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Abstract

Although the standard model (SM) was completed by the discovery of the Higgs boson at the
LHC in 2012, it is not the end of particle physics. Predictions of the SM are certainly consistent
with the results of the LHC data within uncertainties, but some phenomena beyond the SM
have been observed by other experiments; i.e. neutrino oscillation, dark matter and baryon
asymmetry of the Universe. In addition, there are some theoretical problems in the SM such as
the hierarchy problem. Such a situation means that the SM must be replaced by a new theory
which is a more completed form so that the above problems can be solved.

Even though the Higgs boson was discovered, the structure of the Higgs sector has not been
determined yet. In fact, there remain many questions for the Higgs sector. “What is the origin
of the negative mass term in the Higgs potential ?” “Which is the nature of the Higgs field:
is it an elementary field or a composite field ?” “How many Higgs fields are there in the true
model ?” Because no theoretical principle requires the Higgs sector to be the minimal one,
there is a possibility that the true Higgs sector is extended from that of the SM. Notice that
most of extended Higgs sectors have not been excluded at all by the data of the LHC.

Furthermore, we can say that the structure of the Higgs sector is strongly related to a
scenario of the new physics beyond the SM, because various models based on those scenarios
introduce extended Higgs sectors. Each new physics model has a characteristic Higgs sector.
Namely, determining the structure of the Higgs sector by the bottom-up approach is one of
the most effective procedures to establish the new physics. Therefore, in this thesis, we discuss
studies to determine the structure of the Higgs sector by testing various extended Higgs sectors
at future collider experiments such as the LHC and the International Linear Collider (ILC).

There are roughly two kinds of the approaches for the Higgs search. One is to directly
search the second Higgs boson at the collider experiments. The other is the indirect tests
through detecting deviations from the SM predictions in observables such as electroweak oblique
corrections and couplings of the discovered Higgs boson. In particular, it is time to study
properties of the couplings of the discovered Higgs boson as precisely as possible, Coupling
measurements of the Higgs boson have just started and the measurement accuracies will be
improved at the LHC Run-II and future collider experiments such as the high luminosity LHC
and the ILC. In order to compare the theory predictions with future precision data of Higgs
boson coupling measurements which are expected to be at O(1) % level, we should evaluate
these couplings with higher order corrections not only in the minimal Higgs sector but also in
various extended Higgs sectors.

In this thesis, we investigate how extended Higgs sectors can be distinguished and identified
by comparing precise calculations of the Higgs boson couplings including one-loop corrections
with precision measurements of the Higgs boson couplings at future collider experiments. In
particular, we focus on four types of two Higgs doublet models (THDMs) with the soft breaking
Z2 symmetry to avoid flavour changing neutral currents, the model with an additional real Higgs
field (HSM) and that with an additional complex triplet Higgs field (HTM). In non-minimal
Higgs sectors, the Higgs boson coupling constants can deviate from the predictions in the SM by
effects of additional scalar bosons. Patterns of the deviations in various Higgs boson couplings
largely depend on the structure of extended Higgs sectors. Therefore, the patterns are useful
to discriminate Higgs sectors when they are detected at future colliders. Moreover, we may
able to determine the true Higgs sector by fingerprinting the predictions on the Higgs boson
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couplings in each model with the future precision data. We calculate various couplings of the
discovered Higgs boson at the one-loop level by on shell renormalization in those models.

In the study of the THDMs, we perform renormalization calculations in the modified on
shell scheme, in which the gauge dependence in the mixing parameter is consistently avoided.
We present a complete set of the analytic formulae of the renormalized couplings in four types
of THDMs. It is known that different characteristic patterns of deviations in Yukawa couplings
(hff̄) can be allowed depending on four types of THDMs. We investigate how the pattern
can be modified from the prediction at the tree level by including one-loop contributions under
constraints from perturbative unitarity and vacuum stability, and current experimental data.
We then numerically demonstrate how the inner parameters of the model can be extracted by
future precision measurements of these couplings at the high luminosity LHC and the ILC.
We found that the mixing parameters can be determined more precisely by using measurement
uncertainties at the ILC. Furthermore, there are possibilities to obtain the upper bound for the
mass of extra Higgs bosons without their direct discoveries and also to get information of the
decoupling property.

In study of the HSM, we calculate renormalized Higgs boson couplings with gauge bosons
and fermions at the one-loop level by the on-shell renormalization scheme. We investigate how
they can be significant under the theoretical constraints from perturbative unitarity, vacuum
stability and also the condition of avoiding the wrong vacuum. Furthermore, comparing with
the predictions in the Type-I THDM which is one of four types of THDMs, we numerically
demonstrate how the singlet extension model can be distinguished and identified by using
precision measurements of the Higgs boson couplings at future collider experiments. We found
that the HSM may be able to discriminated from the Type-I THDM by comparing hZZ, hbb̄
and hγγ couplings and corresponding measured values in most of parameter regions.

In studies of the HTM, we also calculate renormalized electroweak parameters ∆r and the
renormalizedW massmreno

W by two kinds of renormalization schemes in addition to renormalized
Higgs boson couplings. We numerically evaluate how the hWW , hZZ and hhh couplings deviate
from those of the SM at the one-loop level under the constraints from perturbative unitarity and
vacuum stability, and current experimental data. We find that one-loop contributions to these
couplings are substantial as compared to their expected measurement accuracies at the ILC.
Therefore the HTM has a possibility to be distinguished from the other models by comparing
the pattern of deviations in the Higgs boson couplings.
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Chapter 1

Introduction

1.1 Overview

The standard model (SM) was established as a theory which can describe the world of ele-
mentary particles well. The SM is based on two pillars, namely the gauge principle and the
spontaneously symmetry breaking. In particular, in the SM, three kinds of fundamental inter-
actions can be expressed by the gauge symmetries SU(3)C × SU(2)L × U(1)Y , where SU(3)C ,
SU(2)L and U(1)Y represent the symmetry of color, isospin and hypercharge, respectively. The
SU(2)L×U(1)Y symmetry spontaneously breaks into U(1)EM which represents the electromag-
netic symmetry. The physics had been verified experimentally at several collider experiments
such as LEP experiments from the 1980’s to the 2000’s; i.e. discoveries of weak gauge bosons
and precision measurements of their observables and so on [1]. In 2012, the other of the two
pillars has been proved by the discovery of the Higgs boson which plays an essential role for
spontaneous symmetry breaking [2, 3]. Since the Higgs boson was the only undiscovered par-
ticle in the SM for a long time, the discovery led the SM to be completed. Experimental data
for observables of the discovered Higgs boson are consistent with the predicted values in the
SM [4–6]. In addition, there is no report which tells discoveries of other new particles such as
superpartner particles.

Although the discovered Higgs particle is a SM-like one, a lot of things are still unknown
for the Higgs sector; e.g. the origin of the negative mass term in the SM Higgs potential, the
essence of the Higgs field (elementary scalar or composite?) and the shape of the Higgs sector
(how many Higgs particles?). The minimal Higgs sector of the SM is just an assumption. There
are possibilities that the Higgs sector is extended, and all extended Higgs sectors have not been
excluded at all by the data of the LHC.

On the other hand, there are some phenomena beyond the SM; i.e. neutrino oscillations [7,8],
the existence of dark matter (DM) [9] and baryon asymmetry of the Universe [10] and so on.
We need a more polished theory which can explain such phenomena too. Many researchers have
tried to build up various theories to solve the problems. Of course, there is only one correct
theory. In order to clarify the true theory, we must test and narrow down these new physics
models by experiments.

The collider experiment is one of most powerful experiments to detect new physics observ-
ables. The LHC [11] experiment restarted in May 2015 with increasing the center-of-mass
energy (

√
s) from 8 TeV to 13 TeV. Therefore new particles may be discovered in the near

future. Not only direct discoveries of new particles but also detecting deviations of some ob-

1
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servables from those on the SM such as the production cross sections and decay branching ratios
of the Higgs boson can be expected. Moreover some electron-positron collider experiments are
planning such as the International Linear Collider (ILC) [12,13], the Compact LInear Collider
(CLIC) [14] and Future e+e− Circular Collider (FCCee) [15,16] in order to detect new particles
and to precisely measure various observables. In order to come closer to understanding the
theory of beyond the SM by testing several new physics models at the future collider experi-
ments, we should investigate theoretical properties of those models, and calculate theoretical
predictions of the observables as accurately as possible.

1.2 Standard Model

In the SM, interactions among particles can be described by gauge symmetries, SU(3)C ×
SU(2)L × U(1)Y , where SU(3)C , SU(2)L and U(1)Y are symmetries of the color, the isospin and
the hypercharge, respectively. Particles obtain their masses via the spontaneously symmetry
breaking, in which SU(2)L × U(1)Y symmetry breaks to U(1)EM . The symmetry breaking
occurs by the Higgs field getting the vacuum expectation value (VEV) v.

In the SM, the Higgs potential is given by

V = µ2|Φ|2 + λ|Φ|4, (1.1)

where Φ is the isospin doublet scalar field. In order to realize the spontaneously symmetry
breaking, the sign of µ2 is required to be negative. In the Higgs potential, there are two
independent parameters µ2 and λ. µ2 can be replaced by v as we will show in Chapter. 2., and
v is determined by the Fermi constant GF as v = 1/(

√
2GF )

1/2 (≃ 246 GeV). The remaining
parameter λ has been determined by the Higgs boson mass mh as λ = m2

h/(2v
2) ≃ 0.131.

1.3 Higgs boson searches and discovery

At the LEP experiment [1], observables of the Z boson were precisely measured by tuning
√
s

to be around 91 GeV the mass of Z. The other purpose of the LEP experiment was to discover
the Higgs boson h. Although the Higgs boson did not discovered at LEP, the lower bound on
the mass of the Higgs boson mh (mh > 114.4 GeV [1]) was given by the Higgs boson search
via the production process e+e− → hZ, where center of mass energy was

√
s = 189− 209 GeV.

In addition, an upper bound on the mass of the SM Higgs boson (mh < 144 GeV [1]) was
indirectly given by precision measurements.

In 2012, the discovery of the new particle was announced by the ATLAS and the CMS
collaborations at the LHC [2, 3]. The new particle was verified to be the Higgs boson by
following detail measurements as the LHC Run-I. The LHC Run I started in 2008 with

√
s = 7

TeV, and it ran with upgrading
√
s to 8 TeV for the one-year period from 2012.

The Higgs boson was mainly produced through following processes;

1. gg → h, gluon-gluon fusion (ggF)

2. qq(q′) → qq(q′)h, vector boson fusion (VBF)

3. qq(q′) → V h, association with a vector boson V (Vh, V = W,Z)
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Figure 1.1: Signal strengths of each decay mode evaluated by ATLAS (left panel) [19] and CMS
(right panel) [18].

4. gg → tth. association with top quarks (tth)

The ggF process is the most influential process for the production of the Higgs boson with
mh ≃ 125 GeV. The sensitive decay channel of the Higgs boson at the LHC are the modes γγ,
4 leptons (4ℓ), WW , ττ and bb̄.

The mass was measured by inputting the data from the γγ and 4-lepton decay channels.
ATLAS and CMS reportedmh = 125.36±0.37(stat)±0.18(syst) [17] andmh = 125.03+0.37

−0.27(stat)
+0.13
−0.15(syst) [18], respectively. It can be said that the both data are consistent each other.

ATLAS and CMS evaluated the signal strength µ defined as a measured cross section times
a branching ratio of the Higgs boson for a given process divided by the SM expectation, because
it is important to test the validity of the SM. Fig. 1.1 shows the signal strengths of each decay
mode evaluated by ATLAS (left panel) and CMS (right panel). The ATLAS’s and the CMS’s
results for all channels agree with the predictions of the SM within uncertainties of 2σ.

The scaling factor κi is also an important quantity, where κi is defined as the ratio of the
Higgs boson coupling to the particle i from that in the SM. λjk is the ratio of two values κj

and κk. Namely, the κi and λjk indicate deviations in the Higgs boson coupling from the SM
predictions. In Fig. 1.2, the scaling factor values of various couplings evaluated by the both
collaborations are shown. In the analyses for κi, κi of all Yukawa couplings hff̄ are presumed
to be universal values, and the κZ also presumed to be the same as the κW . We can see that
all the SM predictions (κi = 1) are included within the 2σ uncertainty of the measured scaling
factors, where the current 1σ uncertainties of the scaling factors are typically of O(10%).
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Figure 1.2: Scaling factors of several couplings evaluated by ATLAS (left panel) [20] and CMS
(right panel) [18].

1.4 Problems with the Higgs sector of the Standard Model

Although the properties of the discovered Higgs boson are similar to those in the SM [4], it
does not mean that the discovered Higgs boson is the Higgs boson of the SM, and there are a
lot of questions (or mystery) in the SM Higgs sector.

For example, in the SM, in order to realize the spontaneously symmetry breaking, it is
required the sign of the mass term in the Higgs potential to be negative. We do not understand
the reason. We also do not have the clear understanding of the essence of the Higgs field.
The Higgs field is presumed to be the elementary scalar field in the SM. On the other hand,
there has been several studies to investigate possibilities the Higgs field is the composite scalar
field [21–26]. In fact, there is no scalar field up to now except the discovered Higgs boson. If the
essence of the Higgs field is determined, we may decide the next paradigm of particle physics.

In the SM, the Higgs sector is assumed to be the minimum form, in which there is only one
isospin doublet Higgs field. But there is no compelling theoretical reason for such a minimal
form. There are possibilities for extended structures of the Higgs sector with some number
and representation of additional Higgs fields; e.g., models with the doublet field and additional
singlet fields, doublet fields and/or triplet fields. These extended Higgs sectors can also explain
the current LHC data for the discovered Higgs boson in some portions of their parameter
regions.

There are also some questions from observations, as we discuss before. We should clarify
such questions by using information of the discovered Higgs boson.

1.5 Hierarchy problem of the Higgs boson mass
The hierarchy problem of mh is caused by the Higgs sector of the SM. In the SM, the renor-
malized Higgs boson mass can be expressed by,

m2
h = m2

h0 −
y2t
4π

Λ2 + · · · , (1.2)

where m2
h0 is the bare mass of the Higgs boson, yt is the Yukawa coupling of the top quark, Λ is

the cut off scale, and the part “· · · ” indicates contributions of other loop diagrams. The second
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term in the right side of Eq. (2.9) is the top quark loop contributions to the Higgs boson mass.
If the limit of the application of the theory is the Planck scale, namely Λ ∼ O(1019) GeV, the
toq quark contribution corresponds to the quadratic divergence with (O(1919) GeV)2. Then,
the Higgs boson mass with about 125 GeV is derived via the huge fine tuning as (125GeV)2 =
(O(1019)GeV)2 − (O(1019)GeV)2. This unnatural fine tuning is called “the hierarchy problem
of the Higgs boson mass”. There are several new physics paradigms motivated by solving the
hierarchy problem, such as supersymmetry, dynamical breaking of electroweak symmetry and
gauge-Higgs unification.

1.6 Phenomena beyond the standard model
Although the properties of the discovered Higgs boson are very similar to those in the SM, the
true theory of particle physics cannot be the SM because there are phenomena which cannot
be explained in the SM. In this section, we give brief reports of some of them.

1.6.1 Neutrino masses

The experiments with solar, atmospheric, reactor and accelerator neutrinos have shown that
oscillations of neutrinos caused by nonzero neutrino masses and neutrino mixing. According to
the neutrino oscillation data [7,8], in the case of 3-neutrino mixing, one of the two independent
neutrino mass squared differences ∆m2

21 is much smaller in absolute value than the second one
∆m2

31, i.e. |∆m2
21| ≪ |∆m2

31|. Current data show,

|∆m2
21| ≃ 7.5× 10−5eV2, (1.3)

|∆m2
31| ≃ 2.5× 10−3eV2, (1.4)

where |∆m2
21| and |∆m2

31| were observed at experiments for measuring the solar neutrino and the
atmosphere neutrino. Although the experimental fact of neutrino oscillation imply neutrinos
have non-zero masses, the masses of neutrinos are zero because there is no right handed neutrino
in the SM. Therefore, we need new physics to explain neutrino masses.

1.6.2 Dark matter

It is known that the dark matter exists in the Universe via various observation experiments.
At first, the existence of dark matter had been known via galactic scales by precision galaxy
rotation measurements [27]. Currently, measurements the fluctuation of cosmic microwave
background radiation at the WMAP experiment [9] and the Planck experiment [10] reported
that the energy density of the baryon accounts for only about 4.5% of that of the Universe and
most of the rest is composed of that of dark matter with about 22.7% and that of dark energy
with 72.8%. We know the following properties of the dark matter,

• Stable

• Electrically neutral

• Non-relativestic

• It can explain the observation, the dark matter mass density is ΩDM ≃ 0.2 [10]

The SM does not contain the dark matter candidate.
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1.6.3 Baryon asymmetry of the Universe

We know that the ratio of the baryon number density to entropy density is nB/s ∼ 10−10 [10].
Namely, the baryon number is asymmetry in the Universe (BAU). To explain numerically
this ratio is an important problem between cosmology and particle physics. According to the
Sakharov’s conditions [28], following three conditions must be satisfy, in order to generate the
baryon asymmetry from the baryon symmetry Universe.

• Baryon number violation

• C and CP violation

• Departure from equilibrium

The third condition cannot be satisfied in the SM because the measured mh is too large. In
addition, the CP violating phase in the Kobayashi-Maskawa matrix is too small to generate the
baryon asymmetry. There are some of scenarios to solve BAU; Leptogenesis [29,30], Afleck0Dine
mechanism and electroweak baryogenesis [31, 32].

1.7 Physics of extended Higgs sectors
We should consider various types of Higgs sectors without limiting the minimal Higgs sector,
because there is no theoretical principle to limit the Higgs sector to be the minimal structure.
In addition, new physics can be the motive to consider extended Higgs sectors because extended
Higgs sectors are often introduced in various new physics models. Although infinite number
of extended Higgs sectors can be considered, we focus on second simplest Higgs sectors which
have an additional Higgs field. The reason is that models containing the second simplest Higgs
sectors are effective theories of the infinite extended Higgs models.

We should take into account some experimental constraints on structures of Higgs sectors.
The electroweak rho parameter (ρ) [33] is one of them. The experimental value of ρ is close
to unity, which suggests that there is a global SU(2) symmetry, so-called the custodial sym-
metry [33]. The rho parameter strongly depends on the property of the Higgs sector; i.e., the
number of Higgs multiplets and their hypercharges. In the Higgs sector composed from only
SU(2) doublets and/or singlets, the rho parameter is unity at the tree level because of the
custodial symmetry [34]. Thus, these Higgs sectors can be regarded as the natural extension of
the Higgs sector.

We also should consider the constraint on the Higgs sector from several bounds on the
existence of flavor changing neutral currents (FCNCs). In the SM, FCNCs are automatically
absent at the tree level [35] because the Yukawa coupling matrix (Yf ) and the fermion mass
matrix (Mf = Yfv) can be simultaneously diagonalized. However, in general, if additional
doublet Higgs fields are introduced into the Higgs sector, FCNCs appear at the tree level [36,37].
For example, if two kinds of doublet Higgs fields (Φ1 and Φ2) couple to a kind of fermion
field, the fermion mass matrix Mf is expressed by a linear combination of some matrix as
Mf = Mf1v1 + Mf2v2, where v1 and v2 are VEVs of Φ1 and Φ2, respectively. On the other
hand, the matrix of Yukawa couplings is given by Yf = −Mf1 sin θ +Mf2 cos θ, where θ is the
mixing angle between the CP-even component of Φ1 and that of Φ2. In such a case, since Mf

and Yf are not simultaneously diagonalized, tree level FCNCs can appear.
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1.7.1 Two Higgs doublet models

The two Higgs doublet model (THDM) [38] which has an additional isospin doublet field with
the hypercharge Y = 1/2 is often motivated in new physics models beyond the SM. For example,
the Minimal Supersymmetric SM (MSSM) [33] requires the Higgs sector with two doublet fields.
Multi Higgs structures can contain additional CP violating phases [39] and also realization
of the strong first order phase transition, both of which are required to realize electroweak
baryogenesis.

Also, electroweak precision data indicate that ρ is very close to unity [40], and this fact
strongly constrains parameters in extended Higgs models. In the THDM, a relation ρ = 1 is
well satisfied at the tree level.

In general, if additional doublet Higgs fields are introduced into the Higgs sector, FCNCs
appear at the tree level [36,37]. Such a situation is very severe, because FCNCs are constrained
by flavour experiments. Therefore, we often consider THDMs in which FCNCs are forbidden at
the tree level by imposing a softly-broken discrete Z2 symmetry [36]. In this case, four types of
Yukawa interactions appear depending on the way of the assignment of the Z2 charge for par-
ticles [41]. These four types of THDMs provide variety of phenomenological consequences [42],
which are tested at collider experiments.

1.7.2 Supersymmetric standard models

As mentioned in Sec. 1.5, it is known that the SM Higgs sector holds the hierarchy problem of the
Higgs boson mass. The supersymmetric theory is one of theories which can explain the hierarchy
between the scale of the Higgs boson mass and the Planck scale. In the supersymmetric theory,
the quadratic divergence in the Higgs boson mass is naturally cancelled by loop contributions
of superpartner particles whose spins are different from the SM counterparts by one half.

At least two iso-spin doublet Higgs (Φu and Φd) fields are required in models of the super-
symmetric theory. Φu with Y = −1/2 and Φd with Y = 1/2 give masses to up-type quarks
and down-type quarks, respectively. The supersymmetry (SUSY) forbids charge conjugations
of the Higgs fields to exist in the Lagragian. Moreover the QLΦuuR term are forbidden by the
hypercharge invariance. Then, an additional Higgs doublet field is required to give masses to
up-type quarks. Namely, Higgs sectors of supersymmetric models are extended Higgs sectors.
The minimal supersymmetric extension of the SM (MSSM) are composed of all the SM par-
ticles, an additional iso-spin doublet Higgs field and their superpartner particles. The Higgs
sector in the MSSM is the same as that of the THDM (so called Type-II THDM).

1.7.3 Composite Higgs models

What is the origin of the Higgs field? We have not yet obtained the certain answer of this
question. There is a possibility which the Higgs boson is a composed state of more fundamen-
tal fields with a certain strong dynamics. In the composite scenario, the Higgs boson is the
pseude-Nambu-Goldstone boson (pNGB) associated with spontaneous breakdown of a global
symmetry [21–25]. The mass of the Higgs boson is generated at the one-loop level by the loop
contributions of other particles. The number of pNGB is determined by the number of the
broken generators. For example, in the Minimal composite Higgs model (MCHM), the original
global symmetry is SO(5) × U(1)X . The SO(5) is spontaneously broken into SO(4) by some
dynamics [26], so that four NGBs appear which correspond to four components of the doublet
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Higgs field. Namely, the MCHM can naturally explain the structure of the Higgs sector in the
SM.

1.7.4 Higgs singlet model

The Higgs singlet model (HSM) with an additional real scalar field with the hypercharge Y = 0
is also one of minimal extended Higgs models [43]. Because the VEV of the singlet field does
not contribute to the electroweak symmetry breaking, the rho parameter are not modified from
that of the SM at the tree level. In the U(1)B−L gauge model, the Higgs sector is required
to spontaneously break the U(1)B−L symmetry by introducing a singlet scalar field for such a
purpose [44–46]. The breaking may be related to the mechanism of neutrino mass generation.
The HSM also realize the strong first order phase transition [47]. If the model respect an
additional global U(1) symmetry [48] and/or a discrete symmetry such as a Z2 symmetry [49],
the singlet field can be a candidate of dark matter.

1.7.5 Higgs triplet model

The minimal Higgs triplet model (HTM) has an additional complex triplet scalar field with the
hypercharge Y = 1 [50]. In the HTM, there is a mechanism to generate majorana neutrino
masses, which is called as the Type-II seesaw mechanism. One of the important features in
this model is that ρ deviates from the unity at the tree level due to the nonzero VEV of the
triplet field v∆, therefore v∆ ≪ v (≃ 246 GeV). There are seven physical mass eigenstates; i.e.,
triplet-like Higgs bosons (H±±, H±, A,H) and the SM-like Higgs boson h. In particular, collider
phenomenology of the doubly charged Higgs bosons H±± are very interesting and important
because particles with electromagnetic charge Q = 2 are not contained in the SM, and the
dominant decay process of H±± strongly depends on v∆ and the mass difference among triplet
like Higgs bosons [51].

1.7.6 Exotic Higgs models with ρ = 1 at tree level

The ρ deviates from unity at the tree level in the Higgs sector with exotic representation fields
such as triplets [33,34,52]. In such a model, VEVs of such an exotic field violates the custodial
symmetry, so that the VEV is severely constrained by the rho parameter data. There is another
extended Higgs sector in which an alignment of the triplet VEVs makes the rho parameter to
be unity at the tree level, named as the Georgi-Machacek (GM) model [53]. Furthermore, it
is known that the addition of the isospin septet field with the hypercharge Y = 2 does not
change the rho parameter from unity at the tree level [33, 34, 52]. As a striking feature of
exotic Higgs sectors, there appears the H±W∓Z vertex at the tree level [54], where H± are
physical singly-charged Higgs boson. In the multi-doublet model, this vertex is induced at the
one loop level, so that the magnitude of the H±W∓Z vertex tends to be smaller than that in
exotic Higgs sectors [55]. Therefore, precise measurement of the H±W∓Z vertex can be used
to constrain exotic Higgs sectors. In addition that, there is an interesting property that the
hV V couplings (V = W,Z) can be larger than those of the SM [34, 52]. If the hV V couplings
are proved to be larger than the SM values in future precision coupling measurements, it will
be decisive evidence of the exotic Higgs sector.
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1.8 In this thesis
Because we do not know the shape of the Higgs sector, we can consider various possibilities of
the Higgs sector. The structure of the Higgs sector is strongly related with the new physics
models. Namely, the Higgs sector is an important key to approach the new Lagrangian beyond
the SM. In this thesis, we discuss how the structure of the Higgs sector can be determined
by testing various extended Higgs sectors at future collider experiments. In particular, we
focus on the indirect search of the second Higgs boson. If an extra Higgs boson is directly
discovered at the collider experiments, it will be the clear evidence of an extended Higgs sector.
But there is also the possibility that no particle is discovered. Even in such a case, precision
measurements of the Higgs boson properties will bring important information. In particular,
the Higgs boson couplings will be precisely measured at the LHC Run II and future collider
experiment such as the high luminosity LHC (HL-LHC) [56] and the ILC [12,13]. Such future
precision measurements may observe deviations in the Higgs boson couplings from those of the
SM, which are indirect evidences of new physics. Although there are studies of the Higgs boson
couplings at the tree level in such models [57], it is not enough to calculate them at the tree level
in order to determine the Higgs sector by comparing with the future precision measurement.
Therefore, we calculate the various Higgs boson couplings including one-loop corrections in the
THDMs [58,59] and the HSM [60] and the HTM [61,62].

First, we define each model, and briefly review the tree level properties to fix notation.
After that, we show how the Higgs boson couplings deviate from the SM predictions at the tree
level. Then, we calculate various couplings of Higgs boson at the one-loop level by the on-shell
renormalization scheme in those models. It is essentially important to calculate various cou-
plings comprehensively because the pattern of deviation in the Higgs boson couplings depends
on the model. We study how extended Higgs sectors can be discriminated by the pattern of the
deviations, and how we can test the extended Higgs sectors via precision measurements at the
HL-LHC and the ILC. We investigate the possibility of determining the Higgs sector without
information from direct searches.

1.9 Organization
This thesis is organized as follows. In Chapter 2 and Chapter 3, we give the review of the
Higgs physics in the SM and some extended Higgs models, respectively. In Chapter 4, we
review the prospects of additional Higgs boson searches at future collider experiments. In
Chapter 5, Chapter 6 and Chapter 7, we present our studies for radiative corrections to the
Higgs boson couplings in the THDMs, the HSM and the HTM, respectively. We discuss how
we can determine the structure of the Higgs sector by using our precise calculations and future
precision measurements of the Higgs boson couplings. Finally, we give the summary of this
thesis in Chapter 8.





Chapter 2

Review of the Standard Model

2.1 Lagrangian
In the SM, interactions among particles are described under following gauge symmetries,

U(1)Y × SU(2)I × SU(3)C , (2.1)

where U(1)Y , SU(2)I , SU(3)C indicate symmetries of the hypercharge, the iso-spin and the
color, respectively. We summarize quantum numbers of particles under these symmetries in
Tab. 2.1. Lagrangian of the SM is composed of the gauge self interaction term (Lgauge), the
kinetic term of fermion fields (Lfermi) and the Higgs sector term (LHiggs),

L = Lgauge + Lfermi + LHiggs (2.2)

The Higgs sector LHiggs is,

LHiggs = |DµΦ|2 − V (Φ) + LYukawa, (2.3)

where V (Φ) and LYukawa indicate the Higgs potential and the Yukawa interaction term, respec-
tively. We define the covariant derivative such as

Dµ = ∂µ − i
g

2
τ iW i

µ − i
g′

2
Bµ, (2.4)

where τ i is Pauli matrix.
The Higgs potential is given by,

V (Φ) = µ2|Φ|2 + λ|Φ|4. (2.5)

Higgs doublet field is parametrized as,

Φ =

(
G+

1√
2
(h+ v + iG0)

)
, (2.6)

where v is a VEV and G+ and G0 are Numbu-Goldstone bosons which are eaten by the lon-
gitudinal components of weak gauge field. If µ2 is negative value (µ2 < 0), the spontaneous

11
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Table 2.1: Fields and their quantum number of symmetries.
Field Y I C

Φ 1
2

2 1
GC

µ 0 1 8

W i
µ 0 3 1

Bµ 0 1 1
QL

1
6

2 3
uR

2
3

1 3
dR −1

3
1 3

LL −1
2

2 1
eR −1 1 1

electroweak symmetry breaking is realized. In the Higgs potential, the vacuum is determined
by imposing a vacuum condition as,

∂V

∂h

∣∣∣∣∣
h=0

= 0, (2.7)

and we obtain a relation as,

µ2 = −λv2. (2.8)

Moreover, the mass of the Higgs boson m2
h is given by the definition of the mass;

m2
h ≡ ∂2V

∂h2

∣∣∣∣∣
h=0

= 2λv2. (2.9)

Masses of weak gauge bosons are given from the kinetic term Lkine as,

Lkine = −g2

4

v2

2
(W 1

µ − iW 2
µ)(W

µ
1 + iW µ

2 )−
1

4

v2

2
(gW 3

µ − g′Bµ)(gW
µ
3 − g′Bµ). (2.10)

We here define the gauge fields as

Wµ =
1√
2
(W 1

µ − iW 2
µ), (2.11)

W †
µ =

1√
2
(W 1

µ + iW 2
µ),

Zµ =
1√

g2 + g′2
(gW 3

µ − g′Bµ). (2.12)

Mass eigenstates of neutral gauge fields are expressed as(
Aµ

Zµ

)
=

1√
g2 + g′2

(
g g′

−g′ g

)(
Bµ

W 3
µ

)
≡
(

cos θW sin θW
− sin θW cos θW

)(
Bµ

W 3
µ

)
. (2.13)



2.1. LAGRANGIAN 13

Then masses of redefined weak gauge bosons are given as,

m2
W =

g2

4
v2, m2

Z =
g2 + g′2

4
v2. (2.14)

As you can see, the photon field does not obtain own mass, because the electromagnetic U(1)EM

symmetry are not broken.
Next, we discuss Yukawa interaction term given by,

LYukawa = −Y ij
u Q̄i

LΦ̃q
j
uR − Y ij

u Q̄i
LΦq

j
dR − Y ij

e L̄i
LΦl

j
R + h.c, (2.15)

where Φ̃ is charge conjugate expression Φ̃ = iτ2Φ
∗, and Yu,d,e are 3 × 3 Yukawa matrices. We

can take basis of fermion fields as

Qi
L =

(
ui
L

d′iL

)
=

(
ui
L

(U ij
CKM)†diL

)
, (2.16)

where UCKM is the Cabibbo-Kobayashi-Maskawa matrix [63] which is an unitary matrix, so
that the Yu,d are diagonalized as,

LY ukawa → −Q̄L(Y
diag
u )Φ̃quR − Q̄L(U

†
CKMYd)ΦqdR − L̄L(Y

diag
e )ΦlR + h.c, (2.17)

= −Q̄LY
diag
u Φ̃quR − Q̄LY

diag
d ΦqdR − L̄LY

diag
e ΦlR + h.c. (2.18)

Components of these diagonalized matrices Y diag
u,d,e are given by,

Y diag
u =

 yu 0 0
0 yc 0
0 0 yt

 , Y diag
d =

 yd 0 0
0 ys 0
0 0 yb

 , Y diag
e =

 ye 0 0
0 yµ 0
0 0 yτ

 , (2.19)

where yf indicates Yukawa couplings of a fermion field f . By the Higgs field obtaining the VEV
v, masses of fermion fields are given by,

LYukawa = −mu

v
ūu

(
1 +

h

v

)
− md

v
d̄d

(
1 +

h

v

)
− me

v
ēe

(
1 +

h

v

)
(2.20)

+ (the same mass terms of other charged fermion particles),

where

mu =
yu√
2
v, md =

yd√
2
v, me =

ye√
2
v. (2.21)

In the SM, all elementary particles couple with the Higgs boson. As shown at Eqs. (2.9), (2.14),
(2.21), the all couplings are proportional to their masses at the tree level.

We here describe the mechanism to forbid the FCNC processes at the tree level. As shown
in the previous paragraph, left handed down-type quark fields in the doublet fields (d′, s′ and b′)
are different from their mass eigenstates (d, s and b). d′, s′ and b′ are related with d, s and b by
the Cabibbo-Kobayashi-Maskawa matrix UCKM as defined by Eq. (2.16). In the SM, the tree
level FCNC processes do not appear through the UCKM . FCNC processes interacting the Higgs
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boson automatically vanish because the Yukawa coupling matrix (Yf ) and the fermion mass
matrix (Mf = Yfv) can be simultaneously diagonalized. FCNC processes interacting neutral
gauge bosons are absent at the tree level because of unitary feature of UCMK ,

Jµ
NC = −d̄′iLγ

µd′iL + · · · (2.22)

= d̄jLU
ji
CKMγµ(U †

CKM)ikdkL (2.23)

= d̄jLδ
jkγµdkL, (2.24)

(2.25)

where indices i, j, k identify flavour. This mechanism is so-called GIM mechanism [35].

2.2 Custodial symmetry

We here consider the SU(2)L×SU(2)R symmetry which can be rewritten by SU(2)L×SU(2)R =
SU(2)V × SU(2)A. Under the symmetry, an arbitrary field matrix M is transformed as,

M → eiθ
i
LτiMe−iθjRτij. (2.26)

In the theory respecting the SU(2)V × SU(2)A symmetry, the SU(2)A is broken by the elec-
troweak symmetry breaking. Then, the SU(2)V symmetry so-called the ”custodial symmetry”
remains in the theory. After the SU(2)A is broken, a relation θL = θR = θV holds. Then, the
transformation given at Eq. (2.26) can be regarded as the transformation to rotate from both
the right side the rotation and the left side with the same angle.

