
Calib:

a package for MDT calibration

studies - User Manual

A.Baroncelli, M.Iodice, D.Orestano

INFN Sezione di Roma III and
Dipartimento di Fisica Universit�a degli Studi di Roma Tre

P.Bagnaia, L.Pontecorvo

INFN Sezione di Roma and
Dipartimento di Fisica Universit�a degli Studi di Roma "La Sapienza"

Abstract

This note describes the calib package, developed for the optimization of the

MDT calibration procedures but also used as a general MDT reconstruction

and performance evaluation tool. This package has been used to analyze data

both from Roma Tre cosmic test and from H8 test beam. The structure of

the program is presented together with a simpli�ed user guide.

1 Introduction

The MDT (monitored drift tubes) calibration procedures, and in particular the
possibility of autocalibration, have been studied extensively in the framework of
ATLAS muon activities. The experience gained from the analysis of test beam data
[1] and simulations [2] lead to the development of a software package called calib ,
used in the studies of data collected in H8 [3] and in Roma Tre cosmic ray test stand,
but
exible enough to accommodate any simple geometry. The calib framework
provides the essential steps in the analysis of MDT information: data decoding,
conversion of TDC counts into space information, pattern recognition and track �t
without magnetic �eld, and allows the insertion of user analysis tasks. The most
used user tasks developed for the H8 test beam data analysis are included in the
distribution of the code to be used as a starting point for new users.

2 Program description

The calib program is a stand-alone package, based only on few standard external
libraries: STL [4], CLHEP [5], HBOOK/CERNLIB [6]. It is organized in sub-
packages in order to be modular and, hopefully, to simplify its migration to the
oÆcial ATLAS framework in a near future. Each sub-package is represented by a
sub-directory in the calib top directory.

1

A
T

L
-M

U
O

N
-2

00
5-

01
3

17
 Ja

nu
ar

y
20

05

The following functionalities have been identi�ed and used in the domain de-
composition to de�ne the sub-packages:

Data
ow control associated to sub-package control .

Handling of database information associated to sub-package database .

Detector description associated to sub-package detector

Handling of events and di�erent data formats associated to sub-package
event

Pattern recognition and track �t associated to sub-package recon

User analysis tasks collected in sub-package user

Statistical analysis associated to sub-package his

Tools of various type associated to sub-package tools

Handling of job options, performed by each user task for the task speci�c options
and attributed to control for the global options.

3 Framework

3.1 Sub-package control

The calib framework is based upon the class CalibrationManager in the sub-package
control . CalibrationManager is a singleton instantiated in the main program
(calib.cxx) whose tasks are

� load the global job options from an external �le, calib.datacards , and provide
access to them through public methods from all the program classes. Global
job options include the input data format, the number of events to be pro-
cessed, skipped, displayed etc... The contents of �le calib.datacards will be
described in detail in paragraph 6.2.1.

� load from calib.datacards the sequence of user tasks to be processed and handle
in its CalibrationManager::execute method, a loop over the tasks, within which
an even loop is performed for each task. CalibrationManager::eventLoop loops
over the full data set in input as many times as requested by the user task.

It is important to underline that for each task a separate loop over the data is
performed, and for some tasks more than a loop is required. This
exibility, allowing
multiple iterations over the same data, was the main requirement which lead to the
development of a stand-alone framework. Some changes in the ATLAS framework
will be required in order to implement a similar functionality.

In its constructor CalibrationManager instantiates all the singletons used to
store data of di�erent types:

2

� the GeometryHandler in sub-package database for the access to the geometry
(cf. 3.2);

� the RTRelHandler in sub-package database for the access to the space-time
relation and to the resolution function (cf. 3.2);

� the T0Handler in sub-package database for the access to the T0 value of each
MDT tube (cf. 3.2);

� one of the classes inheriting from EventHandler in sub-package event (cf. 3.3
and 6.2.3) for the manipulation of events;

� the HisFile in sub-package his for the booking and storage of histograms (cf.
3.4).

