, Ωm = Ωm0a
−3 is studied
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Figure 6.1: [Evolution of IMHRDE2 model with Q = 3bHρm, for

parameters, (α, β)=(1.01,-0.01) and b=0.003. Continuous line for in-

teracting IMHRDE and dashed line is for dark matter.]

for the best fit of model parameters (α, β) = (1.01,−0.01) and inter-

action parameter, b = 0.003. The co-evolution is observed only when

the interaction parameter b ≤ 0.003. The plot shown in figure 6.1 is

in logarithmic scale and it shows that the dark energy density and

dark matter density is of the same order in the recent past and the

dark energy is dominating only recently.

The evolution of the equation of state parameter, ωde of IMHRDE2

with redshift z as given by the equation (6.11) is plotted for different

sets of model parameters as shown in the below figure 6.2. From the

plot it can be deduced that for the model parameters with β > 0,

the equation of state, ωde > −1 as z → −1, which corresponds to

the quintessence nature of dark energy, while for the model param-
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Figure 6.2: [Behavior of the ωde of IMHRDE2 with b=0.003

for parameter(α, β)=(1.2,-0.1)-large dashed line, (4/3,-0.05)-small

dashed line, (1.01,-0.01)-dotted line, (1.2,0.1)-thin continuous line,

(4/3,0.05)-thick continuous line and (1.15,0.15)-dot-dashed line]

eters (α, β) = (1.2,−0.1), (4/3,−0.05), with β < 0, the equation of

state, ωde < −1 as z → −1, which corresponds to the phantom na-

ture of dark energy in the future, and for (α, β) = (1.2,−0.1), the

equation of state, ωde → −1 as z → −1 which corresponds to the

de Sitter phase in the future. The present value of the equation of

state parameter ωde0 is found to be −0.88 for (α, β) = (4/3,−0.05),

−0.98 for (α, β) = (1.2,−0.1), −0.97 for (α, β) = (1.01,−0.01), −0.78

for (α, β) = (4/3, 0.05), −0.78 for (α, β) = (1.2, 0.1) and −0.76 for

(α, β) = (1.15, 0.15). The ωde0 value for (α, β) = (1.01,−0.01) is very

close to the WMAP value −0.93[16].

The analytic expression for deceleration parameter q is obtained
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as

q = −1 +
3

2

(
k1βe

−3βx − k2(b− 1)e−3(1−b)x

k1e−3βx + k2e−3(1−b)x

)
. (6.13)

The evolution of deceleration parameter is studied with respect to

redshift z and is shown in the figure 6.3. The trajectory of q parame-
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Figure 6.3: [Characteristics of q-parameter of IMHRDE2 with redshift

for (α, β)=(1.2,-0.1)thin continuous line, (4/3,-0.05)-large dashed

line, (1.01,-0.01)-thick continuous line, (4/3,0.05)-dot dashed line,

(1.2,0.1)-dotted line and (1.15,0.15)- small dashed line for coupling

constant b = 0.003.]

ter starts from nearly 0.5 corresponds to cold dark matter region, at

higher redshift, and then reaches negative value and enters the accel-

erating phase at a redshift z < 1. The early behavior of q gives an

indication that the interacting holographic Ricci dark energy can be

considered as a unifying candidate such that it behaves as cold dark
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matter in the early epoch and later behaves as dark energy which

causing the acceleration in the expansion of the universe. The present

value of the deceleration parameter q0 given by IMHRDE2 model for

different model parameters are: −0.46 for (4/3,-0.05), −0.57 for (1.2,-

0.1), −0.57 for (1.01,-0.01), −0.34 for (4/3,0.05), −0.36 for (1.2,0.1),

and −0.33 for (1.15,0.15). The q0 value is −0.57 for the parameters

(α, β) = (1.01,−0.01) which is very close to the WMAP observational

value −0.60. The transition redshift zT , which is the redshift at which

the q parameter crosses in to the negative region so that the universe

enters the accelerating phase is found to be 0.68 for (1.01,−0.01),

0.57 for (1.2,-0.1) and 0.44 for (4/3,-0.05). The zT as per the obser-

vations is in the range 0.45 − 0.73[82]. The transition redshift , zT

values corresponding to the model parameters (α, β) = (1.01,−0.01)

lies in the observational range range.

Statefinder Analysis

Statefinder diagnostic tool introduced by Sahni et al.[72, 73], is a

geometric method used to discriminate different dark energy models.

The statefinder parameters are denoted by (r, s) and the analytic

expression of the statefinder parameters for IMHRDE2 is obtained
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using the same way as in the previous chapter,

r = 1 +
9k1β

2e−3βx + 9k2(1− b)2e−3(1−b)x

2(k1e−3βx + k2e−3(1−b)x)

− 9k1βe
−3βx + 9k2(1− b)e−3(1−b)x

2(k1e−3βx + k2e−3(1−b)x)
,

(6.14)

and

s = −[9k1β
2e−3βx + 9k2(1− b)2e−3(1−b)x − 9k1βe

−3βx (6.15)

−9k2(1− b)e−3(1−b)x]/[−9k1βe
−3βx − 9k2(1− b)e−3(1−b)x

+9k1e
−3βx + 9k2(1− b)e−3(1−b)x].

(6.16)

For non-interaction case with b = 0, the statefinder parameters in a

dark energy dominated phase will be r = 1 + 9β(β − 1)/2 and s = β,

which is in good terms with the results of earlier work[71]. The evolu-

tion of IMHRDE2 in the r− s plane is plotted for model parameters

with both positive and negative β values. For negative β the r − s

trajectories is shown in the below figure 6.4. The evolutionary tra-

jectory in r− s plane for IMHRDE2 model parameters with negative

β values passes through r = 1, s = 0 which is the ΛCDM point, at

the beginning. The present position of the universe in r − s plane of

IMHRDE2 model is noted and is closer to the ΛCDM point for the

model parameters (α, β) = (1.01,−0.01) and the distance increases

with the increase in β value. The present position of IMHRDE2 in

the r − s plane is noted as (r0, s0) = (1.14,−0.048) for (α, β) =
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Figure 6.4: [Trajectory of the IMHRDE2 model in the r − s plane

(α, β)=(1.2,-0.1)-thin continuous, left line; (4/3, -0.05)-dashed, mid-

dle line, (1.01,-0.01)-thick continuous, right line, for b=0.003. The

evolution is from right to left]

(4/3,−0.05), (r0, s0) = (1.31,−0.099) for (α, β) = (1.2,−0.1) and

(r0, s0) = (1.03,−0.0096) for (α, β) = (1.01,−0.01).

The evolution of IMHRDE2 in the r − s plane for positive β pa-

rameters is shown in the figure 6.5. The evolution shows that the

trajectory starts from r = 1. The present position of the universe is

marked, and the evolution of the whole trajectory is from right to left.

The ΛCDM point lies out of the path. The present position noted

is (r0, s0) = (0.87, 0.05) for (α, β) = (4/3, 0.05), (r0, s0) = (0.74, 0.10)

for (α, β) = (1.2, 0.1) and (r0, s0) = (0.62, 0.15) for (α, β) = (1.15, 0.15).

The present position of (r, s) parameters for the best fit parame-

ters (1.01,−0.01) has correspondence with that of the Chaplygin gas

model for which (r > 1, s < 0). The quintessence model of dark en-
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Figure 6.5: [Evolutionary path of IMHRDE2 in r − s plane for pa-

rameters (α, β)=(4/3,0.05)-thick continuous, left line; (1.2,0.1)-thin

continuous, middle line and (1.15,0.15)-dashed, rightmost line; for

b=0.003]

ergy has (r < 1, s > 0) and that for holographic dark energy model

with event horizon as the IR cut-off, (r, s) = (1, 2/3).

