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We consider a class of composite Higgs models based on asymptotically free SOðdÞ gauge theories with d
odd, with fermions in two irreducible representations, and in which the Higgs field arises as a pseudo-Nambu-
Goldstone boson and the top quark is partially composite. The Nambu-Goldstone coset containing the Higgs
field, or Higgs coset, is either SUð4Þ=Spð4Þ or SUð5Þ=SOð5Þ, whereas the top partners live in two-index
representations of the relevant flavor group [SUð4Þ or SUð5Þ]. In both cases, there is a large number of terms
in the most general four-fermion Lagrangian describing the interaction of third-generation quarks with the top
partners. We derive the top-induced effective potential for the Higgs coset together with the singlet pseudo-
Nambu-Goldstone boson associated with the non-anomalous axial symmetry, to leading order in the
couplings between the third-generation quarks and the composite sector. We obtain expressions for the low-
energy constants in terms of top-partner two-point functions. We revisit the effective potential of another
composite Higgs model that we have studied previously, which is based on an SUð4Þ gauge theory and
provides a different realization of the SUð5Þ=SOð5Þ coset. The top partners of this model live in the
fundamental representation of SUð5Þ, and, as a result, the effective potential of this model is qualitatively
different from the SOðdÞ gauge theories. We also discuss the role of the isospin-triplet fields contained in the
SUð5Þ=SOð5Þ coset, and show that, without further constraints on the four-fermion couplings, an expectation
value for the Higgs field will trigger the subsequent condensation of an isospin-triplet field.
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I. INTRODUCTION

Among the mechanisms that have been proposed to keep
the Higgs particle naturally light, the so-called composite
Higgs paradigm [1,2] postulates the existence of a new
strong sector, perhaps in the few TeV range, based on an
asymptotically free gauge theory that we will call hyper-
color. Spontaneous chiral symmetry breaking in the hyper-
color theory produces a set of Nambu-Goldstone bosons
(NGBs). When we couple the Standard Model and the
hypercolor theory, this breaks explicitly the flavor sym-
metry group of the hypercolor theory to a smaller group,
thereby generating an effective potential for the now
pseudo-Nambu-Goldstone bosons (pNGBs). The Higgs
doublet is composed of four of these pNGBs, and it is
assumed that minimizing the effective potential triggers
electroweak symmetry breaking.

As the only fermion in the Standard Model with a mass
comparable to the electroweak scale, the top quark is
usually given a special role in composite-Higgs models.
We will assume that the top quark couples linearly to
baryons of the hypercolor sector, which we will refer to as
hyperbaryons. The observed top-quark mass eigenstate is a
linear superposition of the elementary top quark and the
composite hyperbaryons, and this partial compositeness is
responsible for its large mass [3].
The literature on composite Higgs leaves largely

unspecified the details of the new dynamics, and focuses
on its low-energy sector containing the pNGBs, which can
be studied as a nonlinear sigma model (for reviews, see
Refs. [4–6]). Nevertheless, a number of ultraviolet com-
pletions of composite Higgs models have been proposed
[7,8]. All these models are asymptotically free gauge
theories with fermionic matter, sharing some additional
basic features. The models are free of gauge anomalies,
both the hypercolor theory by itself, and the coupled system
of hypercolor together with the Standard Model, including
all their gauge interactions. While ultimately only a lattice
calculation can settle it,1 analytic considerations suggest
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that all candidate models exist in a chirally broken phase,
and are not infrared conformal.
As for the spectrum of the hypercolor theory, the Nambu-

Goldstone coset must contain an SUð2ÞL doublet that can
be identified as the Higgs field. In addition, the hyper-
baryon spectrum must contain top partners, states with the
same Standard-Model quantum numbers as left-handed or
right-handed quarks, that can couple linearly to third-
generation quarks. In this paper, we will consider mass
generation for the top quark only,2 and therefore we need
hyperbaryons that can couple to qL ¼ ðtL; bLÞ and to tR,
but not to bR. From a “low-energy” point of view, the
differences between the various models are mainly in the
Nambu-Goldstone coset, and in which irreps of the flavor
symmetry group of the hypercolor theory the top partners
live [7,8]. As we will see, different hyperbaryon spectra can
give rise to very different effective potentials even when the
Nambu-Goldstone coset is the same.
A further assumption with important dynamical implica-

tions is that the Standard Model gauge symmetries are
embedded into the unbroken flavor symmetry group of the
hypercolor theory. This gives rise to the vacuum alignment
phenomenon [14–16]. In particular, the effective potential
induced by the coupling of electroweak gauge bosons to
the hypercolor theory has its minimum at the origin for
the Higgs field. As a result, the top-sector effective potential
is instrumental in generating the nontrivial minimum for the
Higgs field that will trigger electroweak symmetry breaking.
In this paper, we discuss mainly (but not only) composite

Higgs models based on an SOðdÞ gauge group with d odd.
Each model will contain fermions in the vector and in the
spinor irreps. Since we will choose d to be odd, the spinor
irrep is irreducible. The number of fermions of each irrep is
just enough to accommodate the Standard Model’s sym-
metries into the unbroken flavor symmetry group, while
having pNGBs with the correct quantum numbers to be
identified as the Higgs field. When the spinor irrep is
pseudoreal, the symmetry breaking pattern is assumed to
be [17–19]

G
H

¼ SUð4Þ
Spð4Þ ×

SUð6Þ
SOð6Þ ×Uð1ÞA; ð1:1Þ

which corresponds to 6 Weyl (equivalently, Majorana)
fermions in the (real) vector irrep, plus 4 Weyl fermions
(or 2 Diracs) in the spinor irrep. Uð1ÞA is the nonanom-
alous axial symmetry whose generator is a linear combi-
nation of the axial charges of the two irreps. Demanding
that the SOðdÞ theory will be asymptotically free allows us
to choose d ¼ 5 or d ¼ 11 [7,8].3 In the case that the spinor
irrep is real, the symmetry breaking pattern is

G
H

¼ SUð5Þ
SOð5Þ ×

SUð6Þ
SOð6Þ ×Uð1ÞA; ð1:2Þ

which requires 5 Majorana fermions in the spinor irrep.
The asymptotically free cases are d ¼ 7 and d ¼ 9.
The Standard-Model symmetries are embedded into the

unbroken subgroup H as follows. The QCD gauge sym-
metry SUð3Þc together with (ordinary) baryon number B
are embedded into the unbroken SOð6Þ, while SUð2ÞL and
SUð2ÞR are embedded into the Spð4Þ subgroup of SUð4Þ,
or into the SOð5Þ subgroup of SUð5Þ. For all the fields
of the hypercolor theory, as well as for the quark fields
that will couple to it (namely, tL, bL and tR), the usual
Standard-Model hypercharge is given by Y ¼ T3

R þ 2B,
where T3

R is the third SUð2ÞR generator, and baryon number
has the usual normalization with B ¼ 1=3 for a single
quark. With these conventions, the electric charge is
Q ¼ T3

L þ Y ¼ T3
L þ T3

R þ 2B. The simplest hyperbaryons
which can play the role of top partners are hypercolor
singlet states made out of two SOðdÞ spinors and one
SOðdÞ vector, which belong to two-index irreps of the
SUð4Þ or SUð5Þ flavor group.
We comment that Spð4Þ is the covering group of SOð5Þ,

and SUð4Þ of SOð6Þ.4 For the purpose of this paper it does
not matter if the gauge group is Spð4Þ or SOð5Þ, and we
opt for SOð5Þ just so that most of the gauge groups we
deal with (except in Sec. V) will be SOðdÞ groups with d
odd.5 The symmetry-breaking cosets SUð4Þ=Spð4Þ and
SOð6Þ=SOð5Þ are isomorphic, and following Ref. [8] we
opt for the former.
This paper is organized as follows. In Sec. II, we

introduce our notation for the SOðdÞ gauge theories, and
construct all the dimension-9=2 hyperbaryons that can
serve as top partners. In Sec. III, we proceed to study
the case of a pseudoreal spinor irrep. Of the 5 pNGBs in the
SUð4Þ=Spð4Þ coset, four make up the Higgs doublet, while
the last one, η, is inert under all the Standard Model
symmetries. We begin by listing all the possible embed-
dings of the quark fields qL ¼ ðtL; bLÞ and tR into spurions
belonging to two-index irreps of SUð4Þ. We write down the
most general four-fermion Lagrangian describing the inter-
action of these spurions with the hyperbaryons, finding that
it contains 15 independent terms. We then work out the
resulting effective potential for the pNGBs. Thanks to the
simplicity of the SUð4Þ=Spð4Þ coset, this potential can be
obtained in closed form. We also work out all the low-
energy constants, which can be expressed in terms of
hyperbaryons two-point functions. A summary of our
results for this coset is given in Sec. III F.
In Sec. IV, we deal with the case that the spinor irrep is

real. The coset SUð5Þ=SOð5Þ contains 14 NGBs, five of
2For a discussion of mass generation for the bottom quark, see

Ref. [13]. For general remarks on mass generation for other
Standard Model fermions, see Sec. VI.

3See Sec. III for d ¼ 13.

4There exist isomorphisms SOð5Þ ≃ Spð4Þ=Z2 and SOð6Þ ≃
SUð4Þ=Z2.

5For lattice work on the Spð4Þ gauge group, see Refs. [20,21].
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which are the same as before: a (2,2) of SUð2ÞL × SUð2ÞR
that constitutes the Higgs doublet, and the singlet η. The
remaining nine NGBs fill up the (3,3) representation. Again
there are 15 independent couplings in the four-fermion
Lagrangian. The presence of the isospin-triplet pNGBs
makes the analysis technically more involved, and we
calculate the full effective potential only to third order in
the pNGB fields. As before, we also discuss the low-energy
constants.
We then turn to the following important issue (Sec. IV E).

The SUð5Þ=SOð5Þ effective potential will in general contain
cubic terms of the form∼h2φ, where h is the physical Higgs,
and φ is one of the nine new pNGBs.6 The effective potential
for φ takes the form

VðφÞ ¼ c1fh2φþ c2f2φ2 þOðφ3Þ; ð1:3Þ

where f represents the scale of the hypercolor theory, and
the coefficients c1;2 are dimensionless. When the Higgs
field h condenses, the cubic term [the first term on the
right-hand side of Eq. (1.3)] induces a linear term for φ.
This, in turn, forces the subsequent condensation of
the φ field [8]. Assuming7 c2 > 0 (and neglecting
the Oðφ3Þ terms), the minimum of this potential is φ ¼
−ðc1=ð2c2ÞÞh2=f. If the coefficients c1;2 have a similar
magnitude, the φ expectation value will be suppressed by
only one power of h=f relative to h itself. This is
problematic, because φ transforms nontrivially under
SUð2ÞL×SUð2ÞR, and an expectation value for φ does
not preserve the custodial symmetry. This diagonal sub-
group of SUð2ÞL × SUð2ÞR is needed in order to protect
the ρ-parameter [22], for which there are tight experi-
mental constraints. To shed more light on this issue we
also calculate the full potential in the case that all the
SUð5Þ=SOð5Þ pNGBs are turned off except for h and φ,
and we discuss whether, and if so, how, those problematic
cubic terms might be avoided.
In Sec. V, we revisit the SUð4Þ composite Higgs model

that was previously studied by Ferretti in Ref. [13], and by us
in Ref. [23]. In the latter work, we made rather restrictive
assumptions that lead to a four-fermion Lagrangian con-
taining just two terms, and to an effective potential that is
quartic in the four-fermion couplings. Here we take essen-
tially the opposite approach, and make only the most
minimal assumptions, which lead to a four-fermion
Lagrangian containing six terms. We find that, in general,
an effective potential is then generated already at second
order in the four-fermion couplings. However, as we explain
in the concluding section (Sec. VI), this potential may suffer
from a serious drawback. In addition, for the four-fermion
Lagrangian we studied in Ref. [23] we find that the effective

potential contains two more terms that we overlooked
in Ref. [23].
Because of the length of this paper, we have collected the

main phenomenological lessons that can be drawn from all
our analyses in Sec. VI. The appendices cover various
technical points.

II. SOðdÞ GAUGE THEORIES

The SOðdÞ gauge theories we study in this paper have
fermions in the vector and spinor irreps. Since d is always
odd, the spinor irrep is irreducible. The Higgs field is
identified with pNGBs that arise from chiral symmetry
breaking of the spinor-irrep fermions. We denote the Weyl
fermions in the spinor irrep as ϒi, where i is the flavor
index. There will be 4 of them when the spinor irrep is
pseudoreal, and 5 when it is real. The flavor symmetry
group is, correspondingly, Gϒ ¼ SUð4Þ or SUð5Þ. We find
it convenient to construct the hypercolor baryons in terms
of 4-component fields

χi ¼
�

ϒi

Cϵϒ̄T
i

�
; ð2:1Þ

and

χ̄i ¼ χTi CC: ð2:2Þ

Here C is the four-dimensional charge-conjugation matrix,
and C is the charge-conjugation matrix in d ¼ 2nþ 1
dimensions. For our notation, Dirac algebra conventions,
and for the properties of the charge conjugation matrix in
various dimensions, see Appendix A. (When the spinor
irrep is real, as in Sec. IV below, the χi are Majorana
fermions.) For g ∈ Gϒ, a flavor transformation acts as
ϒ → gϒ, ϒ̄ → ϒ̄g†, or, in terms of the 4-component fields,

χ → ðgPR þ g�PLÞχ; χ̄ → χ̄ðgTPR þ g†PLÞ: ð2:3Þ

The infinitesimal form is

δχ ¼ iðPRTa − PLTT
aÞχ; δχ̄ ¼ iχ̄ðPRTT

a − PLTaÞ;
ð2:4Þ

with Ta the hermitian generators. As we will discuss in the
following sections, the SUð2ÞL and SUð2ÞR symmetries of
the Standard Model are embedded into Hϒ, the unbroken
flavor symmetry group of the spinor-irrep fermions.
In addition, all models will contain 6 Majorana fermions

in the real, vector irrep, with an assumed associated chiral
symmetry breaking pattern SUð6Þ → SOð6Þ. As already
mentioned, the Standard Model symmetries SUð3Þc and
Uð1ÞB, where B is ordinary baryon number, are both
subgroups of the unbroken SOð6Þ. We find it convenient
to regroup the 6 Majorana fermions into 3 Dirac fermions,

6The precise definitions are given in Appendix F.
7If c2 < 0, this is likely to lead to a larger expectation value

for φ.
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ψ Ia; ψ̄ Ia, where I ¼ 1; 2;…; d is the SOðdÞ vector index,
while a ¼ 1, 2, 3 indexes ordinary color. Like quarks, the
baryon number of these Dirac fermions is 1=3. The baryon
number of the χ fermions is zero.8

The embedding of the StandardModel symmetries is such
that the pNGBs in the SUð6Þ=SOð6Þ coset carry ordinary
color, but no SUð2ÞL × SUð2ÞR quantum numbers. Since in
this paper we are mainly interested in the Higgs potential, we
will mostly ignore the SUð6Þ=SOð6Þ pNGBs.

A. Top-partner hypercolor baryons

We will restrict the discussion to the simplest top
partners, which are created by local 3-fermion operators
constructed as follows. We first assemble two SOðdÞ-
spinor fermions into a bilinear transforming as an SOðdÞ
vector, and then contract this bilinear with an SOðdÞ-vector
fermion to form an SOðdÞ-singlet state. The resulting
hyperbaryon and antihyperbaryon fields are tabulated in
Table I. Unless it forms a singlet, the SOðdÞ-spinor bilinear
belongs to one of the two-index irreps of the flavor group
Gϒ, which, we recall, can be SUð4Þ or SUð5Þ. When a
single four-dimensional Dirac matrix (aside from the chiral
projector) is sandwiched between the two χ fermions, we
encounter the adjoint irrep (D), or a singlet (N). When the
number of four-dimensional Dirac matrices is zero or two,
the same chiral projector is applied to both of the χ
fermions, and the bilinear then has definite symmetry
properties on its spin index. Taking into account also the
symmetry properties on the SOðdÞ index (see the last
column of Table V) fixes the symmetry on the flavor index.
In view of Eq. (2.3), when the chiral projector is PR we
encounter the two-index symmetric (S) or two-index

antisymmetric (A) representations, whereas for PL we
obtain the complex conjugate representations Sc and Ac.9

We use the following notation. A generic hyperbaryon is
denoted Br

ij;X, where i and j are flavor indices, and the
optional subscript X ¼ L, R denotes the projector applied to
the open Dirac index, which in turn is always carried by the
ψ fermion. r labels the irrep, which can be one of D, N, S,
Sc, A or Ac. Our notation is such that the antihyperbaryon of
Br
ij is denoted B̄r

ji, with the flavor indices flipped. This will
prove convenient when using matrix notation in flavor space.
We comment in passing that the Ferretti–Karateev list of

requirements is fairly restrictive [7,8]. Models that satisfy
all the requirements and have a prescribed coset structure of
the effective theory are so few, that in effect, knowing the
coset structure essentially fixes the model, and thus,
ultimately, also the top-partner content. However, by itself,
the coset structure does not tell us what will be the irreps to
which the top-partners belong. For example, the models of
Sec. IV and Sec. V both share an SUð5Þ=SOð5Þ coset. But
in Sec. IV the hyperbaryons belong to 2-index irreps of
SUð5Þ, whereas in Sec. V they belong to the (anti)
fundamental irrep. Thus, the straightforward way to find
the top partners of a given model is to explicitly construct
the relevant gauge invariant operators. Of course, the
explicit form of the hyperbaryon operators will also be
needed for the derivation of the low-energy constants.

B. CP symmetry

As a stand-alone theory, all the hypercolor theories we
study in this paper are invariant under C and P. Because we
couple the hypercolor theory to qL ¼ ðtL; bLÞ and to tR, but
not to bR, the four-fermion Lagrangian can be invariant

TABLE I. Top partners. The first column defines the irrep of the flavor group to which the hyperbaryon belongs,
which can be a two-index irrep, or a singlet. The second column defines the SOðdÞ gauge theory. The next two
columns give the hyperbaryon and antihyperbaryon operators. The chiral projector PX, X ¼ L, R, is always acting
on the open Dirac index. The notation fχ̄i � � � χjg for the adjoint irrep refers to the traceless part of the bilinear. Our
choice of signs for the antihyperbaryons is explained in Sec. II B. The minus sign in B̄r

ji;X for the D and N irreps for
d ¼ 5, 11 arises because of the difference between the CP transformation rules (2.5c) and (2.5d).

irrep d Br
ij;X B̄r

ji;X

A; Ac 5,7 ðχ̄iPR;LΓIχjÞPXψ Ia ðχ̄iPL;RΓIχjÞψ̄ Iað1 − PXÞ
9,11 ðχ̄iPR;LΓIσμνχjÞPXσμνψ Ia ðχ̄iPL;RΓIσμνχjÞψ̄ Iaσμνð1 − PXÞ

S; Sc 5,7 ðχ̄iPR;LΓIσμνχjÞPXσμνψ Ia ðχ̄iPL;RΓIσμνχjÞψ̄ Iaσμνð1 − PXÞ
9,11 ðχ̄iPR;LΓIχjÞPXψ Ia ðχ̄iPL;RΓIχjÞψ̄ Iað1 − PXÞ

D 5,11 fχ̄iPRΓIγμχjgPXγμψ Ia −fχ̄iPLΓIγμχjgψ̄ Iaγμð1 − PXÞ
7,9 fχ̄iPRΓIγμχjgPXγμψ Ia fχ̄iPLΓIγμχjgψ̄ Iaγμð1 − PXÞ

N 5,11 δijðχ̄kPRΓIγμχkÞPXγμψ Ia −δijðχ̄kPLΓIγμχkÞψ̄ Iaγμð1 − PXÞ
7,9 δijðχ̄kPRΓIγμχkÞPXγμψ Ia δijðχ̄kPLΓIγμχkÞψ̄ Iaγμð1 − PXÞ

8According to our naming conventions the roles of χ and ψ are
flipped relative to Refs. [7,8].

9For the SOð5Þ ∼ Spð4Þ gauge theory, the N, D and A
hyperbaryons were previously considered in Refs. [17,18].
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only under the combined CP transformation.10 The CP
transformation acts on a gauge field as

AμðxÞ → Ãμðx̃Þ; ð2:5aÞ

where x̃μ ¼ xμ if μ ¼ 4, and x̃μ ¼ −xμ if μ ¼ 1, 2, 3, with a
similar definition for Ãμ. The SOðdÞ gauge field is invariant
under charge conjugation, so that its transformation rule
stems from parity only. The SOðdÞ-vector Dirac fermions
transform as

ψðxÞ → iγ4Cψ̄ðx̃ÞT; ψ̄ðxÞ → −iψðx̃ÞTCγ4: ð2:5bÞ

Except for the choice of phases, which is explained in
Appendix B, this is the usual CP transformation rule of a
Dirac fermion. The χ fields transform according to

χiðxÞ → iγ4χiðx̃Þ; χ̄iðxÞ → −iχ̄iðx̃Þγ4; ð2:5cÞ

in the case that the spinor irrep is real (C ¼ CT), whereas for
the pseudoreal case (C ¼ −CT) their transformation rule is

χiðxÞ → iγ4γ5χiðx̃Þ; χ̄iðxÞ → −iχ̄iðx̃Þγ5γ4: ð2:5dÞ

The induced transformation of the hyperbaryon fields is

Br
ijðxÞ → iγ4CB̄r

jiðx̃ÞT; B̄r
ijðxÞ → −iBr

jiðx̃ÞTCγ4: ð2:6Þ

The sign choices we have made in Table I ensure that all
hyperbaryons transform under CP like the ψ fermions. For
more details, see Appendix B.

