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1 Introduction

The real-time dynamics of heavy ion collisions is governed by QCD at relatively large

coupling, which remains poorly understood despite significant theoretical efforts. While

in principle both the weak-coupling expansion and lattice QCD provide systematically

improvable schemes for the calculation of any physical quantity, including unequal-time

correlation functions (∆t ≫ 1/T ) at a finite temperature T (T & 200 MeV), both are

in practice faced with serious limitations, related to the convergence of the weak-coupling

expansion and to the need to carry out analytic continuation, respectively. Therefore many

current attempts to describe the real-time dynamics of QCD at realistic temperatures rely

on models. For instance, for heavy quark thermalization and diffusion, the main topics of

the present paper, a relatively successful model treatment can be obtained by incorporating

bound states as dynamical degrees of freedom into the description of an otherwise partonic

medium [1]. Unfortunately, such models need typically to be tuned to the particular ob-

servable in question, rather than having a universal character, and also do not allow for a

systematic improvement.

As an alternative to models, much recent literature has focused on analogue theories,

by which we mean well-defined frameworks which are sufficiently close to QCD that most

interesting QCD measurables have equivalents in the analogue, but which are nevertheless

more amenable to calculation. Two such frameworks have been especially widely used:

QCD truncated to the first non-trivial order in the weak-coupling expansion (see, e.g.,
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ref. [2]), and N=4 Super-Yang-Mills theory in the limit of an infinite number of colors and

a large ’t Hooft coupling (see, e.g., refs. [3, 4]).

QCD truncated to the first non-trivial order in the weak-coupling series is the starting

point of a systematic expansion, and thus arguably the most similar analogue theory,

guaranteed to be correct in the limit of a high temperature. The problem is that in the

present setting it is technically extremely hard to work out subsequent terms in the weak-

coupling series, given that extensive resummations are needed for dynamical quantities

evolving over long time scales, and that in general several terms in the expansion would be

needed, in order to obtain any kind of convergence. In fact, even though five subleading

orders are available for thermodynamic (i.e. equal-time) quantities such as the pressure [5],

convergence remains debatable [6]; in the dynamical case at most the first non-trivial order

has been reached so far [7–10], and the results certainly display very large O(g) corrections.

This appears to indicate that the weak-coupling expansion is not well behaved except at

very high temperatures, casting doubts on the physical relevance of truncated results in

the realistic temperature range.

Super-Yang-Mills theory (SYM) resembles QCD in that it is a gauge theory with

matter. However it contains many more matter multiplets than ordinary QCD, and in

a different representation of the gauge group, which makes the matching between the

theories ambiguous [11]. Furthermore, computations on the SYM side are simple (using

the famous AdS/CFT correspondence [12]) only in the limit of an infinite coupling, whereas

the interesting regime is probably intermediate coupling.

In this paper we argue in favor of another analogue theory for the real-time dynamics of

QCD: classical Yang-Mills theory regulated on a spatial lattice. This theory was developed

by Kogut and Susskind [13] and has been used extensively to study the rate of Chern-Simons

number diffusion in Yang-Mills theory [14], as well as (partly) out-of-equilibrium phenom-

ena such as plasma instabilities [15], the dynamics of electroweak symmetry breaking [16],

and inflationary preheating [17]. Recently, it was also applied for estimating the imaginary

part of the real-time heavy-quark potential in QCD [18], and analogous methods were used

for studying jet energy loss and transverse broadening in a hot non-Abelian plasma [19].

In this approach the infrared (IR) behavior of QCD is approximated by introducing semi-

classical fields, while in the ultraviolet (UV) the quantum mechanical “cutoff” on thermal

effects from short distances is replaced with a lattice cutoff. Formally, the classical limit

corresponds to taking ~ → 0, which is a non-trivial limit at non-zero temperatures [20, 21],

and non-singular in the presence of the lattice cutoff.

In this paper we use this framework to study one of the simplest gauge-invariant

observables, the correlator of two electric fields along a Wilson line,

κ(ω) ≡
1
3

∑3
i=1

∫

dt eiωt Tr 〈U(−∞− iβ, t) gEi(t,0) U(t, 0) gEi(0,0) U(0,−∞)〉
Tr 〈U(−∞− iβ, t)U(t, 0)U(0,−∞)〉 , (1.1)

where β ≡ 1/T ; gEi ≡ i[D0,Di] is the color-electric field; U(tb, ta) represents a temporal

Wilson line from ta to tb at a fixed spatial location x = 0; and the trace is over the funda-

mental representation. The denominator removes any regularization issues associated with
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the Wilson lines themselves. The zero-frequency limit κ(0) of this correlator is the momen-

tum diffusion coefficient of a heavy quark [4, 22], and the combination ηD = κ(0)/2MkinT

emerging from linear response relations, with Mkin denoting the so-called kinetic mass of

the heavy quark, determines the heavy quark thermalization rate [2, 22, 23].

Our goals and the organization of the paper are as follows. In section 2, we describe

the basic ideas behind classical lattice gauge theory as a tool for studying real-time quan-

tities in QCD. In section 3, we focus more precisely on the observable in eq. (1.1), and

use the weak-coupling regime to study how close the analogy between the two theories

really is. The limitations of classical lattice gauge theory as a model for QCD are also

illustrated, by studying the unphysical “strong-coupling” limit of the lattice-regulated the-

ory. In section 4, we discuss the results we obtain at intermediate couplings, where the

weak-coupling expansion fails yet classical lattice gauge theory still captures the correct

infrared dynamics that causes the failure. Some discussion and conclusions can be found

in section 5, while two appendices contain details related to the weak and strong-coupling

regime on the classical lattice, respectively.