As a conformation of the above results, we have studied the evo-

lution of IMHRDE2 in the q− r plane also and is shown in the figure

6.6. The trajectory is drawn only for the model parameters (α, β) =

(1.01,−0.01). The present value noted is (r0, q0) = (1.03,−0.57).
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Figure 6.6: [Behavior of IMHRDE2 model in the r−q plane for model

parameters (α, β) = (1.01,−0.01) with b=0.003]

6.2 Study of the thermodynamics of IMHRDE2

In this section we analyze the thermodynamics of the model. The

evolution of the entropy of both dark energy and dark matter and

also the generalized second law are the main objectives of the study.

The generalized second law(GSL)[62, 83] demands that the entropy of

the contents inside the universe added with that of the horizon must

never decrease. The behavior of entropy of IMHRDE2 is thus another

aim of this study. The analysis is done under the conditions of ther-

mal equilibrium existing between the contents inside the universe and
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the horizon, with both apparent and event horizon bounding the uni-

verse and also for the case of non-equilibrium existing between them.

Earlier works such as [87–90, 92, 93] showed that at the apparent the

GSL is always valid, while it is violated at the event horizon for vari-

ous dark energy models. The thermodynamical analysis described in

the below subsections are written based on the earlier work [94].

6.2.1 Analysis of IMHRDE2 under thermal equilibrium

Thermal equilibrium means the condition in which the temperatures

of the entities present inside the universe, dark energy and dark mat-

ter may have same temperature as a result of their interaction and

due to that the horizon which is bounding them also acquires the

same temperature. Thermal equilibrium condition is a most likely

condition and can be mathematically defined as

Tde = Tm = Th, (6.17)

where Tde, Tm, Th are the temperatures of dark energy, dark matter

and horizon respectively. (i)Thermal equilibrium for a universe

with apparent horizon as the boundary: Apparent horizon dis-

tance is defined as[84, 85],

rA =
1√

H2 + k/a2
, (6.18)
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where k is the curvature parameter. For flat FLRW universe, k = 0,

then the apparent horizon becomes the same as Hubble horizon,

rA =
1

H
. (6.19)

The apparent horizon has a temperature given by,

TA =
H

2π
, (6.20)

while its entropy is S = A/4G,[86] where A = 4πr2
A is its area and G

is the gravitation constant.The entropy can be modified as

SA =
8π2

H2
, (6.21)

taking 8πG = 1. The entropy of dark energy and dark matter is found

using the Gibb’s relation

TdS = dE + PdV, (6.22)

where the volume V = 4
3
πr3

A, and the total energy E = 4
3
πr3

A(ρde+ρm)

which is that of the sum of dark energy and dark matter. The total

change in entropy with respect to x = ln a by considering the above

equations, is obtained as,

S
′

tot = S
′

de + S
′

m + S
′

A =
2π

H2
+

2π

H2
(1 + 12π(1 + ωdeΩde)) q, (6.23)

where

q =
1

2
(1 + 3ωdeΩde) . (6.24)
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The total entropy change S
′
tot is then plotted against x for the IMHRDE2

model parameters with negative β values and also for positive β val-

ues as shown in figure 6.7 and figure 6.8 respectively. From the two

1 2 3 4 5

- 8.5 ´ 1036

- 8.0 ´ 1036

- 7.5 ´ 1036

- 7.0 ´ 1036

x

S
,

Figure 6.7: [Behavior of S
′
tot with respect to x for the model parameter

(α, β) = (1.01,−0.01) for b = 0.003.]

figures it can be deduced that the GSL is valid for model parameters

with positive β parameters, while that for negative β, parameters,

the total entropy change is always negative, which means that the

GSL is invalid in this case. This is because the equation of state

ωde < −1 for negative β parameters and hence is approaching phan-

tom phase whereas for positive β parameter ωde > −1. Thus it can

be inferred that the GSL is satisfied at the apparent horizon for an

FLRW universe provided the Ricci dark energy is of quintessence in

character. (ii)Thermal equilibrium for a universe with event
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Figure 6.8: [Behavior of S
′
tot with respect to x for model parameter

(α, β)=(1.2,0.1)-first line from the bottom, (1.2,0.3)-second line from

the bottom, (1.3,0.3)-third line from the bottom, (1.4,0.3)-topmost

line for b=0.003.]

horizon as the boundary: Event horizon is considered to be the

permanent boundary of the universe beyond which no information

can be procured in the future. The distance of the event horizon is

defined as,

RE = a(t)

∫ ∞
t

dt
′

a(t′)
= − 1

(1 + z)H0

∫ −1

z

dz
′

h
. (6.25)

The temperature of the event horizon is

TE =
1

2πRE

. (6.26)

The analytic expression for the event horizon distance after perform-

ing the integration is,
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RE = (
γ

H0

)
1√

k2(1 + z)3(1−b)
×

2F1[0.5,− 0.5

3β − 3(1− b)
, 1− 0.5

3β − 3(1− b)
,−k1

k2

(1 + z)3β−3(1−b)],(6.27)

where γ = 2.0182, and 2F1 is the hypergeometric function. The rate

of entropy change for dark energy and dark matter is obtained as,

S
′

de + S
′

m = −24π2 (1 + ωdeΩde)HR
3
E. (6.28)

Adding the entropy change of event horizon to this equation, the

above expression becomes,

S
′

tot = S
′

de+S
′

m+S
′

E = −24π2 (1 + ωdeΩde)HR
3
E +2πR2

E−2πH−1RE,

(6.29)

with the help of the relation Ḣ = HRE − 1. The GSL is valid only if

S
′ ≥ 0, which in terms of the above expression(6.29) implies,

ωdeΩde ≤ −1 +
1

12πHRE

d logRE

dx
. (6.30)

From the above equation, it can be assessed that as H > 0, for

RE ≥ 0, the equation of state becomes ωde > −1, for a dark energy

dominated universe for which Ωde ≈ 1. But if RE ≤ 0, then the

equation of state ωde will always be less than 1. The plot of S
′
tot

is drawn for model parameters with negative β values as shown in

figure 6.9. The plot of S
′
tot for positive β values is shown in the figure
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Figure 6.9: [Behavior of S
′
tot in relation to x for the model parameters

(α, β)=(1.01,-0.01) at the event horizon of the universe with b=0.003.]

6.10. The plots show that the rate of entropy is partially negative,

hence the GSL is only partially satisfied for the model parameters of

IMHRDE2 model for both positive and negative β values in a flat

FLRW universe bounded by event horizon. From figure 6.9, it is seen

that the trajectory of S
′
tot transits from negative value to positive

in the past at a redshift z ∼ 7. The figure 6.10 for different model

parameters also show similar behavior, but unlike in the previous

case as z < 4, S
′
tot becomes zero. Therefore, the IMHRDE2 with

positive β values also support the result that the GSL is only partially

satisfied by event horizon as the boundary, under thermal equilibrium

conditions. Owing to this result, it is concluded that the event horizon

cannot be taken as the thermodynamic boundary of the universe.
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Figure 6.10: [Behavior of S
′
tot with respect to x for model parameters

(α, β)=(1.2,0.1)-thick continuous line, (1.2,0.3)-thin continuous line,

(1.3,0.3)-dashed line,(1.4,0.3)-dot-dashed line, for b=0.003.]

