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Abstract

Although the standard model (SM) was completed by the discovery of the Higgs boson at the
LHC in 2012, it is not the end of particle physics. Predictions of the SM are certainly consistent
with the results of the LHC data within uncertainties, but some phenomena beyond the SM
have been observed by other experiments; i.e. neutrino oscillation, dark matter and baryon
asymmetry of the Universe. In addition, there are some theoretical problems in the SM such as
the hierarchy problem. Such a situation means that the SM must be replaced by a new theory
which is a more completed form so that the above problems can be solved.

Even though the Higgs boson was discovered, the structure of the Higgs sector has not been
determined yet. In fact, there remain many questions for the Higgs sector. “What is the origin
of the negative mass term in the Higgs potential 7?7 “Which is the nature of the Higgs field:
is it an elementary field or a composite field 77 “How many Higgs fields are there in the true
model 7”7 Because no theoretical principle requires the Higgs sector to be the minimal one,
there is a possibility that the true Higgs sector is extended from that of the SM. Notice that
most of extended Higgs sectors have not been excluded at all by the data of the LHC.

Furthermore, we can say that the structure of the Higgs sector is strongly related to a
scenario of the new physics beyond the SM, because various models based on those scenarios
introduce extended Higgs sectors. Each new physics model has a characteristic Higgs sector.
Namely, determining the structure of the Higgs sector by the bottom-up approach is one of
the most effective procedures to establish the new physics. Therefore, in this thesis, we discuss
studies to determine the structure of the Higgs sector by testing various extended Higgs sectors
at future collider experiments such as the LHC and the International Linear Collider (ILC).

There are roughly two kinds of the approaches for the Higgs search. One is to directly
search the second Higgs boson at the collider experiments. The other is the indirect tests
through detecting deviations from the SM predictions in observables such as electroweak oblique
corrections and couplings of the discovered Higgs boson. In particular, it is time to study
properties of the couplings of the discovered Higgs boson as precisely as possible, Coupling
measurements of the Higgs boson have just started and the measurement accuracies will be
improved at the LHC Run-II and future collider experiments such as the high luminosity LHC
and the ILC. In order to compare the theory predictions with future precision data of Higgs
boson coupling measurements which are expected to be at O(1) % level, we should evaluate
these couplings with higher order corrections not only in the minimal Higgs sector but also in
various extended Higgs sectors.

In this thesis, we investigate how extended Higgs sectors can be distinguished and identified
by comparing precise calculations of the Higgs boson couplings including one-loop corrections
with precision measurements of the Higgs boson couplings at future collider experiments. In
particular, we focus on four types of two Higgs doublet models (THDMs) with the soft breaking
Z, symmetry to avoid flavour changing neutral currents, the model with an additional real Higgs
field (HSM) and that with an additional complex triplet Higgs field (HTM). In non-minimal
Higgs sectors, the Higgs boson coupling constants can deviate from the predictions in the SM by
effects of additional scalar bosons. Patterns of the deviations in various Higgs boson couplings
largely depend on the structure of extended Higgs sectors. Therefore, the patterns are useful
to discriminate Higgs sectors when they are detected at future colliders. Moreover, we may
able to determine the true Higgs sector by fingerprinting the predictions on the Higgs boson
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couplings in each model with the future precision data. We calculate various couplings of the
discovered Higgs boson at the one-loop level by on shell renormalization in those models.

In the study of the THDMs, we perform renormalization calculations in the modified on
shell scheme, in which the gauge dependence in the mixing parameter is consistently avoided.
We present a complete set of the analytic formulae of the renormalized couplings in four types
of THDMs. It is known that different characteristic patterns of deviations in Yukawa couplings
(hff) can be allowed depending on four types of THDMs. We investigate how the pattern
can be modified from the prediction at the tree level by including one-loop contributions under
constraints from perturbative unitarity and vacuum stability, and current experimental data.
We then numerically demonstrate how the inner parameters of the model can be extracted by
future precision measurements of these couplings at the high luminosity LHC and the ILC.
We found that the mixing parameters can be determined more precisely by using measurement
uncertainties at the ILC. Furthermore, there are possibilities to obtain the upper bound for the
mass of extra Higgs bosons without their direct discoveries and also to get information of the
decoupling property.

In study of the HSM, we calculate renormalized Higgs boson couplings with gauge bosons
and fermions at the one-loop level by the on-shell renormalization scheme. We investigate how
they can be significant under the theoretical constraints from perturbative unitarity, vacuum
stability and also the condition of avoiding the wrong vacuum. Furthermore, comparing with
the predictions in the Type-I THDM which is one of four types of THDMs, we numerically
demonstrate how the singlet extension model can be distinguished and identified by using
precision measurements of the Higgs boson couplings at future collider experiments. We found
that the HSM may be able to discriminated from the Type-I THDM by comparing hZZ, hbb
and hy~y couplings and corresponding measured values in most of parameter regions.

In studies of the HTM, we also calculate renormalized electroweak parameters Ar and the
renormalized W mass mj;”*® by two kinds of renormalization schemes in addition to renormalized
Higgs boson couplings. We numerically evaluate how the h(W W, hZ Z and hhh couplings deviate
from those of the SM at the one-loop level under the constraints from perturbative unitarity and
vacuum stability, and current experimental data. We find that one-loop contributions to these
couplings are substantial as compared to their expected measurement accuracies at the ILC.
Therefore the HTM has a possibility to be distinguished from the other models by comparing
the pattern of deviations in the Higgs boson couplings.
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Chapter 1
Introduction

1.1 Overview

The standard model (SM) was established as a theory which can describe the world of ele-
mentary particles well. The SM is based on two pillars, namely the gauge principle and the
spontaneously symmetry breaking. In particular, in the SM, three kinds of fundamental inter-
actions can be expressed by the gauge symmetries SU(3)¢ x SU(2), x U(1)y, where SU(3)¢,
SU(2), and U(1)y represent the symmetry of color, isospin and hypercharge, respectively. The
SU(2), xU(1)y symmetry spontaneously breaks into U(1);,, which represents the electromag-
netic symmetry. The physics had been verified experimentally at several collider experiments
such as LEP experiments from the 1980’s to the 2000’s; i.e. discoveries of weak gauge bosons
and precision measurements of their observables and so on [1]. In 2012, the other of the two
pillars has been proved by the discovery of the Higgs boson which plays an essential role for
spontaneous symmetry breaking [2,3]. Since the Higgs boson was the only undiscovered par-
ticle in the SM for a long time, the discovery led the SM to be completed. Experimental data
for observables of the discovered Higgs boson are consistent with the predicted values in the
SM [4-6]. In addition, there is no report which tells discoveries of other new particles such as
superpartner particles.

Although the discovered Higgs particle is a SM-like one, a lot of things are still unknown
for the Higgs sector; e.g. the origin of the negative mass term in the SM Higgs potential, the
essence of the Higgs field (elementary scalar or composite?) and the shape of the Higgs sector
(how many Higgs particles?). The minimal Higgs sector of the SM is just an assumption. There
are possibilities that the Higgs sector is extended, and all extended Higgs sectors have not been
excluded at all by the data of the LHC.

On the other hand, there are some phenomena beyond the SM; i.e. neutrino oscillations [7,8],
the existence of dark matter (DM) [9] and baryon asymmetry of the Universe [10] and so on.
We need a more polished theory which can explain such phenomena too. Many researchers have
tried to build up various theories to solve the problems. Of course, there is only one correct
theory. In order to clarify the true theory, we must test and narrow down these new physics
models by experiments.

The collider experiment is one of most powerful experiments to detect new physics observ-
ables. The LHC [11] experiment restarted in May 2015 with increasing the center-of-mass
energy (/s) from 8 TeV to 13 TeV. Therefore new particles may be discovered in the near
future. Not only direct discoveries of new particles but also detecting deviations of some ob-

1



2 CHAPTER 1. INTRODUCTION

servables from those on the SM such as the production cross sections and decay branching ratios
of the Higgs boson can be expected. Moreover some electron-positron collider experiments are
planning such as the International Linear Collider (ILC) [12,13], the Compact LInear Collider
(CLIC) [14] and Future e*e™ Circular Collider (FCCee) [15,16] in order to detect new particles
and to precisely measure various observables. In order to come closer to understanding the
theory of beyond the SM by testing several new physics models at the future collider experi-
ments, we should investigate theoretical properties of those models, and calculate theoretical
predictions of the observables as accurately as possible.

1.2 Standard Model

In the SM, interactions among particles can be described by gauge symmetries, SU(3)¢ X
SU(2), x U(1)y, where SU(3)¢, SU(2), and U(1), are symmetries of the color, the isospin and
the hypercharge, respectively. Particles obtain their masses via the spontaneously symmetry
breaking, in which SU(2); x U(1)y symmetry breaks to U(1)g,;- The symmetry breaking
occurs by the Higgs field getting the vacuum expectation value (VEV) v.

In the SM, the Higgs potential is given by

V= 20 + Ao, (L1)

where @ is the isospin doublet scalar field. In order to realize the spontaneously symmetry
breaking, the sign of u? is required to be negative. In the Higgs potential, there are two
independent parameters 2 and X. p? can be replaced by v as we will show in Chapter. 2., and
v is determined by the Fermi constant G as v = 1/(v/2G)/? (=~ 246 GeV). The remaining
parameter A has been determined by the Higgs boson mass m, as A = m3 /(2v?) ~ 0.131.

1.3 Higgs boson searches and discovery

At the LEP experiment [1], observables of the Z boson were precisely measured by tuning /s
to be around 91 GeV the mass of Z. The other purpose of the LEP experiment was to discover
the Higgs boson h. Although the Higgs boson did not discovered at LEP, the lower bound on
the mass of the Higgs boson m, (m, > 114.4 GeV [1]) was given by the Higgs boson search
via the production process ete™ — hZ, where center of mass energy was /s = 189 — 209 GeV.
In addition, an upper bound on the mass of the SM Higgs boson (m, < 144 GeV [1]) was
indirectly given by precision measurements.

In 2012, the discovery of the new particle was announced by the ATLAS and the CMS
collaborations at the LHC [2,3]. The new particle was verified to be the Higgs boson by
following detail measurements as the LHC Run-I. The LHC Run I started in 2008 with /s =7
TeV, and it ran with upgrading /s to 8 TeV for the one-year period from 2012.

The Higgs boson was mainly produced through following processes;

1. g9 — h, gluon-gluon fusion (ggF)
2. qq(¢') = qq(¢’)h,  vector boson fusion (VBF)

3. qq(q¢") — Vh, association with a vector boson V' (Vh, V. =W, Z)
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Figure 1.1: Signal strengths of each decay mode evaluated by ATLAS (left panel) [19] and CMS
(right panel) [18].

4. gg — tth. association with top quarks (tth)

The ggF process is the most influential process for the production of the Higgs boson with
my, ~ 125 GeV. The sensitive decay channel of the Higgs boson at the LHC are the modes 77,
4 leptons (4¢), WW, 71 and bb.

The mass was measured by inputting the data from the v+ and 4-lepton decay channels.

ATLAS and CMS reported m, = 125.3640.37(stat) 0.18(syst) [17] and m,, = 125.03103" (stat)

013 (syst) [18], respectively. It can be said that the both data are consistent each other.

ATLAS and CMS evaluated the signal strength p defined as a measured cross section times
a branching ratio of the Higgs boson for a given process divided by the SM expectation, because
it is important to test the validity of the SM. Fig. 1.1 shows the signal strengths of each decay
mode evaluated by ATLAS (left panel) and CMS (right panel). The ATLAS’s and the CMS’s
results for all channels agree with the predictions of the SM within uncertainties of 2o.

The scaling factor k; is also an important quantity, where «; is defined as the ratio of the
Higgs boson coupling to the particle ¢ from that in the SM. A, is the ratio of two values k;
and r,. Namely, the x; and A, indicate deviations in the Higgs boson coupling from the SM
predictions. In Fig. 1.2, the scaling factor values of various couplings evaluated by the both
collaborations are shown. In the analyses for &;, x; of all Yukawa couplings hff are presumed
to be universal values, and the xz also presumed to be the same as the ;. We can see that
all the SM predictions (k; = 1) are included within the 20 uncertainty of the measured scaling
factors, where the current 1o uncertainties of the scaling factors are typically of O(10%).
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Figure 1.2: Scaling factors of several couplings evaluated by ATLAS (left panel) [20] and CMS
(right panel) [18].

1.4 Problems with the Higgs sector of the Standard Model

Although the properties of the discovered Higgs boson are similar to those in the SM [4], it
does not mean that the discovered Higgs boson is the Higgs boson of the SM, and there are a
lot of questions (or mystery) in the SM Higgs sector.

For example, in the SM, in order to realize the spontaneously symmetry breaking, it is
required the sign of the mass term in the Higgs potential to be negative. We do not understand
the reason. We also do not have the clear understanding of the essence of the Higgs field.
The Higgs field is presumed to be the elementary scalar field in the SM. On the other hand,
there has been several studies to investigate possibilities the Higgs field is the composite scalar
field [21-26]. In fact, there is no scalar field up to now except the discovered Higgs boson. If the
essence of the Higgs field is determined, we may decide the next paradigm of particle physics.

In the SM, the Higgs sector is assumed to be the minimum form, in which there is only one
isospin doublet Higgs field. But there is no compelling theoretical reason for such a minimal
form. There are possibilities for extended structures of the Higgs sector with some number
and representation of additional Higgs fields; e.g., models with the doublet field and additional
singlet fields, doublet fields and/or triplet fields. These extended Higgs sectors can also explain
the current LHC data for the discovered Higgs boson in some portions of their parameter
regions.

There are also some questions from observations, as we discuss before. We should clarify
such questions by using information of the discovered Higgs boson.

1.5 Hierarchy problem of the Higgs boson mass

The hierarchy problem of m, is caused by the Higgs sector of the SM. In the SM, the renor-
malized Higgs boson mass can be expressed by,

2
mp =iy = AT (1.2)

where m?, is the bare mass of the Higgs boson, y, is the Yukawa coupling of the top quark, A is
the cut off scale, and the part “--” indicates contributions of other loop diagrams. The second
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term in the right side of Eq. (2.9) is the top quark loop contributions to the Higgs boson mass.
If the limit of the application of the theory is the Planck scale, namely A ~ O(10'%) GeV, the
toq quark contribution corresponds to the quadratic divergence with (O(19'%) GeV)?. Then,
the Higgs boson mass with about 125 GeV is derived via the huge fine tuning as (125GeV)? =
(0(10')GeV)? — (0(10")GeV)?. This unnatural fine tuning is called “the hierarchy problem
of the Higgs boson mass”. There are several new physics paradigms motivated by solving the
hierarchy problem, such as supersymmetry, dynamical breaking of electroweak symmetry and
gauge-Higgs unification.

1.6 Phenomena beyond the standard model

Although the properties of the discovered Higgs boson are very similar to those in the SM, the
true theory of particle physics cannot be the SM because there are phenomena which cannot
be explained in the SM. In this section, we give brief reports of some of them.

1.6.1 Neutrino masses

The experiments with solar, atmospheric, reactor and accelerator neutrinos have shown that
oscillations of neutrinos caused by nonzero neutrino masses and neutrino mixing. According to
the neutrino oscillation data [7,8], in the case of 3-neutrino mixing, one of the two independent
neutrino mass squared differences Am3, is much smaller in absolute value than the second one
AmZ,, ie. |AmZ | < |Am3,|. Current data show,

|Am3, | ~ 7.5 x 107°eV?, (1.3)
|Am3,| ~ 2.5 x 107%eV?, (1.4)
where |AmZ, | and |Am2, | were observed at experiments for measuring the solar neutrino and the
atmosphere neutrino. Although the experimental fact of neutrino oscillation imply neutrinos

have non-zero masses, the masses of neutrinos are zero because there is no right handed neutrino
in the SM. Therefore, we need new physics to explain neutrino masses.

1.6.2 Dark matter

It is known that the dark matter exists in the Universe via various observation experiments.
At first, the existence of dark matter had been known via galactic scales by precision galaxy
rotation measurements [27]. Currently, measurements the fluctuation of cosmic microwave
background radiation at the WMAP experiment [9] and the Planck experiment [10] reported
that the energy density of the baryon accounts for only about 4.5% of that of the Universe and
most of the rest is composed of that of dark matter with about 22.7% and that of dark energy
with 72.8%. We know the following properties of the dark matter,

e Stable

e Electrically neutral

e Non-relativestic

e It can explain the observation, the dark matter mass density is Qpy =~ 0.2 [10]

The SM does not contain the dark matter candidate.
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1.6.3 Baryon asymmetry of the Universe

We know that the ratio of the baryon number density to entropy density is ng/s ~ 1071° [10].
Namely, the baryon number is asymmetry in the Universe (BAU). To explain numerically
this ratio is an important problem between cosmology and particle physics. According to the
Sakharov’s conditions [28], following three conditions must be satisfy, in order to generate the
baryon asymmetry from the baryon symmetry Universe.

e Baryon number violation
e (' and CP violation
e Departure from equilibrium

The third condition cannot be satisfied in the SM because the measured m,, is too large. In
addition, the CP violating phase in the Kobayashi-Maskawa matrix is too small to generate the
baryon asymmetry. There are some of scenarios to solve BAU; Leptogenesis [29,30], Afleck0Dine
mechanism and electroweak baryogenesis [31,32].

1.7 Physics of extended Higgs sectors

We should consider various types of Higgs sectors without limiting the minimal Higgs sector,
because there is no theoretical principle to limit the Higgs sector to be the minimal structure.
In addition, new physics can be the motive to consider extended Higgs sectors because extended
Higgs sectors are often introduced in various new physics models. Although infinite number
of extended Higgs sectors can be considered, we focus on second simplest Higgs sectors which
have an additional Higgs field. The reason is that models containing the second simplest Higgs
sectors are effective theories of the infinite extended Higgs models.

We should take into account some experimental constraints on structures of Higgs sectors.
The electroweak rho parameter (p) [33] is one of them. The experimental value of p is close
to unity, which suggests that there is a global SU(2) symmetry, so-called the custodial sym-
metry [33]. The rho parameter strongly depends on the property of the Higgs sector; i.e., the
number of Higgs multiplets and their hypercharges. In the Higgs sector composed from only
SU(2) doublets and/or singlets, the rho parameter is unity at the tree level because of the
custodial symmetry [34]. Thus, these Higgs sectors can be regarded as the natural extension of
the Higgs sector.

We also should consider the constraint on the Higgs sector from several bounds on the
existence of flavor changing neutral currents (FCNCs). In the SM, FCNCs are automatically
absent at the tree level [35] because the Yukawa coupling matrix (Y}) and the fermion mass
matrix (M, = va) can be simultaneously diagonalized. However, in general, if additional
doublet Higgs fields are introduced into the Higgs sector, FCNCs appear at the tree level [36,37].
For example, if two kinds of doublet Higgs fields (¢, and ®,) couple to a kind of fermion
field, the fermion mass matrix M, is expressed by a linear combination of some matrix as
M; = Mfv; + Myavy, where vy and vy are VEVs of ®; and ®,, respectively. On the other
hand, the matrix of Yukawa couplings is given by Y; = —Mjy;sin6 + My, cos 6, where 6 is the
mixing angle between the CP-even component of ®; and that of ®,. In such a case, since M,
and Y, are not simultaneously diagonalized, tree level FCNCs can appear.
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1.7.1 Two Higgs doublet models

The two Higgs doublet model (THDM) [38] which has an additional isospin doublet field with
the hypercharge Y = 1/2 is often motivated in new physics models beyond the SM. For example,
the Minimal Supersymmetric SM (MSSM) [33] requires the Higgs sector with two doublet fields.
Multi Higgs structures can contain additional CP violating phases [39] and also realization
of the strong first order phase transition, both of which are required to realize electroweak
baryogenesis.

Also, electroweak precision data indicate that p is very close to unity [40], and this fact
strongly constrains parameters in extended Higgs models. In the THDM, a relation p = 1 is
well satisfied at the tree level.

In general, if additional doublet Higgs fields are introduced into the Higgs sector, FCNCs
appear at the tree level [36,37]. Such a situation is very severe, because FCNCs are constrained
by flavour experiments. Therefore, we often consider THDMs in which FCNCs are forbidden at
the tree level by imposing a softly-broken discrete Z5 symmetry [36]. In this case, four types of
Yukawa interactions appear depending on the way of the assignment of the Z5 charge for par-
ticles [41]. These four types of THDMs provide variety of phenomenological consequences [42],
which are tested at collider experiments.

1.7.2 Supersymmetric standard models

As mentioned in Sec. 1.5, it is known that the SM Higgs sector holds the hierarchy problem of the
Higgs boson mass. The supersymmetric theory is one of theories which can explain the hierarchy
between the scale of the Higgs boson mass and the Planck scale. In the supersymmetric theory,
the quadratic divergence in the Higgs boson mass is naturally cancelled by loop contributions
of superpartner particles whose spins are different from the SM counterparts by one half.

At least two iso-spin doublet Higgs (®, and ®,) fields are required in models of the super-
symmetric theory. ®, with ¥ = —1/2 and ®, with ¥ = 1/2 give masses to up-type quarks
and down-type quarks, respectively. The supersymmetry (SUSY) forbids charge conjugations
of the Higgs fields to exist in the Lagragian. Moreover the Q) ®,up term are forbidden by the
hypercharge invariance. Then, an additional Higgs doublet field is required to give masses to
up-type quarks. Namely, Higgs sectors of supersymmetric models are extended Higgs sectors.
The minimal supersymmetric extension of the SM (MSSM) are composed of all the SM par-
ticles, an additional iso-spin doublet Higgs field and their superpartner particles. The Higgs
sector in the MSSM is the same as that of the THDM (so called Type-II THDM).

1.7.3 Composite Higgs models

What is the origin of the Higgs field? We have not yet obtained the certain answer of this
question. There is a possibility which the Higgs boson is a composed state of more fundamen-
tal fields with a certain strong dynamics. In the composite scenario, the Higgs boson is the
pseude-Nambu-Goldstone boson (pNGB) associated with spontaneous breakdown of a global
symmetry [21-25]. The mass of the Higgs boson is generated at the one-loop level by the loop
contributions of other particles. The number of pNGB is determined by the number of the
broken generators. For example, in the Minimal composite Higgs model (MCHM), the original
global symmetry is SO(5) x U(1)y. The SO(5) is spontaneously broken into SO(4) by some
dynamics [26], so that four NGBs appear which correspond to four components of the doublet



8 CHAPTER 1. INTRODUCTION

Higgs field. Namely, the MCHM can naturally explain the structure of the Higgs sector in the
SM.

1.7.4 Higgs singlet model

The Higgs singlet model (HSM) with an additional real scalar field with the hypercharge Y =0
is also one of minimal extended Higgs models [43]. Because the VEV of the singlet field does
not contribute to the electroweak symmetry breaking, the rho parameter are not modified from
that of the SM at the tree level. In the U(1);_, gauge model, the Higgs sector is required
to spontaneously break the U(1)z_; symmetry by introducing a singlet scalar field for such a
purpose [44-46]. The breaking may be related to the mechanism of neutrino mass generation.
The HSM also realize the strong first order phase transition [47]. If the model respect an
additional global U(1) symmetry [48] and/or a discrete symmetry such as a Z, symmetry [49],
the singlet field can be a candidate of dark matter.

1.7.5 Higgs triplet model

The minimal Higgs triplet model (HTM) has an additional complex triplet scalar field with the
hypercharge Y = 1 [50]. In the HTM, there is a mechanism to generate majorana neutrino
masses, which is called as the Type-II seesaw mechanism. One of the important features in
this model is that p deviates from the unity at the tree level due to the nonzero VEV of the
triplet field v,, therefore vy, < v (=~ 246 GeV). There are seven physical mass eigenstates; i.e.,
triplet-like Higgs bosons (H**, H*, A, H) and the SM-like Higgs boson h. In particular, collider
phenomenology of the doubly charged Higgs bosons H** are very interesting and important
because particles with electromagnetic charge () = 2 are not contained in the SM, and the
dominant decay process of H** strongly depends on v, and the mass difference among triplet
like Higgs bosons [51].

1.7.6 Exotic Higgs models with p =1 at tree level

The p deviates from unity at the tree level in the Higgs sector with exotic representation fields
such as triplets [33,34,52]. In such a model, VEVs of such an exotic field violates the custodial
symmetry, so that the VEV is severely constrained by the rho parameter data. There is another
extended Higgs sector in which an alignment of the triplet VEVs makes the rho parameter to
be unity at the tree level, named as the Georgi-Machacek (GM) model [53]. Furthermore, it
is known that the addition of the isospin septet field with the hypercharge Y = 2 does not
change the rho parameter from unity at the tree level [33,34,52]. As a striking feature of
exotic Higgs sectors, there appears the HXW¥Z vertex at the tree level [54], where H* are
physical singly-charged Higgs boson. In the multi-doublet model, this vertex is induced at the
one loop level, so that the magnitude of the H¥WTZ vertex tends to be smaller than that in
exotic Higgs sectors [55]. Therefore, precise measurement of the HEW¥Z vertex can be used
to constrain exotic Higgs sectors. In addition that, there is an interesting property that the
hV'V couplings (V = W, Z) can be larger than those of the SM [34,52]. If the hV'V couplings
are proved to be larger than the SM values in future precision coupling measurements, it will
be decisive evidence of the exotic Higgs sector.
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1.8 1In this thesis

Because we do not know the shape of the Higgs sector, we can consider various possibilities of
the Higgs sector. The structure of the Higgs sector is strongly related with the new physics
models. Namely, the Higgs sector is an important key to approach the new Lagrangian beyond
the SM. In this thesis, we discuss how the structure of the Higgs sector can be determined
by testing various extended Higgs sectors at future collider experiments. In particular, we
focus on the indirect search of the second Higgs boson. If an extra Higgs boson is directly
discovered at the collider experiments, it will be the clear evidence of an extended Higgs sector.
But there is also the possibility that no particle is discovered. Even in such a case, precision
measurements of the Higgs boson properties will bring important information. In particular,
the Higgs boson couplings will be precisely measured at the LHC Run II and future collider
experiment such as the high luminosity LHC (HL-LHC) [56] and the ILC [12,13]. Such future
precision measurements may observe deviations in the Higgs boson couplings from those of the
SM, which are indirect evidences of new physics. Although there are studies of the Higgs boson
couplings at the tree level in such models [57], it is not enough to calculate them at the tree level
in order to determine the Higgs sector by comparing with the future precision measurement.
Therefore, we calculate the various Higgs boson couplings including one-loop corrections in the
THDMs [58,59] and the HSM [60] and the HTM [61,62].

First, we define each model, and briefly review the tree level properties to fix notation.
After that, we show how the Higgs boson couplings deviate from the SM predictions at the tree
level. Then, we calculate various couplings of Higgs boson at the one-loop level by the on-shell
renormalization scheme in those models. It is essentially important to calculate various cou-
plings comprehensively because the pattern of deviation in the Higgs boson couplings depends
on the model. We study how extended Higgs sectors can be discriminated by the pattern of the
deviations, and how we can test the extended Higgs sectors via precision measurements at the
HL-LHC and the ILC. We investigate the possibility of determining the Higgs sector without
information from direct searches.

1.9 Organization

This thesis is organized as follows. In Chapter 2 and Chapter 3, we give the review of the
Higgs physics in the SM and some extended Higgs models, respectively. In Chapter 4, we
review the prospects of additional Higgs boson searches at future collider experiments. In
Chapter 5, Chapter 6 and Chapter 7, we present our studies for radiative corrections to the
Higgs boson couplings in the THDMs, the HSM and the HTM, respectively. We discuss how
we can determine the structure of the Higgs sector by using our precise calculations and future
precision measurements of the Higgs boson couplings. Finally, we give the summary of this
thesis in Chapter 8.






Chapter 2

Review of the Standard Model

2.1 Lagrangian
In the SM, interactions among particles are described under following gauge symmetries,

Ul)y x SU(2); x SU(3)e, (2.1)

where U(1)y, SU(2);, SU(3)¢ indicate symmetries of the hypercharge, the iso-spin and the
color, respectively. We summarize quantum numbers of particles under these symmetries in
Tab. 2.1. Lagrangian of the SM is composed of the gauge self interaction term (Lgauge), the
kinetic term of fermion fields (Lgermi) and the Higgs sector term (Lpiggs),

L= »Cgauge + ‘Cfermi + »CHiggs (22)
The Higgs sector Lyiges 1s,
EHiggs = |DN(I)‘2 - V<(I)) + 'CYukawaa (23)

where V(®) and Lyykawa indicate the Higgs potential and the Yukawa interaction term, respec-
tively. We define the covariant derivative such as

/

D, =0, - igTinj - z’%BM, (2.4)
where 7¢ is Pauli matrix.
The Higgs potential is given by,
V(®) = p?®* + N (2.5)
Higgs doublet field is parametrized as,
n
¢ = ( 5(h +Gv +iGY) ) ’ (2:6)

where v is a VEV and GT and G° are Numbu-Goldstone bosons which are eaten by the lon-
gitudinal components of weak gauge field. If p? is negative value (u? < 0), the spontaneous

11
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Table 2.1: Fields and their quantum number of symmetries.

| Fied | Y I | C ]
P z 2 1
GS 0 1 8
W, 0 3 1
B, 0 1 1
QL é 2 3
UR 3 1 3
dg -1 1 3
Ly — 2 1
€r —1 1 1

electroweak symmetry breaking is realized. In the Higgs potential, the vacuum is determined

by imposing a vacuum condition as,

oV
i -0
oh ’
h=0
and we obtain a relation as,
p? = =2

Moreover, the mass of the Higgs boson m3 is given by the definition of the mass;

0*V

W = 2)\1}2.

h=0

™y,

Masses of weak gauge bosons are given from the kinetic term Ly, as,
10?2
4 2

g* v’ 1 12 .
Liine = —Zg(WN —iW ) (W + W)

We here define the gauge fields as

1 .
W, = E(W,} —iW7),
1 1 . 2
WJ = E(W# +ZW#)’
1
Z, = 3—g’BM).

/92 + 9/2 (gW'u

Mass eigenstates of neutral gauge fields are expressed as
(2)- 7 (5 1) (3)
ZIJ» 92 + g/2 —g/ g Wi

cosOy  sinfy B,
—sinfy  cos by wp )

(gW — ¢'Bu)(gWih — g'B").

(2.7)

(2.10)

(2.11)

(2.12)

(2.13)
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Then masses of redefined weak gauge bosons are given as,

2 2 12
miy, = ngQ, my = %v? (2.14)

As you can see, the photon field does not obtain own mass, because the electromagnetic U (1) gas
symmetry are not broken.
Next, we discuss Yukawa interaction term given by,

['Yukawa = _YJJQIL&)QiR - YJJQlLCI)QéR - YZJE’LL(I)HQ + h.C, (215)

where @ is charge conjugate expression ® = ir,®*, and Y. de are 3 x 3 Yukawa matrices. We
can take basis of fermion fields as

Q’z(%)z( i ) 2.16
2=\ ) =\ wina, (210
where Ug g,y is the Cabibbo-Kobayashi-Maskawa matrix [63] which is an unitary matrix, so
that the Y, 4 are diagonalized as,

EYukawa — _QL (Yud’iag)i)un - QL(UE‘KMYLI)(I)QdR - EL(ndmg)(I)lR + h‘C7 (217)
— —QLYudmgfi)un — QLYddmy(I)qdR — LL}/ediagq)lR + h.C. (2.18)

Components of these diagonalized matrices YJZZE are given by,

' Yu 0 0 ‘ Yd 0 O ' Ye 0 0
Yudzag — 0 Ye 0 : Yddzag — 0 s 0 , Y’edmg — 0 y# 0 , (219)
0 0 w 0 0 w 0 0 y

where y, indicates Yukawa couplings of a fermion field f. By the Higgs field obtaining the VEV
v, masses of fermion fields are given by,

u h - h e h
£Yukawa = _m_ﬂu (1 + _) - @dd (1 + —) — 266 (1 + —) (220)
v v v v v v

+ (the same mass terms of other charged fermion particles),

where

Y Ya Ye

V2 V2 V2

In the SM, all elementary particles couple with the Higgs boson. As shown at Egs. (2.9), (2.14),
(2.21), the all couplings are proportional to their masses at the tree level.

We here describe the mechanism to forbid the FCNC processes at the tree level. As shown
in the previous paragraph, left handed down-type quark fields in the doublet fields (d’, s" and b')
are different from their mass eigenstates (d, s and b). d’, s" and b’ are related with d, s and b by
the Cabibbo-Kobayashi-Maskawa matrix Uck s as defined by Eq. (2.16). In the SM, the tree
level FCNC processes do not appear through the Uog . FCNC processes interacting the Higgs

My v, Mmg= v, Mg = v. (2.21)
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boson automatically vanish because the Yukawa coupling matrix (Y;) and the fermion mass
matrix (M ;= va) can be simultaneously diagonalized. FCNC processes interacting neutral
gauge bosons are absent at the tree level because of unitary feature of Upoyx,

Too = —dirtdi+ - (2.22)
= CZJLUgKMVM(UgKM)ikd]Z (2.23)

= &) 7k, (2.24)
(2.25)

where indices i, j, k identify flavour. This mechanism is so-called GIM mechanism [35].

2.2 Custodial symmetry

We here consider the SU(2), xSU(2)  symmetry which can be rewritten by SU(2), xSU(2)r =
SU(2)y x SU(2) 4. Under the symmetry, an arbitrary field matrix M is transformed as,

M — LT N8R (2.26)

In the theory respecting the SU(2)y x SU(2)4 symmetry, the SU(2), is broken by the elec-
troweak symmetry breaking. Then, the SU(2)y, symmetry so-called the ”custodial symmetry”
remains in the theory. After the SU(2), is broken, a relation 6, = 0z = 6y holds. Then, the
transformation given at Eq. (2.26) can be regarded as the transformation to rotate from both
the right side the rotation and the left side with the same angle.

If we here introduce a field matrix defined as,

i Bt ¢’ "
M = (ity®*P) = ( o ) : (2.27)
the Higgs potential in the SM given at Eq. (2.5) can be expressed by,
V= ";Tr[MTM] + E(Tr[MTM])Q. (2.28)

Since this Higgs potential obviously is invariant under the transformation M — ¢ M e~
we can say that the Higgs sector in the SM respects the custodial symmetry [33].

2.3 Electroweak rho parameter p

Electroweak rho parameters p indicates the ratio of the strength of the charged current and
that of the neutral current in the weak interaction, and it defines by
2
myy
= — . 2.29
P= o2 Oywm?, (2.29)
Formula of p are expressed by the isospin and the hypercharge of Higgs fields in general
model. We show the formula of p in the general Higgs sector. We consider an extended
Higgs sector that contains N Higgs multiplets ®, (i = 1,---, N) with the isospin 7; and the

)
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hypercharge Y;. We assume CP conservation of the Higgs sector. The definition of neural Higgs
components is given by,

¢ = (cpi + cpui + L) (2.30)
1y = (05 +v5) . (2.31)
The kinetic term is given by
1
Lign = ;| DHO; 1 + 52j|D“nj|2, (2.32)

where the first term and the second term are the kinetic term of complex scalar fields and real
scalar fields, respectively. Masses of weak gauge bosons are obtained from Eq. (2.32) as

miy = 7% (e PITU(T 4+ 1) = ¥2)) + £55 (o PIT(T + 1)) (2:33)

)

The VEV v (= (vV2G )Y? ~ 246 GeV) is expresses as

o = 4 { S (P + 1) - Y2) 4 55 (P + 1) ). (2:35)

Now we obtain the general formula [34] of p from Eqgs. (2.29), (2.33), (2.34),

_ S (uPIT(T + 1) = YP) + 55 (0, P15 + D)) (236)
g g?%: 2l uiPY?) | |

Radiative corrections to the rho parameter (6p) show whether the model respects the cus-
todial symmetry or not. In the SM, dp is roughly expressed by [33],

2 2,2 2
9" Ne 2 o 2mimy . my

0p ~ ——— ——=In— 2.37

P 64m2m?, (mt T m? —m} " m?)’ (2.37)

where N, is the color number of quarks. Eq. (2.37) shows that the custodial symmetry is
broken in the fermion sector. The limit where masses of up-type quarks are the same as those
of down-type quarks, is the limit to respect the custodial symmetry.

2.4 Theoretical Constraints on the Higgs boson mass

2.4.1 Perturbative unitarity

We discuss the bound on the Higgs boson mass from the constraint of S wave amplitude for two-
body to two-body scattering. The details of this constraint are explained in Ref. [64]. First, we
consider the W, W, — W/ W, scattering, where Wy, is the longitudinally polarized W boson.
By performing the partial wave expansion for scattering amplitude for the W, W, — W/ W, |
we obtain

Ti(s,t) = T(F,cos0) (2.38)
=167 » (27 + 1)a/(s)P;(cost), (2.39)
J
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where s and t are Mandelstam variables, 6 is the scattering angle and F is the collision energy.
In the limit where s > m?, the S wave amplitude a, for the process is given by
Gpmi,
ay = ————. 2.40
0 4N/2m ( )
By substituting Eq. (2.40) in the optical theorem |a;|* < |Ima,|, the following constraint is
given,

lag| < = —  my, < 850GeV. (2.41)

Moreover, by taking into account unitarity of S wave amplitudes for other neutral scattering
channels, namely scattering channels between W, W, , Z; Z,, hh and hZ states, more restrictive
bound is derived. In the SM, the strongest bound in the Higgs boson mass from the S wave
amplitude unitarity is

~ (700GeV)?2. (2.42)

2.4.2 Triviality and vacuum stability

The running coupling of the Higgs coupling A is also critical for discussing the bound on the
Higgs boson [65-67]|. The renormalization group equation (RGE) of the A in the SM is roughly
expressed by,

Qd)‘(Q) — 24\ — 7y21 + 12)\%? 4 (2.43)

Q)

where () indicates an arbitrary scale and y; is the Yukawa coupling given at Eq. (2.18). The right
side corresponds to the S-function of the quartic coupling of the Higgs field. From Eq. (2.43),
we find that if the mass of the Higgs boson (m? = 2Xv?) is too large, A\(Q) becomes larger for
higher energies and blows up at some high energy point (the Landau pole). In contrast, when
m3 is too small and the S-function is negative because of the term of the fourth power of the
top-quark Yukawa coupling. The situation which the [S-function become negative below the
Planck scale is not favored because it means the vacuum stability is broken below the Planck
scale.

Now, we know the value of my, to be around 125 GeV which corresponds to A ~ 0.26. The
[f-function substituting the value of A means risky results for the vacuum stability. The result
strongly depends on the value of m, and a,. The measured top quark mass has a error not small,
which comes from both QCD calculation uncertainty and measurement error. The experimental
value of the m, including the error is m, = 173.14+0.7 GeV (30) (direct measurement mass) [68].
If we use the center value of the experimental value of my, i.e. m; = 173.1 GeV, vacuum stability
is broken at around @ ~ O(10'%) GeV. Then, the precision measurement of m; is essentially
important for vacuum stability.

We can avoid the situation of vacuum instability by introducing additional scalar fields. The
additional scalar boson contributions to the quartic Higgs coupling can put up the S-function
because the sign of the scalar loop contributions is positive.
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Figure 2.1: The left(right) figure is the total width(the decay branching ratio) of the Higgs
boson in the standard model.

2.5 Decay of the Higgs boson

In Fig. 2.1, the left panel shows the decay branching ratios of h as a function of my. Decay
branching ratios of the h depends on masses of children particles. If my is smaller than about
160 GeV, the h — bb decay mode is dominant. The reason is that the bottom quark is the
heaviest in light fermions and it has a color factor 3. If my is larger than about 160 GeV, the
on-shell decay mode of h — WW opens and the mode can be dominant. In the region with
m,, 2 350 GeV, h can decay into tt.

Although h does not couple with v and g directly, h can decay into vy, Z~ and gg through
loop processes of charged particles and colored particles. Since the decay modes are loop induce
decay modes, the decay branching ratios are relatively small.

As you can see, the h — VV (V. = W, Z) decay modes can appear in the region with
m,, < 2my,. It implicates h decays into three bodies (V f f) through the decay into virtual weak
bosons, i.e., h = VV* = Vff.

We have already known the value of m, which is about 125 GeV. Namely, the value of the
x-axis of this panel has been determined. Because branching ratios of various decay modes is
larger than O(1072) in m,, 125 GeV, it means that various decay modes can be detected at the
collider experiments. Indeed, at the LHC Run-I, h — vy, ZZ, WW, bb and 77 modes have been
detected.

The right panel of Fig. 2.1 shows m,, dependence of the total width I, of h. We note that
', drastically increases in m, ~ 2m, because the decay mode h — t¢ opens. The total decay
width of h with m,, = 125 GeV is '), >~ O(107?) GeV.