2 Classical lattice theory: basic idea

At a temperature far above the confinement scale, such that the effective gauge coupling

g is small, QCD (whether pure-glue or with dynamical quarks) possesses three different

parametric length scales (≡ inverse momentum scales):

• the length scale (πT )−1, where most of the energy resides;

• the “color-electric” length scale (gT )−1, where plasma screening effects become im-

portant and perturbation theory needs to be resummed [24]; and

• the “color-magnetic” length scale (g2T/π)−1, where interactions become genuinely

non-perturbative. The longest spatial correlation lengths of gauge invariant operators

are on this scale [25].

Different real-time correlation functions and physical properties of QCD are sensitive to

different scales. For instance, the Chern-Simons diffusion rate is sensitive dominantly to the

momentum scale g2T/π; it depends on the other scales only in that they change the dynam-

ics on this scale. Scattering, radiation and energy loss are sensitive mostly to the scale gT .

This scale therefore captures much of the physics of current interest in heavy ion collisions,

such as jet quenching and heavy quark thermalization. Shear viscosity, on the other hand, is

principally sensitive to the scale πT , since most of the energy and momentum reside there.

Since for the momentum scales p ∼ gT, g2T/π the loop expansion parameter related

to bosonic fields, ǫ ∼ g2~/(eβ~p −1), can parametrically be replaced with its classical limit,

g2T/p, it can be argued [26] and shown formally [20] that the physics at the scales gT ,

g2T/π is described by classical statistical field theory. Quantum mechanics is only relevant

at the scale πT , where its role is to ensure that thermal excitations on short scales are

suppressed. The idea of the lattice analogue theory is to suppress thermal excitations on
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short scales instead by imposing a spatial lattice cutoff. The resulting theory is a classical

field theory on all scales. At weak coupling it remains a three-scale theory, with:

• the length scale a, where most of the energy resides;

• the color-electric length scale (g2T/a)−1/2 ∼ aβ
1/2
L , where plasma screening effects

become important and perturbation theory needs to be resummed [27, 28]; and

• the length scale (g2T/π)−1 ∼ aβL, where interactions become non-perturbative. The

longest spatial correlation lengths of gauge invariant operators are on this scale.

Here we have introduced the “lattice coupling”, βL ≡ 2Nc/g
2Ta, which controls whether

interactions are perturbative at the lattice spacing scale.

Physics at the scale a is definitely different from physics of the quantum theory at the

scale (πT )−1. In particular, lattice discretization breaks translational invariance so there

is no conserved momentum. This changes hydrodynamic behavior in an essential way, so

one should not try to study shear viscosity with the classical theory. However, the more

infrared scales, describing “collective phenomena”, are only changed to the extent that the

loop effects they feel from the hard momenta, associated with the expansion parameter

ǫ ∼ g2T/p ∼ g2Ta, differ from the corresponding quantum loop effects, with ǫ ∼ g2/π.

For equal-time quantities, these radiative effects turn out to be rotationally invariant

and of exactly the same form as in the continuum quantum theory. They are simply a

Debye mass parameter for the A0 field, of magnitude [29]

m2
D,cont =

2Nc + Nf

6
g2T 2 , (2.1)

m2
D,latt =

2NcΣ

4π

g2T

a
, Σ = 3.175911536 . . . . (2.2)

Equating these gives a concrete way of relating the lattice spacing a and the temperature T ,

a ≃ 3ΣNc/πT (2Nc +Nf). [Note that the p ∼ 1/a lattice modes are playing the role both of

ultraviolet gluonic degrees of freedom (the 2Nc) as well as of quark fields (the Nf); infrared

quarks can be neglected because at low frequencies the Fermi-Dirac distribution function

is much smaller than the Bose-Einstein one.] At the dynamical level, however, radiative

effects are no longer rotationally invariant [27, 28], which means that any “matching”

between the lattice scale a and the temperature T is ambiguous, and only makes sense in

order-of-magnitude. We return to this issue in more detail in the next section.

Considering finally the color-magnetic scale, it remains the same, g2T/π, in both the-

ories. In other words, the precise form of the ultraviolet regulator is invisible to physics

at the largest distances. At the same time, the dynamics on the scale g2T/π is non-

perturbative [25], but can relatively easily be simulated numerically through the classi-

cal description.

Consider now the “weak-coupling regime” where the three scales are widely separated,

and an observable dominantly determined by the scale gT . Its exact value is given by

the leading order result modified by relative corrections suppressed by ǫ ∼ g2T/p. While
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corrections from the hard scale p ∼ πT may remain controllably small down to low tem-

peratures (cf., e.g., ref. [30]), experience with many observables such as the plasmon fre-

quency [7], the heavy quark diffusion coefficient [8], the light quark dispersion relation [9],

the jet quenching parameter q̂ [10], or the Debye screening length [31], has shown that

radiative corrections from the scale p ∼ gT itself can be very large (even if parametrically

perturbative). The challenge would therefore be to sum the corrections from the scales

p ∼ gT, g2T/π to all orders.

The key property of the classical lattice theory is that it is amenable to a numerical

simulation, and therefore indeed allows for all-orders resummations of the type mentioned

to be carried out in practice. Should the large corrections come from the scale p ∼ gT in

the quantum theory, they are somewhat distorted in the classical lattice gauge theory, but

the results are still representative of the qualitative behavior. The contact to the quantum

theory is only lost in the “strong-coupling regime” where βL . 1; then all three scales are

of the same order and the physics differs essentially from the quantum theory.

3 Classical lattice theory: electric field correlator

In the previous section we argued on general grounds that classical lattice gauge theory

and thermal QCD have qualitative and, in the very infrared, even quantitative similarities.

We now want to demonstrate this explicitly for the case of heavy quark thermalization.