III. THE SUð4Þ=Spð4Þ COSET

There are two models where the spinor irrep is pseudor-
eal, one based on an SOð5Þ gauge group and the other on
SOð11Þ. The SOð13Þ theory is asymptotically free as well,
but according to analytic considerations it is probably inside
the conformal window, and not chirally broken [8,24]. In any
event, since all the relevant properties of the SOðdÞ theories
are periodic in d modulo 8, the discussion of the SOð5Þ
theory would carry over as is to the SOð13Þ case, if the latter
were to be chirally broken. For previous work on the
SUð4Þ=Spð4Þ models, see Refs. [8,17–19,24].
The order parameter for the spontaneous breaking of the

flavor symmetry Gϒ ¼ SUð4Þ is the expectation value of
χ̄iχj. This order parameter is antisymmetric on its flavor
indices. We will assume that h χ̄iχji ∝ ϵ0;ij, where the 4 × 4

matrix ϵ0 is defined in Eq. (C2). With this convention, we
may take the order parameter to be h χ̄ϵ0χi. Applying an
infinitesimal flavor transformation (2.4) to the order
parameter we get

δaðχ̄ϵ0χÞ ¼ iχ̄ðPRðϵ0Ta þ TT
aϵ0Þ − PLðTaϵ0 þ ϵ0TT

aÞÞχ:
ð3:1Þ

Of the 15 generators of SUð4Þ, there are 10 which leave the
order parameter invariant [see Eq. (C5)]. They generate the
unbroken group, Hϒ ¼ Spð4Þ.
The remaining 5 generators belong to the coset

Gϒ=Hϒ ¼ SUð4Þ=Spð4Þ. Taking Ta to be a coset gener-
ator, the variation of the order parameter gives rise to an
interpolating field for one of the NGBs,

δaðχ̄ϵ0χÞ ¼ 2iχ̄ðPRϵ0Ta − PLTaϵ0Þχ: ð3:2Þ
Equivalently, the full NGB field is

Π̂ ¼ 2ibtrðPRχχ̄ϵ0 − PLϵ0χχ̄Þ; ð3:3Þ
where the notation t̂r indicates that the trace is over the
Dirac and color indices, but not over the flavor indices. It
readily follows that ϵ0Π̂ (or Π̂ϵ0) is antisymmetric on its
flavor indices. The flavor trace of Π̂ with a coset generator
reproduces Eq. (3.2), while its trace with an Spð4Þ
generator vanishes identically, showing that Π̂ has the
correct number of degrees of freedom. Using Eqs. (2.3) and
(C1), we see that Π̂ transforms in the expected way under
the unbroken group

Π̂ → gΠ̂g†; g ∈ Spð4Þ: ð3:4Þ
Under the CP transformation of the hypercolor theory,
Eq. (2.5d), we have

Π̂ðxÞ → −Π̂Tðx̃Þ; ð3:5Þ
where we have used Eq. (2.2). Notice that (apart from the
usual coordinates transformation) the CP transformation
does not merely flip the sign of Π̂. Related, when the coset
generator Ta commutes with ϵ0, the NGB field (3.2) is a
pseudoscalar, as in the familiar QCD case. But when Ta
anticommutes with ϵ0, the NGB field is a scalar. We will
discuss the phenomenological significance of this result
shortly.
In the effective chiral theory, the NGBs of SUð4Þ →

Spð4Þ symmetry breaking are represented by an antisym-
metric unitary field Σ ∈ SUð4Þ, ΣT ¼ −Σ. In addition, the
effective theory depends on an SUð6Þ=SOð6Þ nonlinear
field, which we will not discuss in this paper, and a field
Φ ∈ Uð1Þ associated with the spontaneous breaking of the
nonanomalous Uð1ÞA symmetry [7,17–19,23–26]. The
axial transformations are

δAχ ¼ i
2
γ5χ; δAχ̄ ¼ i

2
χ̄γ5; ð3:6aÞ

δAψ ¼ iqγ5ψ ; δAψ̄ ¼ iqψ̄γ5; ð3:6bÞ
δAΦ ¼ iΦ: ð3:6cÞ

10Provided that all the four-fermion coupling constants are
real.
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Eq. (3.6a) gives the transformation rule of the spinor
irrep, which sets the normalization of the nonanomalous
axial transformation in the microscopic theory. Eq. (3.6b)
is the transformation rule of the vector irrep, where
q ¼ −ð1=3ÞTχ=Tψ ,

11 and the group traces are Tχ ¼
2ðd−5Þ=2 and Tψ ¼ 2. Finally Eq. (3.6c) sets our normali-
zation for the transformation rule of the corresponding
effective field. The formal correspondence between the
elementary and the effective fields is then

ΦΣ ↔ btrðPRχχ̄Þ; Φ�Σ� ↔ btrðPLχχ̄Þ: ð3:7Þ

As already mentioned, we will assume that the vacuum is
given by hΣi ¼ ϵ0 and hΦi ¼ 1, and parametrize the
nonlinear field as

Σ ¼ expðiΠ=fÞϵ0 expðiΠT=fÞ ¼ expð2iΠ=fÞϵ0; ð3:8Þ

where f is the decay constant. The effective NGB field Π is
hermitian, traceless, and satisfies ϵ0Π ¼ ΠTϵ0, just as Π̂.
Flavor transformations act on the nonlinear field as

Σ → gΣgT; g ∈ SUð4Þ: ð3:9Þ

For g ∈ Spð4Þ, it follows that the effective NBG field Π
transforms in the same way as the NGB field of the
microscopic theory, Eq. (3.4). The transformation rule of
Π under CP is defined to be the same as in Eq. (3.5). The
leading-order chiral Lagrangian is invariant under these
transformations.
The embedding of SUð2ÞL and SUð2ÞR in Spð4Þ is given

in Eq. (C6), and the parametrization of the effective field Π
is given in Eq. (C7). Four of the NGBs are identified with
the Higgs doublet, H ¼ ðHþ; H0Þ, whereas the fifth, η, is a
singlet under SUð2ÞL × SUð2ÞR. Using the parametrization
(C7), a CP transformation acts as

H0 → H�
0; Hþ → H�þ; η → −η: ð3:10Þ

This correctly reproduces the CP transformation of the
Higgs field in the Standard Model.
The rest of this section is organized as follows. In

Sec. III A, we obtain all the spurion embeddings of the
quark fields. In Sec. III B, we write down the four-fermion
Lagrangian LEHC, and in Sec. III C we list all the effective
top Yukawa couplings allowed by it. In Sec. III D, we begin
the discussion of the effective potential of the pNGBs, Veff .
We group the various contributions into twelve “template”
forms, and then work out all the contributions to Veff in
closed form. In Sec. III E, we derive the low-energy
constants. We summarize our findings in Sec. III F, which

also contains a simple example of a phenomenologically
viable potential. Finally, we discuss spontaneous CP
breaking in Sec. III G.

A. Spurions

Much like in technicolor theories, the coupling of the
Higgs field to the gauge bosons of the Standard Model
arises naturally when the relevant global symmetries of the
hypercolor theory are gauged; but a more elaborate setup is
needed to generate masses for fermions. Here we postulate
the existence of yet another gauge symmetry, dubbed
“extended hypercolor” (EHC). We assume that the EHC
gauge symmetry breaks spontaneously at some scale ΛEHC
which is large relative to the scale of the hypercolor theory,
ΛHC. The remnant of the EHC interactions at the hypercolor
scale is a set of four-fermion interactions, and we assume
that these four-fermion interactions couple the third gen-
eration quark fields qL ¼ ðtL; bLÞ and tR to the hyper-
baryon fields constructed in Sec. II A. The EHC theory will
thus generate a mass for the top quark through the
mechanism of partial compositeness. We comment that
this setup does not necessarily generate a mass for any other
Standard Model’s fermion. Their masses may have to
involve some other dynamics (see Sec. VI).
Unlike the hyperbaryon fields, quark fields fit into irreps

of the smaller, Standard-Model symmetry. They do not fill
up any irreps of the global symmetry group of the hyper-
color theory. The coupling of quark and hyperbaryon fields
therefore explicitly breaks the flavor symmetry of the
hypercolor theory. This will induce a potential Veff for
the NGBs.
While Veff is invariant only under Standard-Model

symmetries, it depends on low-energy constants that can
be expressed in terms of correlation functions of the stand-
alone hypercolor theory. When we derive expressions for
these low-energy constants, we may benefit from the full
global symmetry of the hypercolor theory, including in
particular Gϒ. The way to do this is to promote the quark
fields to spurion fields transforming in irreps of Gϒ.
In the rest of this subsection, we construct the spurions

explicitly. Each embedding of qL is defined by

XLðxÞ ¼ tLðxÞX̂tL þ bLðxÞX̂bL ;

X̄LðxÞ ¼ t̄LðxÞ ˆ̄XtL þ b̄LðxÞ ˆ̄XbL; ð3:11Þ

and similarly for tR,

XRðxÞ ¼ tRðxÞX̂tR ; X̄RðxÞ ¼ t̄RðxÞ ˆ̄XtR ; ð3:12Þ

where the hatted objects are constant 4 × 4 matrices.
Because the EHC theory is not known, we will allow
for the most general four-fermion Lagrangian which is
compatible with the (spurionized) symmetries of the hyper-
color theory, and with CP.

11In the case of the SUð5Þ=SOð5Þ models of Sec. IV,
q ¼ −ð5=12ÞTχ=Tψ . For more details see, e.g., Refs. [24,26,27].
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In order to build the four-fermion Lagrangian, we have to
allow for all embeddings of the quark fields into spurions
belonging to two-index irreps of Gϒ ¼ SUð4Þ (or to a
singlet), which are consistent with the embedding of
SUð2ÞL and SUð2ÞR into SUð4Þ. We begin with the spurion
embeddings of qL. For the adjoint irrep of SUð4Þ there are
two options,

D1
L ¼

0BBB@
0 0 tL 0

0 0 bL 0

0 0 0 0

0 0 0 0

1CCCA; ð3:13Þ

D2
L ¼

0BBB@
0 0 0 0

0 0 0 0

0 0 0 0

bL tL 0 0

1CCCA: ð3:14Þ

Remembering that qL ¼ ðtL; bLÞ is an SUð2ÞL doublet with
T3
R ¼ −1=2, one can check that these spurions are con-

sistent with the Standard-Model transformation properties
of qL. To this end we use that the adjoint spurions transform
asDi

L → gDi
Lg

† under g ∈ SUð4Þ, and the embedding (C6)
of SUð2ÞL and SUð2ÞR into SUð4Þ. For the two-index
antisymmetric irrep we have one embedding,

AL ¼

0BBB@
0 0 0 tL
0 0 0 bL
0 0 0 0

−tL −bL 0 0

1CCCA; ð3:15Þ

and likewise for the two-index symmetric irrep,

SL ¼

0BBB@
0 0 0 tL
0 0 0 bL
0 0 0 0

tL bL 0 0

1CCCA: ð3:16Þ

The AL and SL spurions transforms as XL → gXLgT ,
X ∈ fA; Sg, under g ∈ SUð4Þ, and again one can verify
consistency with Standard-Model quantum numbers. The
embeddings for the complex conjugate irreps Ac and Sc

may be obtained using the rule

Xc ¼ −ϵ0Xϵ0; ð3:17Þ

where again X ∈ fA; Sg. Let us explain this rule. We
first observe that Xc spurions transform under g ∈
SUð4Þ as Xc → g�Xcg†. Restricting to g ∈ Spð4Þ, and
using Eqs. (3.17) and (C1), we have

g�Xcg† ¼ −g�ϵ0Xϵ0g† ¼ −ϵ0gXgTϵ0: ð3:18Þ

The rightmost expression involves the transformation
rule of a field in the A or S irreps, and we have already
verified that this correctly reproduces the Standard-Model
transformation rules for the AL and SL spurions. Since
SUð2ÞL × SUð2ÞR is a subgroup of Spð4Þ, it follows that
the spurion Xc defined by Eq. (3.17) will again reproduce
the correct Standard-Model transformation rules. Applying
Eq. (3.17) we find the explicit forms

Ac
L ¼

0BBB@
0 0 −bL 0

0 0 tL 0

bL −tL 0 0

0 0 0 0

1CCCA; ð3:19Þ

ScL ¼

0BBB@
0 0 −bL 0

0 0 tL 0

−bL tL 0 0

0 0 0 0

1CCCA: ð3:20Þ

Let us move on to tR, which is a singlet of SUð2ÞL with
T3
R ¼ 0 (note that tR is not required to be invariant under the

full SUð2ÞR, but only under rotations generated by T3
R). In

this case, we have more options, starting with the singlet

NR ¼ tR

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCA: ð3:21Þ

There are two linearly independent options for the adjoint
irrep,

D1
R ¼ tR

0BBB@
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

1CCCA; ð3:22Þ

D2
R ¼ tR

0BBB@
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

1CCCA; ð3:23Þ

another two for the antisymmetric irrep,

A1
R ¼ tR

0BBB@
0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

1CCCA; ð3:24Þ
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A2
R ¼ tR

0BBB@
0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

1CCCA; ð3:25Þ

and one for the symmetric irrep,

SR ¼ tR

0BBB@
0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

1CCCA: ð3:26Þ

The spurion embeddings for the Ac and Sc irreps again
follow using Eq. (3.17). Explicitly,

Ac1
R ¼ A1

R;

Ac2
R ¼ A2

R;

ScR ¼ −SR: ð3:27Þ

It remains to construct the antispurion embeddings.
Referring to the decompositions (3.11) and (3.12),
we define the c-number coefficients of the antispurion
fields via

ˆ̄X ≡ X̂† ¼ X̂T: ð3:28Þ

The last equality follows because we have chosen all the
c-number spurions X̂ to be real.

B. LEHC

With the top-partner hyperbaryons and the spurions
at hand, the most general four-fermion Lagrangian that
couples them is given by

LEHC ¼ LEHC;1 þ LEHC;2; ð3:29aÞ

LEHC;1 ¼ trðλ1ĀLBA
R þ λ2Āc

LB
Ac

R þ λ3S̄LBS
R þ λ4S̄cLB

Sc
R

þ ðλ5D̄1
R þ λ6D̄2

RÞBD
L þ λ7N̄RBN

L þ H:c:Þ;
ð3:29bÞ

LEHC;2 ¼ trððλ̃1Ā1
R þ λ̃2Ā2

RÞBA
L þ ðλ̃3Āc1

R þ λ̃4Āc2
R ÞBAc

L

þ λ̃5S̄RBS
L þ λ̃6S̄cRB

Sc
L

þ ðλ̃7D̄1
L þ λ̃8D̄2

LÞBD
R þ H:c:Þ; ð3:29cÞ

where the trace is over SUð4Þ indices. λ1;…; λ7 and
λ̃1;…; λ̃8 are (dimensionful) coupling constants. We have
grouped in LEHC;1 those terms where BL belongs toD or N,
while BR belongs to A, Ac, S or Sc, and the other way
around for LEHC;2. The four-fermion Lagrangian is invari-
ant under the spurionized SUð4Þ symmetry. In addition, it is

truly invariant under the Standard-Model gauge symmetries
SUð3Þc, SUð2ÞL, and Uð1ÞY , and it conserves baryon
number, or, which is equivalent, the T3

R charge.
Assuming that all the coupling constants are real, the

four-fermion Lagrangian is also invariant under the
combined CP transformation of the hypercolor theory
and the Standard Model, in which the c-number spurions
are inert. How CP works is best illustrated through an
example. The CP rules of Sec. II B imply in particular that
t̄RBL;ij ↔ B̄L;jitR. Remembering that c-number spurions
don’t transform, we have

trðX̄RBLÞ ¼ t̄Rtrð ˆ̄XRBLÞ ↔ trð ˆ̄XRB̄T
LÞtR

¼ trðX̂T
RB̄

T
LÞtR ¼ trðB̄LXRÞ; ð3:30Þ

where again the trace and transpose operations are applied
to the flavor indices. In order to establish the CP-invariance
of LEHC, we have used Eq. (3.28), which in turn relies on
the fact that all the c-number spurions are real. That such a
choice can be made, is a special feature of the SUð4Þ=
Spð4Þ coset. (As we will see in Sec. IV, things are slightly
more involved for the SUð5Þ=SOð5Þ case.) Of course, we
could have chosen to multiply some c-number spurions by
arbitrary phases. This would invalidate Eq. (3.28) for those
c-number spurions, and, as a result, there would be fewer
terms in LEHC if we wish to maintain CP invariance.
However, opting to do this is arbitrary. Once again, the
point is that apart from some very general assumptions, we
do not know the EHC theory. Therefore, we must consider
the most general four-fermion Lagrangian consistent with
those general assumptions. When all the four-fermion
couplings are taken to be real, this requires choosing all
the c-number spurions to be real as well.
As already noted, in this paper we do not study the

SUð6Þ=SOð6Þ pNGBs associated with the vector-irrep
fermions, and therefore we only gave the SUð3Þc quantum
numbers of the hyperbaryons. Requiring full SUð6Þ invari-
ance will give rise to the same four-fermion Lagrangian
once the spurions assume their Standard Model values.
Indeed, each term in Eq. (3.29) can be trivially “lifted” to an
SUð6Þ-invariant form, as we illustrate through the follow-
ing examples. For definiteness, we will refer to the hyper-
baryons of the SOð5Þ gauge theory.
We begin with the first term on the right-hand side of

Eq. (3.29b), ĀLBA
R. Since the χ fermions play little role, for

brevity we express the hyperbaryon operator as BA
R;a ¼

fðχÞAI ψR;Ia ¼ fðχÞAI ΨIa, where in the last equality we have
used that the 3 Dirac fermions introduced earlier are
composed of 6 right-handed vector-irrep Weyl fermions
Ψ1;…;Ψ6 according to

ψa ¼
� Ψa

ϵΨ̄T
3þa

�
; ψ̄a ¼

�
−ΨT

3þaϵ Ψ̄a

�
; a ¼ 1; 2; 3:

ð3:31Þ
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A complete SUð6Þ irrep is now obtained by simply replacing
the indexa ¼ 1, 2,3,withanewindex ā ¼ 1;…; 6, explicitly,
B̃A
R;ā ¼ fðχÞAI ΨIā,whereweareusing a tilde to refer toSUð6Þ

irreps. The SUð6Þ-invariant interaction is thus ˜̄AL;āB̃A
R;ā. In

order to ensure equality between the SUð3Þc and SUð6Þ
versions,wesimplyembed theSUð3Þc spurion into theSUð6Þ
spurion, namely, we define ˜̄AL;ā ¼ ĀL;a for ā ¼ a ¼ 1, 2, 3,

and ˜̄AL;ā ¼ 0 for ā ¼ 4, 5, 6.
At this point we have not made use of the last three

components of the SUð6Þ multiplet, B̃A
R;ā, ā ¼ 4, 5, 6.

These components occur in a difference place in LEHC, in
the term that involve B̄A

L, and, thus, contains ψ̄L;a ∼Ψaþ3,
as follows from Eq. (3.31). This time, we “lift” the spurions
to SUð6Þ by letting Ãi

R;ā ¼ 0 for ā ¼ 1, 2, 3, and Ãi
R;ā ¼

Ai
R;ā−3 for ā ¼ 4, 5, 6 and i ¼ 1, 2.
These examples demonstrate that there is one-to-one

correspondence between the SUð3Þc-invariant and SUð6Þ-
invariant forms of LEHC. The underlying reason is that the
“expectation values” of the spurions are only constrained
by SM symmetries.

C. Top Yukawa couplings

Effective top-Yukawa couplings are generated by inte-
grating out all the states of the hypercolor theory except for
the pNGBs. These effective interactions are organized in a
weak-coupling expansion in the four-fermion couplings, as
well as according to the usual power counting of the chiral
Lagrangian. To second order in the four-fermion couplings,
and to leading order in the chiral expansion, we find
effective interactions that are either linear or bilinear in Σ or
Σ�. Any effective interaction which is cubic or higher in the
nonlinear field must contain additional derivatives and/or
mass insertions,12 and therefore belongs to a higher order in
the chiral expansion.
We begin with effective interactions that are linear in Σ or

Σ�. Each effective interaction contains one spurion and one
antispurion, one of which must be left-handed and the other
right-handed. The effective Yukawa interactions have the
same symmetries as LEHC. In order to form an SUð4Þ
singlet, the spurion must belong to A; Ac; S or Sc and the
antispurion toD or N, or the other way around, because the
effective interaction has to contain a Σ or a Σ�. It follows
that the spurion and the antispurion must both come from
LEHC;1, or both from LEHC;2, which explains why we have
grouped the four-fermion interactions this way. The list of
possible top-Yukawa effective interactions is thus

ΦtrðX̄LΣðD1;2
R ÞTÞ; Φ�trðX̄c

LΣ�D1;2
R Þ; ΦtrðĀLΣNRÞ;

Φ�trðĀc
LΣ�NRÞ; Φ�trððD̄1;2

L ÞTΣ�XRÞ; ΦtrðD̄1;2
L ΣXc

RÞ;
ð3:32Þ

where the hermitian conjugate is to be added to each
operator. XL can be AL or SL, and XR can be A1;2

R or SR.
The explicit form of each effective interaction can be
worked out by assigning to each spurion its Standard-
Model value from Sec. III A, and using Eqs. (C7) and (C9)
for the Σ field. Out of a total of 22 possible contributions to
the top-Yukawa coupling, we find that 8 of the possibilities
vanish identically, while the other 14 generate a nonzero
top-Yukawa coupling.
Each effective interaction in Eq. (3.32) is (formally)

invariant under SUð4Þ and Uð1ÞA.13 The power of Φ is
fixed by the axial charges of the spurions, which, in turn,
are determined by the axial charges of the hyperbaryons,
and the requirement that the four-fermion Lagrangian
(3.29) will be invariant. For example, the power of Φ in
the first effective interaction matches the axial charge of the
product BA

RB̄
D
L (or BS

RB̄
D
L ). See Eq. (3.6) for the axial

transformations, and Table I for the field content of the
hyperbaryons. The axial charges of the hyperbaryons are
listed in Table II. Notice that the dependence on the axial
charge q of the vector irrep always cancels out in the
effective Yukawa interactions.
Similar considerations give rise to the list of effective

interactions which are bilinear in Σ or Σ†, given by

trðĀLΣÞtrðARΣ�Þ; trðAc
LΣÞtrðĀc

RΣ�Þ; trðD̄T
LΣ�DRΣÞ;

Φ2trðAc
L;RΣÞtrðĀR;LΣÞ; Φ2trðS̄R;LΣScL;RΣÞ;

Φ2trðĀR;LΣAc
L;RΣÞ; ð3:33Þ

where again the hermitian conjugate is to be added to each
operator. This amounts to 18 additional possibilities, none
of which vanish.
The coupling constant that multiplies a given effective

top-Yukawa interaction term is obtained using the pro-
cedure that we have discussed in detail in Ref. [23]. As an
example, let us consider the term ΦtrðĀLΣNRÞ. Denoting
by yAL;NR

the coupling constant that multiplies this term in
the effective theory, and using hΦi ¼ 1, we have

∂
∂NRaαðyÞ

∂
∂ĀLijbβðxÞ

logZeff

¼ −yAL;NR
hΣjiiδabδαβδðx − yÞ þ � � �

¼ yAL;NR
ϵ0;ijδabδαβδðx − yÞ þ � � � ; ð3:34Þ

TABLE II. Axial charges of the hyperbaryons.

BA
R;L BAc

R;L BS
R;L BSc

R;L BD
R;L BN

R;L

1� q −1� q 1� q −1� q ∓ q ∓ q

12See Sec. III F below for a discussion of explicit mass terms
for the fermions of the hypercolor theory.

13To maintain the invariance under SUð6Þ we would have to
reintroduce the corresponding nonlinear field.
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where a, b are SUð3Þ-color indices, α, β are Dirac indices,
and we have treated the singlet N as an SUð4Þ scalar with
no flavor indices. In the microscopic theory,

∂
∂NRaαðyÞ

∂
∂ĀLijbβðxÞ

logZ ¼ λ1λ7hBA
RjibβðxÞB̄N

LaαðyÞi:

ð3:35Þ

Demanding equality between the effective and microscopic
theories, and using that the right-hand side of Eq. (3.34) is
the leading term in a derivative expansion, we obtain

yAL;NR
¼ λ1λ7

48
ϵ0;ijδabδαβSijabαβð0Þ; ð3:36Þ

where

hBA
RijaαðxÞB̄N

LbβðyÞi ¼
Z

d4p
ð2πÞ4 e

ipðx−yÞSijabαβðpÞ: ð3:37Þ

In the absence of spontaneous symmetry breaking, this
two-point function would evidently vanish, because BA and
BN belong to two different irreps of SUð4Þ. But the
antisymmetric irrep of SUð4Þ contains an Spð4Þ singlet
(see Appendix C), and so this two-point function is nonzero
after symmetry breaking. In terms of the elementary
fermions of the hypercolor theory, we have, using Table I,

hBA
RijaðxÞB̄N

LbðyÞi

¼ −
Z

DAμðAÞPRhψ IaðxÞψ̄JbðyÞγνiPR

× hðχ̄iðxÞPRΓIχjðxÞÞðχ̄kðyÞPLγνΓJχkðyÞÞi; ð3:38Þ

where DA denotes the Haar measure for the gauge field,
and μðAÞ is the Boltzmann weight. Inside the gauge-field
integral, the expectation values denote correlation functions
of the elementary fermions in a fixed gauge-field back-
ground. There are three different ways to contract the four χ
fermions into a product of two hχχ̄i propagators. In every
case, we will have a PR applied to both sides of one hχχ̄i
propagator, which projects out an order parameter for the
SUð4Þ → Spð4Þ symmetry breaking. Expressions for all
other contributions to the top-Yukawa coupling can be
worked out in a similar way. It is clear that the experimental
value of the top-Yukawa coupling in the Standard Model
provides only one constraint on the many couplings present
in LEHC.