If we here introduce a field matrix defined as,

M ≡ (iτ2Φ
∗Φ) =

(
ϕ0 ϕ+

−ϕ− ϕ0

)
, (2.27)

the Higgs potential in the SM given at Eq. (2.5) can be expressed by,

V =
µ2

2
Tr[M †M ] +

λ

4
(Tr[M †M ])2. (2.28)

Since this Higgs potential obviously is invariant under the transformation M → eiθ
i
V τiMe−iθjV τj ,

we can say that the Higgs sector in the SM respects the custodial symmetry [33].

2.3 Electroweak rho parameter ρ
Electroweak rho parameters ρ indicates the ratio of the strength of the charged current and
that of the neutral current in the weak interaction, and it defines by

ρ ≡ m2
W

cos2 θWm2
Z

. (2.29)

Formula of ρ are expressed by the isospin and the hypercharge of Higgs fields in general
model. We show the formula of ρ in the general Higgs sector. We consider an extended
Higgs sector that contains N Higgs multiplets Φi (i = 1, · · · , N) with the isospin Ti and the
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hypercharge Yi. We assume CP conservation of the Higgs sector. The definition of neural Higgs
components is given by,

ϕ0
i =

(
cicφi + civvi + cizzi

)
, (2.30)

η0j = (φj + vj) . (2.31)

The kinetic term is given by

Lkin = Σi|DµΦi|2 +
1

2
Σj|Dµηj|2, (2.32)

where the first term and the second term are the kinetic term of complex scalar fields and real
scalar fields, respectively. Masses of weak gauge bosons are obtained from Eq. (2.32) as

m2
W = g2Σi

(
|civvi|2[Ti(Ti + 1)− Y 2

i ]
)
+

g2

2
Σj

(
|vj|2[Tj(Tj + 1)]

)
, (2.33)

m2
Z = g2ZΣi

(
2|civvi|2Y 2

i

)
. (2.34)

The VEV v (≡ (
√
2GF )

1/2 ≃ 246 GeV) is expresses as

v2 = 4

{
Σi

(
|civvi|2[Ti(Ti + 1)− Y 2

i ]
)
+

1

2
Σj

(
|vj|2[Tj(Tj + 1)]

)}
, (2.35)

Now we obtain the general formula [34] of ρ from Eqs. (2.29), (2.33), (2.34),

ρ =
g2Σi (|civvi|2[Ti(Ti + 1)− Y 2

i ]) +
g2

2
Σj (|vj|2[Tj(Tj + 1)])

g2Σi (2|civvi|2Y 2
i )

. (2.36)

Radiative corrections to the rho parameter (δρ) show whether the model respects the cus-
todial symmetry or not. In the SM, δρ is roughly expressed by [33],

δρ ∼ g2NC

64π2m2
W

(
m2

t +m2
b −

2m2
tm

2
b

m2
t −m2

b

ln
m2

t

m2
b

)
, (2.37)

where NC is the color number of quarks. Eq. (2.37) shows that the custodial symmetry is
broken in the fermion sector. The limit where masses of up-type quarks are the same as those
of down-type quarks, is the limit to respect the custodial symmetry.

2.4 Theoretical Constraints on the Higgs boson mass

2.4.1 Perturbative unitarity

We discuss the bound on the Higgs boson mass from the constraint of S wave amplitude for two-
body to two-body scattering. The details of this constraint are explained in Ref. [64]. First, we
consider the W+

L W−
L → W+

L W−
L scattering, where WL is the longitudinally polarized W boson.

By performing the partial wave expansion for scattering amplitude for the W+
L W−

L → W+
L W−

L ,
we obtain

Ti(s, t) = T (E, cos θ) (2.38)

= 16π
∑
J

(2J + 1)aJi (s)PJ(cosθ), (2.39)
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where s and t are Mandelstam variables, θ is the scattering angle and E is the collision energy.
In the limit where s ≫ m2

h, the S wave amplitude a0 for the process is given by

a0 = −GFm
2
h

4
√
2π

. (2.40)

By substituting Eq. (2.40) in the optical theorem |aJ |2 ≤ |ImaJ |, the following constraint is
given,

|a0| ≤
1

2
→ mh < 850GeV. (2.41)

Moreover, by taking into account unitarity of S wave amplitudes for other neutral scattering
channels, namely scattering channels betweenW+

L W−
L , ZLZL, hh and hZ states, more restrictive

bound is derived. In the SM, the strongest bound in the Higgs boson mass from the S wave
amplitude unitarity is

m2
h ≤ 4

√
2π

3GF

≃ (700GeV)2. (2.42)

2.4.2 Triviality and vacuum stability

The running coupling of the Higgs coupling λ is also critical for discussing the bound on the
Higgs boson [65–67]. The renormalization group equation (RGE) of the λ in the SM is roughly
expressed by,

Q
dλ(Q)

dQ
= 24λ2 − 7y4t + 12λy2t + · · · , (2.43)

whereQ indicates an arbitrary scale and yt is the Yukawa coupling given at Eq. (2.18). The right
side corresponds to the β-function of the quartic coupling of the Higgs field. From Eq. (2.43),
we find that if the mass of the Higgs boson (m2

h = 2λv2) is too large, λ(Q) becomes larger for
higher energies and blows up at some high energy point (the Landau pole). In contrast, when
m2

h is too small and the β-function is negative because of the term of the fourth power of the
top-quark Yukawa coupling. The situation which the β-function become negative below the
Planck scale is not favored because it means the vacuum stability is broken below the Planck
scale.

Now, we know the value of mh to be around 125 GeV which corresponds to λ ∼ 0.26. The
β-function substituting the value of λ means risky results for the vacuum stability. The result
strongly depends on the value ofmt and αs. The measured top quark mass has a error not small,
which comes from both QCD calculation uncertainty and measurement error. The experimental
value of themt including the error ismt = 173.1±0.7 GeV (3σ) (direct measurement mass) [68].
If we use the center value of the experimental value ofmt, i.e. mt = 173.1 GeV, vacuum stability
is broken at around Q ∼ O(1010) GeV. Then, the precision measurement of mt is essentially
important for vacuum stability.

We can avoid the situation of vacuum instability by introducing additional scalar fields. The
additional scalar boson contributions to the quartic Higgs coupling can put up the β-function
because the sign of the scalar loop contributions is positive.
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Figure 2.1: The left(right) figure is the total width(the decay branching ratio) of the Higgs
boson in the standard model.

2.5 Decay of the Higgs boson

In Fig. 2.1, the left panel shows the decay branching ratios of h as a function of mh. Decay
branching ratios of the h depends on masses of children particles. If mh is smaller than about
160 GeV, the h → bb̄ decay mode is dominant. The reason is that the bottom quark is the
heaviest in light fermions and it has a color factor 3. If mh is larger than about 160 GeV, the
on-shell decay mode of h → WW opens and the mode can be dominant. In the region with
mh & 350 GeV, h can decay into tt̄.

Although h does not couple with γ and g directly, h can decay into γγ, Zγ and gg through
loop processes of charged particles and colored particles. Since the decay modes are loop induce
decay modes, the decay branching ratios are relatively small.

As you can see, the h → V V (V = W,Z) decay modes can appear in the region with
mh < 2mV . It implicates h decays into three bodies (V ff̄) through the decay into virtual weak
bosons, i.e., h → V V ∗ → V ff̄ .

We have already known the value of mh which is about 125 GeV. Namely, the value of the
x-axis of this panel has been determined. Because branching ratios of various decay modes is
larger than O(10−3) in mh 125 GeV, it means that various decay modes can be detected at the
collider experiments. Indeed, at the LHC Run-I, h → γγ, ZZ,WW, bb̄ and ττ modes have been
detected.

The right panel of Fig. 2.1 shows mh dependence of the total width Γh of h. We note that
Γh drastically increases in mh ≃ 2mt because the decay mode h → tt̄ opens. The total decay
width of h with mh = 125 GeV is Γh ≃ O(10−3) GeV.

2.6 Radiative corrections in the SM

2.6.1 Renormalization in the SM

In this section, we describe the renormalization of the SM in order to calculate the [69,70]. We
describe how to determine each counter term in the gauge sector, the Yukawa sector and the
Higgs sector.
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Renormalization in gauge and Higgs sector in the SM

The gauge sector is described by three independent parameters as in the SM. When we choose
mW , mZ and αem as the input parameters, all the other parameters such as v and weak mixing
angle sin θW (sW ) are given in terms of these three input parameters as

v2 =
m2

W

παem

(
1− m2

W

m2
Z

)
, s2W = 1− m2

W

m2
Z

. (2.44)

These parameters and gauge fields; namely W±
µ , Zµ and Aµ, are shifted into renormalized

parameters, renormalized fields and counter terms,

m2
W → m2

W + δm2
W , (2.45)

m2
Z → m2

Z + δm2
Z , (2.46)

αem → αem + δαem, (2.47)

v → v + δv, (2.48)

s2W → s2W + δs2W , (2.49)

W±
µ → (1 +

1

2
δZW )W±

µ , (2.50)(
Aµ

Zµ

)
→
(

1 + 1
2
δZγ

1
2
δZγZ + 1

2sW cW
δs2W

1
2
δZγZ − 1

2sW cW
δs2W 1 + 1

2
δZZ

)(
Aµ

Zµ

)
. (2.51)

Renormalized two point functions of gauge fields, W+W−, ZZ, γγ and γZ mixing, are given
by using above counter terms and 1PI diagrams

Π̂WW [p2] = Π1PI
WW [p2] + (p2 −m2

W )δZW − δm2
W , (2.52)

Π̂ZZ [p
2] = Π1PI

ZZ [p
2] + (p2 −m2

Z)δZZ − δm2
Z , (2.53)

Π̂γγ [p
2] = Π1PI

γγ [p2] + p2δZγ, (2.54)

Π̂γZ [p
2] = Π1PI

γZ [p2]− 1

2
(2p2 −m2

Z)δZγZ − m2
Z

2sW cW
δs2W , (2.55)

where(
δZγ

δZZ

)
=

(
c2W s2W
s2W c2W

)(
δZB

δZW

)
, δZγZ = sW cW (δZW − δZB) =

sW cW
c2W − s2W

(δZZ − δZγ),

(2.56)

and explicit expressions of 1PI diagrams for gauge boson two point functions are given in
Appendix.

Imposing following five renormalization conditions as [69]

ReΠ̂WW [m2
W ] = 0, ReΠ̂ZZ [m

2
Z ] = 0, Γ̂µ

eeγ[q
2 = 0, /p1 = /p2 = me] = ieγµ,

d

dp2
Π̂γγ [0] = 0, Π̂γZ [0] = 0, (2.57)
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five independent counter terms δm2
W , δm2

Z , δαem, δZγ and δZγZ are determined as,

δm2
W = ReΠ1PI

WW [m2
W ], (2.58)

δm2
Z = ReΠ1PI

ZZ [m
2
Z ], (2.59)

δe

e
=

1

2

d

dp2
Π1PI

γγ [p2]
∣∣∣
p2=0

− sW
cW

Π1PI
γZ [0]

m2
Z

, (2.60)

δZγ = − d

dp2
Π1PI

γγ [p2]
∣∣∣
p2=0

, (2.61)

δZγZ = − 2

m2
Z

Π1PI
γZ [0] +

1

sW cW
δs2W . (2.62)

Because of relations as (2.44) and (2.56), other counter terms can be expressed by using above
counter terms,

δs2W
s2W

=
c2W
s2W

(
δm2

Z

m2
Z

− δm2
W

m2
W

)
=

c2W
s2W

(
ReΠ1PI

ZZ [m
2
Z ]

m2
Z

− ReΠ1PI
WW [m2

W ]

m2
W

)
, (2.63)

δv

v
=

1

2

(
δm2

W

m2
W

− δαem

αem

+
δs2W
s2W

)
=

1

2

(
s2W − c2W

s2W

ReΠ1PI
WW [m2

W ]

m2
W

+
c2W
s2W

ReΠ1PI
ZZ [m

2
Z ]

m2
Z

− d

dp2
Π1PI

γγ [0]
∣∣∣
p2=0

− 2sW
cW

Π1PI
γZ [0]

m2
Z

)
,

(2.64)

δZZ = δZγ +
c2W − s2W
sW cW

δZγZ

=
c2W − s2W

s2W

(
ReΠ1PI

ZZ [m
2
Z ]

m2
Z

− ReΠ1PI
WW [m2

W ]

m2
W

)
− d

dp2
Π1PI

γγ [0]
∣∣∣
p2=0

+
2

m2
Z

c2W − s2W
sW cW

Π1PI
γZ [0],

(2.65)

δZW = δZγ +
cW
sW

δZγZ

=
c2W
s2W

(
ReΠ1PI

ZZ [m
2
Z ]

m2
Z

− ReΠ1PI
WW [m2

W ]

m2
W

)
− d

dp2
Π1PI

γγ [0]
∣∣∣
p2=0

+
2cW
sW

ReΠγZ [0]

m2
Z

. (2.66)

Renormalization in fermion sector in the SM

We here discuss renormalization in the one-fermion sector, in which there is a kind of fermions,
because of simplification. Lagrangian of the fermion sector is

Lf = Ψ̄Li/∂ΨL + Ψ̄Ri/∂ΨR −mf (Ψ̄LΨR + Ψ̄RΨL). (2.67)

In the fermion sector, there are one parameter mf and left handed fermions ΨL and right
handed fermions ΨR. They are shifted into renormalized parameter and renormalized fields,
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and counter terms,

mf → mf + δmf , (2.68)

ΨL → ΨL +
1

2
δZf

L, (2.69)

ΨR → ΨL +
1

2
δZf

R. (2.70)

Two point functions of fermion fields are composed of following two parts,

Π̂ff [p
2] = Π̂ff,V [p

2] + Π̂ff,A[p
2]. (2.71)

Each part is expressed,

Π̂ff,V [p
2] = /pΠ

1PI
ff,V [p

2] + /pδZ
f
V +mfΠ

1PI
ff,S[p

2]−mfδZ
f
V − δmf , (2.72)

Π̂ff,A[p
2] = −/pγ5

(
Π1PI

ff,A[p
2] + δZf

A

)
, (2.73)

where

δZf
V =

1

2
(δZf

L + δZf
R), δZf

A =
1

2
(δZf

L − δZf
R). (2.74)

We determine the counter terms by following conditions,

Π̂ff,V [mf ]
∣∣∣
p2=m2

= 0,
d

d/p
Π̂ff,V [p

2]
∣∣∣
p2=m2

= 0,
d

d/p
Π̂ff,A[p

2]
∣∣∣
p2=m2

= 0. (2.75)

Then we obtain each counter term,

δmf = mf

(
Π1PI

ff,V [m
2
f ] + Π1PI

ff,S[m
2
f ]
)
, (2.76)

δZf
V = −Π1PI

ff,V [m
2
f ]− 2m2

f

(
d

dp2
Π1PI

ff,V [p
2] +

d

dp2
Π1PI

ff,S[p
2]

) ∣∣∣
p2=m2

f

, (2.77)

δZA = −Π1PI
ff,A[m

2
f ] + 2m2

f

d

dp2
Π1PI

ff,A[p
2]
∣∣∣
p2=m2

f

. (2.78)

2.7 One-loop level corrected electroweak observables

2.7.1 Renormalized electroweak parameters

Because we have obtained explicit forms of counter terms for all independent parameters in the
gauge sector, we can calculate the one-loop level predictions for electroweak observables such
as electroweak precision parameter ∆r and renormalized W boson mass mreno

W . We here list the
renormalized electroweak parameter ∆r and renormalized W boson mass mreno

W . They can be
expressed as [69]

∆r =
d

dp2
Π1PI

γγ [p2]

∣∣∣∣∣
p2=0

− c2W
s2W

(
ReΠ1PI

ZZ [m
2
Z ]

m2
Z

− ReΠ1PI
WW [m2

W ]

m2
W

− 2sW
cW

Π1PI
γZ [0]

m2
Z

)

+
Π1PI

WW [0]− Π1PI
WW [m2

W ]

m2
W

+ δV B, (2.79)

(mreno
W )2 =

m2
Z

2

(
1 +

√
1− 4παem√

2GFm
2
Z(1−∆r)

)
, (2.80)
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where δV B is the box and the vertex diagram contributions to the muon decay process, which
is given by [69]

δV B =
αem

4πs2W

(
6 +

7− 4s2W
2s2W

ln
m2

W

m2
Z

)
. (2.81)

Moreover, we also can calculate electroweak S, T and U parameters as [79]

S =
16π

m2
Z

Re

[
c2W
egZ

(
Π1PI

Zγ [m
2
Z ]− Π1PI

Zγ [0]

)
+

s2W c2W
e2

(
Π1PI

γγ [m2
Z ]− Π1PI

γγ [0]
)

+
1

g2Z

(
Π1PI

ZZ [0]− Π1PI
ZZ [m

2
Z ]
) ]

, (2.82)

T =
1

αem

Re

[
−Π1PI

WW [0]

m2
W

+
Π1PI

ZZ [0]

m2
Z

+ 2
sW
cW

Π1PI
γZ [0]

m2
Z

+
s2W
c2W

Π1PI
γγ [0]

m2
Z

]
, (2.83)

U = 16πRe

[
− 1

m2
Z

{ 1

g2Z

(
Π1PI

ZZ [0]− Π1PI
ZZ [m

2
Z ]
)
+

2s2W
egZ

(
Π1PI

Zγ [0]− Π1PI
Zγ [m

2
Z ]
)

+
s4W
e2
(
Π1PI

γγ [0]− Π1PI
γγ [m2

Z ]
)
+

1

g2m2
W

(
Π1PI

WW [0]− Π1PI
WW [m2

W ]
)}]

, (2.84)

where gZ = g/cW .

2.7.2 Renormalized Higgs couplings

In this subsection, we give formulae of renormalized Higgs couplings composed of three parts;
namely the tree level part, the counter term part and 1PI diagram part. hV V couplings and
hff couplings are composed of a number of form factors as,

Γ̂hV V [p
2
1, p

2
2, q

2] = Γ̂1
hV V [p

2
1, p

2
2, q

2]gµν + Γ̂2
hV V [p

2
1, p

2
2, q

2]
pν1p

µ
2

m2
V

+ iΓ̂3
hV V [p

2
1, p

2
2, q

2]ϵµνρσ
p1ρp2σ
m2

V

,

(2.85)

Γ̂hff [p
2
1, p

2
2, q

2] = Γ̂S
hff [p

2
1, p

2
2, q

2] + γ5Γ̂
P
hff [p

2
1, p

2
2, q

2] + /p1Γ̂
V 1
hff [p

2
1, p

2
2, q

2] + /p2Γ̂
V 2
hff [p

2
1, p

2
2, q

2]

+ /p1γ5Γ̂
A1
hff [p

2
1, p

2
2, q

2] + /p2γ5Γ̂
A2
hff [p

2
1, p

2
2, q

2]

+ /p1/p2Γ̂
T
hff [p

2
1, p

2
2, q

2] + /p1/p2γ5Γ̂
TP
hff [p

2
1, p

2
2, q

2]. (2.86)

Each renormalized form factor is given by,

Γi
hV V [p

2
1, p

2
2, q

2] =
2m2

V

v
κV,tree + δΓi

hV V + Γ1PI
hV V,i[p

2
1, p

2
2, q

2], (i = 1, 2, 3) (2.87)

Γj
hff [p

2
1, p

2
2, q

2] = −
mf

v
κf,tree + δΓj

hff + Γ1PI
hff,j[p

2
1, p

2
2, q

2], (j = S, P, V 1, V 2, A1, A2, T, TP ),

(2.88)
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where specific forms of counter terms are

δΓ1
hV V =

2m2
V

v

(
δm2

V

m2
V

− δv

v
+ δZV +

1

2
δZh

)
, (2.89)

δΓ2
hV V = δΓ3

hV V = 0, (2.90)

δΓS
hff = −mf

v

(
δmf

mf

− δv

v
+ δZV

f +
1

2
δZh

)
, (2.91)

δΓP
hff = δΓV 1

hff = δΓV 2
hff = δΓA1

hff = δΓA2
hff = δΓT

hff = δΓTP
hff = 0, (2.92)

where δm2
W , δZV and δv are given in Sec. 2.6.1 and δmf and δZV

f are given in Sec. 2.6.1.
On the other hand, there is only a form factor of the scalar vertex in all orders in the the

Higgs self coupling. The renormalized Higgs triple coupling is given by,

Γhhh[p
2
1, p

2
2, q

2] = 3!λhhh + 3!δΓhhh + Γ1PI
hhh[p

2
1, p

2
2, q

2], (2.93)

where λXY Z is the coefficient of the XY Z coupling in the Lagrangian and δΓhhh is expressed
as

δΓhhh = −δm2
h

2v
+

m2
h

2v2
δv +

3

2
λhhhδZh. (2.94)

If we expand Γhhh[p
2
1, p

2
2, q

2] in the limitmt → ∞, the quartic power ofmt appears in Γhhh[p
2
1, p

2
2, q

2]
as follows,

Γhhh[p
2
1, p

2
2, q

2] =
3m2

h

v

(
1−

NCt

3π2

m4
t

v2m2
h

)
, (2.95)

where NCt
is the color number of the top quark. This result corresponds with that calculated

by the effective potential method [70].
Fig. 2.7.2 shows the one-loop contributions of electroweak sectors to hhh couplings as a

functions of
√
q2 in the SM, where qµ is the momentum of the off-shell h in h∗ → hh. We take

the mass of the Higgs boson and that of top quark to be 126 GeV and 173 GeV, respectively.
We can see that the one-loop contributions becomes negative value in the limit q2 → 0. The
result is consistent with Eq. (2.95). The threshold effect at q = 2mt contributes the one-loop
corrections to be positive value.

Effective potential method

We describe effective potential method for calculation of the renormalized hhh coupling [70].
We can comparatively easily evaluate the renormalized quantity with zero external momenta
at each loop level by using effective potential method. The one-loop level effective potential of
the SM is given by,

Veff[φ] = Vtree[φ] +
1

64π2
NCi

NSi
(−1)2SiM4

i [φ]

(
ln

[
M2

i [φ]

Q2

]
− 3

2

)
, (2.96)

where φ, Nci
, NSi

, Si, Mi[φ] and Q indicate the order parameter, the color number of a particle
i, the degree of the spin for a particle i, the spin, the mass of i and the renormalization scale,
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Figure 2.2: The one-loop contributions of electroweak sectors to hhh couplings as a functions
of
√

q2 in the SM, where qµ is the momentum of the off-shell h in h∗ → hh.

respectively. The renormalization scale Q can be absorbed by the following renormalization
conditions,

∂

∂φ
Veff[φ]

∣∣∣
φ=v

= 0, (2.97)

∂2

∂φ2
Veff[φ]

∣∣∣
φ=v

= m2
h. (2.98)

The renormalized Higgs self coupling ΓSM
hhh can be calculated by

∂3

∂φ3
Veff[φ]

∣∣∣
φ=v

∼ 3m2
h

v

{
1− 1

π2

m4
t

v2m2
h

}
. (2.99)

This result is consistent with that calculated by the diagrammatic method.





Chapter 3

Review of extended Higgs sectors

3.1 Review of four types of the THDMs

3.1.1 Lagrangian of the the THDMs

There are two isospin doublet scalar fields Φ1 and Φ2 with Y = 1/2. Parts of Lagrangian which
are different from that of the SM is given by,

L = Lkine + LY − V, (3.1)

where Lkine, LY and V express the kinetic term of the Higgs fields, the Yukawa interaction term
and the Higgs potential, respectively.

The kinetic term is

Lkine = |DµΦ1|2 + |DµΦ2|2, (3.2)

where Dµ is

Dµ = ∂µ − i
g

2
τiW

µ
i − i

g′

2
Bµ. (3.3)

The two doublet fields can be parameterized as

Φi =

(
ω+
i

ϕi

)
, ϕi =

1√
2
(hi + vi + izi), i = 1, 2, (3.4)

where vi is the VEV of each Higgs field. Masses of weak gauge bosons are derived from Lkine

as,

m2
W =

g2

4

(
v21 + v22

)
, m2

Z =
g2Z
4

(
v21 + v22

)
, (3.5)

where gZ = g/ cos θW . Since existence of v1 and v2 occur the electroweak symmetry breaking,
the VEVs can be defined by v2 ≡ v21 + v22 =

√
2G−1

F ≃ (246GeV)2.
The general Higgs potential [38] is given by,

V =m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 −m2

3(Φ
†
1Φ2 + Φ†

2Φ1) (3.6)

+
λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
λ5

2

[
(Φ†

1Φ2)
2 + (Φ†

2Φ1)
2 + λ6|Φ1|2Φ

†
1Φ2 + λ7|Φ2|2Φ†

1Φ2 + h.c.
]
,

25
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where m2
1, m

2
2, λ1 − λ4 are real parameters, while m2

3 and λ5-λ7 are generally complex.
We here retake the basis of the two Higgs fields so that only one of the pair has a VEV,(

Φ1

Φ2

)
= R(β)

(
Φ
Ψ

)
, (3.7)

where

Φ =

(
G+

1√
2
(h′

1 + v + iG0)

)
, Ψ =

(
H+

1√
2
(h′

2 + iA)

)
, (3.8)

where v ≃ 246 GeV, tan β = v2/v1 and G± and G0 are Nambu-Gorldstone bosons. This basis
is so-called the Georgi basis. Higgs field components of the Georgi basis are related with those
of the original basis as,(

h1

h2

)
= R(β)

(
h′
1

h′
2

)
,

(
z1
z2

)
= R(β)

(
G0

A

)
,

(
ω+
1

ω+
2

)
= R(β)

(
G+

H+

)
. (3.9)

H± and A are the pair of charged Higgs bosons and a CP-odd Higgs boson and they are mass
eigenstates. On the other hand, in general, CP-even scalar components h′

1 and h′
2 are not

diagnarized at this stage.
Using the Georgi basis, the Yukawa interaction term LY can be expressed as,

−LY = Q̄L

(
Md

v
Φ + YdΨ

)
dR + Q̄L

(
Mu

v
Φ̃ + YuΨ̃

)
uR + L̄L

(
Ml

v
Φ + YlΨ

)
lR + h.c., (3.10)

where Mi and Yi (i = u, d, l) are the mass matrix and any matrix, respectively. In contrast to
Mi which is diagnarized, Yi is the non-diagonarizec matrix. Because there is no matrix which
can perform simultaneous diagonalization of the mass matrices and the Yukawa interaction
matrices, FCNCs appear at the tree level [36,37]. Tree level FCNCs can be naturally forbidden
by introducing any symmetry. For example, it is known that there is a way to forbid tree level
FCNCs by a discrete Z2 symmetry [36].

In order to discuss the Yukawa interaction of the THDMs with the discrete Z2 symmetry,
we restore the basis of Higgs fields. There can be four different types of Yukawa interactions,
depending on the assignment of the Z2 charge for Φ1, Φ2 and fermion fields [41]. We call them,
the Type-I, the Type-II, the Type-X and the Type-Y THDM [42]. We define the Z2 charges
for scalar and fermion fields as shown in Tab. 3.1. Then, each fermion couples to only one kind
of Higgs field in the Yukawa interaction term as follows,

−LY = Q̄LYdΦidR + Q̄LYuΦ̃juR + L̄LYlΦklR + h.c., (3.11)

where Yi indicates any non-diagnarized matrix and Φi,j,k are Φ1 or Φ2. Matrices UCKM as given
at Eqs. (2.16) can diagnarize Yd matrix as,

−LY = Q̄LY
diag
u Φ̃iuR − Q̄L(UCKMY diag

d )ΦjdR − L̄LY
diag
l ΦklR + h.c (3.12)

= −Q̄L
Mu

vi
Φ̃iuR − Q̄′

L

Md

vj
ΦjdR − L̄L

Ml

vk
ΦklR + h.c., (3.13)
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where

Q′ = U †
CKMQ = U †

CKM

(
u
d′

)
=

(
U †
CKMu
d

)
=

(
u′

d

)
. (3.14)

We find that FCNC processes do not appear at the tree level in the Yukawa interaction term
because the mass matrix and the Yukawa interaction matrix of each fermion field are the same
one.

Z2 charge Mixing factor

Φ1 Φ2 QL LL uR dR eR ξu ξd ξe

Type-I + − + + − − − cot β cot β cot β

Type-II + − + + − + + cot β − tan β − tan β

Type-X + − + + − − + cot β cot β − tan β

Type-Y + − + + − + − cot β − tan β cot β

Table 3.1: Charge assignment of the softly-broken Z2 symmetry and the mixing factors in
Yukawa interactions given in Eq. (3.13).

In the THDMs with the softly broken Z2 symmetry, the Higgs potential [38] is written as

V =m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 −m2

3(Φ
†
1Φ2 + Φ†

2Φ1) (3.15)

+
λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
λ5

2

[
(Φ†

1Φ2)
2 + (Φ†

2Φ1)
2
]
,

where m3 means the soft broken scale of the Z2 symmetry.

Tadpoles for Higgs potential in this model are

Th1 = v1

(
m2

1 −
M2v22
v2

+
1

2
λ1v

2
1 +

1

2
(λ3 + λ4 + λ5)v

2
2

)
, (3.16)

Th2 = v2

(
m2

2 −
M2v21
v2

+
1

2
λ2v

2
2 +

1

2
(λ3 + λ4 + λ5)v

2
1

)
. (3.17)

The stationary conditions Th1
= 0 and Th2 = 0 can make m1 and m2 dependent parameters as,

m2
1 =

M2v22
v2

− 1

2
λ1v

2
1 −

1

2
(λ3 + λ4 + λ5)v

2
2, (3.18)

m2
2 =

M2v21
v2

− 1

2
λ2v

2
2 −

1

2
(λ3 + λ4 + λ5)v

2
1. (3.19)
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The mass term of the Higgs potential Vmass can be arranged as follows,

Vmass = (ω+
1 , ω

+
2 )

 (
M2 − v2

2
(λ4 + λ5)

)
s2β

(
−M2 + v2

2
(λ4 + λ5)

)
sβcβ(

−M2 + v2

2
(λ4 + λ5)

)
sβcβ

(
M2 − v2

2
(λ4 + λ5)

)
c2β

( ω−
1

ω−
2

)

+
1

2
(z1, z2)

(
(M2 − λ5v

2)s2β (−M2 + λ5v
2)sβcβ

(−M2 + λ5v
2)sβcβ (M2 − λ5v

2)c2β

)(
z−1
z−2

)
+

1

2
(h1, h2)

(
1
2
(M2 + λ1v

2 + (−M2 + λ1v
2)c2β) (−M2 + v2(λ4 + λ5)) sβcβ

(−M2 + v2(λ4 + λ5)) sβcβ
1
2
(M2 + λ2v

2 + (M2 − λ2v
2)c2β)

)(
h1

h2

)
= (ω+

1 , ω
+
2 )R(β)

(
0 0
0 m2

H+

)
R−1(β)

(
ω−
1

ω−
2

)
+

1

2
(z1, z2)R(β)

(
0 0
0 m2

A

)
R−(β)

(
z1
z2

)
+

1

2
(h1, h2)R(β)

(
m2

H 0
0 m2

h

)
R−1(β)

(
h1

h2

)
, (3.20)

where sθ and cθ express sin θ and cos θ, respectively. Then, the mass eigenstates can be expressed
by (

G+

H+

)
= R−1(β)

(
ω+
1

ω+
2

)
,

(
G0

A

)
= R−1(β)

(
z1
z2

)
,

(
H
h

)
= R−1(α)

(
h1

h2

)
,

(3.21)

and mass formulae of Higgs fields are derived as,

m2
H+ = M2 − v2

2
(λ4 + λ5), (3.22)

m2
A = M2 − λ5v

2, (3.23)

m2
H = c2αM

2
even11 + s2αM

2
even12 + s2αM

2
even22, (3.24)

m2
h = s2αM

2
even11 − s2αM

2
even12 + c2αM

2
even22. (3.25)

Original parameters in the Higgs potential can be written using physical parameters by,

λ1 =
1

v2c2β

(
s2αm

2
h + c2αm

2
H −M2s2β

)
, (3.26)

λ2 =
1

v2s2β

(
c2αm

2
h + s2αm

2
H −M2c2β

)
, (3.27)

λ3 =
s2α
v2s2β

(
m2

h −m2
H

)
− 1

v2
(
M2 − 2m2

H+

)
, (3.28)

λ4 =
1

v2
(m2

A − 2m2
H+ +M2), (3.29)

λ5 =
1

v2
(M2 −m2

A). (3.30)



3.1. REVIEW OF FOUR TYPES OF THE THDMS 29

200 400 600
mΦ GeV

0

200

400

600

M
 G

eV
Constraint from perturbative unitarity and vacuum stability 

mΦ = m
H+

 = m
A

 = m
H

, tanβ = 3, cos(β−α) > 0

sin
2
(β−α) = 0.99

sin
2
(β−α) = 0.95

M
2
 = m

H+

2
 - (300 GeV)

2

200 400 600
mΦ GeV

0

200

400

600

M
 G

eV

Constraint from perturbative unitarity and vacuum stability 
mΦ = m

H+
 = m

A
 = m

H
, tanβ = 3, cos(β−α) < 0

sin
2
(β−α) = 0.99

sin
2
(β−α) = 0.95

M
2
 = m

H+

2
 - (300 GeV)

2

Figure 3.1: The left and the right panel show bounds on the mass of extra Higgs bosons mΦ

and M from perturbative unitarity and vacuum stability for cos(β−α) > 0 and cos(β−α) < 0,
respectively. Inner regions of the red (blue) line are allowed parameter regions for sin(β−α) =
0.99 (0.95). All extra Higgs bosons are degenerated in this analysis and tanβ is fixed to be 3.

Perturbative unitarity and vacuum stability

Constraints from perturbative unitarity and vacuum stability in the THDMs have been studied
in Refs. [71–74] and Refs [75–77], respectively.