Let us start by recalling the reason for why the zero-frequency limit of eq. (1.1) de-

scribes heavy quark momentum diffusion [4] and consequently thermalization [2, 22, 23]

(on the formal level, the correspondence can be derived by making use of the heavy quark

effective field theory [22]). In a classical framework, it is quite easy to see why this is the

case. Intuitively, the field gEi exerts a Lorentz force on a charge carrier, and κ ≡ κ(0)

is the total correlation of that force with previous and future forces. The force changes

the momentum of the heavy quarks. The classical lattice theory does not contain any

heavy quarks, but we can still evaluate the force–force correlation function to see what

momentum diffusion a heavy quark would feel.

We discretize classical lattice gauge theory as in ref. [14] and sample its thermal ensem-

ble using the algorithm of ref. [32] (we recommend ref. [32] for a more detailed description

of the procedure). The classical simulation is generally carried out in a gauge where the

temporal links equal unity; thereby all the Wilson lines disappear from eq. (1.1), and we

only need to correlate the electric fields. For a comparison we have also carried out some

simulations with the “improved” lattice action of ref. [33], which provides a dispersion re-

lation conforming more tightly to the continuum one, though it also differs significantly for

p ∼ 1/a. On the quantum theory side operator ordering plays a role; in the following we

assume symmetric ordering (for details, see ref. [22]), whereby the quantum correlator has

the same symmetries as the classical one; this can be obtained by κ(ω) → [κ(ω) + κ(−ω)]/2

from the case literally shown in eq. (1.1).
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Figure 1. The correlation function κ(t) (left) and its Fourier transform κ(ω) (right) in the quantum

continuum and classical lattice theories, at leading order (free level). To relate the theories, we

convert the lattice spacing a to the inverse temperature 1/T by equating Debye lengths for the

pure-glue theory (Nf = 0), whereby a = 3Σ/2πT (cf. discussion below eq. (2.2)).

To start with we compare the theories at the free level. In the continuum theory,

κcont(ω) = [1 + 2nB(ω)]
g2CFω3

6π
, (3.1)

κcont(t) = g2CFT 4π2

[

cosh2(πtT )

sinh4(πtT )
− 1

3 sinh2(πtT )

]

, (3.2)

where nB is the Bose-Einstein distribution function. The vacuum behavior of κcont(t) reads

g2CFT 4π2/(πtT )4. In the classical lattice theory, on the other hand,

κlatt(ω) =
2πg2CFT

3

∫ π/a

−π/a

d3p

(2π)3

[

δ(p̃ − ω) + δ(p̃ + ω)
]

, (3.3)

κlatt(t) =
2g2CFT

3

∫ π/a

−π/a

d3p

(2π)3
cos(p̃t) , (3.4)

where p̃ ≡
√

p̃2, p̃2 ≡ ∑

i p̃
2
i ≡ ∑

i(
2
a sin api

2 )2. The results are plotted1 in figure 1. At first

sight the lattice correlator and the vacuum-subtracted thermal correlator do not look alike:

the main difference is in the large-time behavior, where the continuum correlator dies away

but the lattice correlator displays decaying oscillations. The difference is explained when we

look at the frequency-domain correlation functions. Here we see that the lattice correlator

has cusps while the continuum correlator is smooth. The cusps are van Hove singularities

1The “thermal part” is the difference of the full and vacuum parts, and it is this difference which is

relevant for heavy quark thermalization.

– 6 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
4

which arise because the lattice excitations follow a modified dispersion relation,2

ω2
latt(p) = p̃2 , (3.5)

which has vanishing slope at the corners of the Brillouin zone, p = (n1, n2, n3)π/a, leading

to cusps in the density of states at ω2
latt = (4, 8, 12)/a2 . These van Hove singularities are

well understood and have little impact on the small-ω behavior which is actually of interest.

In the small-frequency region ω ≪ T the theories do agree completely. In other words, the

rather dramatic difference in the time-domain behavior shown on the left in figure 1 arises

because κ(t) is principally sensitive to the T or 1/a scale, where the theories are different;

when we look at the frequency domain, the large frequency behaviors are very different as

expected, but the low frequency parts agree. However, at the free level, the intercept κ(0)

is zero on both sides, so we need to consider interactions.

The leading non-zero value for κ(0) turns out to involve a logarithm of the scales πT and

gT . Considering the logarithm from the IR side, its origin lies in the fact that the electric

gauge field self-energy gets an imaginary part for |ω| < |p| ∼ gT , corresponding to the phe-

nomenon of Landau damping (it also gets a real part, corresponding to Debye screening).

The result for κ is related to the cut of the electric field propagator, and can be written as

κcont ≃ 8πg4CF Nc

3

∫

p≪T

d3p

(2π)3
p2

(p2 + m2
D)2

∫

d3q

(2π)3
δ((p − q)2 − q2) q nB(q)[1 + nB(q)]

≃ g2CF Tm2
D

6π

(

ln
T

mD
+ . . .

)

, (3.6)

where CF ≡ (N2
c −1)/2Nc is the Casimir of the heavy quark representation. Here we omit-

ted for notational simplicity quarks, and carried out the integral 2g2Nc

∫

q
nB(q)[1+nB(q)] =

Tm2
D. The full computation and the result for the coefficient accompanying the logarithm

can be found in ref. [2].

Consider then the classical lattice theory side. Restricting again to the leading loga-

rithmic order, the only modifications needed are as follows:

• The statistical functions nB(q) and 1+nB(q) are replaced by their classical limits T/q;

• Dispersion relations and propagators use p̃i, q̃i in place of pi, qi.