D. Veff

The effective potential for the pNGBs is generated by
integrating out all other states of the hypercolor theory, and,
in addition, the Standard-Model gauge and fermion fields.
Here we will calculate the effective potential Veff for the
SUð4Þ=Spð4Þ and Uð1ÞA pNGBs (we keep disregarding

the SUð6Þ=SOð6Þ pNGBs), which is obtained by integrat-
ing out the third-generation quarks.14 To leading order in
the four-fermion couplings, the effective potential arises
from correlation functions of two four-fermion vertices,
where every correlation function is a convolution of a
hyperbaryon two-point function with a single massless
quark propagator. As a result, every term in the effective
potential will be quadratic in the spurions, and both
spurions will have the same handedness.
There is a large number of ways to generate an effective

potential, which we organize into twelve “templates,”

T 1 ¼ Φ1−2qtrðĀΣNÞ þ H:c:;

T 2 ¼ Φ−1−2qtrðĀcΣ�NÞ þ H:c:;

T 3 ¼ Φ1∓2qtrðĀΣDTÞ þ H:c:;

T 4 ¼ Φ1∓2qtrðS̄ΣDTÞ þ H:c:;

T 5 ¼ Φ−1∓2qtrðĀcΣ�DÞ þ H:c:;

T 6 ¼ Φ−1∓2qtrðS̄cΣ�DÞ þ H:c:;

T 7 ¼ trðĀΣÞtrðAΣ�Þ;
T 8 ¼ trðAcΣÞtrðĀcΣ�Þ;
T 9 ¼ Φ2trðAcΣÞtrðĀΣÞ þ H:c:;

T 10 ¼ Φ2trðScΣS̄ΣÞ þ H:c:;

T 11 ¼ Φ2trðAcΣĀΣÞ þ H:c:;

T 12 ¼ trðDΣD̄TΣ�Þ: ð3:39Þ

As in Sec. III C, the power of Φ in each template matches
the axial charge of the associated product of hyperbaryons
in the microscopic theory. The axial charge vanishes for
templates T 7, T 8 and T 12. For the other templates it
doesn’t. We have normalized the axial charge such that the
χ’s give rise to an integer power of Φ. Templates T 1

through T 6 are sensitive also to q, the axial charge of the
ψ’s. In templates T 3 through T 6, Φ−2q (Φþ2q) corresponds
to right-handed (left-handed) spurions. For T 1 and T 2 we
always obtain Φ−2q from the ψ’s, because only tR can be
embedded into a neutral spurion (see below).
The alert reader will have noticed the similarity between

templates T 1 through T 6 and the effective Yukawa
interactions in Eq. (3.32), and likewise, between templates
T 7 through T 12 and the effective Yukawa interactions in
Eq. (3.33). The underlying reason is the similar group
theoretic structure, as well as the power counting, which
again allows for a maximum of two nonlinear fields
(Σ or Σ�) in the leading-order effective potential. While
we will shortly explain in detail how the templates encode
the effective potential, already at this stage we point out
several important differences. First, in the effective Yukawa

14For the gauge boson’s contribution to the effective potential,
see Sec. III F below.
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interactions the quark fields are present, whereas in the
effective potential they have been integrated out. Second,
the two spurions in the effective Yukawa interactions are
one right-handed and one left-handed, whereas here both of
them have the same handedness. As a result, the pattern of
axial charges in the effective Yukawa interactions and in the
effective potential is different as well.
Every template from Eq. (3.39) will expand out to

several terms in Veff .
15 We illustrate this using the example

of T 1. In this case, the two spurions must be right-handed,
because qL cannot be embedded into a singlet of SUð4Þ. As
for tR, it can be embedded into an antisymmetric spurion in
two different ways. Template T 1 thus gives rise to the
following two terms

C1Rðλ7λ̃1hΦtrðĀ1
RΣNRÞ þ H:c:i

þ λ7λ̃2hΦtrðĀ2
RΣNRÞ þ H:c:iÞ: ð3:40Þ

Each term consists of the product of three elements: a low-
energy constant, a pair of coupling constants from LEHC,
and an expression of the form hT 1i, where we have made a
particular choice for the spurions in the template T 1. The
meaning of the notation h·i here is the following. For the
right-handed case, this is the outcome of integrating out
the tR field, and the hyperbaryon fields to which it couples
in Eq. (3.29). In practice, denoting the spurion and
antispurion fields generically as XR and X̄R, they are traded
inside the h·i symbol with the corresponding constant

spurion matrices X̂tR and ˆ̄XtR , see Eq. (3.12). In the left-
handed case, we in addition sum over the contributions of
tL and bL [Eq. (3.11)].
As mentioned above, each correlation function that

contributes to the leading-order effective potential is built
from two vertices from LEHC, and so it contains a hyper-
baryon two-point function together with a single quark
propagator, which, in this approximation, is a free massless
propagator of a given chirality. The spurion and the
antispurion in each template must therefore have the same
chirality. In the example of Eq. (3.40), only tR can be
embedded into a spurion belonging to the singlet irrep.
Since there are two independent options for the embedding
of tR into the antisymmetric irrep, A1

R and A2
R, the template

expands out to two terms in Veff .
The four-fermion coupling constants together with the

low-energy constant are inferred from a matching pro-
cedure that we have discussed in detail in Ref. [23], and
which is similar to the one used in the previous subsection
for the case of the effective top-Yukawa couplings. The
four-fermion coupling constants are the two coupling
constants from LEHC associated with the spurion and the
antispurion that occur inside the h·i symbol. The remaining

low-energy constant is expressed in terms of a correlation
function of the stand-alone hypercolor theory, which does
not depend on the particular embedding of the quark fields
into the spurion. Therefore, for each template T i we have
just two low-energy constants CiL and CiR, one for each
chirality. For the first two templates we only need CiR,
because only tR can be embedded into an N spurion.
Since both the hypercolor theory and the four-fermion

Lagrangian are CP invariant, so will be the effective
potential Veff . Using the assumed reality of the four-
fermion coupling constants, one can also verify directly
the CP invariance of Eq. (3.40), and of the corresponding
expressions for all other templates. Because Veff is always
real, it follows as a corollary that all the low-energy
constants are real. Similar statements apply to the low-
energy constants that multiply the effective Yukawa cou-
plings discussed in the previous subsection.
We comment in passing that CP is only an approximate

symmetry of the Standard Model, whose breaking is
encoded in the Yukawa couplings. In a similar spirit,
one may relax the assumption that the coupling constants
inLEHC are all real, and assume, instead, that any imaginary
parts of these coupling constants are parametrically small.
How the EHC theory would induce this small amount of
CP violation goes beyond the scope of this paper. To avoid
confusion, we stress that since we have defined the low-
energy constants to be independent of the four-fermion
Lagrangian, their reality is true regardless of whether or not
the coupling constants of LEHC are real.
In the rest of this subsection, we list all the contributions

to Veff for the twelve templates. As explained above, the
four-fermion couplings that multiply each expression are
easily read off fromLEHC. The low-energy constants will be
derived in the next subsection. Thanks to the simplicity of
the SUð4Þ=Spð4Þ coset, it is possible to obtain the potential
in closed form. Because some of the templates depend on
the Uð1Þ field Φ, in general an effective potential will be
generated for the Uð1ÞA pNGB as well.
We begin with T 1, which gives rise to the two terms in

Eq. (3.40). Using Eqs. (C7) and (C9), we have

hΦ1−2qtrðĀ1
RΣNRÞ þ H:c:i

¼ 4 cosðαÞ cosðð1 − 2qÞζÞ

−
2
ffiffiffi
2

p
η sinðαÞ sinðð1 − 2qÞζÞ

αf
; ð3:41aÞ

hΦ1−2qtrðĀ2
RΣNRÞ þ H:c:i

¼ −4 cosðαÞ cosðð1 − 2qÞζÞ

−
2
ffiffiffi
2

p
η sinðαÞ sinðð1 − 2qÞζÞ

αf
; ð3:41bÞ

where α is given by (cf. Appendix C)
15For an alternative, but ultimately equivalent, spurion tech-

nique, see for example Ref. [6].
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α ¼ 1

f

�
1

2
η2 þH†H

�
1=2

; ð3:42Þ

and we wrote

Φ ¼ eiζ: ð3:43Þ

The field ζ is dimensionless, and is introduced here for the
sake of brevity. For the chiral expansion, it is more natural
to use instead the expansion Φ ¼ expðiζ=ð ffiffiffi

2
p

fζÞÞ, where

the NGB field has the appropriate canonical dimension, and
fζ is the decay constant of the Uð1ÞA NGB [26].
Because tR is embedded into the AR and Ac

R spurions in
the same way, each result for T 2 may be obtained from the
corresponding result for T 1 by flipping the signs of the
SUð4Þ=Spð4Þ pNGBs, and multiplying ζ by −1 − 2q
instead of 1 − 2q. The outcome is the same as just replacing
1 − 2q by 1þ 2q everywhere.
Considering next templates T 3 through T 6, which also

have a single nonlinear field, but a D spurion instead of the
N spurion, we find for T 3

hΦ1−2qtrðĀ1
RΣD1T

R Þ þ H:c:i ¼ 4 cosðαÞ cosðð1 − 2qÞζÞ − 2
ffiffiffi
2

p
η sinðαÞ sinðð1 − 2qÞζÞ

αf
;

hΦ1−2qtrðĀ2
RΣD2T

R Þ þ H:c:i ¼ 0;

hΦ1−2qtrðĀ2
RΣD1T

R Þ þ H:c:i ¼ 4 cosðαÞ cosðð1 − 2qÞζÞ þ 2
ffiffiffi
2

p
η sinðαÞ sinðð1 − 2qÞζÞ

αf
;

hΦ1−2qtrðĀ1
RΣD2T

R Þ þ H:c:i ¼ 0;

hΦ1þ2qtrðĀLΣD1T
L Þ þ H:c:i ¼ −4 cosðαÞ cosðð1þ 2qÞζÞ − 2

ffiffiffi
2

p
η sinðαÞ sinðð1þ 2qÞζÞ

αf
;

hΦ1þ2qtrðĀLΣD2T
L Þ þ H:c:i ¼ 0: ð3:44Þ

For T 4 we have

hΦ1−2qtrðS̄RΣD1T
R Þ þ H:c:i ¼ 0

hΦ1−2qtrðS̄RΣD2T
R Þ þ H:c:i ¼ 4 cosðαÞ cosðð1 − 2qÞζÞ þ 2

ffiffiffi
2

p
η sinðαÞ sinðð1 − 2qÞζÞ

αf
:

hΦ1þ2qtrðS̄LΣD1T
L Þ þ H:c:i ¼ 4 cosðαÞ cosðð1þ 2qÞζÞ þ 2

ffiffiffi
2

p
η sinðαÞ sinðð1þ 2qÞζÞ

αf
;

hΦ1þ2qtrðS̄LΣD2T
L Þ þ H:c:i ¼ 0; ð3:45Þ

for T 5,

hΦ−1−2qtrðĀc1
R Σ�D1

RÞ þ H:c:i ¼ 4 cosðαÞ cosðð1þ 2qÞζÞ − 2
ffiffiffi
2

p
η sinðαÞ sinðð1þ 2qÞζÞ

αf
;

hΦ−1−2qtrðĀc2
R Σ�D2

RÞ þ H:c:i ¼ 0;

hΦ−1−2qtrðĀc2
R Σ�D1

RÞ þ H:c:i ¼ 4 cosðαÞ cosðð1þ 2qÞζÞ þ 2
ffiffiffi
2

p
η sinðαÞ sinðð1þ 2qÞζÞ

αf
;

hΦ−1−2qtrðĀc1
R Σ�D2

RÞ þ H:c:i ¼ 0;

hΦ−1þ2qtrðĀc
LΣ�D1

LÞ þ H:c:i ¼ −4 cosðαÞ cosðð1 − 2qÞζÞ þ 2
ffiffiffi
2

p
η sinðαÞ sinðð1 − 2qÞζÞ

αf
;

hΦ−1þ2qtrðĀc
LΣ�D2

LÞ þ H:c:i ¼ 0; ð3:46Þ

and for T 6,
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hΦ−1−2qtrðS̄cRΣ�D1
RÞ þ H:c:i ¼ 0;

hΦ−1−2qtrðS̄cRΣ�D2
RÞ þ H:c:i ¼ −4 cosðαÞ cosðð1þ 2qÞζÞ − 2

ffiffiffi
2

p
η sinðαÞ sinðð1þ 2qÞζÞ

αf
;

hΦ−1þ2qtrðS̄cLΣ�D1
LÞ þ H:c:i ¼ −4 cosðαÞ cosðð1 − 2qÞζÞ þ 2

ffiffiffi
2

p
η sinðαÞ sinðð1 − 2qÞζÞ

αf
;

hΦ−1þ2qtrðS̄cLΣ�D2
LÞ þ H:c:i ¼ 0: ð3:47Þ

Turning to the templates with two nonlinear fields, for T 7 we have

htrðĀ1
RΣÞtrðA1

RΣ�Þi ¼ −4þ 4sin2α
α2

H†H
f2

; ð3:48aÞ

htrðĀ2
RΣÞtrðA2

RΣ�Þi ¼ −4þ 4sin2α
α2

H†H
f2

; ð3:48bÞ

htrðĀ1
RΣÞtrðA2

RΣ�Þ þ H:c:i ¼ 8 −
8sin2α
α2

ðη2 þH†HÞ
f2

; ð3:48cÞ

htrðĀLΣÞtrðALΣ�Þi ¼ −
sin2α
α2

4H†H
f2

: ð3:48dÞ

Notice that htrðĀ2
RΣÞtrðA1

RΣ�Þi is the hermitian conjugate of htrðĀ1
RΣÞtrðA2

RΣ�Þi. The results for T 8 are the same as for the
corresponding results for T 7. The last double-trace template is T 9, for which we obtain

hΦ2trðĀ1
RΣÞtrðAc1

R ΣÞ þ H:c:i ¼ 8 cosð2ζÞ
�
−1þ sin2α

α2
ðη2 þH†HÞ

f2

�
þ 4

ffiffiffi
2

p

αf
η sinð2ζÞ sinð2αÞ; ð3:49aÞ

hΦ2trðĀ2
RΣÞtrðAc2

R ΣÞ þ H:c:i ¼ 8 cosð2ζÞ
�
−1þ sin2α

α2
ðη2 þH†HÞ

f2

�
−
4
ffiffiffi
2

p

αf
η sinð2ζÞ sinð2αÞ; ð3:49bÞ

hΦ2trðĀ1
RΣÞtrðAc2

R ΣÞ þ H:c:i ¼ 8 cosð2ζÞ
�
1 −

sin2α
α2

H†H
f2

�
; ð3:49cÞ

hΦ2trðĀ2
RΣÞtrðAc1

R ΣÞ þ H:c:i ¼ 8 cosð2ζÞ
�
1 −

sin2α
α2

H†H
f2

�
; ð3:49dÞ

hΦ2trðĀLΣÞtrðAc
LΣÞ þ H:c:i ¼ 8 cosð2ζÞ sin

2α

α2
H†H
f2

: ð3:49eÞ

Moving on to the single-trace templates, for T 10 we find

htrðS̄RΣScRΣÞ þ H:c:i ¼ 4 cosð2ζÞ
�
−1þ sin2α

α2
ðη2 þH†HÞ

f2

�
−
2
ffiffiffi
2

p
η sinð2ζÞ sinð2αÞ

αf
; ð3:50aÞ

htrðS̄LΣScLΣÞ þ H:c:i ¼ 4 cosð2ζÞ
�
−2þ 3sin2α

α2
H†H
f2

�
; ð3:50bÞ

and for T 11,

htrðĀ1
RΣAc1

R ΣÞ þ H:c:i ¼ 4 cosð2ζÞ
�
−1þ sin2α

α2
η2 þH†H

f2

�
þ 2

ffiffiffi
2

p
η sinð2ζÞ sinð2αÞ

αf
; ð3:51aÞ
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htrðĀ2
RΣAc2

R ΣÞþH:c:i ¼ 4cosð2ζÞ
�
−1þ sin2α

α2
η2þH†H

f2

�
−
2
ffiffiffi
2

p
ηsinð2ζÞ sinð2αÞ

αf
; ð3:51bÞ

htrðĀ1
RΣAc2

R ΣÞ þ H:c:i ¼ −4 cosð2ζÞ sin
2α

α2
H†H
f2

; ð3:51cÞ

htrðĀ2
RΣAc1

R ΣÞ þ H:c:i ¼ −4 cosð2ζÞ sin
2α

α2
H†H
f2

; ð3:51dÞ

htrðĀLΣAc
LΣÞ þ H:c:i ¼ 4 cosð2ζÞ

�
−2þ sin2α

α2
H†H
f2

�
:

ð3:51eÞ

Finally, for T 12, the nonzero results are

htrððD̄1
RÞTΣ�D1

RΣÞi ¼ −4þ 8
sin2α
α2

H†H
f2

; ð3:52aÞ

htrððD̄2
RÞTΣ�D2

RΣÞi ¼ 2 − 2
sin2α
α2

H†H
f2

; ð3:52bÞ

htrððD̄1
LÞTΣ�D1

LΣÞi ¼
sin2α
α2

H†H
f2

; ð3:52cÞ

htrððD̄2
LÞTΣ�D2

LΣÞi ¼
sin2α
α2

H†H
f2

: ð3:52dÞ

E. Low-energy constants

To complete the construction of the effective potential,
we need the low-energy constants. In order to fully benefit
from the SUð4Þ symmetry of the hypercolor theory, we now
expand each spurion as

XL;RðxÞ ¼ ηL;RðxÞX̂L;R; X̄L;RðxÞ ¼ η̄L;RðxÞ ˆ̄XL;R;

ð3:53Þ

where ηL;RðxÞ is a free massless Weyl field. Let us compare
this with Eqs. (3.11) and (3.12). In the latter case, the
(hatted) matrices that carry the SUð4Þ indices are assigned a
fixed numerical value that defines a particular embedding

of a quark field. By contrast, we now treat X̂L;R and ˆ̄XL;R as
global spurions that do not have any particular value, but,
instead, transform in an irrep of SUð4Þ. As a final prepara-
tory step, we eliminate from LEHC the information about
any specific embedding of the quark fields while keeping
only the information about the SUð4Þ irreps, by writing,
e.g., ðλ5D1

RðxÞ þ λ6D2
RðxÞÞBD

L ðxÞ ¼ DRηRðxÞBD
L ðxÞ, where

DR is a global spurion in the adjoint irrep. In this process,
we also deliberately suppress the information about the

four-fermion coupling constants. As discussed above, this
information can easily be read off from the original
definition (3.29). We end up re-expressing LEHC in terms
of the hyperbaryon fields, the ηL;RðxÞ field, and a pair of
global spurions for each irrep: singlet N L;R, adjoint DL;R,
two-index antisymmetric AL;R, two-index symmetric SL;R,
and their complex conjugates Ac

L;R and Sc
L;R.