6.2.2 Analysis of IMHRDE2 under thermal non-equilibrium

condition

The temperatures of dark energy, dark matter and the horizon will

not be the same when thermal non-equilibrium exist, that is, Tde 6=

Tm 6= Th. Apparent horizon is considered to be the boundary for the

present analysis. The change in total entropy of the universe is then

obtained as below using the presumptions described in the previous

cases,

S
′

tot =
12π

H

Ωde

Tde
(1 + ωde)q +

12π

H

Ωm

Tm
q − 2πH

′

H3
. (6.31)

The above equation impose a condition for the validity of GSL as,

Tde ≥ −
(

6q

1 + q

)
(1 + ωde)ΩdeH. (6.32)
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When the temperature of apparent horizon can be approximated as

TA ∼ H with H > 0, then the above condition can be interpreted like

this: as long as q < 0 for an accelerating universe and considering dark

energy of quintessence nature with ωde > −1, the right hand side of

the inequality relation will be always positive. Thus the condition

implies that for the GSL to be valid the temperature of dark energy

must be greater than that of the horizon bounding the universe.

As the temperature of dark energy is greater than the horizon,

its entropy will be decreasing in nature. To evaluate this, a dark

energy dominated universe is considered where the contribution from

matter can be neglected. The temperature of dark energy is taken as

proportional to the temperature of the horizon as,

Tde = kTA, (6.33)

where k > 1. The entropy of dark energy is then found out using the

standard relation [1]

Sde =

(
ρde + pde
Tde

)
V =

8π2(1 + ωde)Ωde

kH2
. (6.34)

The nature of the entropy evolution of dark energy is studied by

drawing the characteristic curve of Sde with respect to x = ln a as

shown in figure 6.11 The plot shows that the entropy of dark energy is

decreasing as the universe expands. For the GSL to be valid the total

entropy of the universe must increase. The total entropy comprises
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Figure 6.11: [Behavior of the entropy of dark energy with respect to

x for the parameters (1.2,0.1)]

the entropy of the contents inside the universe and that of the horizon

bounding the universe. Thus the entropy of the horizon and the

total entropy is also plotted with respect to x which is shown in the

figure 6.12. The plot shows that the entropy of horizon is increasing

as x increases and the total entropy also increases. These results

lead to the understanding that the loss of entropy of dark energy is

compensated by the increase in the entropy of horizon so as to keep

the total entropy of the universe at the increase. Hence the GSL is

valid for a universe dominated by dark energy, which is bounded by

the apparent horizon.
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Figure 6.12: [Entropy characteristics of apparent horizon in relation

to x(bottom line) and total entropy in relation to x(top line) for model

parameters (1.2,0.1)]

6.3 Conclusion

The IMHRDE2 model is studied with interaction term Q = 3bHρm

in a flat FLRW universe. The co-evolution of the energy densities

of dark energy and dark matter is explained when the interaction

parameter b ≤ 0.003 . The characteristics of IMHRDE2 which in-

clude the evolution of equation of state parameter ωde and that of

deceleration parameter q is studied. The evolution of both predicts

that there occured a transition into the accelerating phase of expan-

sion at around a redshift of z ∼ 0.68 for the best fit parameters

of the model. The present values of these parameters, predicted by

IMHRDE2 model, ωde0 ∼ −0.97, q0 ∼ −0.57, are found to be in close
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agreement with the WMAP observational values for the model pa-

rameters (α, β) = (1.01,−0.01). Statefinder parameters are used for

distinguishing the model from other dark energy models, and found

the model is distinguishably different from other models, especially

from ΛCDM model.

The study of the thermodynamics of the model is done by checking

the validity of the generalized second law of thermodynamics(GSL)

under both thermal equilibrium and non-equilibrium conditions in

a universe consisting of dark energy and dark matter, bounded by

apparent and event horizon. The evolution of entropy of dark energy

is also analyzed. At thermal equilibrium, where the temperatures of

the contents of the universe and the horizon are the same, the GSL is

valid at the apparent horizon only if the dark energy is of quintessence

nature, while the GSL is generally violated at the event horizon. For

thermal non-equilibrium condition, the GSL is valid at the apparent

horizon only when the temperature of dark energy is greater than

that of the horizon. Works like [91, 95] showed that the GSL is valid

at the apparent for the case of thermal non-equilibrium conditions

under specific constraints.

The evolution of entropy of dark energy in a dark energy dom-

inated universe is analyzed. The dark energy entropy is found to

decrease as universe expands and this is compensated by the increase

in the entropy of the horizon as a result total entropy of the universe
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increases. Thus the IMHRDE2 model is a thermodynamically feasible

model for a universe with apparent horizon as the boundary, provided

the dark energy is of quintessence nature.
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Interacting modified holographic Ricci dark energy

model with interaction term

Q ∝ Hρde-IMHRDE3

7.1 Interacting modified holographic Ricci dark energy

model with interaction term Q ∝ Hρde-IMHRDE3

The Interacting modified holographic Ricci dark energy model, IMHRDE3

is one which considers a flat FLRW universe with dark energy in inter-

action with dark matter via an interaction term Q = 3bHρde, where

b is the interaction parameter, H is the Hubble parameter and ρde is

the density of dark energy. The interaction can be defined by the

103
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equations,

ρ̇de + 3H (ρde + pde) = −Q, (7.1)

ρ̇m + 3Hρm = Q, (7.2)

where pde is the pressure of dark energy. The analysis that is described

below in this section is in reference to article published earlier in [79].

The modified holographic Ricci dark energy[74] is given by

ρde =
2

α− β

(
Ḣ +

3

2
αH2

)
, (7.3)

where α and β are the model parameters. The Friedmann equation

is

3H2 = ρm + ρde. (7.4)

Using equations(7.2, 7.3, 7.4) the normalized Hubble parameter h is

found to satisfy the following differential equation

d2h2

dx2
+ 3(β + b+ 1)

dh2

dx
+ 9(αb+ β)h2 = 0, (7.5)

where h = H
H0
, and x = ln a. The solution is obtained as

h2 = f1e
u1
2
x + f2e

u2
2
x, (7.6)

where the constant coefficients f1 and f2 are found using the initial
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conditions h2|x=0 = 1, dh2

dx
|x=0 = 3Ωde0∆− 3α. They are

f1 = [3− 6α + 3b+ 3β (7.7)

−
√
−36(αb+ β) + 9(1 + b+ β)2 + 6(α− β)Ωde0]

/[2b− 2
√
−36(αb+ β) + 9(1 + b+ β)2],

f2 = 1− f1.

and

u1 = −3− 3b− 3β −
√

9(1 + b+ β)2 − 36(αb+ β),

u2 = −3− 3b− 3β +
√

9(1 + b+ β)2 − 36(αb+ β). (7.8)

The energy density parameter Ωde then becomes,

Ωde = f1e
u1
2
x + f2e

u2
2
x − Ωm0e

−3x. (7.9)

The analytic expression for the equation of state parameter is thus

obtained as

ωde = −1−

f1
u1

2
e

u1
2
x + f2

u2

2
e

u2
2
x + 3Ωm0e

−3x

3
(
f1e

u1
2
x + f2e

u2
2
x − Ωm0e−3x

)
 . (7.10)

If there is no interaction between dark energy and dark matter, i.e., b =

0, then the constants reduces to, f1 = 1, f2 = 0, u1 = −6β and

u2 = −6 for Ωde0 = 1. The equation of state parameter then takes the

value ωde = −1 + β. This result is complying with that in the earlier

work[71].
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The IMHRDE3 model can explain the coincidence of the energy

densities of dark energy and dark matter for the value of interaction

parameter b = 0.009. For b > 0.009, the coincidence is not observed in

this model. The plot shown in figure 7.1 depicts the coincidence. The
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Figure 7.1: [Co-evolution of energy densities of dark en-

ergy(IMHRDE3) and dark matter for (α, β) = (1.01,−0.01) with

b = 0.009. The continuous line which deviates represents dark energy

and the other line represents dark matter.]

plot shows that the densities of dark energy and dark matter evolving

together and dark energy dominating only recently. The co-evolution

plot is drawn for IMHRDE3 model parameters (α, β) = (1.01,−0.01)

which are the best parameters found as the result of quantitative

analysis.