There are 14 two-body neutral scattering scattering channels and 8 charged two-body scat-
tering channels. Diagnarizing the 14×14 matrix of S−wave amplitudes of the neutral scattering
channels and the 8× 8 matrix of S−wave amplitudes of the charged scattering channels, 7 and
1 eigenstates appear, respectively, as shown below,

a±1 =
1

16π

{
3

2
(λ1 + λ2)±

√
9

4
(λ1 − λ2)2 + (2λ3 + λ4)2

}
(3.31)

a±2 =
1

16π

{
1

2
(λ1 + λ2)±

√
1

4
(λ1 − λ2)2 + λ2

4

}
(3.32)

a±3 = d± =
1

16π

{
1

2
(λ1 + λ2)±

√
1

4
(λ1 − λ2)2 + λ2

5

}
(3.33)

a±4 =
1

16π
(λ3 + 2λ4 ± 3λ5) (3.34)

a±5 =
1

16π
(λ3 ± λ4) (3.35)

a±6 =
1

16π
(λ3 ± λ5). (3.36)

The perturbative unitarity bound from scalar fields 2-body scattering S−wave amplitudes are
given by

|a±i | <
1

2
. (i = 1− 6) (3.37)



30 CHAPTER 3. REVIEW OF EXTENDED HIGGS SECTORS

10 20 30

tanβ
0

200

400

600

800

m
A

 G
eV

Constraints from perturbative unitarity and vacuum stability
mΦ = m

H+
 = m

A
 = m

H
,  cos(β−α) > 0

sin
2
(β−α)=0.995

0.990.980.95

0.90

Unitarity bound

V
acuum

 stability

V
ac

uu
m

 s
ta

bi
lit

y

10 20 30 40

tanβ
100

150

200

250

300

350

400

m
A

 G
eV

Constraints from perturbative unitarity and vacuum stability
mΦ = m

H+
 = m

A
 = m

H
,  cos(β−α) < 0

sin
2
(β−α)=0.995

0.99
0.95
0.90

Vacuum stability

Figure 3.2: Constraints for tanβ-mA plane from perturbative unitarity and vacuum stability.
Lower regions from the black, the red, the blue, the green and the magenta line are allowed
parameter regions for sin2(β − α) = 0.995, 0.99, 0.98, 0.95 and 0.90, respectively. All extra
Higgs bosons are degenerated in this analysis and M2 is scanned with the range 0 ≤ M2 ≤ m2

Φ.
The left and the right plane are the case for cos(β − α) > 0 and cos(β − α) < 0, respectively.

On the other hand, the conditions of vacuum stability are expressed by

λ1 > 0, λ2 > 0,
√

λ1λ2 + λ3 +MIN(0, λ4 + λ5, λ4 − λ5) > 0. (3.38)

These theoretical constraints give bounds on masses od Higgs bosons and mixing parameters.
Fig. 3.1.1 shows bounds on the mass of extra Higgs bosons mΦ and M from perturbative
unitarity and vacuum stability. Inner regions of the red (blue) line are allowed parameter
regions for sin(β − α) = 0.99 (0.95). All extra Higgs bosons are degenerated in this analysis
and tan β is fixed to be 3. The left and the right plane indicate the case for cos(β − α) > 0
and cos(β − α) < 0, respectively. We can find that only parameter regions for m2

Φ ≃ M2 are
allowed in the large extra Higgs boson mass regions. If the value of tanβ is larger, the bounds
on the parameters become more strict.

In Fig. 3.1.1, we shows constraints for tanβ-mA plane from perturbative unitarity and
vacuum stability. Lower regions from the black, the red, the blue, the green and the magenta
line are allowed parameter regions for sin2(β−α) = 0.995, 0.99, 0.98, 0.95 and 0.90, respectively.
All extra Higgs bosons are degenerated in this analysis and M2 is scanned with the range
0 ≤ M2 ≤ m2

Φ. The left and the right plane are the case for cos(β−α) > 0 and cos(β−α) < 0,
respectively. If the value of tan β becomes large, the bound on mΦ becomes more strict. In
particular, the bound on mΦ in the case with cos(β − α) < 0 is stronger than that in the case
with cos(β − α) < 0.

Decay branching rations of Higgs bosons

In order to try to directly detect extra Higgs bosons, it is important to know how the extra
Higgs bosons decay into light particles. In this subsection, we show total widths and decay
branching rations of extra Higgs bosons H,A and H± [42, 57, 78]. A full set formulae of decay
rates for extra Higgs bosons are given in Appendix.
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Figure 3.3: These panels are the total width (the decay branching ratio) of the Higgs boson(H)
in the THDM. Here, masses of additional Higgs bosons are fixed, mH = mA = mH+ .The mass
of the soft breaking parameter M is M = mH − 1GeV. Mixing angle among scalar fields are
set sin(β − α) = 1.

In Fig. 3.1.1, the black, the red, the green and the blue lines show the total decay width
(ΓH) of H as a function of mH in four types of THDMs for tanβ = 1, 2, 3 and 4, respectively.
We also take mH± = mA = mH = M and sin(β − α) − 1. ΓH is drastically enhanced around
mH = mt because the decay channel H → tt̄ is opened. In the Type-II, X and Y, ΓH is
increased as the value of tanβ becomes larger because of the factor tanβ in the hb̄b and/or hττ
vertices. In Fig. 3.1.1, each colored line is the decay branching ratio of the extra Higgs bosons
for each channel (Φ → XX) as a function of tanβ in four types of the THDMs. We also take
all the extra Higgs bosons degenerated with mΦ = 150 GeV and fix sin(β − α) to be 1. There
in no processes where Φ decays into weak gauge bosons W/Z because of sin(β−α) = 1, so that
lighter H and A dominantly decay into bb̄ and H± dominantly decay into τν. In the Type-II
and X, the H(A) → ττ decay mode is also important in the case where the value of tanβ is
large.
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Figure 3.4: These figure are the decay branching ratio of the Higgs boson(H) in the THDM.
Here, masses of additional Higgs bosons are fixed, mH = mA = mH+ = 150GeV.The mass of
the soft breaking parameter M is M = mH − 1GeV.Mixing angle among scalar fields are set
sin(β − α) = 1.
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Figure 3.5: These figure are the decay branching ratio of the Higgs boson(H) in the THDM.
Here, masses of additional Higgs bosons are fixed, mH = mA = mH+ = 150GeV. The mass of
the soft breaking parameter M is M = mH − 2GeV.Mixing angle among scalar fields are set
sin2(β − α) = 0.96.
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3.1.2 Electroweak S, T and U parameters

The S, T and U parameters [79] proposed are modified in the THDM [80] from those predicted in
the SM due to the additional Higgs boson loop contributions and the different value of coupling
constants among the SM-like Higgs boson h and gauge bosons. We define the differences of S,
T and U parameters as ∆S = STHDM − SSM, ∆T = TTHDM − TSM and ∆U = UTHDM − USM.
These are calculated in terms of x defined as x ≡ π/2− (β − α),

∆S =
1

4π

{
F ′
5(m

2
Z ;mH ,mA)−

1

3
lnm2

H±

+ x2
[
F ′
∆

(mA

mh

,
mZ

mh

)
− F ′

∆

(mA

mH

,
mZ

mH

)
+G′

∆

(mH

mZ

,
mh

mZ

)]}
+O(x3),

∆T =
1

4πe2v2

{
F5(0;mA,mH±) +m2

HF∆

(
mH±

mH

,
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mH

)
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mh

)
+m2

WF∆

(
mH

mW

,
mh

mW

)
+m2

ZF∆

(
mh

mZ

,
mH

mZ

)
+ 4m2

WG∆

(mH

mW

,
mh

mW

)
− 4m2

ZG∆

(mH

mZ

,
mh

mZ

)]}
+O(x3),

∆U =
1

4π

{
F ′
∆

( mA

mH±
,
mH

mH±

)
− 1

3
lnm2

H± − F ′
5(m

2
Z ;mA,mH)

+ x2
[
F ′
∆

(mA

mH

,
mZ

mH

)
− F ′

∆

(mA

mh

,
mZ

mh

)
+ F ′

∆

(mH±

mh

,
mW

mh

)
− F ′

∆

(mH±

mH

,
mW

mH

)
+G′

∆

(mH

mZ

,
mh

mZ

)
−G′

∆

(mH

mW

,
mh

mW

)}
+O(x3), (3.39)

where

F5(p
2,m1,m2) =

∫ 1

0

dx
[
(2x− 1)(m2

1 −m2
2) + p2(2x− 1)2

]
ln[xm2

1 + (1− x)m2
2 − x(1− x)p2],

(3.40)

F ′
∆(x1, x2) =

1

3

[
2(x2

1 − x2
2)(1− x2

1x
2
2)

(1− x2
1)

2(1− x2
2)

2
− x4

1(x
2
1 − 3)

(1− x2
1)

3
ln x2

1 +
x4
2(x

2
2 − 3)

(1− x2
2)

3
lnx2

2

]
, (3.41)

G′
∆(x1, x2) = 2

[
−1− x4

1 + 2x2
1 ln x

2
1

(1− x2
1)

3
+

1− x4
2 + 2x2

2 ln x
2
1

(1− x2
2)

3

]
. (3.42)

where

∆B = −x(1− x)p2 + xm2
1 + (1− x)m2

2. (3.43)
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In the case of p2 = 0, the F5 function is expressed by

F5(0;m1,m2) =
1

2
(m2

1 +m2
2) +

2m2
1m

2
2

m2
1 −m2

2

ln
m2

m1

, (3.44)

which gives zero in the case of m1 = m2. Therefore, it is seen that ∆T becomes zero when
x = 0 and mA = mH± or x = 0 and mH = mH± is taken [81].

3.1.3 Constraints from current experiments

In this section, we list bounds on model parameters from collider experiments and flavour
experiments.

The lower limit on mH± as mH± & 80 GeV had been given by data of the LEP experi-
ment [82]. A process e+e− → H+H− was assumed in the analysis. Currently, in the MSSM,
mH± has been more strongly constrained by data of the LHC Run-I [83, 84]. and the bound
is mH± & 140 GeV. The production process is gg → tt̄ → bb̄H+W and the decay process is
H+ → τ+ν. In the MSSM, the mass of A also has been constrained by the search of the process
gg → bb̄A → bb̄τ+τ− at the LHC Run-I [85]. The lower bound depends on the value of tanβ;
e.g., mA & 350 GeV for tanβ = 10 an mA & 800 GeV for tanβ = 50. In the Type-I and II
THDMs, the mass of H have been given the lower bound depending on the value of sin(β −α)
by the LHC Run-I data, where the decay process is assumed to be H → WW → lνlν [86]. The
strongest constraint is mH & 220 GeV for tanβ & 1.

Constraints on mH± are summarized in Ref. [87]. The constraint from the measurement
of the b → s process is the most important. mH± . 500 GeV for all tanβ region have been
excluded in the Type-II and Y THDMs by the data. In also the Type-I and X, mH± have been
strongly constrained depending on the value of tanβ; e.g., mH± . 800 GeV for tanβ = 1 and
mH± GeV for tan β = 2. In the Type-II THDM, the Ds → τν process also gave the strong
bound on mH± in the large tanβ region; e.g., mH± & 400 GeV for tanβ = 40. In all types of
THDMs, mH± . 500 GeV are excluded in the regions with tanβ < 1 by the B0 − B̄0 mixing.



36 CHAPTER 3. REVIEW OF EXTENDED HIGGS SECTORS

3.2 Review of the HSM

3.2.1 Lagrangian of the HSM

Lagrangian

The scalar sector of the HSM is composed of a complex isospin doublet field Φ with hypercharge
Y = 1/2 and a real singlet field S with Y = 0. The most general Higgs potential is given by

V (Φ, S) = m2
Φ|Φ|2 + λ|Φ|4 + µΦS|Φ|2S + λΦS|Φ|2S2 + tSS +m2

SS
2 + µSS

3 + λSS
4, (3.45)

where all parameters are real. The Higgs fields Φ and S can be parametrised,

Φ =

(
G+

1√
2
(ϕ+ v + iG0)

)
, S = s+ vS, (3.46)

where v and vS are vacuum expectation values (VEVs) of Φ and S, respectively. The fields
G+ and G0 are Nambu-Goldstone bosons to be absorbed in longitudinaly polarized weak gauge
bosons. Notice that v is determined by the Fermi constant GF by v = 1/(

√
2GF )

1/2 (≃ 246
GeV) while vS does not affect electroweak symmetry breaking. As it has been pointed it out
in Refs. [88, 89], the potential in Eq. (3.45) is invariant under the transformation of vS → v′S
by redefining all the potential parameters associated with S.

At the tree level, tadpoles are given by

Tϕ = v{m2
Φ + λv2 + vS(λΦSvS + µΦS)}, (3.47)

Ts = tS + 2m2
SvS + 4λSv

3
S + λΦSv

2vS + 3µSv
2
S +

µΦSv
2

2
. (3.48)

By imposing the stationary condition TΦ = 0 and TS = 0, m2
Φ and tS are related to the other

parameters as

m2
Φ = −λv2 − λΦSv

2
S − µΦSvS, (3.49)

tS = −2m2
SvS − 4λSv

3
S − λΦSvSv

2 − 3v2SµS − 1

2
v2µΦS. (3.50)

After the electroweak symmetry breaking, mass terms of the scalar fields can be expressed
as

Lmass = −1

2
(s, ϕ)

(
M2

11 M2
12

M2
12 M2

22

)(
s
ϕ

)
, (3.51)

where

M2
11 = M2 + λΦSv

2, (3.52)

M2
12 = (2λΦSvS + µΦS)v, (3.53)

M2
22 = 2λv2, (3.54)

with

M2 = 2m2
S + 12λSv

2
S + 6µSvS. (3.55)
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We diagonalize the mass matrix by introducing the mixing angle α, and express the scalar fields
by mass eigenstates H and h,

Lmass = −1

2
(H, h)

(
m2

H 0
0 m2

h

)(
H
h

)
, (3.56)

where mass eigenstate H and h are related to the original fields s and ϕ by(
s
ϕ

)
=

(
cosα − sinα
sinα cosα

)(
H
h

)
. (3.57)

The masses of H and h are given by

m2
H = (sinα)2M2

11 + (cosα)2M2
22 + sin(2α)M2

12, (3.58)

m2
h = (cosα)2M2

11 + (sinα)2M2
22 − sin(2α)M2

12, (3.59)

where h identified to be the discovered Higgs boson with mh ≃ 125 GeV. The mixing angle α
can be written in terms of the parameters in the potential as

tan(2α) =
2v(2λΦSvS + µΦS)

M2 − v2(2λ− λΦS)
. (3.60)

We note that the SM limit is realized by taking M2 to be infinity. In the following discussion,
we use sα and cα to express sinα and cosα, respectively.

By using physical parameters m2
h,m

2
H and α, the three parameters in the potential, λ, m2

S,
and µS, can be expressed as

λ =
1

2v2
(c2αm

2
h + s2αm

2
H), (3.61)

m2
S =

c2αm
2
H

2
+

s2αm
2
h

2
− 6λSv

2
S − λΦSv

2 − 12vSµS, (3.62)

µΦS =
m2

H

v2
cα(−2vScα + vsα)−

m2
h

v2
sα(vcα + 2vSsα). (3.63)

There are eight parameters in the Higgs potential m2
Φ, λ, µΦS, λΦS, tS, m

2
S, µS and λS, which

are replaced by v, m2
h, m

2
H , α, vS, λΦS, λS and µS.

The kinetic terms for the scalar fields are given by

Lkine = |DµΦ|2 + 1

2
(∂µS)2, (3.64)

where Dµ = ∂µ − ig
2
τaW

µ
a − ig

′

2
Bµ. We obtain interaction terms between weak gauge fields and

scalar fields as

Lkine = (sαH + cαh)
2m2

W

v
gµνW+

µ W−
ν + (sαH + cαh)

m2
Z

v
gµνZµZν + · · · , (3.65)

where mW and mZ are the masses of W and Z bosons, respectively. Although the Yukawa
interaction is the same form as that in the SM, Yukawa couplings of H and h are modified by
the field mixing,

LY = −mf

v
(sαf̄fH + cαf̄fh). (3.66)
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We define the scaling factors as ratios of the Higgs boson couplings in the HSM from those
in the SM,

κV ≡ gHSM
hV V

gSMhV V

, for V = W,Z, κf ≡
yHSM
hff

ySMhff
, κh ≡ λHSM

hhh

λSM
hhh

, (3.67)

where g
HSM(SM)
hV V , y

HSM(SM)
hff and λ

HSM(SM)
hhh are coefficients of hV V, hff and hhh vertices in the

HSM (SM), respectively. Tree level values of κV , κf and κh are derived from Eqs.(3.65), (3.66)
and (3.45) as

κV = κf = cα, (3.68)

κh = c3α +
2v

m2
h

s2α(λΦSvcα − µSsα − 4sαλSvS). (3.69)

Perturbative unitarity, vacuum stability and wrong vacuum condition

In this section, we discuss three theoretical constraints; i.e., perturbative unitarity, vacuum
stability and the condition to avoid wrong vacuum.

The constraints from the perturbative unitarity in the HSM had discussed in Ref. [90].
Under the perturbative unitarity bound, the matrix of the S-wave amplitude for the two-body
to two-body scattering of scalar fields has to be satisfied in following condition,

|⟨φ3φ4|a0|φ1φ2⟩| < ξ, where ξ = 1 or
1

2
. (3.70)

In the HSM, there are seven neutral scattering processes.1 Digonalizing the matrix of the
neutral scattering processes, we obtain following independent eigenvalues,

a± =
1

16π

(
3λ+ 6λS ±

√
(3λ− 6λS)2 + 4λ2

ΦS

)
, (3.71)

b0 =
1

8π
λ, (3.72)

c0 =
1

8π
λΦS. (3.73)

Because we take the constraint with ξ = 1
2
, specific bounds of eq. (3.107) are(

3λ+ 6λS ±
√
(3λ− 6λS)2 + 4λ2

ΦS

)
< 8π, λ < 4π, λΦS < 4π. (3.74)

As conditions of vacuum stability [47], we require the value of the potential to be positive
at large Φ and S. Because terms of the quartic interactions are dominant in the potential with
large values of the fields,

λ|Φ|4 + λΦS|Φ|2S2 + λSS
4 > 0 (3.75)

1Although there are one doubly charged cannel and three singly charged cannels in addition to seven neutral
channels, independent eigenvalues is exhausted in eigenvalues of neutral scattering amplitudes. Because of that,
it is sufficient to consider only neutral cannels.
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must be satisfied. In order to satisfy 3.75, following bounds for λ parameters are imposed,

λ > 0, λS > 0, 4λλS > λ2
ΦS, (3.76)

where the third bound is applied when λΦS is negative.
We are free to choose the value of vS. We take to be (v, vS) = (vEW , 0), because the singlet

field does not contribute to electroweak symmetry breaking. However, even (vEW , 0) is the
extrema, there is a possibility that there are lower extremes at other points. According to
Refs. [88, 89], five kinds of other extrema. If one or more than one extrema given in Eq. (24)
and (B1) Ref. [89] become deeper than V (vEW , 0), then such a vacuum should be regarded as a
wrong vacuum. In the analyses of this paper, we use the condition to avoid the wrong vacuum
given in Ref. [89].

3.2.2 Constraints from an extra Higgs boson searches

Null results from the Higgs boson searches at LEP and the LHC Run-I can constrain the signal
rate of the second Higgs boson which is defined as S[H] ≡ σ[H] × BR[H → XY ]2 where σH

and BR[H → XY ] are the production cross section of H and the branching fraction of the
H → XY decay process in the HSM, respectively. If we assume BR[H → hh] = 0, S[H] is
given by s2α times the signal rate of the SM Higgs boson. In that case, constraints from LEP and
LHC simply depend on mH and α. In Ref. [92], the excluded parameter region on mH and α has
been presented using the LEP and the LHC results under the assumption of BR[H → hh] = 0.
In the region with mH < 80 GeV, most of the parameter regions of α have been excluded with
95 % CL. In the region between 130 GeV and 500 GeV, |sα| & 0.4 is excluded with 95 % CL.
There are no constraints on |sα| for mH & 800 GeV.

3.2.3 Electroweak S, T and U parameters

In Refs. [91,92], the one-loop corrections to mW has been calculated in the HSM with a discrete
Z2 symmetry. The limits on sα and mH have been derived by comparing the prediction of mW

and its measured value at the LEP experiment, namely, |sα| & 0.3 (0.2) with mH = 300 (800)
GeV is excluded at the 2σ level. Although the electroweak S, T and U parameters have also
been calculated in Ref. [92], constraints from those parameters are weaker than those from mW .

2Although we can obtain constraints on the signal rate of the additional Higgs boson by using the data at
Tevetron, these constraints are entirely superseded by the one of the LHC Run-I [92].
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3.3 Review of the HTM

3.3.1 Lagrangian of the HTM

The scalar sector of the HTM is composed of the isospin doublet field Φ with hypercharge
Y = 1/2 and the triplet field ∆ with Y = 1. The relevant terms in the Lagrangian are given by

LHTM = Lkin + LY − V (Φ,∆), (3.77)

where Lkin, LY and V (Φ,∆) are the kinetic term, the Yukawa interaction and the Higgs poten-
tial, respectively.

The kinetic term of the Higgs fields is given by

Lkin = (DµΦ)
†(DµΦ) + Tr[(Dµ∆)†(Dµ∆)], (3.78)

where the covariant derivatives are defined as

DµΦ =

(
∂µ + i

g

2
τaW a

µ + i
g′

2
Bµ

)
Φ, Dµ∆ = ∂µ∆+ i

g

2
[τaW a

µ ,∆] + ig′Bµ∆. (3.79)

The Higgs fields can be parameterized by

Φ =

[
ϕ+

1√
2
(ϕ+ vϕ + iχ)

]
, ∆ =

[
∆+
√
2

∆++

∆0 −∆+
√
2

]
with ∆0 =

1√
2
(δ + v∆ + iη), (3.80)

where vϕ and v∆ are the VEVs of the doublet Higgs field and the triplet Higgs field, respectively
which satisfy v2 ≡ v2ϕ + 2v2∆ ≃ (246 GeV)2. The masses of the W boson and the Z boson are
obtained at the tree level as

m2
W =

g2

4
(v2ϕ + 2v2∆), m2

Z =
g2

4 cos2 θW
(v2ϕ + 4v2∆). (3.81)

The electroweak rho parameter can deviate from unity at the tree level;

ρ ≡ m2
W

m2
Z cos2 θW

=
1 +

2v2∆
v2ϕ

1 +
4v2∆
v2ϕ

. (3.82)

The experimental value of the rho parameter is quite close to unity; i.e., ρexp = 1.0008+0.0017
−0.0007 [99],

so that v∆ has to be less than about 8 GeV from the tree level formula given in Eq. (3.82).
The Yukawa interaction for neutrinos [50] is given by

LY = hijLic
L iτ2∆Lj

L + h.c., (3.83)

where hij is the 3×3 complex symmetric Yukawa matrix. Notice that the triplet field ∆ carries
the lepton number of −2. The mass matrix for the left-handed neutrinos is obtained as

(Mν)ij =
√
2hijv∆. (3.84)
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The most general form of the Higgs potential under the gauge symmetry is given by

V (Φ,∆) = m2Φ†Φ +M2Tr(∆†∆) +
[
µΦT iτ2∆

†Φ + h.c.
]

+ λ1(Φ
†Φ)2 + λ2

[
Tr(∆†∆)

]2
+ λ3Tr[(∆

†∆)2] + λ4(Φ
†Φ)Tr(∆†∆) + λ5Φ

†∆∆†Φ,
(3.85)

where m and M are the dimension full real parameters, µ is the dimension full complex pa-
rameter which violates the lepton number, and λ1-λ5 are the coupling constants which are real.
We here take µ to be real.

The potential respects additional global symmetries in some limits. First, when the µ term is
absent, there is the global U(1) symmetry in the potential, which conserves the lepton number.
As long as we assume that the lepton number is not spontaneously broken, the triplet field
does not carry the VEV; i.e., v∆ = 0. Next, when both the µ term and the λ5 term are zero,
an additional global SU(2) symmetry appears. Under this SU(2) symmetry, Φ and ∆ can be
transformed with the different SU(2) phases. In this case, all the physical triplet-like Higgs
bosons are degenerate in mass.

The tadpoles for the ϕ and δ fields are obtained as

TΦ = −vϕ

[
m2 + v2ϕλ1 +

v2∆
2
(λ4 + λ5)−

√
2µv∆

]
, (3.86)

T∆ = −v∆

[
M2 + v2∆(λ2 + λ3) +

v2ϕ
2
(λ4 + λ5)−M2

∆

]
, with M2

∆ ≡
v2ϕµ√
2v∆

. (3.87)

Because the tadpoles must be vanished at the tree level (TΦ = T∆ = 0), we can eliminate
m2 and M2 in the potential. The mass matrices for the scalar bosons can be diagonalized by
rotating the scalar fields as(

ϕ±

∆±

)
=

(
cos β − sin β
sin β cos β

)(
G±

H±

)
,

(
χ
η

)
=

(
cos β′ − sin β′

sin β′ cos β′

)(
G0

A

)
,(

ϕ
δ

)
=

(
cosα − sinα
sinα cosα

)(
h
H

)
, (3.88)

with the mixing angles

tan β =

√
2v∆
vϕ

, tan β′ =
2v∆
vϕ

, tan 2α =
v∆
vϕ

2v2ϕ(λ4 + λ5)− 4M2
∆

2v2ϕλ1 −M2
∆ − 2v2∆(λ2 + λ3)

. (3.89)

We note that the mixing angle of the charged scalar states (β) and that of the CP-odd scalar
states (β′) are different in the triplet model. In the two Higgs doublet model, corresponding two
mixing angles are the same at the tree level. This is because the kinetic term of the two doublet
fields can be rewritten in terms of so-called the Georgi basis, where only one of the doublets
has a non-zero VEV in which the NG bosons are included. Original basis and the Georgi basis
are related to a single angle. In the HTM, because Φ and ∆ are the different representation of
SU(2), the kinetic term given in Eq. (3.78) cannot be rewritten in terms of the Georgi basis.
Thus, the diagonalization of the mass matrices has to be done by each component scalar field,
and mixing angles for the charged scalar states and the CP-odd scalar states are different in
general.
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In addition to the three NG bosons G± and G0 which are absorbed by the longitudinal
components of the W boson and the Z boson, there are seven physical mass eigenstates H±±,
H±, A, H and h. The masses of these physical states are expressed as

m2
H++ = M2

∆ − v2∆λ3 −
λ5

2
v2ϕ, (3.90)

m2
H+ =

(
M2

∆ − λ5

4
v2ϕ

)(
1 +

2v2∆
v2ϕ

)
, (3.91)

m2
A = M2

∆

(
1 +

4v2∆
v2ϕ

)
, (3.92)

m2
H = M2

11 sin
2 α+M2

22 cos
2 α−M2

12 sin 2α, (3.93)

m2
h = M2

11 cos
2 α+M2

22 sin
2 α+M2

12 sin 2α, (3.94)

where M2
11, M2

22 and M2
12 are the elements of the mass matrix M2

ij for the CP-even scalar
states in the (ϕ, δ) basis which are given by

M2
11 = 2v2ϕλ1, (3.95)

M2
22 = M2

∆ + 2v2∆(λ2 + λ3), (3.96)

M2
12 = −2v∆

vϕ
M2

∆ + vϕv∆(λ4 + λ5). (3.97)

The six parameters µ and λ1-λ5 in the Higgs potential in Eq. (3.85) can be written in terms of
the physical scalar masses, the mixing angle α and VEVs vϕ and v∆ as

µ =

√
2v∆
v2ϕ

M2
∆ =

√
2v∆

v2ϕ + 4v2∆
m2

A, (3.98)

λ1 =
1

2v2ϕ
(m2

h cos
2 α+m2

H sin2 α), (3.99)

λ2 =
1

2v2∆

[
2m2

H++ + v2ϕ

(
m2

A

v2ϕ + 4v2∆
−

4m2
H+

v2ϕ + 2v2∆

)
+m2

H cos2 α+m2
h sin

2 α

]
, (3.100)

λ3 =
v2ϕ
v2∆

(
2m2

H+

v2ϕ + 2v2∆
−

m2
H++

v2ϕ
− m2

A

v2ϕ + 4v2∆

)
, (3.101)

λ4 =
4m2

H+

v2ϕ + 2v2∆
− 2m2

A

v2ϕ + 4v2∆
+

m2
h −m2

H

2vϕv∆
sin 2α, (3.102)

λ5 = 4

(
m2

A

v2ϕ + 4v2∆
−

m2
H+

v2ϕ + 2v2∆

)
. (3.103)

When the triplet VEV v∆ is much less than the doublet VEV vϕ, which is required by
the rho parameter data, there appear relationships among the masses of the triplet-like Higgs
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bosons by neglecting O(v2∆/v
2
ϕ) terms as

m2
H++ −m2

H+ = m2
H+ −m2

A

(
= −λ5

4
v2
)
, (3.104)

m2
A = m2

H (= M2
∆). (3.105)

In the limit of v∆/vϕ → 0, the four mass parameters of the triplet-like Higgs bosons are
determined by two parameters. Eqs. (3.104) and (3.105) can be regarded as the consequence
of the global symmetries which are mentioned in just below Eq. (3.85).

3.3.2 Perturbative unitarity and vacuum stability

From now on, we show the constraints from the unitarity and the vacuum stability. The
condition for the vacuum stability bound has been derived in Ref. [93]. The unitarity bound
has been discussed in Ref. [94] in the GM model [53] which contains the HTM. The unitarity
bound in the HTM has also been discussed in Ref. [93].

The necessary and sufficient condition for the requirement of the vacuum stability is given
by [93]

λ1 > 0, λ2 +MIN

[
λ3,

1

2
λ3

]
> 0,

λ4 +MIN[0, λ5] + 2MIN[
√

λ1(λ2 + λ3),
√

λ1(λ2 + λ3/2)] > 0. (3.106)

In the unitarity bound, we require that the matrix of the S-wave amplitude for the elastic
scatterings of two scalar boson states ⟨φ3φ4|a0|φ1φ2⟩ are satisfied the following condition;

|⟨φ3φ4|a0|φ1φ2⟩| < 1 or |Re⟨φ3φ4|a0|φ1φ2⟩| <
1

2
, (3.107)

where φi denote the NG bosons and the physical Higgs bosons. In the HTM, there are 35
possible scattering processes, i.e., 15 neutral channels, 10 singly-charged channels, 7 doubly-
charged channels, 2 triply-charged channels and one quadruply-charged channel. Thus, there
are 35 corresponding eigenvalues, but some of them have the same expressions. In fact, 12
eigenvalues can be regarded as independent eigenvalues, these are

y1 = 2λ1, y2 = 2(λ2 + λ3), y3 = 2λ2,

y±4 = λ1 + λ2 + 2λ3 ±
√
λ2
1 − 2λ1(λ2 + 2λ3) + λ2

2 + 4λ2λ3 + 4λ2
3 + λ2

5,

y±5 = 3λ1 + 4λ2 + 3λ3 ±
√

9λ2
1 − 6λ1(4λ2 + 3λ3) + 16λ2

2 + 24λ2λ3 + 9λ2
3 + 6λ2

4 + 2λ2
5,

y6 = λ4, y7 = λ4 + λ5, y8 =
1

2
(2λ4 + 3λ5), y9 =

1

2
(2λ4 − λ5), y10 = 2λ2 − λ3. (3.108)

The unitarity constrains by the following condition:

|yi| < ζ, i = 1, . . . , 10, (3.109)

where ζ is the upper limit for these eigenvalues. In Eq. (3.107), when we impose the former
(latter) condition to the S-wave amplitude, this corresponds to ζ = 16π (8π). In our numerical
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analysis for the constraint from the unitarity bound, we take both the cases with ζ = 8π and
ζ = 16π. These eigenvalues can be rewritten as a simple form by using λ∆(> 0) by

x1 = 3λ1 + 7λ∆ +

√
(3λ1 − 7λ∆)2 +

3

2
(2λ4 + λ5)2, (3.110)

x2 =
1

2
(2λ4 + 3λ5), (3.111)

x3 =
1

2
(2λ4 − λ5). (3.112)

3.3.3 Constraints from collider experiments

A direct search for doubly charged Higgs bosons H±± is one of the most important probes in
the HTM. The main decay mode of H±± depends on the value of v∆. Accordingly, bounds on
mH±± drastically change depending on the decay mode [51].

We here consider the case with no mass difference among triplet like Higgs bosons. In such a
case, if v∆ is smaller than about 1 MeV, H±± mainly decay into the same sign dilepton, namely
H±± → l±l±. By asuuming the case where H±± decays into the same sign dilepton, the most
stringent lower limit on mH±± has been obtained to be about 550 GeV [95] at the LHC. On the
other hand, if v∆ is larger than about 1 MeV, the decay process H±± → W±W± is dominant.
The lower limit on mH±± have been evaluated in the case where the dominant decay mode is
H±± → W±W±(∗), by using the same-sign dilepton search performed by ATLAS Collaboration
with 20.3 fb−1 data at the collision energy of 8 TeV [96]. By the study, the bound on the lower
bound to be mH±± was updated to be mH±± & 84 GeV [97].

In the case with non-zero mass difference among triplet like Higgs bosons, the cascade decay
ofH±± dominates depending on the value of v∆ and the magnitude of the mass difference among
triplet like Higgs bosons [51]. If H++ is the heaviest particle in triplet like Higgs bosons, the
cascade dacay H++ → H+W+(∗) → ϕ0W+(∗)W+(∗) can be dominant as long as v∆ is neither
too small nor too large. However, no bound on mH±± has been given in the case where the
cascade decay is the main decay mode.
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Future experiments

We here describe how it can be tested extended Higgs sectors by the direct searches and the
indirect searches at the LHC Run-II and future e+e− collider experiment ILC.

4.1 Second Higgs boson searches at collider experiments

In this section, we describe the direct searches of extra Higgs boson focusing on the THDMs as
a bench mark model. There are a lot of studies about the direct searches of additional Higgs
bosons at the LHC Run-II [13,57,78] and the ILC [78,98].

4.1.1 Direct search at the LHC

First, we discuss the direct search in the case for sin(β − α) = 1 for simplification. Basically,
the production cross section of gluon fusion process gg → H/A is the biggest for the production
without the enhanced factor discussion. In the four types of THDMs, some of vertices of
Yukawa couplings have enhanced factors as shown in Tab. 3.1. In the Type-II THDM, it can
be expected that the bottom quark associate production process gg → H/Abb̄ is useful for the
production of H/A because there is the enhanced factor tan2 β in the Hb̄b (Ab̄b) vertex. The
gb → H±t process is useful as the production of H± for the same season. In the Type-X THDM,
in addition to the gluon fusion production process, the qq̄ → H/A process is also important. In
the Type-I and the Type-Y, the gluon fusion process and the bottom quark associate process
can be the main production process of H/A, respectively. For the decay mode, the H/A → bb̄
and/or the H/A → τ+τ− can be the main decay mode in all types of THDMs as shown in
Fig. 3.1.1.

Fig. 4.1 [57] shows expected excluded regions on the tanβ − mA plane at the 95% CL by
expected significance of the gg → H/A → τ+τ− and gg → bb̄H/A → bb̄τ+τ− in the case of
mA = mH and sin(β − α) = 1 in the Type-II. The blue (red) shaded regions are excluded
regions assuming the integrated luminosity to be 300 fb−1 (3000 fb−1). Exclusion reach of mA

increases in region with the large value of tanβ, because the cross sections of the bottom quark
associated processes are enhanced due to the enhanced factor tanβ at the Ab̄b vertex and the
branching ratio of H/A → τ+τ− is approaching to be 10% in high tanβ regions as shown in
Figs. 3.1.1.