In the (templates for the) effective potential, Eq. (3.39),
we simply trade every spurion field with the corresponding
global spurion. Each low-energy constant will be obtained
by taking ordinary derivatives with respect to the global
spurions, and matching the results between the microscopic
and the effective theories. This matching procedure will
allow us to replace the Σ field in the effective theory by its
expectation value. This, in turn, simplifies considerably the
calculation of the low-energy constants. Indeed, by making
use of the global symmetry, we are able to extract the low-
energy constants from correlation functions of the micro-
scopic theory that do not involve any NGB asymptotic
states.
We start with T 1, whose contribution to Veff now reads

C1RðΦ1−2qtrðĀRΣN RÞ þ H:c:Þ: ð3:54Þ

We recall that we only need the right-handed low-energy
constant C1R, because the left-handed quarks cannot be
embedded into the singlet irrep. In the effective theory,

ϵ0;ij
∂

∂N R

∂
∂ĀRij

logZeff

V
¼ −C1Rϵ0;ijhΣjii

¼ −C1Rϵ0;ijϵ0;ji ¼ 4C1R; ð3:55Þ

where we have used that hΣi ¼ ϵ0 and hΦi ¼ 1. In the
microscopic theory, we have

ϵ0;ij
∂

∂N R

∂
∂ĀRij

logZ

¼ ϵ0;ij

Z
d4x

Z
d4yhB̄N

L ðyÞηRðyÞη̄RðxÞBA
LjiðxÞi

¼ iϵ0;ij

Z
d4x

Z
d4y

Z
d4p
ð2πÞ4

pμ

p2
eipðy−xÞhB̄N

L ðyÞγμBA
LjiðxÞi:

ð3:56Þ

Hence

C1R ¼ iϵ0;ij
4

Z
d4x

Z
d4p
ð2πÞ4

pμ

p2
e−ipxhB̄N

L ð0ÞγμBA
LjiðxÞi:

ð3:57Þ

As in Sec. III C we may express the hyperbaryon two-point
function in terms of the elementary fermions. As can be
seen from Table I, while in the case of the D and N irreps
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the hyperbaryon fields have the same form for the SOð5Þ
and SOð11Þ gauge theories, their forms for the other irreps
are different in the two theories. For definiteness, we will
assume in this subsection that the microscopic theory is the
SOð5Þ gauge theory,16 obtaining

hB̄N
L ðyÞγμBA

LjiðxÞi ¼
1

2

Z
DAμðAÞhψ̄JðyÞγνγμPLψ IðxÞi

× hχ̄kðyÞγνΓJχkðyÞihχ̄jðxÞPRΓIχiðxÞi
þ � � � ; ð3:58Þ

where we have used that χ̄kΓJγ5γνχk ¼ 0, and the ellipses
stand for a term that vanishes when contracted with ϵ0;ij in
Eq. (3.57). As expected, the expectation value of χ̄jPRΓIχi
provides for an order parameter for SUð4Þ → Spð4Þ
symmetry breaking. Unlike the basic local order parameter
[Eq. (3.7)], because of the presence of the SOðdÞ matrices
ΓI and ΓJ inside of the χ bilinears, only the two-point
function as a whole is a gauge invariant (nonlocal) order
parameter. In addition, the factor hψ̄JðyÞγνγμPLψ IðxÞi
does not vanish because of the symmetry breaking
SUð6Þ → SOð6Þ, so the nonvanishing of the correlator
hB̄N

L ðyÞγμBA
LjiðxÞi requires both SUð4Þ and SUð6Þ to be

spontaneously broken.
For template T 2, the only difference in the calculation of

C2R is that the hyperbaryon BA
L is replaced by BAc

L . This has
the effect of replacing the PL projector inside the
χ̄jðxÞPLΓIχiðxÞ bilinear in Eq. (3.58) by a PR. For T 3,
we need an adjoint hyperbaryon instead of the neutral one.
In this case, both chiralities are needed, and by similar
arguments we find

C3R;L ¼ −
iϵ0;jk
4

Z
d4x

Z
d4p
ð2πÞ4

pμ

p2

× e−ipxhB̄D
kið0ÞγμPL;RBA

jiðxÞi: ð3:59Þ
The low-energy constants for templates T 4, T 5 and T 6 can
be similarly obtained.
In the case of template T 7, we need to do a little more

work, because one can construct from theA and Ā spurions
also a symmetry-preserving term that does not depend on
the Σ field, trðĀAÞ. Considering the left-handed case for
definiteness, the relevant terms are

C7LtrðĀLΣÞtrðALΣ�Þ þ C0
7LtrðĀLALÞ; ð3:60Þ

and so

∂
∂ALij

∂
∂ĀLkl

logZeff

V
¼ −C7Lϵ0;ijϵ0;kl

− C0
7Lðδjkδil − δikδjlÞ: ð3:61Þ

We may now extract C7L by contracting this result with
the fully antisymmetric four-dimensional tensor ϵijkl. By
applying the same differentiations to the microscopic
theory, and comparing the results, we find

C7L ¼ iϵijkl
8

Z
d4x

Z
d4p
ð2πÞ4

pμ

p2
e−ipxhB̄A

jið0ÞγμPRBA
lkðxÞi:

ð3:62Þ

For C7R, the chiral projector inside the hyperbaryon two-
point function is PL. In terms of the elementary fermions,

hB̄A
jiðyÞγμPR;LBA

lkðxÞi

¼
Z

DAμðAÞhψ̄ IðyÞγμPR;LψJðxÞi

× hχ̄iðyÞPLΓIχjðyÞihχ̄lðxÞPRΓJχkðxÞi þ � � � ; ð3:63Þ

where again the ellipses denote terms that vanish when
contracted with ϵijkl in Eq. (3.62). We see that from each χ
propagator we pick up the part proportional to ϵ0 in flavor
space, which is nonzero in the broken phase.
For template T 8, the A and Ā spurions are replaced by

Āc and Ac spurions, respectively. The result is similar,
except that, in Eq. (3.63), the chiral projectors inside the χ
bilinears get flipped.
For templates T 9, T 10 and T 11 there are no Σ indepen-

dent terms. For T 9 we find

C9L;R ¼ iϵijkl
8

Z
d4x

Z
d4p
ð2πÞ4

pμ

p2

× e−ipxhB̄Ac

ji ð0ÞγμPR;LBA
lkðxÞi; ð3:64Þ

where

hB̄Ac

ji ðyÞγμPR;LBA
lkðxÞi

¼
Z

DAμðAÞhψ̄ IðyÞγμPR;LψJðxÞi

× hðχ̄iðyÞPRΓIχjðyÞÞðχ̄lðxÞPRΓJχkðxÞÞi: ð3:65Þ

This time, the three possible contractions of the χ’s are all
nonzero in the broken phase, and contribute to the low-
energy constants. For template T 10,

C10L;R ¼ −
iϵijkl
8

Z
d4x

Z
d4p
ð2πÞ4

pμ

p2

× e−ipxhB̄Sc
ji ð0ÞγμPR;LBS

lkðxÞi; ð3:66Þ

where
16The reader can easily work out the minor changes for the

SOð11Þ case.
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hB̄Sc
ji ðyÞγμPR;LBS

lkðxÞi

¼
Z

DAμðAÞhψ̄ IðyÞσσργμPR;LσκλψJðxÞi

× hðχ̄iðyÞPRσσρΓIχjðyÞÞðχ̄lðxÞPRσκλΓJχkðxÞÞi: ð3:67Þ

For template T 11 we find C11L;R ¼ −C9L;R.
Finally, in the case of template T 12 we once more have a

symmetry preserving term, C0
12L;RtrðD̄L;RDL;RÞ, that we

need to separate out.17 Expanding the adjoint fields on the
basis of SUð4Þ generators Ta we have in the effective
theory (omitting the chirality label)

∂
∂Da

∂
∂D̄b

logZeff

V
¼ −C12trðTT

bϵ0Taϵ0Þ − C0
12trðTbTaÞ:

ð3:68Þ

The right-hand side is proportional to ð�C12 þ C0
12Þδab

when Ta is an unbroken, respectively, broken generator. By
considering both cases we may extract the low-energy
constant. In the microscopic theory (considering the left-
handed spurions for definiteness),

∂
∂DLa

∂
∂D̄Lb

logZ
V

¼ i
Z

d4x
Z

d4p
ð2πÞ4

pμ

p2
e−ipxhB̄D

a ð0ÞγμPRBD
b ðxÞi;

ð3:69Þ

where

hB̄D
a ðyÞγμPL;RBD

b ðxÞi

¼
Z

DAμðAÞF IJνρabðx; yÞhψ̄JðyÞγργμγνPL;Rψ IðxÞi;

ð3:70Þ

and

F IJνρabðx; yÞ
¼ hðχ̄ðxÞPRγνΓITbχðxÞÞðχ̄ðyÞPRγρΓJTaχðyÞÞi
¼ −trðTbhχðxÞχ̄ðyÞiPRγρΓJTahχðyÞχ̄ðxÞiPRγνΓIÞ
− trðTbhχðxÞχ̄ðyÞiγρPRΓJTT

ahχðyÞχ̄ðxÞiPRγνΓIÞ:
ð3:71Þ

The first term on the right-hand side of the second equality
picks up the kinetic part of the χ propagator, which is
symmetry preserving and proportional to δij in flavor
space. The flavor trace therefore collapses to trðTbTaÞ,
which corresponds to the C0

12 term in Eq. (3.68). The last

term picks up the symmetry breaking part of the χ
propagator, which is proportional to ϵ0;ij. This precisely
corresponds to the flavor trace multiplying the C12 term in
Eq. (3.68), and therefore the low-energy constants C12L;R

are obtained by substituting this term into Eq. (3.70). This
completes the derivation of the low-energy constants for
this theory.

F. Summary

Collecting everything, we see that the effective potential
arising from integrating out the third-generation quarks
takes the form

Veff ¼ c0 þ
X9
i¼1

cifi; ð3:72Þ

with the following nine functions

f1;2 ¼ cosðαÞ cosðð1� 2qÞζÞ;

f3;4 ¼
η sinðαÞ sinðð1� 2qÞζÞ

αf
;

f5 ¼
η sinð2αÞ sinð2ζÞ

αf
;

f6 ¼
sin2α
α2f2

H†H; f7 ¼ cosð2ζÞ sin
2α

α2f2
H†H;

f8 ¼
sin2α
α2f2

η2; f9 ¼ cosð2ζÞ sin
2α

α2f2
η2; ð3:73Þ

and where α is given by Eq. (3.42). An interesting feature of
this result is that, in general, a potential is generated not
only for the Higgs doublet and for η, which are the NGBs of
the SUð4Þ=Spð4Þ coset, but also for the singlet NGB ζ. (We
recall that in this paper we disregard the NGBs of the
SUð6Þ=SOð6Þ coset.) The ci’s of Eq. (3.72) can be
expressed in terms of the coupling constants of LEHC
and the low-energy constants that we have derived in the
previous subsection. The low-energy constants can be
determined from a lattice calculation, which would then
allow for a study of the experimental constraints on the
four-fermion coupling constants. We note that experimental
constraints on the effective potential alone can, of course,
be studied directly in terms of the ci’s. However, if one
wants to incorporate the top Yukawa coupling into this
analysis, then it has to be done in terms of the four-fermion
couplings, and thus, it depends on the knowledge of the
low-energy constants.
For completeness, we also give the gauge-boson con-

tribution to the effective potential, which is

VEW ¼ −CwtrðΣQaΣ�Q�
aÞ; ð3:74Þ

where Qa is to be summed over gTi
L and g0Y ¼ g0T3

R, and
where Cw > 0 [15]. The expression for the low-energy17See Ref. [16] for a similar calculation.
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constant Cw may be found in Ref. [16] for the case of a real
irrep. The case of a pseudoreal irrep defers only by the
overall sign. However, relative to the definition of VEW
given in Ref. [16], in Eq. (3.74) we have introduced an
extra a minus sign on the right-hand side. This cancels out
against the sign that is encountered in the derivation, so that
now Cw comes out positive in the pseudoreal case as well.
With this, we find

VEW ¼ −
Cw

2
ð3g2 þ g02Þð1 − f6Þ; ð3:75Þ

where f6 is defined in Eq. (3.73). The gauge bosons
contribution will therefore add up to the coefficient c6. As
usual, taken by itself this contribution prefers the trivial
vacuum hHi ¼ 0, a phenomenon that goes under the name
of vacuum alignment [14]. But considering Veff as a whole,
there is ample room for a nontrivial minimum of the
Higgs field.
A final contribution to the effective potential might

come from mass terms for the χ fermions. One can write
down two mass terms which are invariant under the
Standard Model symmetries [28]. Introducing ϵ�0 ¼
�ði=2Þð1� τ3Þ × τ2 (where we are using the notation of
Appendix C), these mass terms are

V�
m ¼ Bm�trðΦΣϵ�0 þ H:c:Þ

¼ Bm�
�
−4 cosðζÞ cosðαÞ � 2

ffiffiffi
2

p
sinðζÞ sinðαÞ
αf

�
;

ð3:76Þ

where we have used Eqs. (3.7), (3.43) and (C9), and B is a
low-energy constant. For mþ ¼ m− ¼ m, the mass term
simplifies to

Vm ¼ BmtrðΦΣϵ0 þ H:c:Þ
¼ −8Bm cosðζÞ cosðαÞ: ð3:77Þ

The mass term (3.77) breaks the global SUð4Þ symmetry
explicitly to Spð4Þ, and the individual mass terms (3.76)
further break it explicitly to the Standard Model symmetry
SUð2ÞL × SUð2ÞR. From the point of view of the stand-
alone hypercolor theory it may be more natural to avoid any
mass terms, since this keeps the full SUð4Þ global sym-
metry intact. Having said this, we observe that explicit
breaking of the flavor symmetry of the hypercolor theory,
encoded in the four-fermion Lagrangian (3.29), must
originate from the EHC theory. Since we do not know
the details of this EHC theory, we cannot rule out that it
might also induce some of the mass terms discussed above.
Similar statements apply to a Dirac mass term ∝ ψ̄ψ for the
vector-irrep fermions, which breaks the SUð6Þ symmetry
explicitly to SUð3Þc.

The structure of the total potential is complicated. Its
minimum will depend on the values of the low-energy
constants, which can be determined within the hypercolor
theory, and on the four-fermion couplings λi and λ̃i, which
arise from integrating out heavy degrees of freedom of the
EHC theory. In addition, the potential depends on the
electroweak couplings through Eq. (3.75), and possibly, on
the mass term (3.76) or (3.77). Here we will be content with
an example of a phenomenologically viable potential
obtained by setting to zero by hand most of the four-
fermion couplings.
Our example consists of turning on the following

couplings: λ2, λ7, and λ̃1 ¼ −λ̃2, setting to zero the rest
of the four-fermion couplings and the mass terms. Notice
that λ̃1 and λ̃2 involve the same hyperbaryon, BA

L, hence
the notion of a fixed ratio λ̃1=λ̃2 is invariant under
renormalization-group evolution. Also, λ̃1 ¼ −λ̃2 implies
that the spurions A1

R and A2
R always occur as the linear

combination A1
R − A2

R ∝ ϵ0.
With this choice, the only contribution that depends

on ζ arises from template T 1 (see Eq. (3.41)), and is
given by

8C1Rλ7λ̃1 cosðαÞ cosðð1 − 2qÞζÞ: ð3:78Þ

We will demand that the minimum of the potential occurs
for jαj < π=2, as is required for a phenomenologically
viable solution. Further assuming that

C1Rλ7λ̃1 < 0; ð3:79Þ

then implies that hζi ¼ 0 at the minimum of the potential.
(Alternatively, we may set λ7 ¼ 0 and achieve a similar
result by turning on the mass term (3.77) with m > 0.)
Setting ζ ¼ 0, the complete potential is then give by

VðH; ηÞ ¼ −a1 cos αþ a2sin2αþ a3
sin2α
α2f2

H†H; ð3:80Þ

where a1 ¼ −8C1Rλ7λ̃1, a2 ¼ 16C3Rλ̃
2
1, and

a3 ¼ Cwð3g2 þ g02Þ=2 − 4C8Lλ
2
2: ð3:81Þ

The a2 term arises from the contributions of right-handed
spurions to T 7, while the a3 term arises from the gauge-
bosons contribution as well as from the left-handed
spurions in T 7. The a1 and a2 terms have full Spð4Þ
invariance since they depend on H and η only through α. It
follows that, if the minimum of the potential occurs for
nonzero α, it will point in theH direction (i.e., hHi ≠ 0 and
hηi ¼ 0) when a3 < 0, and in the η direction when a3 > 0.
This conclusion is confirmed by studying the saddle-point
equations. Thus, to be phenomenologically viable, the top-
sector contribution to a3 must be (negative and) large
enough to overcome the positive contribution of the gauge
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bosons. A sufficient set of conditions to ensure a vacuum
with hζi ¼ hηi ¼ 0 and hHi ≠ 0 is a1 > 0, a3 < 0, and

−C1Rλ7λ̃1 þ 4C7Rλ̃
2
1 − C8Lλ

2
2 þ Cwð3g2 þ g02Þ=8 < 0;

ð3:82Þ

where this last condition implies that the curvature in the H
direction is negative at the origin, and thus that the
minimum of the potential cannot occur for α ¼ 0. Once
hζi ¼ hηi ¼ 0, the potential further simplifies. We defer
further discussion of the resulting potential to the conclud-
ing section.
Returning momentarily to the EHC theory, we observe

that if the four-fermion couplings arise from integrating out
heavy gauge bosons, then each four-fermion term must take
the form of a current-current interaction (possibly up to a
Fierz rearrangement). Checking Table I shows that this
condition is satisfied for all the four-fermion couplings that
contribute to our example potential. Some other four-
fermion couplings, such as, for example, the λ1 term,
cannot be brought to the form of a current-current inter-
action, and would thus vanish. However, if the heavy EHC
degrees of freedom that have been integrated out include
not only gauge bosons but also fermions (whose mass
could have either an explicit or a dynamical origin), or
scalars, then none of the four-fermion operators in
Eq. (3.29) is ruled out. In that case we could, for example,
turn off λ2 and turn on λ1 instead. The only change in the
potential would be that C8Lλ

2
2 gets replaced by C7Lλ

2
1.

G. Spontaneous CP breaking

The Standard-Model neutral fields η and ζ are pseudo-
scalars, and so, at face value, their expectation values break
CP spontaneously. (We are assuming that all the four-
fermion couplings are real, so that CP is not broken
explicitly.) Recently, it has been pointed out in Ref. [29]
that this is not necessarily true, because it might be possible
to shift the expectation value to zero through field rede-
finitions.18 Here we address this question, first for hηi, and
then for hζi.
Assume that at the minimum of the effective potential,

hηi ¼ η0 ≠ 0. In order to “rotate away” this expectation
value, we need to apply to the χ fields of the hypercolor
theory the SUð4Þ transformation U0 ¼ expð−iη̃0X=2Þ,
where we have introduced the dimensionless quantity
η̃0 ¼ η0=ð

ffiffiffi
2

p
fÞ, and X ¼ τ3 × 1 is the generator associated

with η [see Eq. (C7)]. Indeed, if hΣi ¼ expðiη̃0XÞϵ0, then
U0hΣiUT

0 ¼ ϵ0. If initially both η and H have nonzero
expectation values, then the U0 transformation will set
hηi ¼ 0 while in general changing the expectation value of
H as well.

The question now is whether we can find a matching
transformation of the Standard Model fields qL and tR,
such that, together with the transformation χ → U0χ, the
total Lagrangian LHC þ LEHC will be invariant. If the
answer is Yes, then we have achieved hηi ¼ 0 via
the field redefinitions, which implies that hηi was indeed
unphysical.
In order to keep a particular term in LEHC invariant, the

transformation needed for a given Standard Model field
depends on its spurion embedding. Using the SUð4Þ
transformation rules of the spurions, and applying the
transformation to each spurion embedding in turn, we find
that this transformation can always be realized via the
multiplication of the Standard Model field by a Uð1Þ phase
expð−inη̃0Þ, where the possible values of n are −1, 0, þ1.
We list the values of n for all spurion embeddings of qL and
tR in Table III.
The answer to the question is now clear. Consider the set

of nonzero couplings in LEHC. If all of the spurion
embeddings of qL belong to the same row of Table III,
and the same is true also for the embeddings of tR, then
invariance of LEHC will be achieved by applying the
corresponding phase transformations to qL and to tR. In
this case, the expectation value of η can indeed be rotated
away, and is thus unphysical. But if the spurion embed-
dings of qL and/or tR belong to more than one row of the
table, then it is not possible to maintain the invariance
of LEHC. In this case, hηi is physical, and hηi ≠ 0 signifies
the spontaneous breaking of CP (for an exception,
see below).
A similar argument applies to hζi. The phase trans-

formation of a Standard Model field that we now need for a
particular term in LEHC is determined by the axial charge of
the hyperbaryon to which it couples (see Table II). Once
again, in order to be able to rotate hζi away, the necessary
and sufficient condition is that qL couples to hyperbaryons
that all have the same axial charge, and that the same is true
for tR.
For the example potential discussed in the previous

subsection we have turned on the couplings λ2, λ7, λ̃1 and
λ̃2. Only the λ2 term is a spurion embedding of qL, so this
poses no difficulty. However, the three spurion embeddings
of tR associated with the remaining three couplings

TABLE III. Values n ¼ −1, 0, þ1 of the phase transformation
expð−inη̃0Þ, which is to be applied to a Standard Model field,
together with the spurion embeddings of qL (2nd column) and tR
(3rd column) for which, for this n, the corresponding term in
LEHC remains invariant when the SUð4Þ transformation U0 is
applied to the χ fields.

þ1 D1
L A1

R, A
c1
R

0 AL, Ac
L, SL, S

c
L NR, D1

R, D
2
R

−1 D2
L A2

R, A
c2
R , SR, ScR

18However, in our opinion the discussion of Ref. [29] is
incomplete.
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populate all three lines of Table III. Therefore, the
invariance of LEHC under the field redefinition χ → U0χ
cannot be maintained, which implies that hηi is physical.
The same is true for hζi since the axial charges of the
relevant hyperbaryons are all different from each other.
As a result, for hηi ≠ 0 and/or hζi ≠ 0, CP is broken
spontaneously.
An exception is the special case hΣi ¼ ðτ3 × 1Þϵ0, which

corresponds to specific nonzero values of both hηi and hζi.
Even if both expectation values are physical, in this special
case CP is not broken spontaneously, because hΣi is real,
and so it remains invariant under the combined sign flip
of η and ζ.
Finally, we comment that an advantage of the

SUð4Þ=Spð4Þ coset is that it does not contain any
isospin-triplet fields, and, as a result, the difficulties with
triplet expectation values and their potential influence on
the ρ-parameter do not arise.

IV. THE SUð5Þ=SOð5Þ COSET

The list of Ref. [8] includes two models in which the
spinor irrep is real, based on the gauge groups SOð7Þ and
SOð9Þ. These models are the subject of this section.
While the vector-irrep fermions ψ Ia are the same as before,
χi will now denote five Majorana fermions in the real spinor
irrep [the relation between χi and χ̄i is still given by
Eq. (2.2)]. In comparison with the SUð4Þ=Spð4Þ coset we
have studied in the previous section, the SUð5Þ=SOð5Þ
coset is larger. Apart from the Higgs field and the singlet η,
it contains nine additional NGBs that fill up the (3,3)
representation of SUð2ÞL × SUð2ÞR. For the basic features
of the SUð5Þ=SOð5Þ coset, and the embedding of the 14
NGBs into the pion field, see Appendix D.
The order parameter h χ̄iχji is symmetric on its indices

for a real irrep. We will assume that the vacuum state has
h χ̄iχji ∝ δij. Applying the infinitesimal flavor transforma-
tion, Eq. (2.4), we see that the NGB fields are all
pseudoscalars,

δaðχ̄χÞ ¼ iχ̄γ5ðTa þ TT
aÞχ: ð4:1Þ

The NGBs correspond to the 14 real symmetric generators
of SUð5Þ. For the 10 antisymmetric, imaginary generators
of SUð5Þ, we have δaðχ̄χÞ ¼ 0, showing that the unbroken
group is SOð5Þ.
These features of the NGBs resembles QCD, and are

different from what we saw in the previous section for the
case of a pseudoreal irrep. As in QCD, it is easy to check
that all the NGB fields flip sign under the CP trans-
formation of the hypercolor theory, Eq. (2.5c). This creates
a phenomenological problem concerning the Higgs field.
The Standard Model’s CP transformation, which we will
denote as cCP, must be different from the original CP
transformation of the hypercolor theory, because the real

components of H0 and Hþ are even under cCP, but, like all
NGBs, they are odd under the CP transformation of the
hypercolor theory. As it turns out, cCP may be obtained as
the product of the original CP and a diagonal SOð5Þ
transformation.19 Explicitly,

cCP ¼ Q∘CP; Q ¼ diagð1;−1; 1;−1; 1Þ: ð4:2Þ

The formal correspondence of the effective fields with
the microscopic theory takes a similar form to Eq. (3.7),
except that now the nonlinear coset field Σ is a symmetric
unitary 5 × 5 matrix. The pion field Π is real symmetric,
and traceless [see Eq. (D2)]. Using the embedding of the
Higgs field into the pion field, given in Appendix D, it is
straightforward to check that Eq. (4.2) correctly reproduces
the Standard Model transformation rules of all components
of the Higgs field.
The organization of this section is as follows. Since the

methodology is the same as in the previous section, we will
be brief, and focus on those features of the SUð5Þ=SOð5Þ
coset that are different from the SUð4Þ=Spð4Þ coset. As
before we begin with the spurions in Sec. IVA, and write
down the four-fermion Lagrangian in Sec. IV B, which is
then followed by the list of top Yukawa effective couplings
in Sec. IV C. Turning to the effective potential for the
pNGBs, we begin in Sec. IV D with the templates, which
are followed by the list of low-energy constants. Because of
the complexity of the SUð5Þ=SOð5Þ coset we were unable
to obtain the effective potential in closed form. The
expansion of Veff to second order in the pNGB fields is
relegated to Appendix E, while in Sec. IV E and
Appendix F we focus on the third order terms and their
phenomenological role.