Furthermore, at the order considered, the diagram is dominated by small exchange mo-

mentum p, and we can approximate the argument of the δ-function as (p̃ − q)2 − q̃2 =

2p̃ · q̊ + O(p2
i ), where q̊i ≡ 1

a sin(aqi). Thereby the lattice version of eq. (3.6) becomes

κlatt ≃ 4πg4T 2CF Nc

3

∫ π/a

−π/a

d3p

(2π)3
p̃2

(p̃2 + m2
D,latt)

2

∫ π/a

−π/a

d3q

(2π)3
δ(p̃ · q̊)

q̃

≃ g4T 2CF Nc

3π

∫ π/a

−π/a

d3q

(2π)3
1

√

q̃2q̊2
×

(

ln
1

amD,latt
+ . . .

)

. (3.7)

2The dispersion relation for the “improved” action is more complicated, see eqs.(66,67) of ref. [33]

[eqs.(63,64) in the journal version]; the overall sign is wrong in the latter equation.
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Here we made use of the fact that for p ∼ mD,latt ≪ 1/a, p can be viewed as a continuum

variable, so one can carry out an angular integral to remove the δ-function. We calculate

the constant accompanying the logarithm, denoted by . . . in eq. (3.7), in appendix A,

finding it to be 1.8313(2).

In eqs. (2.1), (2.2), we saw the correspondence

m2
D,cont ↔ 2g2NcT

Σ

4πa
, (3.8)

where the defining expression for Σ reads

Σ

4πa
≡

∫ π/a

−π/a

d3q

(2π)3
1

q̃2
. (3.9)

Comparing the coefficients of the logarithms in eqs. (3.6), (3.7), on the other hand, suggests

the correspondence

m2
D,cont ↔ 2g2NcT

∫ π/a

−π/a

d3q

(2π)3
1

√

q̃2q̊2
. (3.10)

The difference between eqs. (3.8), (3.10) is a manifestation of the ambiguity in the matching

of the continuum and lattice theories that was mentioned in section 2. More generally,

noting that the dispersion relation in eq. (3.5) gives a group velocity

|vgroup(q)| ≡
√

q̊2

q̃2
, (3.11)

and defining
Σvn

4πa
≡

∫ π/a

−π/a

d3q

(2π)3
|vgroup(q)|n

q̃2
, (3.12)

we can write

κlatt ≈
g2CFTm2

D,latt

6π

Σv−1

Σ
×

(

ln
1

amD,latt
+ 1.831

)

. (3.13)

A similar correspondence was found in ref. [28] for a number of other quantities: scaling

away m2
D,latt, the Debye screening length involves Σv0 = Σ; infrared magnetic damping

involves Σv1 ; and the plasmon oscillation frequency involves Σv2 .3 What we have shown

is that Coulombic scattering (electric damping) involves Σv−1 . The numerical value of

each Σvn is given in table 1. The fact that they do not coincide means that there is some

ambiguity in how to relate the lattice and continuum theories. Nevertheless, the general

structures of the answers in eqs. (3.6), (3.7), including the existence of logarithms, are the

same, whereby we can conclude that the dynamics of the two theories indeed bear a strong

qualitative resemblance to each other.

3Each v dependence arises from simple physics. κlatt is the mean squared momentum a charged particle

absorbs due to Coulomb interactions with passing excitations. An excitation with velocity v has a flux

factor suppressed by v but it interacts for 1/v times as long, giving a force-squared enhanced by v−2; hence

κlatt involves v−1. Magnetic damping is similar but it involves magnetic forces, which are suppressed by v

relative to Coulombic forces. Therefore the mean squared momentum exchange scales as v0, leaving only

the flux factor v1. Plasma oscillations involve the mean squared current generated by an oscillating electric

field; the current is proportional to v of the charges, so ω2

pl ∼ v2. Debye screening is a thermodynamic

property so it shows no scaling with group velocity.
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“standard” [14] “improved” [33]

Σv2 1.6222746498 1.78576519

Σv1 2.1498783949 2.13792379

Σv0 3.1759115356 2.783189232

Σv−1 5.5079614967 4.1679252

Table 1. Values of Σvn for the standard and “improved” lattice actions. The spread of values

is a measure of how different the structure of the lattice Hard Thermal Loops is from the

continuum ones.

The discussion so far has assumed that we are in the weak-coupling regime, i.e. that

βL is large. If βL decreases so much that all three momentum scales are of the same order

of magnitude, then the behavior of κlatt changes significantly. Scaling κlatt dimensionless

by multiplying with a3, and making use of the definition of βL, the weak-coupling behavior

in eq. (3.13) corresponds to

a3κlatt
βL≫1∼ 1

β2
L

ln βL , (3.14)

while at small βL we find, through the arguments in appendix B, the behavior

a3κlatt
βL≪1∼ 1

β
5/2
L

. (3.15)

The physics behind this functional form is very specific to the nature of the lattice variables,

however, so we do not expect any analogy with the continuum quantum theory in the latter

regime, and refrain from a further discussion here.

4 Numerical results

In the previous section we have verified that, at weak coupling, the electric field correlator

in classical lattice gauge theory behaves quite similarly to physical QCD: if we fix the

lattice spacing a by equating the Debye screening lengths, the leading-logarithmic κ of the

classical lattice theory is larger than that in the quantum continuum theory by a factor

Σv−1/Σv0 ∼ 5/3. We now proceed to larger values of the coupling (smaller βL) with the

help of numerical simulations. At relatively small coupling (large βL), we can check how

fast the weak-coupling regime is approached. At stronger coupling (intermediate βL ∼ 1),

we can find out whether the leading-order weak-coupling result is reasonable even in order

of magnitude, and whether it underestimates or overestimates the actual behavior. This

then gives us some guidance for what to expect in QCD.