The evolution of equation of state can be obtained using the stan-



Interacting modified holographic Ricci dark energy model
with interaction term Q ∝ Hρde-IMHRDE3 107

dard procedure using the expression,

ωde = −1− 1

3

d ln Ωde

dx
. (7.11)

The dynamics of the equation of state with respect to redshift is shown

in the figure 7.2 The trajectory of the evolution the equation of state
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Figure 7.2: [Evolution of the equation of state parameter of

IMHRDE3 with b=0.009, for parameters (α, β)=(1.2,-0.1)- thin con-

tinuous line, first from the left bottom; (4/3,-0.05)-large dashed line,

2nd from left bottom, (1.01,-0.01)-thick continuous line, 3rd from

the left bottom; (4/3,0.05)-dot-dashed line, 4th from left bottom;

(1.2,0.1)-dotted line, 5th from the left bottom and (1.15,0.15)- small

dashed line, 6th from the left bottom.]

starts from nearly zero at higher redshifts to ωde > −1 at lower red-

shifts particularly as z → −1, for model parameters with positive val-

ues of β and to ωde < −1 for negative β values as z → −1. The present
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value of equation of state parameter, ωde0 for different parameter sets

are: −0.86 for (α, β) = (4/3,−0.05), −0.97 for (α, β) = (1.2,−0.1),

−0.97 for (α, β) = (1.01,−0.01), −0.78 for (α, β) = (4/3, 0.05), −0.78

for (α, β) = (1.2,−0.1) and −0.75 for (α, β) = (1.15,−0.15). The ωde0

corresponding to (1.01,−0.01) is very much closer to the correspond-

ing WMAP observational value ωde0 ∼ −0.93[16].

The analytic expression for the deceleration parameter q is ob-

tained as

q = −1− 1

2

[
u1

2
f1e

u1
2
x + u2

2
f2e

u2
2
x

f1e
u1
2
x + f2e

u2
2
x

]
. (7.12)

If there is no interaction such that b = 0 and let Ωde ∼ 1, then the

expression for q reduces to q = (3β − 2)/2, which is in correspon-

dence with the earlier result[71]. The evolution of q with respect to

z is shown in the figure 7.3. The evolutionary path of deceleration

parameter q starts from nearly 0.5, it then enters the negative region

at lower redshift. The present value of deceleration parameter, q0

for various model parameters are : −0.47 for (α, β) = (4/3,−0.05),

−0.57 for (α, β) = (1.2,−0.1), −0.57 for (α, β) = (1.01,−0.01),

−0.36 for (α, β) = (4/3, 0.05), −0.36 for (α, β) = (1.2, 0.1) and

−0.34 for (α, β) = (1.15, 0.15). The value of q0 corresponding to the

model parameter sets (α, β) = (1.01,−0.01) is in close agreement

with the WMAP observational value q0 ∼ −0.60 [16]. The transition

redshift, zT which is the redshift at which the universe enter the accel-
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Figure 7.3: [Evolution of the q-parameter with redshift of IMHRDE3.

The plots for (α, β)=(1.2,-0.1)thin continuous - first from the bottom

of the left side, (4/3,-0.05)-large dashed line, 2nd from the bottom of

the left side, (1.01,-0.01)-thick continuous, third from the left bottom,

(4/3,0.05)-dash-dot, 4th from the left bottom, (1.2,0.1)-dotted line,

5th from the left bottom, (1.15,0.15)- small dash line, 6th from left

bottom, all with coupling constant b = 0.009.]

erating stage of the universe for different model parameters are : zT =

0.49 for (α, β) = (4/3,−0.05), zT = 0.60 for (α, β) = (1.2,−0.1), zT =

0.70 for (α, β) = (1.01,−0, 01), zT = 0.45 for (α, β) = (4/3, 0.05),

zT = 0.50 for (α, β) = (1.2, 0.1) and 0.53 for (α, β) = (1.15, 0.15).

The zT values are in much accordance with the observational value

of WMAP, which lies in the range zT ∼ 0.45 − 0.73[82], particularly

for best fit model parameters (1.01,−0.01).
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Statefinder Analysis

Statefinder parameters are used to differentiate the model from other

dark energy models. The geometric diagnostic technique is introduced

by Sahni et al.[72, 73]. The parameters used are (r, s) which are

different from the usual parameters used such as H, q. The expression

for the statefinder parameters is obtained as

r = 1 +

[
u2

1

4
f1e

u1
2
x +

u2
2

4
f2e

u2
2
x + 3

2
u1f1e

u1
2
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2
u2f2e

u2
2
x

2(f1e
u1
2
x + f2e

u2
2
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]
, (7.13)

and

s = −

[
u2
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2
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2
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]
. (7.14)

If there is no interaction between the dark energy and dark mat-

ter i.e., b = 0 and Ωde ≈ 1, then the above expression reduces to

r = 1 + 9β(β − 1)/2 and s = β, which is their standard form. The

evolution of the IMHRDE3 in the r − s plane is analyzed for the

model parameters with positive and negative β parameters. The fig-

ure 7.4 shows the trajectory for negative β parameters. The evolution

is from right to left in the r − s plane. The plot distinctly shows the

present position of the universe predicted by the IMHRDE3 model,

the ΛCDM point(with r = 1, s = 0) and the region correspond-

ing to the future direction for the model parameter with negative β.

The present position for the parameters are : (r0, s0) = (1.1,−0.036)

for (α, β) = (4/3,−0.05), (1.28,−0.088) for (α, β) = (1.2,−0.1) and
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Figure 7.4: [r − s plots of IMHRDE3 for parameters (α, β)=(1.2,-

0.1)(thin continuous, extreme left trajectory), (4/3,-0.05) (dashed,

middle trajectory), (1.01,-0.01) (thick continuous, extreme right tra-

jectory), with b=0.009]

(r0, s0) = (1.003,−0.0008) for (α, β) = (1.01,−0.01). It is seen that

the path evolves from right covering through ΛCDM in the past and

evolves to the future.

The figure 7.5 describes the plot of the evolution of r − s pa-

rameters for positive β values. The present position of the uni-

verse, the ΛCDM point and the future evolution of IMHRDE3 for

model parameters with positive β are noted. The present values for

(r, s) obtained are : (r0, s0) = (0.83, 0.066) for (α, β) = (4/3, 0.05),

(r0, s0) = (0.70, 0.115) for (α, β) = (1.2, 0.1) and (r0, s0) = (0.60, 0.16)

for (α, β) = (1.15, 0.15). The trajectory evolves from right to left and

the ΛCDM point lies out of the path. The (r0, s0) values predicted

by IMHRDE3 model is different from other models for example for
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Figure 7.5: [r − s plots of IMHRDE3 for parameters

(α, β)=(4/3,0.05)(thick continuous, extreme left trajectory), (1.2,0.1)

(thin continuous, middle trajectory), and (1.15,0.15)(dashed, extreme

right trajectory) with b=0.009]

the case of Chaplygin gas model, r > 1, s < 0, for quintessence model

r < 1, s > 0.

The evolution of IMHRDE3 in the q − r plane is also studied.

The figure 7.6 shows the q − r trajectory for the model parameters

(α, β) = (1.01,−0.01).