A. Spurions

As usual, we assume that the third-generation quark
fields couple linearly to three-constituent baryons of the
hypercolor theory, via four-fermion interactions that origi-
nate from an extended hypercolor theory which is operative
at an as yet much higher energy scale. In view of our
ignorance of the EHC theory, we must allow for the most
general form of the four-fermion Lagrangian which is
compatible with the symmetries of the Standard Model: the
continuous symmetries SUð3Þc, SUð2ÞL, T3

R and B, and the
discrete symmetry ĈP. Analogous to Sec. III, we do this by
looking for all the embeddings of qL and tR into SUð5Þ
spurions. Demanding consistency with the assignment of
Standard-Model quantum numbers then yields the most
general coupling between the third-generation quarks and
the hyperbaryons.
We begin with the left-handed doublet qL ¼ ðtL; bLÞ.

Introducing the 5 × 5 matrices,

19For a similar situation, see Ref. [30].
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Θq ¼ −i

0BBBBB@
0 0 0 0 ibL
0 0 0 0 bL
0 0 0 0 itL
0 0 0 0 −tL
0 0 0 0 0

1CCCCCA; Θ̄q ¼ i

0BBBBB@
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−ib̄L b̄L −it̄L −t̄L 0

1CCCCCA; ð4:3Þ

all the spurion embeddings of qL may be constructed using
Θq and ΘT

q , and all the embeddings of q̄L may be
constructed using Θ̄q and Θ̄T

q . For the adjoint irrep we
have two independent embeddings, D1

L ¼ Θq and
D2

L ¼ ΘT
q . For the symmetric irrep there is only one

embedding SL ¼ ScL ¼ Θq þ ΘT
q , and similarly for the

antisymmetric irrep we have AL ¼ Ac
L ¼ Θq − ΘT

q .
Notice that while the quark content of the spurions SL
and ScL is the same (and similarly for AL and Ac

L), they are
nevertheless different spurions, because their SUð5Þ trans-
formation rules are different. For g ∈ SOð5Þ, the trans-
formation rules of all the two-index SUð5Þ irreps collapse to
the common ruleX → gXgT . The relative phases of different
entries of Θq and Θ̄q are fixed by the embedding of SUð2ÞL
and SUð2ÞR as subgroups of SOð5Þ [see Eq. (D1)]. Our
choice of the overall phase of Θq will be explained shortly.
Being an SUð2ÞL singlet with T3

R ¼ 0, the right-handed
quark field tR can be embedded into a (1,1) or into a (1,3)
of SUð2ÞL × SUð2ÞR.20 The simplest possibility is the
SUð5Þ singlet NR ¼ diagð1; 1; 1; 1; 1ÞtR. For the adjoint
irrep we again have two embeddings, D1

R ¼ T3
RtR and

D2
R ¼ diagð1; 1; 1; 1;−4ÞtR, which correspond to the (1,3)

and (1,1) cases, respectively. There are two more possibil-
ities for the symmetric irrep, S1R ¼ S1cR ¼ diagð1;1;1;1;0ÞtR
and S2R ¼ S2cR ¼ diagð0; 0; 0; 0; 1ÞtR, both of which corre-
spond to the (1,1) case. Finally, there is a single embedding
for antisymmetric irrep, AR ¼ Ac

R ¼ T3
RtR, which belongs

to (1,3). As for qL, we sometimes encounter the same
embedding of tR for different SUð5Þ irreps. For example, in
each of the spurions D1

R, AR and Ac
R, the quark field tR is

multiplied by the same constant matrix, T3
R. Again, these

are nevertheless different spurions, because of their differ-
ent SUð5Þ transformation properties.
The c-number matrices that define the antispurion

embeddings [recall Eqs. (3.11) and (3.12)] are always
given by

ˆ̄X ≡ X̂† ¼ QX̂TQ; ð4:4Þ

where the SOð5Þ matrix Q is defined in Eq. (4.2). The last
equality, which can be verified on a case-by-case basis,
depends on the fact that all the right-handed spurion

matrices X̂R are real, and all the left-handed spurion
matrices X̂L were constructed using Θq (and its transpose),
which implies that X̂L;ij is always real for even iþ j, and
imaginary for odd iþ j. Of course, choosing to multiply
any spurion matrix by some arbitrary phase would spoil
these features. As already explained in Sec. III B, we refrain
from doing this because we are after the most general four-
fermion Lagrangian which is consistent with the Standard
Model’s symmetries, including, in particular, ĈP.

B. LEHC

With all the spurion embeddings at hand, the four-
fermion Lagrangian is

LEHC ¼ LEHC;1 þ LEHC;2; ð4:5aÞ

LEHC;1 ¼ trðλ1S̄LBS
R þ λ2S̄cLB

Sc
R þ λ3ĀLBA

R þ λ4Āc
LB

Ac

R

þ ðλ5D̄1
R þ λ6D̄2

RÞBD
L þ λ7N̄RBN

L þ H:c:Þ;
ð4:5bÞ

LEHC;2 ¼ trððλ̃1S̄1R þ λ̃2S̄2RÞBS
L þ ðλ̃3S̄1cR þ λ̃4S̄2cR ÞBSc

L

þ λ̃5ĀRBA
L þ λ̃6Āc

RB
Ac

L

þ ðλ̃7D̄1
L þ λ̃8D̄2

LÞBD
R þ H:c:Þ; ð4:5cÞ

where now the trace is over SUð5Þ indices. As usual, the
invariance of LEHC under Standard-Model continuous
symmetries follows from the consistency of the spurion
embeddings with those symmetries. Assuming again that
all the coupling constants are real, and using that all the
c-number spurion matrices satisfy the algebraic property
(4.4), one can verify that LEHC is also invariant under cCP.
As discussed above, our spurion construction ensures that
LEHC is in fact the most general four-fermion Lagrangian
that enjoys these symmetries. As in Sec. III, one can then
infer that all the low-energy constants occurring in the
effective top Yukawa interactions and in the effective Higgs
potential are real.

C. Top Yukawa couplings

As in Sec. III C, the leading effective top Yukawa
couplings are either linear or bilinear in Σ and Σ�. For
the same reason as before, those interactions that are linear
in Σ or Σ� must involve a spurion and an antispurion that

20The basis elements that span the (3,1) and (1,3) irreps are the
generators Ti

L, respectively Ti
R, themselves.
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both come from LEHC;1 or both from LEHC;2. In the former
case, we obtain 10 effective interactions

ΦtrðD̄i
RΣScLÞ; ΦtrðD̄i

RΣAc
LÞ; Φ�trðD̄iT

R Σ�SLÞ;
Φ�trðD̄iT

R Σ�ALÞ; ΦN̄RtrðΣScLÞ; Φ�N̄RtrðΣ�SLÞ;
ð4:6Þ

where i ¼ 1, 2, and in the latter case we obtain 12 more,

ΦtrðD̄i
LΣS

jc
R Þ; ΦtrðD̄i

LΣAc
RÞ;

Φ�trðD̄iT
L Σ�SjRÞ; Φ�trðD̄iT

L Σ�ARÞ; ð4:7Þ

where i, j ¼ 1, 2. The extraction of the associated low-
energy constants can be done following the example we
have given in Sec. III C.
The effective Yukawa couplings that are bilinear in Σ and

Σ� may be read off from templates T 7 thru T 12 in Eq. (4.8)
below, in the same way that the effective interactions in
Eq. (3.33) are related to templates T 7 through T 12

of Eq. (3.39).

D. Low-energy constants

We now move on to the effective potential for the
pNGBs, and begin by listing the templates for Veff. This
time, they are given by

T 1 ¼ Φ1−2qtrðS̄ΣNÞ þ H:c:;

T 2 ¼ Φ−1−2qtrðS̄cΣ�NÞ þ H:c:;

T 3 ¼ Φ1∓2qtrðĀΣDTÞ þ H:c:;

T 4 ¼ Φ1∓2qtrðS̄ΣDTÞ þ H:c:;

T 5 ¼ Φ−1∓2qtrðĀcΣ�DÞ þ H:c:;

T 6 ¼ Φ−1∓2qtrðS̄cΣ�DÞ þ H:c:;

T 7 ¼ trðS̄ΣÞtrðSΣ�Þ;
T 8 ¼ trðScΣÞtrðS̄cΣ�Þ;
T 9 ¼ Φ2trðScΣÞtrðS̄ΣÞ þ H:c:;

T 10 ¼ Φ2trðScΣS̄ΣÞ þ H:c:;

T 11 ¼ Φ2trðAcΣĀΣÞ þ H:c:;

T 12 ¼ trðDΣD̄TΣ�Þ: ð4:8Þ

The main difference compared to the previous case
[Eq. (3.39)] is that the roles of the A and S irreps have
been interchanged, because Σ is now symmetric instead of
antisymmetric.
For completeness, we note that one can write down two

mass terms which are invariant under the Standard model
symmetries, given by Btrððm1M1 þm2M2ÞΣþ H:c:Þ,
where the mass matrices are M1 ¼ diagð1; 1; 1; 1; 0Þ and
M2 ¼ diagð0; 0; 0; 0; 1Þ. For m1 ¼ m2, the mass term is

invariant under SOð5Þ. Because of the similarity between
the mass matrices M1;2 and the symmetric right-handed
spurions S1;2R , the explicit form of the mass terms bears
resemblance to the effective potential for template T 1. We
leave the details to the reader.
The derivation of the low-energy constants is very

similar to the previous section, and so we will only give
the results. Also, except for T 12, we leave it to the reader to
work out the explicit expressions for the hyperbaryon two-
point functions, using Table I. In all cases, it can be verified
that SUð5Þ must break spontaneously to SOð5Þ for the
relevant two-point function not to vanish. In some cases,
SUð6Þ must be broken to SOð6Þ as well.
As in the previous section, for T 1 we only need the right-

handed low-energy constant,

C1R ¼ −
i
5

Z
d4x

Z
d4p
ð2πÞ4

pμ

p2
e−ipxhB̄Nð0ÞγμPLBS

iiðxÞi:

ð4:9Þ

For T 2, BS gets replaced by BSc. For T 3 both chiralities
occur in Veff , and

C3R;L ¼ −
i
5

Z
d4x

Z
d4p
ð2πÞ4

pμ

p2
e−ipxhB̄D

jið0ÞγμPL;RBA
jiðxÞi:

ð4:10Þ

Again the low-energy constants for templates T 4, T 5 and
T 6 can be similarly obtained. For T 7 we find

C7L;R ¼ −i
Z

d4x
Z

d4p
ð2πÞ4

pμ

p2

× e−ipxhB̄S
klð0ÞγμPR;LBS

ijðxÞiji¼j≠k¼l: ð4:11Þ

The special choice of flavor indices we have made separates
out the coefficient of trðS̄ΣÞtrðSΣ�Þ, which is what we
need for Veff, from the coefficient of trðS̄SÞ, which is a
Σ-independent effective term (for the spurion notation we
use here, see Sec. III E). For T 8, we replace BS by BSc and
B̄S by B̄Sc in Eq. (4.11). Next, the low-energy constants for
T 9 and T 10 are obtained from the same hyperbaryon two-
point function,

−i
Z

d4x
Z

d4p
ð2πÞ4

pμ

p2
e−ipxhB̄Sc

klð0ÞγμPR;LBS
ijðxÞi; ð4:12Þ

and differ only by the choice of flavor indices needed to
project them out. For C9L;R we set i ¼ j ≠ k ¼ l in
Eq. (4.12), whereas for C10L;R we set j ¼ k ≠ l ¼ i. For
T 11 we use the same choice of flavor indices as for T 10,
so that
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C11L;R ¼ −i
Z

d4x
Z

d4p
ð2πÞ4

pμ

p2

× e−ipxhB̄Ac

klð0ÞγμPR;LBA
ijðxÞijj¼k≠l¼i: ð4:13Þ

We finally consider T 12, where, just like in Sec. III E, we
need to separate out the low-energy constant of interest
from the Σ-independent effective term C0

12L;RtrðD̄L;RDL;RÞ.
Instead of Eq. (3.68), in the effective theory we now have
(again omitting the common chirality index)

∂
∂Da

∂
∂D̄b

logZeff

V
¼ −C12trðTT

bTaÞ − C0
12trðTbTaÞ: ð4:14Þ

In the microscopic theory, the hyperbaryon two-point
function is given by Eqs. (3.69) through (3.71) as before.
But the symmetry-breaking part of hχiχ̄ji is now propor-
tional to δij, instead of to ϵ0;ij, as it was in Sec. III. The
upshot is that C12L;R can be expressed in terms of the
contraction on the last line of Eq. (3.71) in the same way as
in the previous section.

E. Veff

With its nine additional NGBs, the structure of the
SUð5Þ=SOð5Þ coset is richer than that of SUð4Þ=Spð4Þ,
and the calculation of Veff is more difficult. We have not
been able to obtain Veff in closed form. As a first step, we
have worked it out to second order in the pNGBs. The
results may be found in Appendix E.
One way to understand the extra complexity of the

SUð5Þ=SOð5Þ coset is to consider the invariants of the
Standard Model symmetries SUð2ÞL and T3

R that can be
constructed from the pNGB fields. If, in addition, such an
operator (possibly together with its hermitian conjugate) is
invariant also under cCP, it can occur as a separate term in
the effective potential. In the case of the SUð4Þ=Spð4Þ
coset, the simplest invariants that can occur in Veff were the
bilinear H†H and powers of the inert pNGBs η and ζ.
Moreover, the SUð4Þ=Spð4Þ nonlinear field Σ can be
expressed as a linear function of the pion field Π, with
coefficients that depend on the bilinears η2 and H†H [see
Eq. (C9)]. This has enabled us to obtain the effective
potential in closed form. By contrast, in the case of the
SUð5Þ=SOð5Þ coset we also have a (3,3)-plet of SUð2ÞL ×
SUð2ÞR at our disposal. There are two new invariant
bilinears, given by trðΦ̂2

0Þ and trðΦ̂þΦ̂−Þ in the notation
of Appendix D. At third order there are new invariants that
depend only on the triplet fields: trðΦ̂3

0Þ and trðΦ̂0Φ̂þΦ̂−Þ,
as well as mixed invariants that depend on both the Higgs
and the triplet fields: H†Φ̂0H, HTϵΦ̂−H and H†Φ̂þϵH�.
The mixed invariants are particularly important for

phenomenology. This is best illustrated through an exam-
ple. We consider the contribution of qL to template T 7,
whose third-order term is (see Sec. III D for the h·i notation)

htrðS̄LΣÞtrðSLΣ�Þij3rd order

¼ 32

f3
ðHTϵΦ̂−H þ H:c:Þ

¼ 32

f3
ð2H0Hþϕ0

− − i
ffiffiffi
2

p
H2þϕ−

− þ i
ffiffiffi
2

p
H2

0ϕ
−þ þ H:c:Þ:

ð4:15Þ

We see that once the Higgs field acquires an expectation
value, hH0i ¼ h=

ffiffiffi
2

p
≠ 0, this induces a linear potential for

Imϕ−þ [see Eq. (1.3)]. As a result, the expectation value
hImϕ−þi ¼ φ=

ffiffiffi
2

p
will necessarily move away from zero

[8], while the expectation values of all the remaining
components of the (3,3)-plet remain zero at this order.
As explained in the introduction, this is undesirable,
because hImϕþ

−i does not preserve the diagonal subgroup
of SUð2ÞL × SUð2ÞR (the custodial symmetry) [22].
Therefore, this expectation value will drive the ρ-parameter
away from unity.
Let us investigate this issue in more detail. While we

have not been able to obtain the effective potential in closed
form for arbitrary values of the pNGB fields, this can be
done when only h and φ are turned on. The results may be
found in Appendix F. Examining these results, we see that
odd-order terms, and, in particular, the cubic term h2φ, are
present in several cases. These include the contribution of
qL to templates T 7 [Eq. (F9)] and T 8 [Eq. (F10)]. Similar
terms are obtained for template T 12, see Eqs. (F14a),
(F14b), (F14g) and (F14h).
The question arises whether these undesirable contri-

butions can be avoided. A simple observation is that odd-
order terms would be absent if one could show that the
effective potential is invariant under an “intrinsic parity”
transformation that takes Σ → Σ� and Φ → Φ�, while
leaving the Standard-Model quark fields unchanged.
The obvious reason is that this transformation flips the
sign of all the pNGB fields.21 A case-by-case check, using
the explicit forms of the spurions [and assuming the
general form of the pion field, Eq. (D3)], reveals that the
individual contributions to Veff are each invariant under
the intrinsic parity transformation, except for the six
cases we have listed above, where the cubic term h2φ
is actually present.
Individual odd-order contributions can be avoided by

imposing suitable constraints on the coupling constants of
LEHC. For example, the contributions of Eqs. (F14a)
and (F14b) cancel each other if λ̃7 ¼ �λ̃8 [8]. The con-
tributions from Eqs. (F14g) and (F14h) are absent if λ5 and/
or λ6 vanish. Similarly, Eq. (F9a) is absent when λ1
vanishes, and Eq. (F10) when λ2 does. Interestingly, for

21The transformation Σ → Σ� is physically equivalent to the
transformation Pπ considered in Ref. [8], because the difference
between them is an SOð5Þ transformation.
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the parametrization (F2) all the odd-order contributions
happen to involve the same function of h and φ. In Veff ,
every term from Appendix F comes multiplied by two
coupling constants from LEHC, and a low-energy constant
[see Eq. (3.40)]. Therefore, mathematically, the minimal
requirement that would eliminate all the odd-order terms
for the parametrization (F2) is a single constraint, which is
bilinear in the coupling constants of LEHC, and linear in the
low-energy constants.
Physically, the four-fermion couplings and the low-

energy constants have an entirely different origin. The
former arise from integrating out heavy gauge bosons of the
EHC theory, whereas the latter only depend on correlation
functions of the hypercolor theory. Therefore, it is unlikely
that they will satisfy a constraint of the kind described
above. Intuitively, what makes more sense is that the odd-
order terms in Veff might vanish thanks to the vanishing of
sufficiently many four-fermion couplings. Some new con-
straint in the EHC theory would have to set the proper
linear combinations of the couplings λi and λ̃i equal to zero.
One way this might happen is if the intrinsic parity
symmetry discussed above would arise from some discrete
symmetry of the EHC theory. Unfortunately, we have not
been able to identify such a symmetry. Having said this,
it remains a possibility that integrating out the heavy
gauge bosons of the EHC theory would give rise to a
small set of four-fermion couplings, that happens to satisfy
the needed constraints on the couplings of LEHC, at least
when the heavy gauge bosons exchange is considered at
tree level.

V. REVISITING THE SUð4Þ
COMPOSITE-HIGGS MODEL

Another composite Higgs model whose low-energy
sector yields the SUð5Þ=SOð5Þ coset was first studied in
detail by Ferretti in Ref. [13], and later by us in Ref. [23]. In
this section, we revisit the effective potential induced by the
coupling to third generation quarks in this model. We begin
with a brief summary. The model is an SUð4Þ gauge theory.
The matter content includes 5 Majorana fermions χi in
the 2-index antisymmetric (sextet) irrep, together with 3
Dirac fermions ψa in the fundamental irrep.22 The global
symmetry is23

G ¼ SUð5Þ × SUð3Þ × SUð3Þ0 ×Uð1ÞX ×Uð1ÞA; ð5:1Þ

where χR transforms as 5 of SUð5Þ, ψR as 3̄ of SUð3Þ,
and ψL as 3̄ of SUð3Þ0. The embedding of SUð2ÞL ×
SUð2ÞR ⊂ SOð5Þ ⊂ SUð5Þ is the same as in Sec. IV
(see Appendix D), while SUð3Þc is the vector subgroup

of SUð3Þ × SUð3Þ0. Uð1ÞX is the conserved fermion
number of the ψ’s. If we take the Uð1ÞX charge of ψ to
be 1=6,24 it will coincide with ordinary baryon number.
Uð1ÞA is the conserved axial current. As in Ref. [23], we
take the axial charge of χR to be −1. The axial charges are
then 5=3 for ψR and −5=3 for ψL.
In Ref. [23], we studied the top-induced effective

potential. Making rather restrictive assumptions, we
found that the potential is quartic in the spurions
(equivalently, in the four-fermion couplings), and we
discussed it in some detail. In this section, as in the
rest of this paper, we will instead make minimal
assumptions about the four-fermion Lagrangian. We
begin by reconsidering the dimension-9=2 hyperbaryons
that can serve as top partners, finding two more operators
that can play this role, in addition to the four operators
already considered in Ref. [23]. The most general four-
fermion Lagrangian thus contain six independent cou-
plings. Using this Lagrangian, we find that, in general, an
effective potential is induced already at second order in
the four-fermion couplings. We also reconsider the
potential that is induced by the same four-fermion
Lagrangian as in Ref. [23], and find that it contains
two additional terms that we overlooked. We conclude
with a short discussion of the phenomenological impli-
cations of our findings.
The top-partners we consider are limited to three-

fermion operators of the minimal dimension, 9=2. They
must transform as 3 under SUð3Þc, and can belong to 5
or 5̄ of SUð5Þ. Since SUð3Þc is the diagonal subgroup of
SUð3Þ × SUð3Þ0, this allows for several possibilities for
the SUð3Þ × SUð3Þ0 quantum numbers of the hyper-
baryons. Altogether, we can construct 3 right-handed
and 3 left-handed hyperbaryons that satisfy the require-
ments. We list them in Table IV. The first four were
already introduced in Ref. [23]. The last two are
given by

Bð5̄;3̄;3̄Þ
R;bc ¼ ϵABCDðγμχL;ABÞðψT

L;CbCγμψR;DcÞ;
Bð5;3̄;3̄Þ
L;bc ¼ ϵABCDðγμχR;ABÞðψT

L;CbCγμψR;DcÞ; ð5:2Þ

where the subscripts A;B;…, are SUð4Þ-hypercolor
indices. In this section, we label the hyperbaryons
by a superscript that specifies the SUð5Þ × SUð3Þ ×
SUð3Þ0 quantum numbers.25 Under SUð3Þc, the operators
in Eq. (5.2) describe a 3 and a 6̄, but only the 3 will
couple to Standard-Model fields.
The most general four-fermion Lagrangian that we can

construct using these hyperbaryons is

22For a lattice study of a closely related SUð4Þ gauge theory,
see Ref. [31].

23In Ref. [23], Uð1ÞA is denoted Uð1Þ0.

24This normalization is different by a factor two from that of
Ref. [23].