4.1 Intercept at ω → 0

Our numerical results for κlatt, compared with the leading-order weak-coupling result, are

shown in figure 2, both for SU(2) [included because a large βL-range could be scanned

with a modest numerical effort] and for SU(3).4 We note, first of all, that at large βL, the

4In the numerical implementation the theory is discretized in time as well as space, but with a much

finer spacing, and our numerical results for κlatt represent the limit of zero temporal spacing. We have also

checked that our results contain no significant finite volume or non-zero ω artifacts.
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Figure 2. Numerical results for the intercept κlatt (open symbols), compared with the weak-

coupling prediction from eq. (3.13) (line). The left plot is for SU(2), the right one for SU(3). Note

that 1/βL = g2Ta/2Nc scales like αs, assuming the matching a ∼ 1/T (cf. discussion after eq. (2.2)).

results approach the analytic ones of eq. (3.13). However, as soon as βL . 100, the non-

perturbative results deviate from the leading-order ones. The non-perturbative results are

always larger than the perturbative estimate. For βL = 1 . . . 10, a crossover takes place5

from one type of behavior to another. At βL ≪ 1, the results approach the behavior of

eq. (3.15). (We have not worked out the numerical prefactor for eq. (3.15), and hence do

not show the corresponding curves in figure 2).

In order to make quantitative use of the numerical results, it is convenient to change the

units of both axes. Recalling the definition of m2
D,latt from eq. (2.2), we choose the variable

g2NcT/mD,latt = 2Nc(π/ΣβL)1/2 as the x-coordinate; this quantity is the ratio of the g2T

to gT scales and is therefore the expansion parameter for perturbation theory at the scale

gT . We also divide a3κlatt by the coefficient of the leading logarithm, a3g2CFTm2
D,latt/6π =

CFN3
c Σ/3π2β2

L. In these units, the lattice results have a direct counterpart in the contin-

uum theory. The weak-coupling regime is plotted in the new units in figure 3.

In the continuum theory, corrections of O(g5) to κcont have recently been deter-

mined [8], and it is now interesting to compare the results. According to ref. [8],

κcont =
g2CFTm2

D,cont

6π

(

ln
T

mD,cont
+ Ccont + Dcont

Ncg
2T

mD,cont
+ . . .

)

, (4.1)

with Dcont = 0.7767. The physics giving rise to Dcont involves only the length scale gT

and should be reproduced on the lattice; however, it depends on the structure of the Hard

Thermal Loops in an essential way, so the lattice value could differ by up to O(50%) as

discussed in the previous section. Still, this motivates a fit of the lattice data to the form

κlatt =
g2CFTm2

D,latt

6π

(

Σv−1

Σ
ln

1

amD,latt
+ Clatt + Dlatt

Ncg
2T

mD,latt
+ . . .

)

, (4.2)

5We have checked that there is no actual phase transition in the thermodynamics of the system.
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Figure 3. κlatt, normalized to the leading-order perturbative behavior, expressed as a function of

the expansion parameter g2NcT/mD,latt related to corrections from the scale gT . At weak coupling,

the SU(2) and SU(3) results agree and are well fit by the O(g5) perturbative behavior. At stronger

coupling, κlatt rises above the perturbative fit, by a group dependent amount. Compared with

figure 2, the horizontal axis is restricted to 1/βL ≤ 0.77 for SU(2), 1/βL ≤ 0.34 for SU(3).

where Clatt = 1.831 × Σv−1/Σ = 3.176. The coefficient Dlatt can confirm the sign and

approximate magnitude of Dcont. It can also tell us about the next terms in the expansion,

in particular whether the O(g5) calculation is an underestimate or an overestimate of the

real κ. Note, however, that the next term, of O(g6), would receive contributions not only

from the scale gT but also from the scale πT , so the relation between the lattice and

continuum theories becomes less precise at this order.

Figure 3 shows the (1-parameter) fit to the lattice data according to eq. (4.2). The fit is

very good out to g2NcT/mD,latt ∼ 1.5. We extract the value Dlatt = 0.87(4), in surprisingly

good agreement with Dcont = 0.7767; and we see that the same coefficient Dlatt fits the

SU(2) and SU(3) data, just as the continuum computation predicts. However, at larger

couplings κlatt rises above the fitted behavior, particularly for the group SU(3).

The above results no doubt depend on the details of the numerical implementation of

the lattice theory and of the electric field operator. As a check on the robustness of our

results, we re-compute them using the “improved” lattice action of ref. [33]. This action

is tree-level improved so that the IR behavior naively coincides more tightly with the con-

tinuum, as shown for instance by the better IR behavior of the free-theory correlator κ(ω)

in figure 1. However the UV behavior still has (different) anisotropic non-ultrarelativistic

dispersion, so the Hard Thermal Loop effects are not those of the continuum (though they

are somewhat closer, as reflected by the slightly narrower spread of the Σvn values in ta-

ble 1). Therefore it is better to think of this implementation as “different” rather than

truly “improved.”
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Figure 4. κlatt using the “improved” lattice action. Left: the overall behavior in lattice units.

Right: a magnification of the weak-coupling regime, normalized to the leading-order perturbative

behavior. The weak-coupling behavior is in good qualitative accord with the standard action, but

the strong coupling behavior is qualitatively different (cf. figures 2, 3).

Figure 4 shows κ(0) as a function of the lattice coupling for the “different”/“improved”

lattice action for the group SU(2). While the lattice constants Clatt = 2.5 and Dlatt =

0.64 (this time both are fitted) differ from the “standard” action values, the qualitative

message is the same; at weak coupling the behavior appears to be well described by next-

to-leading order perturbation theory, but at stronger coupling perturbation theory is an

underestimate. But while for βL & 1 the two implementations give similar qualitative

results, at extremely strong coupling the behaviors are not even qualitatively the same. This

reinforces our belief that the βL . 1 behavior is a lattice artifact with no bearing on QCD.