2.6 Radiative corrections in the SM

2.6.1 Renormalization in the SM

In this section, we describe the renormalization of the SM in order to calculate the [69,70]. We
describe how to determine each counter term in the gauge sector, the Yukawa sector and the
Higgs sector.
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Renormalization in gauge and Higgs sector in the SM

The gauge sector is described by three independent parameters as in the SM. When we choose
my,, m, and a,, as the input parameters, all the other parameters such as v and weak mixing
angle sin @y, (sy,) are given in terms of these three input parameters as

9 9 9
,  m m ) m

_ W _ 2w -1 - W 2.44
v T lom ( ) 8 ( )

These parameters and gauge fields; namely Wf,ZM and A,, are shifted into renormalized
parameters, renormalized fields and counter terms,

mi, — miy, 4+ omiy, (2.45)
m3 — my + om%, (2.46)
Qem —> Qlem + 0Qem, (2.47)
v — v+ 0V, (2.48)
sy — sy + 08ty (2.49)
1
W — (1+ 5cSZW)W,jE, (2.50)
AM 1+ 15Z 15Z,yz—|— 3 53W A

— swew . 2.51

< Zy ) ( 302y2 — 2ch 0siy L+ l(SZZ Zy, (2:51)

Renormalized two point functions of gauge fields, WtW =, ZZ ~vv and vZ mixing, are given
by using above counter terms and 1PI diagrams

Mww[p®] = Gy [P] + (0> — miy )0 Zw — omiy, (2.52)
z2[p°) = U350 + (p° — m3)6Zz — dm3, (2.53)
[y, [p?) = TP + %0 2, (2.54)

. 1 m2
2 [p?) = 07 0] = 520" = m3)02,7 — 2SWiW 8%y, (2.55)

where
0z 2, s? 0z Swe
v Y — [ w Sw B _ _ __Swew
( 0z, ) ( s, ) < 52w )7 02y swew (0Zy, — 0Z5) —C%,V —SW((SZZ 0Z.),

(2.56)

and explicit expressions of 1PI diagrams for gauge boson two point functions are given in
Appendix.
Imposing following five renormalization conditions as [69]

Renww[m‘%{/} = O Reﬂzz[mz] = O FM [q = O’pl = pz = me] — ie'y“,

eey
d - A

d_pgnw[o] =0, IL,£[0] =0, (2.57)
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five independent counter terms dmi;,, 0m%, dQem, 82, and 02,7 are determined as,

dm¥, = Relliih [m%/], (2.58)
dm?% = Rell}}[m%], (2.59)
e 2dp* p?=0 Cy Mm% '

d iprp 2
o7, =~ Ly (2.61)
2
627 = _WH;?[O] t o sty (2.62)
z

Because of relations as (2.44) and (2.56), other counter terms can be expressed by using above
counter terms,

dsiy _ ciy <5mQZ 6m124/)

s, s, \m%  mi,
_ iy (Rellyz[my]  Rellijy [miy] (2.63)
s3, m? mé, ’ '
ov 1 dmzy, L n dsy,
v 2\ m¥ Qe s¥,
_ 1 (sl — iy Rellyi[miy] | ciy Rellyz[mz]  d 1 25w 1570
2 s3, mé, s3, m2 dp>” 77 =0 ew m% )
(2.64)
2 2
02, =02, + W W5z,
SwCw
_ ciy — siy [ Rellzz[m7] _ Rellyy iy [miy] _ il—[lPI[ ] ic%v — sty %1 [0]
s, m? mé, dp> 7 =0 m% oswew 70

(2.65)
§Zw =02, + V527,
Sw
— @ (RenlzPZI[mQZ] _ ReHIl/[EII/V [mIZ/V]) _ iHIPI[ ]

2 2
myz myy

2ew RelL £[0
1 Zew Rellz[0] (2.66)

p2:O SW mZ

2
Sy
Renormalization in fermion sector in the SM

We here discuss renormalization in the one-fermion sector, in which there is a kind of fermions,
because of simplification. Lagrangian of the fermion sector is

£f :\I/Lla\:[/L—f—\I/RZa\I/R—mf(\I/L\I/R—f—\I[R\I/L) (267)

In the fermion sector, there are one parameter m, and left handed fermions ¥ and right
handed fermions Wg. They are shifted into renormalized parameter and renormalized fields,
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and counter terms,

my — m;+0my, (2.68)
1
Uy, — Uy + Eazg, (2.69)
1
Up — Uy + 5521;. (2.70)
Two point functions of fermion fields are composed of following two parts,
s [p%) = Wypv %) + Ty pa[p?). (2.71)
Each part is expressed,
;v [p?] = pIY (0] + po 2L + m U ) — m,6 2 — om,, (2.72)
Hff,A[p | = —p7s (H}?}A[p |+ 5Z£> ; (2.73)
where
1 1
0Zf = 502} +02}), 0Zh = 5(02] - 02). (2.74)
We determine the counter terms by following conditions,
. d - d -
II =0, —II =0, —II ° =0. 2.75
srvlmgl =0 e v[p’] P APl L (2.75)

Then we obtain each counter term,

om; = m, (I [m3] + 17 [m3]) (2.76)

d d
07 = —I1}fy [m3] — 2m} (d STV 5T [p2]>

, (2.77)

202
pr=my

o d

2,2
p—mf

2.7 One-loop level corrected electroweak observables

2.7.1 Renormalized electroweak parameters

Because we have obtained explicit forms of counter terms for all independent parameters in the
gauge sector, we can calculate the one-loop level predictions for electroweak observables such
as electroweak precision parameter Ar and renormalized W boson mass mj;7'°. We here list the
renormalized electroweak parameter Ar and renormalized W boson mass mj*°. They can be
expressed as [69]

A'/’ _ il—[lPI[ ] o i ReanPZI[mQZ] o R'eHIl/IP/)II/V[m%/V] . 23W H'lylzl [O]
dp? o st m?% mi, oy Mm%
HlPI 0] — HlPI 2
X ww (0] - ww [miy] . (2.79)
myy

2
reno\2 my 47Taem
renoy2 - 2 () 41— , 2.80
(i) 2 ( V2G m% (1 — Ar)) (2.80)
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where dy g is the box and the vertex diagram contributions to the muon decay process, which
is given by [69]

Qe 7 —4s? m
- 6 Win =W ) . 2.81
VB 47rsW ( * 252, mz) (2.81)

Moreover, we also can calculate electroweak S, T' and U parameters as [79]

16m_ |ec s2,c2
5= 107 Ro | 41 (nl;i;[ ) - nl;i}m) S (i) )
1
oy (U0 - )| 28)
Z
1 e 0] A0 o] 52, P[0
T=—Re|- V;g[u i;[]+2i—w—;f[]+?w mQH : (2.83)
em w Z w Z w Z
1 1 1PI 1PI 25% ipr 1PI[, 2
U = 167Re |~ —{ 5 (M[0] - I m3] ) + = (0] - T fm3))
mz L9z €9z
1
S QU - ) + e (- ] s
w

where g, = g/cy -
2.7.2 Renormalized Higgs couplings

In this subsection, we give formulae of renormalized Higgs couplings composed of three parts;
namely the tree level part, the counter term part and 1PI diagram part. hV'V couplings and
hff couplings are composed of a number of form factors as,

fhvv[P%aP;QQ] = fivv[p%,pg,qQ]g’“’ + fivv[p%,pg,q ]ppo + ZFhVV[p17p27q2] Wm%;
' “(2.8)
Dogslpt 03, %) = 0308 03, 2] + v ks, 03, @) + p, D% s 03, 13, &) + p, 0 4 03 13, &)
+ P 1L 03,03, @°) + pstat ot p3, ¢
+ P Ly 01 03, )+ popy s Ui 8 03, 6°). (2.86)
Each renormalized form factor is given by,
. 2m? ,
FZVV[p%apga QQ] = V“V,tree + 00y + Fg/lvz[])ppza q ]a (2 = 1,2, 3) (2~87)

T4 [P Pl g = m, oTS ,, + TIPL 2 = 5, P,V1,V2 Al A2, T,TP
hff[p17p27q]_ ’iftree—i_ ff+ hff][p17p27Q]7 (j_ 4 ) ) ) y Ly )7
(2.88)
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where specific forms of counter terms are

2 0 )
oTL,., = % (% L O 5Zh) (2.89)
v
T3y = 5F;”;W =0, (2.90)
5mf ov v o1
(5Fhff = _T ( mf .y — + (5Zf + §§Zh) , (2.91)
P A

where dm?,, 6Zy and dv are given in Sec. 2.6.1 and om; and 52}/ are given in Sec. 2.6.1.
On the other hand, there is only a form factor of the scalar vertex in all orders in the the
Higgs self coupling. The renormalized Higgs triple coupling is given by,

Crnn[p1, 05, @) = 3N + 36Ty, + Dhnn 07, 03, 471, (2.93)

where Axyz is the coefficient of the XY Z coupling in the Lagrangian and ¢I';;, is expressed
as

omz  ms 3
If we expand T',., [p?, p3, ¢*] in the limit m, — oo, the quartic power of m, appears in T, ,, [p?, p3, ¢°
as follows,

3m3 Ne, mi
Lo 0?03, 6% = Uh (1 - 2 t2) ; (2.95)

2
3me vemy

where N, is the color number of the top quark. This result corresponds with that calculated
by the effective potential method [70].

Fig. 2.7.2 shows the one-loop contributions of electroweak sectors to hhh couplings as a
functions of \/? in the SM, where ¢ is the momentum of the off-shell h in A* — hh. We take
the mass of the Higgs boson and that of top quark to be 126 GeV and 173 GeV, respectively.
We can see that the one-loop contributions becomes negative value in the limit ¢> — 0. The
result is consistent with Eq. (2.95). The threshold effect at ¢ = 2m, contributes the one-loop
corrections to be positive value.

Effective potential method

We describe effective potential method for calculation of the renormalized hhh coupling [70].
We can comparatively easily evaluate the renormalized quantity with zero external momenta
at each loop level by using effective potential method. The one-loop level effective potential of
the SM is given by,

Vi) = Vil + s NV (<1000 ([ T08] - 2) 0 2o

Q? 2

where p, N, Ng., S;, M; [¢] and @ indicate the order parameter, the color number of a particle
1, the degree of the spin for a particle ¢, the spin, the mass of ¢ and the renormalization scale,

1
6472
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Figure 2.2: The one-loop contributions of electroweak sectors to hhh couplings as a functions
of v/¢? in the SM, where ¢* is the momentum of the off-shell A in h* — hh.

respectively. The renormalization scale ) can be absorbed by the following renormalization
conditions,

=0, (2.97)

62

8_@2%3[@]’ = mj. (2.98)

p=v

The renormalized Higgs self coupling 'S} can be calculated by

3 2 1 4
Nﬂ{ L } (2.99)

p=v v

83

a—sps%ff[@]

This result is consistent with that calculated by the diagrammatic method.






Chapter 3

Review of extended Higgs sectors

3.1 Review of four types of the THDMs

3.1.1 Lagrangian of the the THDMs

There are two isospin doublet scalar fields ®; and @, with Y = 1/2. Parts of Lagrangian which
are different from that of the SM is given by,

L= "L+ Ly -V, (31)

where Lyine, Ly and V' express the kinetic term of the Higgs fields, the Yukawa interaction term
and the Higgs potential, respectively.
The kinetic term is

‘ckine = |l)'uq)1‘2 + |DN(I)2|27 (32)
where D! is
/
Dl =or — z‘gnwi“ - i%B“. (3.3)
The two doublet fields can be parameterized as
o (”j) b= (b vt iz), i = 1,2 (3.4)
i = ) i = =l T U T 12), 1= 1, 4, .
oF V2

where v; is the VEV of each Higgs field. Masses of weak gauge bosons are derived from Ly
as,

g9 97
my, = T (vi +v3), my = ZZ (vf 4+ v3) , (3.5)

where g, = g/ cosfy,. Since existence of v; and v, occur the electroweak symmetry breaking,
the VEVs can be defined by v? = v? + v2 = V2G5! ~ (246GeV)2.
The general Higgs potential [38] is given by,
V =m2dI &y + midld, — m2(0ld, + old)) (3.6)
A1 A2

+ 7(@1@1)2 + 7@5‘1’2)2 + A3(D1D1) (BI Do) + My (R]D,) (D)D)

A
+ 5 (@102 + (@01)? + Al @, 0], + A [@520] 0, + h.c.] ,

25
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where m?, m3, Ay — )\, are real parameters, while m3 and As-), are generally complex.
We here retake the basis of the two Higgs fields so that only one of the pair has a VEV,

() -m((3)

d G \ ar
= / . 9 - !/ . 3 3-8
( \/%(hl—l—anzGo) ) ( \/%(h2+zA) ) (38)

where v >~ 246 GeV, tan 8 = v,/v; and G* and G° are Nambu-Gorldstone bosons. This basis
is so-called the Georgi basis. Higgs field components of the Georgi basis are related with those
of the original basis as,

(ZQ)ZR(B)@:;)’ (2)=R<ﬁ>(§f): (£>=R<ﬁ>(§i)- (3.9)

H?* and A are the pair of charged Higgs bosons and a CP-odd Higgs boson and they are mass
eigenstates. On the other hand, in general, CP-even scalar components h| and hf are not
diagnarized at this stage.

Using the Georgi basis, the Yukawa interaction term Ly, can be expressed as,

where

/M M. M
—Ly=0Q¢L (qu) + Yd‘If) dr + Q1 (T“q) + YU‘P) ugr + Ly, (#@ + YZ\IJ) lp + h.c., (3.10)

where M; and Y; (i = u,d,[) are the mass matrix and any matrix, respectively. In contrast to
M; which is diagnarized, Y; is the non-diagonarizec matrix. Because there is no matrix which
can perform simultaneous diagonalization of the mass matrices and the Yukawa interaction
matrices, FCNCs appear at the tree level [36,37]. Tree level FCNCs can be naturally forbidden
by introducing any symmetry. For example, it is known that there is a way to forbid tree level
FCNCs by a discrete Zy symmetry [36].

In order to discuss the Yukawa interaction of the THDMs with the discrete Z, symmetry,
we restore the basis of Higgs fields. There can be four different types of Yukawa interactions,
depending on the assignment of the Z, charge for ®,, ®, and fermion fields [41]. We call them,
the Type-1, the Type-II, the Type-X and the Type-Y THDM [42]. We define the Z, charges
for scalar and fermion fields as shown in Tab. 3.1. Then, each fermion couples to only one kind
of Higgs field in the Yukawa interaction term as follows,

_EY = QLqu)idR + QLYUQ:)juR + ELYE(I)]CZR + h.C., (311)

where Y; indicates any non-diagnarized matrix and ®, ;. are ®; or ®5. Matrices Uck s as given
at Eqgs. (2.16) can diagnarize Y, matrix as,

—Ly = QLY 90,up — Qr(Uckm Yy *)®;dr — LY, ®lg 4 h.c (3.12)
_ M, - M M
= _QL ) (I)Z-UR—Q/L—?(D]‘CZR—LL—l(DklR+h.C., (313)

V; oF Uk,



3.1. REVIEW OF FOUR TYPES OF THE THDMS 27

where

T /
Q' = Ubyn@ = Ubxn ( Z;/ ) = ( UCEMU ) = ( Z ) : (3.14)

We find that FCNC processes do not appear at the tree level in the Yukawa interaction term
because the mass matrix and the Yukawa interaction matrix of each fermion field are the same
one.

Zy charge Mixing factor
¢ P Qr L ur dr er| & &a Ee
Type-l | + - 4+ 4+ — — — |cotf cotf cot 8
Type-Il | + - + + — + + |cotf —tanfB —tanf
Type-X| + —-— + 4+ — — + |cotf cotf —tanp
Type-Y | + - + 4+ — + —|cotf —tanf cotp

Table 3.1: Charge assignment of the softly-broken Z; symmetry and the mixing factors in
Yukawa interactions given in Eq. (3.13).

In the THDMs with the softly broken Z, symmetry, the Higgs potential [38] is written as

V =m2®I &y + midl oy — m2 (0D, + old)) (3.15)
A1 A2

+ 7(@1@1)2 + 7@5‘?2)2 + A3(D1D1) (BI Do) + My (B]D,) (D)D)

A
+ 5 (@12 + (@he)?]

where m4 means the soft broken scale of the Z, symmetry.
Tadpoles for Higgs potential in this model are

M?*v2 1 1

Th1 =1 (m? — 2 2 + 5)\11)% + 5()\3 —+ )\4 + /\5)’03) s (316)
M*? 1 1

Th2 = Uy (m% — 2 1 + 5)\21)3 + 5()\3 —+ )\4 + )\5)1’%) . (317)

The stationary conditions 7j, = 0 and T, = 0 can make m; and my dependent parameters as,

M3 1 1

mi = =% = S = S (s A A, (3.18)
M2} 1 1

my = =t = 2havy — 5 (s A+ As)ef (3.19)
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The mass term of the Higgs potential V. can be arranged as follows,

( - %w £39)) 55 (=M 4500+ ) ) sacs ()
(L TN+ )\5)> SgCp (M2 — %(/\4 + >\5)> 3 Wy

N 1(2 %) < (]\42 — Asv%)sy (=M + Av?)speg > < 21 )
2V TN (=M 4 Asv)spes (MP — Asv*)c 2y

+1(h h) < 5 (M? + Mo? + (= M2 + X\v?)cgp) (—M? +v*( M+ Xs5)) sacs ) ( h, )
g\ T2 (=M? +v*( M+ Xs)) s5c5 3 (M2 + XMv? + (M? = Xv?)cop) hy

=<wf,w;>R<B>(° ) )R‘l(ﬁ)(wl)

0 m2, wy
wytear®) (o % ) RO (2
+ %(hl,hg)R(ﬁ) ( “?I ngi )R—l(ﬁ) < Z; ) , (3.20)

where sy and ¢y express sin # and cos 0, respectively. Then, the mass eigenstates can be expressed

by
(i )=mo(a) (9)=mo(2) (7)=rw(n)

(3.21)
and mass formulae of Higgs fields are derived as,
02
mye = M? — ?(A4 + As), (3.22)
m124 = M? — \s0?, (3.23)
mH =C Mevenll + SQQMGQVE)HlQ +s Megven227 (324)
mh =S Mezvenll SQO&MerenIQ +c Mezven22 (325)
Original parameters in the Higgs potential can be written using physical parameters by,
M= (& M?s 3.26
1_1)20?3<3 oMy + camir — ) (3.26)
1
Agzﬂ(02mh+8 my — M*c3), (3.27)
V285
Mo = 2 (2 ) — = (M~ 2m3) (3.28)
1
Ay = ﬁ( —2mi. + M?), (3.29)
1
As = — (M? —m?) (3.30)
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Constraint from perturbative unitarity and vacuum stabilit ~ Constraint from perturbative unitarity and vacuum stability
m,=m,, =m, =m,, tanB = 3 cos(B-a) > 0 m,=m,, =m, =m,, tan = 3 cos(B-a) <0
600 \ ‘ \ ‘ 600 \ ‘ \

sin’(B-a) = 0.99

sn’(B-a) = 0.99

sn’(B-a) = 0.95

M GeV
M GeV

200 200

Figure 3.1: The left and the right panel show bounds on the mass of extra Higgs bosons myg
and M from perturbative unitarity and vacuum stability for cos(8 —a) > 0 and cos(8 —a) < 0,
respectively. Inner regions of the red (blue) line are allowed parameter regions for sin(f — a) =
0.99 (0.95). All extra Higgs bosons are degenerated in this analysis and tan f is fixed to be 3.

Perturbative unitarity and vacuum stability

Constraints from perturbative unitarity and vacuum stability in the THDMs have been studied
in Refs. [71-74] and Refs [75-77], respectively.

There are 14 two-body neutral scattering scattering channels and 8 charged two-body scat-
tering channels. Diagnarizing the 14 x 14 matrix of S—wave amplitudes of the neutral scattering
channels and the 8 x 8 matrix of S—wave amplitudes of the charged scattering channels, 7 and
1 eigenstates appear, respectively, as shown below,

1 ]3 9
it = 1o {§(A1 T \/Z(A1 — )2+ (20 + >\4)2} (3.31)
LY LTS W \/1(A1 )+ A2 (3.32)
> 167 | 2 4 !
. 11 1 .
Qs = di = 16_7T i(Al + )\2) + Z<)\1 - )\2) + )\5 (333)
1
1
1

The perturbative unitarity bound from scalar fields 2-body scattering S—wave amplitudes are
given by

| <%. (i=1-6) (3.37)
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Constraints from perturbative unitarity and vacuum stability ~ Constraints from perturbative unitarity and vacuum stability

m,=m,, =m, =m,, cos(f-a)>0 m,=m,, =m, =m,, cos(B-a) <0
T : . : . 400 . : . : . :
B
a0l S J
s U”/l‘ar/ 350 N
Y Y by, >
r 5’5 e sin“(B-0)=0.995 | 1
600 300 —
S b > Sind(B-0)=0.995
[©) [©) 0.99
o (D 250 -
E< 400 E< L 0.90
200 —
A Vacuum stability
200
150 — —
L L L L L | L L L L L
0 10 20 30 100 10 20 30 40
tanp tanp

Figure 3.2: Constraints for tan S-m, plane from perturbative unitarity and vacuum stability.
Lower regions from the black, the red, the blue, the green and the magenta line are allowed
parameter regions for sin’(5 — ) = 0.995, 0.99, 0.98, 0.95 and 0.90, respectively. All extra
Higgs bosons are degenerated in this analysis and M? is scanned with the range 0 < M? < m3.
The left and the right plane are the case for cos(8 — a) > 0 and cos(f — «) < 0, respectively.

On the other hand, the conditions of vacuum stability are expressed by
AL > 0, Ay > O, VA A+ A3+ MIN(O, A+ )\5, Ay — )\5) > 0. (338)

These theoretical constraints give bounds on masses od Higgs bosons and mixing parameters.
Fig. 3.1.1 shows bounds on the mass of extra Higgs bosons mg and M from perturbative
unitarity and vacuum stability. Inner regions of the red (blue) line are allowed parameter
regions for sin(f — «) = 0.99 (0.95). All extra Higgs bosons are degenerated in this analysis
and tan [ is fixed to be 3. The left and the right plane indicate the case for cos(f — a) > 0
and cos(8 — «) < 0, respectively. We can find that only parameter regions for m2% ~ M? are
allowed in the large extra Higgs boson mass regions. If the value of tan (8 is larger, the bounds
on the parameters become more strict.

In Fig. 3.1.1, we shows constraints for tan g-m, plane from perturbative unitarity and
vacuum stability. Lower regions from the black, the red, the blue, the green and the magenta
line are allowed parameter regions for sin?(5—a) = 0.995, 0.99, 0.98, 0.95 and 0.90, respectively.
All extra Higgs bosons are degenerated in this analysis and M? is scanned with the range
0 < M? < m2. The left and the right plane are the case for cos( —a) > 0 and cos(8 —«a) < 0,
respectively. If the value of tan S becomes large, the bound on mg becomes more strict. In
particular, the bound on mg in the case with cos(f — «) < 0 is stronger than that in the case
with cos(f — a) < 0.

Decay branching rations of Higgs bosons

In order to try to directly detect extra Higgs bosons, it is important to know how the extra
Higgs bosons decay into light particles. In this subsection, we show total widths and decay
branching rations of extra Higgs bosons H, A and H* [42,57,78]. A full set formulae of decay
rates for extra Higgs bosons are given in Appendix.
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Figure 3.3: These panels are the total width (the decay branching ratio) of the Higgs boson(H)
in the THDM. Here, masses of additional Higgs bosons are fixed, my = m4 = my+.The mass
of the soft breaking parameter M is M = mpy — 1GeV. Mixing angle among scalar fields are
set sin(f — a) = 1.

In Fig. 3.1.1, the black, the red, the green and the blue lines show the total decay width
(I'y) of H as a function of my in four types of THDMs for tan 8 = 1, 2, 3 and 4, respectively.
We also take myy = my = my = M and sin(8 — o) — 1. T'y; is drastically enhanced around
my = m, because the decay channel H — tt is opened. In the Type-II, X and Y, T'y is
increased as the value of tan 3 becomes larger because of the factor tan 3 in the hbb and /or hrt
vertices. In Fig. 3.1.1, each colored line is the decay branching ratio of the extra Higgs bosons
for each channel (& — X X) as a function of tan 5 in four types of the THDMs. We also take
all the extra Higgs bosons degenerated with mg = 150 GeV and fix sin( — «) to be 1. There
in no processes where ® decays into weak gauge bosons W/Z because of sin(5 — «) = 1, so that
lighter H and A dominantly decay into bb and H* dominantly decay into 7v. In the Type-II
and X, the H(A) — 77 decay mode is also important in the case where the value of tanf is
large.
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Figure 3.4: These figure are the decay branching ratio of the Higgs boson(H) in the THDM.
Here, masses of additional Higgs bosons are fixed, mg = my = my+ = 150GeV.The mass of
the soft breaking parameter M is M = mpy — 1GeV.Mixing angle among scalar fields are set
sin(f — o) = 1.
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Figure 3.5: These figure are the decay branching ratio of the Higgs boson(H) in the THDM.
Here, masses of additional Higgs bosons are fixed, myg = ms = my+ = 150GeV. The mass of
the soft breaking parameter M is M = my — 2GeV.Mixing angle among scalar fields are set
sin?(8 — ) = 0.96.
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3.1.2 Electroweak S, T" and U parameters

The S, T and U parameters [79] proposed are modified in the THDM [80] from those predicted in
the SM due to the additional Higgs boson loop contributions and the different value of coupling
constants among the SM-like Higgs boson h and gauge bosons. We define the differences of S,
T and U parameters as AS = STHDM - SSM7 AT = TTHDM - TSM and AU = UTHDM - USM-
These are calculated in terms of x defined as x = 7/2 — (6 — «),

1 1
AS = —{Fé(m%§mH7mA) 3 Inmj.

4m
o) - () st )] ot

my My, myg Mgy mz Mgz
1 mpg+ Ma
AT = ———{ F5(0; 4 F —
471'621}2{ 5(05ma, M) + mig P ( my ’mH)
+ 22 [m%FA <m, mHi) —I—miFA (mHi ) %>
myg mpgyg mp - My,
+m2y Fa (—mH ; —mh) +m%, Fa (mh mH)
mwy Mmw mz Mg
G (2L, ) g (T )] } O,
mw Mmw mz mz

1 m m 1
AU:@{Eﬂm;’mi>—§mm%‘*ym?m*m“

+o? [Py (24, I2) _ gy (4, B2y (T )y (R, B

mg Mmpg mp  Mp mp mp mg Mg
/ mpg my / mpg Mmp
Gy (1 1) gy (1 mw)}+0( ), 53

where

Fy(p?,my,my) = /0 dx [(237 —1)(m? —m3) +p*(2x — 1) } Infzm? + (1 — z)m3 — z(1 — x)p?],

(3.40)
1[2(22 —23)(1 — 2223)  zi(z? —3) ry(z3 — 3)
r _ 1 1~ 75 173) (% g2 P2\ =9y 2 11
oo =3 [ - W et + R
l—af+223ln2? 1 — 23+ 223Ina?
/ — 2 _ 1 1 1 2 2 1 42
Gtonri =2 |1 -3 342

where

Ap = —z(1 — 2)p* + 2m? + (1 — 2)m3. (3.43)
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In the case of p? = 0, the Fy function is expressed by

2 2,,2
S gy T2 (3.44)

1
F5(0;mq,my) = §(mf +m3) + m?— 2
1 2

which gives zero in the case of m; = msy. Therefore, it is seen that AT becomes zero when
x =0 and my = mpg: or =0 and my = mpy= is taken [81].

3.1.3 Constraints from current experiments

In this section, we list bounds on model parameters from collider experiments and flavour
experiments.

The lower limit on m,. as my,. 2 80 GeV had been given by data of the LEP experi-
ment [82]. A process ete™ — HTH~ was assumed in the analysis. Currently, in the MSSM,
mpy+ has been more strongly constrained by data of the LHC Run-I [83,84]. and the bound
is my= > 140 GeV. The production process is gg — tt — bbHTW and the decay process is
H* — 77y, In the MSSM, the mass of A also has been constrained by the search of the process
gg — bbA — bbrt7~ at the LHC Run-I [85]. The lower bound depends on the value of tan 3;
e.g., m, 2 350 GeV for tanf = 10 an m, = 800 GeV for tan f = 50. In the Type-I and II
THDMs, the mass of H have been given the lower bound depending on the value of sin(f — «)
by the LHC Run-I data, where the decay process is assumed to be H — WW — [vlv [86]. The
strongest constraint is my 2 220 GeV for tan 5 2 1.

Constraints on my+ are summarized in Ref. [87]. The constraint from the measurement
of the b — s process is the most important. m,. < 500 GeV for all tan 3 region have been
excluded in the Type-II and Y THDMs by the data. In also the Type-I and X, m . have been
strongly constrained depending on the value of tan 3; e.g., my. < 800 GeV for tan 3 = 1 and
mys GeV for tan 3 = 2. In the Type-II THDM, the D, — 7v process also gave the strong
bound on m . in the large tan 3 region; e.g., my= 2 400 GeV for tan § = 40. In all types of
THDMs, my+ < 500 GeV are excluded in the regions with tan 8 < 1 by the By — By mixing.
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3.2 Review of the HSM
3.2.1 Lagrangian of the HSM

Lagrangian

The scalar sector of the HSM is composed of a complex isospin doublet field ® with hypercharge
Y =1/2 and a real singlet field S with Y = 0. The most general Higgs potential is given by

V(®,8) = m2 |02 + N ®|* + f1pg|PI*S 4 Npg|®[2S? + tgS + m2S% 4+ 1gS® 4+ AsS?*,  (3.45)
where all parameters are real. The Higgs fields & and S can be parametrised,

G+
@:%(mm@))”:””& (3.46)

where v and vg are vacuum expectation values (VEVs) of ® and S, respectively. The fields
G and GY are Nambu-Goldstone bosons to be absorbed in longitudinaly polarized weak gauge
bosons. Notice that v is determined by the Fermi constant G by v = 1/(v/2Gr)"/? (=~ 246
GeV) while vg does not affect electroweak symmetry breaking. As it has been pointed it out
in Refs. [88,89], the potential in Eq. (3.45) is invariant under the transformation of vg — v
by redefining all the potential parameters associated with S.

At the tree level, tadpoles are given by

T¢ = U{mé + >\U2 + US(A‘I)SUS + ILLCPS)}7 (347)

2
2 , MoSV

Ts = tS + 2m%vs + 4)\5@2 + >\<1>SU2US + 3/1151)5 + 2 (348)

By imposing the stationary condition Tp = 0 and Ts = 0, m2, and tg are related to the other
parameters as

ma = —\? — A\psVs — HUasUs, (3.49)
1
tg = —2mavg — 4AgUs — ApgUgt® — V5 iLg — §v2uq>s. (3.50)
After the electroweak symmetry breaking, mass terms of the scalar fields can be expressed
as
Lo = —3(5.0) (2 M) (s (351)
e =300 Uiy iy ) Lo ) '
where
Mpy = M? + Agsv”, (3.52)
Mty = (2Xasvs + 1igs)V, (3.53)
M3, = 2\, (3.54)
with

M? = 2m% + 12\ gv% + 611505 (3.55)
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We diagonalize the mass matrix by introducing the mixing angle «, and express the scalar fields
by mass eigenstates H and h,

1 m% 0 H
/Cmass - _E(H’ h)( 0 m% ) ( A ), (356)

where mass eigenstate H and h are related to the original fields s and ¢ by

S cosa —sina H
( ¢ ) B ( sina cosa ) ( h > (3.57)
The masses of H and h are given by

qu = (sin oz)2M121 + (cos a)2M222 + sin(2a)M122, (3.58)
m; = (cosa)? M3, + (sin a)® M3, — sin(2a) M7, (3.59)

where h identified to be the discovered Higgs boson with m;, ~ 125 GeV. The mixing angle a
can be written in terms of the parameters in the potential as

20(20p505 + Hgg)

tan(2a) = M2 — 022\ — Nps)’

(3.60)

We note that the SM limit is realized by taking M? to be infinity. In the following discussion,
we use s, and ¢, to express sin a and cos «, respectively.

By using physical parameters m2, m?% and «, the three parameters in the potential, A, m%,
and jig, can be expressed as

Ly

A= ﬁ(cami + Sim%), (361)
2 2 2,52
m% = CQ?H Sa;”h — 6AgV2 — Aggt” — 12041, (3.62)
2 2
Hes = m_fca(_2vsca + Usa) - m_ghsa(vca + 2USSa)' (363)
v v

There are eight parameters in the Higgs potential m%, A, pgg, Apgs tg, Mm%, fig and Ag, which
are replaced by v, m3, m%, a, vs, Aes, Ag and fig.
The kinetic terms for the scalar fields are given by

1
'Ckine = |DM<D|2 + 5(8MS)27 (364)
where D = " — g7, WH — i%B“. We obtain interaction terms between weak gauge fields and
scalar fields as

2

2 2
W G AW 4 (s H + cah)%g“”ZuZy T (3.65)

‘Ckine - <SOcH + Cah)

where my, and m, are the masses of W and Z bosons, respectively. Although the Yukawa
interaction is the same form as that in the SM, Yukawa couplings of H and h are modified by
the field mixing,

Ly = —"L(saJFH + caf 1) (3.66)
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We define the scaling factors as ratios of the Higgs boson couplings in the HSM from those
in the SM,

HSM HSM \HSM

Ky = gg‘l\/dv, for V=W,Z, ;= %, Kp = 'éth , (3.67)
Irvv Ynyy Ahhh

where g,Il{Sl‘\,/I(SM),y,Iff}w M) and )\1;5}11\/1 M) are coefficients of hVV hff and hhh vertices in the

HSM (SM), respectively. Tree level values of kv, k; and kj, are derived from Egs.(3.65), (3.66)
and (3.45) as

Ky = Kf = C,, (3.68)
. 2
Knp=c> + m—gsi()\q)svca — psSa — 454 AgVg). (3.69)
h

Perturbative unitarity, vacuum stability and wrong vacuum condition

In this section, we discuss three theoretical constraints; i.e., perturbative unitarity, vacuum
stability and the condition to avoid wrong vacuum.

The constraints from the perturbative unitarity in the HSM had discussed in Ref. [90].
Under the perturbative unitarity bound, the matrix of the S-wave amplitude for the two-body
to two-body scattering of scalar fields has to be satisfied in following condition,

1
[(p3palaolpripa)| <& where =1 or 7 (3.70)

In the HSM, there are seven neutral scattering processes.! Digonalizing the matrix of the
neutral scattering processes, we obtain following independent eigenvalues,

1
- _ 2 2
ar = T6m (3)\ + 6Ag £ \/(3)\ 6As)? + 4)@5) , (3.71)
1
by = —A\, (3.72)
8
1
= — go. .
o S Aes (3.73)

Because we take the constraint with & = %, specific bounds of eq. (3.107) are

<3>\ + 6y + \/ (3X — 6Ag)? + 4A§>S> <8, A<Am, Apg < 4m. (3.74)

As conditions of vacuum stability [47], we require the value of the potential to be positive
at large ® and S. Because terms of the quartic interactions are dominant in the potential with
large values of the fields,

A@* + Nps|®[2S% 4+ NSt > 0 (3.75)

! Although there are one doubly charged cannel and three singly charged cannels in addition to seven neutral
channels, independent eigenvalues is exhausted in eigenvalues of neutral scattering amplitudes. Because of that,
it is sufficient to consider only neutral cannels.
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must be satisfied. In order to satisfy 3.75, following bounds for A parameters are imposed,
A>0, Asg >0, 4\\g > M3, (3.76)

where the third bound is applied when Agg is negative.

We are free to choose the value of vg. We take to be (v,vg) = (vgw,0), because the singlet
field does not contribute to electroweak symmetry breaking. However, even (vgw,0) is the
extrema, there is a possibility that there are lower extremes at other points. According to
Refs. [88,89], five kinds of other extrema. If one or more than one extrema given in Eq. (24)
and (B1) Ref. [89] become deeper than V (vgy,,0), then such a vacuum should be regarded as a
wrong vacuum. In the analyses of this paper, we use the condition to avoid the wrong vacuum
given in Ref. [89].

3.2.2 Constraints from an extra Higgs boson searches

Null results from the Higgs boson searches at LEP and the LHC Run-I can constrain the signal
rate of the second Higgs boson which is defined as S[H] = o[H| x BR[H — XY|? where oy
and BR[H — XY are the production cross section of H and the branching fraction of the
H — XY decay process in the HSM, respectively. If we assume BR[H — hh] = 0, S[H] is
given by s2 times the signal rate of the SM Higgs boson. In that case, constraints from LEP and
LHC simply depend on my; and «. In Ref. [92], the excluded parameter region on mj and « has
been presented using the LEP and the LHC results under the assumption of BR[H — hh] = 0.
In the region with my < 80 GeV, most of the parameter regions of o have been excluded with
95 % CL. In the region between 130 GeV and 500 GeV, |s,| 2 0.4 is excluded with 95 % CL.
There are no constraints on |s,| for my 2 800 GeV.

3.2.3 Electroweak S, T" and U parameters

In Refs. [91,92], the one-loop corrections to my,, has been calculated in the HSM with a discrete
Zy symmetry. The limits on s, and mpy have been derived by comparing the prediction of my,
and its measured value at the LEP experiment, namely, |s,| 2 0.3 (0.2) with m, = 300 (800)
GeV is excluded at the 20 level. Although the electroweak S, T and U parameters have also
been calculated in Ref. [92], constraints from those parameters are weaker than those from myy.

2Although we can obtain constraints on the signal rate of the additional Higgs boson by using the data at
Tevetron, these constraints are entirely superseded by the one of the LHC Run-I [92].
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3.3 Review of the HTM

3.3.1 Lagrangian of the HTM

The scalar sector of the HTM is composed of the isospin doublet field & with hypercharge
Y = 1/2 and the triplet field A with Y = 1. The relevant terms in the Lagrangian are given by

Lyrm = Lyin + Ly — V(P, A), (3.77)

where Ly, Ly and V(®, A) are the kinetic term, the Yukawa interaction and the Higgs poten-
tial, respectively.
The kinetic term of the Higgs fields is given by

Ly = (D, @) (D"®) + Tr[(D,A)(D*A)], (3.78)

where the covariant derivatives are defined as

/

9 arira , -9 91 _arrra .
D,® = (8u + 5T Wi+ ZEB“> ®, D,A=09,A+ ZE[T Wi Al +ig'B,A. (3.79)

The Higgs fields can be parameterized by

¢* A—\/t ATT o 1
¢ = : A=| V2 ith A" = — (6 : 3.80
[%@H%Hx)]’ R S0+vatin.  (350)

where v, and va are the VEVs of the doublet Higgs field and the triplet Higgs field, respectively
which satisfy v? = v; + 204 =~ (246 GeV)?. The masses of the W boson and the Z boson are
obtained at the tree level as

2 g2

4 cos? Oy,

my, = g—(vﬁ +20%), my =

1 (v + 4v3). (3.81)

The electroweak rho parameter can deviate from unity at the tree level;

2 2
mw Yo
= . 3.82
mycos? 1 4 A (382)

p

The experimental value of the rho parameter is quite close to unity; i.e., p™P = 1.00081) 5oor [99],
so that va has to be less than about 8 GeV from the tree level formula given in Eq. (3.82).
The Yukawa interaction for neutrinos [50] is given by

Ly = hijLicin, AL} +h.c., (3.83)

where h;; is the 3 x 3 complex symmetric Yukawa matrix. Notice that the triplet field A carries
the lepton number of —2. The mass matrix for the left-handed neutrinos is obtained as

(M,)ij = V2hijua. (3.84)
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The most general form of the Higgs potential under the gauge symmetry is given by
V(®,A) = m*®'® + M*Tr(ATA) + [p®"in AT® + h.c.]

+ A1 (BT0)2 + Ay [Tr(ATA)]” + A Tr[(ATA)?] 4+ Ay (BTR)Tr(ATA) + A dTAATD,
(3.85)

where m and M are the dimension full real parameters, y is the dimension full complex pa-
rameter which violates the lepton number, and A;-\5 are the coupling constants which are real.
We here take p to be real.

The potential respects additional global symmetries in some limits. First, when the y term is
absent, there is the global U(1) symmetry in the potential, which conserves the lepton number.
As long as we assume that the lepton number is not spontaneously broken, the triplet field
does not carry the VEV; i.e., vo = 0. Next, when both the u term and the A5 term are zero,
an additional global SU(2) symmetry appears. Under this SU(2) symmetry, ® and A can be
transformed with the different SU(2) phases. In this case, all the physical triplet-like Higgs
bosons are degenerate in mass.

The tadpoles for the ¢ and ¢ fields are obtained as

2
Ty = —Vg |:m2 + U;)\l + %(/\4 + )\5) — \/i,U/UA:| , (386)

2

2
(% (%
TA = —UVA |:]\42 + 'UZ()\Q + )\3) + ?¢<)\4 + )\5) — Mi:| s Wlth Mi = ¢,U

V2ua~

Because the tadpoles must be vanished at the tree level (T = Ta = 0), we can eliminate
m? and M? in the potential. The mass matrices for the scalar bosons can be diagonalized by
rotating the scalar fields as

¢t \ [ cosfB —sinf G* x\ [ cosp —sinf G
AT ) 7\ sinB cosp H* |’ n )  \ sinf cosf A )
¢\ [ cosa —sina h
< 6>_<sina cos & ) (H)’ (3.88)
with the mixing angles

\/EUA , 20UA VA 21);()\4 + )\5) — 4M2
, tanf = —, tan2a=—- 5 5 .
Vg Vg Vg 20501 — MZ — 203 (A2 + A3)

(3.87)

tan § =

(3.89)

We note that the mixing angle of the charged scalar states () and that of the CP-odd scalar
states (') are different in the triplet model. In the two Higgs doublet model, corresponding two
mixing angles are the same at the tree level. This is because the kinetic term of the two doublet
fields can be rewritten in terms of so-called the Georgi basis, where only one of the doublets
has a non-zero VEV in which the NG bosons are included. Original basis and the Georgi basis
are related to a single angle. In the HTM, because ® and A are the different representation of
SU(2), the kinetic term given in Eq. (3.78) cannot be rewritten in terms of the Georgi basis.
Thus, the diagonalization of the mass matrices has to be done by each component scalar field,
and mixing angles for the charged scalar states and the CP-odd scalar states are different in
general.
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In addition to the three NG bosons G and G° which are absorbed by the longitudinal
components of the W boson and the Z boson, there are seven physical mass eigenstates H**,
H*, A, H and h. The masses of these physical states are expressed as

A
mi e = M3 — vads — ?5113), (3.90)
A 20%
me, = (Mg _ fv(i) (1 + %) : (3.91)
@
2 2 v}
my =M 1+— |, (3.92)
Ys
m3, = M3, sin? a + M2, cos®> a — M3, sin 2a, (3.93)
m; = M3, cos® a + M3, sin® a + M2, sin 2, (3.94)

where M3, M3, and M3, are the elements of the mass matrix M, for the CP-even scalar
states in the (¢, 0) basis which are given by

M3, =203\, (3.95)

My = MR + 203 (A2 + A3), (3.96)
2

Miy = _UL;MZ + vgva(As + As). (3.97)

The six parameters p and A\j-A; in the Higgs potential in Eq. (3.85) can be written in terms of
the physical scalar masses, the mixing angle o and VEVs v, and va as

2 2
= \/_;’A M2 = Vs (3.98)

A
v3 vZ + 4dv}
1
A = W(mi cos® a + m3; sin” ), (3.99)
¢
1 2 2 m Ami, 2 .2 2 i 2
Ay = E 2mips + vy 1 4% — 2520 + mi cos” a + my, sin” a | (3.100)
N = U8 [ 2mie e b 3.101
37T 02 2 2 2 2 2 | (3.101)
VA \ Vg + 203 Uy vy + 4v;
4 2 2 2 2 _ 2
A= ot ZA T T T Gy, 9, (3.102)
Uy + 208 vy + 4v; 2vpv

2 2
As =4 ( ma T ) . (3.103)

v; + 4v} B v; + 2v%

When the triplet VEV v, is much less than the doublet VEV vy, which is required by
the rho parameter data, there appear relationships among the masses of the triplet-like Higgs



3.3. REVIEW OF THE HTM 43

bosons by neglecting O(v3 /v3) terms as

A
s iy =y =ty (= =202)), (3.104)
m% =m3 (= M3). (3.105)

In the limit of va/v, — 0, the four mass parameters of the triplet-like Higgs bosons are
determined by two parameters. Egs. (3.104) and (3.105) can be regarded as the consequence
of the global symmetries which are mentioned in just below Eq. (3.85).

3.3.2 Perturbative unitarity and vacuum stability

From now on, we show the constraints from the unitarity and the vacuum stability. The
condition for the vacuum stability bound has been derived in Ref. [93]. The unitarity bound
has been discussed in Ref. [94] in the GM model [53] which contains the HTM. The unitarity
bound in the HTM has also been discussed in Ref. [93].

The necessary and sufficient condition for the requirement of the vacuum stability is given
by [93]

1
AL > 0, Ay + MIN |:)\3, 5)\3 > 0,

Mg+ MIN[0, As] + 2MIN[v/ A (A2 + As), vV A (Aa + As/2)] > 0. (3.106)

In the unitarity bound, we require that the matrix of the S-wave amplitude for the elastic
scatterings of two scalar boson states (psp4|ag|p1p2) are satisfied the following condition;

1
[(p3palaclprpa)| <1 or |Re(pspalaolpips)] <3 (3.107)

where ¢; denote the NG bosons and the physical Higgs bosons. In the HTM, there are 35
possible scattering processes, i.e., 15 neutral channels, 10 singly-charged channels, 7 doubly-
charged channels, 2 triply-charged channels and one quadruply-charged channel. Thus, there
are 35 corresponding eigenvalues, but some of them have the same expressions. In fact, 12
eigenvalues can be regarded as independent eigenvalues, these are

=2 1, Y2 =22+ A3), ys=2X,
U= A de 22 A2 2000 + 20) + A+ 4N0ds + 4N+ A2,

G = B A% + 3 1 /9NZ — 6A (4Xg + 3Xs) + 163 + 240X + 9N + 6AF + 222
S R S W %(m +30), go— %(m CA), yio = 2 — Ag. (3.108)
The unitarity constrains by the following condition:
il < ¢ i=1,...,10, (3.109)

where ( is the upper limit for these eigenvalues. In Eq. (3.107), when we impose the former
(latter) condition to the S-wave amplitude, this corresponds to ¢ = 167 (87). In our numerical
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analysis for the constraint from the unitarity bound, we take both the cases with ( = 87 and
¢ = 16m. These eigenvalues can be rewritten as a simple form by using Ax(> 0) by

3
T = 3)\1 + 7)\A + \/(3)\1 - 7>\A)2 + 5(2)\4 —+ )\5)2, (3110)
1
1

3.3.3 Constraints from collider experiments

A direct search for doubly charged Higgs bosons H** is one of the most important probes in
the HTM. The main decay mode of H** depends on the value of v,. Accordingly, bounds on
mp++ drastically change depending on the decay mode [51].