3.2 Sub-package database

The GeometryHandler keeps the list (in the form of STL standard vectors) of the
pointers to the basic geometrical detector objects. For MDT the basic object is
a GeoMDTMultiLayer , for RPC the basic object is a GeoRPCStripPlane , both
belonging to sub-package database .

The constructor invokes the GeometryHandler::load method, which looks for a
�le named geo�les in the top directory and loops over the �les listed in geo�les (cf.
6.2.2) and loads their contents into the basic geometrical objects.

The geometrical description provided by GeoMDTMultiLayer and GeoRPC-
StripPlane is a tree going down to the single MDT tube (GeoMDTTube) and single
RPC strip (GeoRPCStrip). A parallel structure is used to store the event data and
links allow to cross-navigate through the two structures. Accessing the geometry
of a tube or a strip allows also to retrieve through appropriate links the electronics
and calibration information associated to the tube or strip. These links are updated
at the beginning of each new run by a call to GeometryHandler::updateLinks in
CalibrationManager::runInit() .

The RTRelHandler keeps a list of space-time relations RTRel . The space-time
relations are given by points in a set of �les listed in �le rt�les (cf. 6.2.2) in the
top directory. Each space-time relation is valid for a set of tubes listed inside the
�le and for the tubes portions selected in the �le header.

The T0Handler keeps a list of T0File , where each T0File contains the T0
values for a list of tubes. The T0Handler looks for �le t0�les (cf. 6.2.2) in the top
directory and loads the contents of the �les listed in it.

3.3 Sub-package event

Events are read-in from a list of input �les taken from top directory �le input and are
decoded by speci�c objects inheriting from EventHandler to implement the decoding
of di�erent data formats. These objects, like DAQEvent for H8 DAQ-1 data (cf.
6.2.3), are instantiated by CalibrationManager accordingly to the value of data card
DataFormat in calib.datacards . Some of these Event objects use in the decoding
the mapping of electronic channels to tubes provided by class EltxHandler in sub-
package database .

3

The class EventHandler , in sub-package event , is a singleton used to store a list
of pointers to detector speci�c SubEvent objects (like MDTMultiLayer and RPC-
StripPlane in sub-package detector). The pointer to the speci�c Event object can
be accessed by all other objects using the EventHandler::getEventHandler method.
All the hits can be retrieved navigating through the SubEvent list stored in the
Event object.

3.4 Sub-package his

The interface towards the histogramming package (actually HBOOK) is provided
by classes HisFile and Histo , in which all the standard operations upon histograms
have been implemented through the hbook.h cfortran �le from CERNLIB. This �le
had been copied locally in subdirectory his to get rid of the problems due to few
di�erences found between di�erent CERNLIB releases.

3.5 Sub-package tools

All the header �les in calib must include tools/Utils.h which provides a couple of
precompiler de�nes and the inclusion of MemoryChecker.h . MemoryChecker is a
singleton used to keep track of the number of objects created and deleted all over
the program. Developers should invoke MemoryChecker::increase in all the object
constructors andMemoryChecker::decrease in all the object destructors. At the end
of calib execution a check is performed on the number of objects still present and an
error message is issued in case of mismatch. In presence of a memory leak users can
call MemoryChecker::objects anywhere in the program to �nd out whether there
are pending links or attempts to delete non-existing objects.

4 Reconstruction

The sub-package recon contains the classes handling the event reconstruction. The
objects involved in MDT reconstruction are

� the MDTReconstructor

� the PRDetector

� the Track

while

� RPCReconstructor

� RPCTrack

must be developed for RPCs reconstruction.
Finally within recon a straight track generator, Generator has been implemented

to help in development and debugging of reconstruction, as well as to cross check
the autocalibration, the resolution and the eÆciency studies techniques (cf. 5.8).