We finally attempt a rough order-of-magnitude estimate for which βL-range corre-

sponds to the situation met in heavy ion collision experiments. Combining the matching

from below eq. (2.2) with the definition of βL, we get

βL ∼ 2Nc + Nf

6Σαs
. (4.3)

The relevant value of αs can in the present context probably best be approximated by

taking it from the dimensionally reduced effective theory [34], to which the classical lattice

gauge theory reduces in the case of equal-time observables. In this limit the coupling

has been computed up to 2-loop level [30]; for Nf = 3 the values are g2 ∼ 3 . . . 2 for

T/ΛMS ∼ 1 . . . 4, corresponding to αs = 0.24 . . . 0.16, and subsequently βL = 2 . . . 3. This

corresponds to g2NcT/mD,latt = 4 . . . 3.

Remarkably, in the range βL = 2 . . . 3, the numerical SU(3) values in figure 2 exceed

the weak-coupling result by as much as an order of magnitude! Though these values of βL

are so small that the matching cannot be trusted on any kind of quantitative level, such

a huge effect is still encouraging both from the experimental point of view [35], where the
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Figure 5. Numerical results for the function a3κlatt (open symbols), compared with the weak-

coupling prediction from eq. (3.3) for βL = 24 (line). The left plot is for SU(2), the right one for

SU(3). For the (unphysical) case βL = 1, included as a reference for the discussion in appendix B,

we have divided the central values (but not the error bars) by a factor 10.

apparently very rapid thermalization of heavy quarks remains a mystery, as well as from

the point of view of following the suggestion of ref. [22] in order to measure κcont with

Euclidean lattice Monte Carlo methods. Indeed, there may well be an exciting qualitative

discovery to be made on the lattice.

4.2 General shape of the spectral function

On the point of lattice Monte Carlo simulations, ref. [22] argued that the Euclidean ana-

logue of eq. (1.1) leads to a correlator, denoted by GE(τ), which has a non-trivial continuum

limit and can be related to the intercept κcont through standard relations. Specifically, the

task would be to invert the relation

GE(τ) =

∫ ∞

0

dω

π
κcont(ω)

cosh
(

β
2 − τ

)

ω

cosh βω
2

. (4.4)

It is a problem, though, that strictly speaking the relation in eq. (4.4) is not invertible

without further input. In practice, this means that a certain Ansatz (sometimes called

a prior) is needed, which is then refined through the numerical data. For this reason,

significant efforts have been devoted to analytic computations of spectral functions in the

presence of a spatial lattice, in the limit of a high temperature, for cases such as the 2-point

correlator of the vector current of heavy quarks [36].

We can now use our data, both perturbative as well as non-perturbative, to obtain an

Ansatz for the spectral function κcont(ω). In figure 5, results are shown for the function

a3κlatt(ω) at various βL, together with a comparison with the free theory result. Noting that

on the 4-dimensional lattice, β = Nτaτ , where Nτ , aτ are the number of lattice points and
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the lattice spacing in the time direction, respectively, and naively enforcing the replacement

of the classical limit of the Bose-Einstein distribution function, T/ω, by the corresponding

quantum mechanical expression, 1/2 + nB(ω), we can expect κcont(ω) to behave as

κcont(ω) ≃ ωaτNτ

2
coth

(

ωaτNτ

2

)

κlatt(ω) . (4.5)

In particular, for ω ≪ T , κcont(ω) should be completely flat just like κlatt(ω); moreover,

in general, κcont(ω) should show no peaks other than at ω ∼ (1.5 − 3.0)/a, where a is the

spatial lattice spacing. We consider these qualitative features to be relatively robust, and

they can in any case serve as crosschecks on particular practical inversions of eq. (4.4).

Finally, we remark that the corresponding spectral functions computed for N = 4

Super-Yang-Mills theory at infinite ’t Hooft coupling in continuum show an analogous

smooth behavior at small frequencies, taken over by ultraviolet physics at ω ∼ T [4, 37].

5 Summary and outlook

The purpose of this paper has been to make use of classical lattice gauge theory, in order

to gain insights on the dynamics of QCD in the temperature range accessible to current

and near-future heavy ion collision experiments. We have stressed, in particular, that

classical lattice gauge theory is a multiscale system just like QCD; unlike QCD, however,

it easily lends itself to non-perturbative simulations of real-time observables, in both the

weak-coupling and strong-coupling regimes. Thereby a semi-analytic understanding can

be obtained of many interesting observables, without changing the number of color degrees

of freedom or introducing unphysical infrared fields.

More specifically, we have elaborated on the heavy quark momentum diffusion coeffi-

cient, denoted by κ, which determines the heavy quark thermalization rate through linear

response relations. This quantity belongs to the general class of observables which are

“dominantly” influenced by momenta around the Debye scale, p ∼ gT . We have shown

explicitly through a weak-coupling analysis that while the physics of the classical lattice

gauge theory differs from that in QCD on the quantitative level, by effects of up to 50%,

the qualitative features of the dynamics do remain intact.

Proceeding from weak coupling towards intermediate coupling, we have furthermore

shown that the leading-order weak-coupling expression, and even the larger next-to-leading

order expression, underestimate the non-perturbative result. Given the close analogy with

QCD, the same statement should be true on that side. This seems to give realistic hopes

that a future quantitative determination of κ through 4-dimensional lattice Monte Carlo

simulations will reveal a large thermalization rate, which might help to explain the surpris-

ingly rapid thermalization that has been observed at RHIC experiments [35].