We here consider the case with no mass difference among triplet like Higgs bosons. In such a
case, if v is smaller than about 1 MeV, H** mainly decay into the same sign dilepton, namely
H** — [*[*. By asuuming the case where H** decays into the same sign dilepton, the most
stringent lower limit on mg++ has been obtained to be about 550 GeV [95] at the LHC. On the
other hand, if va is larger than about 1 MeV, the decay process H** — W*W= is dominant.
The lower limit on my++ have been evaluated in the case where the dominant decay mode is
H* 5 W*W*®) | by using the same-sign dilepton search performed by ATLAS Collaboration
with 20.3 fb~! data at the collision energy of 8 TeV [96]. By the study, the bound on the lower
bound to be my++ was updated to be my++ = 84 GeV [97].

In the case with non-zero mass difference among triplet like Higgs bosons, the cascade decay
of H** dominates depending on the value of v, and the magnitude of the mass difference among
triplet like Higgs bosons [51]. If H*" is the heaviest particle in triplet like Higgs bosons, the
cascade dacay HT+ — HTWT®) o OW+HW+H can be dominant as long as va is neither
too small nor too large. However, no bound on m . has been given in the case where the
cascade decay is the main decay mode.
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Future experiments

We here describe how it can be tested extended Higgs sectors by the direct searches and the
indirect searches at the LHC Run-II and future e*e™ collider experiment ILC.

4.1 Second Higgs boson searches at collider experiments

In this section, we describe the direct searches of extra Higgs boson focusing on the THDMs as
a bench mark model. There are a lot of studies about the direct searches of additional Higgs
bosons at the LHC Run-II [13,57,78] and the ILC [78,98].

4.1.1 Direct search at the LHC

First, we discuss the direct search in the case for sin(5 — ) = 1 for simplification. Basically,
the production cross section of gluon fusion process gg — H/A is the biggest for the production
without the enhanced factor discussion. In the four types of THDMs, some of vertices of
Yukawa couplings have enhanced factors as shown in Tab. 3.1. In the Type-II THDM, it can
be expected that the bottom quark associate production process gg — H/Abb is useful for the
production of H/A because there is the enhanced factor tan® 3 in the Hbb (Abb) vertex. The
gb — H™t process is useful as the production of H* for the same season. In the Type-X THDM,
in addition to the gluon fusion production process, the ¢§ — H/A process is also important. In
the Type-I and the Type-Y, the gluon fusion process and the bottom quark associate process
can be the main production process of H/A, respectively. For the decay mode, the H/A — bb
and/or the H/A — 777~ can be the main decay mode in all types of THDMs as shown in
Fig. 3.1.1.

Fig. 4.1 [57] shows expected excluded regions on the tan 8 — m, plane at the 95% CL by
expected significance of the gg — H/A — 777~ and gg — bbH/A — bbr+7~ in the case of
m, = my and sin(f8 — «) = 1 in the Type-II. The blue (red) shaded regions are excluded
regions assuming the integrated luminosity to be 300 fb=! (3000 fb=!). Exclusion reach of m ,
increases in region with the large value of tan 3, because the cross sections of the bottom quark
associated processes are enhanced due to the enhanced factor tan 3 at the Abb vertex and the
branching ratio of H/A — 7%7~ is approaching to be 10% in high tan 8 regions as shown in
Figs. 3.1.1.

4.1.2 Direct search at the ILC

In this subsection, we describe the direct search in the SM-like limit case, i.e. sin(f — a) = 1.

45
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Type-II THDM
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Figure 4.1: Expected excluded regions on the tan 5 — m, plane at the 95% CL in the case
of m, = my and sin(f — «) = 1 in the Type-II. The blue (red) shaded regions are excluded
regions assuming the integrated luminosity to be 300 fb~t (3000 fb~!). This figure is taken
from Ref. [57].

In the case with /s > my + m,(2m. ), pair production processes of extra Higgs boson
can open, so that the main production processes of extra Higgs bosons are expected to be
ete” — HA and ete™ — HTH~. Cross sections of these pair production processes depend of
the Yukawa interaction type, because a pair of additional Higgs bosons is produced via gauge
interactions. For energies below the threshold /s = my 4+ m4(2m3,.), the single production
processes, ete” — H(A)ff and ete™ — HEff' can be the leading contributions. The pro-
duction processes are increased as the relevant Yukawa coupling constants of the ® f f() vertices
become large.

It is planned that the ILC runs with /s = 250, 500 and 1 TeV. As long as the collision
energy is enough to product extra Higgs bosons, we expect various signatures depending on the
types of Yukawa interaction and tan 5.

4.2 Fingerprints of the Higgs boson couplings

4.2.1 Pattern of deviations in the Higgs boson couplings

In the case where the Higgs sector is extended, coupling of the Higgs boson with 125 GeV mass
can deviate from predicted values of the SM by new physics effects such as mixing effects and
loop contributions of new particles. The pattern of deviations in the Higgs boson couplings
depends on the structure of the Higgs sector; i.e., kinds of symmetries in the theory, Higgs
field representations under the symmetries, the number of Higgs fields and so on. Therefore,
the pattern is useful to discriminate extended Higgs models [13,57]. In order to demonstrate
discriminating models by the pattern of deviations in the Higgs boson couplings, we define the
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Model Ky Ky Ky, K,

HSM C, C,, C, c,
Type-1 Cy Sp_o Ot Beg_, Sg_q T cOt Beg, Sg_q T cOt Beg
Type-I1 S5 g S5_o T COt Bey_, S50 — C5Ch_a S50 — C5Ca_4
Type-X S5_q S5_o T COt Bey_, Sg_o T cOt Beg_, S50 — C5Ca_4
Type-Y C. S5_o Ot By, S50 — C5Ca_4 Sg_o T cOt ey,

HTM | cgea + \/5355(1 Cy Cq Cq

Table 4.1: Tree level scaling factors of the gauge coupling and Yukawa couplings in the HSM,
four Types of THDMs and the HTM.

scaling factors by normalizing the Higgs boson couplings which will be precisely determined by
future collier experiments;

2
2myy,

2 m, -
L= ryh ( WiEW, + %ZNZ,,) g = > = Lhff. (4.1)

v
In Tab. 4.1, we summarized tree level scaling factors of the gauge coupling and Yukawa couplings
in the HSM, four types of THDMs and the HTM. Moreover, Tabs. 4.2 show directions of
modifications for the hVV coupling and the hff couplings in the HSM, four types of THDMs
and the HTM [13,16,57]. The difference between the left table and the right table is the sign
of cos( — «). The up (down) arrow denotes that the Higgs boson coupling is larger than the
value of the SM.

As you can see, a characteristic pattern of deviations in various Higgs boson couplings
appears in each extended Higgs model. In the HSM, if the field mixing between CP-even Higgs
contents is non-zero, hVV and hff couplings are reduced than values of the SM with the
same ratio. On the other hand, in four types of THDMs, magnitudes of the deviations are
different for each the Higgs boson coupling. The hff couplings tend to more largely deviate
from the SM values than the AV'V couplings. Because formulae of scaling factors of the Yukawa
couplings depend on the Higgs field interacting with the fermion field, deviation patterns in
hff couplings are different among four types. As I mentioned in the Introduction, there is an
interesting property that the hV'V' couplings can be greater than those of the SM.

In Fig. 4.2, we discuss numerically deviation patterns of various couplings of the 125 GeV
Higgs boson in the four types of THDMs and the HSM and the HTM. The left panel shows
the pattern of x, and the s, couplings in four types of THDMs. Red and blue curves indicate
tree level predictions of x, and k. in the case with sin(8 — ) = 0.99 and 0.95, respectively, in
each value of tan 5. We take the sign of cos(f — «) to be negative. At the tree level, in the
case with sin(8 — «) = 1, predictions of all the types get close to those of the SM. If sin(8 — «)
slightly deviate from unity, x for each type lead to deviate in different directions. However it
is difficult to discriminate the types of THDMs by evaluating only , and x, because behaviors
of k, and k. depend on the sign of cos(f — ). If cos(8 — ) is negative (positive), predictions of
Ky in all the types are less (larger) than 1. Therefore we can determine the sign of cos(f — «)
by using measurements of Foie)- Then we can discriminate all types of Yukawa interactions by
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Model | AVV hitt hbb hrt Model | AVV hitt hbb hrt

HSM { } J l HSM { 7 7 1
Type-l | | \ \ \ Type-l | | T i i
Type-Il'| | \ T i Type-Il'| | T \ \
Type-X | | \ \ ) Type-X | | T T \
Type-Y | | \ T \ Type-Y | | T \ )

HTM | 1] J J | HTM | 1] T T i

Table 4.2: Direction of modifications for each the Higgs boson coupling in the HSM, four types
of THDMs and the THDM. The left and right tables show the case with cos(f — «) < 0 and
cos(f — a) > 0, respectively. The up (down) arrow denotes that the Higgs boson coupling is
larger than the value of the SM.

‘ ‘ 2HDM (tanB=3
4 / 1/1 / [ (tanp=3) |
1 HSM
1/ 2/ 2 1.1 molvl
12 . .
! tanB=1 1
1 < /
34753 ~53 0.9 . | H-C500
08 z & 1 > , / !
08 0
i/ p /
0.6 1 r
06 08 1 12 14 06708 09 1 11
KT KZ

Figure 4.2: The left panel shows the pattern of x, and the x_ couplings in four types of THDMs.
Red and blue curves indicate tree level predictions of x, and «_ in the case with sin(5—a) = 0.99
and 0.95, respectively, in each value of tan 5. We take the sign of cos(f — «) to be negative.
The right panel shows the pattern of r, and , in the Type-I THDM with tan 8 = 3 (blue
curve), the HSM (red line) and the HTM with tan 5 = 0.05 (green curve). Black dots show
values of a.
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the pattern of deviations in these hff couplings. These analyses of Yukawa couplings at the
tree level have already been discussed in Refs..

The right panel shows the pattern of x, and £, in the Type-I THDM with tang = 3
(blue curve), the HSM (red line) and the HTM with tan 8 = 0.05 (green curve). Black dots
show values of a. In the three models, the Yukawa couplings of the Higgs boson are universal
formulae, i.e., Ky = K, = K, = Kk,. As it was previously mentioned, in the HSM, because xy,
and r, take a common form at the tree level, the hV'V" and the h ff couplings deviate to the
directions with the rate 1 : 1 by the mixing effect. In the Type-I THDM with cos(8—a) < 0, the
magnitude of x; is smaller than that in the HSM for the same value of r,. On the other hand,
in the case of cos(8 —a) > 0, x; is larger than that of the HSM for the same value of x . If the
value of tan 3 becomes large, the £, and x; plane prediction in the Type I THDM approximate
the line of 1 : 1. As you can see, in the HTM, although it is seen that there are regions in
which k, is larger than unity, the maximum value of x, can not much be larger, e.g., it can
not become greater from 1 to more than 1%. The reason is that the value of tan 3 is too small.
tan 8 is determined by the value of the VEV of the triplet field v, by tan 8 = 2v, //v? — 20%
as shown at Eq. (3.89). The magnitude of v, is constrained to be less than about 8 GeV from
the experimental value of the rho parameter pey, = 1.000870 00057 [99].

As we numerically showed in Fig. 4.2, a pattern of deviations in these observables strongly
depends on the structure of the Higgs sector, so that we may be able to fingerprint extended
Higgs sectors and new physics models if we can detect a special pattern of the deviations at
future experiments.

4.2.2 Future precision measurements of the Higgs boson couplings

After the Higgs boson discovery, coupling constants of the discovered Higgs boson with SM
particles became new observables to be measured as precisely as possible at current and future
colliders. Both the ATLAS and CMS Collaborations have provided scaling factors for the Higgs
boson couplings extracted from combined data of Higgs boson searches with /s = 7 and 8 TeV
and 25fb™! of the integrated luminosity. Under assumptions of the universal scaling factors for
fermions and vector bosons; i.e., k; = k, = K, = K, and Ky, = Ky, = K, current data gives

Ky = 1.15£0.08, 5, = 0.997015, ATLAS [5], (4.2)
Ky = 1.01£0.07, 5, = 0.875013, CMS 6],

from the two parameters (k, and k) fit analysis based on Ref.. The scaling factors for the
loop induced Higgs boson couplings , and r., have also been measured under the assumptions

K, = 1.087013, £, = 1.19%015, ATLAS [5], (4.4)
Ky = 0.8970 10, 5, = 1.1475513, CMS [6],

from the two parameters (x, and x,) fit analysis based on Ref.. We can see that all the SM
predictions (ky = 1) are included within the 2-o uncertainty of the measured scaling factors,
where the current 1-o uncertainties of the scaling factors are typically of O(10%).

The Higgs boson couplings are expected to be measured with more precision at future
experiments such as the LHC Run-II, the high luminosity (HL)-LHC [16,100] with the integrated
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Facility LHC300 LH-LHC ILC500 ILC500-up ILC1000 ILC1000-up

Ky 5—T7% 2 —5% 8.3% 4.4% 3.8% 2.3%
Kg 6 — 8% 3—5% 2.0% 1.1% 1.1% 0.67%
Kw 4 —6% 2—-5%  0.39% 0.21% 0.21% 0.2%
Kz 4 —6% 2—4%  0.49% 0.24% 0.50% 0.3%
Ko 6 — 8% 2 -5% 1.9% 0.98% 1.3% 0.72%
kg =Ky 10—13% 4-7%  0.93% 0.60% 0.51% 0.4%
Ky =k 14—15% 7—-10%  2.5% 1.3% 1.3% 0.9%

Table 4.3: Expected precisions on the Higgs boson couplings and total width from a constrained
7-parameter fit quoted from Table 1-20 in Ref. [100].

luminosity of 3000 fb~! and future lepton colliders like the ILC [12,13,16,100]. In particular,
measurement uncertainties of the Higgs boson couplings will be improved drastically to the
order of 1 % or even better at future lepton colliders, such as the ILC [12, 13,16, 100], the
CLIC [14,16,100] and Future e*e~ Circular Collider (FCCee) [15,100] as shown in Tab. 4.3.
Therefore, these future electron-positron colliders are idealistic tools for fingerprinting Higgs
sector and new physics models via precise measurements of the Higgs boson couplings. In order
to compare theory predictions with such precision measurements, calculations with higher order
corrections are clearly necessary.



Chapter 5

Radiative corrections to the Higgs bo-
son couplings in the THDMs

5.1 Renormalization in the THDMs

We perform renormalization calculations based on the on-shell scheme which has been applied
in Ref. [70]'. However, it has been pointed out that there remains gauge dependence in the
determination of the counter term of 5 in Ref. [101]. We thus construct the new renormalization
scheme for 3 to get rid of the gauge dependence.

First, we prepare the set of counter terms by shifting all the relevant bare parameters in
the Lagrangian. We then give the renormalized one- and two-point functions which are written
in terms of the contributions from 1PI diagrams and counter terms. After that, we set the
same number of renormalization condition as the number of counter terms to determine them.
For the renormalization scheme of the gauge and the fermion sector, we employ the same
renormalization scheme as that of the SM. in the following of this section, we focus on the
renormalization of the Higgs sector.

In the Higgs potential, there are eight paramaters,

m%,m%,m%,)\l,)\%}\g,)\@)\& (5.1)

As described in Sec. 3.1.1, they can be written in terms of the physical parameters m3, m?%,
m3., m%, o, 8, v and M2
First, we shift the physical parameters form bare parameters to renormalized parameters

following as,

m; — m; + oms, (5.2)
m3;, — m3, + om3y, (5.3)
m%H — m%H + 5m12q+, (5.4)
m? — m? + om3, (5.5)
v — v+ v, (5.6)
a— o+ da, (5.7)
p— B+6p, (5.8)
M? — M? + 6 M*. (5.9)

'For the determination of the counter term for M?2, the minimal subtraction scheme has been applied.

51
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We also shift tadpoles of H and h,

Ty — Ty + 0Ty, (5.10)
T, — T}, + 6T}, (5.11)

where T and T), are related with 7T and 75,

5T1 = CadTH — Sa(STh, (512)
5T2 = Sa(STH + CaéTh. (513)

Each scalar field is shifted to the renormalized field and the wave function renormalization,

H L+ %5ZH 0Chp + 0 H
<h)—>(—5a+5ChH 1+ 162, )(h) (5.14)

G 1+ 30Zq0  6Cga+0f3 GY
( A ) ” ( —08 4+ 6C s 1—}—%5214 A ) (515)

o 1+30Zgr 6Cqep-+08 "\ [ GF
( H* ) - ( -0+ 0CH+eg- 1+ %(SZH+ o+ |- (5.16)

Renormalized one and two point functions at one-loop level are expressed as

[y =0+08Ty+TH" (5.17)
L) =0+0T, + T}, (5.18)

R s30T, Ao
Myvp-[p?) = (pF — m%)0Zys — om%, + 2—L 4 222
Cg v Sﬁ v

Hgra-[p?) = (0* — m%s) (08 + Cx+a-) + p* (6Cqr - + 3B)

+ 10y 7], (5.19)

ol 0T}
+2 (0672 - 35—1) + M- 7], (5.20)
A oT oT:
oo [p?] = p*0Za+ + Cﬁ_l — 55—2 + T - 7, (5.21)
. 20Ty AT
Maalp?] = (p° — m%)0Z4 — 6m% + %500 B0% e p?), (5.22)
Cg v Sg v
A 21 2 2 5T1 5T2 1PI
Healp®l = (0° —m%) (0Zac — 6B) + p°(6Zga + 68) — Sp— - T e~ Mgalp?],  (5.23)
. 0T 02
Heelp®] = p*0Zgo — 6mi + = 50T, % o 2, (5.24)
cg v Sp
N 25T, 25T
Mpalp?) = (0 — m%)0Zy — om¥ + 2L 4 202 bl 2 (5.25)
Cﬁ v 85 v
n[p®] = (0 — mip) (6CHn + 60) + (0 — mp) (6Chn — ba)
16Ty 10T, S
WS [ ——— + — == I , 5.26
+cs(cw+sw)+hﬂ[p1 (5.20
. 20Ty 20T
W [p?] = (p* — m)0Z), — dmi + =2 — + -2 =2 L I [p?), (5.27)

CﬁU SBU
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where analytic formulae of 1PI diagram parts are given in Appendix.

In order to determine counter terms, we impose renormalization conditions. We start from
renormalizations of the tadpole. We impose them on-shell conditions as renormalization con-
ditions.

Then we obtain
6Ty = —TH0], 6T, = —T,7[0]. (5.29)

The seven counter terms related to the CP-even Higgs sectors (dm3, dm?;, da, 6Cy,,, 6C,, 4,
0Zy and 6Z,;) are determined by following seven renormalized conditions,

Iy p[m%] =0, 0 [y [p°] P, =0, (5.30)
A d -
I [mp] = 0, =510, [p") =0, (5.31)
d p?=m?
I, 4 [m?] =0, IL 4[m%] =0, 6Cuy = 6Cun(= 6C,), (5.32)
by which we obtain
s2 0T, 2 oT.
2 _ HlPI __1 Caq V142 .
01y, b (M) + s v 550 (5.33)
26Ty s T
0 i el el 5.34
my = Wy [my ]+c5v 55 0 (5.34)
d
82y, = — =113 p? : (5.35)
d 2 p?=m?
d
02y = —— 1y [p’ : 5.36
H 0 D] P, ( )
1 10T 1 0T, 1PI 1PI
b= —5——+12 aSa | — T H II 5.37
! 2(771?1—7“;21){05 ( cg v +56U>+ wlma] + Tt (537
1
6Cy = 5 7 =) (M gpaer[my] — g Im3]) - (5.38)

There are seven counter terms related to the CP-odd Higgs sectors (dm?, 483, 6C4q, 6Ce 4,
6Z, and 6Z,). First, we determine ém?%, 67, 6Z, following conditions

. d -
Waamy] =0, —51Lap ., =0 (5.39)

d -
— 1. [p? =0, 5.40
dp? calp’] P ( )
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by which we obtain

om? = I m? 5.41

miy Aa [ma] + cs v 55 v’ ( )
d

67 4 = _d_pgﬂﬁl[ﬁ”p?:mga (5.42)
d

Zen = = Al oo (543

According to Ref. [101], gauge dependence remains in §5 depending on kinds of renormalizaton
conditions. For example, if we employ following the set of renormalization conditions, gauge
dependence remain in 43,

gal0] =0, (5.44)
Mga[m?] =0, (5.45)
by which we obtain
1 -
6B = o [ga[m?), (5.47)
0Cac = 0p. (5.48)

When we derive a form 6C4q0 = 68, We use NG theorem Ilo 4[0] = 0.

In order to remove gauge dependence from 03, we determine three counter terms by following
method. In order to determine three counter terms, we need to impose one more renormalization
condition in addition to that given in Egs. (5.39), (5.40). This third condition can be used to
remove the gauge dependence in 63 which was already mentioned in the beginning of this
section. To define such a condition, we separate 1:[}412 (p?) into the gauge dependent (G.D.) part

and the gauge independent (G.1.) part as
e (") = TG 0°) | o . + TG0 | - (5.49)
Then, we imposed the third condition as

1 rT1PI 2

The remaining two counter terms are also determined:

1 ~ -
5OAG = _2_2 |:H114PGI<m,2A)|GI - QHEDCE(O)‘GD] ) (551)
my
1 ~ -
0Caa = —5 5 [H%(miﬂg_l_ + QHZPGI(WZ)’GD_] : (5.52)
A

We note that in IIY2(0) only the G.D. part is survived; i.e., II'F(0) = ﬁzfg(O)‘G.D.. As it can
be seen in Egs. (5.51) and (5.52), there still remains the gauge dependence in 6C' 4 and 6Cga.



5.2. RENORMALIZED HIGGS BOSON COUPLINGS IN THE THDMS 55

However, they do not appear in the following calculations for the renormalization of the Higgs
boson couplings. Instead of applying the above renormalization scheme for §3, we can apply
the MS scheme in which the gauge dependence can also be removed at the one-loop level as
discueed in Ref. [101]. In the following discussion, we apply the renormalized tan 8 determined
by Eq. (5.50).

There are seven counter terms related to the singly charged Higgs sectors (dm?2.., 63, 6Cp,
0Cqp, 0Zy and 0Z,.). One of them 3 already has been determined in the renormalization of
CP-odd Higgs states Eq. (5.50). We determine them following conditions

. d -
Wy g [mie] = 0, ﬁH;ﬁH— ]| =0, (5.53)
p p _mHi
d - 2
aprleren ) =0 (5.54)
1:IHJFG— [m%ﬁ] = 1QIH-FG— 0] =0 (5.55)
by which we obtain
s30Ty ¢ 0Ty

omip = C_ZT + iT + - (0], (5.56)

d
5ZHi - —d—pQH}{FerH* [p2] PQ:miﬁ? (557)

d
06+ =~ 3 — - 7] ey (5.58)

Until here, we did not discuss the determination of §M?. As adopted in Ref. [70], we apply
the minimal subtraction scheme for §M?, where it is determined so as to absorb only the
divergent part in the hhh vertex at the one-loop level, that is

SM? 1
M2 167202

Fo9.0 9 9 5  sin2o
[2;Ncmf§f+4M —QmHi—mA+Sin26

(mi —mp) — 3(2miy — myz)| A,
(5.59)

where A is the divergence part given by A = % — vg + Indr + In g2
5.2 Renormalized Higgs boson couplings in the THDMs

5.2.1 Analytic expressions

In the previous section, all the counter terms are deternimed by the set of renormalization
conditions. Now, we can evaluate the renormalized Higgs boson couplings hWW [59], hZZ [59,
70], hf f [58,59,102] and hhh [59,70]. In addition to the above couplings, we also give formulae
for the loop induced decay rates; h — vy [102-104], h — Z~ [104] and h — gg [105].

The renormalized hVV, hf f and hhh vertices are expressed as

FhVV(PquQ )= F;zg\ef + 5F hv T FZ\I/P;/I(PUPWQ ), (i=1-3), (5.60)
Fhff<p17p27 ) Fzr;;+5rhff+F}L§;(pl7p27q )7 (561)

Do (03,13, 6) = T35 + 6T s + Thos (02, P2, ¢%), (5.62)
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ey el o€
Type-I i(cot [0S + tan ada) i(cot [0S + tan ada) i(cot [0S + tan ada)
Type-11 ‘;—g(cot [0S + tan ada) —i—g(tan B68 + cot ada) ‘Z—Z(tan [0S + cot adar)
Type-X g—;(cot [0S + tan ada) g—;(cot oS + tan ada) ‘Z—Z(tan B + cot adex)
Type-Y C—a(cot [0S + tan ada) —S—Q(tan 68 + cot ada) C—a(cot [0S + tan ada)

Table 5.1: The counter term for the mixing factors in Yukawa interactions.

where TV 6T, xx and T}l are the contributions from the tree level, the counter terms
and the 1PI diagrams for the hX X vertices, respectively. In the above expressions, p; and ps
(¢ = p1 + pe) are the incoming momenta of particle X (outgoing momentum for h). For the
hV'V vertex, the index 7 labels the following three form factors;

v p p v g'pl p20’
Dhvy = Dhvvg™ + Dhvy 7711 2 il e 722 ' (5.63)
% v
The tree-level contributions are given as
ree 2m2 : ree ree ree m ree
Thvv = UV sin(8 —a), iy’ =Ty =0, Tifg = —Tf@{, Dhih = =6 (5.64)
The counter-term contributions are
2m? ) )
Ty = 225 [sin(s - ) (22 ) o cos(s - (a5 + 9
v mé, v
5Fivv = M‘ivv =0, (5.65)
om ov 1 )
5Fhff = ——ﬁh —_ —+5Z‘];+—(5Z +i+€—H(5C’h+5a) y (566)
my v 2 gh gh
3
Ol phn =6 |:5/\hhh + §5Zh + )\Hhh(éa + 5Ch):| . (567)

The counter terms in the Yukawa couplings 55,’: are expressed in terms of 63 and d« as listed
in Table 5.1. We define the renormalized scaling factors by the following way;

all 2 2 2
_ Ly (mi, mi, ¢°)rapum

; (5.68a)

V_ ~
Uhyy (M3, mi, ¢%)sm
I m2,m2, 2
iy = s Pt DM (5.68b)
Uypr(m%, m3, ¢*)sum
fw 2 2 2
Ry = hhh(mhamh,q )THDM (5.68c)

fhhh(m%a m%p QQ)SM .
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The deviation in these scaling factors from the SM prediction can be described by
Ar; = R; — 1. (5.69)

We also give the loop induced decay rates for h — v, h — Z~v and h — gg in the Appendix.
We then define the ratio of these decay rates;

F(h — XY)THDM
T(h— XY)sy

Ryxy = for XY =~v, Zv, and gg. (5.70)

The deviations in renormalized Higgs boson couplings are approximately expressed by keep-
ing the non-decoupling effects of extra Higgs bosons and top and bottom masses dependence
(ma ~ mpy is assumed) as

1, 11 my (M2
O=A HH*
Ak, ~ Aky + &, (572)
Afie = Afvy + &, 1, (573)
1 2m? m? M? 11 my
AA ~ AA . . t 1 — t _ iy —b_ 574
A Aky 4 ¢ 1 11, Z my 2 Mym; (5.75)
Ky >~ KR u-il" - ~ u ’ '
1= ARy 16m26 | ™ S L oPmy oty
) 3 2%\ 1 4 mj M2\°
s (3-08) o, 3 e (1-0g) o
d=A,H H*

We can sece that there appears the term m2 /v? (1 — M2/m2)? in Aky which comes from the
counter term §7j; i.e., the derivative of the h two point function given in Eq. (5.35). When
we consider the case with M? < v?, this term gives the quadratic power like dependence of the
mass of additional Higgs bosons. This corresponds to the case where the mass of additional
Higgs bosons, which is expressed schematically as m3 = \v? + M?, mostly comes from the
Higgs VEV v. In such a situation, it is known that the decoupling theorem does not work. On
the other hand, if we consider the case of M? > v?, the amount of A&y is reduced as 1/m3
according to the decoupling theorem. The same contribution from §Zj, is also seen in A&y
(f = 7,¢,b,t) through the term A&y . Notice here that there are additional terms proportional
to the top or bottom quark masses in Ak, and A&;. They come from the additional Higgs boson
loop contributions to the 1PI hbb or htt diagrams. Apart from Ay and A& , let us discuss
the expression of Aky,. There appears the term mé /(m2v?) (1 — M2/m2) which comes from
the additional Higgs boson loop contributions to the 1PI hhh diagrams. When we consider the
non-decoupling case; i.e., M? < v?, it gives the quartic power like dependence of mg. Similar
to the case in Aky, this effect is decoupled by 1/m% when M? > v? is taken.



58CHAPTER 5. RADIATIVE CORRECTIONS TO THE HIGGS BOSON COUPLINGS IN THE THDM

Similarly, the decay rates of h — 7y and h — gg are expressed in terms of z (z < 1) as

Gra? m3 1( M2) x? x? 2
T(h — yy) ~ EQem™i | 2 () 2 ) L0 NI (1 4+ & — oV + (1= V1|, (577
(h =) 255 |3 — QN (I +&ro =)+ (1= )lw| , (5.77)
Graim} 22 |
I'th — ~ —= 2 (1+&r——)] 5.78
(0= S0 | g - (578)

The first term in I'(h — ) expressed by (1 — M?/m3,.) is the charged Higgs boson loop
contribution. When we take the limit of M? — 0, this term approaches to the constant —1/3.
This can also be understood as the consequence of the non-decoupling effect of the charged
Higgs boson loop contribution, but it is not like the quartic (quadratic) power like dependence
seen in the A&y (Aky and ARy).

5.2.2 Deviations in the Higgs boson couplings at the one-loop level
in the THDMs

In the following, we show numerical results for the Higgs boson couplings at the one-loop level.
We use the following inputs [99];

my = 91.1875 GeV, Gp = 1.16639 x 107° GeV 2, ag! = 137.035989, Adae, = 0.06635,
my = 173.07 GeV, my = 4.66 GeV, m, = 1.275 GeV, m, = 1.77684 GeV. (5.79)

We first show the case of sin(f — «) = 1. In this case, the deviations in the Higgs boson
couplings purely comes from the additional Higgs boson loop effects. We note that the tan g
dependence in the renormalized scaling factors appears only in xy. We take all the masses of
additional Higgs bosons to be the same; my+ = my = my (= mg) for simplicity, and we fix
the squared momentum to be ¢* = (my, +my)?, m3, and (2my,)? for Ry, & and &y, respectively.

In Fig. 5.1, we show the decoupling behavior of additional Higgs boson loop contributions
to the Higgs boson couplings. The upper-left, upper-right, lower-left and lower-right panels
respectively show Akp, Aky, Ak, and AR as a function of me for several fixed values of
M? (= m% — M?). We take tan8 = 1 in this figure. We can see that all the deviations
approach to zero in the large mass region due to the decoupling theorem.

In Fig. 5.2, we show the deviation in the Higgs boson couplings Axj, (upper-left), Axy
(upper-right), Ar; (lower-left) and AR (lower-right) as a function of me. We take M? = 0 and
tan 0 = 1 for all panels. In this case, the magnitude of deviations increase when mg becomes
larger except for AR.

5.3 Discriminating four types of the THDMs

A pattern of deviations in the Higgs boson couplings from their SM predictions depends on the
structure of the Higgs sector and the Yukawa interaction. The pattern of deviations depend
on the number of the Higgs field, their representations and the mass of Higgs bosons in the
loop. It is possible to discriminate extended Higgs sectors by using future precision data and
comprehensively evaluating all coupling constants of h in each model. In this section, we
evaluate the deviations in these coupling constants from predictions of the SM at the one-
loop level, and study how to discriminate extended Higgs sectors by comparing the precise
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Figure 5.1: Deviations in the renormalized scaling factors for hhh (upper left), hV'V (upper
right) and hbb (bottom left), and those in the decay rates AR, /7, (bottom right) as a function
of mg in the case of sin( — o) = 1 and tan § = 1. Each curve denotes the results in the cases
of M\v? =150, 300 and 400 GeV.

predictions of characteristic pattern of deviations with future precision measurements of the
coupling constants of h at future collider experiments, in particular at the ILC.

In this subsection, we investigate Yukawa interaction type of THDMs by correlations among
Yukawa couplings at the one-loop level. In THDMSs, different characteristic patterns of devi-
ation in Yukawa coupling constants (hff) can be allowed depending on four types of Yukawa
interactions.

In the SM like limit, renormalized scale factor of Yukawa couplings can be approximately
expressed as

. 11 m M2\?
Ry = 1-— 1671'26 Z C@F (1 — m_é) s (580)

where cg = 2 (1) in ® = H* (A, H). The second term in right-hand side of Eq. (6.2) is
a deviation from the SM predictions due to loop effects of extra Higgs bosons. We can see
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Figure 5.2: Deviations in the renormalized scaling factors for hhh (upper left), hV'V' (upper
right) and hbb (bottom left), and those in the decay rates AR,z (bottom right) as a function
of mg in the case of M? =0, sin(8 —a) =1 and tan = 1.

that the effect can be both decoupling and non-decoupling, depending on the balance between
m32 and M?. If M? is as large as m2, the effect becomes decoupling in the large mass limit.
Otherwise, quadratic dependences of mg¢ appear.

In Fig. 5.3, we show the decoupling behavior of the one-loop corrections to each Yukawa
coupling . We plot the deviations in the renormalized Yukawa couplings; i.e., Ky —1for f =0, 7
and ¢ as a function of mg in the Type-I (the top), Type-II (the second panel from the top),
Type-X (the third one from the top) and Type-Y(the lowest) THDMs with sin*(3 — o) = 1,
tan 3 = 1 (the solid curves) and tan 3 = 3 (the dashed curves). We here fix m2 — M? to be
(300GeV)? as just an example. You notice that the value of the deviations approaches to 0 in
the large mass region. Because M?/m2 gets close to 1 as mg become larger, the extra Higgs
loop contributions written in Eq. (6.2) are reduced. Thus, we can verify that the renormalized
hff couplings approach to the SM prediction in the large mass limit. The peak at around
me = 2my is the resonance of the top quark loop contributions to the two point function
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Figure 5.3: Deviations in hff (f = b,7,c) couplings in four types of THDMs as a function
of mg (& = H* A, H) when sin®(8 — a) = 1, M? = m2 — (300GeV)? [58]. Solid lines and
dashed lines show the case of tan f = 1 and tan = 3, respectively. Those panels show results
in Type-I, Type-II, Type-X and Type-Y of THDMs from the top.

among A and G°.

In Fig. 5.4, we discuss non-decoupling effects for deviations in coupling constants of hce,
hbb and hr7 in Type-I (the top), Type-II (the second panel from the top), Type-X (the third
one from the top) and Type-Y (the lowest). They are deviations including one-loop radiative
corrections as functions of masses of extra Higgs bosons. We take the mixing angles to be
sin?(8—a) = 1 with tan 8 = 1 (solid line) and tan 8 = 3 (dashed line). We here fix the value of
M? to be zero. We can find that deviations from the SM predictions can be several percent at
the large mass region due to non-decoupling loop effects in the all types of Yukawa interactions
even in the case with sin?(3—a) = 0. However, the unitarity bound excludes parameter regions
where masses of extra Higgs bosons are larger than about 600 GeV (230 GeV) in tan § = 1(3).

In Fig. 5.5, we show the behavior of the scale factors at the tree level £, ;" and one-loop
corrected scale factors k., &y in the four types of THDMs [58]. The left panel and the right
panel correspond to results in the case with cos(f — «) > 0 and cos(f — a) < 0, respectively.
Doted lines indicate predictions at the tree level in sin?(8 — a) = 0.99 and 0.95, and black dots
being on these lines are the tree level results with tan 8 = 1,2, 3 and 4. At the tree level, in the
case with sin?(3 — ) = 1, predictions of all the types get close to those of the SM. If sin(5 — )

slightly deviate from unity, /i}ree for each type lead to deviate in different directions. However it
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Figure 5.4: Deviations in Yukawa coupling constants for b, 7 and ¢ as a function of me when
sin?(8 —a) = 1, M = 0 [58]. Solid lines and dashed lines show the case of tan3 = 1 and
tan 8 = 3, respectively. They are results in Type-I, Type-II, Type-X and Type-Y of THDMs
from the top.

is diffecult to discriminate the types of THDMs by evaluating only x; and x, because behaviors
of Ky and k., depend on the sign of cos(f — ). If cos(f — «) is negative (positive), predictions of
Ke(e) in all the types are less (larger) than 1. Therefore we can determine the sign of cos(f8 — @)
by using measurements of ). Then we can discriminate all types of Yukawa interactions by
the pattern of deviations in these hff couplings. These analysis of Yukawa couplings at the
tree level have already been discussed in Refs. [13,57,106].

In Fig. 5.5, we also plot those including full electroweak and scalar bosons loop corrections
which are shown by colored regions around black dots. Red regions (blue regions) are modified
regions by extra Higgs loop contributions for the case with sin?(3 — a) = 0.99 (0.95). We scan
mg(= mpy+ = my = my) and M over from 100 GeV to 1 TeV and from 0 to me, respectively.
We find that results can be modified from the tree level values in several percent by extra Higgs
loop effects. Even if radiative corrections become maximal values, predictions of i (f = ¢, b, 7)
in the types of Yukawa interaction don’t overlap each other. Therefore we can discriminate all
the types when sin?(8 — «) deviates from the SM prediction by about 1%.

At the HL-LHC, h77 and hbb couplings are expected to be measured with about 8% and
11%, respectively [56,100]. When sin?(3 — «) is different about 1% from unity, hbb and hrT
coupling constants can differ about 10% from the predictions of the SM depending on the value
of tan 5. In that case, we can discriminate the types of Yukawa interactions by using those HL-
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Figure 5.5: Plots of scale factors of 7 and b in four types of Yukawa interactions [58]. The left
panel and the right panel are predictions with cos( — ) > 0 and cos(f — «) < 0, respectively.
Each black dot indicates a result at the tree level with tan 8 = 1,2,3 and 4. Red region (blue
region) show one-loop results with sin?(3 — ) = 0.99 (sin?(8 — a) = 0.95) where mg and M
are scanned over from 100 GeV to 1 TeV and 0 to mg, respectively, under the constraints of
perturbative unitarity and vacuum stability.

LHC data. At the ILC500, however, the Higgs coupling measurements have typically O(1)%
level resolution: e.g., h coupling constants to 7 and b can be determine with 2.3% and 1.6%
uncertainty, respectively [13]. In order to compare with such precision coupling measurements
at the ILC, we must not neglect the effects of radiative corrections.

5.4 Determination of inner parameters from the Higgs
boson coupling measurements

In this section, we investigate how we can fingerprint the THDMs using the one-loop corrected
Higgs boson couplings and also future precision measurements of these couplings at the HL-LHC
and the ILC. We carefully see how the tree level analysis for the model discrimination discussed
in Sec. IT or in Ref. [57] can be improved by the analysis with radiative corrections. Furthermore,
we demonstrate how the inner parameters such as z, tan § and masses of additional Higgs bosons
can be extracted from the measurement of the couplings for the Higgs boson h. In our analysis
below, we assume that the deviations in scale factors of the Higgs boson couplings are measured
as expected in Table 5.2. We also assume that the SM values of these coupling constants are
well predicted without large uncertainties which mainly come from QCD corrections?.

2 According to Refs. [107,108], the current uncertainty of the bottom Yukawa coupling hbb due to the QCD
corrections is 0.77% in the SM. This uncertainty could be reduced in future studies using the lattice calculation

up to 0.10% [108] which is better than the expected accuracy of the measurement of the hbb coupling at the
ILC1000-up as listed in Ref. [100] (0.4%).
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Set A | Set B | Set C | Set D | Set E
Ary | 2% | —2% | —2% | —1% | —0.4%
Ak, | +18% | +10% | +5% | +18% | +18%
Ary || +18% | +10% | +5% | +18% | +18%

Table 5.2: Benchmark sets for the central values of measured scaling factors for the hV'V, hbb
and h77 couplings. The expected 1-0 uncertainties for each scaling factor at the HL-LHC and
the ILC 500 are shown in Eq. (5.81).

Let us suppose that Ary, Ak, and Ak, are measured at the HL-LHC and the ILC500. We
consider five benchmark sets for the central values of (Ak,,, Ak,, Aky) as listed in Table 5.2. Set
A is the typical case where Yukawa couplings deviate from the SM values rather significantly
(18%) with a relatively large deviation in the hV'V couplings (—2%). Set B and Set C correspond
to the cases with smaller deviations in Yukawa couplings with the same deviation in gauge
couplings as Set A. Set D and Set E do to the cases with smaller deviations in gauge couplings
with fixing the same deviation in Yukawa couplings as Set A. According to Ref. [100], the 1-o
uncertainty for these scaling factors are given as

[0(ky),0(ks), 0(kr)] = [2%, 4%, 2%], for HL-LHC,
lo(kv),0(kp),0(k,)] = [0.4%, 0.9%, 1.9%], for ILC500. (5.81)

From Fig. 5.5, these benchmark sets indicate that the Higgs sector is the THDM with the
Type-11 (Type-I) Yukawa interaction assuming = ~ cos(f — ) < 0 (x > 0). In order to further
discriminate Type-I or Type-II, we need additional information to determine the sign of x such
as the measurement of Ak, namely, if Ak, is given to be a negative (positive) value, then we
can completely determine the Yukawa interaction to be Type-II (Type-I). In the following, we
consider the case of Ax, < 0, so that we assume the case of the Type-II THDM.

For all Set A to Set E, we survey parameter regions in which values of k’s are predicted
around the central values within the 1-0 uncertainty expressed in Eq. (5.81) by scanning the
inner parameters x, tan 8, mg (= my~ = m, = my) and M? in the Type-II THDM. We also
take into account the constraints from vacuum stability and perturbative unitarity in order to
constrain the parameter space. The scanned regions for tan 5 and mg are taken as tan /5 > 1
and mg > 300 GeV, respectively. Values of the other parameters M? and x are scanned over
ranges which are enough wide to obtain the maximally allowed parameter spaces.

In Fig. 5.6, we show the allowed parameter regions on the z-tan 8, x-mg,, mg-¢ and mg-tan 3
planes from the left to right panels, where we define

(=1—-M?/m3, mg=mg. (5.82)

The parameters x and mg give deviations of the Higgs boson couplings by the mixing effect and
the loop effect, respectively. Notice that the scale of m4 corresponds to the mass of the extra
Higgs boson when M? = 0. The physics meaning of ¢ is to measure the magnitude of non-
decouplingness of the loop effects of extra Higgs bosons. If ¢ is unity, we have M? = 0, while if
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¢ < 1 with nonzero value of M? (> 0), the mass of the extra Higgs bosons partially comes from
M? so that the non-decouplingness is smaller. The central values of Ax’s are chosen from Set
A B, C, D and E from the upper to bottom panels. The blue and red points correspond to the
region within the 1-0 uncertainty at the HL-LHC and ILC500, respectively, from the central
value in Table 5.2.