25We label a hyperbaryon and its antihyperbaryon by the same
superscript.
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LEHC ¼ λ1T̄
ð5;3;1Þ
L Bð5;3;1Þ

R þ λ2T̄
ð5̄;3;1Þ
R Bð5̄;3;1Þ

L

þ λ3T̄
ð5;1;3Þ
L Bð5;1;3Þ

R þ λ4T̄
ð5̄;1;3Þ
R Bð5̄;1;3Þ

L

þ λ5T̄
ð5̄;3̄;3̄Þ
L Bð5̄;3̄;3̄Þ

R þ λ6T̄
ð5;3̄;3̄Þ
R Bð5;3̄;3̄Þ

L þ H:c::

ð5:3Þ

The embeddings of the Standard Model fields into the

spurions are Tð5;3;1Þ
L;a ¼ Tð5;1;3Þ

L;a ¼ TL;a, T
ð5̄;3;1Þ
R;a ¼ Tð5̄;1;3Þ

R;a ¼
TR;a, T

ð5̄;3̄;3̄Þ
L;bc ¼ ϵabcTL;a and Tð5;3̄;3̄Þ

R;bc ¼ ϵabcTR;a. Here

TL;aðxÞ ¼ tL;aðxÞt̂L þ bL;aðxÞb̂L; ð5:4Þ

TR;aðxÞ ¼ tR;aðxÞt̂R; ð5:5Þ

where the constant 5-vectors are

t̂L ¼ 1ffiffiffi
2

p

0BBBBBB@
0

0

i

−1
0

1CCCCCCA; b̂L ¼ 1ffiffiffi
2

p

0BBBBBB@
i

1

0

0

0

1CCCCCCA; t̂R ¼

0BBBBBB@
0

0

0

0

1

1CCCCCCA:

ð5:6Þ

In Ref. [23], the effective potential was Oðλ4Þ, i.e., it
was quartic in the coupling constants of LEHC.
Correspondingly, the low-energy constant discussed in
Ref. [23] was determined in terms of a hyperbaryon
4-point function. The additional terms proportional to λ5
and λ6 present in Eq. (5.3) allow for the generation of an
effective potential already at Oðλ2Þ, with low-energy
constants that depend on hyperbaryon two-point func-
tions. The Oðλ2Þ potential is given by

V top
eff ¼

1

2
λ1λ5CLϵabcΩ�

cdΦ4=3vð5;3;1Þ†L;a Σvð5̄;3̄;3̄ÞL;bd

þ 1

2
λ3λ5C0

LϵabcΩdcΦ−16=3vð5;1;3Þ†L;a Σvð5̄;3̄;3̄ÞL;db

þ 1

2
λ2λ6CRϵabcΩ�

cdΦ16=3vð5̄;3;1Þ†R;a Σ�vð5;3̄;3̄ÞR;bd

þ 1

2
λ4λ6C0

RϵabcΩdcΦ−4=3vð5̄;1;3Þ†R;a Σ�vð5;3̄;3̄ÞR;db þ H:c::

ð5:7Þ

As in the previous sections, the global spurions (the v’s)
result from integrating over the quark fields qL and tR.
The dependence of each spurion field on the relevant
global spurions is similar to Eqs. (3.11) and (3.12). It
follows that in the right-handed case we simply need to
substitute t̂R for vR. For the left-handed case, we have to
sum over t̂L and b̂L, paying attention to the possible
presence of the SUð3Þc invariant tensor ϵabc in the
embedding of the Standard-Model fields into the
spurions.
Since in this section we keep track of the SUð3Þ ×

SUð3Þ0 symmetry, we show in Eq. (5.7) the dependence
of the potential on Ω, the nonlinear field for SUð3Þ ×
SUð3Þ0 → SUð3Þc symmetry breaking. Ω transforms as
Ω → gΩg0†, with g ∈ SUð3Þ and g0 ∈ SUð3Þ0, i.e., it
belongs to ð1; 3; 3̄Þ. As for the dependence on the
Uð1ÞA nonlinear field Φ, its power in each term is
given by the axial charge of the hyperbaryon two-point
function occurring in the calculation of the low-energy
constant. (The actual calculation of the low-energy
constants is similar to Ref. [23], and is left for the
reader.)
In order to proceed, we will for simplicity set Ωab ¼ δab.

This means that, as in the previous sections, we do not
calculate the effective potential for the colored pNGBs. The
result is

V top
eff ¼ λ5ðλ1CLΦ4=3 þ λ3C0

LΦ−16=3ÞtrðΣP1Þ
þ λ6ðλ2CRΦ16=3 þ λ4C0

RΦ−4=3ÞtrðΣ�P2Þ þ H:c::

ð5:8Þ

Here we introduced the orthogonal projectors

P1 ¼
X

vL¼t̂L;b̂L

vL × v†L; ð5:9aÞ

P2 ¼ vR × v†R; ð5:9bÞ

P3 ¼
X

vL¼t̂L;b̂L

v�L × vTL; ð5:9cÞ

whose sum P1 þ P2 þ P3 is equal to the 5 × 5 identity
matrix.

TABLE IV. Hyperbaryon operators. The first four lines corre-
spond to Table I of Ref. [23] (omitting the antihyperbaryons), and
the last two lines to Eq. (5.2). The left column is the name of the
hyperbaryon in the notation used in this section. When relevant,
we give for comparison the name we used for the same operator
in Ref. [23] in the second column. The remaining columns list the
quantum numbers. The (ordinary) baryon number of all these
hyperbaryons is 1=3.

SUð5Þ SUð3Þ × SUð3Þ0 SUð3Þc Uð1ÞA
Bð5;3;1Þ
R

BR 5 ð3̄; 1Þ × ð3̄; 1Þ → ð3; 1Þ 3 7=3

Bð5̄;3;1Þ
L

BL 5̄ ð3̄; 1Þ × ð3̄; 1Þ → ð3; 1Þ 3 13=3

Bð5;1;3Þ
R

B0
R 5 ð1; 3̄Þ × ð1; 3̄Þ → ð1; 3Þ 3 −13=3

Bð5̄;1;3Þ
L

B0
L 5̄ ð1; 3̄Þ × ð1; 3̄Þ → ð1; 3Þ 3 −7=3

Bð5̄;3̄;3̄Þ
R

5̄ ð3̄; 1Þ × ð1; 3̄Þ ¼ ð3̄; 3̄Þ 3þ 6̄ 1

Bð5;3̄;3̄Þ
L

5 ð3̄; 1Þ × ð1; 3̄Þ ¼ ð3̄; 3̄Þ 3þ 6̄ −1
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As in the previous section, we were unable to work out the dependence of V top
eff on all the pNGBs in closed form. But,

as before, we can obtain the potential in some special cases. First, expanding the potential to second order in all the
pNGBs gives

Vtop
eff ¼ −ðλ1λ5CL þ λ3λ5C0

LÞ
ð2=5Þη2 þ 4H†H þ 4Φ2

0 þ 8ΦþΦ−

f2

− ðλ2λ6CR þ λ4λ6C0
RÞ

ð16=5Þη2 þ 8H†H
f2

þ ð−λ1λ5CL þ 4λ3λ5C0
L − 8λ2λ6CR þ 2λ4λ6C0

RÞ
16ηζ

3
ffiffiffi
5

p
f

− ð2λ1λ5CL þ 32λ3λ5C0
L þ 16λ2λ6CR þ λ4λ6C0

RÞ
16ζ2

9
þ � � � : ð5:10Þ

If we use the parametrization (F2), i.e., we retain only the h and φ fields of Eq. (F1), the potential is given by

V top
eff ¼ 4ðλ1λ5CL cosð4ζ=3Þ þ λ3λ5C0

L cosð16ζ=3ÞÞ
�
1 − ĉ

2φ2 þ h2

f2

�
þ 2ðλ2λ6CR cosð16ζ=3Þ þ λ4λ6C0

R cosð4ζ=3ÞÞ
�
1 − 4ĉ

h2

f2

�
: ð5:11Þ

We observe that there are no odd-order terms. Indeed, it is
easy to check that the potential (5.8) is invariant under the
intrinsic parity transformation of Sec. IV E. The gauge
bosons contribution for this parametrization is the same as
in Sec. IV, see Eq. (F15).
In this section, we have allowed for spurions with all

possible SUð3Þ × SUð3Þ0 quantum numbers, resulting in
the four-fermion Lagrangian (5.3). By contrast, in Ref. [23]
we only considered top spurions with particular SUð3Þ ×
SUð3Þ0 quantum numbers. This corresponds to retaining
only the λ1 and λ2 terms in Eq. (5.3), while setting
λ3 ¼ λ4 ¼ λ5 ¼ λ6 ¼ 0. In this case, the Oðλ2Þ potential
vanishes, and the leading potential is Oðλ4Þ. Explicitly,

V top
eff ¼ λ21λ

2
2C

top
LR

X
vL¼t̂L;b̂L

jv†LΣt̂Rj2 þ λ42C
top
RRjt̂TRΣt̂Rj2

þ λ41C
top
LL

X
vL;uL¼t̂L;b̂L

ju†LΣv�Lj2

¼ λ21λ
2
2C

top
LRtrðP1ΣP2Σ�Þ þ λ42C

top
RRtrðP2ΣP2Σ�Þ

þ λ41C
top
LLtrðP1ΣP3Σ�Þ; ð5:12Þ

where we have used Eq. (5.9). The Ctop
LR term was discussed

in Ref. [23], whereas the other two terms were over-
looked.26 As in the rest of this paper, the low-energy

constants introduced in this section are always determined
by the stand-alone hypercolor theory. Expanding this
potential to second order in the pNGB fields gives

V top
eff ¼ ðð4λ21λ22Ctop

LR − 8λ42C
top
RRÞH†H þ 8λ41C

top
LLΦþΦ−Þ

þ � � � ; ð5:13Þ

while for the parametrization (F2) we obtain

V top
eff ¼ λ21λ

2
2C

top
LR

2h2

f2

�
ŝ −

2ĉφ
f

�
2

þ λ42C
top
RR

�
1 −

4ĉh2

f2

�
2

þ 4λ41C
top
LL

�
ĉh2

f2
þ ŝφ

f

�
2

: ð5:14Þ

This result shows that there are no odd-order terms
associated with Ctop

RR, consistent with the invariance of
the corresponding term in Eq. (5.12) under the intrinsic
parity transformation of Sec. IV E. Cubic terms arise
from the contributions associated with Ctop

LR and Ctop
LL.

These contributions will be absent if λ1 ¼ 0.27 If both
λ1 and λ2 are nonzero, then the cubic terms will be present
except in the (unlikely, because arbitrarily fine-tuned) case
that λ22C

top
LR ¼ λ21C

top
LL. In this case, the sum of the two terms

is proportional to26In the conventions of Ref. [23], λ21λ
2
2C

top
LR corresponds to

y2Ctop. In Ref. [23] we argued that C
top
LR dominates over the gauge

bosons contribution in a certain large-N framework. Unfortu-
nately, it is not possible to incorporate Ctop

RR and Ctop
LL into the same

large-N framework in a meaningful way.

27Notice, however, that in order to generate a mass for the top
quark, at least two four-fermion couplings must be nonzero, e.g.,
λ1 and λ2 [23].

EFFECTIVE POTENTIAL IN ULTRAVIOLET … PHYS. REV. D 97, 095005 (2018)

095005-25



trðP1ΣP2Σ�Þ þ trðP1ΣP3Σ�Þ ¼ trðP1Σð1 − P1ÞΣ�Þ;
ð5:15Þ

which is again invariant under the intrinsic parity
transformation.
The main phenomenological implications of the results

of this section are discussed in the concluding section.

VI. DISCUSSION AND CONCLUSIONS

The composite Higgs approach is often discussed taking
the low-energy, nonlinear sigma model as a starting point.
In this paper, we studied in detail several concrete real-
izations (ultraviolet completions) of this approach as an
asymptotically free gauge theory with fermionic matter. In
this concluding section, we discuss the lessons that can be
drawn from our findings.
We begin with a simple technical observation about the

Higgs potential. It is a generic feature of composite Higgs
models that, if we turn off all the pNGBs except for
h ¼ ffiffiffi

2
p

ReH0, then the coset field Σ describes a rotation
matrix by an angle α ∝ h in some generalized space. In other
words, the nonzero entries of Σ depend linearly on cosðαÞ or
sinðαÞ. This is true in particular for the two cosets discussed in
this paper.28 For an effective potential that is at most quadratic
in Σ and/or Σ�, it follows that the effective potential is then a
second-order polynomial in cosðαÞ and sinðαÞ. Furthermore,
SUð2ÞL invariance requires that, when all triplet fields are
turned off, the potential must be an even function of theHiggs
fieldH, and this remains true when we retain h ¼ ffiffiffi

2
p

ReH0

only. The form of the resulting effective potential is very
restricted. It depends on just two trigonometric functions of α,
and we may take it to be [6,23,32]

Veff ¼ const − A cosðαÞ þ Bcos2ðαÞ: ð6:1Þ

The solutions of the saddle-point equation are sinðαÞ¼ 0 or

A
2B

¼ cosðαÞ; ð6:2Þ

which is the symmetry-breaking solution of interest.29 We
may rewrite this solution as

1 −
A
2B

¼ α2

2
þOðα4Þ: ð6:3Þ

Current experimental constraints suggest h2=f2 ≲ 0.1 as a
figure of merit [5,6,33].30 Thus, for the right-hand side of

Eq. (6.3) to be small, an “irreducible fine-tuning” at a similar
level of the coefficients A and B is needed.
The effective potential receives contributions from two

different sources. First, there are Oðg2; g02Þ terms, arising
from the interaction between the electroweak gauge bosons
and the pNGBs. The form of these terms is constrained by
gauge invariance, and they depend on a single low-energy
constant CLR. The other source of an effective potential
arises from integrating out the third generation quark fields.
This is the prime focus of this paper. In order to explain the
four-fermion Lagrangian that couples the quark fields to
three-fermion states of the hypercolor theory, we have to
postulate the existence of an “extended hypercolor” theory.
This new dynamics is operative at a yet higher energy scale,
ΛEHC, and requires the existence of new heavy gauge
bosons that can transform an ordinary quark into one of the
fermion species of the hypercolor theory.31 The leading
contributions to the effective potential from this sector are
Oðλ2Þ, where we use λ as a generic name for a four-fermion
coupling. In the case of the model of Sec. V, for reasons
that we explain below, we are also interested in Oðλ4Þ
contributions.
Having a minimum of the effective potential with

h2=f2 ≲ 0.1 thus requires balancing between Oðg2; g02Þ
effects, which depend on the gauge couplings of the
Standard Model, and Oðλ2Þ effects (or, in special circum-
stances, Oðλ4Þ effects), which depend on the dynamics of
the EHC theory, and can generically arise from several
distinct four-fermion couplings. If the effects of the third-
generation quarks dominates over the gauge bosons, then
the balancing has to happen between the contributions
coming from different four-fermion couplings. We have
studied an example potential in Sec. III F. However, it
remains an open question how the four-fermion couplings
originating from the EHC theory can be arranged to give
the desired result. We note that we did not make any ad hoc
assumptions about the EHC sector. It turns out that, in all
cases considered here, the most general form that the four-
fermion Lagrangian may take is quite complicated, leading
to many possibilities for the low-energy effective theory
(both the induced Higgs potential and the Yukawa cou-
plings). New ideas will be needed to simplify the situation,
but those would necessarily address the specific form of the
EHC sector, and are beyond the scope of this paper.
Let us briefly touch on another basic difficulty, which is

the inherent tension between fermion masses and flavor
constraints. Traditionally, fermion masses are generated in
technicolor models via four-fermion couplings that are
induced by an extended technicolor (ETC) dynamics, of
which our extended hypercolor (EHC) dynamics is a close
cousin. The main difference is the following. If we
generically use ψ to denote a Standard Model fermion

28For the SUð4Þ=Spð4Þ coset α ¼ h=ð ffiffiffi
2

p
fÞ by Eq. (3.42). For

the SUð5Þ=SOð5Þ coset α ¼ 2h=f, see Appendix F.
29For Eq. (6.2) to describe a global minimum at small α we

must have 0 < A < 2B.
30We may expect this bound to become tighter in the future if

no new particles are found at the LHC.

31Here we assume that also the EHC theory, which otherwise
remains unspecified, is a renormalizable gauge theory.

MAARTEN GOLTERMAN and YIGAL SHAMIR PHYS. REV. D 97, 095005 (2018)

095005-26



field, andΨ for a fermion of the new strong dynamics (be it
technicolor or hypercolor), then ETC requires four-fermion
interactions of the generic form ψψΨΨ, whereas the EHC
interactions are assumed to have the form ψΨΨΨ. The ETC
four-fermion interactions induce a fermion mass term,
ψψhΨΨi, once the operator ΨΨ acquires an expectation
value. By contrast, the EHC four-fermion interaction
ψΨΨΨ allows for a linear coupling of a Standard Model
fermion to a hyperbaryon, thereby giving rise to a partially
composite state.32

The basic problem is that the same ETC or EHC
dynamics that gives rise to the desired four-fermion
interactions can, generically, also give rise to four-fermion
interactions ∼ψψψψ , namely interactions that involve four
Standard Model fermions. These interactions will trigger
flavor-changing processes that, if too strong, will be in
conflict with experiment. According to naive power count-
ing, fermion masses in ETC are suppressed relative to the
technicolor scaleΛTC by z2TC, where zTC ¼ ΛTC=ΛETC, with
ΛETC being the ETC scale. Because of the flavor constraints
ΛETC must be quite large, making the ratio zTC small. The
resulting fermion masses, of order ΛTCz2TC, are then too
small in many cases.
A partial solution may be provided by walking techni-

color, where the technicolor dynamics is assumed to be
nearly conformal. Taking quantum effects into account, the
induced fermion mass in walking technicolor is∼ΛTCz

2−γm
TC ,

where γm is the (approximately constant) mass anomalous
dimension of the technifermion Ψ. Ideally, a very large
anomalous dimension γm ≲ 2 would wipe out entirely the
suppression factor z2−γmTC . But various theoretical consid-
erations suggest that such large values of γm are unlikely
[4–6]. Lattice calculations in various models find that γm
does not exceed 1 (see the review articles [9,11]). If indeed
γm ≲ 1 then the induced fermion mass can only be as large
as ΛTCzTC, i.e., still suppressed by one power of zTC. Thus,
while near-conformality together a large γm help in gen-
erating larger fermion masses, it remains very difficult to
generate a mass as large as that of the top quark. As an
illustration, according to Ref. [6], ΛETC cannot be smaller
than about 105 TeV,33 so that zTC cannot be larger than
∼10−4. With γm ∼ 1 this might have allowed for generating
the ∼1 GeV mass of the charm quark, but certainly not the
top-quark mass.
If, instead, the top quark receives its mass via the

partial compositeness mechanism, this mass will be naively
of order ΛHCz4HC, where zHC ¼ ΛHC=ΛEHC, because,
when measured in units of the hypercolor theory, each
four-fermion coupling is naively of order z2HC, and two

four-fermion couplings are needed to generate a mass for
the top: the top must transform into a hyperbaryon, and
then back into a top. At tree level, the case for partial
compositeness is thus worse than traditional ETC. Of
course, one has to take into account quantum effects. If
again the theory is nearly conformal, the induced top mass
is of order ΛHCz

4−2γ0
HC , where γ0 is the (again, approximately

constant) anomalous dimension of the relevant four-
fermion operators. Once again, the suppression factor
z4−2γ

0
HC would be wiped out when γ0 ≲ 2. The popularity
of partial compositeness stems from the fact that there
are no theoretical considerations against such large values
of γ0. Thus, at least in principle, one could end up with a
suppression by a very small power of zHC [4–6].34
We stress that in order to achieve a large enhancement,

be it in the context of extended technicolor or in the context
of a partially composite top, the anomalous dimension must
be approximately constant, and large, over many energy
decades. This requires the dynamics to be nearly con-
formal. In contrast, if the gauge dynamics is QCD-like, then
this mechanism is unlikely to be effective. The reason is
that as we increase the energy scale, the gauge coupling
quickly becomes perturbative. Existing perturbative calcu-
lations of the anomalous dimension of various four-fermion
operators always find small values [27,34]. It remains an
open question whether a realistic top-quark mass can be
achieved by invoking a strong near-conformal dynamics.
Lattice calculations of γ0 in candidate hypercolor theories
could help shed light on this important issue.
An alternative approach would be to assume that, while

the top quark receives its mass through partial composite-
ness from an extended hypercolor dynamics, yet some
other dynamics (or, more generally, some additional high
scales), are involved in mass generation of all other
Standard Model fermions.35 This approach is, obviously,
less economic, but eventually it might be forced upon us by
the tension between flavor-changing processes and quark
masses. In a way, in this paper we are following this
approach, because we study the interaction between the
third-generation quarks and the hypercolor theory, while
disregarding the rest of the fermions of the Standard Model.
In particular, we are in effect allowing for the extended
hypercolor scale ΛEHC to be close enough to the hypercolor
scale ΛHC, so that the four-fermion couplings will be large
enough to generate phenomenologically viable mass for the
top quark and effective potential for the pNGBs.
In this paper, we studied two SOðdÞ gauge theories with

d ¼ 5, 11, where chiral symmetry breaking gives rise to
pNGBs in the SUð4Þ=Spð4Þ coset (Sec. III); and three
models where the coset is SUð5Þ=SOð5Þ, two are again
based on an SOðdÞ gauge theory with d ¼ 7, 9, and have a32In principle, a given EHC theory may induce both ψψΨΨ

and ψΨΨΨ type four-fermion interactions, in which case both
mechanisms for fermion mass generation will be operative
(see, e.g., Ref. [13]).

33In the notation of Ref. [6], ΛETC is ΛUV.

34For a calculation of γm and γ0 in a gauged Nambu–Jona-
Lasinio model, see Ref. [17].

35See, for example, Refs. [35–37].
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similar set of top partners (Sec. IV), while the third is an
SUð4Þ gauge theory with a rather different set of top
partners (Sec. V). Each model contains fermions in two
different irreps, leading to a nonanomalous Abelian axial
symmetry, Uð1ÞA, with an associated pNGB, ζ, which is
inert under all the Standard-Model gauge interactions. For
each theory we first listed all the dimension-9=2 hyper-
baryons that can serve as top partners, and wrote down the
most general four-fermion Lagrangian that couples them to
tL, bL and tR. We then worked out the resulting effective
potential for the multiplet of pNGBs containing the Higgs
field together with the Uð1ÞA pNGB.
We started with the SUð4Þ=Spð4Þ coset. Its structure is

simpler in that, besides Higgs doubletH, this coset contains
only one additional pNGB, η, which is inert under the
Standard Model gauge interactions, like the Uð1ÞA pNGB
ζ. We worked out the Oðλ2Þ potential in closed form. We
found that it consists of a linear superposition of nine
functions of the variables H†H, η and ζ (cf. Sec. III F).
Thus, in general, a potential is generated for all the pNGBs,
including the Uð1ÞA pNGB. Each coefficient ci consists of
a sum of terms, where each term is the product of a low-
energy constant and two four-fermion couplings. The
effective potential generated by the electroweak gauge
bosons also depends on one of these functions, f6, and
so it contributes only to its coefficient c6. Finally, there is an
additional contribution to the effective potential if a mass
term for the χ fermions is turned on in the hypercolor
theory. By itself, experimental constraints on the effective
potential can be studied directly in terms of the ci’s. But, if
one wants to incorporate also the top Yukawa coupling into
this analysis, then it has to be done in terms of the four-
fermion couplings, and requires knowledge of the low-
energy constants. The latter can, in principle, be calculated
on the lattice.
Studying the minima of the full effective potential as a

function of all the relevant parameters is challenging.
Generically, minimizing the potential might give rise to
the condensation of not just the Higgs field, but also the
“inert” fields ζ and η. Since these fields are pseudoscalars,
the expectation values hηi or hζi break CP spontaneously,
and will thus be constrained by experiment. We have
discussed the conditions that these expectation values are
physical, and cannot be rotated away (Sec. III G). Our
discussion of the effective potential was limited to a simple
example, in which most of the four-fermion couplings are
turned off by hand (Sec. III F). For this potential hηi and hζi
are both physical. We wrote down the conditions needed to
have hηi ¼ hζi ¼ 0, at which point the potential reduces to
the familiar form of Eq. (6.1).36

The low-energy constants of the SOðdÞ models depend
on two-point functions of the hyperbaryons. While, as we

have explained above, one can sometimes by-pass the
calculation of the low-energy constants by studying
directly the ci coefficients in Eq. (3.72), the correct form
of the effective potential cannot be determined without the
knowledge of the dimension-9=2 hyperbaryons. In other
words, if one starts directly from the nonlinear sigma model
it is just not possible to determine the correct effective
potential. One can, of course, determine the structure
of the effective potential for a given set of spurion fields.
But the spurions must match the top-partner hyperbaryons.
An ad-hoc list of spurions could amount to arbitrarily
setting some of the four-fermion couplings to zero, in a
manner that cannot be reproduced by any extended hyper-
color theory.
Next let us discuss the models that yield the

SUð5Þ=SOð5Þ coset. In addition to the pNGBs that are
present in the SUð4Þ=Spð4Þ case, there are nine additional
pNGBs that fill a (3,3)-plet of SUð2ÞL × SUð2ÞR. Because
of this more complicated structure we were not able to
obtain the full potential in closed form. Instead, we studied
the potential in various simplified cases. First, we obtained
the potential to second order in all the pNGBs. Some useful
constraints can already be obtained from this result
because, ideally, we would like the curvature at the origin
to be negative in the direction of the Higgs field, and to be
positive in the direction of the triplet fields, to prevent any
triplet from condensing.37

We also considered third order terms. These terms arise
because one can construct invariants of both SUð2ÞL and
the Uð1Þ generated by T3

R from a pair of Higgs fields and
one triplet field. For a concrete example, see Eq. (4.15). As
we explained in the introduction, and in more detail in
Sec. IV E, these terms are especially dangerous for phe-
nomenology. If the potential contains cubic terms, then,
once the Higgs field acquires an expectation value, this
induces a term linear in the triplet field. This, in turn, will
necessarily drive the expectation value of the triplet field
away from zero. The resulting triplet expectation value is
different from the one that preserves the custodial sym-
metry [22], and so it will drive the ρ-parameter away from
unity. The magnitude of this triplet expectation value is thus
tightly constrained by experiment.
Studying this issue further, we have worked out the

full effective potential in the case that only h ¼ ffiffiffi
2

p
ReH0

and φ ¼ ffiffiffi
2

p
Imϕ−þ are turned on. We checked which

“templates” for the effective potential can give rise to
odd-order terms, and, in particular, to the cubic term h2φ,
finding that such contributions are possible in all the
SUð5Þ=SOð5Þ models.38 We then raised the question

36For further discussion of the role of η, see, for example,
Refs. [24,38,39].