7.2 Thermodynamics of the IMHRDE3 model

In the previous section the study of cosmological characteristics of the

IMHRDE3 is explained. The current section is meant for the descrip-

tion of the thermodynamic characteristics of the model especially the
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Figure 7.6: [r−q behavior of the IMHRDE3 for the best fit parameter

(1.01,-0.01) with b=0.009. The diagonal like line representing the

trajectory of IMHRDE3 and the horizontal line representing ΛCDM

for comparison.]

study of the generalized second law of thermodynamics(GSL) which

states that the total entropy of the universe, which is the sum of the

components of the universe and the horizon bounding it, must never

decrease[62, 83] and the entropy evolution of the IMHRDE3 in such a

universe. The analysis presented here is in reference to the work[96].

The study is done under thermal equilibrium and non-equilibrium

conditions.
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7.2.1 Analyzing the case of thermal equilibrium

A flat FLRW universe with dark energy, dark matter and the horizon

surrounding it is considered. Thermal equilibrium implies that the

temperatures of the contents inside the universe and the boundary

are the same. That is Tde = Tm = Th, where Tde, Tm and Th are the

temperatures of dark energy, dark matter and horizon respectively.

Then the generalized second law(GSL) demands that the entropy of

the contents added with that of the horizon must never decrease.

Mathematically,

˙Sde + Ṡm + Ṡh ≥ 0, (7.15)

where Sde, Sm and Sh means the entropy of dark energy, dark matter

and horizon respectively. Over dot implies the derivative with respect

to cosmic time. The analysis under thermal equilibrium is carried out

for both apparent horizon as well as event horizon as thermodynamic

boundary and are detailed below. Earlier works[87–90, 92, 93] showed

that the GSL is valid at apparent horizon but not at event horizon.

(i)Apparent horizon as the boundary: The apparent horizon

distance rA is defined as[84],

rA =
1√

H2 + k/a2
, (7.16)
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where k is the curvature parameter. For flat universe the above ex-

pression reduces to

rA =
1√
H2

, (7.17)

which now became the same as Hubble radius. The temperature,

entropy of the horizon is

TA =
H

2π
, (7.18)

and S = A/4G[86], where area of the horizon A = 4πr2
A and G is the

gravitational constant. Taking 8πG = 1, the expression for entropy

can be restructured to

SA =
8π2

H2
. (7.19)

The entropy of dark energy and dark matter are found using Gibb’s

relation,

TdS = dE + PdV, (7.20)

where V = 4
3
πr3

A, is the volume and E = 4
3
πr3

A(ρde + ρm) is the total

energy which comprises the sum of the energy of dark energy and dark

matter. GSL states that the sum of entropies of the dark energy, dark

matter and the apparent horizon must not decrease.

The total change in entropy obtained with respect to x = ln a,

using the above said expressions

S
′
=

16π2

H2
+

16π2

H2

(
1 +

3

2
(1 + ωdeΩde)

)
q, (7.21)

where S
′

implies derivative with respect to x = ln a, ωde is the equa-

tion of state parameter of dark energy and Ωde is the energy density
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parameter of dark energy and q is the deceleration parameter. Using

the expression q = 1
2

(1 + 3ωdeΩde) , the expression for entropy change

can be modified as,

S
′
=

36π2

H2
(1 + ωdeΩde)

2. (7.22)

The expression clarifies that as the term on the right hand side are

perfect squares and hence the entropy change is always positive. The

behavior of S
′

with respect to x is plotted for various model param-

eters of IMHRDE3 and is shown in figure 7.7. Thus it is inferred

that the GSL is always valid when apparent horizon is taken as the

thermodynamic boundary of the universe comprising IMHRDE3.

(ii)Event horizon as the boundary: The event horizon radius

RE is given by

RE =
1

1 + z

∫
z

dz

H
, (7.23)

where z is the redshift. The validity of GSL insists that the sum of

the entropy change of the contents inside the universe with that of the

event horizon must never decrease. The integration in the expression

for RE is carried out for IMHRDE3 model and thus the RE becomes

RE = −4.2265×1017

(
I

√
(1 + z)

u2
2 2F1[P, 0.5, 1 + P,

−f1

f2

(1 + z)
u2
2 ]

)
,

(7.24)

where I and P are constants which have distinct values for differ-

ent IMHRDE3 model parameters. The respective I, P values for pa-

rameters with positive β are : 0.751, 0.626 for (α, β) = (1.2, 0.1),
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Figure 7.7: [The behavior of S
′

for the parameters (α, β) =

(1.01,−0.01) the thick continuous line, (α, β) = (1.2,−0.1) the thin

continuous line, (α, β) = (4/3,−0.1) the large dashed line, (α, β) =

(1.2, 0.1) the dotted line, (α, β) = (1.2, 0.3) the small dashed line, and

(α, β) = (4/3, 0.3) the dot-dashed line, with the interaction coupling

constant b=0.009 inside apparent horizon under thermal equilibrium

conditions]

0.780, 0.627 for (α, β) = (4/3, 0.1) and 0.838, 0.736 for

(α, β) = (1.2, 0.3) and that for parameters with negative β are :

0.682, 0.583 for (α, β) = (1.01,−0.01), 0.683, 0.556 for (α, β) = (1.2,−0.1)

and 0.704, 0.557 for (α, β) = (4/3,−0.1). 2F1 is the hypergeometric

function.

The temperature of the event horizon is

TE =
1

2πRE

, (7.25)

while the area of the event horizon is A = 4πR2
E. The total change
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in entropy of dark energy and dark matter using the Gibb’s equation

with respect to x = log a is obtained as

T (S
′

de + S
′

m) = H−1(ρde + ρm + pde)4πR
2
E(ṘE −HRE). (7.26)

The expression for temperature is substituted in the above expression.

Using the relation ṘE = HRE − 1, and adding the horizon entropy,

the total entropy change is obtained as

S
′
= H−1[16π2RE(ṘE −

R2
E

2
(ρde + ρm + pde))]. (7.27)

When the equation Ḣ = −1
2
(ρde+ρm+pde) is used the expression for

total entropy change turns out to be

S
′
= H−1[16π2RE(ṘE − ḢR2

E)]. (7.28)

Since H > 0, RE > 0 the condition for the validity of GSL with

reference to the above expression is

ṘE ≥
1

2
(ρ+ p)R2

E. (7.29)

In a prevailing dominant energy condition where (ρ + p) > 0, ṘE is

substituted in terms of Hubble parameter and the densities of the

fluid contents of the universe. Then the condition of validity turns

out to be,

HRh − 1− 3

2
(1 + ωdeΩde)H

2R2
h ≥ 0. (7.30)

The above condition is checked for the validity of GSL by plotting

the term on the left hand side of the equation against x = ln a, for
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IMHRDE3 model parameters. The figure 7.8 shows the evolution

of the condition for the validity of GSL for model parameters with

positive β values and figure 7.9 for negative β parameters. The
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Figure 7.8: [The behavior of S
′

for the parameters (α, β) = (1.2, 0.1)

thick continuous line, (α, β) = (4/3, 0.1) thin continuous line,(α, β) =

(1.2, 0.3) dashed line, with the interaction coupling constant b=0.009

inside event horizon under thermal equilibrium conditions]

plot shows that the GSL is only partially satisfied for both negative

and positive β values of the IMHRDE3 model parameters, which is

in confirmation with earlier results. Thus it can be concluded that

event horizon cannot be a feasible thermodynamic boundary of the

universe.
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Figure 7.9: [The behavior of S
′

for the parameters (α, β) =

(1.01,−0.01) thick continuous line, (α, β) = (1.2,−0.1) thin con-

tinuous line,(α, β) = (4/3,−0.1) dashed line, with the interaction

coupling constant b=0.009 inside event horizon under thermal equi-

librium conditions]

7.2.2 Analyzing the case of thermal non-equilibrium

In the above subsection the thermal equilibrium between the com-

ponents of the universe with the horizon is considered. It is likely

that thermal non-equilibrium can exist between the components and

it implies,

Tde 6= Tm 6= Th. (7.31)