4

4.1 MDTReconstructor

The pattern recognition acts on one or more GeoMDTMultiLayers (sub-detectors)
forming a PRDetector element, accordingly to what speci�ed in the datacards. A
MDTReconstructor object contains the hit list of the current event for a PRDe-
tector . On this MDT hit list a pattern recognition method (still belonging to the
MDTReconstructor class) is applied to search for tracks. As a general rule, a straight
track is found when the reduced chi squared of the hit residuals is below the value
speci�ed in the task datacard �le.

A checkAmbiguities method is also implemented to identify possible ambiguities
on the reconstructed tracks: two di�erent tracks can share a maximum number of
hits speci�ed in the datacards.

4.2 PRDetector

The class name comes from \Pattern Recognition Detector" element. A PRDetector
element is usually created when a taskInit method is invoked within a task where
tracks reconstruction is required.

More than one PRDetector can be constructed. In this case they will be treated
as di�erent elements on which tracks are independently searched for (as for example
in the CalAlign alignment task).

At PRDetector initialization a list of possible MDT tube patterns, for tracks
generated within the angular acceptance speci�ed on the datacards �le, is produced
by the buildCandidates method. The list of the produced CandidateTracks (con-
sisting in a list of tube identi�ers) is kept in memory to be used as a look-up table
by the pattern recognition algorithm. A single \reference pattern" is considered for
all those patterns di�ering only by a simple increment of tube number, when the
increment is the same for all layers (translation along z of the chamber).

The main method for track search purposes is matchCandidate allowing to
match the current event MDT hit list with the tube patterns listed in the look-up
table. Once a pattern is matched, a �tTrack method of the Track class is called to
de�ne the track parameters and to check whether the track is acceptable (reduced
chi squared less than a threshold) or not. If accepted, the hits are removed from the
hit list and other tracks are searched for in the updated hit list. If not accepted,
the same hits can later be assigned to an incomplete track, when one or more (bad)
hits are removed from the list. The method �rst scans all the CandidateTracks of
the look-up table to �nd \complete" tracks (number of hits = number of layers of
the PRDetector). The list is scanned again to look for tracks with missing hits.

Finally, it is worth mentioning that a method mergeTracks has been imple-
mented to properly handle those tracks at large angles (about 30 degrees w.r.t. the
normal to the chamber) which can give hits on two adjacent tubes in the same layer
(con�gurations not included in the look-up table).

4.3 Track

The minimal content of a track is a list of aligned MDT hits choosen as described
above. The method �tTrack is used to �nd the best straight line tangent to the

5

circles corresponding to the hit drift radii. At present two methods are available to
�nd the best slope and intercept of the straight line:

� a minimization procedure on the residual chi squared function, which makes
use of the MINUIT package [7],

� an analytic method which �nds all the tangent lines to a pair of subsequent
hits and follows these tangents to the next pair, �nally merging those closer
in slopes and intercepts.

Tests performed show there are no signi�cant di�erences between the two methods.

5 User tasks

User tasks, collected in sub-package user , are objects derived fromCalibrationTask in
control . The user should implement the following methods:

� void taskInit() , called at the beginning of the task execution;

� bool taskEnd() , called at the end of the task execution, it returns true when
the task is completed, and false when an additional iteration over the data
sample is needed;

� void runInit() , called at each new run;

� void runEnd() , called at the end of a run;

� void evtProc() , called for each event.

In addition user tasks can de�ne their own set of datacards to set task dependent
parameters.

Tasks already developed are described in this section.

5.1 CalT0Det

The user task CalT0Det builds the TDC counts spectrum histogram of each MDT
tube. From the datacards it is possible to change the histograms binning and to
decide whether to �t the distributions. At the end of the unique iteration performed
by this task an output �le (newt0.dat) with the �tted T0 of each tube is produced.