37In order to obtain the complete second-order potential, one
should add the contribution of the electroweak gauge bosons,
calculated in Ref. [23].

38No odd-order terms arise from the gauge bosons contribution
in this case, see Eq. (F15).
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how likely it is that all cubic terms (or, more generally, all
odd-order terms) will be absent from the effective potential
thanks to cancellations.
As we explained in Sec. IV E, if all the four-fermion

couplings are nonzero, the vanishing of the coefficient of a
particular (cubic) term in the effective potential requires a
“conspiracy” between the four-fermion couplings and the
low-energy constants. What might be more natural is that
the cubic terms will vanish thanks to the vanishing of
suitable (linear combinations of) four-fermion couplings.
The intrinsic parity transformation introduced in Sec. IV E
is a convenient device to determine which linear combi-
nations of the four-fermion couplings should vanish.
Unfortunately, we were unable to conceive of any obvious
symmetry at the level of the EHC theory that would induce
the intrinsic parity symmetry at the level of the low-energy
effective theory. Still, one should remember that the four-
fermion couplings must be induced by integrating out the
heavy degrees of freedom of an EHC theory, and a good
candidate EHC theory will conceivably induce only a small
number of four-fermion couplings.
The SUð4Þmodel of Sec. V was already studied in detail

previously [13,23]. We found that if we allow for the most
general four-fermion Lagrangian, an effective potential is
induced already at Oðλ2Þ. While this potential contains no
cubic terms, it does have another serious phenomenological
drawback. If we set to zero all the pNGB fields except for h,
then the contribution from the Oðλ2Þ potential is propor-
tional to cosðαÞ. Because the gauge bosons also contribute
to the same term, we would end up with the situation that
A ≠ 0 but B ¼ 0 in Eq. (6.1). This appears to be incom-
patible with the requirement of having small h=f. A
possible way out that we have discussed above is that,
when turning on also the inert pNGBs η and ζ, this would
reveal new minima of the potential.
An alternative is that only a smaller subset of the four-

fermion couplings is actually induced by the EHC, and, as a
result, the Oðλ2Þ potential vanishes. We rederived the
potential in the case that only the two four-fermion
couplings we considered in Ref. [23] are nonzero, finding
two more terms that we overlooked in Ref. [23]. Like the
other SUð5Þ=SOð5Þ models, this Oðλ4Þ potential will
generically have the undesired cubic terms ∝ h2φ, so
that, as explained above, further constraints must be
satisfied in order to achieve a phenomenologically viable
minimum.

In this paper, we discussed the nonlinear field Σ
associated with the SUð4Þ=Spð4Þ or SUð5Þ=SOð5Þ coset,
and the field Φ that describes the pNGB of the non-
anomalous Uð1ÞA symmetry. We did not discuss the other
nonlinear field containing the colored pNGBs, which is
associated with the SUð6Þ=SOð6Þ coset in the case of the
SOðdÞ theories of Sec. III and Sec. IV, or with SUð3Þ ×
SUð3Þ0=SUð3Þc in the case of the SUð4Þ model of Sec. V.
While our results and conclusions are valid by themselves,
a more complete analysis that includes the potential for the
remaining nonlinear effective field would allow for a more
detailed study of the phenomenological consequences. The
obvious additional constraint on the complete potential is
that the colored pNGBs are not allowed to condense.
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APPENDIX A: CHARGE CONJUGATION
MATRIX IN d DIMENSIONS

Here we review some properties of the charge conjuga-
tion matrix Cd in euclidean space. These properties are
periodic in the dimensionality d modulo 8, as shown in
Table V. The basic relation satisfied by the charge con-
jugation matrix Cd in d ¼ 2n dimensions is

CdΓI ¼ −ΓT
I Cd; I ¼ 1; 2;…; d: ðA1Þ

In addition, Cd always satisfies CT
d ¼ C†

d ¼ C−1
d . For the

symmetry properties of Cd, see the second column of
Table V. The chirality matrix is defined by Γ2nþ1 ¼
eiηnΓ1 � � �Γ2n, where the phase eiηn is chosen such that
Γ2
2nþ1 ¼ 1. One has C2nΓ2nþ1 ¼ �ΓT

2nþ1C2n, where the
sign is given in the third column of Table V. When this
sign is negative, Eq. (A1) generalizes to include Γ2nþ1, and
we define C2nþ1 ¼ C2n. When this sign is positive we
define, instead, C2nþ1 ¼ C2nΓ2nþ1, which implies

TABLE V. Some properties of the charge conjugation matrix. These properties are periodic in the dimensionality d
modulo 8, shown in the left column. See Appendix A for an explanation on the other columns.

2 CT
d ¼ −Cd CdΓdþ1 ¼ −ΓT

dþ1Cd Cdþ1 ¼ Cd ðCdþ1ΓIÞT ¼ þCdþ1ΓI

4 CT
d ¼ −Cd CdΓdþ1 ¼ þΓT

dþ1Cd Cdþ1 ¼ CdΓdþ1 ðCdþ1ΓIÞT ¼ −Cdþ1ΓI

6 CT
d ¼ þCd CdΓdþ1 ¼ −ΓT

dþ1Cd Cdþ1 ¼ Cd ðCdþ1ΓIÞT ¼ −Cdþ1ΓI

0 CT
d ¼ þCd CdΓdþ1 ¼ þΓT

dþ1Cd Cdþ1 ¼ CdΓdþ1 ðCdþ1ΓIÞT ¼ þCdþ1ΓI
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C2nþ1ΓI ¼ þΓT
I C2nþ1; I ¼ 1; 2;…; 2nþ 1: ðA2Þ

In all cases, C2nþ1 has the same symmetry properties as
C2n. It follows that for all d, the generators of SOðdÞ
rotations on spinors, ΣIJ ¼ 1

4
½ΓI;ΓJ�, satisfy

CdΣIJ ¼ −ΣT
IJCd; I; J ¼ 1; 2;…; d: ðA3Þ

For d odd, the spinor irrep is irreducible, and from the
symmetry properties of Cd it follows that the spinor irrep
is real for d ¼ 1, 7 mod 8, and pseudoreal for d ¼ 3, 5
mod 8. For brevity, we will use the notation C for the
4-dimensional charge conjugation matrix, and C for the
charge conjugation matrix in a given odd dimension.
The construction of the 4-component spinor χ in

Eq. (2.1) assumes the chiral representation of the Dirac
matrices,

γμ ¼
 

0 σ†μ

σμ 0

!
; ðA4Þ

where σ4 ¼ 1, and σμ is equal to −iσk for μ ¼ k ¼ 1, 2, 3,
where σk are the Pauli matrices. Also, γ5 ¼ diagð1; 1;
−1;−1Þ, and, as usual, PR ¼ ð1þ γ5Þ=2 and PL ¼
ð1 − γ5Þ=2. The charge conjugation matrix is then

C ¼ γ4γ2 ¼
�−ϵ 0

0 ϵ

�
; ðA5Þ

where ϵ ¼ iσ2.

APPENDIX B: DISCRETE SYMMETRIES

Here we discuss the discrete symmetries C, P and CP in
SOðdÞ gauge theories. We first recall the familiar case of an
SUðNÞ gauge theory with Dirac fermions in the funda-
mental irrep. Charge-conjugation symmetry acts as

ψ → Cψ̄T; ψ̄ → ψTC; ðB1aÞ
Aμ → −AT

μ : ðB1bÞ
Writing Aμ ¼ AμaTa we infer the transformation rule of the
individual components, which is Aμa →∓Aμa if TT

a ¼�Ta.
Because all SUðNÞ irreps may be constructed from tensor
products of the fundamental irrep, these transformation
rules remain valid for Dirac fermions in any irrep.
We take parity to act as

ψðxÞ → iγ4ψðx̃Þ; ψ̄ðxÞ → −iψ̄ðx̃Þγ4; ðB2aÞ
AμðxÞ → Ãμðx̃Þ: ðB2bÞ

Here x̃μ ¼ xμ if μ ¼ 4, while x̃μ ¼ −xμ if μ ¼ 1, 2, 3. A
similar definition applies to Ãμ. The C and P fermion
transformation rules, Eqs. (B1a) and (B2a), both involve a
choice of phase. The reason for the particular choices we
have made is that we want the transformation rules to take

the same form for Majorana fermions. If we replace the
Dirac fermion ψ by a Majorana fermion χ, and ψ̄ by χ̄, then
χ̄ is not an independent field, but rather, it is related to χ via
Eq. (2.2). With the phases we have chosen in Eqs. (B1a)
and (B2a), these transformation rules are consistent
with Eq. (2.2).
Moving on to SOðdÞ gauge theories, charge conjugation

is still given by Eq. (B1a) for Dirac fermions in the
fundamental, vector irrep. Because the generators in the
vector irrep are all antisymmetric, the rule (B1b) implies
that the SOðdÞ gauge field is charge-conjugation invariant.
The rule for a Dirac fermion in a spinor irrep is

η → CCT η̄T; η̄ → ηTCC; ðB3Þ

where the presence of C in Eq. (B3) compensates for the
fact that the SOðdÞ gauge field is invariant [note Eq. (A3)].
In the case of a real irrep, the same rules [Eqs. (B1b) or
(B3)] may be applied to Majorana fermions, because again
our choice of phases is consistent with Eq. (2.2). In fact,
using Eq. (2.2) it immediately follows that Majorana
fermions of SOðdÞ gauge theories are charge-conjugation
invariant. (For the case of a Majorana fermion in the vector
irrep, the matrix C in Eq. (2.2) is replaced by the identity
matrix.)
We define CP by first applying P and then C. The

resulting transformation rules are given in Sec. II B. The
rules for the gauge field, and for the Dirac and Majorana
fermions that we will encounter, follow from the trans-
formation rules we have already discussed above.
In the case of the SUð4Þ=Spð4Þ coset, we have 4 Weyl

fermions in the pseudoreal spinor irrep. The discrete
symmetries can be approached in two ways. First, we
may assemble the four Weyl fermions into two Dirac
fermions. In this case, P acts in the usual way, while C acts
as described above. However, the Dirac formulation has the
disadvantage that it obscures the SUð4Þ flavor symmetry of
the pseudoreal Weyl fermions.39 The alternative we choose
in this paper is to work in terms of the 4-component fields
χi and χ̄i introduced in Eqs. (2.1) and (2.2), also for the
pseudoreal case. The advantage is that the flavor symmetry
is manifest. The separate P and C transformations will look
more complicated in terms of χi and χ̄i, but, because of the
properties of the four-fermion Lagrangian (Sec. II B), we
only need the explicit form of the combined CP trans-
formation, which we can derive as follows. We start from
the observation that the Weyl action

S ¼
Z

d4xϒ̄σμDμϒ; ðB4Þ

is invariant under CP symmetry where the SOðdÞ gauge
field transforms as described above, and

39A similar situation is discussed in Ref. [40].
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ϒiðxÞ → iCϵϒ̄T
i ðx̃Þ; ϒ̄iðxÞ → iϒT

i ðx̃ÞϵCT: ðB5Þ
In terms of the four-component fields χi and χ̄i, the
transformation (B5) takes the form of Eq. (2.5d) when
the fermions belong to a pseudoreal irrep. For a real irrep,
we recover Eq. (2.5c).
To avoid confusion, we recall that in the case of a real

irrep, the action (B4) may be rewritten as

S ¼ 1

2

Z
d4xχ̄i=Dχi; ðB6Þ

where the Majorana fermions are defined by Eqs. (2.1) and
(2.2). But if we keep using the same 4-component fields for
a pseudoreal irrep, then the right-hand side of Eq. (B6) will
vanish identically. Of course, for both real and pseudoreal
irreps we may recover Eq. (B4) from Eq. (B6) by inserting
2PL between =D and χi.

APPENDIX C: THE SUð4Þ=Spð4Þ COSET

The Spð4Þ subgroup of SUð4Þ is defined as the set of
elements satisfying

gTϵ0g ¼ ϵ0; ðC1Þ

where

ϵ0 ¼ τ3 × iτ2 ¼

0BBB@
0 1 0 0

−1 0 0 0

0 0 0 −1
0 0 1 0

1CCCA: ðC2Þ

(If g ∈ Spð4Þ, then so is gT .) The 15 generators of SUð4Þ
split into 10 generators of Spð4Þ,

1 × τi; τ1 × 1; τ2 × τi; τ3 × τi; ðC3Þ

and 5 generators for the coset SUð4Þ=Spð4Þ,
τ1 × τi; τ2 × 1; τ3 × 1; ðC4Þ

where τi are the Pauli matrices, and 1 stands for the 2 × 2
identity matrix. These generators satisfy

ϵ0Ta ¼
�
−TT

aϵ0; Spð4Þ generators;
þTT

aϵ0; SUð4Þ=Spð4Þ generators: ðC5Þ

The tensor product of two fundamental SUð4Þ irreps
contains the six-dimensional antisymmetric, and the ten-
dimensional symmetric irreps. Under the reduction
SUð4Þ → Spð4Þ, the 10 remains irreducible, whereas the
6 reduces to a 5 and a singlet. If Aij ¼ −Aji transforms in
the 6 of SUð4Þ, the singlet is trðϵ0AÞ, and the 5 is formed by
Aþ 1

4
ϵ0trðϵ0AÞ. The effective NGB field Π introduced in

Eq. (3.8) transforms in the 5 of Spð4Þ.

Following Ref. [8], the Standard Model’s SUð2ÞL and
SUð2ÞR symmetries are identified with the subgroups of
Spð4Þ with generators

Ti
L ¼ 1

2
ð1þ τ3Þ ×

1

2
τi;

Ti
R ¼ 1

2
ð1 − τ3Þ ×

1

2
τi: ðC6Þ

Correspondingly, the NGB field is parametrized as

2Π ¼ −ðImHþÞτ1 × τ1 − ðReHþÞτ1 × τ2

þ ðImH0Þτ1 × τ3 − ðReH0Þτ2 × 1þ 1ffiffiffi
2

p ητ3 × 1

¼

0BBBB@
η=

ffiffiffi
2

p
0 iH�

0 iHþ
0 η=

ffiffiffi
2

p
−iH�þ iH0

−iH0 iHþ −η=
ffiffiffi
2

p
0

−iH�þ −iH�
0 0 −η=

ffiffiffi
2

p

1CCCCA: ðC7Þ

The coset generators (C4) satisfy the 5-dimensional
Dirac algebra. (This property is closely related to the
existence of the isomorphisms SUð4Þ=Z2 ≃ SOð6Þ and
Spð4Þ=Z2 ≃ SOð5Þ.) Using

Π2 ¼ ðη2 þ 2H†HÞ=8; ðC8Þ
one can express Σ in closed form,

Σ ¼
�
cosðαÞ þ 2i

αf
sinðαÞΠ

�
ϵ0; ðC9Þ

where

α2 ¼ ðð1=2Þη2 þH†HÞ=f2: ðC10Þ

APPENDIX D: THE SUð5Þ=SOð5Þ COSET

The unbroken SOð5Þ subgroup is generated by the 10
antisymmetric, purely imaginary, generators of SUð5Þ. We
embed the generators of SUð2ÞL × SUð2ÞR, which is
isomorphic to SOð4Þ, in the upper-left 4 × 4 block. They
are given explicitly by the following tensor products of the
Pauli matrices [8]

2T1
L ¼ τ2 × τ1;

2T2
L ¼ −τ2 × τ3;

2T3
L ¼ 1 × τ2;

2T1
R ¼ τ1 × τ2;

2T2
R ¼ τ2 × 1;

2T3
R ¼ τ3 × τ2: ðD1Þ

The nonlinear field Σ ∈ SUð5Þ=SOð5Þ is expanded as

Σ ¼ expðiΠ=fÞΣ0 expðiΠ=fÞT ¼ exp ð2iΠ=fÞ; ðD2Þ
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where in the last equality we have set Σ0 ¼ 1. The pion
field Π is expanded in terms of the 14 real symmetric
generators of SUð5Þ. Its SUð2ÞL × SUð2ÞR content is

Π ¼ Θþ Θ† þ Φ̃0 þ Φ̃þ þ Φ̃†
þ þ η̃; ðD3Þ

where

Θ ¼ 1ffiffiffi
2

p

0BBBBBB@
0 0 0 0 −iHþ
0 0 0 0 Hþ
0 0 0 0 iH0

0 0 0 0 H0

−iHþ Hþ iH0 H0 0

1CCCCCCA; ðD4Þ

Φ̃0 ¼

0BBBBBB@

ϕ0
0=

ffiffiffi
2

p
0 a b 0

0 ϕ0
0=

ffiffiffi
2

p
b −a 0

a b −ϕ0
0=

ffiffiffi
2

p
0 0

b −a 0 −ϕ0
0=

ffiffiffi
2

p
0

0 0 0 0 0

1CCCCCCA;

ðD5Þ

with a ¼ ði=2Þðϕ−
0 − ϕþ

0 Þ and b ¼ ð1=2Þðϕ−
0 þ ϕþ

0 Þ,

Φ̃þ ¼

0BBBBBB@

ϕþ
þ=

ffiffiffi
2

p
iϕþ

þ=
ffiffiffi
2

p
iϕ0þ=2 ϕ0þ=2 0

iϕþ
þ=

ffiffiffi
2

p
−ϕþ

þ=
ffiffiffi
2

p
−ϕ0þ=2 iϕ0þ=2 0

iϕ0þ=2 −ϕ0þ=2 ϕ−þ=
ffiffiffi
2

p
−iϕ−þ=

ffiffiffi
2

p
0

ϕ0þ=2 iϕ0þ=2 −iϕ−þ=
ffiffiffi
2

p
−ϕ−þ=

ffiffiffi
2

p
0

0 0 0 0 0

1CCCCCCA;

ðD6Þ

and η̃ ¼ ηdiagð1; 1; 1; 1;−4Þ= ffiffiffiffiffi
20

p
. These conventions are

the same as in Ref. [8], except for a slightly different
normalization of the η field.
The η and H fields, which we have already encountered

in the SUð4Þ=Spð4Þ case, constitute the (1,1), respectively
(2,2), representations of SUð2ÞL × SUð2ÞR. The SUð5Þ=
SOð5Þ coset contains nine additional NGBs, the ϕ’s, that
belong to (3,3). Their superscript and subscript label their
SUð2ÞL, respectively SUð2ÞR, quantum numbers. The
electric charge is T3

L þ T3
R for the coset fields, hence the

electric charge of each ϕ field is the sum of its superscript
and subscript. Complex conjugation works on the ϕ’s by
interchanging þ ↔ − for both the superscript and the
subscript. The SUð2ÞL triplets are Φ0 ¼ fϕþ

0 ;ϕ
0
0;ϕ

−
0 g

(where ϕ0
0 is real and ϕ−

0 ¼ ðϕþ
0 Þ�), with T3

R ¼ 0,
Φþ ¼ fϕþ

þ;ϕ0þ;ϕ−þg, with T3
R ¼ þ1, and Φ− ¼ ðΦþÞ� ¼

fϕ−
−;ϕ0

−;ϕþ
−g, with T3

R ¼ −1. The invariant bilinears are
Φ2

0≡ ðϕ0
0Þ2þ2ϕþ

0 ϕ
−
0 andΦþΦ−≡ϕþ

þϕ−
−þϕ0þϕ0

−þϕ−þϕþ
− .

We also introduce 2 × 2 matrix formats, Φ̂0 ¼ ϕ0
0τ3þ

21=2ðϕþ
0 τþ þ ϕ−

0 τ−Þ and Φ̂� ¼ ϕ0
�τ3 þ 21=2ð−iϕþ

�τþþ
iϕ−

�τ−Þ, where τ� ¼ ðτ1 � iτ2Þ=2, which satisfy trðΦ̂2
0Þ ¼

2Φ2
0 and trðΦ̂þΦ̂−Þ ¼ 2ΦþΦ−.

APPENDIX E: Veff AT SECOND ORDER
FOR SUð5Þ=SOð5Þ

In this appendix, we list all the contributions to Veff ,
truncated to second order in the pNGB fields. We use the
expansion of the coset field Σ given in Appendix D, and the
expansion of the singlet NGB field Φ given in Eq. (3.43).
The h·i notation is explained in Sec. III D, and the list of
templates for Veff may be found in Eq. (4.8).
For template T 1 the spurions must be right-handed.