4.1.2 Direct search at the ILC

In this subsection, we describe the direct search in the SM-like limit case, i.e. sin(β − α) = 1.
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Figure 4.1: Expected excluded regions on the tanβ − mA plane at the 95% CL in the case
of mA = mH and sin(β − α) = 1 in the Type-II. The blue (red) shaded regions are excluded
regions assuming the integrated luminosity to be 300 fb−1 (3000 fb−1). This figure is taken
from Ref. [57].

In the case with
√
s > mH + mA(2mH±), pair production processes of extra Higgs boson

can open, so that the main production processes of extra Higgs bosons are expected to be
e+e− → HA and e+e− → H+H−. Cross sections of these pair production processes depend of
the Yukawa interaction type, because a pair of additional Higgs bosons is produced via gauge
interactions. For energies below the threshold

√
s = mH + mA(2m

2
H±), the single production

processes, e+e− → H(A)ff̄ and e+e− → H±ff̄ ′, can be the leading contributions. The pro-
duction processes are increased as the relevant Yukawa coupling constants of the Φff̄ (′) vertices
become large.

It is planned that the ILC runs with
√
s = 250, 500 and 1 TeV. As long as the collision

energy is enough to product extra Higgs bosons, we expect various signatures depending on the
types of Yukawa interaction and tanβ.

4.2 Fingerprints of the Higgs boson couplings

4.2.1 Pattern of deviations in the Higgs boson couplings

In the case where the Higgs sector is extended, coupling of the Higgs boson with 125 GeV mass
can deviate from predicted values of the SM by new physics effects such as mixing effects and
loop contributions of new particles. The pattern of deviations in the Higgs boson couplings
depends on the structure of the Higgs sector; i.e., kinds of symmetries in the theory, Higgs
field representations under the symmetries, the number of Higgs fields and so on. Therefore,
the pattern is useful to discriminate extended Higgs models [13, 57]. In order to demonstrate
discriminating models by the pattern of deviations in the Higgs boson couplings, we define the
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Model κV κt κb κτ

HSM cα cα cα cα
Type-I cα sβ−α + cot βcβ−α sβ−α + cot βcβ−α sβ−α + cot βcβ−α

Type-II sβ−α sβ−α + cot βcβ−α sβ−α − cβcβ−α sβ−α − cβcβ−α

Type-X sβ−α sβ−α + cot βcβ−α sβ−α + cot βcβ−α sβ−α − cβcβ−α

Type-Y sβ−α sβ−α + cot βcβ−α sβ−α − cβcβ−α sβ−α + cot βcβ−α

HTM cβcα +
√
2sβsα cα cα cα

Table 4.1: Tree level scaling factors of the gauge coupling and Yukawa couplings in the HSM,
four Types of THDMs and the HTM.

scaling factors by normalizing the Higgs boson couplings which will be precisely determined by
future collier experiments;

L = κV h

(
2m2

W

v
W+

µ W−
ν +

m2
Z

v
ZµZν

)
gµν −

∑
i

κf

mf

v
hf̄f. (4.1)

In Tab. 4.1, we summarized tree level scaling factors of the gauge coupling and Yukawa couplings
in the HSM, four types of THDMs and the HTM. Moreover, Tabs. 4.2 show directions of
modifications for the hV V coupling and the hf̄f couplings in the HSM, four types of THDMs
and the HTM [13, 16, 57]. The difference between the left table and the right table is the sign
of cos(β − α). The up (down) arrow denotes that the Higgs boson coupling is larger than the
value of the SM.

As you can see, a characteristic pattern of deviations in various Higgs boson couplings
appears in each extended Higgs model. In the HSM, if the field mixing between CP-even Higgs
contents is non-zero, hV V and hf̄f couplings are reduced than values of the SM with the
same ratio. On the other hand, in four types of THDMs, magnitudes of the deviations are
different for each the Higgs boson coupling. The hf̄f couplings tend to more largely deviate
from the SM values than the hV V couplings. Because formulae of scaling factors of the Yukawa
couplings depend on the Higgs field interacting with the fermion field, deviation patterns in
hf̄f couplings are different among four types. As I mentioned in the Introduction, there is an
interesting property that the hV V couplings can be greater than those of the SM.

In Fig. 4.2, we discuss numerically deviation patterns of various couplings of the 125 GeV
Higgs boson in the four types of THDMs and the HSM and the HTM. The left panel shows
the pattern of κb and the κτ couplings in four types of THDMs. Red and blue curves indicate
tree level predictions of κb and κτ in the case with sin(β − α) = 0.99 and 0.95, respectively, in
each value of tanβ. We take the sign of cos(β − α) to be negative. At the tree level, in the
case with sin(β−α) = 1, predictions of all the types get close to those of the SM. If sin(β−α)
slightly deviate from unity, κf for each type lead to deviate in different directions. However it
is difficult to discriminate the types of THDMs by evaluating only κb and κτ because behaviors
of κb and κτ depend on the sign of cos(β−α). If cos(β−α) is negative (positive), predictions of
κt(c) in all the types are less (larger) than 1. Therefore we can determine the sign of cos(β−α)
by using measurements of κt(c). Then we can discriminate all types of Yukawa interactions by
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Model hV V ht̄t hb̄b hττ

HSM ↓ ↓ ↓ ↓
Type-I ↓ ↓ ↓ ↓
Type-II ↓ ↓ ↑ ↑
Type-X ↓ ↓ ↓ ↑
Type-Y ↓ ↓ ↑ ↓
HTM ↑ ↓ ↓ ↓ ↓

Model hV V ht̄t hb̄b hττ

HSM ↓ ↑ ↑ ↑
Type-I ↓ ↑ ↑ ↑
Type-II ↓ ↑ ↓ ↓
Type-X ↓ ↑ ↑ ↓
Type-Y ↓ ↑ ↓ ↑
HTM ↑ ↓ ↑ ↑ ↑

Table 4.2: Direction of modifications for each the Higgs boson coupling in the HSM, four types
of THDMs and the THDM. The left and right tables show the case with cos(β − α) < 0 and
cos(β − α) > 0, respectively. The up (down) arrow denotes that the Higgs boson coupling is
larger than the value of the SM.
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Figure 4.2: The left panel shows the pattern of κb and the κτ couplings in four types of THDMs.
Red and blue curves indicate tree level predictions of κb and κτ in the case with sin(β−α) = 0.99
and 0.95, respectively, in each value of tanβ. We take the sign of cos(β − α) to be negative.
The right panel shows the pattern of κZ and κf in the Type-I THDM with tan β = 3 (blue
curve), the HSM (red line) and the HTM with tan β = 0.05 (green curve). Black dots show
values of α.
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the pattern of deviations in these hf̄f couplings. These analyses of Yukawa couplings at the
tree level have already been discussed in Refs..

The right panel shows the pattern of κZ and κf in the Type-I THDM with tan β = 3
(blue curve), the HSM (red line) and the HTM with tanβ = 0.05 (green curve). Black dots
show values of α. In the three models, the Yukawa couplings of the Higgs boson are universal
formulae, i.e., κf ≡ κt = κb = κτ . As it was previously mentioned, in the HSM, because κV

and κf take a common form at the tree level, the hV V and the hf̄f couplings deviate to the
directions with the rate 1 : 1 by the mixing effect. In the Type-I THDM with cos(β−α) < 0, the
magnitude of κf is smaller than that in the HSM for the same value of κZ . On the other hand,
in the case of cos(β−α) > 0, κf is larger than that of the HSM for the same value of κZ . If the
value of tanβ becomes large, the κZ and κf plane prediction in the Type I THDM approximate
the line of 1 : 1. As you can see, in the HTM, although it is seen that there are regions in
which κZ is larger than unity, the maximum value of κZ can not much be larger, e.g., it can
not become greater from 1 to more than 1%. The reason is that the value of tanβ is too small.
tan β is determined by the value of the VEV of the triplet field v∆ by tan β = 2v∆/

√
v2 − 2v2∆

as shown at Eq. (3.89). The magnitude of v∆ is constrained to be less than about 8 GeV from
the experimental value of the rho parameter ρexp = 1.0008+0.00017

−0.00007 [99].
As we numerically showed in Fig. 4.2, a pattern of deviations in these observables strongly

depends on the structure of the Higgs sector, so that we may be able to fingerprint extended
Higgs sectors and new physics models if we can detect a special pattern of the deviations at
future experiments.

4.2.2 Future precision measurements of the Higgs boson couplings

After the Higgs boson discovery, coupling constants of the discovered Higgs boson with SM
particles became new observables to be measured as precisely as possible at current and future
colliders. Both the ATLAS and CMS Collaborations have provided scaling factors for the Higgs
boson couplings extracted from combined data of Higgs boson searches with

√
s = 7 and 8 TeV

and 25fb−1 of the integrated luminosity. Under assumptions of the universal scaling factors for
fermions and vector bosons; i.e., κf = κt = κb = κτ and κV = κW = κZ , current data gives

κV = 1.15± 0.08, κf = 0.99+0.08
−0.15, ATLAS [5], (4.2)

κV = 1.01± 0.07, κf = 0.87+0.14
−0.13, CMS [6], (4.3)

from the two parameters (κV and κV ) fit analysis based on Ref.. The scaling factors for the
loop induced Higgs boson couplings κg and κγ have also been measured under the assumptions
of κV = κf = 1,

κg = 1.08+0.15
−0.13, κγ = 1.19+0.15

−0.12, ATLAS [5], (4.4)

κg = 0.89+0.11
−0.10, κγ = 1.14+0.12

−0.13, CMS [6], (4.5)

from the two parameters (κg and κγ) fit analysis based on Ref.. We can see that all the SM
predictions (κX = 1) are included within the 2-σ uncertainty of the measured scaling factors,
where the current 1-σ uncertainties of the scaling factors are typically of O(10%).

The Higgs boson couplings are expected to be measured with more precision at future
experiments such as the LHC Run-II, the high luminosity (HL)-LHC [16,100] with the integrated
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Facility LHC300 LH-LHC ILC500 ILC500-up ILC1000 ILC1000-up
κγ 5− 7% 2− 5% 8.3% 4.4% 3.8% 2.3%
κg 6− 8% 3− 5% 2.0% 1.1% 1.1% 0.67%
κW 4− 6% 2− 5% 0.39% 0.21% 0.21% 0.2%
κZ 4− 6% 2− 4% 0.49% 0.24% 0.50% 0.3%
κℓ 6− 8% 2− 5% 1.9% 0.98% 1.3% 0.72%
κd = κb 10− 13% 4− 7% 0.93% 0.60% 0.51% 0.4%
κu = κt 14− 15% 7− 10% 2.5% 1.3% 1.3% 0.9%

Table 4.3: Expected precisions on the Higgs boson couplings and total width from a constrained
7-parameter fit quoted from Table 1-20 in Ref. [100].

luminosity of 3000 fb−1 and future lepton colliders like the ILC [12, 13, 16, 100]. In particular,
measurement uncertainties of the Higgs boson couplings will be improved drastically to the
order of 1 % or even better at future lepton colliders, such as the ILC [12, 13, 16, 100], the
CLIC [14, 16, 100] and Future e+e− Circular Collider (FCCee) [15, 100] as shown in Tab. 4.3.
Therefore, these future electron-positron colliders are idealistic tools for fingerprinting Higgs
sector and new physics models via precise measurements of the Higgs boson couplings. In order
to compare theory predictions with such precision measurements, calculations with higher order
corrections are clearly necessary.
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Radiative corrections to the Higgs bo-
son couplings in the THDMs

5.1 Renormalization in the THDMs
We perform renormalization calculations based on the on-shell scheme which has been applied
in Ref. [70]1. However, it has been pointed out that there remains gauge dependence in the
determination of the counter term of β in Ref. [101]. We thus construct the new renormalization
scheme for β to get rid of the gauge dependence.

First, we prepare the set of counter terms by shifting all the relevant bare parameters in
the Lagrangian. We then give the renormalized one- and two-point functions which are written
in terms of the contributions from 1PI diagrams and counter terms. After that, we set the
same number of renormalization condition as the number of counter terms to determine them.
For the renormalization scheme of the gauge and the fermion sector, we employ the same
renormalization scheme as that of the SM. in the following of this section, we focus on the
renormalization of the Higgs sector.

In the Higgs potential, there are eight paramaters,

m2
1,m

2
2,m

2
3, λ1, λ2, λ3, λ4, λ5. (5.1)

As described in Sec. 3.1.1, they can be written in terms of the physical parameters m2
h, m

2
H ,

m2
H± , m2

A, α, β, v and M2.
First, we shift the physical parameters form bare parameters to renormalized parameters

following as,

m2
h → m2

h + δm2
h, (5.2)

m2
H → m2

H + δm2
H , (5.3)

m2
H+ → m2

H+ + δm2
H+ , (5.4)

m2
A → m2

A + δm2
A, (5.5)

v → v + δv, (5.6)

α → α+ δα, (5.7)

β → β + δβ, (5.8)

M2 → M2 + δM2. (5.9)

1For the determination of the counter term for M2, the minimal subtraction scheme has been applied.
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We also shift tadpoles of H and h,

TH → TH + δTH , (5.10)

Th → Th + δTh, (5.11)

where TH and Th are related with T1 and T2,

δT1 = cαδTH − sαδTh, (5.12)

δT2 = sαδTH + cαδTh. (5.13)

Each scalar field is shifted to the renormalized field and the wave function renormalization,(
H
h

)
→
(

1 + 1
2
δZH δCHh + δα

−δα + δChH 1 + 1
2
δZh

)(
H
h

)
, (5.14)(

G0

A

)
→
(

1 + 1
2
δZG0 δCGA + δβ

−δβ + δCAG 1 + 1
2
δZA

)(
G0

A

)
, (5.15)(

G+

H+

)
→
(

1 + 1
2
δZG+ δCG+H− + δβ

−δβ + δCH+G− 1 + 1
2
δZH+

)(
G+

H+

)
. (5.16)

Renormalized one and two point functions at one-loop level are expressed as

Γ̂H = 0 + δTH + Γ1PI
H , (5.17)

Γ̂h = 0 + δTh + Γ1PI
h , (5.18)

Π̂H+H− [p2] = (p2 −m2
H+)δZH+ − δm2

H+ +
s2β
cβ

δT1

v
+

c2β
sβ

δT2

v
+Π1PI

H+H− [p2], (5.19)

Π̂H+G− [p2] =
(
p2 −m2

H+

)
(−δβ + δCH+G−) + p2 (δCG+H− + δβ)

+ 2

(
cβ
δT2

v
− sβ

δT1

v

)
+Π1PI

H+G− [p2], (5.20)

Π̂G+G− [p2] = p2δZG+ + cβ
δT1

v
− sβ

δT2

v
+Π1PI

G+G− [p2], (5.21)

Π̂AA[p
2] = (p2 −m2

A)δZA − δm2
A +

s2β
cβ

δT1

v
+

c2β
sβ

δT2

v
+Π1PI

AA[p
2], (5.22)

Π̂GA[p
2] =

(
p2 −m2

A

)
(δZAG − δβ) + p2(δZGA + δβ)− sβ

δT1

v
+ cβ

δT2

v
+Π1PI

GA[p
2], (5.23)

Π̂GG[p
2] = p2δZG0 − δm2

A +
s2β
cβ

δT1

v
+

c2β
sβ

+Π1PI
AA [p2], (5.24)

Π̂HH [p
2] = (p2 −m2

H)δZH − δm2
H +

c2α
cβ

δT1

v
+

s2α
sβ

δT2

v
+Π1PI

HH [p
2], (5.25)

Π̂Hh[p
2] = (p2 −m2

H)(δCHh + δα) + (p2 −m2
h)(δChH − δα)

+ cαsα

(
− 1

cβ

δT1

v
+

1

sβ

δT2

v

)
+Π1PI

hH [p2], (5.26)

Π̂hh[p
2] = (p2 −m2

h)δZh − δm2
h +

s2α
cβ

δT1

v
+

c2α
sβ

δT2

v
+Π1PI

hh [p2], (5.27)
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where analytic formulae of 1PI diagram parts are given in Appendix.

In order to determine counter terms, we impose renormalization conditions. We start from
renormalizations of the tadpole. We impose them on-shell conditions as renormalization con-
ditions.

ΓH [p
2] = 0, Γh[p

2] = 0. (5.28)

Then we obtain

δTH = −T 1PI
H [0], δTh = −T 1PI

h [0]. (5.29)

The seven counter terms related to the CP-even Higgs sectors (δm2
h, δm

2
H , δα, δCHh, δChH ,

δZH and δZH) are determined by following seven renormalized conditions,

Π̂HH [m
2
H ] = 0,

d

dp2
Π̂HH [p

2]
∣∣∣
p2=m2

H

= 0, (5.30)

Π̂hh[m
2
h] = 0,

d

dp2
Π̂hh[p

2]
∣∣∣
p2=m2

h

= 0, (5.31)

Π̂hH [m
2
h] = 0, Π̂hH [m

2
H ] = 0, δChH = δCHh(≡ δCh), (5.32)

by which we obtain

δm2
h = Π1PI

hh [m2
h] +

s2α
cβ

δT1

v
+

c2α
sβ

δT2

v
, (5.33)

δm2
H = Π1PI

HH [m
2
H ] +

c2α
cβ

δT1

v
+

s2α
sβ

δT2

v
, (5.34)

δZh = − d

dp2
Π1PI

hh [p2]
∣∣∣
p2=m2

h

, (5.35)

δZH = − d

dp2
Π1PI

HH [p
2]
∣∣∣
p2=m2

H

, (5.36)

δα =
1

2(m2
H −m2

h)

{
2cαsα

(
− 1

cβ

δT1

v
+

1

sβ

δT2

v

)
+Π1PI

Hh [m
2
H ] + Π1PI

Hh [m
2
h]

}
, (5.37)

δCh =
1

2(m2
H −m2

h)

(
ΠHh1PI [m2

h]− Π1PI
Hh [m

2
H ]
)
. (5.38)

There are seven counter terms related to the CP-odd Higgs sectors (δm2
A, δβ, δCAG, δCGA,

δZA and δZG0). First, we determine δm2
A, δZA, δZG0 following conditions

Π̂AA[m
2
H ] = 0,

d

dp2
Π̂AA[p

2]
∣∣∣
p2=m2

A

= 0, (5.39)

d

dp2
Π̂GG[p

2]
∣∣∣
p2=0

= 0, (5.40)
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by which we obtain

δm2
A = Π1PI

AA [m2
A] +

s2β
cβ

δT1

v
+

c2β
sβ

δT2

v
, (5.41)

δZA = − d

dp2
Π1PI

AA [p2]|p2=m2
A
, (5.42)

δZG0 = − d

dp2
Π1PI

GG [p2]|p2=0. (5.43)

According to Ref. [101], gauge dependence remains in δβ depending on kinds of renormalizaton
conditions. For example, if we employ following the set of renormalization conditions, gauge
dependence remain in δβ,

ΠGA[0] = 0, (5.44)

ΠGA[m
2
A] = 0, (5.45)

δCAG = δCGA., (5.46)

by which we obtain

δβ = − 1

2m2
A

Π̃GA[m
2
A], (5.47)

δCAG = δβ. (5.48)

When we derive a form δCAG0 = δβ, We use NG theorem Π̃G0A[0] = 0.
In order to remove gauge dependence from δβ, we determine three counter terms by following

method. In order to determine three counter terms, we need to impose one more renormalization
condition in addition to that given in Eqs. (5.39), (5.40). This third condition can be used to
remove the gauge dependence in δβ which was already mentioned in the beginning of this
section. To define such a condition, we separate Π̃1PI

AG(p
2) into the gauge dependent (G.D.) part

and the gauge independent (G.I.) part as

Π̃1PI
AG(p

2) = Π̃1PI
AG(p

2)
∣∣
G.D.

+ Π̃1PI
AG(p

2)
∣∣
G.I.

. (5.49)

Then, we imposed the third condition as

δβ = − 1

2m2
A

Π̃1PI
AG(m

2
A)
∣∣
G.I.

. (5.50)

The remaining two counter terms are also determined:

δCAG = − 1

2m2
A

[
Π̃1PI

AG(m
2
A)
∣∣
G.I.

− 2Π̃1PI
AG(0)

∣∣
G.D.

]
, (5.51)

δCGA = − 1

2m2
A

[
Π̃1PI

AG(m
2
A)
∣∣
G.I.

+ 2Π̃1PI
AG(m

2
A)
∣∣
G.D.

]
. (5.52)

We note that in Π̃1PI
AG(0) only the G.D. part is survived; i.e., Π̃1PI

AG(0) = Π̃1PI
AG(0)

∣∣
G.D.

. As it can
be seen in Eqs. (5.51) and (5.52), there still remains the gauge dependence in δCAG and δCGA.
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However, they do not appear in the following calculations for the renormalization of the Higgs
boson couplings. Instead of applying the above renormalization scheme for δβ, we can apply
the MS scheme in which the gauge dependence can also be removed at the one-loop level as
discueed in Ref. [101]. In the following discussion, we apply the renormalized tanβ determined
by Eq. (5.50).

There are seven counter terms related to the singly charged Higgs sectors (δm2
H± , δβ, δCHG,

δCGH , δZH and δZG±). One of them δβ already has been determined in the renormalization of
CP-odd Higgs states Eq. (5.50). We determine them following conditions

Π̂H+H− [m2
H± ] = 0,

d

dp2
Π̂H+H− [p2]

∣∣∣
p2=m2

H±

= 0, (5.53)

d

dp2
Π̂G+G− [p2]

∣∣∣
p2=0

= 0, (5.54)

Π̂H+G− [m2
H± ] = Π̂H+G− [0] = 0 (5.55)

by which we obtain

δm2
H+ =

s2β
cβ

δT1

v
+

c2β
sβ

δT2

v
+Π1PI

H+H− [0], (5.56)

δZH± = − d

dp2
Π1PI

H+H− [p2]
∣∣∣
p2=m2

H+

, (5.57)

δZG± = − d

dp2
Π1PI

G+G− [p2]
∣∣∣
p2=0

. (5.58)

Until here, we did not discuss the determination of δM2. As adopted in Ref. [70], we apply
the minimal subtraction scheme for δM2, where it is determined so as to absorb only the
divergent part in the hhh vertex at the one-loop level, that is

δM2

M2
=

1

16π2v2

[
2
∑
f

N f
c m

2
fξ

2
f + 4M2 − 2m2

H± −m2
A +

sin 2α

sin 2β
(m2

H −m2
h)− 3(2m2

W −m2
Z)
]
∆,

(5.59)

where ∆ is the divergence part given by ∆ ≡ 1
ϵ
− γE + ln 4π + lnµ2.

5.2 Renormalized Higgs boson couplings in the THDMs

5.2.1 Analytic expressions

In the previous section, all the counter terms are deternimed by the set of renormalization
conditions. Now, we can evaluate the renormalized Higgs boson couplings hWW [59], hZZ [59,
70], hff̄ [58,59,102] and hhh [59,70]. In addition to the above couplings, we also give formulae
for the loop induced decay rates; h → γγ [102–104], h → Zγ [104] and h → gg [105].

The renormalized hV V , hff̄ and hhh vertices are expressed as

Γ̂i
hV V (p

2
1, p

2
2, q

2) = Γi,tree
hV V + δΓi

hV V + Γi,1PI
hV V (p

2
1, p

2
2, q

2), (i = 1-3), (5.60)

Γ̂hff (p
2
1, p

2
2, q

2) = Γtree
hff + δΓhff + Γ1PI

hff (p
2
1, p

2
2, q

2), (5.61)

Γ̂hhh(p
2
1, p

2
2, q

2) = Γtree
hhh + δΓhhh + Γ1PI

hhh(p
2
1, p

2
2, q

2), (5.62)
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δξuh δξdh δξeh

Type-I − cα
sβ
(cotβδβ + tanαδα) − cα

sβ
(cotβδβ + tanαδα) − cα

sβ
(cotβδβ + tanαδα)

Type-II − cα
sβ
(cotβδβ + tanαδα) − sα

cβ
(tanβδβ + cotαδα) − sα

cβ
(tanβδβ + cotαδα)

Type-X − cα
sβ
(cotβδβ + tanαδα) − cα

sβ
(cotβδβ + tanαδα) − sα

cβ
(tanβδβ + cotαδα)

Type-Y − cα
sβ
(cotβδβ + tanαδα) − sα

cβ
(tanβδβ + cotαδα) − cα

sβ
(cotβδβ + tanαδα)

Table 5.1: The counter term for the mixing factors in Yukawa interactions.

where Γtree
hXX , δΓhXX and Γ1PI

hXX are the contributions from the tree level, the counter terms
and the 1PI diagrams for the hXX vertices, respectively. In the above expressions, p1 and p2
(q = p1 + p2) are the incoming momenta of particle X (outgoing momentum for h). For the
hV V vertex, the index i labels the following three form factors;

Γ̂µν
hV V = Γ̂1

hV V g
µν + Γ̂2

hV V

pµ1p
ν
2

m2
V

+ iΓ̂3
hV V ϵ

µνρσ p1ρp2σ
m2

V

. (5.63)

The tree-level contributions are given as

Γ1,tree
hV V =

2m2
V

v
sin(β − α), Γ2,tree

hV V = Γ3,tree
hV V = 0, Γtree

hff = −mf

v
ξfh , Γtree

hhh = −6λhhh. (5.64)

The counter-term contributions are

δΓ1
hV V =

2m2
V

v

[
sin(β − α)

(
δm2

V

m2
V

+ δZV +
1

2
δZh −

δv

v

)
+ cos(β − α)(δβ + δCh)

]
,

δΓ2
hV V = δΓ3

hV V = 0, (5.65)

δΓhff = −mf

v
ξfh

[
δmf

mf

− δv

v
+ δZf

V +
1

2
δZh +

δξfh
ξfh

+
ξfH
ξfh

(δCh + δα)

]
, (5.66)

δΓhhh = 6

[
δλhhh +

3

2
δZh + λHhh(δα+ δCh)

]
. (5.67)

The counter terms in the Yukawa couplings δξfh are expressed in terms of δβ and δα as listed
in Table 5.1. We define the renormalized scaling factors by the following way;

κ̂V =
Γ̂1
hV V (m

2
V ,m

2
h, q

2)THDM

Γ̂1
hV V (m

2
V ,m

2
h, q

2)SM
, (5.68a)

κ̂f =
Γ̂hff (m

2
f ,m

2
f , q

2)THDM

Γ̂hff (m2
f ,m

2
f , q

2)SM
, (5.68b)

κ̂h =
Γ̂hhh(m

2
h,m

2
h, q

2)THDM

Γ̂hhh(m2
h,m

2
h, q

2)SM
. (5.68c)
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The deviation in these scaling factors from the SM prediction can be described by

∆κi = κ̂i − 1. (5.69)

We also give the loop induced decay rates for h → γγ, h → Zγ and h → gg in the Appendix.
We then define the ratio of these decay rates;

RXY =
Γ(h → XY )THDM

Γ(h → XY )SM
, for XY = γγ, Zγ, and gg. (5.70)

The deviations in renormalized Higgs boson couplings are approximately expressed by keep-
ing the non-decoupling effects of extra Higgs bosons and top and bottom masses dependence
(mA ≃ mH is assumed) as

∆κ̂V ≃ −1

2
x2 − 1

16π2

1

6

∑
Φ=A,H,H±

cΦ
m2

Φ

v2

(
1− M2

m2
Φ

)2

, (5.71)

∆κ̂τ ≃ ∆κ̂V + ξe x, (5.72)

∆κ̂c ≃ ∆κ̂V + ξu x, (5.73)

∆κ̂b ≃ ∆κ̂V + ξd x− 1

16π2
ξuξd

2m2
t

v2

(
1− m2

t

m2
H±

− M2

m2
H±

)
− 1

16π2

1

6
ξ2d

∑
Φ=A,H,H±

m4
b

v2m2
Φ

, (5.74)

∆κ̂t ≃ ∆κ̂V + ξu x− 1

16π2

1

6

ξ2u ∑
Φ=A,H,H±

m4
t

v2m2
Φ

+ ξ2d
m2

bm
2
t

v2m2
H±

 , (5.75)

∆κ̂h ≃
(
3

2
− 2M2

m2
h

)
x2 +

1

16π2

∑
Φ=A,H,H±

cΦ
4

3

m4
Φ

m2
hv

2

(
1− M2

m2
Φ

)3

. (5.76)

We can see that there appears the term m2
Φ/v

2 (1−M2/m2
Φ)

2
in ∆κ̂V which comes from the

counter term δZh; i.e., the derivative of the h two point function given in Eq. (5.35). When
we consider the case with M2 . v2, this term gives the quadratic power like dependence of the
mass of additional Higgs bosons. This corresponds to the case where the mass of additional
Higgs bosons, which is expressed schematically as m2

Φ = λiv
2 + M2, mostly comes from the

Higgs VEV v. In such a situation, it is known that the decoupling theorem does not work. On
the other hand, if we consider the case of M2 ≫ v2, the amount of ∆κ̂f is reduced as 1/m2

Φ

according to the decoupling theorem. The same contribution from δZh is also seen in ∆κ̂f

(f = τ, c, b, t) through the term ∆κ̂V . Notice here that there are additional terms proportional
to the top or bottom quark masses in ∆κ̂b and ∆κ̂t. They come from the additional Higgs boson
loop contributions to the 1PI hbb̄ or htt̄ diagrams. Apart from ∆κ̂V and ∆κ̂f , let us discuss

the expression of ∆κ̂h. There appears the term m4
Φ/(m

2
hv

2) (1−M2/m2
Φ)

3
which comes from

the additional Higgs boson loop contributions to the 1PI hhh diagrams. When we consider the
non-decoupling case; i.e., M2 . v2, it gives the quartic power like dependence of mΦ. Similar
to the case in ∆κV , this effect is decoupled by 1/m2

Φ when M2 ≫ v2 is taken.
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Similarly, the decay rates of h → γγ and h → gg are expressed in terms of x (x ≪ 1) as

Γ(h → γγ) ≃ GFα
2
emm

3
h

128
√
2π3

∣∣∣∣−1

3

(
1− M2

m2
H±

)
+QfN

f
c (1 + ξf x− x2

2
)If + (1− x2

2
)IW

∣∣∣∣2 , (5.77)

Γ(h → gg) ≃ GFα
2
sm

3
h

64
√
2π3

∣∣∣∣(1 + ξq x− x2

2
)Iq

∣∣∣∣2 . (5.78)

The first term in Γ(h → γγ) expressed by (1 − M2/m2
H±) is the charged Higgs boson loop

contribution. When we take the limit of M2 → 0, this term approaches to the constant −1/3.
This can also be understood as the consequence of the non-decoupling effect of the charged
Higgs boson loop contribution, but it is not like the quartic (quadratic) power like dependence
seen in the ∆κ̂h (∆κ̂V and ∆κ̂f ).

5.2.2 Deviations in the Higgs boson couplings at the one-loop level
in the THDMs

In the following, we show numerical results for the Higgs boson couplings at the one-loop level.
We use the following inputs [99];

mZ = 91.1875 GeV, GF = 1.16639× 10−5 GeV−2, α−1
em = 137.035989, ∆αem = 0.06635,

mt = 173.07 GeV, mb = 4.66 GeV, mc = 1.275 GeV, mτ = 1.77684 GeV. (5.79)

We first show the case of sin(β − α) = 1. In this case, the deviations in the Higgs boson
couplings purely comes from the additional Higgs boson loop effects. We note that the tanβ
dependence in the renormalized scaling factors appears only in κf . We take all the masses of
additional Higgs bosons to be the same; mH± = mA = mH (≡ mΦ) for simplicity, and we fix
the squared momentum to be q2 = (mh+mV )

2, m2
h, and (2mh)

2 for κ̂V , κ̂f and κ̂h, respectively.
In Fig. 5.1, we show the decoupling behavior of additional Higgs boson loop contributions

to the Higgs boson couplings. The upper-left, upper-right, lower-left and lower-right panels
respectively show ∆κh, ∆κV , ∆κb and ∆R as a function of mΦ for several fixed values of
λv2 (= m2

Φ − M2). We take tan β = 1 in this figure. We can see that all the deviations
approach to zero in the large mass region due to the decoupling theorem.

In Fig. 5.2, we show the deviation in the Higgs boson couplings ∆κh (upper-left), ∆κV

(upper-right), ∆κf (lower-left) and ∆R (lower-right) as a function of mΦ. We take M2 = 0 and
tan β = 1 for all panels. In this case, the magnitude of deviations increase when mΦ becomes
larger except for ∆R.

5.3 Discriminating four types of the THDMs

A pattern of deviations in the Higgs boson couplings from their SM predictions depends on the
structure of the Higgs sector and the Yukawa interaction. The pattern of deviations depend
on the number of the Higgs field, their representations and the mass of Higgs bosons in the
loop. It is possible to discriminate extended Higgs sectors by using future precision data and
comprehensively evaluating all coupling constants of h in each model. In this section, we
evaluate the deviations in these coupling constants from predictions of the SM at the one-
loop level, and study how to discriminate extended Higgs sectors by comparing the precise



5.3. DISCRIMINATING FOUR TYPES OF THE THDMS 59

500 1000 1500 2000
mΦ [GeV]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

∆κ
V

 [
%

]
Sqrt(λv

2
) = 150 GeV

30
0 G

eV
40

0 G
eV

V = Z

V = W

500 1000 1500 2000
mΦ [GeV]

-2

-1

0

1

∆κ
b [

%
]

Sqrt(λv
2
) = 150 GeV

300 GeV

400 GeV

tanβ = 1

500 1000 1500 2000
mΦ [GeV]

-15

-10

-5

0

5

∆R
 [

%
]

Sqrt(λv
2
) = 150 GeV

300 GeV

400 GeV

γγ

Zγ

500 1000 1500 2000
mΦ [GeV]

0

20

40

60

80

100

120

∆κ
h [

%
]

150 GeV

Sqrt(λv
2
) = 400 GeV300 GeV

Figure 5.1: Deviations in the renormalized scaling factors for hhh (upper left), hV V (upper
right) and hbb̄ (bottom left), and those in the decay rates ∆Rγγ/Zγ (bottom right) as a function
of mΦ in the case of sin(β − α) = 1 and tanβ = 1. Each curve denotes the results in the cases
of λv2 =150, 300 and 400 GeV.

predictions of characteristic pattern of deviations with future precision measurements of the
coupling constants of h at future collider experiments, in particular at the ILC.

In this subsection, we investigate Yukawa interaction type of THDMs by correlations among
Yukawa couplings at the one-loop level. In THDMs, different characteristic patterns of devi-
ation in Yukawa coupling constants (hff̄) can be allowed depending on four types of Yukawa
interactions.