Be aware that the parameter called T0 above is just one of the param-

eters obtained from the �t corresponding approximatively to the center

of the rising slope of the spectrum. The e�ective time for zero drift dis-

tance must be obtained subtracting a constant from it, the same for all the

tubes. The constant is de�ned by the datacard T0o�set in calib.datacards .
This same task can provide in output a rough space-time relation (newrt.dat)

obtained from the integration of the TDC spectrum for a given tube, selected in
CalT0Det.datacards through the datacard tubeSel.

6

5.2 CalAutoCal

The user task CalAutoCal is the most important calib task. Starting from an input
space-time relation (obtained from the integration of the TDC spectrum, from a
simulation or from the analysis of another data set) it reconstructs tracks in the full
data sample and accumulates in a bi-dimensional histogram the residuals between
each drift circle attributed to the track and the distance of minimum approach
of the �tted track to the tube center, as a function of the measured drift time. In
CalAutoCal::taskEnd the information retrieved from the histogram is used to correct
the input space-time relation so that a new one can be used in the next iteration.
CalAutoCal::taskEnd stops the process returning true when a prede�ned maximum
number of iterations is reached but can be modi�ed to stop when the space-time
relation of one iteration is equal within errors to the previous one. The value of
the correction can be extracted from the histograms either by taking the average
residual in a drift time bin as computed by HBOOK through a pro�le histogram
or by taking the mean of a Gaussian �tted to the data in a drift time slice. The
selection between the two methods is done through the datacard defResidual in
CalAutoCal.datacards to be set to 1 or 2 respectively.

CalAutoCal can be run on a given data sample once the T0s have been deter-
mined (and organized in �les listed in t0�les), starting from a �rst approximation
space-time relation provided through the �les listed in rt�les . In output CalAuto-
Cal produces the new space-time relation saved to �le newrt.dat .

5.3 CalResol

Task CalResol reconstructs tracks using the correct T0 values and the best space-
time relation and computes the MDT tubes resolution. For each space bin, the
standard deviation of the track residual distribution on a plane excluded from the
track �t is computed. The resolution is obtained from this value after subtraction,
in quadrature, of the extrapolation error at that layer. Resolution is computed
separately for positive and negative residuals and the �nal result is given by the
average value between these two data sets. To reduce the dependence of the result
from the resolution assumed in the track �t the task can iterate over the data set
more than once. Typically two iterations are used. The �nal resolution is saved to
newres.dat together with the space-time relation.

5.4 CalAlign

Given the correct T0 values, the space-time relations and resolution functions for two
sub-detectors or sets of sub-detectors (for example two multilayers from the same
MDT chamber or two di�erent MDT chambers) this task reconstructs separately
two track segments in the two detectors and compares them, thus allowing the user
to check their relative alignment and possibly correct it by acting on the geometry
�les.

7

5.5 CalRecon

This task simply uses the correct T0 values, the best space-time relation and the
resolution, to reconstruct tracks in the MDTs.

5.6 CalMonitor

This task is an example of a higher level task, which for each event calls the evt-
Proc methods of CalT0Det and CalRecon and updates the histograms regularly,
with a frequency de�ned through the task datacards.

5.7 CalEÆ

This task evaluates the global eÆciency and eÆciency as a function of the radius of
a number of MDT tubes listed in the CalEÆ.datacards �le. The determination of
the eÆciency for each tube is performed by searching for complete tracks (number
of hits = number of layers) or for tracks with just one missing hit. If the tube under
investigation is included in the complete track, ful�lling a chi-squared cut, then it
is counted as \eÆcient". If for an incomplete track the missing tube is the one
under analysis, it is considered as \ineÆcient". However it can be \recovered" if its
residual is less than n�, � being the space resolution of the tube at the hit radius
and n a number to be speci�ed in the CalEÆ.datacards �le.

The �nal eÆciency results are not directly produced by the CalEÆ task but the
PAW [8] macro caleÆ.kumac should be run on calib output.