For Set A in Fig. 5.6, let us first explain the behavior of the red points on the x-tan § plane.
In this case, —2.4% < Ak, < —1.6% is allowed at the ILC500, which can be explained by
taking —0.22 < x < —0.18 at the tree level from the expression of Axy ~ —z%/2. At the
same time, both Ak, and Ak, are approximately given by —ztan/ in the Type-II THDM
at the tree level, so that tan/ is determined by a fixed value of x from tanf ~ —Ak./x,
which is around unity if we take the central value of Axy and Ak, ;. In fact, by looking at
the top-left panel in Fig. 5.6, the above mentioned values of x and tan 5 are allowed. However,
the actual allowed region of z inclucing radiative corrections is about from —0.22 to —0.12
which is wider than the allowed region estimated at the tree level. This can be understood by
taking into account the additional Higgs boson loop contributions to xy at the one-loop level.
The approximate formula for A&y, is given in Eq. (5.71), where the second term in the right
hand side corresponds to the one-loop contribution. The point here is that the sign of one-loop
effect is negative, and it is proportional to the factor ¢2. Therefore, the allowed region above
x ~ —0.18 is explained from the one-loop contribution with a non-zero value of . On the other
hand, the one-loop correction to k., is given by the same form as for ,, as given in Eq. (5.72),
so that the difference Ak, — AR, is approximately given by the same form —ztan/ as that
given at the tree level. Now from the measurement, since the difference is determined with the
uncertainty, —x tan g is also fixed at the one-loop level. We thus can understand the shape of
the allowed region of this plot. Although for Ak, the top quark, the bottom quark and H*
loop diagrams give an additional contribution as shown in Eq. (5.74), this is not so significant
in the scanned regions. As a consequence for Set A, when the measurement at the ILC500 is
assumed, the allowed value of  and tan § can be determined to be about from —0.22 to —0.12
and from 1 to 2, respectively. On the other hand at the HL-LHC, Axy = 0 is included within
the 1-0 uncertainty. Thus, x ~ 0 is still allowed, so that the value of tan 3 is not determined at
all because of the relation tan 8 ~ —Ak,/x. In addition, we can only extract the lower limit
of x to be about —0.22.

Next, we discuss the behavior of the second panel for Set A in Fig. 5.6. As we mentioned
in the above, the vertical axis mg measures the size of one-loop contribution to the deviation
in the Higgs boson couplings. At the ILC500, in the region with x ~ —0.20, the value of my
is determined to be a smaller value, but mg =~ 0 is not included because of the constraint
from vacuum stability. This can be understood that the deviation from the tree level mixing
is dominant in this case. On the other hand, when the value of x approaches to zero, a sizable
value of mg is extracted, in which the deviation driven by the one-loop contribution becomes
more important to compensate the reduced contribution from the tree level mixing. In addition,
the upper limit of mg to be about 450 GeV is determined by the constraint from perturbative
unitarity. At the HL-LHC, although the blue plots are spread over the region with z ~ 0 as we
observed in the x-tan 8 plot, the upper and lower limit of mge is given by the constraint from
unitarity and vacuum stability, respectively.

The third panel for Set A in Fig. 5.6 shows the allowed region on the mg-( plane, where
¢ is the parameter indicating the non-decouplingness of the extra Higgs bosons. For Set A,
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the allowed regions for ILC500 are shown by the red points while those for HL-LHC by the
blue points. There are upper and lower bounds for ¢ for each value of mg. They are crossed
at around mg = 850 GeV which corresponds to the upper bound of the mass of extra Higgs
boson. The region of ¢ is from 0.2 to 1.4 at mg = 300 GeV. The region of ¢ > 1 corresponds
to M? < 0, where non-decoupling effects are effectively large. The exclusion of ¢ < 0.2 means
that there must be some non-decoupling loop effects of extra Higgs bosons in order to explain
this benchmark point. At the HL-LHC, the similar behavior can be observed. However, { = 0
is still allowed, so that we cannot say something about the non-decoupling effect.

The last panel for Set A in Fig. 5.6 shows the allowed regions on the mg-tan 5 plane. At the
ILC500, tan 8 can be determined to be less than 2, and the upper bound of the mass of the extra
Higgs bosons are obtained to be less 850 GeV, while at the HL-LHC, tan 8 is undetermined
and only the upper bound of the mass of the extra Higgs bosons is obtained.

The panels shown in the second and third rows in Fig. 5.6 display the allowed parameter
regions for Set B and Set C, respectively, where the central value of Ak, (= Aky) is taken to
be smaller than that of Set A, while Ak, is taken to be the same. By looking at the panels
for the z-tan § plane, we can see that a smaller value of |z| is preferred as compared to the
case for Set A. Furthermore, a smaller value of tan 3 is favored in addition to a smaller value
of |z| as seen in the result at the ILC500. These tendencies can be understood in such a way
that the deviations in Yuakwa couplings are proportional to —z tan § at the tree level. Because
of the smaller value of |z|, the deviation in k, cannot be explained only from the tree level
contribution, so that the one-loop effect is necessary to compensate the tree level contribution.
That is the reason why the red points in the second and the third panels for Set B and Set
C are given in the upper region which does not include mg =~ 0 and ¢ ~ 0. Therefore, the
non-decoupling effect can be extracted at the ILC500 for these two benchmark sets. From the
results of ILC500, the upper limit on mg is extracted to be about 950 GeV and 800 GeV for
Set B and Set C, respectively.

The panels shown in the fourth and fifth rows in Fig. 5.6 display the allowed parameter
regions for Set D and Set E, respectively, where the central value of Axy, is taken to be smaller
than that of Set A, while Ak, (= Aky) is taken to be the same. From the red points in the
left panels, it is seen that the values of smaller |z| and larger tan 8 are allowed, which can be
explained by the tree level formulae of Ak, = —2?/2 and Ak, = —xztan 5. For Set E unlike
the other benchmark sets, values of x and tan 8 are not well determined even at the ILC500,
because Aky, >~ 0 is included within the 1-0 uncertainty of ILC500. The extraction for mg, ¢
and mg is done from the ILC500 as 50 < mg < 300 GeV, 0.1 S ¢ S 1.1 GeV and mg < 850

~Y

GeV for Set D and 0 S mg <200 GeV, 0 S ¢ S 0.7 GeV and mg < 800 GeV for Set E.

Up to now, we have discussed the extraction of the inner parameters from the three ex-
perimental inputs; i.e., Axy, Ax; and Ar,. In Fig. 5.7, we show how the extraction can be
improved by adding information of s, in addition to the above three inputs. The panels shown
in the first row are the same as those shown in the first row in Fig. 5.6, which are displayed
in order to compare the results with .. The panels displayed in the second, third and fourth
rows respectively show the allowed region for Set A with the central value of x, of 0.98, 1.00
and 1.02 within the 1-o uncertainty of 2% as expected at the HL-LHC. Because the accu-
racy of the measurement of ., at the ILC500 is not better than that of the best value at the
HL-LHC, 2%, we also use 2% for the analysis at the ILC500. As we see Eq. (5.77), the H*
loop contribution to the decay rate of the h — vy mode gives a different dependence of the
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non-decouplingness from that in A&, and A&y, which is not proportional to mg, but propor-
tional to (, so that the non-decouplingness ( can be expected to be extracted more precisely
depending on the measured value of x,. In fact, we can observe that ¢ is determined more
precisely to be 0.5 < ¢ < 1.0,0.25 < ¢ < 1.1 and 0.2 < ¢ < 0.5 at the ILC500 for the cases
with the central value of k, = 0.98, k., = 1.00 and x, = 1.02, respectively, as compared to the
case without s, (0.2 < ¢ < 1.2). The determination of me is also improved, because mg is
given as a function of (. We note that smaller values of ¢ and mg are favored in the case of the
larger central value of k., because the H* loop effect gives a destructive contribution to the W
boson loop contribution.

In Fig. 5.8, we also show the allowed parameter region with additional information of &., for
Set D. Similar to the results in the previous figure, ( and mg are well extracted as compared
to the case without x, displayed in the first row in Fig. 5.8. For example, ¢ is determined to be
03<¢508,01 ¢ S0.6and 0.1 S¢S 0.6 for the cases with the central value of k, = 0.98,
ky = 1.00 and &, = 1.02, respectively.

5.5 Summary

We can obtain the results that the hVV and hff can be modified by about 2% from the tree
level predictions by one-loop contributions. Taking into account the coupling measurement
accuracies as shown in Tab. 4.3, we cannot ignore the radiative corrections. Moreover, it can
be realized that the one-loop corrections to the Higgs triple coupling are O(100)% via the non-
decoupling effects of m3. In the tree level discussion, the four types of THDMs can be classified
by using deviation pattern between hbb and h77 couplings if the gauge couplings deviate from
the predictions of the SM by about 1%. Even in the case including radiative corrections, the
separation of four types can be done, without prediction regions overlapping each other, if
sin( — «) is sifted from 1 by about 1%.

We have discussed how the inner parameters of the THDMs can be determined by the future
precision measurements of these couplings at the HL-LHC and the ILC. We have found that
the inner parameters of the THDM, e.g. upper bounds on the masses of extra Higgs bosons,
mixing parameters and the magnitude of loop contributions and so on, can be determined to a
considerable extent as long as r, will be measured with the deviation about 1%. The extraction
of the inner parameters using the ILC500 is much better than that using the HL-LHC. That
is mainly due to the good accuracy of the hVV coupling measurement at the ILC500 whose
uncertainty is expected to be less than 1%. Although we have discussed fingerprinting by using
only Ky, Ky, K., and ., the information of , ., £, and £, is also important to determine the
structure of the Higgs sector more precisely. The combination of the future data for all kinds of
the couplings for the Higgs boson hand their predictions with radiative corrections in various
extended Higgs sectors is an useful approach to determine the structure of the Higgs sector and
further to explore new physics beyond the SM, even if a new particle is not directly discovered
in the future experiments.
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Figure 5.6: Scatter plots for Set A, B, C, D and E from upper to bottom panels. The cyan and
red points satisfy the benchmark sets within the 1-o uncertainty at the HL-LHC and ILC500
given in Eq. (5.81), respectively. For the panels shown in the second and the third columns, the
vertical axis mg and ¢ are respectively defined by me = me(1 — M?/m3) and ( =1 — M?/m3.
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Figure 5.7: Scatter plots for Set A with the additional constraint from x, = 0.98, 1.00 and
1.02 for upper, center and bottom panels. The 1-0 uncertainty of x, is assumed to be 2% as
expected at the HL-LHC. The cyan and red points satisfy the benchmark sets within the 1-
sigma uncertainty at the HL-LHC and ILC500 given in Eq. (5.81), respectively. For the panels
shown in the second and the third columns, the vertical axis m¢ and ( are respectively defined
by me = me(1 — M?/m3) and ( =1 — M?*/m3,.
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expected at the HL-LHC. The cyan and red points satisfy the benchmark sets within the 1-
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Chapter 6

Radiative corrections to the Higgs bo-
son couplings in the HSM

6.1 Renormalization in the HSM

There are eight following parameters in the Higgs potential,

mévA7,U/‘I>Sa)\<1>5'7t57mguu’57AS' (61)

As described in Sec. 3.2.1, four of them can be rewritten in terms of the physical parame-
ters m2, m%, o and v by using Eqgs. (3.49), (3.61), (3.62), (3.63). Remained parameters are
Aos, Us, Jus, As, where t¢ is replaces by vg as described in Eq. (3.48).
First, we shift the bare parameters into renormalized parameters,

m; — mj + om3,

m3; — mi; + 0m3y,

a— a+da,

v — v+ v,

Aps = Aos + 0Ass,

vg — Vg + 0vg,

/\5 — >\S + 5)\5,

s = ps + Opis.

A~ N N N N N/~
SRR R S I S
© 00 3 O Tt = W N
—_— — — — D O

Two physical scalar fields are shifted to the reonrmalized fields and the wave function renor-

malizations,
H 1+ %52}1 5ChH + Yo’ H
(h>_>(50Hh—5a 1+%5ZH>(h)' (6.10)

We also have to shift the tadpoles as
Th — Th + 5Th> TH — TH + 5TH, (611)

where Ty and T), are related with 7}, and T as
TS o Co —Sa TH
()-(5 ) () 012

71
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Renormalized one and two point functions at the one-loop level are given by

I =0+ 0T, + DL (6.13)
Ty =0+06Ty + T8 (6.14)

I [p?] = (02 — m2)(1 +62)) — om2 + O‘(ST@ + 1P, (6.15)
M [p?] = (07 — m2)dCun + (p* — mH)(SChH 4 (m2 — m2)0a + S 25T, + Y, (6.16)
Mpup?] = (0* — m%)(1+6Zy) — 6m%, + a(m, + L [p7, (6.17)

where analytic expressions of 1PI diagram parts are given in the Appendix.
We note that there are 14 independent counter terms in the Higgs sector. By imposing
following nine renormalized on-shell conditions,

=0, I'y=0, (6.18)
[[m3] = 0, ﬂHH[ 2] =0, (6.19)
d = 1o d S o
P i o 1, d_pZHHH[p ] e = 1. (6.21)
we determine following nine counter terms,
6Ty, = I 6Ty = - (6.22)
2 2
om; = ?aéqu + 10 m2],  om% = %0‘5T¢ + 55 [m3], (6.23)
1
6Chi = 0Cyp(= 06Cy) = 2(m2, —m) [ [mi] — T[] (6.24)
1 254,Cq
S = S ) { 6Ty + 5 [m37] + I [m }} , (6.25)
d 1PI _ d 1PI
0Zp = _WH [p?] P’ 0Zy = TR 5 [p?] i (6.26)

As shown in Sec. 2.6.1, dv can be determined by the renormalization in the Gauge sector. We
note that forms of dAgg, dvg, d\g and dug cannot be determine above conditions. These do not
appear in the one-loop calculation of the hV'V and hf f vertices. When one-loop corrections to
the triple scalar couplings such as the hhh coupling, these counter terms have to be determined
by additional renormalization conditions as discussed in Ref. [59, 70] in the context of the
THDM. The study of one-loop corrections to the triple Higgs boson coupling in the HSM is
discussed elsewhere [109].

6.2 Renormalized Higgs couplings in the HSM

6.2.1 Analytic expression

In this subsection, we give formulae of renormalized Higgs couplings composed of three parts;
namely the tree level part, the counter term part and 1PI diagram part. hV'V couplings and
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hff couplings are composed of a number of form factors as,

- I~ v p p v o'p p g
Pavv[pt, 3. 0°) = D 1,03, °1g"™ + Dhv .05, °)= 52 + i 7 05, 0P 7 =2,
v v
(6.27)
Dopslot, 03, 7] = 031108 03, 21 + Lk [o1, 03, @ + p, D0 s 03, 13, &) + p, 00 0t 13, &)
+¢175Fhff[P1>P2> I+ pysliglpl, v3, ¢°) +¢1?2F:£ff[1717p27 ’] +?1¢2’Ysrhff[p1ap2aq J-
(6.28)
Each renormalized form factor is given by,
i 2.2 2 27”%/ 1P 2 2 2 .
Dhvvlpt, pa, 7] = v —— KVree T 5Fhvv + Fhvw[p1>p2> q], (i=1,2,3) (6.29)
T [0 g2, ¢?] = — §TI 4 LI | = S, P,V1,V2, Al, A2, T, TP
hff[p17p2’Q]__TK/f,tree+ hff+ hff][p17p27Q]> (j_ y 4y ) ) ) y Ly )a
(6.30)
where specific forms of counter terms are
oL = 2 My U Sasen 57y + Loz (6.31)
= cos -+ = — )
hvv v mi, vooc, 4 Vit tan o
0Thyy = 0Ty = 0, (6.32)
) )
5rhff = - cosa <ﬁ — =+ 50, + 5Zf + 6Zh> (6.33)
v my v,

where dmgy,, 6Zy and dv are given in Sec. 2.6.1 and dm, and 6Z} are given in Sec. 2.6.1.

6.2.2 Numerical evaluation for the scaling factors

We here present some of the numerical results of our numerical program for the one-loop
corrected Higgs boson couplings of AVV and hff. The leading order prediction of the hvy~y
vertex is also calculated. Our numerical program is written as a FORTRAN program, and the
package; LoopTools [110] is used for the one-loop integrations.

Our numerical results are shown in terms of the scaling factors. Deviations in the one-loop
corrected scaling factors for AV'V and hf f couplings are defined as

f1 2,2 2
A/%V = AthV[p172p272q ]2 . 1’ <635)
FhVV,SM[plap%q ]
fs 2’ 2’ 2
P wrlPT 03, 4] 1 (6.36)

F}?ff,SM [P, 03, 4%

where f%LVV,SM and 'y rr.sm are the one-loop corrected hV'V and hf f couplings in the SM. The
formulae for the one-loop decay rates h — v+, h — Z~ and h — gg are given in Appendix A.2.
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We numerically evaluate deviations in the scaling factor of the hvy~ effective coupling defined
as

TTh

Ap, = Y2 (6.37)
Llh — vy]sm

A Lh=n2) (6.38)

Rz = — 1, .

! T[h — vZ]su

Awy= Y299l (6.39)
Llh — gglsm

where I'/h — XY (I'[h — XY]gm) is the prediction of the decay rate for h — XY mode in the
HSM (in the SM). Because the additional Higgs boson does not have electromagnetic charge
and color charge, decay rates (I'lh — XY]) of these modes are modified only by field mixing
effects at the one-loop level. The scaling factor of the hyy, hyZ and hgg vertex, Ak, Ak,
and Ar, are given by

Ak, = Ak, = Ak, =c, — L. (6.40)
In our numerical evaluation, we use the following values for the input parameters [99]:

Gr = 1.1663787° GeV ™%, m, = 91.1876 GeV, «,,, = 1/137.035999074, Acem = 0.06637,
m, = 173.21 GeV, m, = 4.66 GeV, m_ = 1.275GeV, m_= 1.77682 GeV,
my, = 125GeV, (6.41)

where Aay,, is defined as defined as 1 — O‘?g; ) with Gem(mz) being the fine structure con-
em A

stant at the scale of myz. Furthermore, we set the momenta (p?, p3, ¢*) to be (m3,m2,4m?),
(m3,, mjy,, (ma+my)?) and (m7, m3, mj) for Ak, Ak and Ak, respectively. As we mentioned
in Sec. 3.2.1, we can take the value of vy freely without changing physics. We fix vg to be 0 in
the following numerical analyses.

First, we discuss approximate formulae in the case for « = 0 which can be expressed following
simple forms

) 1 1m2 M2\ ?

The most right hand side of Eq. (6.42) comes from the H loop contributions of §Z,. The
structures of these one-loop contributions are the same as those in the THDMs as described in
Ref. [59]. Since the form of the hHH coupling becomes )\, ;75 =~ —(m?% — M?)/v in the case
for s, < 1. When m% is much larger than v?, these loop contributions to Aky and Aky are
reduced as 1/m?%. If M? is comparable to v?, the non-decoupling effects significantly modify
the hV'V and hff couplings due to the quantum corrections which are proportional to m%.
In Fig. 6.1, we show the decoupling behavior of H loop contributions to the Higgs couplings
under the constraints from perturbative unitarity, vacuum stability and the conditions to avoid
wrong vacuum in the case for @ = 0. The left and right panels are Ak, and Ak, as a function
of my, respectively. We fix Ag = 1 and pug = 50 GeV. Green, blue and orange curves indicate
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Figure 6.1: A&, (left panel) and A&, (right panel) as a function of m,;, respectively under the
constraints from perturbative unitarity, vacuum stability and the conditions to avoid wrong
vacuum in the case for a = 0. We take m% = m3,/2, A\¢ = 1 and ug = 50 GeV. Green, blue and
orange curves are the results for Ag5v? = (150GeV)?, (300GeV)? and (400GeV)?, respectively.

predictions for Agsv? = (150GeV)?, (300GeV)? and (400GeV)?, respectively. Since the value of
M? grows as m? becomes large, we can see that deviations by loop effects are reduced in the
large mass regions.

In Fig. 6.2, we show Ak, (the left panel) and A%, (the right panel) as a function of m?% in
the case for a = 0. We fix Ag = 1 and pg = 50 GeV. We investigate the behavior of Ak for
various values of M? such as M? = 0, (200GeV)? and (400GeV)?2. In this case, the magnitude
of the deviations increase when m, becomes large in each the Higgs coupling, because the
non-decoupling effect of m;.

In Figs. 6.3, we show scatter plots of allowed regions under the constraints of perturbative
unitarity, vacuum stability and the conditions of a wrong vacuum on the m,-Ax, plane (left
panel) and the |sin a|-Ak, plane (right panel). Brown points are the results of the tree level
calculation, while blue points are those of the one-loop calculation. We scan parameters as
100 GeV < my < 10 TeV, 0.91 < cosa < 1.00 and —m?% < M? < m?% with fixing Ag = 0.1
and pug = 0. In Fig. 6.3 (left), we learn that A&, is zero in the large mass limit for H. For a
nonzero negative value of Ax, there is an upper bound on m;. The upper bound evaluated
at the one-loop level is almost the same as that at the tree level for each value of negative
Ak . If by future precision measurements Ak, is determined as Ax, = —2 + 0.5%, the upper
bound on my is obtained to be about 4 TeV. In Fig. 6.3 (right), the tree level results are on
the curve described by ~ —1/2sin? o for small |sin a|. At the one-loop level the magnitude of
the deviation from the tree level prediction is typically about 1%. For smaller values of |sin «|
Ak, is smaller than the tree level prediction, while for larger |sinal| the one-loop corrected
value Ak, can be larger than the tree level prediction but the sign of A&, is always negative.

6.3 Discriminating the HSM and the Type-1 THDM

In this section, we discuss examples of how we can distinguish the simplest extended Higgs
sectors by using one-loop corrected Higgs couplings and future precision measurements of the
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Figure 6.2: Ak, (left panel) and Ak, (right panel) as a function of m, respectively under the
constraints from perturbative unitarity, vacuum stability and the conditions to avoid wrong
vacuum in the case for & = 0 We take A\g = 1 and pug = 50 GeV. Solid, dashed and dot-dash
curves are the results for M? = 0, (200GeV)? and (400GeV)?, respectively.

Higgs boson couplings. In Ref. [57], the patterns of deviations in these couplings have been
discussed at the tree level in the extended Higgs sectors which predict p = 1 at the tree level;
i.e., four types of THDMs, the HSM, the GM model and the septet model. It has been shown
that four types of THDMs can be basically separated by measuring Yukawa coupling constants
of hrt, hbb, héc and/or hit except for the decoupling regions [13,57,58]. On the other hand,
the Type-I THDM, in which only one of the Higgs doublets couples to all the fermions, and
all the other extended Higgs sectors (the HSM, the GM model and the septet model) can be
distinguished by the precision measurement of the hV'V' coupling and the universal coupling of
hff as long as the deviations in &, is detected. One of the notable features of the predictions
in the exotic extended Higgs sectors such as the GM model and the model with the septet field
is the prediction that the scaling factor k,, can be grater than unity [34,50,52,53], while both
THDMs and the HSM always predict x,, < 1.

In order to compare the theory calculations with precision measurements at future lepton
colliders such as the ILC, where most of the Higgs couplings are expected to be measured with
high accuracies at the typically O(1) % level or even better [100], the above tree level analyses in
Ref. [57] must be improved by using the predictions with radiative corrections. In Refs. [58,59],
the one-loop corrected scaling factors in the four types of THDMs have been calculated in the
on-shell scheme, and the above tree level discussions in Ref. [57] have been repeated but at the
one-loop level. Even in the case including one-loop corrections, it is useful to discriminate types
of Yukawa interactions by using the pattern of deviations among the hf f couplings. It is also
demonstrated in Ref. [59] that information of inner parameters can be considerably extracted
by combination of the precision measurements on the Higgs boson couplings when a deviation
in Ky, is large enough to be detected.

We here show the one-loop corrected scaling factors of hZZ, hbb and hhh coupling in the
HSM in comparison with those in the Type I THDM. The expected 1o uncertainties for these
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Figure 6.3: Scatter plots of allowed regions under the constraints of perturbative unitarity,
vacuum stability and the conditions of a wrong vacuum on the m-Ax, plane (left panel) and
the |sin a|-Ak, plane (right panel). Brown points are the results of the tree level calculation,
while blue points are those of the one-loop calculation. Parameters are scanned as 100 GeV
<my <10 TeV, 0.91 < cosa < 1.00 and —m?% < M? < m?, with fixing A\g = 0.1 and pg = 0.

scaling factors at the LHC with the center-of-mass energy (1/s) to be 14 TeV and the integrated
luminosity (L) to be 3000 fb~! (HL-LHC) and also the ILC with the combination of the run
with /s = 250 GeV with L = 250 fb~! and that with /s = 500 GeV with L = 500 fb!
(ILC500) are given by [100]

l0(kz),0(kb), 0(Ky)] = [2%, 4%, 2%), HL-LHC,
l0(kz),0(kb), (k)] = [0.49%, 0.93%, 8.3%], ILC500, (6.43)

For the predictions at the one-loop level in the THDM, we fully use the formulae and the
numerical program developed in Ref. [59].

In Fig. 6.4, we show the one-loop corrected predictions of the allowed regions of the HSM
and the Type I THDM on the plane of A&, and Ak,. The inner parameters are scanned under
the constraints of perturbative unitarity, vacuum stability and the condition to avoid wrong
vacuum, which are shown given in Sec. 3.2.1. The list of scanned parameters and scanned
ranges of these parameters are shown in Tab. 6.1. Red regions indicate the predictions of
the HSM. Brown, blue, cyan, green and orange regions are the allowed regions in the Type I
THDM for tan 8 = 1.5, 2, 3, 5 and 10, respectively, with varied mg(my = m, = my.) and
M, where definitions of the parameters are given in Ref. [59]. The blue and red ellipses show
the measurement uncertainties (£10) for Ax, and Ak, at the HL-LHC and the ILC500 [100],
respectively.

First, we discuss the behavior for predictions of the HSM in Fig. 6.4. We find that magnitude
of the deviations in the one-loop corrected x, and «, are almost similar in the HSM. The reason
is that tree level predictions of Ax, and Ak, take a common form (cosa — 1). Namely, Ak,
and Ak, dominantly deviate from the SM predictions to the directions with the rate 1 : 1 by
the mixing effect, and the small width of the line of 1 : 1 is made by the one-loop contributions.
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Table 6.1: Parameter regions in the HSM and the Type I THDM for scan analyses in Figure. 6.4,
Fig. 6.5 and Fig. 6.6, where definitions of the parameters in the Type I THDM are given in
Ref. [59]

HSM THDM

300GeV < my < 1TeV | 300GeV < my(=m,y =mys) < 1TeV

cosa < 1 sin(f —a) <1
—15 < Aps < 15 0 < M? < (1TeV)?
—15 < Ag <15

—2TeV < pg < 2TeV

Next, we explain the behavior for predictions of the Type I THDM. The scaling factors
for the hV'V couplings at the tree level are different from those of hf f couplings [57]. In the
case for cos(8 — a) < 0, Ak in the THDM (A#ITPM) is negative and its magnitude is grater
than A%, in the HSM (AAISM) for the same deviation in A% ,. On the other hand, in the case
of cos(f — a) > 0, A&FHPM s larger than A#ISM for the same value of Ak,. Ak, and A#,
deviate from the SM predictions according to the tree level predictions due to the tree level
mixing effect, and the one-loop contributions make the deviations from the tree level prediction
by typically a few %. We find that Ak, and Ak, are substantially modified by radiative
corrections in the case for low tan § values than the case for large tan 5 values. As the value of
tan 8 become large, the Ak, and Ak, plane prediction in the Type I THDM approximate the
line of 1 : 1. Larger deviations in Ak, and Ak, in the case with tan g > 10, cos(f —«a) < 0
and mg > 300 GeV are excluded by the constraints from perturbative unitarity and vacuum
stability.

In Fig. 6.5, we show the one-loop corrected predictions of the allowed regions of the HSM
and the Type I THDM on the plane of Ak, and Ar,. We scan inner parameters in each
model within the ranges listed in Tab. 6.1 under the constraints of perturbative unitarity,
vacuum stability and the condition to avoid wrong vacuum and the conditions to avoid wrong
vacuum. Definitions of color for allowed regions are the same as those in Fig. 6.4. Blue and
red ellipses are shown measurement uncertainties (+10) for Ak, and Ax,, at the HL-LHC and
the ILC500 [100]. Since uncertainty of Ak, measurement at the HL-LHC is smaller than that
at the ILC500, we here use expected uncertainty for Ak, at the HL-LHC in both case the
HL-LHC and the ILC500.

In the HSM, the correlation between Ak, and Ak, follows the line of 1 : 1 with the small
width, which comes from radiative corrections. Because there is no charged new particle in
the HSM, deviations in Ax,, are made by mixing effects. In the THDM, in addition to mixing
effects, singly charged Higgs bosons loop contributions modify the value of Ak, . The magnitude
of Ak, depends on the sign of cos( — ) as the behavior of Ak,. Predictions distributing in
region of smaller |Ax,| values is the case for cos(8 — a) > 0. The other regions show the
predictions with cos(f — «) < 0. In the limit for tan 5 — oo, the predictions of the Type I
THDM are close the line of 1 : 1. There are allowed regions with Ax_ > 0, which are caused
by inversing the sign of the hH*H~ coupling. If it is difficult to identify the results of each
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Figure 6.4: Predictions of the allowed regions of the HSM and the Type Il THDM at the one-loop
level on the plane of Ak, and Ak,. The inner parameters are scanned under the constraints
of perturbative unitarity, vacuum stability and the condition to avoid wrong vacuum, given in
Sec. 3.2.1. The list of scanned parameters and scanned range of these parameters are shown in
Tab. 6.1. Red regions indicate the predictions of the HSM. Brown, blue, cyan, green and orange
regions is allowed regions in the Type I THDM for tan g = 1.5, 2, 3, 5 and 10, respectively. Blue
and red ellipses are shown measurement uncertainties (+1c0) for Ax, and Ak, at the HL-LHC
and the ILC500 [100].

value of tan § in the plane of Ax, and Ak, you can see their behavior more clearly by using
Fig. 6.6. In each panel of Fig. 6.6, we show allowed regions of Ak, and Ak, in the HSM and
the Type I THDM for each value of tan 5. The definition of colors and ellipses, and the way of
analysis are same as those in Fig. 6.4 and Fig. 6.5.

Finally, we discuss how we can discriminate the HSM and the Type I THDM by using the-
oretical predictions of Ary, Ak, and Ak, with radiative corrections and Higgs boson coupling
measurements at the HL-LHC and the ILC500. We find that if s, will be measured to be
deviated by 2 % from the SM predictions, we can discriminate the HSM and the Type I THDM
in most of parameter regions by using precision measurements of Ax, and Ak, at the ILC. In
addition, in the plane of Ax, and Ak, the predictions of the HSM separate from those of the
Type I THDM for cos( — ) > 0. However, when the value of tan § is extremely large; i.e.,
tan 3 > 10, Axy"PM AgMPM and AxTTPM approach to the predictions in the HSM. In such
a situation, it is difficult to discriminate the models by only using these coupling constants.

6.4 Summary

We have calculated a full set of renormalized Higgs boson couplings at the one-loop level in the
on-shell scheme in the HSM. These coupling constants can deviate from the SM predictions due
to the mixing effect and the one-loop contributions of the extra scalar boson. We numerically
have investigated how they can be significant under the theoretical constraints from perturbative
unitarity and vacuum stability and also the condition of avoiding the wrong vacuum. Finally,
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Figure 6.5: Predictions of the allowed regions of the HSM and the Type I THDM on the plane
of one-loop corrected Ar, and Ak, . Blue ellipse is shown measurement uncertainties (+10)
for Ak, and Ax, at the HL-LHC [100]. Red one is shown measurement uncertainties (+10)
for Ak, at the ILC500 [100] and Ak, at the HL-LHC. The others are same as in Fig. 6.4.

comparing with the predictions at the one-loop level in the four types of THDMs, we have
studied how the HSM can be distinguished from those models and identified by using precision
measurements of the Higgs boson couplings at future collider experiments. We found that if
hV'V couplings deviate 2 % from the SM predictions, we can discriminate the HSM and the
Type I THDM in most of parameter regions by using precision measurements of Ax, and Ak,
at the ILC. In addition that, in the plane of Ax, and Ak, the predictions of the HSM separate
from those of the Type I THDM for cos(8 — «) > 0. Therefore, by comparing the predicted
values of the hZZ, hbb and hy~y couplings and corresponding measured values, we may be able
to distinguish the HSM from the Type I THDM in the most of the parameter space. However,
when the value of tan 8 is extremely large as tan/3 > 10, deviations in ArLIPM A HDM
and ArTHPM approach to the predictions in the HSM. In such a situation, it is difficult to
discriminate the models by fingerprinting.
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Figure 6.6: Each panel shows predictions of the allowed regions of the HSM and the Type I
THDM for each value of tan 3, i.e. tan g = 1.5, 2, 5 and 10, on the plane of one-loop corrected
Ary and Ak, The others are the same as in Fig. 6.5.






Chapter 7

Radiative corrections to the Higgs bo-
son couplings in the HTM

7.1 Renormalization in the HTM

In this section, we define the on-shell renormalization scheme in order to calculate the one-loop
corrected electroweak precision parameters and also the SM-like Higgs boson couplings: hZZ,
hWW and hhh. First, we discuss the renormalization of the electroweak sector to calculate the
renormalized W boson mass, which can be used to constrain parameters such as the triplet-like
Higgs boson masses in the HT'M. Second, we consider the renormalization of parameters in the
Higgs potential.

7.1.1 Renormalization of the electroweak parameters

The renormalization prescription in models where the tree level rho parameter: pie. is predicted
to be unity such as the SM is different from that in models without pge. = 1 such as the HTM.
Therefore, we separately discuss the renormalization prescriptions in models with py.. = 1 and
those with pee # 1 in order to clarify the difference between two prescriptions.

Models without piree = 1

We describe the renormalization of the electroweak precision parameters in models without
puree = 1. In this class of models, the electroweak parameters are described by four independent
input parameters. For instance, when we choose my,, myz, aq, and sinf as input parameters,
all the other parameters are written in these parameters;

_ 7TOéem
- 2 .2
ﬁmwsw

In the renormalization calculation, we shift all the input parameters into the renormalized
parameters and the counter-terms. Once we specify the input parameters, all the counter-
terms are also described by the three counter-terms which are associated with the four input
parameters. We shift all the parameters in the kinetic Lagrangian as follows

Gr (7.1)

2 2 2 2 2 2
my — my, +0my,, my — my+0my,  Qem — Cem + 0Qem,

1 1
sin® Oy, — sin® Oy, + dsyy,, B, — B, + 5%, Wi = Wit 562w, (7.2)

83
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The wave function renormalization for the photon and the Z boson can be obtained by the shift

ZM 1 5ZZ 5ZZ 1 0 —582 Z
1 - Y w 1 )
(Au>—>[+2(5ZZV 5Zv)+25WCW(5S%V 0 H(Au)’ (7-3)

where the counter-terms 67z, 6Z.,, 6Zz, and ds}, are expressed in terms of the counter-terms
defined in Eq. (7.2) as

(SZZ . C%/V S%V 5ZW
< 87, ) B ( sk, 60Zp )’ (7.4)

(SZZ,y = Cwsw(ézw 5ZB> M((SZZ 627), (75)
iy — sy
o _ oy (5”22 5”2%) . (7.6)
Sw Swo\ Mz myy
The renormalized two point functions for the gauge bosons can be expressed as
Tww [p] = Wiy (p°) — 6miy + 6 Zw (p° — miy), (7.7)
lz2[p%] = W5 (p°) — 6m3 + 6Z2(p* — m3),
va[p2] = H»lyl»jl(p2) + p2(5Z,y, (7.9)
. 1 §s?
Mz, [p?) = TZT(0°) = 022, (0* — 5my) —mys—"—, (7.10)
2 QSWcW

where [N (XY = WW, ZZ, vy or Z~) are the 1PI diagram contributions to the gauge boson
two point functions. We here define derivatives of the renormalized two point functions and
1PT diagram contributions as Il [m?] = £ 4 Ty [p? Hp2:m2 and TI¥Y (m?) = LTI (p? )‘p2:m2.

In order to determine the counter-terms, we impose the following five renormalization con-
ditions:

Rellww[miy] =0, Rellzz[m3] =0, (7.11)
I [0] =0, Mz[0]=0, I7°[=0, ph=rgh=m] = icy,, (7.12)

where f:jee is the renormalized yee vertex. By using these conditions, all the counter-terms in
the electroweak sector can be determined as

SmZ, — ReIl'®L (m2)).  gm2 — RellFl(m2), O%em _ [pier(g) _ 25w 117, (0 (7.13)
e ko e T T
, HIPI(O) (552
57, = —I'PY(0), 087y, = 22—~ 4 W 7.14
2l Yy ( ) Zy mQZ SwCw ( )
, 2e2, — g2 TP 2 g2 562
57, = —II'PT (0) — (civ — sw) Z’YQ( ) 4 G - Sw 52W7 (7.15)
" Cw SW my v Sw
, 20 IIEL0) g2
§ 2w =~ (0) — L2 W 7.16
w vy (0) sw o m% + 2, ( )

Next, we discuss how ds%, is determined. Here, three of four input parameters are chosen from
the electroweak precision observables, i.e., my, mz and aey, such as the SM. The other one
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is chosen from the mixing angle 3’ between the CP-odd Higgs boson A and the NG boson G°
defined in Egs. (3.88) and (3.89). The counter-term of the mixing angle 63" can be determined
by the conditions:

ac[0] = Mag[m?] = 0, (7.17)

where I 4 is the renormalized two point function of the G°-A mixing given in Eq. (7.41). The
other counter-terms are determined by the same renormalization conditions given in Eqgs. (7.11)
and (7.12) as in the SM. In this scheme, the weak mixing angle is not the independent parameter,
but it is determined by
_ 2m?
27 =2 W
cos“ Oy =y = —5—————. 7.18

In order to distinguish the definition of the weak mixing angle in this scheme from the other
definition, we introduced ¢, (5%, = 1 — &,). The counter-term for the weak mixing angle is
obtained by imposing Eq. (7.13):

2 2 R HlPI 2 R HlPI 2 QcarSar
052, = —68%, = . myy . € ZZQ(mZ) __he sz/(mW> 4G Séf 5a| . (7.19)
my(1+ c3) my méy, 1+ c3

The expression for Ar can be obtained in the same way as in models with pge. = 1:

(7.20)

rem?’

2
Ar = Aa — fTWAp—i—Ar
Sw
where Aa and Ar,, are given by the same formulae of the SM, but sy and ¢y should be
replaced by sy and ¢. Ap can be expressed as
CIJ0) TR 0) 25w TZH0)  2cmse

2 2 = 2 2
ms, miy cw  my 1+ cp

Ap 58, (7.21)

The quadratic mass dependences due to the custodial symmetry breaking such as m? appear
in ArScheme Il through Ap. The one loop corrected W boson mass can be calculated as

ren)2 _ mQZ(l + C%/)
(mW )Scheme I — 4

8 ’/T&em
T4 /1= . 7.22
\/ 1+ C%/ \/§Gpm22(1 — AypScheme H) ( )

7.1.2 Renormalization of the Higgs potential

Next we discuss the renormalization of the parameters in the Higgs potential. We here choose
the set of input parameters in the Higgs potential as

2 2 2 2 2
v, «, 67 ﬁlu My, My, My, Mg+, Mg+t (723)

We work on the mass eigenbasis for the Higgs fields. Now we define the shift of the parameters
as

Te = 0+ 0Te, Tao — 0+ 0Th, (724)

v v+, a—>a+da, B—B+68, 8 =B +63 (7.25)

m? — m:, + omg, (7.26)
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where o = h, H; A, H" and H*". In fact, 8 and 8’ are not independent from each other, so that
the counter-terms 63 and 63’ are also not independent!. We start from the mass eigenstates
for the Higgs fields at the tree level. The wave function renormalization factors are defined as

H* & (1 + %5ZH++) H*,
G*\ ([ 1+86Zae 65+ 6Can \ ( G*
H* —08+06Cpc 1+ 367+ H* )
G° N 14 %52@0 08 + 6Cqa GY

A 00"+ 6C s 1+%(SZA ’

h 1+ %52}1 oo+ 0Chy h
(H>_><—6a+5CHh 1+ 167y ><H) (7.27)

Hereafter, we set 0C,g = 0Cyyp, 0Cay = 6Che and 6Cga = 0C s without loss of generality.
The counter-term of jv can be determined by the renormalization of the electroweak parameters
as

v _ 1 Imiy  Otem N 653,
v 2\ m¥y Qem  Sh )

(7.28)

where counter-terms of dm, and dcy, are given in Eq. (7.13) and that of 5%, is given in
Eq. (7.19). At the one-loop level, one point functions of h and H are given by

Ty, = 6Tp cosa + 0Tx sina + Ui (7.29)
Ty = —0Tgsin o + 6T cos o + TH, (7.30)

where T'PT and TP are contributions of one-particle-irreducible diagrams. The condition of
vanishing the tadpoles at the one-loop level provides

6Ty = =T cosa + T ' sin a, (7.31)
6Ta = —T sina — T} cos a. (7.32)

Similar to the gauge boson two point functions, renormalized two point functions for scalar
bosons can be expressed as Il44[p?] and 1PI diagram contributions can also be denoted by
I35 (p*). Derivatives for those functions can be defined as I, [m?] = #H¢¢(p2)|p2:m2 and

5" ) = G112 )

'The counter-terms 63 and 63’ can be written in terms of Jv and Jva as 68 = &, /ﬁ (‘SU—A — @)
A

v VA v

dv dv

and 58’ = & 2 (g - 22).
p V(14203 /v2)y/1-20% /02 \ VA v
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The renormalized scalar boson two point functions are given at the one-loop level by

. V20T,
Ugseg—[p°] = (0° — Mo )0 Zpes — Omipes + S_TA + 1 - (7)), (7.33)
8

35 0Ty \/50% 0T

e (p? 7.34
5 v 55 + Uy (p )a ( )

C/g(ST.:p + \/§S/35TA

Hero-[p%] = p*6Za+ + + g (9%, (7.35)

~ 3 0T \/§C ' 0T
Taa[p?] = (p? — m3)0Z4 — om% + 222 P2 ), (7.36)
Clg v 85
~ 02/ (ST 32/ 5T
Heelp®] = p?0Zco + =2 4 22222 4 IR (p?), (7.37)
Cﬁ v 85 v
. oT. oT
L) = (0 — m)oZ — oy + 52000 | V2GOT o) (7.3%)
Cﬁ v S@
N c oT. \/_sa 0T
Hhh[pQ] = (p2 — mi)ézh — (5 h + — ki A + H}Lil(pz) (739)

Cg v SB
The renormalized two point functions for the scalar boson mixing are given by

855Tq> — \/50/3(5TA

My [p°] = 0Chc(2p* — miy) — " +my 08+ g (), (7.40)
. s2, §T. 2¢2, T
Muc[p?] = 6Cuc(2p> — m?) — =22 4 T8 222 4 258 + TR (p?), (7.41)
V2s5 v e
. 2c30TA — T.
flpfp?] = Cade Y200Ta = 360Ts _ 5002 ey
056’/3 v
+ 80 (20° — mi — m3)) + T (p?), (7.42)

The counter-terms of the doubly-charged Higgs boson mass dm?,, . and its wave function renor-
malization factor 0 Zy++ are determined by the following renormalization conditions:

Mpsrp—[mies] = 0, Wypsr g [mirs] = 0, (7.43)
which yield
V20T, :
5mH++ = Vs A H}_IPJ}+H77 (m?_[++) 5ZH++ = —Hgl+H,,(m%_l++) (744)
8

The five parameters related to the CP-odd scalar states (dm?, 6Zgo, 024, 6Cqa and 65') are
determined by imposing the following five renormalization conditions

Me[0] =0, Tag[0] =0, Iag[m?i]=0. (7.46)
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by which we obtain
_ 50T V2c%, 6T

5m?4 v 5 + H}ﬂ(mi), (7.47)
6 Zco = —IEX(0), 624 = 11T (m?), (7.48)
1
0Cac = 53— [IT42(0) — G (m3)] (7.49)
V252 5Ty 4ck 6T
5 / - _ HIPI O HlPI 2 _ B P _ B A 750
B e 4¢(0) + ITiq(m%) P s ( )

The four counter-terms related to the singly-charged Higgs boson (dm?,,, 6Zg+, 6Zy+ and
dCqy) are determined by imposing the following four renormalization conditions

Mpen-[mys) =0, Tgig-[0] =0, (7.51)
Ty gy [mis] = 0, Tagl0] =0, (7.52)
by which we obtain
55 6Ty ﬁcg 5T

gy = D% 4 LIV L, (), (7.53)

57+ = —TIEL, (0), 6Zp = —TIY,_ () (754
1 — 30T + /2c50T.