Finally, with regard to Monte Carlo simulations, we have explored the general structure

of the spectral function corresponding to the Euclidean electric field correlator that can be

used for determining the thermalization rate [22]. We find that apart from a single peak

at the scale of the spatial lattice spacing, the spectral function has little structure, both at

weak and at intermediate coupling. This should be an encouraging message with respect

to the analytic continuation needed in the analysis of the Monte Carlo simulations.
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A Weak-coupling regime in classical lattice gauge theory

We give in this appendix some details concerning the computation of the constant accom-

panying the logarithm in the leading-order weak-coupling result, eq. (3.7) (or eq. (3.13)).

In the “standard” implementation [14] of classical lattice gauge theory, where time is

continuous and Minkowskian, the electric field strength has the form

aEi(x) = − i

g
[∂tUi(x)]U †

i (x) + A0(x) − Ui(x)A0(x + aî)U †
i (x) . (A.1)

Here Ui are the spatial link matrices. For a perturbative computation we write Ui =

exp(iagAb
iT

b), where T b are Hermitean and assumed normalized as Tr [T bT c] = δbc/2. As

usual [38], Fourier representations of the spatial variables are most conveniently chosen as

Ab
i (x) =

∫

K Ab
i (K)eiK·(x+âi/2). Furthermore a gauge needs to be fixed; like in the continuum

computation [2], it is convenient to choose a Coulomb gauge so the propagator splits into

a transverse spatial part and an A0 field propagator which has no on-shell spectral weight.

In this gauge the result emerges from two graphs, depicted in figure 6: the A0 self-energy

diagram, mediated by the vertex

Aa
0(P )Ab

i (Q)Ac
j(R) δ(P + Q + R)

ig

2
fabc δij cos(api/2)(R0 − Q0) , (A.2)

plus from one additional graph, namely the bubble diagram sourced by the second term in

the expansion of the first term of eq. (A.1),

aEi(x) = . . . +
1

2
a2gT bf bcd[∂tA

c
i (x)]Ad

i (x) + . . . . (A.3)

The final result can be written as

κlatt =
4πg4T 2CF CA

3

∫ π/a

−π/a

d3p

(2π)3
p̃2

(p̃2 + m2
D)2

∫ π/a

−π/a

d3q

(2π)3
δ((p̃ − q)2 − q̃2)

q̃

×
{

2 − p̃2

q̃2
+

p̃4

4q̃4
+

a2

4

3
∑

i=1

[

p̃2
i q̃

2
i + p̃2

i (p̃i − qi)
2

q̃2
+

p̃2q̃2
i (p̃i − qi)

2

q̃4

]}

, (A.4)
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where the limit mD ≪ 1/a is assumed.

For the numerical evaluation of eq. (A.4), one can for instance integrate explicitly over

one of the momentum components, to remove the δ-function, and carry out the remain-

ing five-dimensional integral numerically, simplifying the range by making use of various

symmetries. More refined strategies are certainly possible but not necessary if only a few

digits are needed.

B Strong-coupling regime in classical lattice gauge theory

Figure 2 shows that, in the limit βL → 0, the electric field autocorrelator diverges as β
−5/2
L ,

while figure 5 shows that the frequency spectrum for κlatt(ω) becomes tightly peaked at

small frequencies. What is going on in this regime, and could it have anything to do with

QCD? Here we show that the answer to the latter question is almost certainly negative.

To do so we need to discuss a few features of the numerical simulation, which we have

otherwise left to the references. Fixing to the temporal gauge, which is convenient because

the temporal Wilson lines in the definition, eq. (1.1), are identity operators, the contin-

uum Yang-Mills theory is described by gauge fields Ai(x, t) and their canonical momenta,

the electric fields Ei(x, t). On the lattice, the degrees of freedom are the dimensionless

electric fields Ei = a2gEi + O(a3) and the gauge links, Ui(x) = exp(iagAi(x)). We can

write Ei = Eb
i T

b, where T b are Hermitean generators of the SU(Nc) algebra, normalized as

Tr [T bT c] = δbc/2.

The lattice simulation proceeds by sampling initial configurations with a classical

Hamiltonian, and then evolving the configurations in real time through classical equations

of motion. The time evolution of the link matrices is

a ∂tUi(x) = i Ei(x)Ui(x) , (B.1)

while for the electric fields it is

a ∂tEb
i (x) = 2

∑

j 6=i

Im Tr
{

T b
[

Uj(x)Ui(x + aĵ)U †
j (x + aî)U †

i (x)

+ U †
j (x − aĵ)Ui(x − aĵ)Uj(x + aî − aĵ)U †

i (x)
]}

. (B.2)

What is important here is that the spatial link variables are compact. Therefore the size

of the time derivative of Eb
i is bounded. At sufficiently small βL (strong coupling) the link

matrices become essentially random elements of the group, and the typical size of |a∂tEb
i |

saturates. On the other hand, the mean-squared value, 〈|Eb
i |2〉 ∼ 1/βL, does not saturate

but increases linearly as 1/βL is made large.