In the SM like limit, renormalized scale factor of Yukawa couplings can be approximately
expressed as

κ̂f = 1− 1

16π2

1

6

∑
Φ=A,H,H±

cΦ
m2

Φ

v2

(
1− M2

m2
Φ

)2

, (5.80)

where cΦ = 2 (1) in Φ = H± (A,H). The second term in right-hand side of Eq. (6.2) is
a deviation from the SM predictions due to loop effects of extra Higgs bosons. We can see
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Figure 5.2: Deviations in the renormalized scaling factors for hhh (upper left), hV V (upper
right) and hbb̄ (bottom left), and those in the decay rates ∆Rγγ/Zγ (bottom right) as a function
of mΦ in the case of M2 = 0, sin(β − α) = 1 and tanβ = 1.

that the effect can be both decoupling and non-decoupling, depending on the balance between
m2

Φ and M2. If M2 is as large as m2
Φ, the effect becomes decoupling in the large mass limit.

Otherwise, quadratic dependences of mΦ appear.

In Fig. 5.3, we show the decoupling behavior of the one-loop corrections to each Yukawa
coupling . We plot the deviations in the renormalized Yukawa couplings; i.e., κ̂f −1 for f = b, τ
and c as a function of mΦ in the Type-I (the top), Type-II (the second panel from the top),
Type-X (the third one from the top) and Type-Y(the lowest) THDMs with sin2(β − α) = 1,
tan β = 1 (the solid curves) and tanβ = 3 (the dashed curves). We here fix m2

Φ − M2 to be
(300GeV)2 as just an example. You notice that the value of the deviations approaches to 0 in
the large mass region. Because M2/m2

Φ gets close to 1 as mΦ become larger, the extra Higgs
loop contributions written in Eq. (6.2) are reduced. Thus, we can verify that the renormalized
hff̄ couplings approach to the SM prediction in the large mass limit. The peak at around
mΦ = 2mt is the resonance of the top quark loop contributions to the two point function
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Figure 5.3: Deviations in hff̄ (f = b, τ, c) couplings in four types of THDMs as a function
of mΦ (Φ = H±, A,H) when sin2(β − α) = 1, M2 = m2

Φ − (300GeV)2 [58]. Solid lines and
dashed lines show the case of tan β = 1 and tanβ = 3, respectively. Those panels show results
in Type-I, Type-II, Type-X and Type-Y of THDMs from the top.

among A and G0.
In Fig. 5.4, we discuss non-decoupling effects for deviations in coupling constants of hcc,

hbb and hττ in Type-I (the top), Type-II (the second panel from the top), Type-X (the third
one from the top) and Type-Y (the lowest). They are deviations including one-loop radiative
corrections as functions of masses of extra Higgs bosons. We take the mixing angles to be
sin2(β−α) = 1 with tanβ = 1 (solid line) and tanβ = 3 (dashed line). We here fix the value of
M2 to be zero. We can find that deviations from the SM predictions can be several percent at
the large mass region due to non-decoupling loop effects in the all types of Yukawa interactions
even in the case with sin2(β−α) = 0. However, the unitarity bound excludes parameter regions
where masses of extra Higgs bosons are larger than about 600 GeV (230 GeV) in tanβ = 1(3).

In Fig. 5.5, we show the behavior of the scale factors at the tree level κtree
τ , κtree

b and one-loop
corrected scale factors κ̂τ , κ̂b in the four types of THDMs [58]. The left panel and the right
panel correspond to results in the case with cos(β − α) > 0 and cos(β − α) < 0, respectively.
Doted lines indicate predictions at the tree level in sin2(β−α) = 0.99 and 0.95, and black dots
being on these lines are the tree level results with tan β = 1, 2, 3 and 4. At the tree level, in the
case with sin2(β−α) = 1, predictions of all the types get close to those of the SM. If sin(β−α)
slightly deviate from unity, κtree

f for each type lead to deviate in different directions. However it
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Figure 5.4: Deviations in Yukawa coupling constants for b, τ and c as a function of mΦ when
sin2(β − α) = 1, M = 0 [58]. Solid lines and dashed lines show the case of tanβ = 1 and
tan β = 3, respectively. They are results in Type-I, Type-II, Type-X and Type-Y of THDMs
from the top.

is diffecult to discriminate the types of THDMs by evaluating only κb and κτ because behaviors
of κb and κτ depend on the sign of cos(β−α). If cos(β−α) is negative (positive), predictions of
κt(c) in all the types are less (larger) than 1. Therefore we can determine the sign of cos(β−α)
by using measurements of κt(c). Then we can discriminate all types of Yukawa interactions by
the pattern of deviations in these hff̄ couplings. These analysis of Yukawa couplings at the
tree level have already been discussed in Refs. [13,57,106].

In Fig. 5.5, we also plot those including full electroweak and scalar bosons loop corrections
which are shown by colored regions around black dots. Red regions (blue regions) are modified
regions by extra Higgs loop contributions for the case with sin2(β − α) = 0.99 (0.95). We scan
mΦ(= mH± = mA = mH) and M over from 100 GeV to 1 TeV and from 0 to mΦ, respectively.
We find that results can be modified from the tree level values in several percent by extra Higgs
loop effects. Even if radiative corrections become maximal values, predictions of κ̂f (f = c, b, τ)
in the types of Yukawa interaction don’t overlap each other. Therefore we can discriminate all
the types when sin2(β − α) deviates from the SM prediction by about 1%.

At the HL-LHC, hττ and hbb couplings are expected to be measured with about 8% and
11%, respectively [56, 100]. When sin2(β − α) is different about 1% from unity, hbb and hττ
coupling constants can differ about 10% from the predictions of the SM depending on the value
of tan β. In that case, we can discriminate the types of Yukawa interactions by using those HL-
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Figure 5.5: Plots of scale factors of τ and b in four types of Yukawa interactions [58]. The left
panel and the right panel are predictions with cos(β−α) > 0 and cos(β−α) < 0, respectively.
Each black dot indicates a result at the tree level with tanβ = 1, 2, 3 and 4. Red region (blue
region) show one-loop results with sin2(β − α) = 0.99 (sin2(β − α) = 0.95) where mΦ and M
are scanned over from 100 GeV to 1 TeV and 0 to mΦ, respectively, under the constraints of
perturbative unitarity and vacuum stability.

LHC data. At the ILC500, however, the Higgs coupling measurements have typically O(1)%
level resolution: e.g., h coupling constants to τ and b can be determine with 2.3% and 1.6%
uncertainty, respectively [13]. In order to compare with such precision coupling measurements
at the ILC, we must not neglect the effects of radiative corrections.

5.4 Determination of inner parameters from the Higgs

boson coupling measurements
In this section, we investigate how we can fingerprint the THDMs using the one-loop corrected
Higgs boson couplings and also future precision measurements of these couplings at the HL-LHC
and the ILC. We carefully see how the tree level analysis for the model discrimination discussed
in Sec. II or in Ref. [57] can be improved by the analysis with radiative corrections. Furthermore,
we demonstrate how the inner parameters such as x, tan β and masses of additional Higgs bosons
can be extracted from the measurement of the couplings for the Higgs boson h. In our analysis
below, we assume that the deviations in scale factors of the Higgs boson couplings are measured
as expected in Table 5.2. We also assume that the SM values of these coupling constants are
well predicted without large uncertainties which mainly come from QCD corrections2.

2According to Refs. [107, 108], the current uncertainty of the bottom Yukawa coupling hbb̄ due to the QCD
corrections is 0.77% in the SM. This uncertainty could be reduced in future studies using the lattice calculation
up to 0.10% [108] which is better than the expected accuracy of the measurement of the hbb̄ coupling at the
ILC1000-up as listed in Ref. [100] (0.4%).
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Set A Set B Set C Set D Set E

∆κV −2% −2% −2% −1% −0.4%

∆κτ +18% +10% +5% +18% +18%

∆κb +18% +10% +5% +18% +18%

Table 5.2: Benchmark sets for the central values of measured scaling factors for the hV V , hbb̄
and hττ couplings. The expected 1-σ uncertainties for each scaling factor at the HL-LHC and
the ILC 500 are shown in Eq. (5.81).

Let us suppose that ∆κV , ∆κτ and ∆κb are measured at the HL-LHC and the ILC500. We
consider five benchmark sets for the central values of (∆κV ,∆κτ ,∆κb) as listed in Table 5.2. Set
A is the typical case where Yukawa couplings deviate from the SM values rather significantly
(18%) with a relatively large deviation in the hV V couplings (−2%). Set B and Set C correspond
to the cases with smaller deviations in Yukawa couplings with the same deviation in gauge
couplings as Set A. Set D and Set E do to the cases with smaller deviations in gauge couplings
with fixing the same deviation in Yukawa couplings as Set A. According to Ref. [100], the 1-σ
uncertainty for these scaling factors are given as

[σ(κV ), σ(κb), σ(κτ )] = [2%, 4%, 2%], for HL-LHC,

[σ(κV ), σ(κb), σ(κτ )] = [0.4%, 0.9%, 1.9%], for ILC500. (5.81)

From Fig. 5.5, these benchmark sets indicate that the Higgs sector is the THDM with the
Type-II (Type-I) Yukawa interaction assuming x ≃ cos(β−α) < 0 (x > 0). In order to further
discriminate Type-I or Type-II, we need additional information to determine the sign of x such
as the measurement of ∆κc, namely, if ∆κc is given to be a negative (positive) value, then we
can completely determine the Yukawa interaction to be Type-II (Type-I). In the following, we
consider the case of ∆κc < 0, so that we assume the case of the Type-II THDM.

For all Set A to Set E, we survey parameter regions in which values of κ’s are predicted
around the central values within the 1-σ uncertainty expressed in Eq. (5.81) by scanning the
inner parameters x, tan β, mΦ (= mH± = mA = mH) and M2 in the Type-II THDM. We also
take into account the constraints from vacuum stability and perturbative unitarity in order to
constrain the parameter space. The scanned regions for tanβ and mΦ are taken as tanβ ≥ 1
and mΦ ≥ 300 GeV, respectively. Values of the other parameters M2 and x are scanned over
ranges which are enough wide to obtain the maximally allowed parameter spaces.

In Fig. 5.6, we show the allowed parameter regions on the x-tan β, x-m̄Φ, mΦ-ζ andmΦ-tan β
planes from the left to right panels, where we define

ζ ≡ 1−M2/m2
Φ, m̄Φ ≡ mΦζ. (5.82)

The parameters x and m̄Φ give deviations of the Higgs boson couplings by the mixing effect and
the loop effect, respectively. Notice that the scale of m̄Φ corresponds to the mass of the extra
Higgs boson when M2 = 0. The physics meaning of ζ is to measure the magnitude of non-
decouplingness of the loop effects of extra Higgs bosons. If ζ is unity, we have M2 = 0, while if
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ζ < 1 with nonzero value of M2 (> 0), the mass of the extra Higgs bosons partially comes from
M2 so that the non-decouplingness is smaller. The central values of ∆κ’s are chosen from Set
A, B, C, D and E from the upper to bottom panels. The blue and red points correspond to the
region within the 1-σ uncertainty at the HL-LHC and ILC500, respectively, from the central
value in Table 5.2.

For Set A in Fig. 5.6, let us first explain the behavior of the red points on the x-tan β plane.
In this case, −2.4% < ∆κV < −1.6% is allowed at the ILC500, which can be explained by
taking −0.22 . x . −0.18 at the tree level from the expression of ∆κV ≃ −x2/2. At the
same time, both ∆κτ and ∆κb are approximately given by −x tan β in the Type-II THDM
at the tree level, so that tanβ is determined by a fixed value of x from tan β ≃ −∆κτ/b/x,
which is around unity if we take the central value of ∆κV and ∆κτ/b. In fact, by looking at
the top-left panel in Fig. 5.6, the above mentioned values of x and tan β are allowed. However,
the actual allowed region of x inclucing radiative corrections is about from −0.22 to −0.12
which is wider than the allowed region estimated at the tree level. This can be understood by
taking into account the additional Higgs boson loop contributions to κV at the one-loop level.
The approximate formula for ∆κ̂V is given in Eq. (5.71), where the second term in the right
hand side corresponds to the one-loop contribution. The point here is that the sign of one-loop
effect is negative, and it is proportional to the factor ζ2. Therefore, the allowed region above
x ≃ −0.18 is explained from the one-loop contribution with a non-zero value of ζ. On the other
hand, the one-loop correction to κτ is given by the same form as for κV as given in Eq. (5.72),
so that the difference ∆κ̂τ − ∆κ̂V is approximately given by the same form −x tan β as that
given at the tree level. Now from the measurement, since the difference is determined with the
uncertainty, −x tan β is also fixed at the one-loop level. We thus can understand the shape of
the allowed region of this plot. Although for ∆κ̂b the top quark, the bottom quark and H±

loop diagrams give an additional contribution as shown in Eq. (5.74), this is not so significant
in the scanned regions. As a consequence for Set A, when the measurement at the ILC500 is
assumed, the allowed value of x and tanβ can be determined to be about from −0.22 to −0.12
and from 1 to 2, respectively. On the other hand at the HL-LHC, ∆κV = 0 is included within
the 1-σ uncertainty. Thus, x ≃ 0 is still allowed, so that the value of tanβ is not determined at
all because of the relation tanβ ≃ −∆κτ/b/x. In addition, we can only extract the lower limit
of x to be about −0.22.

Next, we discuss the behavior of the second panel for Set A in Fig. 5.6. As we mentioned
in the above, the vertical axis m̄Φ measures the size of one-loop contribution to the deviation
in the Higgs boson couplings. At the ILC500, in the region with x ≃ −0.20, the value of m̄Φ

is determined to be a smaller value, but m̄Φ ≃ 0 is not included because of the constraint
from vacuum stability. This can be understood that the deviation from the tree level mixing
is dominant in this case. On the other hand, when the value of x approaches to zero, a sizable
value of m̄Φ is extracted, in which the deviation driven by the one-loop contribution becomes
more important to compensate the reduced contribution from the tree level mixing. In addition,
the upper limit of m̄Φ to be about 450 GeV is determined by the constraint from perturbative
unitarity. At the HL-LHC, although the blue plots are spread over the region with x ≃ 0 as we
observed in the x-tan β plot, the upper and lower limit of m̄Φ is given by the constraint from
unitarity and vacuum stability, respectively.

The third panel for Set A in Fig. 5.6 shows the allowed region on the mΦ-ζ plane, where
ζ is the parameter indicating the non-decouplingness of the extra Higgs bosons. For Set A,
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the allowed regions for ILC500 are shown by the red points while those for HL-LHC by the
blue points. There are upper and lower bounds for ζ for each value of mΦ. They are crossed
at around mΦ = 850 GeV which corresponds to the upper bound of the mass of extra Higgs
boson. The region of ζ is from 0.2 to 1.4 at mΦ = 300 GeV. The region of ζ > 1 corresponds
to M2 < 0, where non-decoupling effects are effectively large. The exclusion of ζ < 0.2 means
that there must be some non-decoupling loop effects of extra Higgs bosons in order to explain
this benchmark point. At the HL-LHC, the similar behavior can be observed. However, ζ = 0
is still allowed, so that we cannot say something about the non-decoupling effect.

The last panel for Set A in Fig. 5.6 shows the allowed regions on the mΦ-tan β plane. At the
ILC500, tan β can be determined to be less than 2, and the upper bound of the mass of the extra
Higgs bosons are obtained to be less 850 GeV, while at the HL-LHC, tanβ is undetermined
and only the upper bound of the mass of the extra Higgs bosons is obtained.

The panels shown in the second and third rows in Fig. 5.6 display the allowed parameter
regions for Set B and Set C, respectively, where the central value of ∆κτ (= ∆κb) is taken to
be smaller than that of Set A, while ∆κV is taken to be the same. By looking at the panels
for the x-tan β plane, we can see that a smaller value of |x| is preferred as compared to the
case for Set A. Furthermore, a smaller value of tanβ is favored in addition to a smaller value
of |x| as seen in the result at the ILC500. These tendencies can be understood in such a way
that the deviations in Yuakwa couplings are proportional to −x tan β at the tree level. Because
of the smaller value of |x|, the deviation in κV cannot be explained only from the tree level
contribution, so that the one-loop effect is necessary to compensate the tree level contribution.
That is the reason why the red points in the second and the third panels for Set B and Set
C are given in the upper region which does not include m̄Φ ≃ 0 and ζ ≃ 0. Therefore, the
non-decoupling effect can be extracted at the ILC500 for these two benchmark sets. From the
results of ILC500, the upper limit on mΦ is extracted to be about 950 GeV and 800 GeV for
Set B and Set C, respectively.

The panels shown in the fourth and fifth rows in Fig. 5.6 display the allowed parameter
regions for Set D and Set E, respectively, where the central value of ∆κV is taken to be smaller
than that of Set A, while ∆κτ (= ∆κb) is taken to be the same. From the red points in the
left panels, it is seen that the values of smaller |x| and larger tanβ are allowed, which can be
explained by the tree level formulae of ∆κV = −x2/2 and ∆κτ/b = −x tan β. For Set E unlike
the other benchmark sets, values of x and tan β are not well determined even at the ILC500,
because ∆κV ≃ 0 is included within the 1-σ uncertainty of ILC500. The extraction for m̄Φ, ζ
and mΦ is done from the ILC500 as 50 . m̄Φ . 300 GeV, 0.1 . ζ . 1.1 GeV and mΦ < 850
GeV for Set D and 0 . m̄Φ . 200 GeV, 0 . ζ . 0.7 GeV and mΦ < 800 GeV for Set E.

Up to now, we have discussed the extraction of the inner parameters from the three ex-
perimental inputs; i.e., ∆κV , ∆κτ and ∆κb. In Fig. 5.7, we show how the extraction can be
improved by adding information of κγ in addition to the above three inputs. The panels shown
in the first row are the same as those shown in the first row in Fig. 5.6, which are displayed
in order to compare the results with κγ. The panels displayed in the second, third and fourth
rows respectively show the allowed region for Set A with the central value of κγ of 0.98, 1.00
and 1.02 within the 1-σ uncertainty of ±2% as expected at the HL-LHC. Because the accu-
racy of the measurement of κγ at the ILC500 is not better than that of the best value at the
HL-LHC, 2%, we also use 2% for the analysis at the ILC500. As we see Eq. (5.77), the H±

loop contribution to the decay rate of the h → γγ mode gives a different dependence of the
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non-decouplingness from that in ∆κ̂V and ∆κ̂f , which is not proportional to m̄Φ, but propor-
tional to ζ, so that the non-decouplingness ζ can be expected to be extracted more precisely
depending on the measured value of κγ. In fact, we can observe that ζ is determined more
precisely to be 0.5 . ζ . 1.0, 0.25 . ζ . 1.1 and 0.2 . ζ . 0.5 at the ILC500 for the cases
with the central value of κγ = 0.98, κγ = 1.00 and κγ = 1.02, respectively, as compared to the
case without κγ (0.2 . ζ . 1.2). The determination of m̄Φ is also improved, because m̄Φ is
given as a function of ζ. We note that smaller values of ζ and m̄Φ are favored in the case of the
larger central value of κγ, because the H

± loop effect gives a destructive contribution to the W
boson loop contribution.

In Fig. 5.8, we also show the allowed parameter region with additional information of κγ for
Set D. Similar to the results in the previous figure, ζ and m̄Φ are well extracted as compared
to the case without κγ displayed in the first row in Fig. 5.8. For example, ζ is determined to be
0.3 . ζ . 0.8, 0.1 . ζ . 0.6 and 0.1 . ζ . 0.6 for the cases with the central value of κγ = 0.98,
κγ = 1.00 and κγ = 1.02, respectively.

5.5 Summary

We can obtain the results that the hV V and hf̄f can be modified by about 2% from the tree
level predictions by one-loop contributions. Taking into account the coupling measurement
accuracies as shown in Tab. 4.3, we cannot ignore the radiative corrections. Moreover, it can
be realized that the one-loop corrections to the Higgs triple coupling are O(100)% via the non-
decoupling effects of m4

Φ. In the tree level discussion, the four types of THDMs can be classified
by using deviation pattern between hb̄b and hττ couplings if the gauge couplings deviate from
the predictions of the SM by about 1%. Even in the case including radiative corrections, the
separation of four types can be done, without prediction regions overlapping each other, if
sin(β − α) is sifted from 1 by about 1%.

We have discussed how the inner parameters of the THDMs can be determined by the future
precision measurements of these couplings at the HL-LHC and the ILC. We have found that
the inner parameters of the THDM, e.g. upper bounds on the masses of extra Higgs bosons,
mixing parameters and the magnitude of loop contributions and so on, can be determined to a
considerable extent as long as κV will be measured with the deviation about 1%. The extraction
of the inner parameters using the ILC500 is much better than that using the HL-LHC. That
is mainly due to the good accuracy of the hV V coupling measurement at the ILC500 whose
uncertainty is expected to be less than 1%. Although we have discussed fingerprinting by using
only κV , κb, κτ , and κγ, the information of κg, κc, κt and κh is also important to determine the
structure of the Higgs sector more precisely. The combination of the future data for all kinds of
the couplings for the Higgs boson hand their predictions with radiative corrections in various
extended Higgs sectors is an useful approach to determine the structure of the Higgs sector and
further to explore new physics beyond the SM, even if a new particle is not directly discovered
in the future experiments.
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Figure 5.6: Scatter plots for Set A, B, C, D and E from upper to bottom panels. The cyan and
red points satisfy the benchmark sets within the 1-σ uncertainty at the HL-LHC and ILC500
given in Eq. (5.81), respectively. For the panels shown in the second and the third columns, the
vertical axis m̄Φ and ζ are respectively defined by m̄Φ ≡ mΦ(1−M2/m2

Φ) and ζ ≡ 1−M2/m2
Φ.
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Figure 5.7: Scatter plots for Set A with the additional constraint from κγ = 0.98, 1.00 and
1.02 for upper, center and bottom panels. The 1-σ uncertainty of κγ is assumed to be 2% as
expected at the HL-LHC. The cyan and red points satisfy the benchmark sets within the 1-
sigma uncertainty at the HL-LHC and ILC500 given in Eq. (5.81), respectively. For the panels
shown in the second and the third columns, the vertical axis m̄Φ and ζ are respectively defined
by m̄Φ ≡ mΦ(1−M2/m2

Φ) and ζ ≡ 1−M2/m2
Φ.
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Figure 5.8: Scatter plots for Set D with the additional constraint from κγ = 0.98, 1.00 and
1.02 for upper, center and bottom panels. The 1-σ uncertainty of κγ is assumed to be 2% as
expected at the HL-LHC. The cyan and red points satisfy the benchmark sets within the 1-
sigma uncertainty at the HL-LHC and ILC500 given in Eq. (5.81), respectively. For the panels
shown in the second and the third columns, the vertical axis m̄Φ and ζ are respectively defined
by m̄Φ ≡ mΦ(1−M2/m2

Φ) and ζ ≡ 1−M2/m2
Φ.



Chapter 6

Radiative corrections to the Higgs bo-
son couplings in the HSM

6.1 Renormalization in the HSM
There are eight following parameters in the Higgs potential,

m2
Φ, λ, µΦS, λΦS, tS,m

2
S, µS, λS. (6.1)

As described in Sec. 3.2.1, four of them can be rewritten in terms of the physical parame-
ters m2

h, m
2
H , α and v by using Eqs. (3.49), (3.61), (3.62), (3.63). Remained parameters are

λΦS, vS, µS, λS, where tS is replaces by vS as described in Eq. (3.48).
First, we shift the bare parameters into renormalized parameters,

m2
h → m2

h + δm2
h, (6.2)

m2
H → m2

H + δm2
H , (6.3)

α → α+ δα, (6.4)

v → v + δv, (6.5)

λΦS → λΦS + δλΦS, (6.6)

vS → vS + δvS, (6.7)

λS → λS + δλS, (6.8)

µS → µS + δµS. (6.9)

Two physical scalar fields are shifted to the reonrmalized fields and the wave function renor-
malizations, (

H
h

)
→
(

1 + 1
2
δZh δChH + δα

δCHh − δα 1 + 1
2
δZH

)(
H
h

)
. (6.10)

We also have to shift the tadpoles as

Th → Th + δTh, TH → TH + δTH , (6.11)

where TH and Th are related with Tϕ and TS as(
TS

Tϕ

)
=

(
cα −sα
sα cα

)(
TH

Th

)
. (6.12)

71
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Renormalized one and two point functions at the one-loop level are given by

Γ̂h = 0 + δTh + Γ1PI
h , (6.13)

Γ̂H = 0 + δTH + Γ1PI
H , (6.14)

Π̂hh[p
2] = (p2 −m2

h)(1 + δZh)− δm2
h +

c2α
v
δTΦ +Π1PI

hh [p2], (6.15)

Π̂hH [p
2] = (p2 −m2

h)δCHh + (p2 −m2
H)δChH + (m2

h −m2
H)δα+

cαsα
v

δTϕ +Π1PI
hH [p2], (6.16)

Π̂HH [p
2] = (p2 −m2

H)(1 + δZH)− δm2
H +

s2α
v
δTϕ +Π1PI

HH [p
2], (6.17)

where analytic expressions of 1PI diagram parts are given in the Appendix.
We note that there are 14 independent counter terms in the Higgs sector. By imposing

following nine renormalized on-shell conditions,

Γ̂h = 0, Γ̂H = 0, (6.18)

Π̂hh[m
2
h] = 0, Π̂HH [m

2
h] = 0, (6.19)

Π̂hH [m
2
h] = 0, Π̂hH [m

2
H ] = 0, δChH = δCHh ≡ δCh (6.20)

d

dp2
Π̂hh[p

2]
∣∣∣
p2=m2

h

= 1,
d

dp2
Π̂HH [p

2]
∣∣∣
p2=m2

H

= 1. (6.21)

we determine following nine counter terms,

δTh = −Γ1PI
h , δTH = −Γ1PI

H , (6.22)

δm2
h =

c2α
v
δTϕ +Π1PI

hh [m2
h], δm2

H =
s2α
v
δTϕ +Π1PI

HH [m
2
H ], (6.23)

δChH = δCHh(≡ δCh) =
1

2(m2
H −m2

h)

[
Π1PI

hH [m2
h]− Π1PI

hH [m2
H ]
]
, (6.24)

δα =
1

2(m2
H −m2

h)

[
2sαcα
v

δTϕ +Π1PI
hH [m2

h] + Π1PI
hH [m2

H ]

]
, (6.25)

δZh = − d

dp2
Π1PI

hh [p2]
∣∣∣
p2=m2

h

, δZH = − d

dp2
Π1PI

HH [p
2]
∣∣∣
p2=m2

H

. (6.26)

As shown in Sec. 2.6.1, δv can be determined by the renormalization in the Gauge sector. We
note that forms of δλΦS, δvS, δλS and δµS cannot be determine above conditions. These do not
appear in the one-loop calculation of the hV V and hff vertices. When one-loop corrections to
the triple scalar couplings such as the hhh coupling, these counter terms have to be determined
by additional renormalization conditions as discussed in Ref. [59, 70] in the context of the
THDM. The study of one-loop corrections to the triple Higgs boson coupling in the HSM is
discussed elsewhere [109].

6.2 Renormalized Higgs couplings in the HSM

6.2.1 Analytic expression

In this subsection, we give formulae of renormalized Higgs couplings composed of three parts;
namely the tree level part, the counter term part and 1PI diagram part. hV V couplings and
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hff couplings are composed of a number of form factors as,

Γ̂hV V [p
2
1, p

2
2, q

2] = Γ̂1
hV V [p

2
1, p

2
2, q

2]gµν + Γ̂2
hV V [p

2
1, p

2
2, q

2]
pν1p

µ
2

m2
V

+ iΓ̂3
hV V [p

2
1, p

2
2, q

2]ϵµνρσ
p1ρp2σ
m2

V

,

(6.27)

Γ̂hff [p
2
1, p

2
2, q

2] = Γ̂S
hff [p

2
1, p

2
2, q

2] + γ5Γ̂
P
hff [p

2
1, p

2
2, q

2] + /p1Γ̂
V 1
hff [p

2
1, p

2
2, q

2] + /p2Γ̂
V 2
hff [p

2
1, p

2
2, q

2]

+ /p1γ5Γ̂
A1
hff [p

2
1, p

2
2, q

2] + /p2γ5Γ̂
A2
hff [p

2
1, p

2
2, q

2] + /p1/p2Γ̂
T
hff [p

2
1, p

2
2, q

2] + /p1/p2γ5Γ̂
TP
hff [p

2
1, p

2
2, q

2].

(6.28)

Each renormalized form factor is given by,

Γi
hV V [p

2
1, p

2
2, q

2] =
2m2

V

v
κV,tree + δΓi

hV V + Γ1PI
hV V,i[p

2
1, p

2
2, q

2], (i = 1, 2, 3) (6.29)

Γj
hff [p

2
1, p

2
2, q

2] = −
mf

v
κf,tree + δΓj

hff + Γ1PI
hff,j[p

2
1, p

2
2, q

2], (j = S, P, V 1, V 2, A1, A2, T, TP ),

(6.30)

where specific forms of counter terms are

δΓ1
hV V =

2m2
V

v
cosα

(
δm2

V

m2
V

− δv

v
+

sα
cα

δCh + δZV +
1

2
δZh

)
, (6.31)

δΓ2
hV V = δΓ3

hV V = 0, (6.32)

δΓS
hff = −mf

v
cosα

(
δmf

mf

− δv

v
+

sα
cα

δCh + δZV
f +

1

2
δZh

)
, (6.33)

δΓP
hff = δΓV 1

hff = δΓV 2
hff = δΓA1

hff = δΓA2
hff = δΓT

hff = δΓTP
hff = 0, (6.34)

where δm2
W , δZV and δv are given in Sec. 2.6.1 and δmf and δZV

f are given in Sec. 2.6.1.

6.2.2 Numerical evaluation for the scaling factors

We here present some of the numerical results of our numerical program for the one-loop
corrected Higgs boson couplings of hV V and hff . The leading order prediction of the hγγ
vertex is also calculated. Our numerical program is written as a FORTRAN program, and the
package; LoopTools [110] is used for the one-loop integrations.

Our numerical results are shown in terms of the scaling factors. Deviations in the one-loop
corrected scaling factors for hV V and hff couplings are defined as

∆κ̂V ≡ Γ̂1
hV V [p

2
1, p

2
2, q

2]

Γ̂1
hV V,SM[p

2
1, p

2
2, q

2]
− 1, (6.35)

∆κ̂f ≡
Γ̂S
hff [p

2
1, p

2
2, q

2]

Γ̂S
hff,SM[p

2
1, p

2
2, q

2]
− 1, (6.36)

where Γ̂1
hV V,SM and Γ̂S

hff,SM are the one-loop corrected hV V and hff couplings in the SM. The
formulae for the one-loop decay rates h → γγ, h → Zγ and h → gg are given in Appendix A.2.
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We numerically evaluate deviations in the scaling factor of the hγγ effective coupling defined
as

∆κγ ≡
√

Γ[h → γγ]√
Γ[h → γγ]SM

− 1, (6.37)

∆κγZ ≡
√

Γ[h → γZ]√
Γ[h → γZ]SM

− 1, (6.38)

∆κg ≡
√

Γ[h → gg]√
Γ[h → gg]SM

− 1, (6.39)

where Γ[h → XY ] (Γ[h → XY ]SM) is the prediction of the decay rate for h → XY mode in the
HSM (in the SM). Because the additional Higgs boson does not have electromagnetic charge
and color charge, decay rates (Γ[h → XY ]) of these modes are modified only by field mixing
effects at the one-loop level. The scaling factor of the hγγ, hγZ and hgg vertex, ∆κγ, ∆κγZ

and ∆κg are given by

∆κγ = ∆κγZ = ∆κg = cα − 1. (6.40)

In our numerical evaluation, we use the following values for the input parameters [99]:

GF = 1.1663787−5 GeV−2, mZ = 91.1876GeV, αem = 1/137.035999074, ∆αem = 0.06637,

mt = 173.21GeV, mb = 4.66GeV, mc = 1.275GeV, mτ = 1.77682GeV,

mh = 125GeV, (6.41)

where ∆αem is defined as defined as 1 − αem

α̂em(mZ)
with α̂em(mZ) being the fine structure con-

stant at the scale of mZ . Furthermore, we set the momenta (p21, p
2
2, q

2) to be (m2
h,m

2
h, 4m

2
h),

(m2
V ,m

2
h, (mh+mV )

2) and (m2
f ,m

2
f ,m

2
h) for ∆κ̂h, ∆κ̂V and ∆κ̂f , respectively. As we mentioned

in Sec. 3.2.1, we can take the value of vS freely without changing physics. We fix vS to be 0 in
the following numerical analyses.

First, we discuss approximate formulae in the case for α = 0 which can be expressed following
simple forms

∆κ̂Z = ∆κf ≃ − 1

16π2

1

6

m2
H

v2

(
1− M2

m2
H

)2

. (6.42)

The most right hand side of Eq. (6.42) comes from the H loop contributions of δZh. The
structures of these one-loop contributions are the same as those in the THDMs as described in
Ref. [59]. Since the form of the hHH coupling becomes λhHH ≃ −(m2

H −M2)/v in the case
for sα ≪ 1. When m2

S is much larger than v2, these loop contributions to ∆κ̂V and ∆κ̂f are
reduced as 1/m2

H . If M2 is comparable to v2, the non-decoupling effects significantly modify
the hV V and hff couplings due to the quantum corrections which are proportional to m2

H .
In Fig. 6.1, we show the decoupling behavior of H loop contributions to the Higgs couplings

under the constraints from perturbative unitarity, vacuum stability and the conditions to avoid
wrong vacuum in the case for α = 0. The left and right panels are ∆κ̂Z and ∆κ̂b as a function
of mH , respectively. We fix λS = 1 and µS = 50 GeV. Green, blue and orange curves indicate
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Figure 6.1: ∆κ̂Z (left panel) and ∆κ̂b (right panel) as a function of mH , respectively under the
constraints from perturbative unitarity, vacuum stability and the conditions to avoid wrong
vacuum in the case for α = 0. We take m2

S = m2
H/2, λS = 1 and µS = 50 GeV. Green, blue and

orange curves are the results for λΦSv
2 = (150GeV)2, (300GeV)2 and (400GeV)2, respectively.

predictions for λΦSv
2 = (150GeV)2, (300GeV)2 and (400GeV)2, respectively. Since the value of

M2 grows as m2
H becomes large, we can see that deviations by loop effects are reduced in the

large mass regions.
In Fig. 6.2, we show ∆κ̂Z (the left panel) and ∆κ̂b (the right panel) as a function of m2

H in
the case for α = 0. We fix λS = 1 and µS = 50 GeV. We investigate the behavior of ∆κ̂X for
various values of M2 such as M2 = 0, (200GeV)2 and (400GeV)2. In this case, the magnitude
of the deviations increase when mH becomes large in each the Higgs coupling, because the
non-decoupling effect of mH .