Taking apparent horizon as the feasible horizon, the total entropy

change is found using Gibb’s relation which is

S
′
= −H−1

(
12π(1 +

H
′

H
)(

Ωde(1 + ωde)

Tde
+

Ωm

Tm
) +

8π

Th

H
′

H

)
. (7.32)
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Neglecting the contribution of dark matter i.e., Ωm ∼ 0 for a dark

energy dominated universe, then the above expression becomes

S
′
= −H−1

(
12π(1 +

H
′

H
)(

Ωde(1 + ωde)

Tde
) +

8π

Th

H
′

H

)
. (7.33)

The validity of GSL requires that S
′ ≥ 0. Using the expression q =

−1− H
′

H
, the condition for the validity of GSL is obtained as

Tde
Th
≥ −3

2
Ωde(1 + ωde)

q

1 + q
. (7.34)

The condition implies that as (1 + q) > 0 and (1 + ωde) > 0 for

the dark energy of quintessence type the validity of GSL requires

Tde ≥ Th, while if (1 + q) < 0, and (1 + ωde) < 0 which is the case of

phantom type model, the validity of GSL requires Tde ≤ Th. Avoiding

the phantom behavior which is unfavorable, the GSL validity insists

that the temperature of the dark energy to be greater than that of

the horizon.

The behavior of the temperature of the dark energy motivates to

look into its entropy characteristics. For that, a universe dominated

by dark energy is considered avoiding the contribution from dark

matter. Let the temperature of dark energy is proportional to the

temperature of the apparent horizon by a factor k > 1. That is,

Tde = kTA, (7.35)

The entropy of dark energy is found using the standard relation S =
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(ρ+P )V
T

[1], as

Sde =
8π2

kH2
Ωde(1 + ωde). (7.36)

The total entropy of the universe which includes the sum of the en-

tropies of both dark energy and horizon is obtained as

Stot =
8π2

kH2
Ωde(1 + ωde) +

8π2

H2
. (7.37)

The behavior of the Sde and Sh, Stot with respect to x = ln a is shown

in figure 7.10 and figure 7.11 respectively. The figure 7.10 shows
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e

Figure 7.10: [The behavior of Sde against x for the parameters

(α, β) = (1.2, 0.1) with k = 1.25 inside apparent horizon under ther-

mal non-equilibrium condition]

that the entropy of dark energy is decreasing as the universe expands

while figure 7.11 shows that the horizon entropy is increasing with

x and the total entropy of the universe increases with x. Hence the

GSL is valid at the apparent horizon of the universe dominated by

dark energy under thermal non-equilibrium conditions.
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Figure 7.11: [The behavior of Sh along with Stotal with x for the

parameters (α, β) = (1.2, 0.1) inside apparent horizon under thermal

non-equilibrium condition. The thick continuous line represents the

total entropy Stot and the thin line represents the entropy of the

horizon Sh.]

7.3 Conclusion

The modified holographic Ricci dark energy in interaction with dark

matter, with the interaction term Q = 3bHρde,(IMHRDE3) in a flat

FLRW universe is considered. The co-evolution of the energy densities

of dark energy and dark matter is explained and evolution of the

equation of state parameter and deceleration parameter is studied.

The model predicts a late time acceleration of the universe. The

statefinder parameters are used to distinguish the model from other

dark energy models. The thermodynamics of the model is studied



124

Interacting modified holographic Ricci dark
energy model with interaction term

Q ∝ Hρde-IMHRDE3

which includes checking the validity of the GSL and the evolution of

the entropy of the dark energy and the universe for a dark energy

dominated universe.

First section include the study of the cosmological parameters of

IMHRDE3. The co-evolution of the densities of dark energy and

dark matter is explained for interaction parameter b = 0.009. The

evolution of equation of state parameter shows that the present value

of the parameter matches with the values of WMAP observations for

the parameters (1.01,−0.01) and (1.2,−0.1). The characteristics of

deceleration parameter shows that the present value of the parameter

and the transition redshift zT are very much closer to the SNe+CMB

analysis results. Statefinder parameters (r, s) are used to find the

present position of the universe predicted by the IMHRDE3 model

which is quite different from other models.

Second section deals with the analysis of thermodynamics of

IMHRDE3 model. The validity of GSL is checked assuming thermal

equilibrium and non-equilibrium for a universe bounded by apparent

horizon and event horizon separately. The thermal equilibrium study

shows that the GSL is valid only when apparent horizon is taken as

the boundary and not for event horizon. Hence apparent horizon can

be the feasible thermodynamic boundary of the universe. This con-

clusion is in confirmation with the results of previous works on this

subject for various other dark energy models. Under thermal non-
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equilibrium condition, the validity of GSL demands that the temper-

ature of dark energy to be greater than that of the apparent horizon,

for a dark energy dominated universe. Studies such as [91, 95] showed

that the GSL is valid for the case of thermal non-equilibrium condi-

tions under particular constraints only. The evolution of the entropy

of dark energy is studied for a universe dominated by dark energy and

bounded by apparent horizon. The analysis shows that the entropy of

dark energy decreases but the horizon entropy increase in such a way

that the total entropy of the universe increases. As a result the GSL

is valid for a dark energy dominated universe with apparent horizon

as the boundary.





8
Extracting the model parameters

The study of the interacting modified holographic Ricci dark energy

model(IMHRDE) well explained the acceleration of the universe. The

model predicted better values for the present values of the equation of

state parameter, deceleration parameter and transition redshift, also

the co-evolution of dark energy and matter densities is accounted

for. Statefinder parameters distinguishes the model from other dark

energy models. The study of thermodynamics, which comprises an-

alyzing the validity of GSL and the entropy evolution of the dark

energy along with the entire universe, also favors the model. The

whole analysis are done for different values of the IMHRDE model

parameters (α, β). For the theory to be effective it is necessary to

know the best fit parameters for which the predictions made by the

model to be much closer to the observations. This led to the need for

127
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quantitative analysis. In fact the best fit model parameters we have

used in the previous chapters are the result of our analysis which is

described in the following section.

8.1 Statistical Methods

The parameter estimation were done using the Type Ia supernovae

data. We have used modified chi square fitting method[97–102] to

estimate the best fit parameters. To find out the best fit parameters

of the model the method of least squares is used. The least squares

is defined in simple form as

χ2 = Σwi [Di − yi] , (8.1)

where χ2 is the function which quantify how much the data and the

model agrees with and the minimum value of the function χ2 is as-

sociated with the best fit parameters of the model, Di are the data

points, yi represents the model points corresponding to its parameters

and wi is the weight and the minimum variance weight is wi = 1
σi
, σi

is the error on the data point i.

8.1.1 Determining the best fit parameters using Union2

compilation-SNLS+ESSENCE data

Union2 compilation-SNLS+ESSENCE data[104] (307 data points) is

used for parameter extraction and fitting. The theoretical distance
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modulus µth(z) is defined as

µth(zi) = 5 log10DL(zi) + 25, (8.2)

where z is the redshift, and

DL(z) = (1 + z)

∫ z

0

dz
′

h(z′)
, (8.3)

where h(z) = H(z)
H0

. The µth is calculated for each IMHRDE model.