In this regime, the electric fields feel an essentially random force of fixed mean-squared

value, and evolve much like heavy particle velocities in classical Langevin dynamics. The

time scale for the link matrices Ui to rotate by an O(1) angle is t/a ∼ 1/|Eb
i | ∼ β

1/2
L . The

force on the electric field, eq. (B.2), involves a product of four links which each rotate

independently at (generically) irrationally related frequencies; the product of four such

randomly rotating group elements should show no periodicity or quasi-periodicity. There-

fore the coherence time of the random force on Eb
i is set by the time for a link matrix to
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rotate by an O(1) angle, i.e. just t/a ∼ β
1/2
L . A random variable Eb

i with mean squared

value |Eb
i |2 ∼ β−1

L , experiencing a random force of magnitude ∼ 1 with a coherence time

∼ β
1/2
L behaves as 〈Eb

i (t)Eb
i (0)〉 ∼ 〈|Eb

i |2〉 exp(−|t|/τ) where τ ∼ β
−3/2
L . Integrating over t

and inserting 〈|Eb
i |2〉 ∼ β−1

L , we conclude that κ ∼ β
−5/2
L for βL ≪ 1. This description also

predicts that the support of κlatt(ω) should become narrow with width aω ∼ a/τ ∼ β
3/2
L .

However we emphasize that this behavior is an artifact of the electric fields being non-

compact while the gauge links Ui are compact. Such a disparity is absent in the quantum

theory so the effect is an artifact of the classical lattice discretization. Concretely, we find

a different qualitative behavior in the small-βL regime of the “improved” description (cf.

figure 4). Therefore we believe that the behavior of κlatt in the small-βL regime has nothing

to do with real QCD.
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physics and the pressure of hot QCD, Phys. Rev. D 79 (2009) 045018 [arXiv:0811.4664]

[SPIRES].

[7] H. Schulz, Gluon plasma frequency: the next-to-leading order term,

Nucl. Phys. B 413 (1994) 353 [hep-ph/9306298] [SPIRES].

[8] S. Caron-Huot and G.D. Moore, Heavy quark diffusion in perturbative QCD at next-to-

leading order, Phys. Rev. Lett. 100 (2008) 052301 [arXiv:0708.4232] [SPIRES]; Heavy

quark diffusion in QCD and N = 4 SYM at next-to-leading order, JHEP 02 (2008) 081

[arXiv:0801.2173] [SPIRES].

– 17 –

http://dx.doi.org/10.1103/PhysRevC.73.034913
http://arxiv.org/abs/nucl-th/0508055
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=NUCL-TH/0508055
http://dx.doi.org/10.1103/PhysRevLett.100.192301
http://arxiv.org/abs/0709.2884
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.2884
http://dx.doi.org/10.1103/PhysRevC.71.064904
http://arxiv.org/abs/hep-ph/0412346
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0412346
http://dx.doi.org/10.1088/1126-6708/2006/07/013
http://arxiv.org/abs/hep-th/0605158
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0605158
http://dx.doi.org/10.1103/PhysRevD.74.126005
http://arxiv.org/abs/hep-th/0605182
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0605182
http://dx.doi.org/10.1103/PhysRevD.74.085012
http://arxiv.org/abs/hep-ph/0605199
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605199
http://dx.doi.org/10.1103/PhysRevD.67.105008
http://arxiv.org/abs/hep-ph/0211321
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0211321
http://dx.doi.org/10.1103/PhysRevD.68.054017
http://arxiv.org/abs/hep-ph/0305183
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0305183
http://dx.doi.org/10.1088/1126-6708/2006/07/026
http://arxiv.org/abs/hep-ph/0605042
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605042
http://dx.doi.org/10.1103/PhysRevD.79.045018
http://arxiv.org/abs/0811.4664
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.4664
http://dx.doi.org/10.1016/0550-3213(94)90624-6
http://arxiv.org/abs/hep-ph/9306298
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9306298
http://dx.doi.org/10.1103/PhysRevLett.100.052301
http://arxiv.org/abs/0708.4232
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.4232
http://dx.doi.org/10.1088/1126-6708/2008/02/081
http://arxiv.org/abs/0801.2173
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.2173


J
H
E
P
0
5
(
2
0
0
9
)
0
1
4

[9] M.E. Carrington, A. Gynther and D. Pickering, The fermion mass at next-to-leading order in

the HTL effective theory, Phys. Rev. D 78 (2008) 045018 [arXiv:0805.0170] [SPIRES].

[10] S. Caron-Huot, O(g) plasma effects in jet quenching, arXiv:0811.1603 [SPIRES].

[11] P.M. Chesler and A. Vuorinen, Heavy flavor diffusion in weakly coupled N = 4 super

Yang-Mills theory, JHEP 11 (2006) 037 [hep-ph/0607148] [SPIRES];

S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton

production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237]

[SPIRES];

S. Caron-Huot, S. Jeon and G.D. Moore, Shear viscosity in weakly coupled N=4 super

Yang-Mills theory compared to QCD, Phys. Rev. Lett. 98 (2007) 172303 [hep-ph/0608062]

[SPIRES];

S.S. Gubser, Comparing the drag force on heavy quarks in N = 4 super-Yang-Mills theory

and QCD, Phys. Rev. D 76 (2007) 126003 [hep-th/0611272] [SPIRES].

[12] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[SPIRES].

[13] J.B. Kogut and L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories,

Phys. Rev. D 11 (1975) 395 [SPIRES].

[14] J. Ambjørn, T. Askgaard, H. Porter and M.E. Shaposhnikov, Sphaleron transitions and

baryon asymmetry: a numerical real time analysis, Nucl. Phys. B 353 (1991) 346 [SPIRES];

J. Ambjørn and A. Krasnitz, Improved determination of the classical sphaleron transition

rate, Nucl. Phys. B 506 (1997) 387 [hep-ph/9705380] [SPIRES];

G.D. Moore and N. Turok, Lattice Chern-Simons number without ultraviolet problems,

Phys. Rev. D 56 (1997) 6533 [hep-ph/9703266] [SPIRES].

[15] A. Rebhan, P. Romatschke and M. Strickland, Dynamics of quark-gluon plasma instabilities

in discretized hard-loop approximation, JHEP 09 (2005) 041 [hep-ph/0505261] [SPIRES];
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