In Figs. 6.3, we show scatter plots of allowed regions under the constraints of perturbative
unitarity, vacuum stability and the conditions of a wrong vacuum on the mH-∆κZ plane (left
panel) and the | sinα|-∆κZ plane (right panel). Brown points are the results of the tree level
calculation, while blue points are those of the one-loop calculation. We scan parameters as
100 GeV < mH < 10 TeV, 0.91 ≤ cosα ≤ 1.00 and −m2

H < M2 < m2
H with fixing λS = 0.1

and µS = 0. In Fig. 6.3 (left), we learn that ∆κ̂Z is zero in the large mass limit for H. For a
nonzero negative value of ∆κZ there is an upper bound on mH . The upper bound evaluated
at the one-loop level is almost the same as that at the tree level for each value of negative
∆κZ . If by future precision measurements ∆κZ is determined as ∆κZ = −2± 0.5%, the upper
bound on mH is obtained to be about 4 TeV. In Fig. 6.3 (right), the tree level results are on
the curve described by ∼ −1/2 sin2 α for small | sinα|. At the one-loop level the magnitude of
the deviation from the tree level prediction is typically about 1%. For smaller values of | sinα|
∆κ̂Z is smaller than the tree level prediction, while for larger | sinα| the one-loop corrected
value ∆κ̂Z can be larger than the tree level prediction but the sign of ∆κ̂Z is always negative.

6.3 Discriminating the HSM and the Type-I THDM
In this section, we discuss examples of how we can distinguish the simplest extended Higgs
sectors by using one-loop corrected Higgs couplings and future precision measurements of the
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Figure 6.2: ∆κ̂Z (left panel) and ∆κ̂b (right panel) as a function of mH , respectively under the
constraints from perturbative unitarity, vacuum stability and the conditions to avoid wrong
vacuum in the case for α = 0 We take λS = 1 and µS = 50 GeV. Solid, dashed and dot-dash
curves are the results for M2 = 0, (200GeV)2 and (400GeV)2, respectively.

Higgs boson couplings. In Ref. [57], the patterns of deviations in these couplings have been
discussed at the tree level in the extended Higgs sectors which predict ρ = 1 at the tree level;
i.e., four types of THDMs, the HSM, the GM model and the septet model. It has been shown
that four types of THDMs can be basically separated by measuring Yukawa coupling constants
of hττ , hb̄b, hc̄c and/or ht̄t except for the decoupling regions [13, 57, 58]. On the other hand,
the Type-I THDM, in which only one of the Higgs doublets couples to all the fermions, and
all the other extended Higgs sectors (the HSM, the GM model and the septet model) can be
distinguished by the precision measurement of the hV V coupling and the universal coupling of
hf̄f as long as the deviations in κV is detected. One of the notable features of the predictions
in the exotic extended Higgs sectors such as the GM model and the model with the septet field
is the prediction that the scaling factor κV can be grater than unity [34, 50, 52, 53], while both
THDMs and the HSM always predict κV ≤ 1.

In order to compare the theory calculations with precision measurements at future lepton
colliders such as the ILC, where most of the Higgs couplings are expected to be measured with
high accuracies at the typically O(1) % level or even better [100], the above tree level analyses in
Ref. [57] must be improved by using the predictions with radiative corrections. In Refs. [58,59],
the one-loop corrected scaling factors in the four types of THDMs have been calculated in the
on-shell scheme, and the above tree level discussions in Ref. [57] have been repeated but at the
one-loop level. Even in the case including one-loop corrections, it is useful to discriminate types
of Yukawa interactions by using the pattern of deviations among the hff couplings. It is also
demonstrated in Ref. [59] that information of inner parameters can be considerably extracted
by combination of the precision measurements on the Higgs boson couplings when a deviation
in κV is large enough to be detected.

We here show the one-loop corrected scaling factors of hZZ, hbb and hhh coupling in the
HSM in comparison with those in the Type I THDM. The expected 1σ uncertainties for these
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Figure 6.3: Scatter plots of allowed regions under the constraints of perturbative unitarity,
vacuum stability and the conditions of a wrong vacuum on the mH-∆κZ plane (left panel) and
the | sinα|-∆κZ plane (right panel). Brown points are the results of the tree level calculation,
while blue points are those of the one-loop calculation. Parameters are scanned as 100 GeV
< mH < 10 TeV, 0.91 ≤ cosα ≤ 1.00 and −m2

H < M2 < m2
H with fixing λS = 0.1 and µS = 0.

scaling factors at the LHC with the center-of-mass energy (
√
s) to be 14 TeV and the integrated

luminosity (L) to be 3000 fb−1 (HL-LHC) and also the ILC with the combination of the run
with

√
s = 250 GeV with L = 250 fb−1 and that with

√
s = 500 GeV with L = 500 fb−1

(ILC500) are given by [100]

[σ(κZ), σ(κb), σ(κγ)] = [2%, 4%, 2%], HL-LHC,

[σ(κZ), σ(κb), σ(κγ)] = [0.49%, 0.93%, 8.3%], ILC500, (6.43)

For the predictions at the one-loop level in the THDM, we fully use the formulae and the
numerical program developed in Ref. [59].

In Fig. 6.4, we show the one-loop corrected predictions of the allowed regions of the HSM
and the Type I THDM on the plane of ∆κ̂Z and ∆κ̂b. The inner parameters are scanned under
the constraints of perturbative unitarity, vacuum stability and the condition to avoid wrong
vacuum, which are shown given in Sec. 3.2.1. The list of scanned parameters and scanned
ranges of these parameters are shown in Tab. 6.1. Red regions indicate the predictions of
the HSM. Brown, blue, cyan, green and orange regions are the allowed regions in the Type I
THDM for tan β = 1.5, 2, 3, 5 and 10, respectively, with varied mΦ(mH = mA = mH±) and
M , where definitions of the parameters are given in Ref. [59]. The blue and red ellipses show
the measurement uncertainties (±1σ) for ∆κZ and ∆κb at the HL-LHC and the ILC500 [100],
respectively.

First, we discuss the behavior for predictions of the HSM in Fig. 6.4. We find that magnitude
of the deviations in the one-loop corrected κZ and κb are almost similar in the HSM. The reason
is that tree level predictions of ∆κZ and ∆κb take a common form (cosα − 1). Namely, ∆κ̂Z

and ∆κ̂b dominantly deviate from the SM predictions to the directions with the rate 1 : 1 by
the mixing effect, and the small width of the line of 1 : 1 is made by the one-loop contributions.
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Table 6.1: Parameter regions in the HSM and the Type I THDM for scan analyses in Figure. 6.4,
Fig. 6.5 and Fig. 6.6, where definitions of the parameters in the Type I THDM are given in
Ref. [59]

HSM THDM

300GeV < mH < 1TeV 300GeV < mH(= mA = mH±) < 1TeV

cosα < 1 sin(β − α) < 1

−15 < λΦS < 15 0 < M2 < (1TeV)2

−15 < λS < 15

−2TeV < µS < 2TeV

Next, we explain the behavior for predictions of the Type I THDM. The scaling factors
for the hV V couplings at the tree level are different from those of hff couplings [57]. In the
case for cos(β − α) < 0, ∆κ̂b in the THDM (∆κ̂THDM

b ) is negative and its magnitude is grater
than ∆κ̂b in the HSM (∆κ̂HSM

b ) for the same deviation in ∆κ̂Z . On the other hand, in the case
of cos(β − α) > 0, ∆κ̂THDM

b is larger than ∆κ̂HSM
b for the same value of ∆κ̂Z . ∆κ̂Z and ∆κ̂b

deviate from the SM predictions according to the tree level predictions due to the tree level
mixing effect, and the one-loop contributions make the deviations from the tree level prediction
by typically a few %. We find that ∆κ̂Z and ∆κ̂b are substantially modified by radiative
corrections in the case for low tanβ values than the case for large tanβ values. As the value of
tan β become large, the ∆κ̂Z and ∆κ̂b plane prediction in the Type I THDM approximate the
line of 1 : 1. Larger deviations in ∆κ̂Z and ∆κ̂b in the case with tan β ≥ 10, cos(β − α) < 0
and mΦ > 300 GeV are excluded by the constraints from perturbative unitarity and vacuum
stability.

In Fig. 6.5, we show the one-loop corrected predictions of the allowed regions of the HSM
and the Type I THDM on the plane of ∆κ̂Z and ∆κγ. We scan inner parameters in each
model within the ranges listed in Tab. 6.1 under the constraints of perturbative unitarity,
vacuum stability and the condition to avoid wrong vacuum and the conditions to avoid wrong
vacuum. Definitions of color for allowed regions are the same as those in Fig. 6.4. Blue and
red ellipses are shown measurement uncertainties (±1σ) for ∆κ̂Z and ∆κγ at the HL-LHC and
the ILC500 [100]. Since uncertainty of ∆κγ measurement at the HL-LHC is smaller than that
at the ILC500, we here use expected uncertainty for ∆κγ at the HL-LHC in both case the
HL-LHC and the ILC500.

In the HSM, the correlation between ∆κ̂Z and ∆κγ follows the line of 1 : 1 with the small
width, which comes from radiative corrections. Because there is no charged new particle in
the HSM, deviations in ∆κγ are made by mixing effects. In the THDM, in addition to mixing
effects, singly charged Higgs bosons loop contributions modify the value of ∆κγ. The magnitude
of ∆κγ depends on the sign of cos(β − α) as the behavior of ∆κ̂b. Predictions distributing in
region of smaller |∆κγ| values is the case for cos(β − α) > 0. The other regions show the
predictions with cos(β − α) < 0. In the limit for tan β → ∞, the predictions of the Type I
THDM are close the line of 1 : 1. There are allowed regions with ∆κγ > 0, which are caused
by inversing the sign of the hH+H− coupling. If it is difficult to identify the results of each
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Figure 6.4: Predictions of the allowed regions of the HSM and the Type I THDM at the one-loop
level on the plane of ∆κZ and ∆κb. The inner parameters are scanned under the constraints
of perturbative unitarity, vacuum stability and the condition to avoid wrong vacuum, given in
Sec. 3.2.1. The list of scanned parameters and scanned range of these parameters are shown in
Tab. 6.1. Red regions indicate the predictions of the HSM. Brown, blue, cyan, green and orange
regions is allowed regions in the Type I THDM for tanβ = 1.5, 2, 3, 5 and 10, respectively. Blue
and red ellipses are shown measurement uncertainties (±1σ) for ∆κZ and ∆κb at the HL-LHC
and the ILC500 [100].

value of tan β in the plane of ∆κZ and ∆κγ, you can see their behavior more clearly by using
Fig. 6.6. In each panel of Fig. 6.6, we show allowed regions of ∆κ̂Z and ∆κγ in the HSM and
the Type I THDM for each value of tanβ. The definition of colors and ellipses, and the way of
analysis are same as those in Fig. 6.4 and Fig. 6.5.

Finally, we discuss how we can discriminate the HSM and the Type I THDM by using the-
oretical predictions of ∆κZ , ∆κb and ∆κγ with radiative corrections and Higgs boson coupling
measurements at the HL-LHC and the ILC500. We find that if κV will be measured to be
deviated by 2 % from the SM predictions, we can discriminate the HSM and the Type I THDM
in most of parameter regions by using precision measurements of ∆κZ and ∆κb at the ILC. In
addition, in the plane of ∆κZ and ∆κγ, the predictions of the HSM separate from those of the
Type I THDM for cos(β − α) > 0. However, when the value of tanβ is extremely large; i.e.,
tan β > 10, ∆κTHDM

Z , ∆κTHDM
b and ∆κTHDM

γ approach to the predictions in the HSM. In such
a situation, it is difficult to discriminate the models by only using these coupling constants.

6.4 Summary
We have calculated a full set of renormalized Higgs boson couplings at the one-loop level in the
on-shell scheme in the HSM. These coupling constants can deviate from the SM predictions due
to the mixing effect and the one-loop contributions of the extra scalar boson. We numerically
have investigated how they can be significant under the theoretical constraints from perturbative
unitarity and vacuum stability and also the condition of avoiding the wrong vacuum. Finally,
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Figure 6.5: Predictions of the allowed regions of the HSM and the Type I THDM on the plane
of one-loop corrected ∆κZ and ∆κγ. Blue ellipse is shown measurement uncertainties (±1σ)
for ∆κZ and ∆κγ at the HL-LHC [100]. Red one is shown measurement uncertainties (±1σ)
for ∆κZ at the ILC500 [100] and ∆κγ at the HL-LHC. The others are same as in Fig. 6.4.

comparing with the predictions at the one-loop level in the four types of THDMs, we have
studied how the HSM can be distinguished from those models and identified by using precision
measurements of the Higgs boson couplings at future collider experiments. We found that if
hV V couplings deviate 2 % from the SM predictions, we can discriminate the HSM and the
Type I THDM in most of parameter regions by using precision measurements of ∆κZ and ∆κb

at the ILC. In addition that, in the plane of ∆κZ and ∆κγ, the predictions of the HSM separate
from those of the Type I THDM for cos(β − α) > 0. Therefore, by comparing the predicted
values of the hZZ, hbb̄ and hγγ couplings and corresponding measured values, we may be able
to distinguish the HSM from the Type I THDM in the most of the parameter space. However,
when the value of tan β is extremely large as tanβ > 10, deviations in ∆κTHDM

Z , ∆κTHDM
b

and ∆κTHDM
γ approach to the predictions in the HSM. In such a situation, it is difficult to

discriminate the models by fingerprinting.
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Figure 6.6: Each panel shows predictions of the allowed regions of the HSM and the Type I
THDM for each value of tan β, i.e. tan β = 1.5, 2, 5 and 10, on the plane of one-loop corrected
∆κZ and ∆κγ. The others are the same as in Fig. 6.5.





Chapter 7

Radiative corrections to the Higgs bo-
son couplings in the HTM

7.1 Renormalization in the HTM
In this section, we define the on-shell renormalization scheme in order to calculate the one-loop
corrected electroweak precision parameters and also the SM-like Higgs boson couplings: hZZ,
hWW and hhh. First, we discuss the renormalization of the electroweak sector to calculate the
renormalized W boson mass, which can be used to constrain parameters such as the triplet-like
Higgs boson masses in the HTM. Second, we consider the renormalization of parameters in the
Higgs potential.

7.1.1 Renormalization of the electroweak parameters

The renormalization prescription in models where the tree level rho parameter: ρtree is predicted
to be unity such as the SM is different from that in models without ρtree = 1 such as the HTM.
Therefore, we separately discuss the renormalization prescriptions in models with ρtree = 1 and
those with ρtree ̸= 1 in order to clarify the difference between two prescriptions.

Models without ρtree = 1

We describe the renormalization of the electroweak precision parameters in models without
ρtree = 1. In this class of models, the electroweak parameters are described by four independent
input parameters. For instance, when we choose mW , mZ , αem and sin θ as input parameters,
all the other parameters are written in these parameters;

GF =
παem√
2m2

W s2W
. (7.1)

In the renormalization calculation, we shift all the input parameters into the renormalized
parameters and the counter-terms. Once we specify the input parameters, all the counter-
terms are also described by the three counter-terms which are associated with the four input
parameters. We shift all the parameters in the kinetic Lagrangian as follows

m2
W → m2

W + δm2
W , m2

Z → m2
Z + δm2

Z , αem → αem + δαem,

sin2 θW → sin2 θW + δs2W , Bµ → Bµ +
1

2
δZB, W a

µ → W a
µ +

1

2
δZW . (7.2)

83
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The wave function renormalization for the photon and the Z boson can be obtained by the shift(
Zµ

Aµ

)
→
[
1 +

1

2

(
δZZ δZZγ

δZZγ δZγ

)
+

1

2sW cW

(
0 −δs2W

δs2W 0

)](
Zµ

Aµ

)
, (7.3)

where the counter-terms δZZ , δZγ, δZZγ and δs2W are expressed in terms of the counter-terms
defined in Eq. (7.2) as(

δZZ

δZγ

)
=

(
c2W s2W
s2W c2W

)(
δZW

δZB

)
, (7.4)

δZZγ = cW sW (δZW − δZB) =
cW sW

c2W − s2W
(δZZ − δZγ), (7.5)

δs2W
s2W

=
c2W
s2W

(
δm2

Z

m2
Z

− δm2
W

m2
W

)
. (7.6)

The renormalized two point functions for the gauge bosons can be expressed as

Π̂WW [p2] = Π1PI
WW (p2)− δm2

W + δZW (p2 −m2
W ), (7.7)

Π̂ZZ [p
2] = Π1PI

ZZ (p
2)− δm2

Z + δZZ(p
2 −m2

Z), (7.8)

Π̂γγ [p
2] = Π1PI

γγ (p2) + p2δZγ , (7.9)

Π̂Zγ[p
2] = Π1PI

Zγ (p
2)− δZZγ(p

2 − 1

2
m2

Z)−m2
Z

δs2W
2sW cW

, (7.10)

where Π1PI
XY (XY = WW,ZZ, γγ or Zγ) are the 1PI diagram contributions to the gauge boson

two point functions. We here define derivatives of the renormalized two point functions and
1PI diagram contributions as Π̂′

XY [m
2] ≡ d

dp2
Π̂XY [p

2]
∣∣
p2=m2 and Π1PI′

XY (m2) ≡ d
dp2

Π1PI
XY (p

2)
∣∣
p2=m2 .

In order to determine the counter-terms, we impose the following five renormalization con-
ditions:

ReΠ̂WW [m2
W ] = 0, ReΠ̂ZZ [m

2
Z ] = 0, (7.11)

Π̂′
γγ[0] = 0, Π̂Zγ [0] = 0, Γ̂γee

µ [q2 = 0, p1/ = p2/ = me] = ieγµ, (7.12)

where Γ̂γee
µ is the renormalized γee vertex. By using these conditions, all the counter-terms in

the electroweak sector can be determined as

δm2
W = ReΠ1PI

WW (m2
W ), δm2

Z = ReΠ1PI
ZZ (m

2
Z),

δαem

αem

= Π1PI′

γγ (0)− 2sW
cW

Π1PI
Zγ (0)

m2
Z

, (7.13)

δZγ = −Π1PI′

γγ (0), δZZγ = −2
Π1PI

Zγ (0)

m2
Z

+
δs2W
sW cW

, (7.14)

δZZ = −Π1PI′

γγ (0)− 2(c2W − s2W )

cW sW

Π1PI
Zγ (0)

m2
Z

+
c2W − s2W

c2W

δs2W
s2W

, (7.15)

δZW = −Π1PI′

γγ (0)− 2cW
sW

Π1PI
Zγ (0)

m2
Z

+
δs2W
s2W

, (7.16)

Next, we discuss how δs2W is determined. Here, three of four input parameters are chosen from
the electroweak precision observables, i.e., mW , mZ and αem such as the SM. The other one
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is chosen from the mixing angle β′ between the CP-odd Higgs boson A and the NG boson G0

defined in Eqs. (3.88) and (3.89). The counter-term of the mixing angle δβ′ can be determined
by the conditions:

Π̂AG[0] = Π̂AG[m
2
A] = 0, (7.17)

where Π̂AG is the renormalized two point function of the G0-A mixing given in Eq. (7.41). The
other counter-terms are determined by the same renormalization conditions given in Eqs. (7.11)
and (7.12) as in the SM. In this scheme, the weak mixing angle is not the independent parameter,
but it is determined by

cos2 θ̄W ≡ c̄2W =
2m2

W

m2
Z(1 + c2β′)

. (7.18)

In order to distinguish the definition of the weak mixing angle in this scheme from the other
definition, we introduced c̄2W (s̄2W = 1 − c̄2W ). The counter-term for the weak mixing angle is
obtained by imposing Eq. (7.13):

δs̄2W = −δc̄2W =
2m2

W

m2
Z(1 + c2β′)

[
ReΠ1PI

ZZ (m
2
Z)

m2
Z

− ReΠ1PI
WW (m2

W )

m2
W

− 2cβ′sβ′

1 + c2β′
δβ′

]
. (7.19)

The expression for ∆r can be obtained in the same way as in models with ρtree = 1:

∆r = ∆α− c̄2W
s̄2W

∆ρ+∆rrem, (7.20)

where ∆α and ∆rrem are given by the same formulae of the SM, but sW and cW should be
replaced by s̄W and c̄W . ∆ρ can be expressed as

∆ρ =
Π1PI

ZZ (0)

m2
Z

− Π1PI
WW (0)

m2
W

− 2s̄W
c̄W

Π1PI
Zγ (0)

m2
Z

− 2cβ′sβ′

1 + c2β′
δβ′. (7.21)

The quadratic mass dependences due to the custodial symmetry breaking such as m2
t appear

in ∆rScheme II through ∆ρ. The one loop corrected W boson mass can be calculated as

(mren
W )2Scheme II =

m2
Z(1 + c2β′)

4

[
1 +

√
1− 8

1 + c2β′

παem√
2GFm2

Z(1−∆rScheme II)

]
. (7.22)

7.1.2 Renormalization of the Higgs potential

Next we discuss the renormalization of the parameters in the Higgs potential. We here choose
the set of input parameters in the Higgs potential as

v, α, β, β′, m2
h, m2

H , m2
A, m2

H+ , m2
H++ . (7.23)

We work on the mass eigenbasis for the Higgs fields. Now we define the shift of the parameters
as

TΦ → 0 + δTΦ, T∆ → 0 + δT∆, (7.24)

v → v + δv, α → α+ δα, β → β + δβ, β′ → β′ + δβ′ (7.25)

m2
φ → m2

φ + δm2
φ, (7.26)
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where φ = h,H,A,H+ and H++. In fact, β and β′ are not independent from each other, so that
the counter-terms δβ and δβ′ are also not independent1. We start from the mass eigenstates
for the Higgs fields at the tree level. The wave function renormalization factors are defined as

H±± →
(
1 +

1

2
δZH++

)
H±±,(

G±

H±

)
→
(

1 + 1
2
δZG+ δβ + δCGH

−δβ + δCHG 1 + 1
2
δZH+

)(
G±

H±

)
,(

G0

A

)
→
(

1 + 1
2
δZG0 δβ′ + δCGA

−δβ′ + δCAG 1 + 1
2
δZA

)(
G0

A

)
,(

h
H

)
→
(

1 + 1
2
δZh δα+ δChH

−δα+ δCHh 1 + 1
2
δZH

)(
h
H

)
. (7.27)

Hereafter, we set δChH = δCHh, δCGH = δCHG and δCGA = δCAG without loss of generality.
The counter-term of δv can be determined by the renormalization of the electroweak parameters
as

δv

v
=

1

2

(
δm2

W

m2
W

− δαem

αem

+
δs̄2W
s̄2W

)
, (7.28)

where counter-terms of δm2
W and δαem are given in Eq. (7.13) and that of δs̄2W is given in

Eq. (7.19). At the one-loop level, one point functions of h and H are given by

T̂h = δTΦ cosα+ δT∆ sinα+ T 1PI
h , (7.29)

T̂H = −δTΦ sinα+ δT∆ cosα+ T 1PI
H , (7.30)

where T 1PI
h and T 1PI

H are contributions of one-particle-irreducible diagrams. The condition of
vanishing the tadpoles at the one-loop level provides

δTΦ = −T 1PI
h cosα+ T 1PI

H sinα, (7.31)

δT∆ = −T 1PI
h sinα− T 1PI

H cosα. (7.32)

Similar to the gauge boson two point functions, renormalized two point functions for scalar
bosons can be expressed as Π̂ϕϕ[p

2] and 1PI diagram contributions can also be denoted by

Π1PI
ϕϕ (p2). Derivatives for those functions can be defined as Π̂′

ϕϕ[m
2] = d

dp2
Π̂ϕϕ(p

2)
∣∣
p2=m2 and

Π1PI′

ϕϕ [m2] = d
dp2

Π1PI
ϕϕ (p2)

∣∣
p2=m2 .

1The counter-terms δβ and δβ′ can be written in terms of δv and δv∆ as δβ = v∆
v

√
2

1−2v2
∆/v2

(
δv∆

v∆
− δv

v

)
and δβ′ = v∆

v
2

(1+2v2
∆/v2)

√
1−2v2

∆/v2

(
δv∆

v∆
− δv

v

)
.
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The renormalized scalar boson two point functions are given at the one-loop level by

Π̂H++H−− [p2] = (p2 −m2
H++)δZH++ − δm2

H++ +

√
2

sβ

δT∆

v
+Π1PI

H++H−−(p2), (7.33)

Π̂H+H− [p2] = (p2 −m2
H+)δZH+ − δm2

H+ +
s2β
cβ

δTΦ

v
+

√
2c2β
sβ

δT∆

v
+Π1PI

H+H−(p2), (7.34)

Π̂G+G− [p2] = p2δZG+ +
cβδTΦ +

√
2sβδT∆

v
+Π1PI

G+G−(p2), (7.35)

Π̂AA[p
2] = (p2 −m2

A)δZA − δm2
A +

s2β′

cβ

δTΦ

v
+

√
2c2β′

sβ

δT∆

v
+Π1PI

AA(p
2), (7.36)

Π̂GG[p
2] = p2δZG0 +

c2β′

cβ

δTΦ

v
+

s2β′

sβ

δT∆

v
+Π1PI

GG(p
2), (7.37)

Π̂HH [p
2] = (p2 −m2

H)δZH − δm2
H +

s2α
cβ

δTΦ

v
+

√
2c2α
sβ

δT∆

v
+Π1PI

HH(p
2), (7.38)

Π̂hh[p
2] = (p2 −m2

h)δZh − δm2
h +

c2α
cβ

δTΦ

v
+

√
2s2α
sβ

δT∆

v
+Π1PI

hh (p2). (7.39)

The renormalized two point functions for the scalar boson mixing are given by

Π̂H+G− [p2] = δCHG(2p
2 −m2

H+)−
sβδTΦ −

√
2cβδT∆

v
+m2

H+δβ +Π1PI
G+H−(p2), (7.40)

Π̂AG[p
2] = δCAG(2p

2 −m2
A)−

s2β′√
2sβ

δTΦ

v
+

2c2β′

cβ

δT∆

v
+m2

Aδβ
′ +Π1PI

AG(p
2), (7.41)

Π̂Hh[p
2] =

cαsα
cβsβ

√
2cβδT∆ − sβδTΦ

v
− δα(m2

h −m2
H)

+ δCHh(2p
2 −m2

h −m2
H) + Π1PI

Hh(p
2), (7.42)

The counter-terms of the doubly-charged Higgs boson mass δm2
H++ and its wave function renor-

malization factor δZH++ are determined by the following renormalization conditions:

Π̂H++H−− [m2
H++ ] = 0, Π̂′

H++H−− [m2
H++ ] = 0, (7.43)

which yield

δm2
H++ =

√
2δT∆

vsβ
+Π1PI

H++H−−(m2
H++), δZH++ = −Π1PI′

H++H−−(m2
H++). (7.44)

The five parameters related to the CP-odd scalar states (δm2
A, δZG0 , δZA, δCGA and δβ′) are

determined by imposing the following five renormalization conditions

Π̂AA[m
2
A] = 0, Π̂′

AA[m
2
A] = 0, (7.45)

Π̂′
GG[0] = 0, Π̂AG[0] = 0, Π̂AG[m

2
A] = 0. (7.46)
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by which we obtain

δm2
A =

s2β′

cβ

δTΦ

v
+

√
2c2β′

sβ

δT∆

v
+Π1PI

AA(m
2
A), (7.47)

δZG0 = −Π1PI′

GG (0), δZA = −Π1PI′

AA (m2
A), (7.48)

δCAG =
1

2m2
A

[
Π1PI

AG(0)− Π1PI
AG(m

2
A)
]
, (7.49)

δβ′ = − 1

2m2
A

[
Π1PI

AG(0) + Π1PI
AG(m

2
A)−

√
2s2β′

sβ

δTΦ

v
−

4c2β′

cβ

δT∆

v

]
. (7.50)

The four counter-terms related to the singly-charged Higgs boson (δm2
H+ , δZG+ , δZH+ and

δCGH) are determined by imposing the following four renormalization conditions

Π̂H+H− [m2
H+ ] = 0, Π̂′

G+G− [0] = 0, (7.51)

Π̂′
H+H− [m2

H+ ] = 0, Π̂HG[0] = 0, (7.52)

by which we obtain

δm2
H+ =

s2β
cβ

δTΦ

v
+

√
2c2β
sβ

δT∆

v
+Π1PI

H+H−(m2
H+), (7.53)

δZG+ = −Π1PI′

G+G−(0), δZH+ = −Π1PI′

H+H−(m2
H+), (7.54)

δCHG = δβ +
1

m2
H+

[
Π1PI

H+G−(0) +
−sβδTΦ +

√
2cβδT∆

v

]
, (7.55)

where δβ is determined through δβ′ as

δβ =
1 + s2β√

2
δβ′. (7.56)

Finally, the six parameters related to the CP-even Higgs states (δα, δm2
h, δm

2
H , δZh, δZH and

δCHh) are determined by imposing the following six renormalization conditions

Π̂hh[m
2
h] = 0, Π̂′

hh[m
2
h] = 0, (7.57)

Π̂HH [m
2
H ] = 0, Π̂′

HH [m
2
H ] = 0, (7.58)

Π̂Hh[m
2
h] = 0, Π̂Hh[m

2
H ] = 0, (7.59)

by which we obtain

δm2
h =

δTΦ

v

c2α
cβ

+

√
2δT∆

v

s2α
sβ

+Π1PI
hh (m2

h), δm2
H =

δTΦ

v

s2α
cβ

+

√
2δT∆

v

c2α
sβ

+Π1PI
HH(m

2
H), (7.60)

δZh = −Π1PI′

hh (m2
h), δZH = −Π1PI′

HH (m2
H), (7.61)

δα =
1

2(m2
h −m2

H)

[
Π1PI

Hh(m
2
h) + Π1PI

Hh(m
2
H)−

2sαcα
sβcβ

(
δTΦ

v
sβ −

√
2δT∆

v
cβ

)]
, (7.62)

δCHh =
1

2(m2
h −m2

H)

[
Π1PI

Hh(m
2
H)− Π1PI

Hh(m
2
h)
]
. (7.63)
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In the limit of v∆/v → 0, the mass of A is no more independent parameter, which is
determined by the masses of H±± and H±. In this limit, the CP-odd Higgs boson mass is
expressed at the tree level as

(m2
A)tree ≡ lim

v∆/v→0
m2

A = 2m2
H+ −m2

H++ . (7.64)

The renormalized pole mass of A, which has been discussed in Ref. [?], can be defined by the
following equations

lim
v∆/v→0

Π̂AA[p
2 = (m2

A)pole] = 0. (7.65)

From Eq. (7.65), we obtain

(m2
A)pole ≃ (m2

A)tree +
1

1 + δZA

[
δm2

A − δT∆

v∆
− Π1PI

AA[(m
2
A)tree]

]
, (7.66)

where we use ΠAA[(m
2
A)pole] ≃ ΠAA[(m

2
A)tree]. The counter-term δm2

A is not independent pa-
rameter in the limit of v∆/v → 0, but they can be given by δm2

A = 2δm2
H+ − δm2

H++ . By using
Eqs. (7.44) and (7.53), we obtain

(m2
A)pole ≃ (m2

A)tree +
[
2Π1PI

H+H−(m2
H+)− Π1PI

H++H−−(m2
H++)− Π1PI

AA[(m
2
A)tree]

]
. (7.67)

Above the equation indicates that the tree level mass relations among the triplet-like Higgs
bosons which are written in Eqs. (3.104) and (3.105) can be deviated by the effects of the
radiative correction. The magnitude of this deviation can be parameterized as

∆R =
m2

H++ −m2
H+

m2
H+ − (m2

A)pole
− 1. (7.68)

In Ref. [61], ∆R has been evaluated numerically in the case of α = 0 and v∆/v → 0 as shown
in Fig. 7.1.

7.2 Higgs couplings at the one-loop level

In this section, we discuss the SM-like Higgs boson h couplings with the gauge bosons (γγ,
W+W− and ZZ) and the Higgs self-coupling hhh at the one-loop level in the favored parameter
regions by the unitarity bound, the vacuum stability bound and by the measured W boson mass
discussed in previous sections.

7.2.1 Higgs to the diphoton decay

h → γγ process is induced at the one-loop level, because the Higgs boson does not couple to
the photon at the tree level. Thus, the decay of h → γγ is sensitive to effects of new charged
particle which can couple to the Higgs boson. In the HTM, the doubly-charged Higgs boson
H±± and the singly-charged Higgs boson H± can contribute to the Higgs to diphoton decay.
In particular, the contribution from the H±± loop to the h → γγ is quite important compared
to that from H±, because H±± contribution is roughly 4 times larger than that from H±

contribution at the amplitude level.
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Figure 7.1: ∆R is shown as a function of the lightest triplet-like Higgs boson mass in the case
of α = 0 and mh = 125 GeV for each fixed value of mH++ − mH+ [?]. The left (right) panel
shows the results in Case I (Case II).

The decay rate of h → γγ is calculated at the one-loop level by

Γ(h → γγ) =
GFα

2
emm

3
h

128
√
2π3

∣∣∣∣∣− 2
cα
cβ

∑
f

N c
fQ

2
fτf [1 + (1− τf )f(τf )]

+ (cβcα +
√
2sαsβ)[2 + 3τW + 3τW (2− τW )f(τW )]

−Q2
H++

2vλH++H−−h

m2
h

[1− τH++f(τH++)]−Q2
H+

2vλH+H−h

m2
h

[1− τH+f(τH+)]

∣∣∣∣∣
2

,

(7.69)

where the function f(x) is given by

f(x) =

{
[arcsin(1/

√
x)]2, if x ≥ 1,

−1
4
[ln 1+

√
1−x

1−
√
1−x

− iπ]2, if x < 1
. (7.70)

In Eq. (7.69), QF is the electric charge of the field F , N c
f is the color factor and τF = 4m2

F/m
2
h.

These couplings can be expressed quite a simple form by neglecting the terms proportional to
v∆:

λH++H−−h ≃ −vλ4, λH+H−h ≃ −v

2
(2λ4 + λ5). (7.71)

It is well known that the W boson loop contribution to the h → γγ decay rate is dominant
compared to the top quark loop contribution in the SM, so that when a new physics effect to the
amplitude of the h → γγ process has the same sign of the W-loop contribution, then the decay
rate is enhanced compared with the SM prediction. In the HTM, when the sign of the coupling
λH++H−−h is positive (negative), then the H±± loop contribution has the same (opposite) sign
of the W loop contribution, which can be achieved by taking λ4 to be a negative (positive)
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Figure 7.2: Contour plots of Rγγ for v∆ = 1 MeV and mlightest = 300 GeV in the λ4-∆m plane.
The left panel (right panel) shows the result in Case I (Case II). The blue and orange shaded
regions are excluded by the vacuum stability bound and the measured mW data, respectively.

value. From Eq. (7.71), it can be seen that the λ5 coupling only affects to the singly-charged
Higgs boson coupling with h: λH+H−h, so that the h → γγ decay rate is not sensitive to the
magnitude of λ5. In other words, the mass difference among the triplet-like Higgs boson is not
so important in the h → γγ decay process as long as we keep a fixed value of mH++ .