0Che = 08 + —— |ILFL, (0) + 22222 V2050Ts , (7.55)
My v

where 00 is determined through §3’ as
1+ S%
V2

Finally, the six parameters related to the CP-even Higgs states (da, dm3, dm%;, 6Zy, 6Zg and
dCyy) are determined by imposing the following six renormalization conditions

58 =

53, (7.56)

yn[mi] =0, I}, [m}] =0, (7.57)
Mpn[m}] =0, Iyylm3] =0, (7.58)
gnfmy] =0, yp[my] =0, (7.59)

by which we obtain
s 0Ty c \/_ 20T s2

6 — “a HIPI 5 2 — “a HIPI )
T v cﬂ v Sp ST (mi),  miy v CB 55 + w(mi), (7.60)
02y = =y (my), 02y =~ (m3), (7.61)
1 25q4Cq [ OT. V20T A
S = ——— |T1PT (2 [TLPI(,2 ) _ Z2ata . 762
o 2(m2 — m3,) (M) + gy, (M) 553 " SB " Cs ( )
1
0CHn = o2 =) (s (m3y) — Mgy (mi)] (7.63)
h H
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In the limit of va/v — 0, the mass of A is no more independent parameter, which is
determined by the masses of H** and H*. In this limit, the CP-odd Higgs boson mass is
expressed at the tree level as

(mi)tree = UAl}irLO mi = 27773{4» — m?{++. (764)
The renormalized pole mass of A, which has been discussed in Ref. [?], can be defined by the
following equations

lim Taap? = (m2)pote] = 0. (7.65)

va /v—0
From Eq. (7.65), we obtain

1 0T
57, [0~ o~ Al | (7.66)

(m,Qq)pole = (mi)tree +
where we use IT4a[(m?)pole] =~ Taa[(m%)iree]. The counter-term dm? is not independent pa-

rameter in the limit of va /v — 0, but they can be given by dm? = 26m?2,, — dm?,,. By using
Egs. (7.44) and (7.53), we obtain

(m,%\)pole = (m,%l)tree + [2H11ff+IH* (miﬁ) - HzllIPJhH** (mil++) - H,lélfz[(m,%l)tree]] . (7.67)

Above the equation indicates that the tree level mass relations among the triplet-like Higgs
bosons which are written in Eqgs. (3.104) and (3.105) can be deviated by the effects of the
radiative correction. The magnitude of this deviation can be parameterized as

2 9
AR = s Z e (7.68)
e — (o

In Ref. [61], AR has been evaluated numerically in the case of &« = 0 and va/v — 0 as shown
in Fig. 7.1.

7.2 Higgs couplings at the one-loop level

In this section, we discuss the SM-like Higgs boson h couplings with the gauge bosons (v,
W*HW~ and ZZ) and the Higgs self-coupling hhh at the one-loop level in the favored parameter
regions by the unitarity bound, the vacuum stability bound and by the measured W boson mass
discussed in previous sections.

7.2.1 Higgs to the diphoton decay

h — ~7 process is induced at the one-loop level, because the Higgs boson does not couple to
the photon at the tree level. Thus, the decay of h — v+ is sensitive to effects of new charged
particle which can couple to the Higgs boson. In the HTM, the doubly-charged Higgs boson
H** and the singly-charged Higgs boson H* can contribute to the Higgs to diphoton decay.
In particular, the contribution from the H** loop to the h — ~v is quite important compared
to that from H7T, because H** contribution is roughly 4 times larger than that from H*
contribution at the amplitude level.
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Figure 7.1: AR is shown as a function of the lightest triplet-like Higgs boson mass in the case
of @ = 0 and my, = 125 GeV for each fixed value of my++ — mpy+ [?]. The left (right) panel
shows the results in Case I (Case II).

The decay rate of h — 7 is calculated at the one-loop level by

T(h _ Groaumi| ot NS e 4 (g
( —>77)—W — azf: FQTrL+ (1 —75) f(74)]

+ (05ca + \/ﬁsas[g)[Q + 3w + 3Tw<2 — Tw>f<Tw)]

2

2'0)\H++H**h 21)/\H+H*h

- Q?{HTH = T+ f(Ta+)] = Q%T[l — 7+ [ (Tr+)]|
h h
(7.69)
where the function f(x) is given by
larcsin(1/y/x))?, ifz > 1,
flz) = { —i[ln iv%:i —ir)?, ifrx<1 (7.70)

In Eq. (7.69), QF is the electric charge of the field F, N7 is the color factor and 7 = 4m? /m?.
These couplings can be expressed quite a simple form by neglecting the terms proportional to
VA

)\H++H**h =~ —U)\4, >\H+H*h = _2(2)\4 + >\5)- (7'71)

It is well known that the W boson loop contribution to the h — vy decay rate is dominant
compared to the top quark loop contribution in the SM, so that when a new physics effect to the
amplitude of the h — 7~ process has the same sign of the W-loop contribution, then the decay
rate is enhanced compared with the SM prediction. In the HTM, when the sign of the coupling
A+ H——p i positive (negative), then the H** loop contribution has the same (opposite) sign
of the W loop contribution, which can be achieved by taking Ay to be a negative (positive)
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Figure 7.2: Contour plots of R, for va = 1 MeV and myigntest = 300 GeV in the A\4;-Am plane.
The left panel (right panel) shows the result in Case I (Case II). The blue and orange shaded
regions are excluded by the vacuum stability bound and the measured my, data, respectively.

value. From Eq. (7.71), it can be seen that the A5 coupling only affects to the singly-charged
Higgs boson coupling with h: Ag+pg-p, so that the h — vy decay rate is not sensitive to the
magnitude of A\5. In other words, the mass difference among the triplet-like Higgs boson is not
so important in the h — v decay process as long as we keep a fixed value of mpy++.

In this subsection, we study the deviation of the h — v event rate in the HTM from that in
the SM taking into account the constraint from the perturbative unitarity, the vacuum stability
and the electroweak precision data. We also investigate the correlation between the h — v
decay rate and the hhh, hWW and hZZ couplings at the one-loop level. To compare the Higgs
to diphoton event rate from the SM prediction, we define

0(99 — h)HTM X BR(h — ’Y’Y)HTM

7.72
o(gg — h)sm X BR(h — 77)sm (7.72)

R, =

where 0(gg — h)moda s the cross section of the gluon fusion process, and BR(h — 77)model 18
the branching fraction of the h — 4y mode in a model. In fact, the ratio of the cross section
(99 — h)utm/0(99 — h)sm can be replaced by the factor ¢2/c3.

In Fig. 7.2, we show the contour plots of R, for va = 1 MeV and miy;gntess = 300 GeV in the
As-Am plane. The left panel (right panel) shows the result in Case I (Case II). The blue and
orange shaded regions are those excluded by the vacuum stability bound (assuming Ay = 3)
and the measured my, data, respectively. In both cases, R, can be greater (smaller) than 1 for
negative (positive) values of A\4. In Case I, no large Am dependence appears, while in Case II
R, slightly depends on Am due to the larger values of my++ which affect R, via Am. Under
the constraint of the vacuum stability and the electroweak precision observable my;, larger Am
can be allowed in Case I than in Case II. We find that predicted values of R, are about 1.3
(about 0.6) in this case when )4 is about —1.7 (about 3) in both Case I and Case II.
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7.2.2 Renormalized hV'V coupling
The most general form factors of the hV'V coupling (V = W# or Z) can be written as
Mo v
My = MIVV g 4 MIVVELEZ gV o PletRe (7.73)
my my

where my, is the mass of the gauge boson V', p; and p, are the incoming momenta of V. The
renormalized form factors are given by

MMV = MY oMYV + MR (i=1-13). (7.74)

1, tree

The tree-level contributions for these form factors are

2m? Om2
hZZ __ Z MVW __ w
Ml’tree B m(vd’c‘l + 4UASO¢)’ Ml,tree - 7(U¢Ca + 2UA3a)7
hV'V (tree
MZ,tree( ) = Miél,}célz/e =0. (775)

The counter-term contributions are

+ %(5Zh + 25ZZ) + 4UA5CHh

2 2
sMhZZ 2myc, | vgomy,
! v? + 203 m?

+ M[Q’UA(QUQA — 3v?)va —v(v? — 602)50]}

2m%s, [4vadm? 4(v30va — 20vA00)
200 (02 + 207 7) — v0C
v? 4 203 [ m? T 20a(0Zn +2022) = vadCln + v? 4 203

S VM Co | 20mE, 287 4 57, + 4,U_A50Hh C2(0* —4v}) dv 4o} dua
! v2 mé, Vg vi v vi VA

2m? o [ 20m? 40 20
+ mW;}AS ( DWW 4265 7y + 02 — —26C, — — + UA) :
v my, VA v N
SMPVY = MMV = 0. (7.76)

We define the following quantity to study the deviation of the AV'V coupling from the SM
prediction:

ReMMVV — ReMMV (SM)
ReMVV(SM) !

Agpyy = (7.77)
where MMV = MMV (m2,, (my, — my)?,m3) and MYV (SM) is the corresponding SM predic-
tion.

In Fig. 7.3, we show the contour plots for Agyzz for Miigntest = 300 GeV and va = 1 MeV
in the Ay.-Am plane. The left (right) plot shows the result in Case I (Case II). The blue and
orange shaded regions are excluded by the vacuum stability bound and the measured my data,
respectively. The magnitude of the negative corrections is larger for positive larger values of
A4 for smaller values of Am. For the cases with large Am such as about 30 GeV, the region
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Figure 7.3: Contour plots of Agyzz in Eq. (7.77) for mygntest = 300 GeV and va=1 MeV in
the A\y;-Am plane. The left panel (right panel) shows the result in Case I (Case II). The blue
and orange shaded regions are excluded by the vacuum stability bound and the measured my,
data, respectively.

with positive corrections appears. This is the striking feature of the HT'M. On the contrary,
in multi Higgs doublet models the correction is always negative [70]. Under the constraint of
the vacuum stability bound and the electroweak precision observable my,, larger Am can be
allowed in Case I than in Case II. We find that Ag,zz is predicted to be at most a few %. We
can expect that such a deviation will be testable at the ILC [12,13,16,100].

In Fig. 7.4, the similar contour plots are shown for Agnyww with the same parameter sets in
the same plane. The behavior of Agpyw in this plane is similar to that of Ag,zz. However, the
correction can be positive for smaller values of Am. We also show the same constraints from
the vacuum stability bound and from the electroweak precision observable my,. Magnitudes of
maximum value of the correction are almost the same those of Agyzz, especially for Ay > 0.

7.2.3 Renormalized hhh coupling

Finally, we show the numerical results for the deviation of the Higgs trilinear coupling hhh
from the SM prediction. The renormalized hhh coupling can be expressed as a function of the
external incoming momenta p; and p, and the outgoing momentum q = p; + p, as

Crnn(P3, 05, %) = They 4 0T hnn + Dign (01, 93, ¢°), (7.78)

where the first, second and last terms are corresponding to the tree level, the counter-term, and

the 1PI diagram contributions, respectively. The tree level contribution I'f5¢ is calculated as

. Co | Sa\ ™Mi Sa v 2
F;ﬁz = —6 |:(’U_¢ + a) 7 + —2}2 (’U¢Ca — ESQ) mA:| . (779)
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Figure 7.4: Contour plots of Agpww defined in Eq. (7.77) for mygnest = 300 GeV and va=1
MeV in the A\;-Am plane. The left panel (right panel) shows the result in Case I (Case II). The
blue and orange shaded regions are excluded by the vacuum stability bound and the measured
my data, respectively.

The counter-term contribution 0l is evaluated by

3 3 6 2 'U2Sa 2 . 2 .
OLnn = =3 (C—a + S—a) omi — —— <U¢Ca - 2";A ) sm?% — 3(mj, — mi;) (Sac _ f ) Sa

Vs VA v? + 2v3 vA Vg
9[ (& & mAvss?
— = mi | 2+ =)+ —L—2(20ACq — VSa)| 07,
2 [ h (v¢, VA va(v? +2@2A)( A #5a) &

S4C c? mAv
— 3800 (2m2 +mE) [ 22 — e ) A8 199, (262 — 82) — 384Ca 5C
S{(mh+mH)(vA v¢>+vA(v2+202A)[UA( 2 — 52) — 35aCaly] o

3 2 U3Si 4 2 .2 4
- —{m—; {%(30,1 + C30) — ¢2 } + A% |:CO/UA(2U2A — 3v?) + VpSa (v_ +20% — UZ):| }5"UA
UA

v | v v2 + 202)2 42
(] @ A A

N 3 | miv 4 2m?vs?
— ¢
vg | vi 0 (V24 203)?

[(v* — 6VA)ca + 4vavgSA] }51}. (7.80)

Contributions of the 1PI diagram to the hhh coupling is listed in Appendix B.
In the limit of va /v — 0, these expressions are reduced to the same expressions in the SM

as?

a2
Ly Zm (7.81)

30m:  9m} 3m?
Mh 2z o Mgy, (7.82)
2 v 02

In this limit, the top quark loop and the gauge boson loop contributions to the 1PI diagram

is the same as the SM. However, the scalar boson loop contributions can be different from the

tree
thh

5thh — —

2As long as we take A4 to be O(1) or less and the triplet-like Higgs boson masses to be O(100) GeV or more,
the magnitude of the mixing angle « is as large as that of va.
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Figure 7.5: Contour plots of ALy, defined in Eq. (7.84) for mightest = 300 GeV and vy =1
MeV. The left panel (right panel) shows the result in Case I (Case II). The blue and orange
shaded regions are excluded by the vacuum stability bound and the measured my data, re-
spectively.

SM case, because the triplet-like Higgs boson loop contributions can be remained even in this
limit. Approximately, the triplet-like Higgs boson loop contributions can be expressed as

Tonn =~ _3mj, 1Y Nipst -1 4 Nbr+ -1 n ANian n AN 4.
v 48m2mi \ mi,. my. m% m?
3m} vt Ao ut ) L Qat ) A .
S w 48m2m3 | m3,, m3. 2m? 2m2, ’

(7.83)

where dotted terms mean the same correction given in the SM. Therefore, we find that the
triplet-like Higgs boson loop contribution to the hhh vertex gives a positive (negative) correction
compared to the SM prediction when )4 is taken to be a positive (negative) value and A5 ~ 0.

To illustrate the deviation of the hhh coupling from the SM prediction, we define the
following quantity:

. Rthhh — RGF%%Z

Afhhh = s (784)
RelPM

where U = Cppn(m2,m2,4m2) and T5M is the corresponding prediction in the SM.

In Fig. 7.5, contour plot for the deviation of the one-loop corrected hhh coupling from the
SM prediction ALy, defined in Eq. (7.84) is shown for miigntest = 300 GeV and va = 1 MeV
in the A\;-Am plane. The left (right) plot shows the result in Case I (Case II). The blue and
orange shaded regions are excluded by the vacuum stability bound and the measured my, data,
respectively. In both cases, positive (negative) values of ATy, are predicted in the case with
a positive (negative) Ay whose magnitudes can be greater than about +150% (—10%). Such
a deviation in AI'y, is expected to be measured at the ILC with a center of mass energy
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to be 1 TeV [12,13,16,100]. We note that there is a relations among the one-loop corrected
Higgs boson couplings hyvy, hV'V and hhh. In particular, a strong correlation can be found in
deviations in R, and I'ppp. If R, <1 (R, > 1) which is predicted for Ay > 0 (Ay < 0), AL
takes sufficiently large positive (negative) values. In conclusion, by measuring these coupling
constants accurately, we can discriminate the HTM of the other models, even when additional
particles are not directly discovered.

7.3 Summary

We have calculated a full set of one-loop corrected hWW ', hZZ and hhh couplings in addition to
the electroweak parameters such as the renormalized W boson mass and the electroweak renor-
malized parameter Ar by on-shell renormalization scheme. We also have computed the decay
rate of h into diphoton at the one-loop level. Magnitudes of the deviations in these quantities
from the SM predictions have been evaluated in the parameter regions where the unitarity and
vacuum stability bounds are satisfied and the predicted W boson mass is consistent with the
data. There are strong correlations among deviations in the Higgs boson couplings hy~y, hVV
and hhh. By measuring these deviations in Higgs boson couplings accurately at the HL-LHC
and the ILC, the HTM may be distinguished from the other models.



Chapter 8

Summary of this thesis

The coupling measurements of the discovered Higgs boson with high accuracies at future collider
experiments provide hope to get a hint for new physics beyond the SM. In this thesis, we have
discussed indirect tests of extended Higgs sectors by future precision measurements of the
Higgs boson. Since it is not enough to calculate the deviations at the tree level taking into
account future precision measurements by typically 1 % accuracies, we have calculated one-loop
corrections to various couplings of the Higgs boson in several extended Higgs models such as the
HSM, four types of THDMs with the softly broken Z, symmetry and the HTM. We investigated
possibilities that these models can be discriminated by detecting the characteristic pattern of
the deviations in the Higgs boson couplings at future collider experiments.

In the study of the THDMs, we have performed renormalization calculations in the modi-
fied on shell scheme, in which the gauge dependence in the mixing parameter [ is consistently
vanished. We have showed a complete set of the analytic formulae of the renormalized cou-
plings in four types of THDMs. We have investigated how the pattern of deviations in the
Yukawa couplings can be modified from the prediction at the tree level by including one-loop
contributions under constraints from perturbative unitarity and vacuum stability, and current
experimental data. We found that scale factors in different types of THDMs do not overlap
each other even in the case with maximum radiative corrections if sin(f — «) are different from
the SM predictions large enough to be measured at the ILC. We then numerically evaluated
how we can extract inner parameters by future precision measurements of these couplings at
the HL-LHC and the ILC500. In this analysis, we considered theoretical constraints such as
perturbative unitarity and vacuum stability as well as current experimental data. We have
found that mixing parameters such as z and tan 8 can be determined more precisely, if mea-
surement uncertainties at the ILC are employed. Furthermore, there are possibilities to obtain
the upper bound for the mass of extra Higgs bosons without their direct discoveries and also
to get information of the decoupling property and the magnitude of loop corrections. In order
to determine the structure of the Higgs sector by fingerprinting the Higgs boson couplings, the
comprehensive study of radiative corrections to the Higgs boson couplings is an important task.

In the study of the HSM, we have calculated renormalized hVV and hff couplings at
the one-loop level in the on-shell scheme. We numerically have investigated how they can be
significant under the theoretical constraints from perturbative unitarity and vacuum stability
and also the condition of avoiding the wrong vacuum. We have found that the maximal value of
the one-loop corrections to the hVV and hff couplings is at most -1% or maximally less than
-2% which is obtained in the case where we take the maximally allowed value of m from the

97



98 CHAPTER 8. SUMMARY OF THIS THESIS

unitarity bound with taking M? = 0 and a = 0. We have also discussed how the HSM can be
distinguished from four types of THDMs and identified by using precision measurements of the
Higgs boson couplings at future collider experiments, The HSM can be distinguished from the
Type-1I, X and Y THDMs except the decoupling limit, because the Yukawa couplings of the
HSM are universal in contrast those of the four types of THDMs are not universal couplings.
Moreover, if hV'V couplings deviate about 2 % from the SM predictions, we can discriminate
the HSM and the Type-I THDM in most of parameter regions by using precision measurements
of Ak, and Ar, at the ILC. In addition that, the pattern between Ak, and Ar, is also useful
for discriminating the HSM and the Type-I THDM for cos(8—a) > 0. However, when the value
of tan 8 is extremely larger than about tan 8 ~ 10, Ar,, Ak, and Ak, of the Type-I THDM
approach to the predictions in the HSM. In such a situation, it is challenging to discriminate
the models by fingerprinting.

In the study of the HT'M, we have calculated the decay rate for h — v+ and the renormalized
coupling constants of the A”V'V and the hhh at the one-loop level. Magnitudes of deviations in
these quantities from the predictions in the SM have been evaluated in the parameter regions
where unitarity and vacuum stability bounds are satisfied and the predicted W boson mass is
consistent with the data. Deviations in the one-loop corrected hV'V and hhh vertices can be
about 0 1% and +50%, respectively.

Although we have constructed renormalized various Higgs boson couplings at the one-loop
level in several extended Higgs models, we should calculate various observables comparable
directly with experimental data such as the production cross section and the decay branching
ratio and so on. Then, a set of this study can be regarded as the first step of the fingerprinting
project. Indeed it cannot say it is enough to calculate just the Higgs boson couplings in order
to determine the inner parameters, but it is meaningful to investigate the feature of extra Higgs
loop corrections and mixing effects as discussed in this thesis because the production cross
section and the decay branching ratio deviate from the SM predictions through the deviations
in the couplings.



Appendix A

Decay rate of scalar bosons

A.1 Kinematics

I show some formulae for kinetic systems which is useful to calculate decay rates.

Figure A.1: Kinematic system of 3-point vertex.

We consider 2-body decay of any particle as shown in Fig. A.1, i.e. A — B;Bs. Element of
four-momentum of A, B; and By can be expressed by

k= (mA7 0)7 p= (Ev p)7 p/ = (E/7 _p) (Al)
Because the three-momuntum of B is the same as that of By, the following relation holds,
E? = E? —mi +mj, (A.2)

where m;(2) is the mass of B;. Because of the energy conservation law, there is the following
relation,

E':mA—E, (A?))

By using Egs. (A.2) and (A.3), E and E’ can be expressed as

E = Yma (mi‘ +m3 — m%) ; (A4)
1
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and

(m% —mi —m3 + 2mim3) . (A.6)

m3 mi  mj m3 m3 m2ma
=5 \Itat 125 —25 25~ |,
my A my iy my
4 4 2 2 2,2\ 1/2
|P|:7(1+—4+—4— — =25 —2— (A7)
A A s My m 4

A.2 Decay rate of the CP-even scalar boson ¢

We here list formulae of decay rates for various decay modes of any CP-even Higgs boson ¢ as,

m2 2 9
fo foo 3| ™My My
Tlp — ffl = —2771@)\2 [W’ m_?j ; (A.8)
m? ms v [m2, m?
I = WW] = 1 -4 12 ) \e | W (A.9)
647rm m?, mg, mZ "~ m2
r 77 = 1—4— 12— | 2 | —=, — A.10
o 3zwmw< ) (1o )¢ [ 10
(A.11)
where Ny is the color number of f and
Nz, y] =1 — 20 — 2y — 22y + 2 + 12 (A.12)
We define coefficient of vertices as,
- 2
vertices[pff] m, (A.13)
v
2
vertices|[pW W] M, (A.14)
v
vertices[pZZ] % (A.15)

v



A.2. DECAY RATE OF THE CP-EVEN SCALAR BOSON ¢ 101

Formulae of decay rates for three-body decay modes are given by,

02t (1 — 862 + 20¢*) arccos ( 2551

323t 2v/4e2 — 1
1

+ 53 (724 15¢* — 60" + 47€® — 6(e* — 6€* + 4¢%) loge) |,  (A.16)
€

_ C2mim, [ (1 — 8€% + 20€* )arccos< 231)
Tlh— 22" = Zf[] = —2—2-*%
| /1] 167304 2v/4e2 — 1

1

+ 53 (724 15¢* — 60" + 47€® — 6(e” — 6€* + 4¢%) loge) | (A.17)
€

(I7 + 2sin* 6, Q7 — 21 sin® 6,,Qy), (A.18)

where € = my / my,, and [, and @), are the third component of the isospin and the electromag-
netic charge of the ferimon f.

The decay rates for the loop induced processes are given by

\/_GFOé m? Ao+ 2
em'' "¢ f _ NpHTH—
Plp =) = —5-5—|C IV+ZQfN Cilp s (A.19)
V2Gra2 m3 m2 3
T ) = - em e [y 2
(h=27) 1287 ( m30>
A _ 2
x ‘OWJV + >0 CrQsNLvp I = Sy — s )| (A.20)
f
\/_Gpa m
D(h— gg) = 55— (Zc IF‘ , (A.21)
where g, = g/cy, and vy = I;/2 —sin0;,Qy. The definition of A\,p+ - is given by
£:+>\¢H+H—QDH+H7+"' . <A22)
The loop functions are defined as
202
IS [1+2mHiC()(0 0 m mH:I:,mH:t,mH:t>], (A23)
m2
[
8m? m?2
Ip = _m_zf {1 + <2m3c — 7@> C’O(O,O,mi,mf,mf,mf)} , (A.24)
[
2mi, mg 2 2 2
Iy = - 6+ i + (12my, — 6m,)Co(0, 0, my, mw, mw, mw)| , (A.25)
[ w
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and

2m? m? m?
Jo = W { 2 5 ® 2 1 2
v swew (m? —my) [CW i 2m3, Swit T 2m?,

m2
1 + Qm%/VC’O + m2 Zm2 (Bo(mi,mw,mw) — Bo(m2Z, mw,mw)):|
e M'w
— GC%V(m?D —m3)Cy + QS%V(mi — mQZ)CO}, (A.26)
8m? 1
Jp = _chW(me— ) [1 + 5(4mfc — mi + mQZ)Cg(O,mQZ,mi, Mg, Mg, My)
[ Z
m2
+ FZmQ(Bo(mia my, my) — Bo(my, my, mf))]7 (A.27)
© Z
2v? 2 2 2
Jg = m{l +2miy+ Co(0, mz, my, mp=, mp=, mp=)
© Z
m22 2 2
+ S 3 [Bo(mso,mHi,mHi) — Bo(mz,mHi,mHi)] }, <A28)

where the Cj function is one of Passarino-Veltoman functions [111] defined in Chap. C.



Appendix B

Feynman rule

In this chapter, we summarize the feynman rule of the Higgs sector in the THDM, the HSM
and the HTM.

First, we give feynman rules of trilinear vertices and quartic vertices obtained from the Higgs
kinetic term. There are two kinds of trilinear vertices and one kind of quartic vertices; i.e.,
Scalar-Gauge-Gauge, Scalar-Scalar-Gauge and Scalar-Scalar-Gauge-Gauge type. Their cou-
plings are expressed as

L= 9¢V1V29W¢V1HVQV + 9¢1¢2V(a“¢1¢2 - (%518”%)‘/“ + 9¢1¢2V1V29W¢1¢2V1“V2y +---. (B1)

From the Higgs potential, we obtain the scalar trilinear and the scalar quartic couplings.
When we use the following notation for these couplings

L= +>\¢i¢j¢k¢i¢j¢k + )\¢i¢j¢k¢l¢i¢j¢k¢l R (B'Q)

B.1 Feynman rule of the THDM

The coefficients of trilinear vertices g,y,y, and g} .\, and those of quartic vertices gy, 4,1y, Of
the THDMs are listed in Tab. B.1-B.3.

Table B.1: Feynman rules of scalar-scalar-gauge vertex

vertex coupling vertex coupling
WHEWE - Fitrep o) | HHEWE  +i%Esp )
AR, —me | HGHRWE File )
hGiW;F q:imTWS(g,a) GOG"'WM_ —mTW

HAZ vc‘;VV S(B—a) hAZ — UCV‘; Cla—p)

H*H-Z, §racw H*H™~, j2mwsw

v

HGYZ,  —{cap | hG'Zy  [8sa-p)

vew

G*G-Z7, imzaw | GG, ie

v

103



104

APPENDIX B. FEYNMAN RULE

Table B.2: Feynman rules of scalar-gauge-gauge vertex

vertex coupling vertex coupling

HWHW,  Zmivces | ppypy-  2mwsiee
7 v v 1% v v

HZ 7 m%Ca—p hZ 7 myss-a
p=y v pn=v v

2m?, s 2mymy s>

+ — wSW + — _ WmzsSw
GW. v v GW, Z, -

Table B.3: Feynman rules of scalar-scalar-gauge-gauge vertex

vertex coupling vertex coupling
2 2
- miy W - 2miy
PoW TW, 02 HT™H"W, W, —
’m2 — m2 C2
POZpZy 207 HYH™ 2,2, 7T
H¥*HWFz, —2mwmzsivsoce | ppppFyz,  _2mwmzsioio.
1% v H v
HEAWFZ, Zimymz Sty HEAWF, - 2imiysw
1% v 2 v
_ 4m?, s2 _
HYH VYo mzv)vgsw H+H Z;ﬂ’u 4mzm‘3/28w02w
HEHW 2miy sw ss-a HERW T~ 2miyswea-g
oIV v BV v
2 2
=W — 2myy 00T/ +11/— My
GTGWW, 3 G'G"WW, -
2 .2 2
+1- mzSw 0,0 mz
GTG ZMZV 022 GG ZIMZV 902
GERWFZ, — _imwmzss-esly | cEpyyFy 0 2mwmzcsasiy
[ v Iz v
_ 4 2 .2 _ 2 2
GT*G v T Gt2W, Z, s
2mZ, sy eg—a — 4
GEHWF, iy Sy s G*G~Z,y, — imwmzpvew)
+ 0 2im2, sy + 2m2 SWSB—a
G=G"W v, ——% G=hW Fy, e

These coefficients of scalar self vertices are given by

1
AH+H-h = . [(QM2 — 2mYye — m})sp_o + 2(M? — m}) cot ZBcﬁ_a] , (B.3)
1
Miap = o [(2M? = 2m% — m})sp_a + 2(M? — mj,) cot 2Bcs_a] , (B.4)
Ammn = Sg;a [(2M2 —2m3;, — mi)s%,a +2(3M?* — 2m3 — m3) cot 2855_aCs_a

— (AM? —2m3; — mi)ch_, |, (B.5)
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2 M2 _ 2 M2 _ 2 .
Auhh = —7;—;85,a + TmsB,ac%_a + Tmhcé_a(cot B — tan f3), (B.6)
2
m
Aaah = ——L55_4 B.7
GGh o Sp—as (B.7)
1
AgtGFn = ——(mi M+ )C8a (B.8)
M = ( —m})Cs—a, (B.9)
Na+H-H = — v[ 2 —m3) cot 2885 + (2mis +miy — 2M?)cs_ } (B.10)
1
Naar = =5 [Q(M — m%,) cot 2B85_a + (2m + m2, — 2M2)cﬂ,a} , (B.11)
1
AgHHE = 50 [Q(M2 — mj;) cot 2Bs5_, — 2(M?* — m%{)cB_as%_a + qucﬁ_a} : (B.12)
2
m
A = —Heo B.13
GGH 50 8 ( )
1
)\HiG¥H = ;(qu — qui)SB_a, <B14)
1
AAgH = 5(771%{ —m%)Ss-a; (B.15)
Nerhn = _%(Z—n% [(2m} +m}; — 3M?)sin2a + M*sin 23], (B.16)
i
/\HqutA = i;(mi - qui) (B]_?)
The four point couplings are given by
1
AH+H-AG = —Z(AH+H7H55—OC — Ag+H-hCh—a), (B.18)
1
Ac+a-AG = _;()‘GJrG—HSB—a — AG+G-hCh-a); (B.19)
1
Aaaac = _;()‘AAHSﬂ—a — AMARCE—a); (B.20)
1
Acea = _;()\GGHSB—Q — AGGhCa—a)- (B.21)

B.2 Feynman rule of the HSM

The coefficients of trilinear vertices g,y, and g(’;l o+ and those of quartic vertices g, 4.v,y, of
the HSM are listed in Tab. B.4 and Tab. B.5.
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Table B.4: The Scalar-Vector-Vector vertices and the Scalar-Scalar-Vector vertices and those
coefficients.

V1, Vs, vertices  coefficient || ¢;9,V), vertices coefficient
W MM, hGEWF  imee,
HW AW, 2, HGEWF  gimws,
G*Z, WF —2mwimz g2, G'G*WF —
GEvy WF emyy GG~ Z, P2 Copy

hz,7, "2y hG'Z, —mzg,
HZ,Z, "2 50 HG"Z, —mzg,
GG, ie

Table B.5: The Scalar-Scalar-Vector-Vector vertices and those coefficients.

b10,V1, Vo, vertices coefficient || ¢,¢,V1, V5, vertices coeflicient
1P2V1p 1P2 V1
hhW W, iy 2 GEGWFZ, g Zmamz 2
HHW W, iy 52 GEMWFZ, —2mwmz 2 e,
GOGOW W, miy GEHWTZ —Zmymz 2
w Wy 02 w v SWwSa
GHGrW W, 2y GERWFy, emw
hhZ,Z, mec GEHWF, ey g
HHZ,Z, e s G=GOW T, i
G°G°Z,7, nz GG 2, 2L ¢,y
G*G~2,7, ”;—Echw GTG 7, e?
hHW, W, LN hHZ,Z, "2 SaCa
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Coefficients of the scalar self vertices )\¢1 Gots and A 61 6y0y0, BLE obtained as

3

COL
Ahhh = —%mi — si(ca/\q)gv — 45, AgUg — S, lbg), (B.22)
202
Muprr = —(m} + Qm%{)cgia - ZSU (c, +3cyy) + 125,62 A\gvg + 35,2 g, (B.23)
54C2  SalgaU
/\hhH = _(leQz + m%{) 2?]& + 2’1)5 (1 + 362&) - 383001”5 - 68a82a)‘SvS7 (B24)
3
AaHH = —;—meq — 43 Agug — g — 5,62 Aps, (B.25)
mac,,
AnGogo = — th , (B.26)
2
Mgra- = ——h%e (B.27)
v
2
Apaoco = _m;f“, (B.28)
2
AHG+G- = _mHsa7 (B.29)
v
2.2 2.2 Ci 4 S%a
A, = —(cgmy, + SamH)@ — SoAg — ?/\cps’ (B.30)
3s2c¢2 A
MNowrr = —(cimj, + siqu)ﬁ - %S(l +3¢44.); (B.32)
m m? A
AHHH = 4)‘5‘%% - 2—;%32 - 161};2 S%a - is S4a (B.33)
C4a 2 S%a 2 2
ArnGG= = =5 9™ — g M ~ Sales: (B.34)
M- = = (G} + SEmi) =258 + 25,chas, (B.35)
1
AHHGHG- = —(4sim§{ + m,%sga)@ - ci/\q,s, (B.36)
m? m2 Aog
AhhGogo = —Q—U}chx - Fﬁsga - 782, (B.37)
2 2
AhHGOGO = w3 + ApSC, S, (B.38)

21}2()(& 2/UQC¥O£

B.3 Feynman rule in the HTM

The coefficients of trilinear vertices g,,y, and ggl o1+ and those of quartic vertices g, 4.v,y, of
the HTM are listed in Tab. B.6 and Tab. ?7?.

Coefficients of the scalar three point vertices can be written in terms of the physical param-
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Table B.6: The Higgs-gauge-gauge type vertices and those corresponding coefficients in the
HTM.

Vertices Coeflicient Vertices Coeflicient
hW:W; gmw (cpcq + ﬁsBSa)gW hZz,2, 9282 (cpiCo + 258150) G
HW:W; gmw (—cssa + ﬂSgCa)gm, HZ,Z, | “3%(—cgsq + 258Ca)Gu
H*WFZ, — gz MW SaCE Y GEWFZ, | —gzmw (sfy + 53) g
HiinjFWf IMw 39w GiW;FA,, emw g

Table B.7: The Higgs-ghost-anti ghost type vertices and those corresponding coefficients in the
HTM.

Vertices Coefficient Vertices Coefficient
héteT — W (caCq + \/§Sgsa) hézcy — 9202 (cgricy + 254/54)
Heter — W (—cpsq + \/555%) Hezey | =272 (—cprsq + 25p¢Ca)
G*eycT 1925 (1 + 57) GFeTey | 1925% (—cowch + 253,53)
H*ézcF L H*cFey | i%8W cas5(cow + 2s3y)
eters as follows;
)\ 2U¢ 9 9 1 i 21}2 9
= m —= ) —m5|s
H++H H ’(}2 + 2”(]2A H+ U2 A «
v

- (B.39)
M n = e [ (14 23) -z
i [2mH++ — 4mH+Z—§ +m? <1 — Zfévg) + mi] Sas (B.40)
AH+H-H % {Qmﬁﬁz}}—% %%] Sa i [4 ?ﬂ”% ?4@2 _:_)221& m%[v%] Cas
(B.41)



B.3. FEYNMAN RULE IN THE HTM

109

Table B.8: The Higgs-Higgs-gauge type vertices and those corresponding coefficients in the

HTM.

Vertices Coefficient Vertices Coefficient
H=HTWF +gcp H* H A, 2e
H=GTWF +gsg HTHA, e

H*AWF —i4(sgs5 + V2cgcp) GTG~A, e

H*HWF +4(sas5 + V2cacs) | HTHZ, gz (& — 5%)

HE*hWWF | £%(—cass + V2sacs) | HTHZ, %Z (63 — 8% — 2)

HiGOWIj: Z%( CcprSp + \/_85/65) G+G_Zu gf(é%‘/ — §12/V — 8%)

GiAW;F Z%( Sgicg + \/_CQ/SQ) HiG:FZM :FgIZSQB

GFHWF £4(—sacs + V2¢a55) AHZ, —i%2(2cqCp + 5a5p)

G=hWF +4(cacs + V25055) AhZ, —i%Z(—coSg + 254Cp1)

GiGOWJ — %(65165 + \/_85/85) GOHZM Z ( Cp'Sq + 26048/3/)
G°hz, —i9Z (coep + 25454)
A\ Zﬁ(mi — mi)
+ - b
HYG-A T 22 22
2 VAU
A _
Hramae "2 r2vl 2 THD
2 2 2
/\H+G7H _ \/_(mH+2 mH) (U¢>Ca + UASQ),
v
V2(m2,, —m?
)\H'*‘G—h = — ( Ii}; h) (UACQ U¢Sa),
2
>\G+G’—H = —f(—ZUACa -+ ’U¢Sa),
2
Aa+G-h = — 5 (VgCa + 20A54)
v? 1 9 203 5 20%
N
Sv 4%
2 2 A
a 1-— - 1— o
+2UA {mA( 1)2—1—2112) mH( U2+21)2A)}C
v? 1 2 U 2 2U3

(B.43)

(B.44)

(B.45)
(B.46)
(B.47)

(B.48)

(B.49)

(B.50)
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Table B.9: The Higgs-Higgs-gauge-gauge type vertices and those corresponding coefficients in
the HTM.

Vertices Coeflicient Vertices Coeflicient
HY*H~—WIW; g* H*"H 7,2, gz (ck, — si)?
HYH-WHW, 2 (5 + 3c9p) H*H=Z,2, | % (2+ caw — dcowcE + cp)
GrGWIW, £ (5 — 3cy5) GG 2,7, | 2 (2+ caw — deaws? — cap)
HHW W, 2 (3 4 c0) H*G¥Z,7, 9Z 555(1 — 2caw)
WW W L3 — c30) AAZ,Z, 9Z (5 + 3ca)
AAW W, L(3+ cop) G°G°Z, 7, 9Z (5 — 3ea)
GOGOW W, (3 — copr) AG°Z,7Z, 392 505
HEGFW W, 342559 HHZ,Z, 9Z (5 + )
AGOW W, o250 hhZ,7Z, 9Z (5 — 3e50)
HAW, W, Lg%, HhZ,7, 392 520
H*™tH ~A,Z, degz (¢, — §%) H*™tH ~A,A, 4e?
H*H-A,Z, egz(Gy — Sy — ¢3) HYH-A,A, e?
GtG~A,Z, egz(Gy — Sy — 53) GtG~ALA, e
G*hW[iZ, Wz —cocpsh +V2(cky — 2)sass) | GERWTA, L (cacs + V25055)
H*WWFZ, 92 (co 5555, + V2(y — 2)sac5] H=hWFA, L(—casp+ V25,C5)
H*hWFWF 250
Agog = %(%ca + vASa), (B.51)
Aacop, = —%(UACQ — UpSa), (B.52)
m
Aeovgo = m(—%Aca + V4Sa), (B.53)
m,
Agogop, = —m(%% + 4vasa), (B.54)
Aopp = b (3Ca + 30 — 4&53) my + Vo (VpCa + 20A84)M7, (B.55)
8va v 20a (V2 + 20%)
ANHHEL = —i (ca + 2—23 ) ( m?i) Sou + UiC;U N (2 — 6coq + %820‘) m?,

(B.56)



B.3. FEYNMAN RULE IN THE HTM 111

2
S VA 9 My VpSa 3vg 9

A = — o — —Cq — 2+ 6Cyq — — Sy , (B.57

Hhh 2UA (s %c ) (mh+ 2 ) 4(v? 4 20v%) ( +he N 52 )mA ( )

s\ m? 52 v?
M = — | 2422 ) = Zo vca——¢sa m?. B.58
hhh (% + UA) 5 B ( ¢ 20A ) A ( )

Coefficients for the scalar four-point vertices can be written in terms of the physical parameters
as follows;

1 5 o ) oy o —vt + 402} + 4o}
AH++H——AA = m [ — UM+ + 2(v* — dvxy)my. + 20 + 2U2A) my
1 N2 9 2 9 USA 2 2
5(2’UA v )(CamH + Samh> + U_d)SQa(mH - mh) 9 <B59)
1 8Vy o o

2 2
AH+tH-~AGo = [ — dvgmies + ?(” — UA) M+

va(v? + 203)

20%v
— 1]2_'_—2(22771?4 — 2¢4(VpCa + VASG)MY + (—21)(;552 + VA S ) M | (B.60)
A
1 v 103(1 + cgq) — 402
AH++H-——HH = QA {62 m12q++ + |:_2 (3 + CQa) (1 + 0201):| m%f* + 4_1 v2 + 2U2A AmA
. CaS? VA
# 5 (- g2 5 (kB2 )i .
2 2
S2a | 9 UA 2 v 2
/\H++H—7Hh——g mH+++2<F—1> mH++2(U2—i—21} ) A
1 2 UA 2 1 UA 2 2
! A Y s (Pa, , B.62
+ 5 (ca—I— 2%32 )mH 5 (2%82 Sa | My ( )
1 v’ v3
AH++H-—hh = —2{ SaMp++ + 2 Kl - U—ﬁ) o= —2} Mg+
A
v? s 204\ o, Asa [(va s Saf 3 Va5
2(U2—|—2U ) a9 A 9 Eca Sa | My — Sa+v_ca mh )
(B.63)
v — 6vtd + 1608 — 6vtvl + 120%0}
P A A2 A A
HEHZAA ™= "9202 2 (v? + 20%)? ma 4v vi (vt —4v}) (g + i)
1
(V0 — 6v*0R + 120%v; — 160] )caa — 6UR V) s20] (MG —my),  (B.64)

40202 (vt — 4l
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) _ 1 2(v8 — 4vtof +80])
HH=AGY = V20AVs (V2 + 20%) v? + 203 A
+ (—v' + 40*v} — 20R) (m}; + mj)
+ [~ (v* = 40”0} 4 6V4 ) o — VAV, (VP — 403X )S2a] (MG — mi)}, (B.65)

1
AHYH-HH = 2—1}4 [—v2 - 21}2 + (112 — 6U2A)02a + 4UAU¢SQQ] miﬁ
+ Co
20204 (V2 + 203)

1 8¢t 9+dcoy +3can  8cas 85t duasia
(_& +C2+C4+C<9a_i+ VAS4 2

[(v* — 40V} + 8V )ca — BVAVgSa] MY

+

16\ % v? VAV U V20, i
+ 852—a3 [—U4 + 20703 + (v* — 6v*v3 + 8vA)con — %(ULL — 4003 + 601X )S2a | M3,
RN VA
(B.66)
1
Ag+H-Hh = o [—4UAU¢C2a + (v — 67)2)8&1] mi.
1
T 52,2 2+ 20%) [8vAvsC20 + (v — 4v°V] + 8UA)S20| ME
A A
S (6%
- 41}252 2 (v* — 400} + 203) (mFy +mj)
A%¢
S2a 4 gp202 4 UA /4 2.2 4 2 2
T (v* — 4v Vx4 6VA )Con + E(U — 6004 4 8VA)s0a | (M2 —m3),
¢
(B.67)
1 20% 6v% 4uav
ANHYH-hh = o2 [1 + U_2A + ( — 1)_2A> Coq + o ¢32a m%ﬁ
V%5, 8uvivg 403 8Svi )
T2+ 20%) { pi o (1 e F) } i
0289 U; 602 SuA ) 42 6u
+ g 1__A+_A Ca__¢ 1__A+_A samz
8vav} [v2 ( v? v ) N v? vt ) R T
1 8ct  8s, (v 1 4v
+—= |- - (_Aci + Si) +— <9 —4co + 340 + _A34a) m3, (B.68)
16 vy VR \ Vg v o
1 1 2 2 2
)\H+G—hh = W ﬁ [UAU¢(1 - 3C2a) + (U - 4UA)S20J M+

(v — 40v3)Sa [ o )
onUy (07 & 20%) [U So — 20a(VpCo + UASQ)} my

45201[@5 [20avse20 = (v% = 303)s20] miy
+ Soave [—30 + 90} + 4(v* — VX )20 — (V¥ — 30X )Caa — 20AVS1a ) mi}7 (B.69)
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1 2 05 5 1., 2
AG+G-aa = 2oz 2myy + 2 AT §(mH +mp)

. (v* — 4v*0 + 121}2)524 (m3; — mi)}, (B.70)
¢

1
)\G+G—AGO = m{ — 41}AU¢(qu+ - mi) — 'UA’U¢(m%{ + mi)
+ [=30AV4Co0 + (V7 — 403)S9a] (M7 — mi)}, (B.71)

1 /1

1
R n 2U2A [—41}Av¢02a + 221;32&} mi
2 2
S2a S90 v° —4v
- T( i +mp) — I 3Coa — UA—%ASM] (m3; — mi)}, (B.72)

1 /1
AGHG—hh = F{F [—vz + UQA + (v2 — 32}2)02,1 + ZUA%SQQ] m%H

254

v? + 203
S2a

8’UA’U¢

1
o

[UQSQ — 20A (Vg€ + vAsa)] m?