The corresponding χ2 function for the SNe 307 data is

χ2
SN = Σ

[µobs(zi)− µth(zi)]2

σ2(zi)
, (8.4)

where µobs(zi) is the observed value of the distance modulus of the

supernova corresponding to redshift zi. The χ2
SN is found for each

data point corresponding to redshift in the range 0.01 < z < 1.6 and

the minimum value of χ2 with respect to the model parameters is

estimated. For the IMHRDE model, the minimum value of χ2 and

the best fit parameters corresponding to each model are respectively

given below :

• IMHRDE1 : χ2
min = 312.411, for α = 0.97, β = −0.01, H0 =

70.01,

• IMHRDE2 : χ2
min = 312.42, for α = 0.97, β = −0.01, H0 =

70.01,

• IMHRDE3 : χ2
min = 431.935, for α = 1.5, β = −0.01, H0 =

75.47.
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Thus the best fit parameters for IMHRDE1 and IMHRDE2 are found

to be corresponding with each other while a difference is seen in the

case of IMHRDE3. To determine the precision of the parameters, er-

ror has to be estimated. This is done by drawing confidence contours.

8.1.2 Confidence Contours

Confidence regions are those which are drawn around best fit pa-

rameters. Plausibly, a region of parametric space of m-dimension(m

corresponds to the number of parameters) which contain a probabil-

ity distribution is to be selected. Compact regions around the best fit

parameters are preferred. If parameter values are disturbed from the

best fit, then the χ2 value increases. The variation in the value of χ2

is given by ∆χ2. The confidence regions in the α−β plane are drawn

in terms of the minimum value of χ2 and ∆χ2. That is, confidence

regions are drawn by taking,

χ2 ≤ χ2
min + ∆χ2. (8.5)

For m number of parameters, n number of data points, the value of

∆χ2 corresponding to the confidence limit p are given in the table 8.1
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p(confidence

limit)

∆χ2 for m=2

68.3% 2.30

95.4% 4.61

99.73% 11.8

99.99 18.4

Table 8.1: The ∆χ2 value for various confidence limits for two pa-

rameters

8.1.3 Drawing confidence regions and error estimation for

IMHRDE best fit model parameters

The confidence regions are drawn for each IMHRDE model for the pa-

rameters (α, β) fixing H0. The plot for IMHRDE1 best fit parameters

as is shown in figure 8.1, the best fit parameters are,

• α = 0.97+0.27
−0.22,

• β = −0.01+0.21
−0.16.

The confidence regions of IMHRDE2 are shown in figure 8.2. The

best fit parameters of IMHRDE2 are found to be,

• α = 0.97+0.26
−0.22,

• β = −0.01+0.20
−0.16.
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Figure 8.1: [confidence region of IMHRDE1 best fit parameters, outer

contour represent 99.99% confidence region, the immediate next con-

tour represent 97.3% confidence region, the next contour to it rep-

resent 95.4% confidence region and the inner most contour represent

68.3% confidence region.]

The confidence regions for the parameters of IMHRDE3 are shown in

figure 8.3. The best fit parameters are obtained as.

• α = 1.5+0.95
−0.09,

• β = −0.01+1.69
−0.33.

The IMHRDE1 and IMHRDE2 parameters corresponds to each other

very well, while IMHRDE3 parameters are considerably different com-
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Figure 8.2: [confidence region of IMHRDE2 best fit parameters.

Outer contour represent 99.99% confidence region, the immediate

next contour represent 97.3% confidence region, the next contour to

it represent 95.4% confidence region and the inner most contour rep-

resent 68.3% confidence region.]

pared with that of IMHRDE1 and IMHRDE2. For the analysis of

both cosmology parameters and thermodynamics of IMHRDE, we

adopt the parameter as obtained for IMHRDE1 and IMHRDE2. For

practical purposes, we have found the average of both α and β by

considering the error bars, and hence found the best estimates of the

parameters as (1.01,−0.01).
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Figure 8.3: [confidence region of IMHRDE3 best fit parameters.

Outer contour represent 99.99% confidence region, the immediate

next contour represent 97.3% confidence region, the next contour to

it represent 95.4% confidence region and the inner most contour rep-

resent 68.3% confidence region.]

8.1.4 Variation of distance modulus- comparison of theory

and observation

Using the best fit parameters, the µth for each interacting model of

IMHRDE is calculated and compared with the observational data for

corresponding redshift values. The plot for IMHRDE1 is shown in

figure(8.4). The plot shows that for IMHRDE1, the theory matches
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Figure 8.4: [IMHRDE1:continuous line represents theory, dots with

error bars represent observation]

very well with the data.

The plot for IMHRDE2 is shown in figure(8.5). The figure shows

that the theory and observation matches very well.

The plot of comparison for IMHRDE3 is shown in figure(8.6). The

plot reveals that the theory and observation shows a poor match.

8.2 Conclusion

The quantitative statistical techniques are used to estimate best fit

parameters of the model so that its predictions matches quite well

with the observations quite. The χ2 method is used to determine best

fit parameters (α, β, ) and H0 for each IMHRDE model. The best fit

parameters corresponds to that values which make χ2 minimum. The
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Figure 8.5: [IMHRDE2:continuous line represents theory, dots with

error bars represents observation]

confidence regions are drawn corresponding to the limits 68.3%(1σ),

95.4%(2σ), 99.7%(3σ) and 99.99%(4σ). The correction factors for the

best fit parameters are obtained in the case of each model. The

parameters of IMHRDE1 and IMHRDE2 corresponds to each other

very well, but not so with that of IMHRDE3.

The comparison of theory and observation of the distance modulus is

carried out, in which the theoretical value is calculated using the best

fit parameters. The plot of comparison clearly shows that the theory

and data matches very well for IMHRDE1 and IMHRDE2, while that

for IMHRDE3, it matches very poorly.
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Figure 8.6: [IMHRDE3:continuous line represents theory, dots with

error bars represents observation]





9
Conclusion

9.1 Major findings and conclusion

Discovery of the recent acceleration of the universe, has led to spec-

ulations that it is dark energy which causes the acceleration. But

the nature and evolution of dark energy is still an unsettled problem.

Various models have been proposed in the recent literature. Holo-

graphic Ricci dark energy model have been much discussed recently

due to its promising nature. Since the dark energy and dark matter

co-exist together they may possibly interact with each other. In this

thesis we have analyzed both the cosmology and thermodynamics of

holographic Ricci dark energy which is interacting with dark matter.

The interaction of modified holographic Ricci dark energy(IMHRDE)

with dark matter through a linear, non-gravitational interaction in a

139
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flat FLRW universe is studied. The interaction is defined through the

conservation equations with an additional interaction term Q, which

has three phenomenological forms, Q = 3bH(ρm + ρde), Q = 3bHρm

and Q = 3bHρde, where b is the interaction parameter. The qualita-

tive as well as quantitative analysis of the IMHRDE model with the

three interaction terms are separately carried out.

The IMHRDE1 model is the one with interaction term

Q = 3bH(ρm+ρde). The co-evolution of dark energy and dark matter

is studied for the interaction parameter b = 0.001, and found that

the model is reasonably explaining it. But for b > 0.001 this coin-

cidence cannot be explained. The best fit parameters are found to

be (α, β) = (1.01,−0.01) in reference to the statistical analysis done

which is described in chapter 8. The evolution of the equation of state

parameter is studied and its present value given by ωde0 = −0.96

for (α, β) = (1.01,−0.01) is very much closer to the WMAP value

−0.93. The dynamics of deceleration parameter is examined and its

present value is obtained as q0 = −0.56, very much in correspon-

dence with the WMAP value −0.60. The model is predicting the late

time acceleration of the universe. The transition redshift, zT is found

to be 0.70 while the SNe+CMB analysis constraints it in the range

zT ∼ 0.45−0.73. The statefinder analysis shows that the present value

of the parameters are (r0, s0) = (1.003,−0.0008) and when compared

with the ΛCDM model points (r, s) = (1, 0), it can be made out that



Major findings and conclusion 141

the model is not far from the ΛCDM model and has correspondence

with the Chaplygin gas model which has (r > 1, s < 0). On the other

hand the IMHRDE1 seems to be different from other models for ex-

ample from quintessence model, for which (r < 1, s > 0) and the

holographic dark energy model with event horizon as the IR cut off

having (r, s) = (1, 2/3).