5.8 CalRayTrace

This task invokes a straight track generator to produce simple simulated events
and saves them in the ASCII format compatible with class PBEvent . Tracks are
generated in the PRDetector element speci�ed in the datacard �le with a given
angular spread.

For each �ring tube the radius is then smeared with a resolution function which
is hard coded in class Generator . The usual space-time relation written in the
rt�les is then used to convert radii into times. The t0�les data are also taken into
account. A uniform level of noise as well as the eÆciency as a function of the radius
can be added.

5.9 RPCAnalysis

This task in under development for the reconstruction of tracks in the RPC detectors.

6 Program usage

6.1 Installing and compiling the program

The program, maintained under CVS, is available in the form of a compressed tar
�le at the address /afs/cern.ch/user/d/domizia/public/calib. It was developed on

8

Linux PC but should work on any Unix platform using GNU compiler gcc version
egcs-2.91.66. You will need access to afs or a local copy of the CERNLIB (version
99 or later) and CLHEP.

6.2 Customizing the setup

The program still lacks a con�guration tool allowing to de�ne coherently geometry,
number of elements (tubes or strips) for which electronics and calibration informa-
tion is needed, data format and so on, so the customization of the setup is a critical
point, requiring changes in many di�erent �les. In the following special emphasis
will be put on settings which imply coherent changes elsewhere.

6.2.1 Data cards

In the top directory you will have to modify calib.datacards inserting

� the maximum number of events to be processed (must be 0 for the CalRay-
Trace task);

� the number of events to be skipped if needed;

� the number of events to be saved on �le display.dump , to be used in PAW for
MDT events visualization (PAW tools are collected in the display directory);

� a global debug
ag, used to control the verbosity of reconstruction algorithms
(for 0 < Debug < 3) and event decoding (Debug > 3);

� the minimum and maximum number of TDC counts for the MDT physical
window;

� the number of counts to be subtracted from the T0 quoted from the spectrum
�t to MDT data to get the e�ective zero time;

� the data format, which has changed and will continue to change from site to
site and between a test and the next one;

� the tasks to be activated and a number specifying the calling sequence.

Please note that the data format, being site and time dependent, is cer-

tainly related also to the geometrical setup and of course to the input

�les.

This is an example of �le calib.datacards in top directory:

max number of events per run

nev 100

events to be skipped

nsk 0

events to be dumped for the display

display 10

global debug flag (for decoding and reconstruction)

9

Debug 0

physical range for TDC counts (MDT)

TDCrange 0 2000

quantity to be subtracted for T0s

T0offset 20

data format type

0 ascii

1 binary from DAQ-1

2 binary from Roma Tre LAB

3 ascii from Roma Tre LAB

4 binary from July 2001 Bundle Test in H8

DataFormat 1

available tasks and their calling sequence number

CalT0Det 0 # T0 determination from TDC spectra

CalAutoCal 1 # autocalibration

CalResol 2 # resolution

CalAlign 3 # alignment task

CalRecon 4 # bare reconstruction

CalRayTrace 5 # generator

CalEffi 6 # Efficiency

CalMonitor 7 # monitoring task

RPCAnalysis 0 # RPCs tasks

Accordingly to the selected tasks the task speci�c datacards will have to be
modi�ed. Usually they contain cuts for the analysis to be performed, a local debug

ag and often a list of SubEvents (MDTMultiLayers for MDT tasks) to be included
in the reconstruction and analysis. The selected SubEvents must of course be

among the ones de�ned in the geometry.

This is an example of CalT0Det.datacards in top directory:

#CalT0Det task configuration default values:

#verbosity level

debug 1

#number of bins in TDC spectra histograms (lower an upper abscissa are

#fixed to the values given to TDCrange in calib.datacards

binNum 300

#flag to activate (1) or deactivate (0) the fit to the spectra

fitTDC 0

#default T0 value assumed in case of fit failure

default 350

#initial values of parameters used in TDC spectrum fit

#those with physical meaning are (from 1 to 8)

#parameter 1 noise level outside the drift time window,

#parameter 5 related to T0

#parameter 6 related to Tmax

#parameter 7 related to the spectrum slope around T0

#parameter 8 related to the spectrum slope around Tmax

params 0. 15. 5. 100. 350. 1350. 2.5 8.