(0% = (v? = 40} )20 — BUaUsS2a| MYy

Sv2c,s3

4
. + (—4C2a + 3C4a + ﬂ840[)‘| mi}, <B73)
VpUA Vg
vt — 8v*} + 1204 2
8vd (v? +203)2 4
08 — 6t + 12020} + 80§
160303 (v? + 203 )?

AAAAA =

(miy +m)
1
160303 (v? + 203 )
1
va(v? 4 20%)?

(V0 — 600} + 120%vx — 2401 ) Caa — BUAV)S20] (MG — my), (B.74)

—vt + 40?0}

20, (Tl )

AAAAGO = {(U2 — 403 Jugm’ +

1
+ % [—(1}4 _ 41}202 -+ 8U4A)Cga — UAU¢(U2 — 6U2A)52a:| (m?,{ — mi) }, )\AAGOGO
@

1
+7 {—12(112 — 3v3)c2a +

. (v* — 200%04 + 52112)324 (m3; —m3) }, (B.75)
¢

)\AGO GOGo —

1
m{llvAwmi — 3vavg(my +m3) + [—5UAU¢CQQ + (v — 6'02A)sga] (m3 —m3)

(B.76)
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Adann = 8v% (v2 + 203 )2 [v" = 6003 + (v! — 20%0} — 8ua)caa]
A A
2
m
_ 321)2 (U4EI_ 4.U4 ) [2(1)4 _ 4U2U2A + 81}2)(1 + Cga) + 4,0202&(,02 . 4U2A)
A A
2
- UL;( *— 4v}) 590 + 2—2(114 — 8023 + 1201 )840
2
S2aMM}, 4 4 4 2.2 4 Yo (4 2 9 4
_ 16UAU3>(U2 n 2U2A) [v* — dvxy — (v — 8vvx + 1208 )Con + a(v — 4v*v} + 8Ux)S24],
(B.77)
2 2 2(,,2 2
S2q ) U7 — 4UA 2 v (’U — 4UA) 9 9
A = _ v \U T YA
AT 40} { v? 4 203 A 203 (v? + 2v3) (mig +m)

2 2
My — My 4 2 9 4 VA, 4 2.2 4
_ M [(v — 4v v + 8up)can + E@ — 8uvx + 121}A)32a} }, (B.78)

vt 60> 0% 8uvd
A\ _ POV () _ZA _SUA e
AARh S (0 1 28 ) { —= ( 2 - =2 | MY

4 4 2 4 2 4

S92V 4va 8va  12vx Vg dvxy  8ua 9
1— 1——= oa—— (1 ——+—F

16UAU§)(UZ +20%) l + ( + " Co + " S0 | My

v? 4v3 8 402
4>[(1——A+U—f) (14 c2,) — 220 (1——A)

1602 (vt — 4ol v? v?
VA Ap4 VA SvZ 1204
+ U_¢S2a <1 — U_4A> + U_¢ ( - U_2A + TA 82a02ai| TTL%, <B79)
\ 1 vy + (v — 4v})caa
AGPHH ™ 90 s v0g (V2 + 20%) v2 4 203 A
1
+ 1 (30" + 90} 4+ 4(—0* 4 v} )20 — (V7 = 303 )Can — 20AV4510] M
+ % [20Av4C20 — (V7 — 3UX)S24] mi}, (B.80)
1 vi — (vt — 4o} can S9
A _ ¢ 2 | 22005 " — 2 _ 3,2 N 2
AGOhh QUA%(U%L%QA){ 2+ 203 my + 5 [ UAV¢C2 (v UA)S2 }mH
1
+ 1 [—30" + 9v} 4+ 4(v® — VR )20 — (V° — 30%)Caa — 20AVS4a mi}, (B.81)
A e 2 S m2) — (s~ TR Y )] L (Bs2)
=—————1m5 — —(mfy+m;) — = [ beee — ———= 824 | (M7 —my)|, (B.
GOGOHR 2wz +203) | 4 4 H W\ VgpUA 2 " h

1 1 2 2 2 2 2
)\GOGOhh = 4(U2 _I_ QUQA) {1}2 + 2U2A |:'U — GUA — (U + QUA)CQOJ mA

594 [U2 + 203 — (v — 6v%)coa — 51}Av¢52a] m%
dvpvg
_ [80°Cas? 4+ vav(15 — 12024 + 5caq) + VA (4520 + 6544)] mi}, (B.83)
8'UA’U¢
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vg (V2 + 203) 520

2
My

1
\ _ 24 2.2\ 2
HHHH 8% (0% + 20 (%ca VA S5, )M%
1 2 6 2vtva 3.3 2 6
— 3 | U5 — st + vAsh +
81}21}3, [ ¢ vp(V2 + 20%) ¢ Aa
2
52 2 2 2 2 2
- 641}2:1}35 [U — vp + (V7 = 3vx)ean + QUAU¢>520J my,
\ _ S V3 + (v 4 203 ) caa .
HHHhK SUQA U2 I 2'U2A A
1 [30" — 90} + 4(v® — v3)c2a + (V¥ — 30X )Caa + 20AVgS1a] MY
@
S2a 2 2 2
— 55 [—2vAvgC20 + (V7 — 3vA)s2a]mh},
21)¢
2 2 2
v 10v 2v
A = 3 — A_3(1+ =2 ) ey | m?
LR 3002 (12 + 202 [ v? < p2 ) A
2 2 2
V2594 2v v 3v Quav
e (1o 2h 2 (S e
SQUA% v 2UA 2v
3y UQA 9 5
— Eé’za (1 2 (miy +mi) ¢,
2 2
$2aV 9 2VA o 9
A = 52— —=c2|m
R 402 (02 + 202) ( “ 2 a) A

2,2 2
834V 1_ 3V sy QUA%CQ 2
16v3v3; “ 2 | TH

2 2 2
524V 2 3UA 'UA AUy
- 16/02A/U§) |:(1 + CQa) (1 - F) — 2 ( - ﬁ) Coq t+ 734&
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(B.84)

(B.85)

(B.86)

(B.87)

(B.88)






Appendix C

Loop functions

Passarino Veltman functions [111,112] (A, B,C and D) are defined as following,

dPk 1
Amy = [ 5

_ 1. k. EHv

[Bo, B*, B"(ij) :/deiWQ—[ ’]]:[Z]’V]j ],
e i) — [ appie
[0070 7C ](ij) /d ki NZNJN]@ )

(1, kH k]

Do, D", D*(ijk) = [ dPkin?
[ 0 ) ](2] ) / v NiNijNla

(C.1)
(C.2)
(C.3)

(C.4)

where D = 4 — 2¢ and dPk = I'(1 — €)(7p?)°dPk and T'(1 — €) is a gamma function. Factors of

donominators are

Ny = k* —m? +ie,
Ny = (k +p1)? —mj + ic,
= (k+p1+p2)? — m3 + i,
= (k+p1 +py+p3)? —mi+ic,

0w ~J O o
~— ~— ~— ~—

Qaaa

(C.
(C.
(C.
(C.

where p; is the momentum of the external particle ¢ and m; is the mass of the propagetor i.

These vector/tensor functions are reducted to scalor functions as

B*(12) = p'B,(12),
B"(12) = pip| B2 (12) + g™ Baa(12),

C*(123) = pl'Ch1(123) + phCy2(123),

C“”(123) = pfp1021(123) + p2p2022(123) + (pﬁ‘pg + pgplf)ng(lQ?)) -+ g“”024(123),

(C.13)

+ (phps + p3p1)D25<1234) + (pgpg + p3p2)Dzs(1234) + g“”Dz7(1234)-

117

(C.14)
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Argiments of the scalar functions are following,

B;(12) = Bi(pi;m1, m), (C.15)
01(123) = Ci(p%apgaq2;ml7m27m3> (016)
D;(123) = D;(p3, p3, 13, (p1 + P2+ p3)2, (D1 + p2)?, (p2 + p3)%ma, ma, ms, my), (C.17)

where ¢ = p1 + po.

C.1 A function

A(m?) function is expressed by
Alm?) = m*(1 — Inm? + Div), (C.18)
where Div =% — v + Inm + In p?,

C.2 B function
C.2.1 B; function

By function is expressed by
Bo[p3; my, my] = Div — /dx InH, (C.19)

where
= —2(1 — z)p] + 2mi + (1 — 2)m3. (C.20)

We show various approximate formulae of the B, function in various cases as follows.
2

e Large mass limit 1 (m? = m3 = m? > p?)
By[0;m, m] = Div — Inm?. (C.21)
e Large mass limit 2 (m? # m3 > p?)

Boy[0;my, ma] = (Div+1) — — 5 (miInm? — m3Inmj3) (C.22)

my—my
e Small mass limit 1 (p? > m?, m3)

By[p?;0,0] = Div + 2 — In pi. (C.23)

e Small mass limit 2 (p?, m3 > m? or p?, m? > m3)

Bo[pi;m, 0] = By[p};0,m] (C.24)
2 2 2 2
= Div — {—2+2m+1np§ - (—1+ﬂ21n <—1+ m—Q) + 2 I (%))}
P1 b1 P1 p1
(C.25)

e Small mass limit 3 (m? > m3, p? or m3 > m?, p?)

By[0;m, 0] = By[0;0,m] = Div — Inm? + 1. (C.26)
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C.2.2 Bj function
By (12) function is expressed by

1/1
st =L (L) + [ e
€

Reduction form is

1

2w (Almu] = Alma] = fulpr, ma, ma] Bo[pl; ma, my)) . (C.28)

Bl[p%;ml,mﬂ =
We show various approximate formulae of the B; function in various cases as follows.
e Large mass limit 1 (m? = m3 = m? > p?)

1 1
By[0;m, m] = —§Div +3 Inm?. (C.29)

e Large mass limit 2 (m? # m3 > p?)

1 1 m? + ma 1 mi m?
B4 0; =—Div— (-4 —"~A—2 — —lnmi—- ———In— ). C.30
(mm) = —0iv = (5 + g - g - s ) 0
e Large mass limit 2 (m? > m3, p?)
1 1 3
B1[0;m, 0] = —§Div +3 Inm? — e (C.31)
e Large mass limit 2 (m2,> m?, p?)
B1[0;0,m] = L Div+ S — (C.32)
1[0:0,m] = =5 Div + S Inm® — - :
e Small mass limit 1 (p? > m?, m3)
2 Lo 1 2
By[p1;0,0] = —§D1V + 5 (=24 In(—p7)) . (C.33)
e Small mass limit 2 (p?, m? > my )
1 m?  mt pt —m? m?
2. _ : 2, D 2 2 ,
Bl[phm,()] = —§D1V+ (—1 — 2_29% + 2—pzlllnm + 2—ﬁ1n(p1 —m )) —+ <]. — Q_p%) .
(C.34)

e Small mass limit 2 (p?, m3 > m?)

(—2p7 + m?)(p} — m?Inm?) + (p} — m?)? In(—p] + m?)
2pi '

1
Bl[p%;o,m] = —§Div +
(C.35)
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C.2.3 B, and B,, function

By, and B,y functions are expressed by,

1 /1
Boi[p*;my, my] = 3 (E +lnu2> — /dx(l —)*InH, (C.36)
2 1 /1 2 2 s 1, 1
Bas[p ;mlamQ]:Z —+Inp”+1 m1+m2—§p ~3 deHIn H. (C.37)
€

We show various approximate formulae of the By, and B,, functions in various cases as
follows.
e Large mass limit 1 (m? = m2 = m? > p?)
1

1
le[O; m, m] = ngV — 5 In mQ. (038)

e Small mass limit 1 (p7 > m3, m3)

1 1
Bs1[pi;0,0] = SDiv+ = (13— 61In(—p})) . (C.39)
e Large mass limit 1 (m? = m3 = m? > p?)
2
1
By [0;m,m] = —%Div + §m2(1 + Div — Inm?). (C.40)

e Small mass limit 1 (p% > m2, m3)
P2

5 L(—8+3Inp] + 327r)) . (C.A41)

Bas[p%0,0] = ZQ( I Div v+ A

C.3 (C function

C.3.1 (), function
Cy(123) function is expressed by,

5(123) / / dxdy (C.42)

G=ami+ym;+ (1 -2 —y)ms— (1—2)’pi — (1—z—y)’p; — (L -2 —y)(p +p2)°.

where

(C.43)
We show various approximate formulae of the (|, function in various cases as follows.
e Large mass limit (m? = m2 = m2 = m? > p? p? ¢°)
1
00[0,0, O;m,m,m] = _ﬁ (044)
e Large mass limit (m? = m2, m3 > p?,p3, ¢*)
1 m3 m?
Co[0,0,0;my, mp,my] = ———— + —5———In—. (C.45)

mi —Mmsy (ml - m2)2 my
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C.3.2 (4 function

C}; and C}, functions are expressed by,

1 11—z 1_
C1(123) = / / dady G"’“", (C.46)
0 0

1 1—z o
C12(123) = / / dxdyley. (C.47)
0 0

We show various approximate formulae of the C; and C}, function in various cases as
follows.

e Large mass limit (m? = m2 =m3 =m? > p? p2, ¢%)
1

C11[0,0,0; m, m,m] = 32 (C.48)
e Large mass limit (m? = m3, m3 > p? p3, ¢?)
1 m? + m3 m3(2m3 —m3) . m?
C11[0,0,0; = 2L 2 n—. C.49
ul0n 0Dt ] = gy g 2o gy g (O
e Large mass limit (m? = m2 = m3 =m? > p? p2, ¢%)
1
C12[0,0,0; m, m,m] = et (C.50)
e Large mass limit (m? = m3, m3 > p? p3, ¢?)
1 m2 & m2 mi m2
C12[0,0,0; mqy, mg, mq] = 5 5 ; 3 + 5 2 5z 1N —; (C.51)

2(m1 - m2) 4(m1 - m2)2 2(mf — m2)3 m;

C.3.3 (9 function
C91(123), C2(123), Cs3(123) and Cs4(123) functions are expressed by,

11—z
(1—x—
Can(123) / / drdy L= =Y v° (C.53)

Cs(123) / / dwdy = I)(IG_ r=y) (C.54)

11—z
Co4(123) = ZDIV — —/ / drdyInG. (C.55)

We show various approximate formulae of the C,, functions in various cases as follows.
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Large mass limit (m? = m3 = m3 = m? > p?,p3, ¢*)
1
021[07070;m7m7m] - _W (056)
Large mass limit (m? = m3, m2 > p?, p3, ¢°)
021[07070;m1am27m1] = (057)
__m miom M MMM (o)
2(mi —m3)?  9(mi—m3)*  (mi-m3)* mi  3(mi-mi)t  mj
Large mass limit (m? = m3 = m3 = m? > p?,p3, ¢*)
' 1
C[0,0,0;m,m,m| = — o2 (C.59)
Large mass limit (m? = m3, m2 > p?, p2, ¢°)
C2[0,0,0; my, mg, my] = ; —2mS + 9miIm?2 — 18m?m2 + 11mS + 6mS1n ﬁ
s Uy Uy ) ) 18(777,% _ m%)4 1 11702 17792 2 2 mg .
(C.60)
Large mass limit (m? = m3 = m3 = m? > p?,p3, ¢*)
Cy3[0,0,0 ] ! (C.61)
yJhum,m,m = —-—. .
23 82
Large mass limit (m? = m3, m2 > p?, p2, ¢°)
1
Co3]0,0,0;my, ma, mi] = —< — 7m® + 36mim2 — 45m2md + 16m®
23( 1, Mg, My 36(m? — m2)? 1 115 1M 2
2 2
+ 12m$In m_; — 18m3m; In m—;) (C.62)
m32 m32
Large mass limit (m? = m3 = m3 = m? > p?,p3, ¢*)
1
C%[0,0,0;m, m,m] = ZDiV — Zlnm2. (C.63)

Large mass limit (m? = m3, m2 > p?, p2, ¢°)

. (mi+m3) 1 9 5 m?
C2)0,0,0; =-Divt - ————— —-lnm"+ —5———=zIn—.
2400, 03y, iz, T 8(mi—m3) 4 " 4(m? — m3)? " m3

(C.64)



Appendix D

1PI diagrams

In this section, we give one-loop fermion, vector boson and scalar boson contributions to the
one, two and three point functions by using Passarino-Veltman functions [111] whose notation
is same as those defined in Ref. [112]. We calculate 1PI diagrams in the 't Hooft-Feynman gauge
so that the masses of Numbu-Goldstone bosons mg+ and mgo and those of Fadeev-Popov ghosts
me=, Mmoo and m,, are the same as corresponding masses of the gauge bosons. We write 1PI
diagram contributions separately for fermion loop contributions and boson loop contributions

which are expressed by index F' and B, respectively.

D.1 1PI diagrams in the THDMs

D.1.1 Omne-point functions

The 1PI tadpole diagrams for h and H are calculated by

f
4m?
TlPI _ _ U arfef
HF Z v Nc §HA<f)7
f
3
Th'5 = $p-a {3ngA(W) + §gszA(Z) — 2gmyy, — gzm%]

— gt AHE) = MganA(A) = Mg AH) — 3\pnnA(h)
_— )\G+G—hA(Gi> —_— AgogohA(G(J),

2
—Agra-gAHT) = Aag A(A) = 3gaaAH) — Mg, A(R)
— Aara-nA(GF) = Moo A(GP).

3
Tip = Coa {3ngA(W) + —gzsmzA(Z) — 2gmiy, — gzm?é}

123

(D.1)

(D.2)

(D.3)
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D.1.2 Two-point functions

The 1PI diagram contributions to the scalar boson two point functions are calculated as

165 ) = —;‘“”f §? [t + (20 - ) a1, (05)
167 ) = —;4’”fo & [ + (20 = 5 ) But 1.0 (D6)
167°I 7, (p°)F = — Zf: 4m§N &el; [ (f) + (2mfc - p;) Bo(p* f, f)} : (D.7)
167144 (p°) F = —Xf: 4m?N —=¢ { (f) - %ZBo(pg;f, f)} : (D-8)
16T (P)r = — 4mfo§f { (f) - p;Bo(pZ;f, f)} : (D9)

f
2

16721 (p?) ;= g2 sin2(B — @) (3m%y — p?) Bo(p*; W, W) + % [4 — sin2(8 — )] A(W)

2 2

+ g?z sin?(8 — a)(3my — p*)Bo(p*; Z, Z) + % [4 —sin*(8 — a)] A(Z)
— %20082(6 — ) [2A(W) — A(H*) + (2mF+ —miy, +2p*) Bo(p*; W, H™)]
— % cos* (B8 — a) [2A(Z) — A(A) + (2m% — my, + 2p°)Bo(p*; Z, A)]

— [sin®(8 — a) + 1/2] (20*my, + g3m3)

— 2 m-nn AHT) = 22 440 A(A) — 22 g A(H) — 12\0mnn A(R)

— 2Xg+a-mA(GT) = 2Xgogonn A(GY)

+ N nBo(0®s HY HY) + Mg n Bo(0%: G G7) + 2034 - Bo(p™ HE, G)
+ 2)\2 AhBo(p A A) + 2AGOGOhBO(p2; G, G°) + N0, Bo(p%; A, G°)

2

167154 ()5 = o cos?(5 — o) (miy — p2)Bulp™ W W) + L[4 — cos*(8 = )] AW)
+9z cos*(B — a)(3m3 — p*)Bo(p*; Z, Z) + % [4 = cos®(B — a)] A(Z)
L sin’(8 — ) [2A(W) — A(H*) + (2my. — myy, + 2p%) Bo(p*; W, HF)]

- %Z sin?(8 — o) [24(Z) — A(A) + (2m% — m% + 2p*) Bo(p*; Z, A)]

 [eo (8 — ) + 1/2] (25l + gim)

— 2t gag AHT) = 22 aammn A(A) — 120 ypan AH) — 2\ g ann A(h)

— 2+ A(GF) — 22 oo A(G?)

+ Mg HBO(p JHS HT) + Mg g Bo(0; G, GF) + 20 s g- g Bo(p* H, G7)
+ 2N 4 Bo(p?; A, A) + 2200 Bo(p° vGO’GO) + Mo Bo(p*; A, G°)

+ 18)‘§{HHBO(]9 s H, H) 4 2)313,Bo(0°; hy h) 4 4X3 103, Bo(p*; b, H), (D.11)
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167{21_[11‘5}(232)3 = Sﬁ*acﬂ—a
2
g
X {92(3m§v =) Bo(p*; W, W) — - A(W)
9 9
+ 5 Bmz — ") Bo(p* 2, Z) — L A(Z)
2
+ LRAW) — ACH®) + (2miye — miby + 25) Bo(p?s W, H)
2
+ ZZ2AZ) = A(A) + (2m3 = + 2% Bo(p* Z, A)] - (26 + g3m3) }
- >\H+H—HhA(Hi) — AaagnA(A) = 3AgaunA(H) — 3\ gnnA(h)
— Agta-unA(GT) = AgogonnA(G)
+ Mg+ r-n A+ - Bo(p% HE, HS) 4+ Ag+a-ndha+a-n Bo(p*; GF, GF)
+ 2)\H+G—h>\H+G—HBO<p2§ Hi, Gi>
+ 2 aandaam Bo(p*; A, A) 4 2A\ngogo Agogor Bo(p?; G°, G°)
+ AagonAdacon Bo(p? A, G°) + 6 gmn iram Bo(p*; H, H)
+ 6 AnanAmnn Bo(D%; hy h) + 4N g A n Bo(p?; H, h), (D.12)

1
67T (0*) 5 = 29°A(W) + 92 A(Z) — 5(2¢°miy + gzm7)

[2A(W) = A(H*) + (2mire — miy +2p%) Bo(p*; W, H*)]

g
2
2
943 cos*(B — a) [QA(Z) — A(h) + (2m} — m% + 2p*)Bo(p?; Z, h)]

2
- % sin®(8 — a) [2A(Z) — A(H) + (2mj; — m3, + 2p*)Bo(p*; Z, H)]| ,
— - aaAHE) — 1204444 A(A) — 224455 AH) — 2\ gann A(R)
— 20t aaA(GF) — 22X gacoo A(G)
+ 2 A gra-al*Bo(p?; Hi,Gi) +4\2 AhBO( 2 A, h)
167115 (%) B = 85— acﬁ,a

(B A )+ oy 2

2
— Z[24(2) - A(h) + (2m}, — m% + 20°) Bo(p*: 2. h)] }
— Ar-ac0 A(HF) = 3XaaacoA(A) = Maconn A(H) — AaconnA(h)
— At a0 A(GF) = 3X agogoco A(G?)
+ 2 aan X acon Bo(p%; A, h) + 2Xaam X acor Bo(p*; A, H)
+ 2)‘AGOh)‘G0GOhBO (p2, GO, h) + ZAAGOHAGOGOHBO(pQ; GO, H) (D14)
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The 1PI diagram contributions to the gauge boson two point functions are calculated as

1670 (07)r = 3 *N/ (20°Bs — Bi) (5% 1. 1), (D.15)
L

1672 (p%) p = ZS@QQfo 2Bs(p*%: £, f), (D.16)

167117 (p*) r = Z eg, N 202 (21;Q; — 453, Q1) Bs| (0% 1. ), (D.17)
f

6w 007 r = 3 g N[22 (sly Q3 — A5 QuLy + 203 By — 2122 Bo| (7 £.). (D19

1 L.
16710y (p°) B = 92{135(392; A HF) + 1 sin?(8 — a)Bs(p?*; H, HF)

1
+ 1 cos?( — a)Bs(p*; h, HY)
1
+ sin?(8 — ) (m%VBO + 135) (p* h, W)
2 2 L 2
+ cos“ (B — a) | myy, By + 135 (p*s H,W)

1
b (G20 ) Bot (s — astomdy + o — s ) B (5 2,70)

2
+ 252, [35 + (2m3, — 4p2)BO] (p*; 0, W) — §p2}, (D.19)
2
16711 (p*)p = € Bs(p*; HT, H) — °p? {1233 + 5By (p*; W, W) + g} , (D.20)
11 2
1672 () 5 = 6’%35( HE H*) — egp? (1033 + 5 Bt g) (P% W, W)
Sw

- I ()s, (D.21)

cw
167°I1,7 (p) g = 9%{%35(1?2; H* H) + i sin( — @) Bs (p*; H, A)
- COS (8 —a)Bs(p*; h, A)]
+sin?(8 — a (mZBo—ir iB5> h,Z)
o5 — a) (B + 1 Bs) (5,2
+ [(2m§v — ?ﬁ)Bo — 9p233} (%W, W) — ;pZ}

25
i _WHIPI(p2)B i _HIPI( )B, (D22)
w
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where the fermion-loop contributions are the same as those in the SM.
The fermion two point functions can be decomposed into the following three parts

16721_[}?1(172) = ﬁnﬁl\/( %) — 15’75Hff L) + me}E,Is(pQ)- (D.23)
Each part is caluclated as

167° 15 (0%) = —€*QF (2B + 1) (0% f.7) — 95 (vF + a}) (2B + 1) (p*; £, Z)
2
= @B DO S W)
2

= LB £ ) + (€0 B £ H) + € B £, A) + By £,6C°)]

2 ¢2 2 ¢2

m2 -+ m2/
_ MBIQ?Z, f/,G:t) o = Bl(p2, f/, ]{:ﬁ:)7

2
1670 (0?) = —~203070,(2B + V(0 /. 2) = T 2By + D@ [ W)
2 2

m5 —my m2&2 — m32,£2,
+ f - fBl(pQ;f,,Gi)+ IS5f f fBl(p2;f/,Hi),

V2

() = —2e°Q3(2By — 1)(p%; f,7) — 295 (vF — a})(2By — 1) (9% f, Z)
2

+ ﬁ [(5}{)230(1927 f7 h) + (51{])230(]?27 f7 H) - é?BO(p2a f7 A) - BO(p27 f7 GO)

2
—QU—f[ o f1,GF) + & Bo(p®; f' HY)] (D.24)

where vy and a; are the coefficient of the vector coupling and axial vector coupling of Zff
vertex given as

1 1
vp = Qf swQy, afng- (D.25)

D.1.3 Three-point functions

In this subsection, we give analytic expressions for the 1PI diagram contributions to the three
point functions. The assignment for external momentum is taken in such a way that p; and

(p2) is the incoming momnetum of h (h), V (V) and f (f) for the hhh, hVV and hf f vertices,
respectively, and ¢ = p; + po is the outgoing momentum of h for all the above vertices.

First, the 1PI diagrams for the hhh coupling is calculated as

4
8mfN

16T jh (07,03, ) = — Y (&) [Bo(p?, £ )+ Bo(vs, £, ) + Bo(d?, f, f)

f
+(4m3 — ¢+ pr e p)Colf £ )], (D.26)
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3
167 ThA (S, . 4%) = Sy [ 16Co (W, W, W) = Co(c*, ¢, )|

3

g
- Emwsﬁ . [sﬁ JCEVV(GE, W, W) + S VY (HE, W, W)]

sm
+ % 755 [1600(2 Z,7Z) — CO(CZ7CZaCZ)] - gz4 Zss a[sﬁ WO (G, Z,Z)_ Crm (A, Z, Z)
2
+ g_AG+G*hS%_aC}‘l/h§LS(W Gi Gi> + )\H+H hcﬂ aC;‘l/hb;LS(W, Hi,Hi)

2
2

+ L nsa-aCoalChi (W, G, H=) + CUSS (W, H, G*)
2 2
+ %Agogohs%_aC’,‘l/,iS(Z, G0, G + %ZAAAhcg_ao,mS(Z, A, A)
2
+ %TZ/\AGOhSﬂ—aCB a[C}‘L/;gLS<Z7 A7 GO) + Cl‘z/}L‘SfVLS(Za G07 A)]
+ 293mW55_a[Bo(pf, W, W) + Bo(p%, W, W) + B()(q2, VV, W)] — 393mW85_a

3
+ g%mzsﬁ—a[BO(p%? Z> Z) + Bo(pg, Z7 Z) + BO(q27 Z7 Z)] - ig%mzsﬁ—a

+ 2 - Amer-nn[Bo(ph, H, HF) + Bo(p3, H*, H*) + Bo(¢?, H*, H)]

+ 2 e+ A+ [Bo(pl, G, GF) + Bo(p3, G, G*) + Bo(q°, GF, G¥)]

+ 4\ g+ g-nAm+a-nn [ Bo(pt, H, GF) + By(p3, H, G*) + By(¢*, H*, GF)]

+ AXaanAaann[Bo(p3, A, A) 4+ Bo(ps, A, A) + Bo(q?, A, A)]

+ 4)\@0@0h/\gogohh[30(p§, GO, GO) + Bo(pg, GO, GO) + Bo(q2, GO, GO)]

+ 2 aconA aconn[Bo(p3, A, G°) + Bo(ps, A, GY) + Bo(q*, A, GY)]

+ AN s Bo(pi, H, H) + Bo(ps, H, H) + By(¢°, H, H)]

+ 12X g A s [Bo(p3, by H) + Bo(p3, h, H) + Bo(q®, h, H)]

+ T2\ nnn Aniin [Bo (02, by B) + Bo(p3, h, h) + Bo(q?, h, h)]

— 2)\H+H ,Co(H®, H* Hi) — 22024 -1 Co(G*, GF,GF) — 802000, Co (GO, G°, G°)
NanCo(A, A A) — 8)3, Co(H, H, H) — 216)3,,Co(h, h, h)

= 2>\H+H7h)\§,+G,h[CO(Gi, H* H*) + Co(H*,G*, HF) + Co(H*, H*, GF))

— 2 gt a-n i g [Co( HE, G GF) + Co(GF, HE W) 4 Co(GF, G*, H*)]

— 22440 N0, [Co(GO, A, A) 4 Co(A, G, A) + Co(A, A, G°))]

— 2 goconN 40, [Co(A, GO, G°) + Co(GP, A, G°) + Co(G°, G°, A)]

— 8\ At [Co(h, H, H) + Co(H, H, h) + Co(H, h, H)|

— 24X A Co(hy by H) + Co(H, hy h) + Co(h, H, h)], (D.27)

where

1
OV (X, Y, Z) = |piCay + p5Cag + 2p1paCas + 4Coy — 5~ (g + p1)(p1C11 + p2Ch2) + qp100] (X,Y,2)

1
+ [pfcm + pgcm + 2p1p2Cag + 4Co — 5 + (3p1 — p2) (P1C11 + p2Ci2) + 2p1(p1 — p2)00} (Z,X,Y)

1
+ [pfcm + p3Co + 2p1paCas + 405y — D) + (3p1 + 4p2) (p1Ch1 + p2Ci2) + 2q(q + pQ)Co} (Y, Z,X),
(D.28)
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Cunl(X,Y, Z) =
r 1
P?Cm ‘1‘]93022 + 2p1p2Cas + 4C5 — 5 + (4p1 + 2p2) (p1Ch1 + p2Cia) + 4py - C]CO} (X,Y,Z)

r 1
+ P%Cm +p3022 + 2p1paCag + 4Co4 — 5 + 2p2(p1Ci1 + p2Cia) — pr(p1 + 2p2)00} (Z,X.,Y)

r 1
+ p%Cm +p§022 + 2p1poCas + 4C54 — 5~ 2p2(p1C11 + p2Ci2) — q(p1 — pQ)CO] (Y, Z, X).
(D.29)

The hff vertex can be decomposed into the following 8 form factors

F}L?}(plvp%q ) -

Fhff - 75Fhff + F;xclf + P2 F,Z?f + ’YsF;ﬁvlf +¢275F,;‘}2f + P Po Ffz}f +¢1¢2’75F;53}- (D.30)

Each form factor can be calculated by

M —1
167° <7f> Fypp = =2920°(v — af)ss-aCol(Z, 1, 2)
- 4&{{6’262?‘[771?”00 + pH(Ci1 + Ca1) + p5(Cha 4 Caz) + p1 - p2(2Ca3 — Co) + 4Coq — 1](f,7, f)

+ g%(v? - GQ)[mvaO + p1(Ci1 + Ca1) + p5(Crz + Caa) + p1 - p2(2Ca3 — Co) + 4Co4 — 1)(f, Z, f)}

+¢l-L [<§h> CRRF(fohs 1) + (ERPCEEF (f B, ) = CEEF (£.G°, ) = €2CEEF (1, A, )
,2m /
LS GE L ) + &g CEEF (F S )

TS PYPIR £y2 fef
v {6(§h) )‘hthU(h7 f’ h) + 2(€H) )‘HHhCO(Hv f7 H) + ZghSH/\Hhh[CO(h7 fv H) + CO(Ha f7 h)]
— 2XoconCo(GY, f, G°) = 265 AaanCo(A, f, A) — E A acon[Co(A, f, G%) + Co(G°, f, A)]}

Qm,
+

{Am WColGE, 1. G*) + g Au - nCo(H, ', HY)

+ Shusoally + E)[Co(GE, 1 HE) + ol f,GH)] )
2

—Lsoa|OVEE WL 1, GE) + G (GE W)

2
g ! /
— Sy | CUfP WL %)+ G (1=, W)

gz
8

2

— Lo, | OHP(Z 1. A + CEY (A 1. 2)]. (D.31)

2y o|[CVF5(2.1,6°) + G (G0, £,2)]
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M —1 m?,

167 <Tf> Ffi‘f = >\H+G—h7f<§f’ —&p)[Co(GH, f H) = Co(H, f, GF)]

2
~ Lo .ot - G e )]

2

g !/ !/

N (e L S e A AR o)
— g2y, [%@S(z, £.GY) =G (E Z)]

_gévf]fgfcﬁ—a |:Chff (Z7 fv A) C}?fFfv(Aa f7 Z)}u (D32)

2 2
16721y = L€ 203 + a3)(Co+ 200)(f, 2, f) + *Q3Co + 200 (£, 7. )

m?/ ’
+ 92555 (Co+2C1)(f", W, f)
4
- Sﬂ—agév(vff + a?)(C’o +Cu)Z, f,Z) — sB_ang(Co + Cr)(W, f W)

+&— |:<§h) (Co+2C11)(f, h, f) + (£])*(Co + 2Cu)(f, H, f)
+(Co +2C1)(f,G°, f) + EH(Co + 2C1)(f, A, f)

2

—;:5 [(mff +m3)(Co +2C0)(f',G*, ') + (m3&5 + m3.€5)(Co + 2C0) (f, H™, f’)]
mj
2

6(&])* M (Co + Cua) (B, £, 1) + 2(60)* Aeran(Co + Cua)(H, f, H)

+ 2€£€[J;>‘Hhh[(00 + 011)<Ha f: h) + (CO + Cll)(h7 fﬁ H)]
+ 2/\Gmgoh<00 + CH)(GO, f, G(]) + 2§J2f)\AAh(CO + 011>(A, f, A)

+ E A aconl(Co + Ci)(A, £, GO + (Cy + C11) (G, A)]}

Ag+a- / A !
= SEGE 0+ ) (Co+ Cn)(G*, ', GF) = SR (e} i 5)(Co + Cr) (T, f 1Y)

’U2
_ —/\H;G “(m3&s +m3 &) (Co + Cu)(GE, f HE) + (Co + Cun) (HE, f',G*)]
- 924_5, [Sﬁ—a(QCO +Cu)W, f, Gi) + 5p-a(—Co + Oll)(Giﬂ fsw)
— £ a2+ Cu)(W, ', H) = Epcy_o(~Co+ Cu)(H*, £/, 7)]

2

m
a 9%8_5 [Sﬂ—a(ZCO + Cll)(Z, f, GO) + S,B—a(_CO + Cll)(GO, f, Z)

— &5¢5a(2Co + C1)(Z, £, A) — &pcy o (—Co + Cr)(A, f, Z)} , (D.33)
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2 2
1672 F{ 7 = L€ [0 (03 + a3)(Co + 2C)(f, 2, f) + *Q3Co + 2C0) (£, 7. )

m?/ /
2%&{ (Co+2Cw)(f", W, )
4

- Sﬂ—agév(vf‘“ + a?)CIQ(Za f7 Z) - Sﬁ_agzvclg(vv, fla W)

6™ (€ (Co+ 2001 )+ (€ (Co+ 200 £ . )
+ (Co +2C10)(f,G°, f) + EF(Co + 2C12)(f, A, f)

+¢ n;f' [(m2 +m2)(Co+ 20)(f, G, ') + (g} +m3.82)(Co + 2C0)(f', HE, )]
2
- TQ { (&N M Cirz(h, £, B) + 20 AaanCra(H, f, H) + 26L& A Cra(H, £, 1) + Cra(h, f, H)]
+ 2>\G0G0h012<G07 f? GO) + 2512‘)‘AAh012(A; f; A) -+ 2€f)\Agoh[012(G0, f7 A) + C12<A7 f7 GO)]}
_AgtGn
’U2

_%( 36+ mpEp)[Cra(GE, 1 HY) + Coo(HE, 1, G

, A
(m} +m3)Cia(G*, f',G) — H;H H(m3EG 4+ m5Es) Cro(HE, f, HY)

g my Ness =
_ZT[Sﬁ—a(QCo+012)(Wf,G ) + 8p-a(=Co + Ci2)(G7, [/, W)

— &peg_o(2Co + Cro)(W, f' HF) = Epicy_o(—Co + Cra) (H™, [, W)}

2
- %% [857Q(2Co +C12)(Z, f.G°) + s-a(Cr2 — Co)(G", £, Z)
+ 8505200 + Ca)(Z, f, A) + §ep_o(Cra — Co) (A, f, Z)] ’ (D.-54)

2

2
m My o / /
167° Fyjy = —4givpa;—t€](Co+200)(f, Z. f) = ¢° 5 -€] (Co+ 200) (/' W, f')

4
+ 285,ag4zvfafv(00 +Cn)(Z,f,Z) + Sﬁfagzv(co + Cn ) (W, I, W)

mf/

L [( —m3)(Co +2C0)(f',G*, f') + (m3€; — m3.£5,)(Co + 200 (f, H*, f')

/\ / A !
= ST = m3)(Co+ Cu)(GH T GF) = SR (e — mi ) (Co+ Cu)(H* ' 1)

/\H+G h(

m3&s —mp&)[(Co+ Cu)(GF, ', HF) + (Co + Cu)(H™, f',GF)]

m /
* gZTf [55-a(2C0 + CLt) (W, f',G¥) + 53_a(~Co + C11)(GF, [, W)

- gf/cﬁ—oc(200 + 011)(W7 f/’ Hi) - Sf/cﬁ—a(_co + Cll)(H:tv fla W)}
mj
+ g%[foT [Sﬁfa@co +Cu)(Z, [, G°) + sp—a(—Co + C11)(G°, f, Z)

+&5¢s-a(2Co + C1)(Z, £, A) + &5 o(—Co + Cir)(A, f, Z)] , (D.35)
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m2 / m2/
167° Fyy = 4§£9§Uf@f7f(co +2C00)(f, 2, ) — & 922—5(00 +2C)(f, W, )
4
+ 255,agévfafv012(Z, f, Z) + ngagzvclg(‘/v, f/, W)

+ff’mf’ (m} —m3)(Co + 2C0)(f, G, f') + (m3€f — m3,€5,)(Co + 2C)(f', H, f')

Ag+ ANyt 17—
Gvf "(m3 —m?)Cha(GH, f, GF) — va “(m3E2 — m2E3)Cro(HE, f/, HY)
AH+G-h

- v—( Fer — mpp)[Cra(GF, f H®) + Coa(H*, f, G*)]

g mj ' GE =
+ 4 v [Sﬁfa@Co + Cr2)(W, [, G7) + sp—a(—Co + Ci2)(G™, [/, W)

- ff/cﬂ—a<200 + 012)(W7 fl7 Hi) - fflcﬁ—Oz(_CO + Cl2>(Hi7 fl? W):|
2

2 my 0 . 0
+971505—7 | 36-a(2C0 + C12)(Z, f, G7) + 85— (=Co + C12)(G7, £, Z)

+&rc o200 + Cr2)(Z, f, A) + Epep_o(—Co + Cra) (A, f, Z)] : (D.36)

1622 (22) ™ B, = €12 [(6)2(Chr — Coa)(Foh ) + (€4)7(Cos — Co) 1. L. 1)

— (C1 = Cuo)(f,G°, f) = ff(Cn — Ci2)(f, A, f)
’me’ Ik et / + g
& = [(Cu = C) (1, G* 1) 4+ &56p(Cra = Caa) (' HE, )]
2
B gZ [35_0(—200 — 200 + Cio)(W, f',G%) + sp_o(=Co — C11 + 2C1)(GF, f', W)
+&r¢s_o (=200 = 201 + Cra)(W, f', HF) + &peg_o(—=Co — Cuy + 2C10) (HF, f, W)]
QZ
8