In this subsection, we study the deviation of the h → γγ event rate in the HTM from that in
the SM taking into account the constraint from the perturbative unitarity, the vacuum stability
and the electroweak precision data. We also investigate the correlation between the h → γγ
decay rate and the hhh, hWW and hZZ couplings at the one-loop level. To compare the Higgs
to diphoton event rate from the SM prediction, we define

Rγγ ≡ σ(gg → h)HTM × BR(h → γγ)HTM

σ(gg → h)SM × BR(h → γγ)SM
, (7.72)

where σ(gg → h)model is the cross section of the gluon fusion process, and BR(h → γγ)model is
the branching fraction of the h → γγ mode in a model. In fact, the ratio of the cross section
σ(gg → h)HTM/σ(gg → h)SM can be replaced by the factor c2α/c

2
β.

In Fig. 7.2, we show the contour plots of Rγγ for v∆ = 1 MeV and mlightest = 300 GeV in the
λ4-∆m plane. The left panel (right panel) shows the result in Case I (Case II). The blue and
orange shaded regions are those excluded by the vacuum stability bound (assuming λ∆ = 3)
and the measured mW data, respectively. In both cases, Rγγ can be greater (smaller) than 1 for
negative (positive) values of λ4. In Case I, no large ∆m dependence appears, while in Case II
Rγγ slightly depends on ∆m due to the larger values of mH++ which affect Rγγ via ∆m. Under
the constraint of the vacuum stability and the electroweak precision observable mW , larger ∆m
can be allowed in Case I than in Case II. We find that predicted values of Rγγ are about 1.3
(about 0.6) in this case when λ4 is about −1.7 (about 3) in both Case I and Case II.
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7.2.2 Renormalized hV V coupling

The most general form factors of the hV V coupling (V = W± or Z) can be written as

Mµν
hV V = MhV V

1 gµν +MhV V
2

pµ1p
ν
2

m2
V

+ iMhV V
3 ϵµνρσ

p1ρp2σ
m2

V

, (7.73)

where mV is the mass of the gauge boson V , p1 and p2 are the incoming momenta of V . The
renormalized form factors are given by

MhV V
i = MhV V

i,tree + δMhV V
i +MhV V

i,1PI , (i = 1− 3). (7.74)

The tree-level contributions for these form factors are

MhZZ
1,tree =

2m2
Z

v2 + 2v2∆
(vϕcα + 4v∆sα), MhWW

1,tree =
2m2

W

v2
(vϕcα + 2v∆sα),

M
hV V (tree)
2,tree = MhV V

3,tree = 0. (7.75)

The counter-term contributions are

δMhZZ
1 =

2m2
Zcα

v2 + 2v2∆

{
vϕδm

2
Z

m2
Z

+
vϕ
2
(δZh + 2δZZ) + 4v∆δCHh

+
1

vϕ(v2 + 2v2∆)
[2v∆(2v

2
∆ − 3v2)δv∆ − v(v2 − 6v2∆)δv]

}

+
2m2

Zsα
v2 + 2v2∆

[
4v∆δm

2
Z

m2
Z

+ 2v∆(δZh + 2δZZ)− vϕδCHh +
4(v2ϕδv∆ − 2vv∆δv)

v2 + 2v2∆

]
δMhWW

1 =
vϕm

2
W cα
v2

{
2δm2

W

m2
W

+ 2δZW + δZh +
4v∆
vϕ

δCHh −
2(v2 − 4v2∆)

v2ϕ

δv

v
− 4v2∆

v2ϕ

δv∆
v∆

}

+
2m2

Wv∆sα
v2

(
2δm2

W

m2
W

+ 2δZW + δZh −
vϕ
v∆

δCHh −
4δv

v
+

2δv∆
v∆

)
,

δMhV V
2 = δMhV V

3 = 0. (7.76)

We define the following quantity to study the deviation of the hV V coupling from the SM
prediction:

∆ghV V ≡ ReMhV V
1 − ReMhV V

1 (SM)

ReMhV V
1 (SM)

, (7.77)

where MhV V
1 = MhV V

1 (m2
V , (mh −mV )

2,m2
h) and MhV V

1 (SM) is the corresponding SM predic-
tion.

In Fig. 7.3, we show the contour plots for ∆ghZZ for mlightest = 300 GeV and v∆ = 1 MeV
in the λ4-∆m plane. The left (right) plot shows the result in Case I (Case II). The blue and
orange shaded regions are excluded by the vacuum stability bound and the measured mW data,
respectively. The magnitude of the negative corrections is larger for positive larger values of
λ4 for smaller values of ∆m. For the cases with large ∆m such as about 30 GeV, the region



7.2. HIGGS COUPLINGS AT THE ONE-LOOP LEVEL 93

-2 -1 0 1 2 3 4 5
λ

4

0

10

20

30

40

50

60

70

∆m
 [

G
eV

]
Case I, mlightest = 300 GeV, v∆ = 1 MeV

-0.1 % -0.1 %
-0.3 %

-0.5 %
-1 %

∆ghZZ

-0.3 %

+0.1 %

= -2%

-2 -1 0 1 2 3 4 5
λ

4

0

10

20

30

40

50

60

70

∆m
 [

G
eV

]

Case II, mlightest = 300 GeV, v∆ = 1 MeV

-0.1 %

-0.1 %

-0.3 %

-0.5 %

-0.3 %

-0.5 % -1 %

-2 %

+0.1 %

∆ghZZ =

Excluded by  EWPO

Excluded by vacuum instability

Figure 7.3: Contour plots of ∆ghZZ in Eq. (7.77) for mlightest = 300 GeV and v∆=1 MeV in
the λ4-∆m plane. The left panel (right panel) shows the result in Case I (Case II). The blue
and orange shaded regions are excluded by the vacuum stability bound and the measured mW

data, respectively.

with positive corrections appears. This is the striking feature of the HTM. On the contrary,
in multi Higgs doublet models the correction is always negative [70]. Under the constraint of
the vacuum stability bound and the electroweak precision observable mW , larger ∆m can be
allowed in Case I than in Case II. We find that ∆ghZZ is predicted to be at most a few %. We
can expect that such a deviation will be testable at the ILC [12,13,16,100].

In Fig. 7.4, the similar contour plots are shown for ∆ghWW with the same parameter sets in
the same plane. The behavior of ∆ghWW in this plane is similar to that of ∆ghZZ . However, the
correction can be positive for smaller values of ∆m. We also show the same constraints from
the vacuum stability bound and from the electroweak precision observable mW . Magnitudes of
maximum value of the correction are almost the same those of ∆ghZZ , especially for λ4 > 0.

7.2.3 Renormalized hhh coupling

Finally, we show the numerical results for the deviation of the Higgs trilinear coupling hhh
from the SM prediction. The renormalized hhh coupling can be expressed as a function of the
external incoming momenta p1 and p2 and the outgoing momentum q = p1 + p2 as

Γhhh(p
2
1, p

2
2, q

2) = Γtree
hhh + δΓhhh + Γ1PI

hhh(p
2
1, p

2
2, q

2), (7.78)

where the first, second and last terms are corresponding to the tree level, the counter-term, and
the 1PI diagram contributions, respectively. The tree level contribution Γtree

hhh is calculated as

Γtree
hhh = −6

[(
c3α
vϕ

+
s3α
v∆

)
m2

h

2
+

s2α
v2 + 2v2∆

(
vϕcα −

v2ϕ
2v∆

sα

)
m2

A

]
. (7.79)
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Figure 7.4: Contour plots of ∆ghWW defined in Eq. (7.77) for mlightest = 300 GeV and v∆=1
MeV in the λ4-∆m plane. The left panel (right panel) shows the result in Case I (Case II). The
blue and orange shaded regions are excluded by the vacuum stability bound and the measured
mW data, respectively.

The counter-term contribution δΓhhh is evaluated by

δΓhhh = −3

(
c3α
vϕ

+
s3α
v∆

)
δm2

h −
6s2α

v2 + 2v2∆

(
vϕcα −

v2ϕsα

2v∆

)
δm2

A − 3(m2
h −m2

H)

(
s2αcα
v∆

− c2αsα
vϕ

)
δα

− 9

2

[
m2

h

(
c3α
vϕ

+
s3α
v∆

)
+

m2
Avϕs

2
α

v∆(v2 + 2v2∆)
(2v∆cα − vϕsα)

]
δZh

− 3sα

{
(2m2

h +m2
H)

(
sαcα
v∆

− c2α
vϕ

)
+

m2
Avϕ

v∆(v2 + 2v2∆)

[
2v∆(2c

2
α − s2α)− 3sαcαvϕ

]}
δCHh

− 3

vϕ

{
m2

h

v2ϕ

[
v∆
2
(3cα + c3α)−

v3ϕs
3
α

v2∆

]
+

4m2
As

2
α

(v2 + 2v2∆)
2

[
cαv∆(2v

2
∆ − 3v2) + vϕsα

(
v4

4v2∆
+ 2v2 − v2∆

)]}
δv∆

+
3

vϕ

{
m2

hv

v2ϕ
c3α +

2m2
Avs

2
α

(v2 + 2v2∆)
2

[
(v2 − 6v2∆)cα + 4v∆vϕsα

]}
δv. (7.80)

Contributions of the 1PI diagram to the hhh coupling is listed in Appendix B.
In the limit of v∆/v → 0, these expressions are reduced to the same expressions in the SM

as2

Γtree
hhh → −3m2

h

v
, (7.81)

δΓhhh → −3δm2
h

v
− 9

2

m2
h

v
δZh +

3m2
h

v2
δv. (7.82)

In this limit, the top quark loop and the gauge boson loop contributions to the 1PI diagram
is the same as the SM. However, the scalar boson loop contributions can be different from the

2As long as we take λ4 to be O(1) or less and the triplet-like Higgs boson masses to be O(100) GeV or more,
the magnitude of the mixing angle α is as large as that of v∆.
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Figure 7.5: Contour plots of ∆Γhhh defined in Eq. (7.84) for mlightest = 300 GeV and v∆ = 1
MeV. The left panel (right panel) shows the result in Case I (Case II). The blue and orange
shaded regions are excluded by the vacuum stability bound and the measured mW data, re-
spectively.

SM case, because the triplet-like Higgs boson loop contributions can be remained even in this
limit. Approximately, the triplet-like Higgs boson loop contributions can be expressed as

Γhhh ≃ −3m2
h

v

[
1− v

48π2m2
h

(
λ3
H++H−−h

m2
H++

+
λ3
H+H−h

m2
H+

+
4λ3

AAh

m2
A

+
4λ3

HHh

m2
H

)
+ · · ·

]
≃ −3m2

h

v

{
1 +

v4

48π2m2
h

[
λ3
4

m2
H++

+
(λ4 +

λ5

2
)3

m2
H+

+
(λ4 + λ5)

3

2m2
A

+
(λ4 + λ5)

3

2m2
H

]
+ · · ·

}
,

(7.83)

where dotted terms mean the same correction given in the SM. Therefore, we find that the
triplet-like Higgs boson loop contribution to the hhh vertex gives a positive (negative) correction
compared to the SM prediction when λ4 is taken to be a positive (negative) value and λ5 ≃ 0.

To illustrate the deviation of the hhh coupling from the SM prediction, we define the
following quantity:

∆Γhhh ≡ ReΓhhh − ReΓSM
hhh

ReΓSM
hhh

, (7.84)

where Γhhh = Γhhh(m
2
h,m

2
h, 4m

2
h) and ΓSM

hhh is the corresponding prediction in the SM.
In Fig. 7.5, contour plot for the deviation of the one-loop corrected hhh coupling from the

SM prediction ∆Γhhh defined in Eq. (7.84) is shown for mlightest = 300 GeV and v∆ = 1 MeV
in the λ4-∆m plane. The left (right) plot shows the result in Case I (Case II). The blue and
orange shaded regions are excluded by the vacuum stability bound and the measured mW data,
respectively. In both cases, positive (negative) values of ∆Γhhh are predicted in the case with
a positive (negative) λ4 whose magnitudes can be greater than about +150% (−10%). Such
a deviation in ∆Γhhh is expected to be measured at the ILC with a center of mass energy
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to be 1 TeV [12, 13, 16, 100]. We note that there is a relations among the one-loop corrected
Higgs boson couplings hγγ, hV V and hhh. In particular, a strong correlation can be found in
deviations in Rγγ and Γhhh. If Rγγ < 1 (Rγγ > 1) which is predicted for λ4 > 0 (λ4 < 0), ∆Γhhh

takes sufficiently large positive (negative) values. In conclusion, by measuring these coupling
constants accurately, we can discriminate the HTM of the other models, even when additional
particles are not directly discovered.

7.3 Summary
We have calculated a full set of one-loop corrected hWW , hZZ and hhh couplings in addition to
the electroweak parameters such as the renormalized W boson mass and the electroweak renor-
malized parameter ∆r by on-shell renormalization scheme. We also have computed the decay
rate of h into diphoton at the one-loop level. Magnitudes of the deviations in these quantities
from the SM predictions have been evaluated in the parameter regions where the unitarity and
vacuum stability bounds are satisfied and the predicted W boson mass is consistent with the
data. There are strong correlations among deviations in the Higgs boson couplings hγγ, hV V
and hhh. By measuring these deviations in Higgs boson couplings accurately at the HL-LHC
and the ILC, the HTM may be distinguished from the other models.



Chapter 8

Summary of this thesis

The coupling measurements of the discovered Higgs boson with high accuracies at future collider
experiments provide hope to get a hint for new physics beyond the SM. In this thesis, we have
discussed indirect tests of extended Higgs sectors by future precision measurements of the
Higgs boson. Since it is not enough to calculate the deviations at the tree level taking into
account future precision measurements by typically 1 % accuracies, we have calculated one-loop
corrections to various couplings of the Higgs boson in several extended Higgs models such as the
HSM, four types of THDMs with the softly broken Z2 symmetry and the HTM. We investigated
possibilities that these models can be discriminated by detecting the characteristic pattern of
the deviations in the Higgs boson couplings at future collider experiments.

In the study of the THDMs, we have performed renormalization calculations in the modi-
fied on shell scheme, in which the gauge dependence in the mixing parameter β is consistently
vanished. We have showed a complete set of the analytic formulae of the renormalized cou-
plings in four types of THDMs. We have investigated how the pattern of deviations in the
Yukawa couplings can be modified from the prediction at the tree level by including one-loop
contributions under constraints from perturbative unitarity and vacuum stability, and current
experimental data. We found that scale factors in different types of THDMs do not overlap
each other even in the case with maximum radiative corrections if sin(β−α) are different from
the SM predictions large enough to be measured at the ILC. We then numerically evaluated
how we can extract inner parameters by future precision measurements of these couplings at
the HL-LHC and the ILC500. In this analysis, we considered theoretical constraints such as
perturbative unitarity and vacuum stability as well as current experimental data. We have
found that mixing parameters such as x and tan β can be determined more precisely, if mea-
surement uncertainties at the ILC are employed. Furthermore, there are possibilities to obtain
the upper bound for the mass of extra Higgs bosons without their direct discoveries and also
to get information of the decoupling property and the magnitude of loop corrections. In order
to determine the structure of the Higgs sector by fingerprinting the Higgs boson couplings, the
comprehensive study of radiative corrections to the Higgs boson couplings is an important task.

In the study of the HSM, we have calculated renormalized hV V and hf̄f couplings at
the one-loop level in the on-shell scheme. We numerically have investigated how they can be
significant under the theoretical constraints from perturbative unitarity and vacuum stability
and also the condition of avoiding the wrong vacuum. We have found that the maximal value of
the one-loop corrections to the hV V and hf̄f couplings is at most -1% or maximally less than
-2% which is obtained in the case where we take the maximally allowed value of mH from the

97



98 CHAPTER 8. SUMMARY OF THIS THESIS

unitarity bound with taking M̃2 = 0 and α = 0. We have also discussed how the HSM can be
distinguished from four types of THDMs and identified by using precision measurements of the
Higgs boson couplings at future collider experiments, The HSM can be distinguished from the
Type-II, X and Y THDMs except the decoupling limit, because the Yukawa couplings of the
HSM are universal in contrast those of the four types of THDMs are not universal couplings.
Moreover, if hV V couplings deviate about 2 % from the SM predictions, we can discriminate
the HSM and the Type-I THDM in most of parameter regions by using precision measurements
of ∆κZ and ∆κb at the ILC. In addition that, the pattern between ∆κZ and ∆κγ is also useful
for discriminating the HSM and the Type-I THDM for cos(β−α) > 0. However, when the value
of tan β is extremely larger than about tanβ ≃ 10, ∆κZ , ∆κb and ∆κγ of the Type-I THDM
approach to the predictions in the HSM. In such a situation, it is challenging to discriminate
the models by fingerprinting.

In the study of the HTM, we have calculated the decay rate for h → γγ and the renormalized
coupling constants of the hV V and the hhh at the one-loop level. Magnitudes of deviations in
these quantities from the predictions in the SM have been evaluated in the parameter regions
where unitarity and vacuum stability bounds are satisfied and the predicted W boson mass is
consistent with the data. Deviations in the one-loop corrected hV V and hhh vertices can be
about － 1% and +50%, respectively.

Although we have constructed renormalized various Higgs boson couplings at the one-loop
level in several extended Higgs models, we should calculate various observables comparable
directly with experimental data such as the production cross section and the decay branching
ratio and so on. Then, a set of this study can be regarded as the first step of the fingerprinting
project. Indeed it cannot say it is enough to calculate just the Higgs boson couplings in order
to determine the inner parameters, but it is meaningful to investigate the feature of extra Higgs
loop corrections and mixing effects as discussed in this thesis because the production cross
section and the decay branching ratio deviate from the SM predictions through the deviations
in the couplings.



Appendix A

Decay rate of scalar bosons

A.1 Kinematics
I show some formulae for kinetic systems which is useful to calculate decay rates.

Figure A.1: Kinematic system of 3-point vertex.

We consider 2-body decay of any particle as shown in Fig. A.1, i.e. A → B1B2. Element of
four-momentum of A, B1 and B2 can be expressed by

k = (mA, 0), p = (E, p), p′ = (E ′, −p). (A.1)

Because the three-momuntum of B1 is the same as that of B2, the following relation holds,

E ′2 = E2 −m2
1 +m2

2, (A.2)

where m1(2) is the mass of B1. Because of the energy conservation law, there is the following
relation,

E ′ = mA − E, (A.3)

By using Eqs. (A.2) and (A.3), E and E ′ can be expressed as

E =
1

2mA

(
m2

A +m2
1 −m2

2

)
, (A.4)

E ′ =
1

2mA

(
m2

A −m2
1 +m2

2

)
, (A.5)
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and

EE ′ =
1

4m2
A

(
m4

A −m4
1 −m4

2 + 2m2
1m

2
2

)
. (A.6)

The magnitude of the three-momentum |p| can be expressed using masses as,

|p|2 = E ′2 −m2
2

=
m2

A

4

(
1 +

m4
1

m4
A

+
m4

2

m4
A

− 2
m2

1

m2
A

− 2
m2

2

m2
A

− 2
m2

1m
2
2

m4
A

)
,

|p| = mA

2

(
1 +

m4
1

m4
A

+
m4

2

m4
A

− 2
m2

1

m2
A

− 2
m2

2

m2
A

− 2
m2

1m
2
2

m4
A

)1/2

. (A.7)

A.2 Decay rate of the CP-even scalar boson φ

We here list formulae of decay rates for various decay modes of any CP-even Higgs boson φ as,

Γ[φ → ff̄ ] =
NfC

2
f

4π

m2
f

v2
mφλ

3
2

[
m2

f

m2
φ

,
m2

f

m2
φ

]
, (A.8)

Γ[φ → WW ] =
m3

φ

64πm4
W

(
2m2

W

v
CW

)2(
1− 4

m2
W

m2
φ

+ 12
m4

W

m4
φ

)
λ

1
2

[
m2

W

m2
φ

,
m2

W

m2
φ

]
, (A.9)

Γ[φ → ZZ] =
m3

φ

32πm4
W

(
m2

Z

v
CZ

)2(
1− 4

m2
Z

m2
φ

+ 12
m4

Z

m4
φ

)
λ

1
2

[
m2

Z

m2
φ

,
m2

Z

m2
φ

]
. (A.10)

(A.11)

where Nf is the color number of f and

λ[x, y] = 1− 2x− 2y − 2xy + x2 + y2. (A.12)

We define coefficient of vertices as,

vertices[φf̄f ] :

√
2Cfmf

v
, (A.13)

vertices[φWW ] :
2CWmW

v
, (A.14)

vertices[φZZ] :
CZmZ

v
. (A.15)
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Formulae of decay rates for three-body decay modes are given by,

Γ[h → WW ∗ → Wff̄ ′] =
C2

Wm4
Wmφ

32π3v4

[
(1− 8ϵ2 + 20ϵ4) arccos

(
3ϵ2−1
2ϵ3

)
2
√
4ϵ2 − 1

+
1

12ϵ2
(
−2 + 15ϵ2 − 60ϵ4 + 47ϵ6 − 6(ϵ2 − 6ϵ4 + 4ϵ6) log ϵ

)]
, (A.16)

Γ[h → ZZ∗ → Zff̄ ′] =
C2

Zm
4
Zmφ

16π3v4

[
(1− 8ϵ2 + 20ϵ4) arccos

(
3ϵ2−1
2ϵ3

)
2
√
4ϵ2 − 1

+
1

12ϵ2
(
−2 + 15ϵ2 − 60ϵ4 + 47ϵ6 − 6(ϵ2 − 6ϵ4 + 4ϵ6) log ϵ

)]
(A.17)

(I2f + 2 sin4 θWQ2
f − 2If sin

2 θWQf ), (A.18)

where ϵ = mV /mφ, and If and Qf are the third component of the isospin and the electromag-
netic charge of the ferimon f .

The decay rates for the loop induced processes are given by

Γ(φ → γγ) =

√
2GFα

2
emm

3
φ

256π3

∣∣∣CW IV +
∑
f

Q2
fN

f
c CfIF −

λφH+H−

v
IS

∣∣∣2, (A.19)

Γ(h → Zγ) =

√
2GFα

2
emm

3
φ

128π3

(
1− m2

Z

m2
φ

)3

×
∣∣∣CWJV +

∑
f

CfQfN
f
c vfJF −

λφH+H−

v

gZ
2
(c2W − s2W )JS

∣∣∣2, (A.20)

Γ(h → gg) =

√
2GFα

2
sm

3
φ

128π3

∣∣∣∑
q

CqIF

∣∣∣2, (A.21)

where gZ = g/cW and vf = If/2− sin θWQf . The definition of λφH+H− is given by

L = +λφH+H−φH+H− + · · · . (A.22)

The loop functions are defined as

IS =
2v2

m2
φ

[1 + 2m2
H±C0(0, 0,m

2
φ,mH± ,mH± ,mH±)], (A.23)

IF = −
8m2

f

m2
φ

[
1 +

(
2m2

f −
m2

φ

2

)
C0(0, 0,m

2
φ,mf ,mf ,mf )

]
, (A.24)

IV =
2m2

W

m2
φ

[
6 +

m2
φ

m2
W

+ (12m2
W − 6m2

φ)C0(0, 0,m
2
φ,mW ,mW ,mW )

]
, (A.25)
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and

JV =
2m2

W

sW cW (m2
φ −m2

Z)
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(
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W
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, (A.26)

JF = −
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sW cW (m2
φ −m2
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[
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1

2
(4m2

f −m2
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2
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, (A.27)

JS =
2v2

e(m2
φ −m2

Z)

{
1 + 2m2

H±C0(0,m
2
Z ,m

2
φ,mH± ,mH± ,mH±)

+
m2

Z

m2
φ −m2

Z

[
B0(m

2
φ,mH± ,mH±)−B0(m

2
Z ,mH± ,mH±)

] }
, (A.28)

where the C0 function is one of Passarino-Veltoman functions [111] defined in Chap. C.



Appendix B

Feynman rule

In this chapter, we summarize the feynman rule of the Higgs sector in the THDM, the HSM
and the HTM.

First, we give feynman rules of trilinear vertices and quartic vertices obtained from the Higgs
kinetic term. There are two kinds of trilinear vertices and one kind of quartic vertices; i.e.,
Scalar-Gauge-Gauge, Scalar-Scalar-Gauge and Scalar-Scalar-Gauge-Gauge type. Their cou-
plings are expressed as

L = gϕV1V2
gµνϕV1µV2ν + gϕ1ϕ2V

(∂µϕ1ϕ2 − ϕ1∂
µϕ2)Vµ + gϕ1ϕ2V1V2

gµνϕ1ϕ2V1µV2ν + · · · . (B.1)

From the Higgs potential, we obtain the scalar trilinear and the scalar quartic couplings.
When we use the following notation for these couplings

L = +λϕiϕjϕk
ϕiϕjϕk + λϕiϕjϕkϕl

ϕiϕjϕkϕl + · · · . (B.2)

B.1 Feynman rule of the THDM

The coefficients of trilinear vertices gϕV1V2
and gµϕ1ϕ2V

, and those of quartic vertices gϕ1ϕ2V1V2
of

the THDMs are listed in Tab. B.1-B.3.

Table B.1: Feynman rules of scalar-scalar-gauge vertex

vertex coupling vertex coupling

hH±W∓
µ ∓imW

v
c(β−α) HH±W∓

µ ±imW

v
s(β−α)

AH+W−
µ −mW

v
HG±W∓

µ ∓imW

v
c(α−β)

hG±W∓
µ ∓imW

v
s(β−α) G0G+W−

µ −mW

v

HAZ mW

vcW
s(β−α) hAZ −mW

vcW
c(α−β)

H+H−Zµ imZc2W
v

H+H−γµ i2mW sW
v

HG0Zµ −mW

vcW
c(α−β) hG0Zµ

mW

vcW
s(α−β)

G+G−Zµ imZc2W
v

G+G−γµ ie
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Table B.2: Feynman rules of scalar-gauge-gauge vertex

vertex coupling vertex coupling

HW+
µ W−

ν
2m2

W cα−β

v
hW+

µ W−
ν

2m2
W sβ−α

v

HZµZν
m2

Zcα−β

v
hZµZν

m2
Zsβ−α

v

G+W−
µ γν

2m2
W sW
v

G+W−
µ Zν −2mWmZs2W

v

Table B.3: Feynman rules of scalar-scalar-gauge-gauge vertex

vertex coupling vertex coupling

ϕϕW+
µ W−

ν
m2

W

v2
H+H−W+

µ W−
ν

2m2
W

v2

ϕϕZµZν
m2

Z

2v2
H+H−ZµZν

m2
Zc22W
v2

H±HW∓
µ Zν

2mWmZs2W sβ−α

v2
H±hW∓

µ Zν −2mWmZs2W cβ−α

v2

H±AW∓
µ Zν

2imWmZs2W
v2

H±AW∓
µ γν ∓2im2

W sW
v2

H+H−γµγν
4m2

W s2W
v2

H+H−Zµγν
4mZmW sW c2W

v2

H±HW∓
µ γν −2m2

W sW sβ−α

v2
H±hW∓

µ γν
2m2

W sW cα−β

v2

G+G−W+
µ W−

ν
2m2

W

v2
G0G0W+

µ W−
ν

m2
W

v2

G+G−ZµZν
m2

Zc22W
v2

G0G0ZµZν
m2

Z

2v2

G±hW∓
µ Zν −2mWmZsβ−αs

2
W

v2
G±HW∓

µ Zν −2mWmZcβ−αs
2
W

v2

G+G−γµγν
4m2

W s2W
v2

G+zW−
µ Zν ±2imWmZs2W

v2

G±HW∓
µ γν

2m2
W sW cβ−α

v2
G+G−Zµγν

4mWmZsW c2W )
v2

G±G0W∓
µ γν −2im2

W sW
v2

G±hW∓
µ γν

2m2
W sW sβ−α

v2

These coefficients of scalar self vertices are given by

λH+H−h =
1

v

[
(2M2 − 2m2

H± −m2
h)sβ−α + 2(M2 −m2

h) cot 2βcβ−α

]
, (B.3)

λAAh =
1

2v

[
(2M2 − 2m2

A −m2
h)sβ−α + 2(M2 −m2

h) cot 2βcβ−α

]
, (B.4)

λHHh =
sβ−α

2v

[
(2M2 − 2m2

H −m2
h)s

2
β−α + 2(3M2 − 2m2

H −m2
h) cot 2βsβ−αcβ−α

− (4M2 − 2m2
H −m2

h)c
2
β−α

]
, (B.5)
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λhhh = −m2
h

2v
sβ−α +

M2 −m2
h

v
sβ−αc

2
β−α +

M2 −m2
h

2v
c3β−α(cotβ − tan β), (B.6)

λGGh = −m2
h

2v
sβ−α, (B.7)

λH±G∓h = −1

v
(m2

h −m2
H±)cβ−α, (B.8)

λAGh = −1

v
(m2

h −m2
A)cβ−α, (B.9)

λH+H−H = −1

v

[
2(M2 −m2

H) cot 2βsβ−α + (2m2
H± +m2

H − 2M2)cβ−α

]
, (B.10)

λAAH = − 1

2v

[
2(M2 −m2

H) cot 2βsβ−α + (2m2
A +m2

H − 2M2)cβ−α

]
, (B.11)

λHHH = − 1

2v

[
2(M2 −m2

H) cot 2βs
3
β−α − 2(M2 −m2

H)cβ−αs
2
β−α +m2

Hcβ−α

]
, (B.12)

λGGH = −m2
H

2v
cβ−α, (B.13)

λH±G∓H =
1

v
(m2

H −m2
H±)sβ−α, (B.14)

λAGH =
1

v
(m2

H −m2
A)sβ−α, (B.15)

λHhh = − cβ−α

2v sin 2β

[
(2m2

h +m2
H − 3M2) sin 2α+M2 sin 2β

]
, (B.16)

λH±G∓A = ± i

v
(m2

A −m2
H±). (B.17)

The four point couplings are given by

λH+H−AG = −1

v
(λH+H−Hsβ−α − λH+H−hcβ−α), (B.18)

λG+G−AG = −1

v
(λG+G−Hsβ−α − λG+G−hcβ−α), (B.19)

λAAAG = −1

v
(λAAHsβ−α − λAAhcβ−α), (B.20)

λAGGG = −1

v
(λGGHsβ−α − λGGhcβ−α). (B.21)

B.2 Feynman rule of the HSM

The coefficients of trilinear vertices gϕV1V2
and gµϕ1ϕ2V

, and those of quartic vertices gϕ1ϕ2V1V2
of

the HSM are listed in Tab. B.4 and Tab. B.5.
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Table B.4: The Scalar-Vector-Vector vertices and the Scalar-Scalar-Vector vertices and those
coefficients.

ϕV1µV2ν vertices coefficient ϕ1ϕ2Vµ vertices coefficient

hW+
µ W−

ν
2m2

W

v
cα hG±W∓

µ ∓imW

v
cα

HW+
µ W−

ν
2m2

W

v
sα HG±W∓

µ ∓imW

v
sα

G±ZµW
∓
ν −2mWmZ

v
s2W G0G±W∓

µ −mW

v

G±γµW
∓
ν emW G+G−Zµ imZ

v
c2W

hZµZν
m2

Z

v
cα hG0Zµ −mZ

v
cα

HZµZν
m2

Z

v
sα HG0Zµ −mZ

v
sα

G+G−γµ ie

Table B.5: The Scalar-Scalar-Vector-Vector vertices and those coefficients.

ϕ1ϕ2V1µV2ν vertices coefficient ϕ1ϕ2V1µV2ν vertices coefficient

hhW+
µ W−

ν
m2

W

v2
c2α G±G0W∓

µ Zν ±i2mWmZ

v2
s2W

HHW+
µ W−

ν
m2

W

v2
s2α G±hW∓

µ Zν −2mWmZ

v2
s2W cα

G0G0W+
µ W−

ν
m2

W

v2
G±HW∓

µ Zν −2mWmZ

v2
s2W sα

G+G+W+
µ W−

ν
2m2

W

v2
G±hW∓

µ γν
emW

v
cα

hhZµZν
m2

Z

2v2
c2α G±HW∓

µ γν
emW

v
sα

HHZµZν
m2

Z

2v2
s2α G±G0W∓

µ γν ∓i emW

v

G0G0ZµZν
m2

Z

2v2
G+G−Zµγν 2emZ

v
c2W

G+G−ZµZν
m2

Z

v2
c22W G+G−γµγµ e2

hHW+
µ W−

µ
2m2

W

v2
sαcα hHZµZµ

m2
Z

v2
sαcα
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Coefficients of the scalar self vertices λϕ1ϕ2ϕ3
and λϕ1ϕ2ϕ3ϕ4

are obtained as

λhhh = − c3α
2v

m2
h − s2α(cαλΦSv − 4sαλSvS − sαµS), (B.22)

λhHH = −(m2
h + 2m2

H)
cαs

2
α

2v
− λΦSv

4
(cα + 3c3α) + 12sαc

2
αλSvS + 3sαc

2
αµS, (B.23)

λhhH = −(2m2
h +m2

H)
sαc

2
α

2v
+

sαλΦSv

2
(1 + 3c2α)− 3s2αcαµS − 6sαs2αλSvS, (B.24)

λHHH = −s3α
2v

m2
H − 4c3αλSvS − c3αµS − sαc

2
αλΦSv, (B.25)

λhG0G0 = −m2
hcα
2v

, (B.26)

λhG+G− = −m2
hcα
v

, (B.27)

λHG0G0 = −m2
Hsα
2v

, (B.28)

λHG+G− = −m2
Hsα
v

, (B.29)

λhhhh = −(c2αm
2
h + s2αm

2
H)

c4α
8v2

− s4αλS − s22α
8

λΦS, (B.30)

λhhhH = −c5αsα
2v2

m2
h −

s32α
16v2

m2
H + 4cαs

3
αλS +

s4α
4

λΦS, (B.31)

λhhHH = −(c2αm
2
h + s2αm

2
H)

3s2αc
2
α

4v2
− λΦS

8
(1 + 3c4α), (B.32)

λhHHH = 4λSc
3
αsα − m2

H

2v2
cαs

5
α − m2

h

16v2
s32α − λΦS

4
s4α, (B.33)

λhhG+G− = − c4α
2v2

m2
h −

s22α
8v2

m2
H − s2αλΦS, (B.34)

λhHG+G− = −(c2αm
2
h + s2αm

2
H)

sαcα
v2

+ 2sαcαλΦS, (B.35)

λHHG+G− = −(4s4αm
2
H +m2

hs
2
2α)

1

8v2
− c2αλΦS, (B.36)

λhhG0G0 = −m2
h

2v2
c4α − m2

H

16v2
s22α − λΦS

2
s2α, (B.37)

λhHG0G0 = −m2
h

2v2
c3αsα − m2

H

2v2
cαs

3
α + λΦScαsα. (B.38)

B.3 Feynman rule in the HTM

The coefficients of trilinear vertices gϕV1V2
and gµϕ1ϕ2V

, and those of quartic vertices gϕ1ϕ2V1V2
of

the HTM are listed in Tab. B.6 and Tab. ??.