10

#maximum value of reduced chi2 to accept the fit result

chi2max 1.5

#list of MultiLayers to be used in the analysis

multilayers 11 12 21 22 0 0 0 0 0 0

#tube to be used for the evaluation of space-time relation from

#spectrum integration

tubeSel 11302

This is an example of �le CalAutoCal.datacards in top directory:

#CalAutoCal task configuration default values:

#selection of the method to be used to compute the correction to space-time rel

defResidual 1

#maximum number of iterations to be performed

maxIterations 10

#verbosity level

debug 1

#minimum number of hits in accepted tracks

minHits 6

#maximum number of tracks in the event

maxTracks 1

#list of chi2 cuts to be applied on reconstructed track at each iteration

(foresee maxiterations values!)

chiCut 50000. 5000. 1000. 500. 200. 100. 50. 20. 20. 20.

#minimum and maximum angle for accepted tracks

angMin -0.35

angMax 0.35

#maximum number of missing hits for accepted tracks

missHits 0

#maximum number of tubes shared among different tracks

sharedTubes 0

#list of MDTMultiLayers to be used in the analysis

multilayers 11 12 0 0 0 0 0 0 0 0

#assign ml 11 and 12 to the same pattern recognition unit, i.e. look for tracks

#in both multilayers

prdetectors 1 1 0 0 0 0 0 0 0 0

This is an example of �le CalResol.datacards in top directory:

#CalResol task configuration default values:

#verbosity level

debug 1

#minimum number of hits in accepted tracks

minHits 6

#maximum number of tracks per event

maxTracks 2

#chi2 cut of accepted tracks

chiCut 10.

#minimum and maximum angle for accepted tracks

11

angMin -0.35

angMax 0.35

#maximum number of missing hits in accepted tracks

missHits 0

#maximum number of tubes shared by different tracks

sharedTubes 0

#number of points used in the resolution function

resolBins 51

#list of MDT MultiLayers to be used in analysis

multilayers 11 12 0 0 0 0 0 0 0 0

6.2.2 Other �les

In the top directory the following �les should be present

� geo�les , containing the list of geometry �les to be loaded by the Geometry-
Handler ,

� rt�les , containing the list of space-time relation �les to be loaded by the
RTRelHandler ,

� t0�les , containing the list of T0 �les to be loaded by the T0Handler ,

� eltx�les , containing the list of channels mapping �les to be loaded by the
EltxHandler .

For the format and contents of the �les to be loaded please refer to the description
included in the example �les distributed with calib under sub-directory data .

6.2.3 Data format

The data formats implemented up to now are

� the ASCII format produced for 1998 H8 test beam data and used since then
in some MC productions. For this format use the EventHandler sub-class
PBEvent in sub-package event ;

� the binary format used in Roma Tre test site, decoded by the EventHandler
sub-class LABEvent in sub-package event ;

� the ASCII format used in Roma Tre test site, decoded by the EventHandler
sub-class LABAsciiEvent in sub-package event ;

� the DAQ-1 format for events in taken H8 2001 test beam, decoded by the
EventHandler sub-class DAQEvent in sub-package event .

To account for the frequent setup changes during the data taking and simplify
the decoding in the latter case the EltxHandler object, loading electronic channels
maps for external �les, has been introduced and its use will probably be propagated
to the other Event classes in the near future.