[35 o(—2C0 = 2C11 + Ca)(Z, f,G°) + s5_o(—Co — Oy 4 2C12)(G°, f, Z)

+ ffcﬁfa(—QOO — 2011 + 012)<Z, f, A) + ffCﬁia(—Oo — CH + 2012)<A, f, Z):| s <D37)

2

-1
167° (%) Fyfy = gZ [Sﬁ—a<200 +201 — Cia)(W, f',G%) = 55_,(Co + Ciy — 2C1a)(G*, ', W)
- ﬁfcﬁ_a(—200 — 2011 + 012)(W, f/, Hi) - Sfcﬁ_a(co + Cll - 2012)(Hi7 f/7 W)]
— g%[ﬂ)f [ngol(_QCO - 2011 + Cu)(Z, f, GO) + Sﬂiol(CO + CH — 2012)(G0, f, Z)

+Epeso(—2C0 — 2001 + Cra)(Z, f, A) + Erc5_o(Co + Cri — 2C12)(A, f, Z)], (D.38)
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where

Chii (X,Y,Z) =

1
[m%C() + p%(Cn + 021) + pg(Clg + 022) + 2p1 ‘p2(012 + 023) + 4024](X, Y, Z) — 5,

O,XJ@S (XY, Z)=

1
[p%(ZCO +3C11 + Ca1) +p§(2012 + C2) + 2p1 - p2(2C) + 2C11 + Cia + Ca3) + 4C|(X, Y, Z) — 5
1
Cl?f}v(X7 Y> Z) = [p%(CQI - CO) +pg(022 - 012) + 2]?1 ']?2(023 — Clg) + 4024](X, Y, Z) — 5
(D.39)

The 1PI diagram contributions to the form factors of the hZZ and hWW vertices which
are defined in Eq. (7.73) are calculated as

1,1PI mfmZN
U7z (P17P27 q2)F = Z ———
f

+ (4m3 = i = p)Cof, £, f) = 8Cu(f. £. 1]

{( +af)[Bo<P1af F)+ Bo(v3, [, f) +2Bo(¢%, £, f)

w23

— (v = @) | Bo(v3, £, f) + Bo(w, £, f) + (4m3 = @*)Colf. £, )] } (D.40)
0 ) = -3 Sl

[(""]20 +a3)(4C5 + 3C12 + Cu + Co) + (v7 — a7) (Crz — 011)] (fo £ 1), (D.41)
Dhgr (01 p3.)r = %ﬁwww(cﬂ 4 Cra+ CO)F fo ) (D.42)

f

[LIPT (02 2 me?”Nf 1B Bi(d? lB 2 ,
MWW p17p27q )F_Z 47?2?]3 9 O(anf>f)+ O(q 7f7f)+2 0(p17f7f)
£

—ACou(p, 5. f. ' f) + 1(2mf+2mf/ Pt —=05)Co(f, [/, )| + (mp <> myp),  (D.43)

2,1PI
r

v (D1 D3 @) F = (4C93 +3C12 + Ciy + Co) (f, f', f) + (my <> my), (D.44)

3P (2 2 _ N, /
v (P15 P5.q¢")r = B (Cri +Cra+Co) (f, f', f) + (my <> my), (D.45)



134 APPENDIX D. 1PI DIAGRAMS

1672, (02,03, 4%) B = 295 Aa+a-wmiy sy Co(G=, W, GF)

+ g?’mwsﬁ_a{QcﬁvC}Y‘Y‘}ﬂ(W, w, W) - 2612/11024(Ci> Ci? Ci) + 512/1/0}?\‘//“//1 (Gia W, W) + S%VCX\)/\}gl(W? W, Gi)
84 82
= 2255 Co(W, G5, W) = (chy = sh) B[O (W, G5, G5) + Coa(GF, GF, W) |
w w
3

+ %mzsﬁ_a{ - 2m2Z [S%_aoo(z, h, Z) + C%_QCO(Z, H, Z)] + S%_Q[CM(GO, h, Z) + CQ4(Z, h, GO)]
+ C%_a [024(A, h, Z) + Cos(Z, h, A) + Cos(G°, H, Z) + C24(Z, H,G°) — Coy(A, H, Z) — Cou(Z, H, A)]

+ QQ%mQZ{B)\hhhsfg_aCo(h, Z.h) + Aganch_oCo(H, Z, H) + Agnnss_oCs-alCo(H, Z, h) + Co(h, Z, H)]}
—2g5(cty — sty)? [Aa+G-1Coa(GT, GF,GF) + A r-3,Cos(H*, H*, H)]
— 29755 _4 [3)\hhh024(h; G h) + AgunCos(H, A, H) + AganCas(G°, b, G°) + AaanCos(A, H, A)]

—295C5_,, [3)\hhh024(h, A R) + AganCos(H, G H) + AaanCaa(A, hy A) + AaanCas(G°, H, GO)]
—29%55_0Cs_oAunn[Coa(h, G°, H) + Cou(H, G, h) — Coy(h, A, H) — Cau(H, A, h)]
— 29%5,870465704)\146%[024(14; h, GO) + CQ4(GO, h, A) — 024(14, H, GO) — 024(G0, H, A)]

9%

2
9% 2 ~0 O 9% 2 9% 2 39% 2
+ 7)\G’GhBO<Q ,G°,G) + 7)\AAhBo(q JAVA) + ?)\HHhBO(q JH H) + TAhthO(q h, h)

2
925 i on(c — 52,)2Bo(g?, GF, GF) + %ZAmH,h(c%V — $2)2By(g%, H*, H¥)

! 7
- ggcTWmWS,B—a[BU(p§> w, Gi) + Bo(pfv Gia W)] - ?ZmZSB—Q[BO(pi h, Z) + BO(]%» h, Z)]
W
— 6g°clymwss_o Bo(?, W, W) + 4g°clymws5_,. (D.46)

167T2 (g%m%)ilriéPZ)I(pi p; QQ)B = 2ngC?A/557aCI‘1/X/"/\Y2(W7 VVu W) - QQC?A/mWSBfaC&ZZ?)(Cia Ci? Ci)
+ ngS%/VC%/VSﬁ*a[C;?\‘//\‘//Q(Gia W7 W) + CX\Y\}SQ(Wv VV; Gi)]
— gmw (cly — siy) sty [Civva (G, G5, W) + Gy (W, GF, G

9z

+ ?mZ[Cin\gQ(Zv h> GO) + C}Y\§1§2(G07 h> Z)]

9
+ 5 mzsh o [CNVa(Z,h G°) + G (G0 b, Z)]

+ Zmzss-ach_olCla(Z, h, A) + CRF5(Z, H,G°) = OIS, (2, H, A)
+ OEYs(A . 2) + O3S, H, 2) — V(AL H, 2)
— 2 — 30 [AarenCrans(GF, GF, GF) + Ags -y Crons (HE, HE, H))]
— 28%_a [3)\hhh01223(h7 GO h) + AnChazs(H, A, H) + AaanCi223 (G, b, G®) + AaanChazs (A, H, A)]

- 26?3_(1 [3)\hhh01223(h, A h) + MganChazs(H, G H) + AaanChos(A, hy A) + AaanCians (GO, H, GO)}
- 235_a05_a)\Hhh[01223(h, GO, H) + Cia3(H, GO, h) — Ciaa(h, A, H) — Cia93(H, A, )]
- QSg_acg_a)\AGh[Cm%(A, h, GO) + 01223(G0, h, A) - C1223(147 H, GO) - 01223(G0> H, A)];

(D.47)
FzégI(p%ap%a qz)B = 07 (D48)
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167?‘2]:‘]1171/1[}31/11/(27%7]937 QQ)B -
s CEEAZ,I0, 2) + Gy CHIAW, 2,0) + 5, CH (Wi W)
)

— 024(627 Ciu CZ) - CWCQZL(Ciu Cz,C - 512/1/024(Ci7 C’Y? Ci)]

3
9
= S mw sty Ss-alCavvi (GF, 2, W) = CRivy (GF, 0, W) + Gy (W, 2, GF) = G (W, 7, GF)

4

—g mWS $5-aCo(Z,G*,Z) — g*miysh_oCo(W, h, W) — gmiys5_och_oCo(W, H,W)

4
—l—g mWAg+G hC()(G Z Gi> -+ SWmWAG‘FG hOo(Gi,’Y,Gi)
W

+ 6g )\hhhm%{/S%_aCb(h, W, h) + QQQAHHhm%/VC%_aCO(H, W, H)

+ 26° A gy o5 5_o | Co(h, W, H) + Co(H, W, h)]
3
+ %mwsﬁ_a{S%_Q[C%(W, h, Gi) + 024(Gi, h, W)]
+ G_o[Coa(W, H,G*) + Cou(G*, HW) + Cos(W, h, HF) + Cos(H*, h, W)
— Coa(W, H, H*) = Coa(H*, H,W)] |
g3 2

+ 2mws Sp_ WlCou (G, G*, Z) + Cou(Z,G*, GV

— g [Ag+G_h024(Gi, G°, GE) + Ao yr-nCos(HE, A, H*)
+ 22eanCon(G, GE, GO) + 2X 445 Con (A, H, A)}
e [6Ahhh024(h, G=,h) + 22 gsnCoa(H, HE, H)
4 At eonCos (GE b, GF) + Ao g Con(HE, H, HF)]
e [GAhth’M(h, HE, B + 2\ gmnCoa (H, G=, H)

4 Ao -1 Coa(GE H, GE) + s g Coa (HE, b, HF)]
— PAH+G-1S5—aCh—alCoa(GF, b, HY) 4 Cos(H* b, GF) — Cou(G*, H, H*) — Coy(H*, H,G%))
= 20°AunnSg—oCh—alCoa(h, G, H) 4+ Coy(H,G*, h) — Coy(h, H*, H) — Coy(H, H*, h)]
- ggmws,@—a 3B0(q27 W W) + 3B0(q2a Za Z) —4

2 2
3
+ %)\G+G’*hBD(q2> G*,G*) + %)\GGhBO<q2a G, G°) + i)\htho(q h,h)

2 2 2

+ %)\mH*hBO(qz, H* H*)+ %AAAhBo(q27A, A) + EAHHhBo(CZQ, H, H)
3 4

S
- %mwsﬁ—a{B()(p%? w, h) + Bo(p§7 w, h) + CTW[BU(pi Z, Gi) + Bﬂ(pg7 Z, Gi)]
w

+ iy [Bo(pl, 7, GF) + Bo(pi,%Gi)]}, (D.49)
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167> (g*miy )~ T (07, 93, %) =
gy ss-a| CRa(Z. W, Z) + G RN (W, Z,W) + 3, CLRL(W, 7, W)
- 01223(027 Ci, Cz) - C%V01223(Ci’ Cz, Ci) - 8%4101223(0i, Cr, Ci)

g
= Sswmwss-a[Civva(G5, 2, W) = CRiva(GF, 7, W) + vy (W, 2, G5) = Gy (W7, GF)

g
+ Lo [ CHEE(W, , G) + CEYA(GE, W)

- Tmwsa-acho | CHNLW, H,G2) + CRSy (W, b, HE) = LSS, (W, H, 1)
o CEVaGE HW) + GRSV (HE 0, W) = CSYa(H H W)
+ g%mws%_a [05552(2, G*,G°) + Cipvs (G, GF, Z)]
— [Aara-1nCra23(GF, G, GF) + Mg+ -1, Cranz(HE, A, HY)
+ 20 aanClrons (G0, GF, GO) + 22 4 an Crans (A, HE, A)}
— 2, :6)\hhh01223(h, G=,h) + 22 gsnChrons (H, HE, H)

+ >\G+G—h01223(Gia h, Gi) + )\H+H—h01223(Hi7 H, Hi)

— 5o |6MnnChoos(hy, H, B) + 2y pnChoos (H, G, H)

+ AG*G*hCIQQ?)(Gia H, Gi) + /\H+H*h01223(Hia h, Hi)

- )\H+th85_a05_a[01223(Gi, h, Hi) + 01223(Hi, h, Gi) - 01223(Gi, H, Hi) - 01223(Hi7 H, Gi)]
- QAHhhsg,an,a[Cuz:a(h, Gi, H) + Cha23(H, Giv h) — Chza3(h, Hiv H) — Cia3(H, Hi; h)l,
(D.50)

w9103, ¢%) = 0, (D.51)

where

CYO(X,Y, Z) =
[18024 +p%(2021 + 3011 -+ O()) + p§(2022 + 012) + P1 -p2(4023 + 3012 + 011 — 400)} (X, Y, Z) — 3,
Cai (XY, Z) =

1
[3C54 + pi(Co1 — Co) 4 p3(Caz — 2C12 + Cp) + 2p1 - p2(Cas — C11)| (X, Y, Z) — =,

2
CWA (XY, Z) =

1
[3C54 + pi(Co1 4 4C11 + 4C0) 4 p3(Ca + 2C13) + 2p1 - pa(Cas 4 2C12 + Cuy + 2Co)] (XY, Z) — -,

2
CYa(X,Y, Z) = (10Cy3 + 9C19 + Cry + 5C0) (X, Y, Z),
Cilta(X,Y, Z) = (4C1, — 3C1s — Cn) (X, Y, 2),
Cha(X,Y, Z) = (2011 — 5C1a — 2Cy — Ca3) (X, Y, 2),
CVoia(X,Y, Z) = (Cos + Cra + 2C11 + 2Co)(X, Y, Z),
Citv2(X,Y, Z) = (Cos — C1a) (X, Y, Z),
Cio3(X,Y, Z) = (Cha + C93)(X, Y, Z). (D.52)
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D.2 1PI diagrams in the HSM

D.2.1 One point functions

The 1PI tadpole contributions are calculated by

2

167>} = =347 e NS A(my), (D.53)
v
m2
16727 = = " a—L s, NI A(my), (D.54)
v
!
167T2T;PLB = —3/\hhhA(mh) — /\hHHA(mH) — )\hg+G—A<mGzt) — )\hGoGoA<mGo)
2 2 2
— gmpycaAlmes) — gzinz CaA(mew) + b4 ca DA(mw ) + %CQDA(mZ), (D.55)
v v
167T2T11{PI’B = —)\hhHA(mh) — 3/\HHHA(mH) — /\Hg+G—A(mg+) — AszA(mG())
2 2 2
— gmw SeA(mes) — gz1nz SaA(mew) + Ty SaDA(mw) + %saDA(mZ), (D.56)
v v

where D = 4 — 2¢ and N/ indicates the color number of each particle.

D.2.2 Two point functions

The 1PI diagram contributions to the scalar boson two point functions are expressed as

m 2
16w [p?) = =27 (Lea) N {24(my) = (b2 = 4m}) Bo(pimpmp)}, - (D5T)
f
m 2
16 2] = 2 <Tf) CosaN] {2A(ms) — (0 — 4m3) Bo(p*smy,mp)},  (D.58)
f

m 2
16W2H}3’3F[p2]=—22(7fsa) NI {2A(my) — (0* — 4m?) Bo(p*;myp,my)},  (D.59)
f
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167°11,, " [p°]
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= 2 naaA(me) — 12X A(me) — 2 e+ A(mea=)
m2 m2

— 2AthoGoA(mGo) + Q—ZVCiDA(mw> + —fCiDA(mz)
v v

+ )‘%LG+G— BO(p25 ma+, mg-) + QA%LHHBO(pQ; M, M)
+ 18A7,, Bo (9% mu, miy) + 4N, 5 Bo (0?5 mu, mur)
4m?
+ 27 qoco Bo(p?; mgo, mgo) + U—;/VciDBo(p2; mw, my )
2 4
+ chiDBo(p2; Mz, myz)

)
2miy o 2 2 2 2
-3 {2A(mw) — A(meg=) + (2p* — myy + 2mgs) Bo(p*; mw, ma=) }
2
m
- U—fci {2A(mz) — A(meo) + (20* — m% + 2m0) Bo(p*; mz, meo) }
2 4 4
— mQW 2 By(p?; Mg+, met ) — m—QZciBO(pZ; M0, Mo ), (D.60)
v v

= —Mmera-A(mea=) — 3naanAlmy) — 3 \upra A(my) — Apcogo A(meo)
m%/v 2 mzz 2
+ 4D?sacaA(mW) + QDWSQCQA(mZ)
+ Ana+a-Arara- Bo(pmas, ma=) + 6 \nga g e Bo(p®; me, mp)
+ A\nnm Anrm Bo(0%; mn, myr) + 6\ unn A e Bo(p%; m, my,)
—+ 2>\hgogo)\HgogoBo (p2; mqo, mgo)
4m? o2m?
+ %SQCQDBO@Z; My, mw) + %SacaDBO(pZ; Mgz, mz)
2mi,
- 7
9
m
— U_ZZSaCa {24(mz) — A(meo) + (2p° — m% + 2mo) Bo(p*; mz, meo)) }

SaCa {2A4(mw) — A(ma+) + (20" — miy, + 2mgx ) Bo(p*; mw, me=)) }

mi m,
— 2U—‘2/VsacaBo(p2; Mt , Mt ) — FsacaBg(pz; M0, M0 ), (D.61)

= 12 gaaaAlmy) = 2AwmaaA(my) — 2Appera- Alme:)
2 2
— D mpgoge Alman) + 2.2 D A(my) + L2 DA(my)
v v
+ Moo= Bo(p*;mas, ma=) + 18\, 5 Bo(p*; mpy, my)

+ 202, 1 Bo (0% M, mi) + 43 11 Bo(p?; m, myr)
miy

2 52 D By(p*; my, mw)

+ 2>\12LIG0GOBO<p2; mgo, mgo) +

2m?
+ U—QZsiDBO(pQ;mZ,mZ)

2m?
- —QWSi {2A(mw) — A(meg=) + (2p* — myy + 2mes) Bo(p®; mw, ma=) }

v
2
m
- U—fsi {2A(mz) — A(meo) + (20° — m% + 2mo) Bo(p*; mz, meo) }
2 4 4
— m2W s2 Bo(p®; Mg, my+ ) — m—QZsiBo(p2; M0, Mo ). (D.62)
v v
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The fermion loop contributions to the gauge boson two point functions are calculated as

2171PLF[ 2 4m12,VN(f 2 2
167 gy 7] = —r [—Ba+ 2p°Bs| (p*;my,my), (D.63)
f
271PLF[ 2 4m2Zch 2 4 4 A2 2 2 2 9 2
167°IL, " [p°] = Z 2 2p% (4sy, QF — 457y QI + 217) By — 2I7m3 By (p*; my, my),
f
(D.64)
271PLF[ 2 4emZN(f 2 2 N2 2
167° 1L, [p°] = = ) — P (4sw Qs + 211 Q) Bs(pTy my, my ), (D.65)
f
16T ) = 37 8e2NJ Q2 By(ps my, my), (D.66)
where Bs(p?; my, mg) = —By(p?*; my, ma)—Ba1 (p?; my, mo) and By(p®; my, ma) = —miBy(p*; ma, my)—

m3By(p?*; M1, my) defined in Ref. [112] and @, is the electric charge of a fermion f. The boson
loop contributions to the gauge boson two point functions are calculated as

2

16755 7] = m—gV s2Bs(p*, mg=, mp) + 4s2miy Bo(p®, mw, my)

+ 4¢2 m%VBO(pQ' my, mp) + ciB5(p2; me+, mp)

9
{ el — (1 — dsh)miy, — m3)Bo — (0 - 2s%V>B5} (s mz)
2p?
4p —2m3y,) By — 35] (p*; mw, m,,) + S (| (D.67)

167T2H1ZPZI’B[p2] =2 |* 2 Bs(p®, mp, mao) + 4s2m% Bo(p*; my, mur)

+ 4c2m% Bo(p*; my, my) + 2 Bs(p®; mao, my,)

23
—4 Kzzf — Qm%V) By + 9p2Bs] (p*; mw, my)

2p? 11 1652, p°
4 2 2 83%{/172
— 48Wp [530 -+ 1233] (p yMmw, mw) — 3 N (D68)
2em 11
167112, P [p%] = — . Zp2{ {730 + 1033} (p*; mw, mw)
2 2 2 2
— sy [5Bo + 12B3] (p°; mw, mw ) + 5(1 - SW)}, (D.69)

2
167115 P [p?] = —e2p2{(5Bo +12B3) (p*; myy, myy) + g}, (D.70)
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where Bs(p?;my, ma) = A(my) + A(ma) — 4Byy(p?; my, ma) [112].

Next, we give one-loop contributions to fermion two point functions, which are composed
of following three kind parts,

57 [0°] = myITgy s [p°] + UGy 0] — psTlypialp?]- (D.71)

They are calculated as

167215 ) = —222 (02 — @2)(2Bop® my, mz] — 1) — 2(Qpe)*(2Bolp mp,m] — 1)

mj mj
+ FCZBo[pQ; mf,mh] + ?siBo[pQ;mf, mH]

2 2
- 2By | -2 By s ] (D.72)
02 op My, Mgo pimy,ma+|, .
16720 2] = — W (93,12, 1) = 22 4 228, 1
ffV[ ] 02 ( l[p 7mf’7mW]+ ) 02 (Uf+af>( 1[]9 7mfva]+ )
2 2

m m
—(Qre)*2Bi[p;myp,my] + 1) — =L Bilp*ymy, ma] — —Ls2Bilp?; my, mal
V2 V2

2

m m , + m
- U_QfBl[p2§mf7mG0] - %Bl[p mf,mgi] (D.73)
m% —m?% m2
1672117 [p°] = %Bl [p*; my, me=] + U—ZV@Bl % myp ] +1)
m2
+2-Fvsag(2Bip*imy, my) + 1), (D.74)

where vy = I; — 2s3,Qy, af = I; and | ; represents the third component of the isospin of a
fermion f;i.e., [, = +1/2 (=1/2) for f =u (d,e).

D.2.3 Three point functions

In this subsection, we use the simplified form for the three point function of the Passarino-
Veltman as C[X,Y, Z] = C;[p3, p3, ¢*; mx, my,mz]. The 1PI diagram contributions for each



D.2. 1PI DIAGRAMS IN THE HSM 141

form factor of the hZZ and the hWW couplings defined in Eq. (6.27) are calculated as

32m%m3 N/

Co X
167203 ¢

1PLF
Mhzz,1[p§ap§a qz] = E
!

1
|:(§]J% — ]foSIz/V + Q?S%) (2}7%021 + 2p§022 + 4]91 . p2023 + 2(D — 2)024

+ (3pF 4+ p1 - p2)Cri1 + (3p1 - p2 + P5)Cra + (BT + p1 - p2)Co)
+ (1 Qysiy — Q?Sév) (P%Cm + p3Cas + 2py - p2Ca3 + DCoy

+ mch’g + (p} +p1-p2)Cir + (p1 - p2 +pg)012>] Lf, 1o S (D.75)

4mzmiN/
—= S, X

1PLF
Mhzzz[p%’pg,qQ] = E : 167203 @
!

[(v} + a3)(4Cos + C11 + 3C12 + Cy) + (vF + a3)(Crz2 — CH)] £, £, f),

(D.76)
8m%m2N/
M]iglég[pipga q2] = - Z ﬁcoﬂ}f@f[cll + C112 + CO] [f? f7 f]7 (D77)
f
4m2,m2 N/
M}iilzjvli/l;J 105,.¢% = Z 12;/7?—223004 [QP%Cm + 2p3C + 4py - paChs + (2D — 4)Coy
f
+ (3pF 4+ p1 - p2)Cii + (3p1 - po + p3)Cia + (97 + p1 - p2)Co) [ f, ],
(D.78)
4m2,m2 N/
M,ﬁ%ﬁg[pf,pi, ¢’ = - Z %C(x [4C5s + Ciy + 3Cha + Gol [f, f', 1, (D.79)
f
4m2,m2 N/
M;gyliﬁg 105,07 = — Z %%[Cn + Cia + Gol[f, 1, £, (D.80)

f
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(167°) My 55 (07 93, 4°) = —20°mwcfyca(D — 1) Bolg®; mw, mw]
- gg%mwsévca(Bo [p%; my, mGi] + By [p%; myy, mci)

3
gzmz
2

2 2

g 39
+ gz(cgw)z/\hcm— Bolg®; ma+, me+] + TZCi/\htho[qz; my,, my|

ca {ca(Bolpi; mz, ma] + Bolpy:mz, ma]) + 55 (Bolpi: my, my] + Bolpy; my, my)) }

9 2
g g
+ 95CaSa nnm Bo[g?;my,, myg] + ?Zsi)\hHHBO[QQQ My, My] + 7Z>\hG0GOBO[q2§ mego, Mo

+ 2% ca Civ G W, W, W = 2¢%gmidy stycaCo[W, GE W]
+ g mwstyea{ (COVE W, W, 6% + OV GE, W, W)

— CjTW(CM[VV, G*, Gi] + 024[Gi,Gi, W])} — g%mSan{ciCo[Z, h, Z] + SZCO[Z, H,Z]}
w

3
+ %mzca{ci(024[Z, h, G°) + Cou[GO, b, Z]) + 52(Coul Z, H, G°) + Co[G°, H, 7))}

+ QQ%mzz{BCi)\hthQ [h, Z, h] + SiAhHHCO[Ha Z, H]}

+ 2>\hhHg§m2ansa{Co[h, Z,H|+ Cy[H, Z,h|} — 2g3chI24,caC'24[ci, ct, ci]
+ QQ%W%VS?/V)\hgthf (m%vs?‘,vcg [Gi, W, Gi] — (ng)2024 [Gi, Gi, Gi])

— 29%{3/\}1%02024%, G h] + Mnrcasa(Caalh, G°, H] 4+ Cou[H, G°, b))

+ )‘hHHSiCM[H; GO, H] + )\hGOGO (63024[G0, h, GO] + 82024[G0, H, GO])}, (D81)
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(167) Myyyina [0, 93, @°] = —g*mw (D — Df{ca Bo(p*; W, W) + sa Bo(p*; Z, Z) }
3
- %mwca{C§(Bo[pf; W, h] + Bo[p3; W, h]) + s2(Bo[ph; W, H] + Bolp3; W, H))}

3 82
= e, { BB 2,67+ Bl 2,67 + (B 6]+ Bulfin, )

2 w

2
+ %{)\hg+g— Bo[p2, Gi, Gi] + 3>\hthiBO[p2; h, h] + )\hHHSiBO[pZ; H, H]
+ 2>\hhHSaCaB(] [p2; h, H] + )\hgogoBo [pQ; GO, GO]}

+ g3mwc%,VcaC€}‘(,“//’1 W, Z, W]+ ngchaC(}‘(,‘(/’l (W, ~v, W] + g?’chaC(}‘(,“//’l [Z, W, Z]
3 2

e
— %mws%ycac%‘é’l[m Z,G¥] + %mwswcac%‘gl[m v, G

— @’miy e (oW, h, W] + s2Co[W, H, W1} — ¢*gzm3 sy caColZ, GT, 7]
3

= S st cal OV IGH W] = ORI, 7, GF))

3 2
+ %mwca {(Cng;;[W, h, Gi] + 8i024[m H, Gi])} + zTW(Cg4[Z, G+, GO] + 024[G0, Gi, Z])}
W

o
+ g°miy {)\hG+G— CTWCO (G*, Z, G*] + Mg+a- 51y ColG*, v, GF] + 6 ez Colh, W, h]}
%

+ 2>\hhHg2mI2,Vca5a(C’0[h, VV, H] + C()[H, VV, h]) + 2)\hHH92m€V(sa)2C’O[H, W, H]
3

+ %mwch{s§024[ei, h, W) + 2 Cou[GE, H, W]}

— g3mwcl2,vca024(ci, &, ci) — ngmWsaC’M(ci, 7, ci) — g?’mwcaC’M(Co, ct, co)
— AhG*G*QZ{CiOM [Gi, h, Gi} + 83024 [Gi, H, Gi] + 024[Gi, GO, Gi]}
- 6/\hhhg2CiCQ4 [h7 Gi, h] - 2>\hhH92Ca8a(C24[h7 Gi, H] + Oy [H, Giv h])

— 201 0% (80)2Cos[H, GF, H] — 2Xpc0c0g” Caos[GP, G, G, (D.82)
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(IGWQ)MéEIZB; [p1>p2> q ] = gngCa{Qcafce‘é‘QQ[W? VVv W] + S%/VCX};‘\//EQ [VVv W? Gi]

2
+ 5%, (—Chs + 2Co) Y[G=, W, W] — g3mwsvz¥ca {(J%E’Q[W, GE, GE] + O|GE, G, W]}
%%

- g%cha{S%/VCZW(C‘@g?Q[VV; Gia Gi] + 023 [Gi7 Gi? W])

3
— (P27, h, G + Co GO, Z])} g;mzca {0%32[2 H, G+ CoG°, H, Z]}

— Qggmwc%VcOCC’lg [ci, ct, ct] — 29%{0%W)\hg+gf Cla93[G*, G*, Gi]

+ 3¢2 M Chazs[h, GO, h) + casadnnar { Craos[h, G°, H] + Chasg[H, G, h] }

+ Si)\hHHOIﬂS [H, GO, H] + /\hGogo {6201223 [GO, h, GO] + SiCmgg[Go, H, GO}} }, (D83)

(167°) Mo Dl p3, ¢°] = gsmw%{C%vC%w (W, Z, W] + s Cov A2 Wy, W]

3
+ OOV(2.W. 2]} = T siyea { OV EIW, 2,6 + OV P05, G4}
3
— Loy styca {(=Cas +2C0)[G%, 2, W)(=Cis +2C0) [G*, 7, W]}

g3

+ gmwca{ci(C‘@gg’Q[Wf, h, GE] + Cos[GE, h, W) + 2 (CEYY2 W, H, G¥] + Cos[GE, H, W)

2
+ S (CPSZ, G5 GO + Ol G, 2)) |
w

— gScha{c%VClg[ci, &, cF) 4 55,0 ,[cF, ¢, ] 4 O, &, CO]}

— ¢*Ana+G- {0201223[Gi7 h, G*] + s2Chas[G*, H, G| + Chans[GF, G°, Gi]}

- 692/\hhh0201223[h7 Gi, h] - 292)\hHHSiC1223 [H, Gi» H]

- 292/\hhHCa5a {01223 [h, Gi, H] + 01223[H, Gi, h]} - 292)\hG0GOCI223[G0> Gi? GO]J (D-84)

Méglzg[p%)pm q2] M}ia/lI/IB;QJ,[p%aan q2] - 07 (D85)
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where

Cx};‘xi"x//’l[X, Y, Z] = {(6D —6)Coy + p%(QCm +3C11 + Cp) +p§(2022 + C12)

+ p1 - pa(4Cs3 + 3Cha + C1y — 4Cy) } X, Y, Z], (D.86)
Cove' (XY, Z) = {(D = 1)Cay + pi(Ca1 + 4C11 + 4Co) + p5(Coz + 2C12)

+ p1 - p2(2Cs3 + 4Ch12 + 2C1; + 4C0)}[X7 Y, 7], (D.87)
Cg“;“?l[X, }/, Z] = {(D — 1)024 + p?(Cm — Co) + pg(ng — 2012 + 00)

+2p1 ']72(023 _Cll)}[Xa Y, Z], (D88)
CRVPIX,Y, Z] =[Oy + 9C,, + 10Cy, + 5C,)[X, Y, Z] (D.89)
CYV*[X,Y, Z) = 20y, = 50, — Coy — 2G,][X, Y, Z] (D.90)
C\ngz[Xu Y, Z] - [01223 + 2011 + 200] [X7 Y, Z]7 (D~91)

and 01223 = 012 + 023. B
We give 1PI diagram contributions to hf f couplings, which are composed of following seven
form factors,

1PI[, 2 2 2 1PI 1PI 1PI 1PI 1PI 1PI
Eugglprs . a7] = {Fhff,s W Ehprp + P Fagrvy T P Fhirve T P Vg a + Py Ehgraz

+ PP Furtr PPy é?},Tp} 1,93, ¢°). (D.92)
Each part is calculated as

my

2
m
(16W2)Ff}?},5[p%7p37 q2] = _46047 {_Z

(03— RSP Z, f] + (Qpe)*Crfid | f, 2, f]}

12

3
m
+ Lo, {ACHI b )+ SSCHE B ) = eaCREIF. G0 11

mfmff' REFST o1~ g1 my 2 2
— 2¢, 3 Crs If,G=, f'] — SCQme(vf —a;)ColZ, f, Z]

2
m
— 21}_2f {3Ci)\hhh00[h, f, h] + SiAhHHCO[H, f, H] + Cozso)\hhH(CO[h, f7 H] + OO[H7 f’ h])}

2

m m m e,
+ 2L gL ClG, £,G%) 4+ Mngro-—LColG, £, G*1
(% (% (Y

2

ca s (O [GF L W]+ O IWL 1. G2)

m2 m
~ Ca 2203 ! (C.]S'L{FJ;}S[GO7 f> Z] + C\I}J;};‘S[Z7 fa G0]>7 <D93)

1 m / /
)= e L O W 1 ) - (6 W)

Fl%?},P[p%a p%a q

+ 2003 (CUE 12, 1,6°) = CUITIC", 1. 2)) }. (D.94)
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4
m
(167) Fy 4 [pt. p3, ¢°] = U—;Ca{ci(co + 200, b, f]+ s2(Co + 2C0)[f, H, f]

02

m2, m2  m?2
+(Co+ 2001, GO, )} + cha (U—Qf + —f> {Co+ 2011} [, GE, f]

+ 25 {miym3(Co + 200) [, W, f1] + mm3 (v} + a3)(Co + 200)[f. Z. /1)
m} my  mi,
+ Q(Qfe)QTCa {Co + 2011} [f, Y, f] + Ag+a- (F + F) {Oo + CH} [Gi’ f/, Gi]

2
m
+ 2U—;{3Ahhhc§(co Oy h] + Mnans® (Co + Cu)[H, f, H]

-+ )\hhHsaCa(CO + Cn) {[h, f, H] + [H, f, h]} + 2>\hgogo<00 + CH)[GO, f, GO]}

mi ms y
— 4CO(U_3Z<'U]20 + CL?) {OO + Cll} [Z7 f7 Z] - 40041)_?/ {CO + Cll} [W7 f 9 W]

2 2
. camv—ngf’ {(2Cy + )W, f, GH] = (Cy — O [GE, W]}
2 2
- 2@@%%@ {(200 + 011)[2, f, GO] - (Cg - 011)[00, f, Z]} s (D95)

4
my

(167) 3 ff yolpt 23 %) = —Fa{ c&(Co+2C12) [, b f] + 2(Co + 2C0) I H, f

m?c/

2 2
+ (Co + 2C1,lf, GO,f]} + Tca <% + %) {Co +2C12} [f/,Gi>f/]

¢ / !
+ 25 {miymi, (Co+ 2C0)[f, W, f'] + mimi (v + a7)(Co + 2C0)[f. Z, f1}

2

oMy m_?‘ mi, TRV
+2(Qye) o Ca {Co +2C0} [f, v, f1+ Anara- 2T Ci[G™, [, G7]

2
m2
+ QU_;{B)\hthiOlQ[f% fa h] + )\hHHSiCH[Ha fa H] + AhGOGOCl?[G()? f7 GO]

- NnirSaca(Cralh, £, H] + [H, f, h])} - 42—3 {mb (02 + a2)Cha|Z, f, Z) +miy, Cra[W, ', W]}

2 m2/
— ot L {200 + )WL . GF] = (Co = Co)[G*, f, W]}
2 2

— szca%%af {(2Co + C12)[Z, f,G°] — (Cy — C12)[G°, f. 2]}, (D.96)
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1 / !
F}%]E)}vAl[p%pg’qQ] = 1671'2{ W {2mW C + Cll)[W f W] mf’<00 + 2011)[f7mf]}

2

m
+ 4Ca,U_3Z,Ufaf {2m2Z<CO + Cll)[Za f’ Z] - m?‘(OO + 2011)[fa Z7 f]}

2 m2/
+Ca%_f{200+011}[w,f’,6*+]— mW Cu}[GT, f, W]
m2 m2 /
+ oy = E {20+ Oy f, G <co—cn>[Gf,f,W1}

2 2
+ el 2L {26, + €12, 1,67 - (Cy — C)IE, £, 21}

2 2 2
" (ﬁ—@) L, (Co+ 20)If, G f]+AhG+G—<co+011>[Gi,f’,Gﬂ}, (D.97)

1 / !/
Fyfi aolpl. 13, ¢°) = WQ{ W{2mW CoolW, f, W] = m%(Cy + 2C,)[f W, f']}

2

m
+de,—vpa; {2mzCualZ, f, 2] = mi(Cy + 200)If, Z, f]}

m2 m2/ / !
e, M T (90, 4 CR)W, .G~ (G — GG £ W]}

2

2
2L, "2 {(2C, + CIZ, £, G+ (Cy - Cu)[G°. £, 7))

m2 ) 2
+ <—f - mg ) n:}f o(Co +2C,)[f, G* I+ >‘hG+GCl2[Givf/7Gi]) }a (D.98)

F;?}T[plap%Q] 1617T2{ U3 a{c 12 [f h f]+8 ( Cl2)[f7H7f]}

2
iy

Fca {mf(cll - ClZ)[fa Goa f] - 2Tnf’(c(ll - Cl?)[f/> Gi? f/]}

2
- caw—f {(2C0 +2C11 = C) W, [, GT)(Co + Cri — 2C1)[GT, f/, W]}

12

2
+ a5 5L {(2C0 + 200 — Ow) (2, £,G"] + (Co+ Cu — 2C0) ", f, 2]} } (D.99)
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Ffi})},TP [pia p%? q2]

1 2
{%Tﬂg?ﬂm%+zal—oumafxfﬂ—a%+cu—mAQWtfﬂm}

~ 1672 V2

2
+ 2ffvfca%%{(2co 200 — Ci)[Z, £,G°] — (Cy + Chi — 2C12)[GY, , Z]}}, (D.100)

where

ngﬁS[X7 Y, X] = {p%(C’n + C91) + pg(cm + Ca) + p1 - p2(Ch1 + Cra + 2C53)
+ 405 — 1+ mxCo}[X, Y, X], (D.101)

CHIPIX, Y, X] = {pA(Chy + Con) + p3(Cha + Caz) + 2p1 - pa(Cha + Chs)

1
+ 4Cyy — 5+ mxCo}[X,Y, X], (D.102)

1
Coti?[X,Y, Z] = {p3(Ca1 — Co) + p(Caz — Ciz) + 2p1 - pa(Cas — Chiz) + 4Chy — 5}[){, Y, Z]

(D.103)
CUHISIX,Y, Z) = {p}(Ca1 + 3Ch + 2C0) + p2(Cag + 2C15)
4 21 - pa(Cag + Cia + 2C11 + 2C0) + AChy — %}[X, Y. 7], (D.104)
Oyt XY, Z] = {pi(8C11 + 2Co + Can) + p3(2C12 + C)
+ 2p1 - pa(Cha + Caz + 2C11 + 2Co) + DO } (X, Y, Z], (D.105)
CULTIX,Y, Z) = {p}(Car — Co) + p3(Coz — Cia) + 2p1 - pa(Cas — Ch2) + DCoy } [X, Y, Z].
(D.106)
D.2.4 1PI diagrams in the HTM
D.2.5 Omne-point functions
The 1PI diagram contributions to the one-point function are calculated by
2
TR — —4T6f7f\2[g %A(mf), (D.107)
Tipt = 420 Sy ), (D.108)
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1PI __
ThS -

16 B /\H++H77hA(mH++) —I— )\H+H7hA(mH+) + /\AAhA(mA)

[
+ )\HHhA(mH) + SAhhhA(mh)], (D109)

T}fg - _ Ag++a—gA(mp++) + Agrg-pA(mpy+)

1672
+ )\AAHA(mA) + 3)\HHHA(mH) + )\HhhA(mh)], (D.ll())

1

TlPI —
YV 1672

[— Ag+g—hA(mg+) - AgogohA<mgo)

+ gmw (cgeq + ﬂSQSQ)DA(mW) + 9zmz

(CBICQ + ZSBISQ)DA(’ITL2>

gzmz
2

— gmw (s + V25555) A(mer) — (cprca + 255/SQ)A(mCZ)] , (D.111)

1PI
TH \%4

— [ - Ag-&-g—HA(mg-!—) - )\GoGoHA(vao)

gzmz

+ gmw (—cpsa + \/585CQ)DA(mW) + 5

(—cprSa + 285¢a)DA(my)

— gmu(=cosa+ V2sca) Almer) — 202 (—cysa + 25B,CQ)A<mCZ)] . (D112)

where mg+ (me+) and mgo (m,,) are the masses of the NG bosons GF and G° (ghost fields
¢t and ¢y ), respectively. In the 't Hooft-Feynman gauge, these masses are the same as the
corresponding gauge boson masses, i.e., mg+ = M+ = my and mgo = M., = my.