We get

hΦ1−2qtrðS̄1RΣNRÞ þ H:c:i ¼ 8 −
4

f2
ðð1=5Þη2 þ 2H†H þΦ2

0 þ 2ΦþΦ−Þ −
8ð1 − 2qÞffiffiffi

5
p ζη

f
− 4ð1 − 2qÞ2ζ2; ðE1aÞ

hΦ1−2qtrðS̄2RΣNRÞ þ H:c:i ¼ 2 −
8

f2
ðð2=5Þη2 þH†HÞ þ 8ð1 − 2qÞffiffiffi

5
p ζη

f
− ð1 − 2qÞ2ζ2: ðE1bÞ

Since tR is embedded into the spurions SR and ScR in the same way, the result for template T 2 is obtained from the
corresponding result for T 1 by replacing 1 − 2q with 1þ 2q. The results for template T 3 are

hΦ1−2qtrðĀRΣD1T
R Þ þ H:c:i ¼ −2þ 1

f2
ðð1=5Þη2 þ 2H†H þ 2Φ2

0 þ 4ΦþΦ−Þ þ
2ð1 − 2qÞffiffiffi

5
p ηζ

f
þ ð1 − 2qÞ2ζ2; ðE2aÞ

hΦ1−2qtrðĀRΣD2T
R Þ þ H:c:i ¼ 0: ðE2bÞ

hΦ1þ2qtrðĀLΣD1T
L Þ þ H:c:i ¼ −8þ 32

f2
ðð2=5Þη2 þH†HÞ − 32ð1þ 2qÞffiffiffi

5
p ηζ

f
þ 4ð1þ 2qÞ2ζ2; ðE2cÞ
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hΦ1þ2qtrðĀLΣD2T
L Þ þ H:c:i ¼ 8 −

4

f2
ðð1=5Þη2 þ 2H†H þ 2Φ2

0 þ 4ΦþΦ−Þ −
8ð1þ 2qÞffiffiffi

5
p ηζ

f
− 4ð1þ 2qÞ2ζ2; ðE2dÞ

for template T 4,

hΦ1−2qtrðS̄1RΣD1T
R Þ þ H:c:i ¼ 0; ðE3aÞ

hΦ1−2qtrðS̄1RΣD2T
R Þ þ H:c:i ¼ 8 −

4

f2
ðð1=5Þη2 þ 2H†H þ 2Φ2

0 þ 4ΦþΦ−Þ −
8ð1 − 2qÞffiffiffi

5
p ζη

f
− 4ð1 − 2qÞ2ζ2; ðE3bÞ

hΦ1−2qtrðS̄2RΣD1T
R Þ þ H:c:i ¼ 0; ðE3cÞ

hΦ1−2qtrðS̄2RΣD2T
R Þ þ H:c:i ¼ −8þ 32

f2
ðð2=5Þη2 þH†HÞ − 32ð1 − 2qÞffiffiffi

5
p ζη

f
þ 4ð1 − 2qÞ2ζ2: ðE3dÞ

hΦ1þ2qtrðS̄LΣD1T
L Þ þ H:c:i ¼ 8 −

32

f2
ðð2=5Þη2 þH†HÞ þ 32ð1þ 2qÞffiffiffi

5
p ηζ

f
− 4ð1þ 2qÞ2ζ2: ðE3eÞ

hΦ1þ2qtrðS̄LΣD2T
L Þ þ H:c:i ¼ 8 −

4

f2
ðð1=5Þη2 þ 2H†H þ 2Φ2

0 þ 4ΦþΦ−Þ −
8ð1þ 2qÞffiffiffi

5
p ηζ

f
− 4ð1þ 2qÞ2ζ2; ðE3fÞ

for template T 5,

hΦ−1−2qtrðĀc
RΣ�D1

RÞ þ H:c:i ¼ 2 −
1

f2
ðð1=5Þη2 þ 2H†H þ 2Φ2

0 þ 4ΦþΦ−Þ −
2ð1þ 2qÞffiffiffi

5
p ηζ

f
− ð1þ 2qÞ2ζ2; ðE4aÞ

hΦ−1−2qtrðĀc
RΣ�D2

RÞ þ H:c:i ¼ 0: ðE4bÞ

hΦ−1þ2qtrðĀc
LΣ�D1

LÞ þ H:c:i ¼ 8 −
4

f2
ðð1=5Þη2 þ 2H†H þ 2Φ2

0 þ 4ΦþΦ−Þ −
8ð1 − 2qÞffiffiffi

5
p ηζ

f
− 4ð1 − 2qÞ2ζ2; ðE4cÞ

hΦ−1þ2qtrðĀc
LΣ�D2

LÞ þ H:c:i ¼ −8þ 32

f2
ðð2=5Þη2 þH†HÞ − 32ð1 − 2qÞffiffiffi

5
p ηζ

f
þ 4ð1 − 2qÞ2ζ2; ðE4dÞ

and for template T 6,

hΦ−1−2qtrðS̄1cR Σ�D1
RÞ þ H:c:i ¼ 0; ðE5aÞ

hΦ−1−2qtrðS̄1cR Σ�D2
RÞ þ H:c:i ¼ 8 −

4

f2
ðð1=5Þη2 þ 2H†H þ 2Φ2

0 þ 4ΦþΦ−Þ −
8ð1þ 2qÞffiffiffi

5
p ζη

f
− 4ð1þ 2qÞ2ζ2; ðE5bÞ

hΦ−1−2qtrðS̄2cR Σ�D1
RÞ þ H:c:i ¼ 0; ðE5cÞ

hΦ−1−2qtrðS̄2cR Σ�D2
RÞ þ H:c:i ¼ −8þ 32

f2
ðð2=5Þη2 þH†HÞ − 32ð1þ 2qÞffiffiffi

5
p ζη

f
þ 4ð1þ 2qÞ2ζ2: ðE5dÞ

hΦ−1þ2qtrðS̄cLΣ�D1
LÞ þ H:c:i ¼ 8 −

4

f2
ðð1=5Þη2 þ 2H†H þ 2Φ2

0 þ 4ΦþΦ−Þ −
8ð1 − 2qÞffiffiffi

5
p ηζ

f
− 4ð1 − 2qÞ2ζ2; ðE5eÞ

hΦ−1þ2qtrðS̄cLΣ�D2
LÞ þ H:c:i ¼ 8 −

32

f2
ðð2=5Þη2 þH†HÞ þ 32ð1 − 2qÞffiffiffi

5
p ηζ

f
− 4ð1 − 2qÞ2ζ2: ðE5fÞ

For T 7 we obtain

htrðS̄LΣÞtrðSLΣ�Þi ¼ 32

f2
H†H; ðE6aÞ
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htrðS̄1RΣÞtrðS1RΣ�Þi ¼ 16 −
32

f2
ðH†H þΦ2

0 þ 2ΦþΦ−Þ; ðE6bÞ

htrðS̄2RΣÞtrðS2RΣ�Þi ¼ 1 −
8

f2
H†H; ðE6cÞ

htrðS̄1RΣÞtrðS2RΣ�Þ þ H:c:i ¼ 8 −
4

f2
ð5η2 þ 10H†H þ 2Φ2

0 þ 4ΦþΦ−Þ: ðE6dÞ

Again the second-order results for template T 8 can be obtained by replacing S with Sc and Σ with Σ� on the left-hand sides,
while keeping the right-hand sides unchanged. The results for template T 9 are

hΦ2trðScLΣÞtrðS̄LΣÞ þ H:c:i ¼ −
64

f2
H†H; ðE7aÞ

hΦ2trðS1cR ΣÞtrðS̄1RΣÞ þ H:c:i ¼ −
64

f2
ðð1=5Þη2 þH†H þΦ2

0 þ 2ΦþΦ−Þ −
128ffiffiffi
5

p ζη

f
− 64ζ2; ðE7bÞ

hΦ2trðS2cR ΣÞtrðS̄2RΣÞ þ H:c:i ¼ −
16

f2
ðð4=5Þη2 þH†HÞ þ 32ffiffiffi

5
p ζη

f
− 4ζ2; ðE7cÞ

hΦ2trðS1cR ΣÞtrðS̄2RΣÞ þ H:c:i ¼ −
8

f2
ðð9=10Þη2 þ 5H†H þΦ2

0 þ 2ΦþΦ−Þ þ
48ffiffiffi
5

p ζη

f
− 16ζ2; ðE7dÞ

hΦ2trðS2cR ΣÞtrðS̄1RΣÞ þ H:c:i ¼ −
8

f2
ðð9=10Þη2 þ 5H†H þΦ2

0 þ 2ΦþΦ−Þ þ
48ffiffiffi
5

p ζη

f
− 16ζ2; ðE7eÞ

for template T 10,

hΦ2trðScLΣS̄LΣÞ þ H:c:i ¼ −
16

f2
ðð9=10Þη2 þ 7H†H þΦ2

0 þ 2Φ−ΦþÞ þ
96ffiffiffi
5

p ζη

f
− 32ζ2; ðE8aÞ

hΦ2trðS1cR ΣS̄1RΣÞ þ H:c:i ¼ −
16

f2
ðð1=5Þη2 þH†H þ 2Φ2

0 þ 4Φ−ΦþÞ −
32ffiffiffi
5

p ζη

f
− 16ζ2; ðE8bÞ

hΦ2trðS2cR ΣS̄2RΣÞ þ H:c:i ¼ −
1

f2
ðð64=5Þη2 þ 16H†HÞ þ 32ffiffiffi

5
p ζη

f
− 4ζ2; ðE8cÞ

hΦ2trðS1cR ΣS̄2RΣÞ þ H:c:i ¼ −
16

f2
H†H; ðE8dÞ

hΦ2trðS2cR ΣS̄1RΣÞ þ H:c:i ¼ −
16

f2
H†H; ðE8eÞ

for template T 11,

hΦ2trðAc
LΣĀLΣÞ þ H:c:i ¼ −

16

f2
ðð9=10Þη2 þ 3H†H þΦ2

0 þ 2ΦþΦ−Þ þ
96ffiffiffi
5

p ζη

f
− 32ζ2; ðE9aÞ

hΦ2trðAc
RΣĀRΣÞ þ H:c:i ¼ −

4

f2
ðð1=5Þη2 þH†H þ 2Φ2

0Þ −
8ffiffiffi
5

p ζη

f
− 4ζ2; ðE9bÞ

and for template T 12,

htrðD1
LΣD̄1T

L Σ�Þi ¼ 8

f2
H†H; ðE10aÞ

htrðD2
LΣD̄2T

L Σ�Þi ¼ 8

f2
H†H; ðE10bÞ
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htrðD1
LΣD̄2T

L Σ�Þ þ H:c:i ¼ −
8

f2
ðð5=2Þη2 þ 5H†H

þΦ2
0 þ 2ΦþΦ−Þ; ðE10cÞ

htrðD1
RΣD̄1T

R Σ�Þi¼−
2

f2
ðH†Hþ4ΦþΦ−Þ; ðE10dÞ

htrðD2
RΣD̄2T

R Σ�Þi ¼ −
200

f2
H†H; ðE10eÞ

htrðD1
RΣD̄2T

R Σ�Þ þ H:c:i ¼ 0: ðE10fÞ
Notice that htrðD2

LΣD̄1T
L Σ�ÞþH:c:i¼ htrðD1

LΣD̄2T
L Σ�Þþ

H:c:i.

APPENDIX F: Veff FOR THE h AND φ FIELDS

In this appendix, we obtain the exact form of the
effective potential, assuming that the SUð5Þ=SOð5Þ pion
field is given by Π ¼ V, where

V ¼

0BBBBB@
0 0 0 0 0

0 0 0 0 0

0 0 0 φ 0

0 0 φ 0 h

0 0 0 h 0

1CCCCCA: ðF1Þ

A comparison to Eq. (D3) shows that this corresponds to
keeping h ¼ ffiffiffi

2
p

ReH0 and φ ¼ ffiffiffi
2

p
Imϕ−þ arbitrary, while

turning off the other 12 pNGBs. (Like H0, also ϕ−þ is
electrically neutral.) The coset field is then given by

Σ ¼ 1þ 2iV
f

sinðαÞ
α

−
4V2

f2
1 − cosðαÞ

α2

¼ 1þ 2iV
f

ŝ −
4V2

f2
ĉ; ðF2Þ

where

V2 ¼

0BBBBB@
0 0 0 0 0

0 0 0 0 0

0 0 φ2 0 φh

0 0 0 φ2 þ h2 0

0 0 φh 0 h2

1CCCCCA; ðF3Þ

α2 ¼ 4ðh2 þ φ2Þ=f2, and we have introduced the short-
hands ŝ ¼ sinðαÞ=α and ĉ ¼ ð1 − cosðαÞÞ=α2.
The contributions to the effective potential from template

T 1 are

hΦ1−2qtrðS̄1RΣNRÞ þ H:c:i ¼ 8 cosðð1 − 2qÞζÞ
�
1 − ĉ

2φ2 þ h2

f2

�
; ðF4aÞ

hΦ1−2qtrðS̄2RΣNRÞ þ H:c:i ¼ cosðð1 − 2qÞζÞ
�
2 − 8ĉ

h2

f2

�
: ðF4bÞ

The contributions of template T 2 are again obtained from those of T 1 by replacing 1 − 2q with 1þ 2q. For T 3 we have

hΦ1−2qtrðĀRΣD1T
R Þ þ H:c:i ¼ −2 cosðð1 − 2qÞζÞ

�
1 − ĉ

2φ2 þ h2

f2

�
; ðF5aÞ

hΦ1−2qtrðĀRΣD2T
R Þ þ H:c:i ¼ 0; ðF5bÞ

hΦ1þ2qtrðĀLΣD1T
L Þ þ H:c:i ¼ −8 cosðð1þ 2qÞζÞ

�
1 − 4ĉ

h2

f2

�
; ðF5cÞ

hΦ1þ2qtrðĀLΣD2T
L Þ þ H:c:i ¼ 8 cosðð1þ 2qÞζÞ

�
1 − ĉ

2φ2 þ h2

f2

�
; ðF5dÞ

for T 4,

hΦ1−2qtrðS̄1RΣD1T
R Þ þ H:c:i ¼ 0; ðF6aÞ

hΦ1−2qtrðS̄1RΣD2T
R Þ þ H:c:i ¼ 8 cosðð1 − 2qÞζÞ

�
1 − ĉ

2φ2 þ h2

f2

�
; ðF6bÞ

hΦ1−2qtrðS̄2RΣD1T
R Þ þ H:c:i ¼ 0; ðF6cÞ
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hΦ1−2qtrðS̄2RΣD2T
R Þ þ H:c:i ¼ −8 cosðð1 − 2qÞζÞ

�
1 − 4ĉ

h2

f2

�
; ðF6dÞ

hΦ1þ2qtrðS̄LΣD1T
L Þ þ H:c:i ¼ 8 cosðð1 − 2qÞζÞ

�
1 − 4ĉ

h2

f2

�
; ðF6eÞ

hΦ1þ2qtrðS̄LΣD2T
L Þ þ H:c:i ¼ 8 cosðð1 − 2qÞζÞ

�
1 − ĉ

2φ2 þ h2

f2

�
; ðF6fÞ

for T 5

hΦ−1−2qtrðĀc
RΣ�D1

RÞ þ H:c:i ¼ 2 cosðð1þ 2qÞζÞ
�
1 − ĉ

2φ2 þ h2

f2

�
; ðF7aÞ

hΦ−1−2qtrðĀc
RΣ�D2

RÞ þ H:c:i ¼ 0; ðF7bÞ

hΦ−1þ2qtrðĀc
LΣ�D1

LÞ þ H:c:i ¼ 8 cosðð1 − 2qÞζÞ
�
1 − ĉ

2φ2 þ h2

f2

�
; ðF7cÞ

hΦ−1þ2qtrðĀc
LΣ�D2

LÞ þ H:c:i ¼ −8 cosðð1 − 2qÞζÞ
�
1 − 4ĉ

h2

f2

�
; ðF7dÞ

and for T 6,

hΦ−1−2qtrðS̄1cR Σ�D1
RÞ þ H:c:i ¼ 0; ðF8aÞ

hΦ−1−2qtrðS̄1cR Σ�D2
RÞ þ H:c:i ¼ 8 cosðð1þ 2qÞζÞ

�
1 − ĉ

2φ2 þ h2

f2

�
; ðF8bÞ

hΦ−1−2qtrðS̄2cR Σ�D1
RÞ þ H:c:i ¼ 0; ðF8cÞ

hΦ−1−2qtrðS̄2cR Σ�D2
RÞ þ H:c:i ¼ −8 cosðð1þ 2qÞζÞ

�
1 − 4ĉ

h2

f2

�
; ðF8dÞ

hΦ−1þ2qtrðS̄cLΣ�D1
LÞ þ H:c:i ¼ 8 cosðð1 − 2qÞζÞ

�
1 − ĉ

2φ2 þ h2

f2

�
; ðF8eÞ

hΦ−1þ2qtrðS̄cLΣ�D2
LÞ þ H:c:i ¼ 8 cosðð1 − 2qÞζÞ

�
1 − 4ĉ

h2

f2

�
: ðF8fÞ

The results for template T 7 are

htrðS̄LΣÞtrðSLΣ�Þi ¼ 16
h2

f2

�
ŝ − 2ĉ

φ

f

�
2

; ðF9aÞ

htrðS̄1RΣÞtrðS1RΣ�Þi ¼ 16

�
−1þ ĉ

2φ2 þ h2

f2

�
2

; ðF9bÞ

htrðS̄2RΣÞtrðS2RΣ�Þi ¼
�
−1þ 4ĉ

h2

f2

�
2

; ðF9cÞ

htrðS̄1RΣÞtrðS2RΣ�Þi ¼ 4

�
−1þ 4ĉ

h2

f2

��
−1þ ĉ

2φ2 þ h2

f2

�
:

ðF9dÞ

The expansion of Eq. (F9a) contains the cubic term h2φ
[compare Eq. (4.15)].
In the case of template T 8, the results for the right-

handed spurions may again be obtained from those
for T 7 as in Appendix E. For the contribution of qL we
now find

htrðScLΣÞtrðS̄cLΣ�Þi ¼ 16
h2

f2

�
ŝþ 2ĉ

φ

f

�
2

: ðF10Þ

This differs from Eq. (F9a) by the relative sign inside
the square, and again contains a cubic term. We observe
that a cancellation of the cubic terms between the con-
tributions of Eqs. (F9a) and (F10), while technically
possible, is unlikely. In Veff , each contribution gets
multiplied by two coupling constants from LEHC, and by
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a low-energy constant. In order for this cancellation to
happen, the ratio of the relevant low-energy constants,
which is a feature of the stand-alone hypercolor theory,

would have to be equal to the ratio of the coupling constants
squared, which are features of the EHC theory.
The results for template T 9 are

hΦ2trðScLΣÞtrðS̄LΣÞ þ H:c:i ¼ 32 cosð2ζÞ h
2

f2

�
4ĉ2

φ2

f2
− ŝ2

�
; ðF11aÞ

hΦ2trðS1cR ΣÞtrðS̄1RΣÞ þ H:c:i ¼ 32 cosð2ζÞ
�
−1þ ĉ

2φ2 þ h2

f2

�
2

; ðF11bÞ

hΦ2trðS2cR ΣÞtrðS̄2RΣÞ þ H:c:i ¼ 2 cosð2ζÞ
�
−1þ 4ĉ

h2

f2

�
2

; ðF11cÞ

hΦ2trðS1cR ΣÞtrðS̄2RΣÞ þ H:c:i ¼ 8 cosð2ζÞ
�
−1þ 4ĉ

h2

f2

��
−1þ ĉ

2φ2 þ h2

f2

�
; ðF11dÞ

for template T 10,

hΦ2trðScLΣS̄LΣÞ þ H:c:i ¼ 16 cosð2ζÞ
�
1 −

ðŝ2 þ 5ĉÞh2 þ 2ĉφ2

f2
þ4ĉ2

h2ðh2 þ 3φ2Þ
f4

�
; ðF12aÞ

hΦ2trðS1cR ΣS̄1RΣÞ þ H:c:i ¼ 8 cosð2ζÞ
�
1 −

2ĉh2 þ ð4ĉþ 2ŝ2Þφ2

f2
þ4ĉ2

2φ4 þ 2φ2h2 þ h4

f4

�
; ðF12bÞ

hΦ2trðS2cR ΣS̄2RΣÞ þ H:c:i ¼ 2 cosð2ζÞ
�
−1þ 4ĉ

h2

f2

�
2

; ðF12cÞ

hΦ2trðS1cR ΣS̄2RΣÞ þ H:c:i ¼ 8 cosð2ζÞ h
2

f2

�
−ŝ2 þ 4ĉ2

φ2

f2

�
; ðF12dÞ

for template T 11,

hΦ2trðAc
LΣĀLΣÞ þ H:c:i ¼ 16 cosð2ζÞ

�
1þ ðŝ2 − 5ĉÞh2 − 2ĉφ2

f2
þ4ĉ2

h2ðφ2 þ h2Þ
f4

�
; ðF13aÞ

hΦ2trðAc
RΣĀRΣÞ þ H:c:i ¼ 2 cosð2ζÞ

�
1þ 2

ðŝ2 − 2ĉÞφ2 − ĉh2

f2
þ8ĉ2

φ2ðφ2 þ h2Þ
f4

�
; ðF13bÞ

and finally, for template T 12,

htrðD1
LΣD̄1T

L Σ�Þi ¼ 4
h2

f2

�
ŝ − 2ĉ

φ

f

�
2

; ðF14aÞ

htrðD2
LΣD̄2T

L Σ�Þi ¼ 4
h2

f2

�
ŝþ 2ĉ

φ

f

�
2

; ðF14bÞ

htrðD2
LΣD̄1T

L Σ�Þi ¼ 4

�
−1þ 4ĉ

h2

f2

��
−1þ ĉ

2φ2 þ h2

f2

�
; ðF14cÞ

htrðD1
LΣD̄2T

L Σ�Þi ¼ 4

�
−1þ 4ĉ

h2

f2

��
−1þ ĉ

2φ2 þ h2

f2

�
; ðF14dÞ

htrðD1
RΣD̄1T

R Σ�Þi ¼ −1þ ð2ŝ2 þ 4ĉÞφ
2

f2
þ 2ĉ

h2

f2
− 8ĉ2

φ2ðφ2 þ h2Þ
f4

; ðF14eÞ
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htrðD2
RΣD̄2T

R Σ�Þi ¼ 20þ 8ðŝ2 − 2ĉÞφ
2

f2
− 8ð4ŝ2 þ 17ĉÞ h

2

f2
þ 16ĉ2

2φ4 − 6φ2h2 þ 17h4

f4
; ðF14fÞ

htrðD1
RΣD̄2T

R Σ�Þi ¼ −40ĉ ŝ
h2φ
f3

; ðF14gÞ

htrðD2
RΣD̄1T

R Σ�Þi ¼ −40ĉ ŝ
h2φ
f3

: ðF14hÞ

An interesting property is that, for the parametrization (F2), only one odd function of the pNGB fields occurs in the
potential, namely, ĉ ŝ h2φ (see Sec. IV E for further discussion). By contrast, the effective potential depends on a large
number of even functions of the pNGBs. For completeness, the gauge sector’s contribution for the parametrization (F2) is40

Vgauge
eff ¼ −g2CLR

�
3 −

ð12ĉþ 2ŝ2Þφ2 þ 6ĉh2

f2
þ 8ĉ2φ2ðφ2 þ h2Þ

f4

�
− g02CLR

�
1 −

ð4ĉþ 2ŝ2Þφ2 þ 2ĉh2

f2
þ 8ĉ2φ2ðφ2 þ h2Þ

f4

�
: ðF15Þ

This contribution is the same for all the SUð5Þ=SOð5Þmodel, including in particular the models we consider in Sec. IVand
in Sec. V.
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