The study of thermodynamics of the universe with IMHRDE1 is car-

ried out and it comprised checking the validity of the generalized

second law(GSL) of thermodynamics under both thermal equilibrium

and non-equilibrium conditions existing between the contents of the

universe, mainly IMHRDE1, dark matter, and the horizon limiting

it. The analysis have shown that the model is viable only when the

universe is bounded by the apparent horizon rather than the event

horizon, so that the apparent horizon can be treated as a viable ther-

modynamic boundary. Further the evolution of entropy of dark en-

ergy is studied in a dark energy dominated universe, and it is found

that the entropy of dark energy decreases, but the entropy of the ap-

parent horizon is seen increasing and as a result there is an increase

in the total entropy, which safeguard the validity of GSL.

The IMHRDE2 model is characterized by the interaction term Q =

3bHρm. The coincidence between dark energy and dark matter is ex-

plained for b = 0.003. The evolution of equation of state ωde and

deceleration parameter q as a function of redshift is studied. In
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this case also the universe is found to be showing a recent acceler-

ation. The present value of equation of state parameter is obtained

as ωde0 = −0.96, which is close to the WMAP value −0.93 for the best

fit parameters (α, β) = (1.01,−0.01). The present value of the deceler-

ation parameter is found to be q0 = −0.55, whereas the WMAP value

is q0 = −0.60, while the transition redshift is found to be zT = 0.68,

perfectly lying in the SNe+CMB observational range, zT ∼ 0.45−0.73.

Statefinder parameters (r, s) are used to characterize the unique-

ness of the model and the present value of the parameters are ob-

tained as (r0, s0) = (1.03,−0.0096). The ΛCDM point corresponds

to (r0, s0) = (1, 0). Thus even though the model is distinguishable

from ΛCDM, its present position is close to it. This surely tells that

the IMHRDE2 model is nearer in quality to the ΛCDM model and

have parameters in the range similar to the Chaplygin gas model with

(r > 1, s < 0) and is different from other dark energy models such

as the quintessence model which has (r < 1, s > 0) and the holo-

graphic dark energy model with event horizon as the IR cut off with

(r, s) = (1, 2/3).

The validity of generalized second law(GSL) is checked for a universe

with IMHRDE2 bounded by apparent horizon and event horizon sep-

arately, under both thermal equilibrium and non-equilibrium condi-

tions. The study revealed that the GSL is valid only for the universe

bounded by apparent horizon. Another result is that in a dark en-
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ergy dominated universe, the entropy of the dark energy is seen to be

decreasing which gets compensated by the increase in entropy of the

apparent horizon so that the total entropy gets increasing. Thus the

GSL is again valid for such a universe.

The IMHRDE3 model have the interaction term Q = 3bHρde. The

co-evolution of dark energy and dark matter is explained satisfacto-

rily in this model also for the interaction parameter b = 0.009. The

coincidence is not seen for values greater than this. The evolution of

equation of state parameter ωde, deceleration parameter q as a func-

tion of redshift is studied. The present value of equation of state

parameter is obtained as ωde0 = −0.97 which is close to the WMAP

value −0.93, for the best fit parameters (α, β) = (1.01,−0.01). The

present value of the deceleration parameter is found to be q0 = −0.57,

whereas the WMAP value is q0 = −0.60. The transition redshift

zT is found to have the value 0.70 which lies in the observational

range of zT ∼ 0.45 − 0.73. The analysis using statefinder parame-

ters have shown that the present position of the universe have the

parameter values (r0, s0) = (1.003,−0.0008) which is close to the

ΛCDM point (r, s) = (1, 0), and the Chaplygin gas model with

(r, s) = (r > 1, s < 0), but different from other dark energy mod-

els such as the holographic dark energy model with event horizon as

the IR cut off which has (r, s) = (1, 2/3), quintessence model with

(r < 1, s > 0).
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The thermodynamic characteristics for a universe consisting of IMHRDE3

is studied. It included checking the validity of the generalized second

law of thermodynamics(GSL) and the evolution of entropy of the dark

energy. The analysis is done for the universe bounded by apparent

horizon, as well as by event horizon separately, assuming the cases

of both thermal equilibrium and non-equilibrium existing between

the contents of the universe and the horizon bounding them. The

inference is that the GSL is valid for the universe surrounded by ap-

parent horizon. The entropy of IMHRDE3 is seen to decrease in an

IMHRDE3 dominated universe, but the entropy of the apparent hori-

zon increase in such a way that the total entropy is seen increasing

thus validating the GSL for such a universe.

We have used the χ2 method to determine the best fit parameters.

We have used Union2 data on Type Ia supernovae for this, the results

are summarized below:

• The best fit parameters are those which corresponding for the

minimum value of the χ2 and they are:

1. For IMHRDE1 : χ2
min = 312.411, corresponding to α =

0.97, β = −0.01, H0 = 70.01

2. For IMHRDE2 : χ2
min = 312.42, corresponding to α =
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0.97, β = −0.01, H0 = 70.01

3. For IMHRDE3 : χ2
min = 431.935, corresponding to α =

1.5, β = −0.01, H0 = 75.47

Since the values corresponding to IMHRDE1 and IMHRDE2

are satisfying with both the cosmological and thermal evolution

of the model, we have adopted these values predominantly in

our work. However, in taking the values of α and β, we took

the corresponding averages including the error bars. Hence the

parameters (1.01,−0.01) becomes the best fit.

• The correction in best fit parameters are found out from confi-

dence contours for a fixed Hubble parameter H0. They are :

1. α = 0.97+0.27
−0.22 and β = −0.01+0.21

−0.16, fixing H0 = 70.01 for

IMHRDE1

2. α = 0.97+0.26
−0.22 and β = −0.01+0.20

−0.16, fixing H0 = 70.01 for

IMHRDE2

3. α = 1.5+0.95
−0.09 and β = −0.01+1.69

−0.33, fixing H0 = 75.47 for

IMHRDE3

• The parameters of IMHRDE1 and IMHRDE2 corresponds to

each other while do not match with that of IMHRDE3.



146 Conclusion

• Plot showing comparison of theoretical and observational val-

ues of distance modulus points to the fact that IMHRDE1 and

IMHRDE2 shows a good match of theoretical and observational

values while IMHRDE3 shows a poor match.

Thus it is be inferred that IMHRDE1 and IMHRDE2 are preferred

more when compared to IMHRDE3.

9.2 Scope for further study

The exact nature of the physical origin of Ricci dark energy is not

known. It can only be explained by constructing a proper Lagrangian

through the field theoretical formulation which will be a challenging

work in the future.

The IMHRDE model explains an early decelerating era in the evolu-

tion of the universe, which is of course the recent matter dominated

phase, from which the transition to the accelerating period which is

the present period has been explained clearly by the model. But the

radiation dominated era is not accounted for and this also can be a

task for the further study.

The effect of the IMHRDE on the structure formation and on the

CMB radiation is another significant work that can be pursued in

future. Regarding the effect on CMB, it will be a challenging task to

obtain the effect of IMHRDE on the late time evolution of CMB like
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Integrated Sachs-Wolfe (ISW) effect.

Studies regarding the nature of interaction has scope. For our study,

we have considered the interaction in a phenomenological way and is

non-gravitational in nature. Only a quantum mechanical treatment

will reveal the exact nature of interaction between the dark sectors.

A suitable method for such an analysis is studying the phase space

structure of the model.
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