This is an example of an electronic channels map �le:

12

this file contains the mapping tdc, channel -> tube for the

specified run range (not used yet!)

elx 0 10000

channel -> tube mapping in the first layer of a 3 layers mezzanine

first & second multilayer

mz3 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

channel -> tube mapping in the first layer of a 4 layers mezzanine

first & second multilayer

mz4 3 6 2 5 1 4 1 4 2 5 3 6

association mezzanine type -> tdc number -> tube id for channel 0

(with ml = 0 for the trigger)

tdc 4 0 0

tdc 3 1 21316

tdc 3 2 21308

tdc 3 3 22316

tdc 3 4 22308

tdc 4 5 11109

tdc 4 6 11103

tdc 4 7 12107

tdc 4 8 12101

The above �le describes the mapping of the TDC channels for 3 and 4 layers mez-
zanines and provides the association between tube number and channel 0 of a TDC
with given number.

6.3 Developing your own task

If you wish to develop your own task remember that

� the source code should be inserted in the user sub-directory;

� it should inherit from CalibrationTask and implement the methods task-
Init ,taskEnd ,runInit ,runEnd and evtProc ;

� method taskEnd should return true to stop iterating over data and false to
go through another iteration;

� the new task should be added to calib.datacards and therefore to the Calibra-
tionManager::jobOpt method which reads them in. The header �le should be
included in CalibrationManager.cxx .

6.4 Running calib

1. Compile the program by issuing the commandmake from the calib top direc-
tory. The executable calib will be produced.

2. Choose the job parameters and in particular the sequence of tasks to be exe-
cuted from calib.datacards .

13

3. Check and eventually modify the datacards of the selected tasks. In particular
de�ne the list of sub-detectors to be used by the task.

4. Select the data sample and list the input �les in �le input .

5. Verify the geometry �les listed in geo�les : these should correspond to the
setup used in the data taking and should describe at least all the sub-detectors
selected in step 3.

6. Verify the T0 �les listed in t0�les : these should list the tube identi�er and
the T0 values for all the tubes in the required sub-detectors. The T0 values
can be dummy values when running CalT0Det but must be reliable ones for
all the other tasks.

7. verify the space-time relation �les listed in rt�les : all the tubes in the se-
lected sub-detectors should be listed in these �les. The actual space-time and
resolution functions can be just initial ones when running respectively CalAu-
toCal and CalResol tasks, but their binning as a function of the drift time
should be the one chosen for the resulting function.

The program allows running in the same job a sequence of tasks each using the results
from the previous one, for example the sequence: CalT0Det producing an output
�le newt0.dat listed in t0�les in order to be used by CalAutoCal . Nevertheless
this use is not recommended and users are encouraged to carefully check the results
from a task before using them in input for another task.

References

[1] C.Bacci et al. - ATLAS MUON-97-135 (10 January 1997).

A.Biscossa et al. - ATLAS MUON-97-136 (14 January 1997).

A.Negri et al. - ATLAS MUON-97-153 (5 May 1997).

P.Creti et al. - ATLAS MUON-97-196 (29 June 1997).

C.Bini et al. - ATLAS MUON-97-204 (16 July 1997).

A.Biscossa et al. - Nucl. Instr. and Meth., A419, 331 (21 December 1998).

P.Creti et al. - ATLAS MUON-2000-005 (4 November 1999).

[2] R.Veenhof - Gar�eld, Cern Program Library W5050.

[3] G.Avolio et al., ATL-COM-MUON-2001-022: First results of the 2001 MDT
chambers beam test, submitted on October 20th 2001, 18p.

[4] Silicon Graphics Computer System Inc. and Hewlett-Packard Company, Stan-
dard Template Library, http://www.sgi.com/tech/stl/

[5] L.L�onnblad, Comput. Phys. Comm. 84(1994) 307.

http://wwwinfo.cern.ch/asd/lhc++/clhep/

14

[6] R.Brun - Hbook, Cern Program Library Y250.

[7] F.James, M.Roos - Minuit, Cern Program Library D506.

[8] R.Brun - Paw, Cern Program Library Q121.

15