D.2.6 Two-point functions

The 1PI diagram contributions to the scalar boson two point functions are calculated as

0 =~ e % Ta) (2 E)attmsmp)|. 0
hh \P")F = — - mf—— olp™smyg,my .
1672 v 2
1P1 [, 2 AmiN/ 52 P
Whn(P)r = =4 2 A(m 2m} — - ) Bo(p®,ms,my)| (D.114)
4m2ch CaSa p2
Wi (0*)r = 4 7 [A <2mf - 5) Bo(p*, mf,mf)] (D.115)
4m Nfs ’ p
MY (p*)r = 16f7r2 % [A mys) — EBO(p mf,mf)] (D.116)
H114PG{<p2)F =+ 16f7T2 g A(mf) — EBO(pQ,mf,mf)} , (Dll?)
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(=2 g+ g A(mp++) — 22 g+ - A(mp+)

e
— 2 aannA(ma) = 22 g A(mu) + 12X nnn A(mas)

+ )\%HJer,hBO(]f7 Mp++, M+ )

+ A%—]-}—H—hBO(pQ, M+, Mg+ ) + )\éJrG_hBO(pQ, ma+, ma+) + 2>\§{+G—hBO(p27 M+, Mg+ )
+ 2X% 4, Bo(p?, ma, ma) + 20060, Bo(p?, mao, mao) + Mg, Bo(p®, ma, meo)

+ 2511, Bo(0? s, o) + 18X, Bo(p?, s, ) + ANy, Bo (0%, s, s ) (D-118)
1
H}{P}I](p2)5' [—2)\H++H77HHA(mH++) - 2AH+H*HHA(mH+)

1672
—2AgHaaA(ma) + 12 garaAlmeg) — 2 5 arnA(ms)]
+ )‘%HJerfHBO (pz, ME++, mH++)
+ A g Bo(0% mure,mus) + Mg g Bo(p?, mas, ma+ ) + 234 -y Bo(p?, mpg+, ma+)
+ 2X% a5 Bo(0®, ma, ma) + 2XGogo  Bo(p? mgo, mao) + Nygoy Bo(p?, ma, meo)

+ 1803 115 Bo(p*, mur, mpr) + 2X35,, Bo(D?, mu, my) + 4X3; 55, Bo (9%, m, mur )], (D.119)
1
H}E}(]ﬁ)s [—)\H++H—7HhA(mH++) - /\H+H7HhA(mH+)

1672
— AarnA(ma) = 3 guunA(mu) — 3N aranA(my,)
+ )\H++H**h)\H++H**HBO(p2, Mpy++, Mp++) + )\H+H*h)\H+H*HBO(p2> Mg+, My+)
+ )\G+G*h)\G+G*HBO (p2, mag+, mg+) + 2)\H+G7h)\H+G7HBO (p2, mg+, m(;+)
-+ 2)\AAh)\AAHBO(p27 ma, mA) + 2)\hgogo AgogoHBo(pz, mego, mgo)
+ AaconAagor Bo(p®, ma, mgo) + 6Agun Ay Bo(p®, mur, my)
+ 6 Amnn Bo (07, mu my) + AN ean A an Bo(p*, mur, my)], (D.120)
Hzlél}jﬁI(pQ)S = _16171'2
+ 1224444 A(ma) + 224455 A(MmE) + 22X aamn A(m)]

1

+ 1672 [2A s+ G- 4N+ - aBo(0, M+, ma+) + 4N 0, Bo(p®, ma, )

+ 4)\24AHB0(p2, ma,my) + )\ZGOhBO(pQ, Mp, Mego) + AiGoHBO(p2, my, mgo)l, (D.121)

2N g+ - aaA(mp++) + 2 g g-aa A(mp+)
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1

+ 33X aaaco A(ma) + AagonnAlma) + AagonnA(my,)]

[AH++H77AGOA<mH++) + )\H+H*AG0A(mH+)

+ [)\H+G*A)\;1+07G080(p2a mmyg+, mG+)

1672
+ AaarAaconBo(p®, ma, mp) + AaagAagor Bo(p*, ma, msr)
+ AaconAcogon Bo(p?, mao, mp) + AacogAcogon Bo(p*, meo, mu), (D.122)
1
1P 20
i g-(p7)s = 1672
+ Ap+a-aaA(ma) + Ag+g-guAlme) + g+ p-pnA(my)]

[)\H++H77H+H7A(m]—[++) _|_ 4)\H+H7H+H7A(mH+)

1
+ 1672 [4/\12LH+H*H*BO(p27 M+, Mpg+) + >‘%H+H*G*B0(p2amH++a me+)

+ >\§{+H*HBO(p27 mH+7mH) + )\?{+H*hB0<p27 mH+7mh>
+ Nh ey Bo(p® s mur, ma+) + M- AN+ - aBo(p?, ma, ma+)
+ A g-n Bo(0?, ma, mat) + A+ o N+ - o Bo(p?, mao, ma+ ), (D.123)

1
H}}DlJfH** (pQ)S = _1671'2

+ Mg+t aaA(ma) + Agevm-—-gaAlmu) + Mg+ g-—nnA(my)]

[ANg+vm—mrrm—Ampr+) + Agrvg—pgra-Almp+)

1
+ —F [2A%I++H7H* BO (pz, Mg+, mH+) + 2)\%{++G707 BO (p2, ma+, mG+)

1672
+ >\§_I++H7G7 BO (p27 mH+ ; mG+)
+ )\%1++H77HBO(Z72, Mp++, M) + )\%1++H77hB0<p27 Mp++, M), (D.124)

1 2
Iy () = {QQm%/v(C,BCa + V28554)2DBy(p?, mw, mw) + %(3 — Coa) DA(mwy)

1672

[\

(cacs + \/Esa85)2[2A(mW) — A(meg+) + (2m20+ — m%v + 2p*) By (p?, myy, ma+)]

(—caSp + \/§sacﬁ)2[2A(mW) — A(mpy+) + (2m12q+ — m%,[, + 2p2)Bo(p2, mw, My+)]

|, 0[]

2

2
m
W (cgea + V28550) Bo(p*, Mot , Mt )

— 2)\@+thhA<mG+) — g 5

gzm% 97
+ T(Cﬁfca + 233/sa)2DBo(p2, myz,myz) + §(5 — 3¢90 )DA(My)

2
- %(Ca%' +2505p)*[2A(mz) — A(meo) + (2mge — m + 2p*) Bo(p*, mz, meo)]

2
- %(—Ca% +2500y)*[2A(mz) — A(ma) + (2mi — m7 + 2p") Bo(p*, mz, ma)]

2 2
— 2 gogonn A(mego) — gZZLZ (cprca + 25584)*Bo(p?, me,, mcz)}, (D.125)
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1 2
(v = T {ng%V(—cﬁsa + V255¢0)2DBo(p?, my, myy) + %(3 + 30) DA(myy)

2
— %(—SQC/J’ + \/ica55)2[2A(mW) — A(meg+) + (2mé+ —miy + 2p?) Bo(p®, mw, ma+)]
2
— %(sasﬂ + ﬁca05)2[2A(mW) — Almg+) + (Qm%H — m%/v + 2p2)Bo(p2, mw, my+)]
2,92

m
g 5 W (—cgSa + ﬂsBCQ)QBO(pQ, Mgty Mt )

— 2>\G+G*HHA(mG+> -

Q%WQZ 2 2 g%
+ (—cpSa + 25p:¢o)*DBy(p*, mz,mz) + §(5 + 3¢o0) DA(Mmy)
2
— %(—Sa65/ + 2Ca85/)2[2A(mz> — A(mGo) + (277’1%;0 — mQZ + 2]92)30(]?2, mg, mGO)]
2
B %(2%%' + 5a5p)°[2A(mz) — A(ma) + (2m% — m3 + 2p*) Bo(p®, mz, ma))
9\ A _ 9zm% _ 2 2
2AgocorrA(mego) 1 (—cprSa + 283¢a) " Bo(p™s Mey, Mey) ¢, (D.126)
1 2
5 (0% = @{QQm%V(CBCa + V25850)(—Cg5a + V255¢0) DBo(p®, my, mw) + gZSQaDA(mW)
2
(et + VEsu3a) (50t + VEeos3)2A(mu) — Almg) + (2mis —miy + 2°) Bo(o?, i me- )]
2
g

L (s VE300) (5055 + VEat) 2AGmur) = Almizs) + (2 — iy + 2% B, e )]
202
5 W (cgea + \/§sﬁsa)(—05sa + ﬁsﬁca)Bo(pQ, M+, Mt )

— AG%’G*H}—LA(mG‘F) - g
2

3
(crCa + 25550) (—Car5a + 255:Ca) DBo(p?, mz, mz) + %SQQDA(mZ)

2,2
m
gzMy

2
— %(Ca65/ + 250588 ) (—SaCp + 2¢aS5)[2A(Mmz) — A(mego) + (Qméo — m2Z + 2p2)B0(p2, mz, mao)]

2
- %(—ca%/ +25a0p)(Saspr + 2¢acp) [24(mz) — A(ma) + (2m3 — m7 + 2p*) Bo(p®, mz, ma)]

2 2
— AgvgopnA(meo) — gZZLZ (Cprca + 25550)(—CprSa + 285:Ca) Bo(p?, Moy, mcz)}, (D.127)
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1 2
o {%(3 + o) DA(mw) — v anAlme)

- %( s+ V235 PRA(m) = Alms) + (2 — iy + 2%) B, muv mg )
- %(sﬁsﬁ/ +VBacn 2A(mr) — Almae) + (2miys — iy + 26°) B, myw, )
- g'm W (—css 4+ V2s5c8)2Bo(p?, Mot , Met)

4 %(5 4 335 ) DA(m) — 2\ aacoao A(ma)

2
— %(—CQSBI + 23aCﬁ/)2[2A(mZ> — A(my,) + (Qm%l — m2Z + 2p2)Bo(p2, mz, mp)]

2
_ %Z(SQS@ + 2¢acs )2 [2A(my) — A(my) + (2m3; — m% + 2p) Bo(p?, myz, mH)]}’ (D.128)

1 | g? 3
IS0y = 153 {zsw’“(mm + gozsaDAmz)

2

— 9—(8585/ + \/50505/)(—3505/ + ﬁcﬁsﬁz)[QA(mW) — A(mpg+) + (Qm%ﬁ - m%,[, + 2p2)Bo(p2, mMw , Mg+

2
2

— %( CaSp + 25aC ) (CaCp + 25455 )[2A(my) — A(my,) + (ZmZ — mQZ + 2p2)Bo(p2, mz, mp)]

2
_ 9%z 2 (2cqc + Sa5p ) (—SaCs + 2ca85)[2A(Mmz) — A(my) + (2m3; — m3 + 2p*) Bo(p®, mz, my))
4

— 3Aacogogo A(meo) — )\G+GAG0A(mG+)}- (D.129)

The 1PI diagram contributions to the gauge boson two point functions are calculated as follows.
The fermion-loop contributions are

My (P*)r = [ By +2p Bs] (p*,my my), (D.130)
7 (") r = 16 ) [ sy QF — 4siyQplp + 217)Bs — 2I?mcho] (>, mys,my), (D.131)
e?
I ")r = 755N Q] (8% By | (0%, my,my), (D.132)
€4z
lepyl(pz)F = " Tor 2Nf [2 (—43%,[/@? +2[fo)B3} (pQ,mf,mf), (D.133)
where B3(p2,m1,m2) = —Bl(pQ,ml,mg)—Bgl(p2,m1,m2) and B4(p2,m1,m2) = —m%B1(P2,m2,m1)—

m3B1(p?, mi,ms) [?).



154 APPENDIX D. 1PI DIAGRAMS

The scalar-boson loop contirbutions are

2
iy (p°)s = 16 ng [40%35(192, My++, my+) + 48%35(p2,mH++, me+)
T
+ (caSp — V25003) Bs (0%, mpr+,myp) + (cacs + V25455)2Bs(p?, me+ , my)
5458 + \/_Cacﬁ) B5(p mp+, mpg) + (Sacs — \/ﬁca55)2B5(p2,mg+, my)

+ (
+ (885 + V2¢s5) Bs (%, mp+,ma) + (sgcs — V2cs85) Bs(p?, ma+, ma)
+ (=

corss + V285¢5)° Bs(0®, mue mz) + (cprcs + V28555)" Bs (0, mar meo) |, (D.134)
1
Iy, (p")s = T6r g4Z [4(0124/ — s ) Bs (0", mpe, mpe+) + (cfy — sy — 3)?Bs (0%, mue, mp+)

2
+ (& — s%y — %) Bs(p*, ma+, ma+) + 25 cBB5(p2,mH+,m(;+)

+ (2cacs + SasSpr) B5(p2, mug,ma) + (28acs — ca55/)2B5(p2, Mp,MA)

+ (8aCs — 2¢a8p)* Bs(p*, mu, mao) + (cacp + 28455)° Bs(p*, mp, mGo)}, (D.135)
2
H#P;I(pQ)S = 672 [435(}92, Mp++, My++) + B5(p2, M+, My+) + B5(p2, mea+, mg+)], (D.136)
HlPI(pQ)S —_9z [2(62 — 52 )B5(p2 M g++, M+ )
Zny 1672 w w ) )
1 1
+ 5(0‘24, — Sty — ¢3)Bs(p?, mp+,mp+) + 5(0‘24/ — sy — s5,)Bs(p*, mg+,me+)|,  (D.137)

where Bs(p?,my, ms) = A(my) + A(mg) — 4Bas(p*,my,ms) [?]. The gauge boson loop contri-
butions are

Tt )y = I () — (6 — i) e Bolo m )+ s B, 0, ).
300 = TGP — —Zchy 0 — ) By o ).

()0 = Iy — B e )

ﬁlszI(PQ)v =10 (p")v + %C%v <P2 - %mQZ) Bo(p?, mw, mw), (D.138)

where Ty (p?)y functions are the gauge invariant two point functions while TIiEE (p2)y functions
are the amplitude calculated in the 't Hooft-Feynman gauge. The second term of the right-
hand side in Eq. (D.138) corresponds to the pinch-terms [?] which are introduced to maintain
the gauge invariance of the gauge boson two point functions. The IT{(p?)y functions are
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calculated as

2

1PL ¢, 2 9 2 V2 2 2 V2 2 2
Ly (p7)v = 672 mw[<050a + 2355(1) Bo(p*, mp, mw) + <053a — 235ca> Bo(p*,mpy, mw)

2 2 C%S% 2 2 2 (S%V + 8%)2 2
+ 455 Bo(p”, mp++, mw) + 2 Bo(p™, mu+,mz) + sjy Bo(p®, ma+,0) + TBo(p 7mG+7mZ)}
% 1%

— &y [(6D — 8)Byy + p*(2Ba; + 2B + 5B0)} (p*, mz, mw) + (D — 1) [c%,VA(mZ) + A(mw)}

— sy [(6D — 8)Bay + p*(2Bay1 + 2By + 5By)] (p°,0, mW)}v (D.139)

2
Iy, (p")v = 12; {m% [(Cﬁ’ca + 254:50) Bo(p?, ma, mz) + (cprsa — 283¢a)* Bo(p?, ma, mz)}

2
+m?, [QC%S%BO(]QQ, mp+,mw) + 2 (st + s3)” Bo(p®, ma+, mw)}

— Cjy [(6D — 8) By + p*(2Ba; + 2By + 5By)] (p*, mw, mw) + 2(D — 1)c‘¢VA(mW)}, (D.140)

2

e
I (p*)y = — 62 [(GD — 8)Bao(p*, mw, mw ) 4+ p*(2Bar + 2By + 5B,) (p°, mw, mw)
— 2D — 1) A(mw) — 2m%, Bo(p?, mg+,mW)], (D.141)
e
HlZl’)YI(pz)V - +169752 |:CIQ/V<6D - 8>ng<p2, mw, mW) + 012/[/]?2(2321 +2B; + 530)(]92, my, mW)
— 265 (D — 1) A(mw) + 2miy (s + 53)Bo(p®, ma+, mw)} : (D.142)

D.2.7 Three-point functions

In this subsection, we use the shortened notation for the three-point function of the Passarino-
Veltman function as C;(my, ma, m3) = C;(p?, p3, ¢*, m1, ma, m3). The 1PI diagram contributions
to the hhh vertex can be expressed as a function of the incoming momenta p; and ps and the
outgoing momentum q = p; + p2 as

PI/ 2 .2 2 8m3§ch Ci 2 2 2
L (P 12, ) p = —— 55—~ | Bo(py, my, myg) + Bo(pz, myg, my) + Bo(q”, my, my)
[

+ (4mff — ¢* +p1 - p2)Co(my, my, mf)], (D.143)
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T 0 72 ) = 1|

+ 2)\H++H**h)‘H++H**hh[BO(p%a Mp++, Mp++) + Bo(p%, Myg++, Myg++) + Bo(q2, Mg+, M+ )]
+ 2X g+ -w A i+ - ha [ Bo (0%, mur+, mpg+) 4+ Bo(ps, my+, mp+) + Bo(q?, my+, my+)]

+ 2MnG+ G- Anha+a- [ Bo(pT, mw, mw) + Bo(p3, mw, mw) + Bo(q®, mw, mw )]

+ 4 gra-rAmra-nn[Bo(03, mu+, mw) + Bo(p3, mg+, mw) + Bo(¢*, my+, mw)]

+ 4Xaan A aann[Bo(p, ma, ma) + Bo(ps, ma, ma) + Bo(q?,ma, ma)]

+ 4XgogonAgoconn [ Bo(p, Mz, mz) + Bo(py, mz, mz) + Bo(q®, mz, mz)]

+ 2X acopAaconn[Bo(p1, ma, mz) + Bo(p3, ma, mz) + Bo(q®, ma, mz)]

+ A ganAgann [ Bo(pF, mu, mp) + Bo(p3, mu, mu) + Bo(¢*, mu, my)]

+ 12X g A szninn [Bo (03, mu, mr) + Bo(ps, mu, mp) + Bolg?, mu, mur)]

+ T2\ nn A niin [Bo(pT, mn, my) + Bo(p3, mn, ma) + Bol(q?, my, mh)]} }
1

 16m2
+ 2)‘%+G*h00(mW7 mw, mW) + SAgoGohCO(mz, my, mZ)

3 3
{2)\H++H77h00(m[{++, mg++, TTLH-H-) + 2/\H+H7hC'0(mH+, mH+,mH+)

+ 8N Co(ma, ma, ma) + 8\ 1, Co(mpr, mur, mp) + 216X3, . Co(my,, mp, my,)

+ 2)\H+H*h/\%{+a—h[00(m6’+> M+, mH+) + C’o(mH+, mw, mH+) + Co(mHJr, M+, mw)]
+ 20 g+ a1 A+ - p[Co(mrs , my, my ) + Co(ma+, mug+, mw) + Colmw, my, my+)]

+ 22 aan N o, [Co(mz, ma, ma) + Co(ma, mz,ma) + Co(ma, ma, my)]

+ 2X 0o N0, [Co(ma, mz,mz) + Co(mz, ma, myz) + Co(mz, my,my4)]

+ 8 AL [Co (M, mu, mp) + Co(mpg, mg, mp,) + Co(mp, mpu, my)]

o+ 24N X [Co(mn, mn, mr) + Colmag, mn mn) + Colma, maz, m)] . (D.144)
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B 1
1672

Filli}z(p%a pg? q2)V

3

3
+ %mw(cf;ca +V25554)(3 = €20) DBo(¢?, muy, mw) + 26°miy (caca + V25354)> DCo(myy, myy, myy)

3

- %mw(q@»ca +V2555,)°CBE (mer, my, mw)
3

- %mw(cﬁ»ca +V25550)(—55Ca + V20354 2CE (mpg v, my, M)

2

+ %Ag+g—h(65ca + \/ESgSa)QC"}}gE(mW, mea+, mg+)
2

+ %)\H+H7h(—3500 + ﬁcﬁsa)zC‘}}fg}g(mw, Mg+, Mp+)
2

+ %/\HJrG*h(Cﬁca +V25554) (—55Ca + V2¢354) [CEM (myy, ma+, mp+ ) + Cyss(mw, my+, met )]

Pms
- 9 v (C,Bcoc + \/ﬁsﬁsa)SCO(chﬂ Me+, mc*)
3gymz 2 3.3 3
+ 3 (cgrca +25354)(5 — 3caa) DBo(q”, mz,myz) + gymy(caca + 255 54)" DCo(my, mz, my)
3
gym
B Z4 Z(CB,COC + 235/Sa)30§6}b(m007mz,mz)
3
m
- 924 Z(carca + 255 5a)(—S5Ca + 203 52)2CE (ma, mz, my)
2 2

g g
+ TZAGOGOh(CB’Ca + QSB/SQ)2C‘}}]§}§(TI’LZ7 mgo, mGo) + TZAAAh(_SB’Ca + 205/SQ)2C"}’§%(mz, ma, MA)

2
+ %AAGoh(C@/CQ + 285/Sa)<—85/6a + 205/80()[011}%’}9(77127 ma, mgo) + C@%@(mz, mgo, mA)]
_ggmy

4 (Cﬁ,cﬂé + 285'804)30()(7”027 ch; mcz> ) (D14.5)

where we define

Cg?/}i/(mla ma, m3> =
[pfcm + pZsz + 2p1p2Cag + DCo — (¢ + p1)(p1C11 + p2Cha) + qplco] (mq, ma, m3)
+ [picm + p5Cay + 2p1p2Coasz + DCoy + (3p1 — po) (p1Ch1 + p2Cha) + 2p1(p1 — p2)00} (mg, my,ms)

+ [p%C’m + p%CQQ + 2p1p2Cas + DCoy + (3p1 + 4p2) (p1C11 + p2Cha) + 2q¢(q +p2)00} (mg, mg, my),
(D.146)

C{}%’g(mv, ms, ms) =

piCo1 + p3Cas + 2p1p2Cas + DCay + (4p1 + 2p2) (01 Ch1 + paCla) + 4py - qu] (my,mg, mg)

P10y + p5Cas + 2p1paClz + DCyy + 2pa(p1Chy + paCia) — pi(py + 2292)00} (mg, my,mg)

pfcm + pZsz + 2p1p2Cas + DCoy — 2p2(p1Ci1 + p2Cia) — q(p1 — pz)Co] (mg, mg, my).
(D.147)
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The 1PI diagram contributions to the form factors of the hZZ and hWW vertices which
are defined in Eq. (7.73) are calculated as

32m2m%Nic, 1 1

— (I3 — 2s3,1 251, Q7
vp(v? + 20} ) 167 U7 = 25w Qs + 2w @)

[Bo(p?, mg,my) + Bo(p3, my, my) + 2Bo(q®, my, my)

52
+ = (=1 Qs + 53 Q7) [Bo(pgj my,myg) + Bo(pi, my,my) + (4mf — ¢*)Co(my, my, mf)] }>
(D.148)
32mfcm‘échca 1
vy(v? + 20%) 1672
1
X [5(1; — 253, 15Q + 255,Q2) (4023 + 30 + Oy + 00) + 2 (~1Qy + 53,Q2) (012 - 011)}
(my,mg,my), (D.149)
32mimyNlc, 1 Iy
vy(v2 + 20%) 1672 2

(—[f + QS%A/QJ:)(CH + 012 + Co)(mf,mf, mf),
(D.150)

MhWW 2

am2ymiNfec, 1 |1 1
1,1PI <p17p§7q2)F: W T o

—Bo(pg, me, mp) + Bo(q27 me, my) + éBo(pi My, Myp)

Vv2 1672 | 2

1
- 4024(])%7]937(]27 mt7mb7mt) + 5(2771? + 2mz _p% —p%)C'o(mt, mb’mt) + (mt A mb)7

(D.151)
_Amd m2N /S
M3Yer (01,05, %) r = 4me;Nc o (4053 + 3Ch2 + Chi1 + Co) (Mg, my, my) + (my > my),
’ VU 1672
(D.152)
—4mdm?Nfec, 1
M;%‘fv(pf,pg, Pr = Wt c @ (C11 + Cia + Co) (my, my, my) + (my <> my,).

(O 1672

(D.153)
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16m2 1
v? + 203 1672
1 2

+ 5)\H+H*h(CIQ/V — Sw — C%)2C24(mH+>mH+7 mH+)

M{lfpzl(pip; QQ)S = {2>\H++H——h(c%/[/ - 5%/{/)2024(mH++7mH++7 mH++)

+ g)\HJrH—hS%BCM(mHJr, ma+, mH+) + g)\G+G*hS§BCQ4(mG+, Mg+, mg+)

1
- Z)‘H+G‘h325(C%/V - 512/1/ - C%)[Cg4(mH+, mg+, mg+) + 024(mg+,mH+,mH+)]

1
— Z}\H‘Q‘G*}LSQB(C‘%V — 812;[/ — 5%)[024<mH+, mag+, mg+) + 024(mg+, mag+, mH+)]

1
-+ 5)\g+g—h(C%{/ — 512/1/ - 5%)2024(7716""7 meg+, mG“')

1 1
+ éAAAh(2CaCﬁ’ + SaSﬁ/)2024(mA, myg, mA) + §>‘AAh(Ca36’ — 28065/)2024(mA,mh,mA)

+ QAHHh(2CaCﬁ’ + SQSBI)QCM(mH, ma, mH) + 5)\hhh(0a55' — 28a0g/)2024<mh, ma, mh)

— §>\Hhh(20ac,8’ —+ Sa85/)(ca85/ — QSQCQ/) [024(mH,mA,mh) + 6'24(mh,mA,mH)]

1
— Z)\AGOh(QCaCB’ + SQSB/)(SQCB/ — QCQSB/) [CQ4(7TLA, my, mGo) + 024(mGo, my, mA)]

1
= Z)\Agoh(ca85/ — 254 )(CaCpr + 25455 ) [Caa(ma, mp, mgo) + Cag(mgo, mp, ma)]

1 1
+ iAGOGOh(SaCB’ - 20a85/)2024(m6~0, my, mGo) + iAgogoh(Canl + 28a85/)2024(mgo, mp, mGo)

3
+ QAHHh(sac@ — 2ca55/)2024(mg,mgo,mH) + §Ahhh(ca05/ + 25’&55:)2024(77%, meao, mp)
1

— §AHhh(sa05/ — 2¢a5p ) (CaCpr + 25055 ) [Coa(mp, mgo, mp) + Cog(mp, mgo, mp )] }

4m?, 1

v2 + 20% 1672 {2)‘H++H__h(CIQ/V — sty) Bo(q®, mur++, mp++)

+ Z)\H+H*h(2 + caw — Acaw ¢ + C28) Bo(q? mpr+, mpg+)

1
+ ZAGJFG*h(? + caw — dcaw s — 28) Bo(q%, ma+, ma+) + 5/\H+G*h325(1 — 2cow ) Bo(q*, mupr+, me+)

1 1
+ = Aaan(5 + 3cap ) Bo(q?, ma, ma) + Z)\GOGOh<5 — 3cap) Bo(q?, mao, meo)

4
1 3
+ ZL)\HHh(E) + 3¢90) Bo(q®, mu, my) + ZAhhh(E) — 3¢20) Bo(q®, mu, my)

3 3
+ ZAAGOh32B’B0(q2a ma, mGO) + 5)\Hhh82aBo(C]2a mMp, mH)}, (D'154)
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16m; 1
MyZAWE P ¢*)s = — ol @{QAH++Hh<c%V — 532 Crans (Mg, mg o )
A
1
+ §AH+H7h(C%,V — S‘Q;V - C?g)201223(mH+; mp+, mH+)

1 1
+ §>\H+H—h33501223(mH+7 my, mg+) + g)\G+G—h5§501223(mW7 Mg+, My )

1

- ZAH+G*h32B(C%{/ - S%V - C%)[C1223(m1{+7 mg+, mw) + Craos(Mw, Mg+, mp+)]

1

- Z>\H+G—h525(0%/v — sty — 55)[Crazs(mp+ . myw, mw ) + Crags(mw, my, mg+)]

1
+ §>\G+G*h(c%/[/ — 3%/[/ - S%)201223(mWa mw, mW)

+ éAAAh(QCaCB’ + 8a8p )2 Crags(ma, me, ma) + éAAAh(CaSB’ — 25405)?Chags(ma, mp, ma)

1
+ 5)\HHh<20aC,B’ + 8a8p)? Chazs (M, ma, mp) + 5)\hhh(0a55’ — 2540p)*Chazs(mp, ma, my,)

1
- §>\Hhh(20acﬁ’ + SaSp ) (CaSs — 254Ca) [Craos(mp, ma, myp) + Crag(mp, ma, mpy )]

1

- ZAAG0h<2CaCB’ + 508 ) (SaCs — 2¢aS) [Craas(ma, mu,mz) + Crass(mz, mpg,ma)]

1
- Z/\AGOh(casﬁf — 254 )(CaCpr + 25458 ) [Crazs(ma, mp, mz) + Clragg(mz, mp, ma)]

1

-+ 5)\Gogoh(8a05/ — 20&85/>201223(mz, my, mz) -+ éAgogoh(Can + 2Sa85/)201223(mz, mp, mz)
+ §>\HHh<3aC,8’ — 2¢485)Chanz(mpy, mz, mpg) + 5)\hhh(0acﬁ/ + 25485)? Chaaz(mp, mz, mp,)

1

- 5)\Hhh(3acﬁ/ — 2¢48p)(cacp + 2545p) [Craos(mu, mz, mp) + Croog(mp, mz, my)] },

(D.155)

M35 (p1, 03, 4%)s = 0, (D.156)
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16m3, 1
M{ﬂ{[l/:}fv<p17p27q ) == UQW 1671-2{

+ )\H++H77h0/3024(m}[++, mg+, mH++) + /\H++H77h8%024(m1{++, mag+, mH++)
+ )\H+H—hC%CQ4(mH+, mpyg++, mH+) + Ag+G—hs%C'24(mg+, mpyg++, mg+)
+ )\H+G7hcﬂs,3[024(mg+, Mg++, mH+) + Cos(mp+, mp++, mg+)]
1 2 2
+ éAAAh |:<8555/ + \/56/36@) 024(mA,mH+,mA) + <—6585/ + \/58565/) 024(mA,mg+, mA):|
1 2 2
+ —)\Gogoh |:<_S,305/ + \/§Cﬁ$ﬁ/> 024(mG'0, mg+, meO) + <CﬁCﬂ/ -+ \/58585/) 024(mgo, mg+,mGo):|
+ - )‘AGOh <8585' —+ \/_05651> (—3/365/ + \/éC@S@) [C’24(mA7mH+,mGo) + 024(mgo,mH+, mA)]

2
1
4
1
+ 4)\Agoh ( cgSp + \/58565/) <6505/ + \/58585/) [024(mA, mg+,mGO) + 024(mgo,mg+, mA)]
1 2
+ = 5 { 550 + \/_Cgca) Cos(mpyg, my+,mpg) + <—655a + \/555%) 024(mH,mg+,mH)}
3 2 2
+ 2)\hhh [( SgCa + ﬂcﬂsa> Cos(mp, mp+,myp,) + (cﬁca + \/535%) 024(mh,mg+,mh)}

1
-+ _)\Hhh (355a + \/éCgCa) (—35% —+ \/§Cﬁsa> [024(mH, mg+, mh) + 024(mh, mH+,mH)]

2
1
+ 5)\Hhh <_Cﬁsa + ﬁsﬁ%) (Cﬁca + \/58[38@) (Cos(mp, ma+, mp) + Cos(mp, ma+, mp)]
1 2 2
+ Z—JL)\HJerh |:<SBS/3/ —+ \/50503) 024(mH+, may, mH+) + <—8505/ + \/50/38@) CQ4(7’)’LH+, mgo,mH+):|
1 2 2
+ Z)\HJerh |:(858a + \/§C,BCOC> 024(mH+,mH, mH+) + <—850a + \/50/38(1) CQ4(77’LH+, mp, mH+)]
1 2
-+ Z)\GJrth |i(—CgSf3/ + \/58/305/) 024(mg+, ma, m(;+) <CﬁCﬁ/ \/—8585/) 024(m(;+, mgo, mg+):|
1 2 2
+ Z)\g+g—h {(—CBSQ + \/§SBCC,> Cos(mg+, my, mg+) + (05ca + \/5855,1) Cos(me+, mp, mg+)1
1
+ Z—l)\HJrth(SgSﬁ/ + \/56/305/)(—6/385/ + \/58505/)[024(mH+, ma, m(;+) + 024(mg+,m,4, mH+)]
1
+ Z)\]-[Jrgfh(—SBCﬁ/ -+ \/56@8[43/)(0566/ + \/§Sﬂ85/)[024(mH+, mgo, mg+) + 024(mg+, mgo, mH+)]
1
-+ Z_l)\H+G_h(S’BSa -+ \/§CBCQ)<—CBSQ + \/§Sgca)[024<mH+, mpg, m(;+) + 024(771@4—, mg, mH+)]

1
+ ZL)\HJFG*h(_SBCa +V2¢354) (caCa + V25550)[Cos(mprs, i, ma+) + Cas(mes, m, mH+)]}

4mi, 1 5+ 3¢
v 1672 0

4
5 — 3¢ 3s
TwBo(q mag+, mg+) + 2)\H+G hT230<q mg+, m(;+)

3—|—CQ/

(q Mg+, mH+)

[/\H++H~h30(q2; Mp++, Mp++) + Ag+m-n

+ Agtan

3 — C Son/
Bo(q ma,ma) + 2 gogop, Bo(q*,mz,mz) + Aagon Zﬁ Bo(q®, ma, mz)
3+ Coq 3 — Coq
2 Bo(q%, mur, mu) + 6\ 2

+ 2 aan

S (0%
Bo(q?, mp, mp,) + QAHhh%Bo(QQ, my, mp) |,
(D.157)
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16mfy, 1
MR s - -1

-+ )\H++H7—h0%01223(m[{++, mH+,mH++) -+ )\H++H**h5%01223(mH++7 m(;+,mH++)
+ M+ -nC3Choas (s, mppes, g+ ) + Agrg-n55C103(Mma+, Mg+, me+ )
-+ )\H+G7h0585[01223(mg+, Mg++, mH+) + 01223<mH+, ME++, mg+)]
1 2 2
+ 5)\,4,4]1 (SBS,BI + \/50/365/> Clggg(mA, mH+,mA) + <—C/3851 + \/53,305/> 01223(mA, mg+,mA)

1 2 2
+ 5)\@0@0;1 [(—8505/ + \/50585/) 01223(771@0, M+, mgo) + (0505/ + \/58555/) Clggg(mgo, mag+, mgo):|

1
+ 4>\AG0h <8685/ —+ \/_6505/> <—3505/ + \/5058@) [01223(mA, mpg+, mGo) + Clggg(mgo, mpg+, mA)]
1
+ Aacen ( Ccpsy + \/58505/) <65051 + \/55535,> [Chaoz(ma, mg+, mgo) + Crazs(mgo, mg+, ma)]
1 2
+ = 5 [ S$gSq + \/_cﬁca) 01223(mH7mH+;mH) + (-Cgsa + \/isﬂca) C1223(mH,mG+7mH)}
3 2 2
+ 2)\hhh {( 58Cq + ﬁcﬂ%) Chaos (M, mpg+,mp) + (C,Bca + \/§Sﬁsa> 01223(mh7mG+amh)}
1
+ —Aann <565a + \/§Cﬁca> (_S,Bca + \/§Cﬁsa> [Choos(mpr, my+, mp) + Crags(mp, Mg+, mp)]

+ —Xghh (-CBSQ + \/§sﬁca> <05ca + \/535sa> [Choos (M, mg+, mp) + Chraos(mp, ma+, mpy)]

2
1
2
1 2 2

+ Z)\HJerh |: S8S8p/ + \/§CBCBI> 01223(mH+, my, mH+) + (\/56585/ — SﬁCﬁ/) Clgzg(mH+,mGo, mH+)]

2
(S/BSQ + \/—Cﬁca> 01223(WH+, mg, mH+) + (—Sﬁca + \/§Cgsa> 01223(WH+,mh, Mg+ ):|

1

+ Z)\HJFH h
1 2 2

+ z_l)\G+G_h —CgSp + \/5850@) Clggg(mg+,m,4, mg+) + (CﬁCﬁ/ -+ \/55585/) 01223(m0+, maqo, mg+>1
1 2

+ Z_l)\G+G_h ( CBSq + \/5856,1) 01223 mg+,mH, mg+) + (Cgca + \/5558a> 01223(mg+, mp, mG+):|

2
+ _)\HJFG |\ —ssgcs + \/—0535') (Cﬁcﬁ’ + \/_8,38@/> [01223(mH+,mGo, mg+) + 01223(mg+,mG0, mH+)]

1
+ = Ag+a-n <Sﬁ$5/ + \/_6506/> ( cgSp + \/_8505/> [Clggg(mH+,mA, mg+) + 01223(m0+ mA,mH+)]
+ —Am+e-n <5B5a + \/_050a> (_Cﬁsa + \/585%) [Croas(mp+, mu, ma+) + Crazz(ma+, mu, mg+)]

—88Cq + \/_Cﬁsa) (Cﬁca + \/58,6%) [01223(mH+7mh7 mG+) + 01223(mG+, M, mH+)]}7

(D.158)
Mo (033, 4%)s = 0, (D.159)
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1
1672

MﬁlzPZI(pip; q2)V = {2g3mWC%/V(CC¥Cﬁ + ﬂSQSB)CVvv(TTLw, mw, mW)

+ ¢>mw CaCp + ﬁsasﬁ)(s%,v + s%)Cg“f“f(mg+, mw, My )

(

+ gSmW(—ca% + \/§Sa05)55c/30§“f“f(mH+, mw, My )

+ ¢*mw (cacs + \/§Sa55)(812/v + s%)C‘%‘g(mW, mw, mg+)
(

+ P (—casp + V25405)55c3C1Y (M, my, Mg+ )

— g97mw (cacs + \/ﬁsasﬁ)(cgv — 53, — s%)(sa, + 5%)[6’24(mw, ma+, ma+) + Cog(ma+, mag+, my )]

(
— g97mw (—cass + \/isa%)(c%/v — 5%, — 02)3505[6'24(771”/, mpg+, my+) + Cog(Mmp+, my+, my )]
+ ggzmw (cacs + ﬂsasﬁ)s%c%[024(mw, mpg+, mg+) + Cog(mpg+, mg+, my )]

(

+ ggimw (—cass + V25ac)ssc5(s5 + s3)[Coa(mw, ma+, my+) + Cos(me+, my+, my )]

— 2995 (st + s%)zm%v(ca% + \/ﬁsasﬁ)Co(mW, me+, mw)

— QQQ%S%C%W?/I/(CQCQ + \/§sa55)00(mw, Mg+, My )

+ 2 g+a-ngymiy (s + 53)°Co(me+, mw, ma+) + 2Xg+g-ngymiy s5¢5Co(mp+, mw, my+)
+ 2\ g+ a-ngymiyspea(siy + s3)[Colmp+, mw,me+) + Co(ma+, mw, my+ )]

— 20°cE My (Cacs + V25455)Cos(Mer, Mt , M)

— g cymw (cacs + \/§sa35)(2D — 2)Bo(¢*, mw, my)

+ ggzmw|—caCasiy + \/5(0%4/ — 2)s455] (s + 3%)[30(29%, mw, ma+) + Bo(p}, ma+, mw)]

+ ggZzmy [CQSBS%,V + \/5(0%1/ — 2)sa05]3505[30(p§, mw, my+) + Bg(pf, my+, my)]
3

+ g?ZmZ(cacB/ + 25455)3[Coa(myg, mu, mego) + Cas(meo, mp, myz)]
3

+ %mz(CaC@ + ZSQSB/)(—CQSB/ + 28a05/)2[024(mz, mp, mA) + 024(mA, mp, mz)]

3

+ %mz(CaC@ + 23(156’)(_3(106’ + 20a85/)2[024(mz, my, mgo) + 024(mG'0, my, mz)]
3
g

+ fmz(—SaCB/ + QCaSﬂ/)(QCaCB/ + 8a85/)(—0a851 + 28(163/)[024(7%2, my, mA) + CQ4(TI’LA, my, mz)]

— g%m%(cacﬁy + 23035/)3Co(mz, Mp, My) — g%m‘}(cacﬁ + 25458 )(—SaCp + ZCQSBI)QC’O(mZ, my, my)
+ 6)\hhhg%m22(ca65/ + 23a35/)200(mh, mz,mp) + 2)\Hth%mZZ(—sa0g/ + 2Ca3ﬁ/)200(mH, Mz, M)
+ QAHhhgémQZ(cacﬁv + 25,53 ) (—saCp + 2¢05)[Co(mn, mz, mpu) + Co(mp, mz, my)]

3

— Zmz(&—) — 302(1)(6&65/ —|— 2806851)[30(]?%7 mp, mz) —I— Bo(pg, mp, mz)]

— %mzsg(J((—SaCB/ + QCQSﬁ/)[Bo(p%,mH,mz) + Bo(pg,mH,mZ)]}, (D160)
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MUY (03,05, 4 )v

= 1622 {g?’cwmz(ca%/ + 25455 ) Cyvv(mz, mw,mz)
+ Pmw ([ (cacs + V25455)C )+ 52, V25055)Cyyvy (mu, 0 ]
g mw |Gy \Calp 5a58)Cvyv(mw, mz, my sy (cacs + V25453)Cyyy (mw, 0, my)

1
— §g3mw(ca05 + \/§8a55)[(s%/ + s%)Cg“f“f(mg+, mz, mw) — s Covy(mear, 0, my )]

L 3

— 59 mw (—caSp + ﬁsac@)sﬂcﬁcgg“;(mlqﬂ mz, my )
1

— 59 mw(cacs + V25058) (3 + s3) U5 (mw, mz, ma+ ) — st Oy (mw, 0,m )]
1

— §g3mw(—ca33 + ﬂsacﬁ)sﬁcﬁC"}“//‘g(mW, My, Mg+ )

- 4g3s%m13,v(caclg + V25453)Co(myw, mu++, mw) — gomiy (5%, + 5%)2<CQCB/ + 28455 )Co(mz, mg+, mz)
- g%m%s%cﬁ(cacrgl + 25458 Co(mz, my+,mz) — M3y (cacs + V25455)>Co(my, my, my)
— Pmiy(Cacs + V25058) (—SaCs + V2¢455)>Colmuy, my, my)

+ 6 A nnng My (cacs + \/§SQSB)2CO(mh, mw, mp)

+ 22y ung* My (—Sacs + \/§ca35)200(mH, My, M)

+ 2 mnn g (cacs + V25455)(—5acs + V2¢053)[Co(mp, mw, mu) + Co(mpg, my, my,)]

+ A+ - ng My s5C0 (Mg, My, Mg+

+ Agra-ngymiy (st + S%)200<m(;+, my, ma+) + Anara-g>siymiy Co(ma+, 0, ma+)

+ /\H+H7hg%m‘24/s§cf300(m1{+, My, My+)

+ Ag+a-ngymiyspcs(syy + 8%)[Co(mH+,mZ, ma+) + Co(ma+, mz, my+)]

+20°mw s3(cacs + V25455)[Cos(mas, mupes, my) + Cos(myy, myge+, mg+ )]

+ 2¢°my sges(—cass + \/§sa05)[024(mH+, myg++, my ) + Cog(my, mp++, mg+)]

+ %g?’mw(ca% + ﬁsa35)3[024(mw, mp, ma+) + Cog(ma+, mpy, my )]

+ %ggmw(—sacﬁ +V2¢055)(Cats + V25055)[Cos(mw, mu, ma+) + Coa(mes, mp, my)]

+ %g3mW(CaCﬁ +V25058)(—Casp + V25608)[Cos(may, mp, Mg+ ) + Coa(mg, mp, my)]

+ %g3mw(—sac/3 + \/§ca55)(—ca55 + \/ésa%)(sa% + \/Ecacﬁ)[CM(mW, my, mpg+) + Cog(mpg+, my, my)
+ %gg%mw(s%,v + s3)(caep + V25553)(Catpr + 25053 )[Cos(mao, ma+,mz) + Cos(mz, ma+, meo))

+ %ggémW(S%v +53)(—casp + V28508 ) (—casp + 25005 )[Cos(ma, ma+, mz) + Coa(mz, ma+,ma)]

+ %gg%mwsﬁcﬁ(_sﬁcﬁ/ +V2eg85) (Cayr + 25a59) [Coa(meo, mu+,mz) + Cos(mz, mp+, meo)]

1
+ 599%77%14/8565(8,68@/ =+ \/565051)(—Ca8,g/ + 23a05/)[024(m,4, mg+, mz) + 024(7712, Mg+, mA)]
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— gPewmz(cacs + 25a55)Cas(Mey, Mer, me,)
— gPeqym (cacs + \/§sa55)Cg4(mc+, Mey, Met ) — G Stymw (Cacs + \/isa35)024(mc+,mcw, Mt )

— ¢Pmw (cacs + V25455)(D — 1)Bo(¢%, my, mw) — g°cwmyz(cacs + 25453 ) (D — 1) Bo(q?, mz, my)

4
— %g3mwsa35 [Bo(pf, mw, my++) + Bo(pg, mw, Myg++ )]

1

- 193(3 — Cao )My (CaCp + ﬁsasﬁ)[Bo(p%, mw, mp) + Bo(ps, mw, mp))
1

- 19382amw(—8a65 +V2¢453)[Bo(p?, mw, my) + Bo(p3, mw, mu)]
1

— §gg%mw[cacﬁs%/ — \/i(c%V — 2)8a5s] (s + s%)[Bo(pg, my, ma+) + Bo(pt, mz, ma+)]

1
+ éggémw [%858124/ + \/5(0%1 - 2)3aCB]SECB[B0(p§7 mgz, mH+) + Bo(pfa mz, mH+>]

1

— §gesz(CaCﬂ + \/§sa35)[Bo(p§, 0,ma+) + Bo(p?, 0, mg+)]}, (D.161)

where Claoz(m1, ma, m3) = Cra(ma, ma, m3) + Caz(mi, ma, ms3) and

Cyyy (ma, ma, my) =

[6(D — 1)Cay + pi(2Ca; + 3C11 + Cp) + p5(2Ca9 + Cha) + py - pa(4Ca3 + 3C12 + Oy — 400)]

(m1, ma, ms), (D.162)

ng\‘?(ml , M2, m3)

[(D — 1)Cay + pi(Ca1 — Cp) + p5(Caz — 2C15 + Cp) + 2p1 - p2(Caz — C'11)] (mq, ma, ms3),
(D.163)

C\i}%(mla M2, m3)
[(D — 1)024 +p§(021 + 4011 + 400) + pg(CQQ + 2012) + 2p1 . p2<023 + 2012 + CH + 200)]
(ml, may, mg). (D164)
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