Coefficients of the scalar three point vertices can be written in terms of the physical param-
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Table B.6: The Higgs-gauge-gauge type vertices and those corresponding coefficients in the
HTM.

Vertices Coefficient Vertices Coefficient

hW+
µ W−

ν gmW (cβcα +
√
2sβsα)gµν hZµZν

gZmZ

2
(cβ′cα + 2sβ′sα)gµν

HW+
µ W−

ν gmW (−cβsα +
√
2sβcα)gµν HZµZν

gZmZ

2
(−cβ′sα + 2sβ′cα)gµν

H±W∓
µ Zν −gZmW sβcβgµν G±W∓

µ Zν −gZmW

(
s2W + s2β

)
gµν

H±±W∓
µ W∓

ν gmW sβgµν G±W∓
µ Aν emW gµν

Table B.7: The Higgs-ghost-anti ghost type vertices and those corresponding coefficients in the
HTM.

Vertices Coefficient Vertices Coefficient

hc̄±c∓ −gmW

2
(cβcα +

√
2sβsα) hc̄ZcZ −gZmZ

2
(cβ′cα + 2sβ′sα)

Hc̄±c∓ −gmW

2
(−cβsα +

√
2sβcα) Hc̄ZcZ −gZmZ

2
(−cβ′sα + 2sβ′cα)

G±c̄Zc
∓ igZmW

2
(1 + s2β) G±c̄∓cZ igZmW

2
(−c2W c2β + 2s2W s2β)

H±c̄Zc
∓ igZmW

2
cβsβ H±c̄∓cZ igZmW

2
cβsβ(c2W + 2s2W )

eters as follows;

λH++H−−H =
2vϕ

v2 + 2v2∆

[
2m2

H+

(
1 +

2v2∆
v2

)
−m2

A

]
sα

− 1

v∆

[
2m2

H++ − 4m2
H+

v2ϕ
v2

+m2
A

(
1− 4v2∆

v2 + 2v2∆

)
+m2

H

]
cα, (B.39)

λH++H−−h = − 2vϕ
v2 + 2v2∆

[
2m2

H+

(
1 +

2v2∆
v2

)
−m2

A

]
cα

− 1

v∆

[
2m2

H++ − 4m2
H+

v2ϕ
v2

+m2
A

(
1− 4v2∆

v2 + 2v2∆

)
+m2

h

]
sα, (B.40)

λH+H−H =
1

vϕ

[
2m2

H+

v2ϕ
v2

+m2
H

2v2∆
v2

]
sα − 1

v∆

[
4m2

H+

v2∆
v2

−m2
A

v2

v2 + 2v2∆
+m2

H

v2ϕ
v2

]
cα,

(B.41)

λH+H−h = − 1

vϕ

(
2m2

H+

v2ϕ
v2

+m2
h

2v2∆
v2

)
cα − 1

v∆

(
4m2

H+

v2∆
v2

−m2
A

v2

v2 + 2v2∆
+m2

h

v2ϕ
v2

)
sα,

(B.42)
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Table B.8: The Higgs-Higgs-gauge type vertices and those corresponding coefficients in the
HTM.

Vertices Coefficient Vertices Coefficient

H±±H∓W∓
µ ±gcβ H++H−−Aµ 2e

H±±G∓W∓
µ ±gsβ H+H−Aµ e

H±AW∓
µ −ig

2
(sβ′sβ +

√
2cβ′cβ) G+G−Aµ e

H±HW∓
µ ±g

2
(sαsβ +

√
2cαcβ) H++H−−Zµ gZ(ĉ

2
W − ŝ2W )

H±hW∓
µ ±g

2
(−cαsβ +

√
2sαcβ) H+H−Zµ

gZ
2
(ĉ2W − ŝ2W − c2β)

H±G0W∓
µ −ig

2
(−cβ′sβ +

√
2sβ′cβ) G+G−Zµ

gZ
2
(ĉ2W − ŝ2W − s2β)

G±AW∓
µ −ig

2
(−sβ′cβ +

√
2cβ′sβ) H±G∓Zµ ∓gZ

4
s2β

G±HW∓
µ ±g

2
(−sαcβ +

√
2cαsβ) AHZµ −igZ

2
(2cαcβ′ + sαsβ′)

G±hW∓
µ ±g

2
(cαcβ +

√
2sαsβ) AhZµ −igZ

2
(−cαsβ′ + 2sαcβ′)

G±G0W∓
µ −ig

2
(cβ′cβ +

√
2sβ′sβ) G0HZµ −igZ

2
(−cβ′sα + 2cαsβ′)

G0hZµ −igZ
2
(cαcβ′ + 2sαsβ′)

λH+G−A = i

√
2(m2

A −m2
H+)√

v2 + 2v2∆
, (B.43)

λH+G−G0 = −i

√
2

v2 + 2v2∆

v∆vϕ
v2

m2
H+ , (B.44)

λH+G−H =

√
2(m2

H+ −m2
H)

v2
(vϕcα + v∆sα), (B.45)

λH+G−h = −
√
2(m2

H+ −m2
h)

v2
(v∆cα − vϕsα), (B.46)

λG+G−H =
m2

H

v2
(−2v∆cα + vϕsα), (B.47)

λG+G−h = −m2
h

v2
(vϕcα + 2v∆sα), (B.48)

λAAH =
v2

vϕ

1

v2 + 2v2∆

[
m2

A

(
1− 2v2∆

v2

)
+m2

H

2v2∆
v2

]
sα

+
1

2v∆

[
m2

A

(
1− 8v2∆

v2 + 2v2∆

)
−m2

H

(
1− 4v2∆

v2 + 2v2∆

)]
cα, (B.49)

λAAh = −v2

vϕ

1

v2 + 2v2∆

[
m2

A

v2ϕ
v2

+m2
h

2v2∆
v2

]
cα

+
1

2v∆

[
m2

A

(
1− 8v2∆

v2 + 2v2∆

)
−m2

h

(
1− 4v2∆

v2 + 2v2∆

)]
sα, (B.50)
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Table B.9: The Higgs-Higgs-gauge-gauge type vertices and those corresponding coefficients in
the HTM.

Vertices Coefficient Vertices Coefficient

H++H−−W+
µ W−

ν g2 H++H−−ZµZν g2Z(c
2
W − s2W )2

H+H−W+
µ W−

ν
g2

4
(5 + 3c2β) H+H−ZµZν

g2Z
8

(
2 + c4W − 4c2W c2β + c2β

)
G+G−W+

µ W−
ν

g2

4
(5− 3c2β) G+G−ZµZν

g2Z
8

(
2 + c4W − 4c2W s2β − c2β

)
HHW+

µ W−
ν

g2

8
(3 + c2α) H±G∓ZµZν

g2Z
8
s2β(1− 2c2W )

hhW+
µ W−

ν
g2

8
(3− c2α) AAZµZν

g2Z
16

(5 + 3c2β′)

AAW+
µ W−

ν
g2

8
(3 + c2β′) G0G0ZµZν

g2Z
16

(5− 3c2β′)

G0G0W+
µ W−

ν
g2

8
(3− c2β′) AG0ZµZν

3g2Z
8
s2β′

H±G∓W+
µ W−

ν
3
4
g2s2β HHZµZν

g2Z
16

(5 + 3c2α)

AG0W+
µ W−

ν
1
4
g2s2β′ hhZµZν

g2Z
16

(5− 3c2α)

HhW+
µ W−

ν
1
4
g2s2α HhZµZν

3g2Z
8
s2α

H++H−−AµZν 4egZ(ĉ
2
W − ŝ2W ) H++H−−AµAν 4e2

H+H−AµZν egZ(ĉ
2
W − ŝ2W − c2β) H+H−AµAν e2

G+G−AµZν egZ(ĉ
2
W − ŝ2W − s2β) G+G−AµAν e2

G±hW∓
µ Zν

ggZ
2
[−cαcβs

2
W +

√
2(c2W − 2)sαsβ] G±hW∓

µ Aν
ge
2
(cαcβ +

√
2sαsβ)

H±hW∓
µ Zν

ggZ
2
[cαsβs

2
W +

√
2(c2W − 2)sαcβ] H±hW∓

µ Aν
ge
2
(−cαsβ +

√
2sαcβ)

H±±hW∓
µ W∓

ν
g2√
2
sα

λAG0H =
2(m2

A −m2
H)

v2 + 2v2∆
(vϕcα + v∆sα), (B.51)

λAG0h = −2(m2
A −m2

h)

v2 + 2v2∆
(v∆cα − vϕsα), (B.52)

λG0G0H =
m2

H

2(v2 + 2v2∆)
(−4v∆cα + vϕsα), (B.53)

λG0G0h = − m2
h

2(v2 + 2v2∆)
(vϕcα + 4v∆sα), (B.54)

λHHH = − 1

8v∆

(
3cα + c3α − 4v∆

vϕ
s3α

)
m2

H +
vϕc

2
α

2v∆(v2 + 2v2∆)
(vϕcα + 2v∆sα)m

2
A, (B.55)

λHHh = − 1

2v∆

(
cα +

v∆
vϕ

sα

)(
m2

H +
m2

h

2

)
s2α +

vϕcα
4(v2 + 2v2∆)

(
2− 6c2α +

3vϕ
v∆

s2α

)
m2

A,

(B.56)
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λHhh = − s2α
2v∆

(
sα − v∆

vϕ
cα

)(
m2

h +
m2

H

2

)
− vϕsα

4(v2 + 2v2∆)

(
2 + 6c2α − 3vϕ

v∆
s2α

)
m2

A, (B.57)

λhhh = −
(
c3α
vϕ

+
s3α
v∆

)
m2

h

2
− s2α

v2 + 2v2∆

(
vϕcα −

v2ϕ
2v∆

sα

)
m2

A. (B.58)

Coefficients for the scalar four-point vertices can be written in terms of the physical parameters
as follows;

λH++H−−AA =
1

v2∆(v
2 + 2v2∆)

[
− v2ϕm

2
H++ + 2(v2 − 4v2∆)m

2
H+ +

−v4 + 4v2v2∆ + 4v4∆
2(v2 + 2v2∆)

m2
A

+
1

2
(2v2∆ − v2)(c2αm

2
H + s2αm

2
h) +

v3∆
vϕ

s2α(m
2
H −m2

h)

]
, (B.59)

λH++H−−AG0 =
1

v∆(v2 + 2v2∆)

[
− 4vϕm

2
H++ +

8vϕ
v2

(v2 − v2∆)m
2
H+

− 2v2vϕ
v2 + 2v2∆

m2
A − 2cα(vϕcα + v∆sα)m

2
H + (−2vϕs

2
α + v∆s2α)m

2
h

]
, (B.60)

λH++H−−HH = − 1

v2∆

{
c2αm

2
H++ +

[
v2∆
v2

(3 + c2α)− (1 + c2α)

]
m2

H+ +
1

4

v2(1 + c2α)− 4v2∆
v2 + 2v2∆

m2
A

+
cα
2

(
c3α − v∆

vϕ
s3α

)
m2

H +
cαs

2
α

2

(
cα +

v∆
vϕ

sα

)
m2

h

}
, (B.61)

λH++H−−Hh = −s2α
v2∆

[
m2

H++ + 2

(
v2∆
v2

− 1

)
m2

H+ +
v2

2(v2 + 2v2∆)
m2

A

+
1

2

(
c2α +

v∆
2vϕ

s2α

)
m2

H − 1

2

(
v∆
2vϕ

s2α − s2α

)
m2

h

]
, (B.62)

λH++H−−hh =
1

v2∆

{
− s2αm

2
H++ + 2

[(
1− v2∆

v2

)
s2α − v2∆

v2

]
m2

H+

− v2

2(v2 + 2v2∆)

(
s2α − 2v2∆

v2

)
m2

A +
c2αsα
2

(
v∆
vϕ

cα − sα

)
m2

H − sα
2

(
s3α +

v∆
vϕ

c3α

)
m2

h

}
,

(B.63)

λH+H−AA =
v6 − 6v4v2∆ + 16v6∆
2v2v2∆(v

2 + 2v2∆)
2
m2

A − v6 − 6v4v2∆ + 12v2v4∆
4v2v2∆(v

4 − 4v4∆)
(m2

H +m2
h)

− 1

4v2v2∆(v
4 − 4v4∆)

[(v6 − 6v4v2∆ + 12v2v4∆ − 16v6∆)c2α − 6v3∆v
3
ϕs2α](m

2
H −m2

h), (B.64)
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λH+H−AG0 =
1

v2v∆vϕ(v2 + 2v2∆)

{
2(v6 − 4v4v2∆ + 8v6∆)

v2 + 2v2∆
m2

A

+
(
−v4 + 4v2v2∆ − 2v4∆

)
(m2

H +m2
h)

+
[
−(v4 − 4v2v2∆ + 6v4∆)c2α − v∆vϕ(v

2 − 4v2∆)s2α
]
(m2

H −m2
h)

}
, (B.65)

λH+H−HH =
1

2v4
[
−v2 − 2v2∆ + (v2 − 6v2∆)c2α + 4v∆vϕs2α

]
m2

H+

+
cα

2v2v2∆(v
2 + 2v2∆)

[
(v4 − 4v2v2∆ + 8v4∆)cα − 8v3∆vϕsα

]
m2

A

+
1

16

(
−8c4α

v2∆
+

9 + 4c2α + 3c4α
v2

+
8cαs

3
α

v∆vϕ
− 8s4α

v2ϕ
+

4v∆s4α
v2vϕ

)
m2

H

+
s2α

8v2v∆v3ϕ

[
−v4 + 2v2v2∆ + (v4 − 6v2v2∆ + 8v4∆)c2α − vϕ

v∆
(v4 − 4v2v2∆ + 6v4∆)s2α

]
m2

h,

(B.66)

λH+H−Hh =
1

v4
[
−4v∆vϕc2α + (v2 − 6v2∆)s2α

]
m2

H+

+
1

2v2v2∆(v
2 + 2v2∆)

[
8v3∆vϕc2α + (v4 − 4v2v2∆ + 8v4∆)s2α

]
m2

A

− s2α
4v2v2∆v

2
ϕ

(
v4 − 4v2v2∆ + 2v4∆

)
(m2

H +m2
h)

− s2α
4v2v2∆v

2
ϕ

[
(v4 − 4v2v2∆ + 6v4∆)c2α +

v∆
vϕ

(v4 − 6v2v2∆ + 8v4∆)s2α

]
(m2

H −m2
h),

(B.67)

λH+H−hh = − 1

2v2

[
1 +

2v2∆
v2

+

(
1− 6v2∆

v2

)
c2α +

4v∆vϕ
v2

s2α

]
m2

H+

+
v2sα

2v2∆(v
2 + 2v2∆)

[
8v3∆vϕ
v4

cα +

(
1− 4v2∆

v2
+

8v4∆
v4

)
sα

]
m2

A

+
v2s2α
8v∆v3ϕ

[
v2ϕ
v2

+

(
1− 6v2∆

v2
+

8v4∆
v4

)
c2α − vϕ

v∆

(
1− 4v2∆

v2
+

6v4∆
v4

)
s2α

]
m2

H

+
1

16

[
−8c4α

v2ϕ
− 8sα

v2∆

(
v∆
vϕ

c3α + s3α

)
+

1

v2

(
9− 4c2α + 3c4α +

4v∆
vϕ

s4α

)]
m2

h, (B.68)

λH+G−hh =
1√
2v2

{
1

v2
[
v∆vϕ(1− 3c2α) + (v2 − 4v2∆)s2α

]
m2

H+

+
(v2 − 4v2∆)sα

v∆vϕ(v2 + 2v2∆)

[
v2sα − 2v∆(vϕcα + v∆sα)

]
m2

A

+
s2α

4v∆vϕ

[
2v∆vϕc2α − (v2 − 3v2∆)s2α

]
m2

H

+
1

8v∆vϕ

[
−3v2 + 9v2∆ + 4(v2 − v2∆)c2α − (v2 − 3v2∆)c4α − 2v∆vϕs4α

]
m2

h

}
, (B.69)
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λG+G−AA =
1

v2 + 2v2∆

{
− 2m2

H+ +
2v2ϕ
v2

m2
A − 1

2
(m2

H +m2
h)

+
1

4v2

[
−2(v2 − 4v2∆)c2α +

1

vϕv∆
(v4 − 4v2v2∆ + 12v4∆)s2α

]
(m2

H −m2
h)

}
, (B.70)

λG+G−AG0 =
1

v2(v2 + 2v2∆)

{
− 4v∆vϕ(m

2
H+ −m2

A)− v∆vϕ(m
2
H +m2

h)

+ [−3v∆vϕc2α + (v2 − 4v2∆)s2α](m
2
H −m2

h)

}
, (B.71)

λG+G−Hh =
1

v2

{
1

v2
[
4v∆vϕc2α − 2(v2 − 3v2∆)s2α

]
m2

H+

+
1

v2 + 2v2∆

[
−4v∆vϕc2α + 2v2ϕs2α

]
m2

A

− s2α
4

(m2
H +m2

h)−
s2α
4

[
3c2α − v2 − 4v2∆

v∆vϕ
s2α

]
(m2

H −m2
h)

}
, (B.72)

λG+G−hh =
1

v2

{
1

v2
[
−v2 + v2∆ + (v2 − 3v2∆)c2α + 2v∆vϕs2α

]
m2

H+

+
2sα

v2 + 2v2∆

[
v2sα − 2v∆(vϕcα + v∆sα)

]
m2

A

+
s2α

8v∆vϕ

[
v2 − (v2 − 4v2∆)c2α − 3v∆vϕs2α

]
m2

H

− 1

16

[
9 +

8v2cαs
3
α

vϕv∆
+

(
−4c2α + 3c4α +

4v∆
vϕ

s4α

)]
m2

h

}
, (B.73)

λAAAA =
v4 − 8v2v2∆ + 12v4∆
8v2∆(v

2 + 2v2∆)
2

m2
A

− v6 − 6v4v2∆ + 12v2v4∆ + 8v6∆
16v2∆v

2
ϕ(v

2 + 2v2∆)
2

(m2
H +m2

h)

− 1

16v2∆v
2
ϕ(v

2 + 2v2∆)
2
[(v6 − 6v4v2∆ + 12v2v4∆ − 24v6∆)c2α − 8v3∆v

3
ϕs2α](m

2
H −m2

h), (B.74)

λAAAG0 =
1

v∆(v2 + 2v2∆)
2

{
(v2 − 4v2∆)vϕm

2
A +

−v4 + 4v2v2∆
2vϕ

(m2
H +m2

h)

+
1

2vϕ

[
−(v4 − 4v2v2∆ + 8v4∆)c2α − v∆vϕ(v

2 − 6v2∆)s2α
]
(m2

H −m2
h)

}
, λAAG0G0 =

1

2(v2 + 2v2∆)
2

{
(5v2 − 14v2∆)m

2
A − 3(v2 − v2∆)(m

2
H +m2

h)

+
1

4

[
−12(v2 − 3v2∆)c2α +

1

vϕv∆
(v4 − 20v2v2∆ + 52v4∆)s2α

]
(m2

H −m2
h)

}
, (B.75)

λAG0G0G0 =
1

2(v2 + 2v2∆)
2

{
4v∆vϕm

2
A − 3v∆vϕ(m

2
H +m2

h) +
[
−5v∆vϕc2α + (v2 − 6v2∆)s2α

]
(m2

H −m2
h)

}
,

(B.76)
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λAAHH =
m2

A

8v2∆(v
2 + 2v2∆)

2
[v4 − 6v2v2∆ + (v4 − 2v2v2∆ − 8v4∆)c2α]

− m2
H

32v2∆(v
4 − 4v4∆)

[2(v4 − 4v2v2∆ + 8v4∆)(1 + c22α) + 4v2c2α(v
2 − 4v2∆)

− 2v∆
vϕ

(v4 − 4v4∆)s2α +
v∆
vϕ

(v4 − 8v2v2∆ + 12v4∆)s4α]

− s2αm
2
h

16v∆v3ϕ(v
2 + 2v2∆)

[v4 − 4v4∆ − (v4 − 8v2v2∆ + 12v4∆)c2α +
vϕ
v∆

(v4 − 4v2v2∆ + 8v4∆)s2α],

(B.77)

λAAHh =
s2α
4v2∆

{
v2 − 4v2∆
v2 + 2v2∆

m2
A − v2(v2 − 4v2∆)

2v2ϕ(v
2 + 2v2∆)

(m2
H +m2

h)

− m2
H −m2

h

2v2ϕ(v
2 + 2v2∆)

[
(v4 − 4v2v2∆ + 8v4∆)c2α +

v∆
vϕ

(v4 − 8v2v2∆ + 12v4∆)s2α

]}
, (B.78)

λAAhh =
v4

8v2∆(v
2 + 2v2∆)

2

[
1− 6v2∆

v2
−
(
1− 2v2∆

v2
− 8v4∆

v4

)
c2α

]
m2

A

+
s2αv

4

16v∆v3ϕ(v
2 + 2v2∆)

[
1− 4v4∆

v4
+

(
1− 8v2∆

v2
+

12v4∆
v4

)
c2α − vϕ

v∆

(
1− 4v2∆

v2
+

8v4∆
v4

)
s2α

]
m2

H

− v4

16v2∆(v
4 − 4v4∆)

[(
1− 4v2∆

v2
+

8v4∆
v4

)
(1 + c22α)− 2c2α

(
1− 4v2∆

v2

)
+

v∆
vϕ

s2α

(
1− 4v4∆

v4

)
+

v∆
vϕ

(
1− 8v2∆

v2
+

12v4∆
v4

)
s2αc2α

]
m2

h, (B.79)

λAG0HH =
1

2v∆vϕ(v2 + 2v2∆)

{
v4ϕ + (v4 − 4v4∆)c2α

v2 + 2v2∆
m2

A

+
1

4

[
−3v2 + 9v2∆ + 4(−v2 + v2∆)c2α − (v2 − 3v2∆)c4α − 2v∆vϕs4α

]
m2

H

+
s2α
2

[
2v∆vϕc2α − (v2 − 3v2∆)s2α

]
m2

h

}
, (B.80)

λAG0hh =
1

2v∆vϕ(v2 + 2v2∆)

{
v4ϕ − (v4 − 4v4∆)c2α

v2 + 2v2∆
m2

A +
s2α
2

[
2v∆vϕc2α − (v2 − 3v2∆)s2α

]
m2

H

+
1

4

[
−3v2 + 9v2∆ + 4(v2 − v2∆)c2α − (v2 − 3v2∆)c4α − 2v∆vϕs4α

]
m2

h

}
, (B.81)

λG0G0Hh =
s2α

2(v2 + 2v2∆)

[
m2

A − 3

4
(m2

H +m2
h)−

1

4

(
5c2α − v2 − 6v2∆

vϕv∆
s2α

)
(m2

H −m2
h)

]
, (B.82)

λG0G0hh =
1

4(v2 + 2v2∆)

{
1

v2 + 2v2∆

[
v2 − 6v2∆ − (v2 + 2v2∆)c2α

]
m2

A

+
s2α

4v∆vϕ

[
v2 + 2v2∆ − (v2 − 6v2∆)c2α − 5v∆vϕs2α

]
m2

H

− 1

8v∆vϕ

[
8v2cαs

3
α + v∆vϕ(15− 12c2α + 5c4α) + v2∆(4s2α + 6s4α)

]
m2

h

}
, (B.83)
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λHHHH =
1

8v2∆(v
2 + 2v2∆)

(v2ϕc
4
α − v2∆s

2
2α)m

2
A

− 1

8v2∆v
2
ϕ

[
v2ϕc

6
α − 2v4v∆

vϕ(v2 + 2v2∆)
c3αs

3
α + v2∆s

6
α +

v5∆
vϕ(v2 + 2v2∆)

s32α

]
m2

H

− s22α
64v2∆v

2
ϕ

[
v2 − v2∆ + (v2 − 3v2∆)c2α + 2v∆vϕs2α

]
m2

h, (B.84)

λHHHh =
s2α
8v2∆

{
v2ϕ + (v2 + 2v2∆)c2α

v2 + 2v2∆
m2

A

− 1

4v2ϕ

[
3v2 − 9v2∆ + 4(v2 − v2∆)c2α + (v2 − 3v2∆)c4α + 2v∆vϕs4α

]
m2

H

− s2α
2v2ϕ

[−2v∆vϕc2α + (v2 − 3v2∆)s2α]m
2
h

}
, (B.85)

λHHhh =
v2

32v2∆(v
2 + 2v2∆)

[
3− 10v2∆

v2
− 3

(
1 +

2v2∆
v2

)
c4α

]
m2

A

+
v2s2α
32v∆v3ϕ

{[
1− 2v2∆

v2
+

3v2ϕ
v2

c4α +

(
− 3vϕ
2v∆

+
9v∆vϕ
2v2

)
s4α

]
(m2

H −m2
h)

− 3vϕ
v∆

s2α

(
1− v2∆

v2

)
(m2

H +m2
h)

}
, (B.86)

λHhhh =
s2αv

2

4v2∆(v
2 + 2v2∆)

(
s2α − 2v2∆

v2
c2α

)
m2

A

− s22αv
2

16v2∆v
2
ϕ

[(
1− 3v2∆

v2

)
s2α − 2v∆vϕ

v2
c2α

]
m2

H

− s2αv
2

16v2∆v
2
ϕ

[
(1 + c22α)

(
1− 3v2∆

v2

)
− 2

(
1− v2∆

v2

)
c2α +

v∆vϕ
v2

s4α

]
m2

h, (B.87)

λhhhh =
v2

8v2∆(v
2 + 2v2∆)

(
v2ϕ
v2

s4α − v2∆
v2

s22α

)
m2

A

− s22αv
2

32v2∆v
2
ϕ

[
s2α

(
1− v2∆

v2

)
+

v2∆
v2

c2α − v∆vϕ
v2

s2α

]
m2

H

+
1

16

[
− 2

v2ϕ
c6α − 1

v3ϕv∆

(
v2

2
− v2∆

)
s32α − 2

v2∆
s6α

]
m2

h. (B.88)





Appendix C

Loop functions

Passarino Veltman functions [111,112] (A,B,C and D) are defined as following,

A(mi) =

∫ ¯dDk

iπ2

1

Ni

, (C.1)

[B0, B
µ, Bµν ](ij) =

∫
¯dDkiπ2 [1, k

µ, kµν ]

NiNj

, (C.2)

[C0, C
µ, Cµν ](ijk) =

∫
¯dDkiπ2 [1, k

µ, kµν ]

NiNjNk

, (C.3)

[D0, D
µ, Dµν ](ijk) =

∫
¯dDkiπ2 [1, k

µ, kµν ]

NiNjNkNl

, (C.4)

where D = 4− 2ϵ and ¯dDk = Γ(1− ϵ)(πµ2)ϵdDk and Γ(1− ϵ) is a gamma function. Factors of
donominators are

N1 = k2 −m2
1 + iε, (C.5)

N2 = (k + p1)
2 −m2

2 + iε, (C.6)

N3 = (k + p1 + p2)
2 −m2

3 + iε, (C.7)

N2 = (k + p1 + p2 + p3)
2 −m2

4 + iε, (C.8)

where pi is the momentum of the external particle i and mj is the mass of the propagetor i.
These vector/tensor functions are reducted to scalor functions as

Bµ(12) = pµ1B1(12), (C.9)

Bµν(12) = pµ1p
ν
1B21(12) + gµνB22(12), (C.10)

Cµ(123) = pµ1C11(123) + pµ2C12(123), (C.11)

Cµν(123) = pµ1p
ν
1C21(123) + pµ2p

ν
2C22(123) + (pµ1p

ν
2 + pµ2p

ν
1)C23(123) + gµνC24(123), (C.12)

Dµ(1234) = pµ1D11(1234) + pµ2D12(1234) + pµ3D13(1234), (C.13)

Dµν(1234) = pµ1p
ν
1D21(1234) + pµ2p

ν
2D22(1234) + pµ3p

ν
3D23(1234) + (pµ1p

ν
2 + pµ2p

ν
1)D24(1234)

+ (pµ1p
ν
3 + pµ3p

ν
1)D25(1234) + (pµ2p

ν
3 + pµ3p

ν
2)D26(1234) + gµνD27(1234). (C.14)
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Argiments of the scalar functions are following,

Bi(12) = Bi(p
2
1;m1,m2), (C.15)

Ci(123) = Ci(p
2
1, p

2
2, q

2;m1,m2,m3) (C.16)

Di(123) = Di(p
2
1, p

2
2, p

2
3, (p1 + p2 + p3)

2, (p1 + p2)
2, (p2 + p3)

2;m1,m2,m3,m4), (C.17)

where q = p1 + p2.

C.1 A function

A(m2) function is expressed by

A[m2] = m2(1− lnm2 +Div), (C.18)

where Div = 1
ϵ
− γE + ln π + lnµ2.

C.2 B function

C.2.1 B0 function

B0 function is expressed by

B0[p
2
1;m1,m2] = Div−

∫
dx lnH, (C.19)

where

H ≡ −x(1− x)p21 + xm2
1 + (1− x)m2

2. (C.20)

We show various approximate formulae of the B0 function in various cases as follows.

• Large mass limit 1 (m2
1 = m2

2 = m2 ≫ p2)

B0[0;m,m] = Div− lnm2. (C.21)

• Large mass limit 2 (m2
1 ̸= m2

2 ≫ p2)

B0[0;m1,m2] = (Div + 1)− 1

m2
1 −m2

2

(
m2

1 lnm
2
1 −m2

2 lnm
2
2

)
(C.22)

• Small mass limit 1 (p21 ≫ m2
1,m

2
2)

B0[p
2
1; 0, 0] = Div + 2− ln p21. (C.23)

• Small mass limit 2 (p21,m
2
2 ≫ m2

1 or p21,m
2
1 ≫ m2

2)

B0[p
2
1;m, 0] = B0[p

2
1; 0,m] (C.24)

= Div−
{
−2 + 2iπ + ln p21 −

(
−1 +

m2

p21
ln

(
−1 +

m2

p21

)
+

m2

p21
ln

(
m2

p21

))}
(C.25)

• Small mass limit 3 (m2
1 ≫ m2

2, p
2
1 or m2

2 ≫ m2
1, p

2
1)

B0[0;m, 0] = B0[0; 0,m] = Div− lnm2 + 1. (C.26)
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C.2.2 B1 function

B1(12) function is expressed by

B1[p
2;m1,m2] = −1

2

(
1

ϵ
+ lnµ2

)
+

∫
dx(1− x) lnH. (C.27)

Reduction form is

B1[p
2
1;m1,m2] =

1

2p21

(
A[m1]− A[m2]− f1[p1,m1,m2]B0[p

2
1;m1,m2]

)
. (C.28)

We show various approximate formulae of the B1 function in various cases as follows.

• Large mass limit 1 (m2
1 = m2

2 = m2 ≫ p21)

B1[0;m,m] = −1

2
Div +

1

2
lnm2. (C.29)

• Large mass limit 2 (m2
1 ̸= m2

2 ≫ p21)

B1[0;m1,m2] = −1

2
Div−

(
1

2
+

m2
1 +m2

2

4(m2
1 −m2

2)
− 1

2
lnm2

2 −
m4

1

2(m2
1 −m2

2)
2
ln

m2
1

m2
2

)
. (C.30)

• Large mass limit 2 (m2
1 ≫ m2

2, p
2
1)

B1[0;m, 0] = −1

2
Div +

1

2
lnm2 − 3

4
. (C.31)

• Large mass limit 2 (m2
2,≫ m2

1, p
2
1)

B1[0; 0,m] = −1

2
Div +

1

2
lnm2 − 1

4
. (C.32)

• Small mass limit 1 (p21 ≫ m2
1,m

2
2)

B1[p
2
1; 0, 0] = −1

2
Div +

1

2

(
−2 + ln(−p21)

)
. (C.33)

• Small mass limit 2 (p21,m
2
1 ≫ m2 )

B1[p
2
1;m, 0] = −1

2
Div +

(
−1− m2

2p21
+

m4

2p41
lnm2 +

p41 −m4

2p41
ln(p21 −m2)

)
+ iπ

(
1− m4

2p41

)
.

(C.34)

• Small mass limit 2 (p21,m
2
2 ≫ m2

1)

B1[p
2
1; 0,m] = −1

2
Div +

(−2p21 +m2)(p21 −m2 lnm2) + (p21 −m2)2 ln(−p21 +m2)

2p41
.

(C.35)
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C.2.3 B21 and B22 function

B21 and B22 functions are expressed by,

B21[p
2;m1,m2] =

1

3

(
1

ϵ
+ lnµ2

)
−
∫

dx(1− x)2 lnH, (C.36)

B22[p
2;m1,m2] =

1

4

(
1

ϵ
+ lnµ2 + 1

)(
m2

1 +m2
2 −

1

3
p2
)
− 1

2

∫
dxH lnH. (C.37)

We show various approximate formulae of the B21 and B22 functions in various cases as
follows.

• Large mass limit 1 (m2
1 = m2

2 ≡ m2 ≫ p21)

B21[0;m,m] =
1

3
Div− 1

3
lnm2. (C.38)

• Small mass limit 1 (p21 ≫ m2
1,m

2
2)

B21[p
2
1; 0, 0] =

1

3
Div +

1

18

(
13− 6 ln(−p21)

)
. (C.39)

• Large mass limit 1 (m2
1 = m2

2 ≡ m2 ≫ p21)

B22[0;m,m] = −p21
4
Div +

1

2
m2(1 + Div− lnm2). (C.40)

• Small mass limit 1 (p21 ≫ m2
1,m

2
2)

B22[p
2
1; 0, 0] =

p22
4

(
−p21

3
Div +

p21
9
(−8 + 3 ln p21 + 3iπ)

)
. (C.41)

C.3 C function

C.3.1 C0 function

C0(123) function is expressed by,

C0(123) = −
∫ 1

0

∫ 1−x

0

dxdy
1

G
, (C.42)

where

G ≡ xm2
1 + ym2

2 + (1− x− y)m2
3 − (1− x)2p21 − (1− x− y)2p22 − (1− x− y)(p1 + p2)

2.
(C.43)

We show various approximate formulae of the C0 function in various cases as follows.

• Large mass limit (m2
1 = m2

2 = m2
3 = m2 ≫ p21, p

2
2, q

2)

C0[0, 0, 0;m,m,m] = − 1

2m2
. (C.44)

• Large mass limit (m2
1 = m2

3,m
2
2 ≫ p21, p

2
2, q

2)

C0[0, 0, 0;m1,m2,m1] = − 1

m2
1 −m2

2

+
m2

2

(m2
1 −m2

2)
2
ln

m2
1

m2
2

. (C.45)
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C.3.2 C11 function

C11 and C12 functions are expressed by,

C11(123) =

∫ 1

0

∫ 1−x

0

dxdy
1− x

G
, (C.46)

C12(123) =

∫ 1

0

∫ 1−x

0

dxdy
1− x− y

G
. (C.47)

We show various approximate formulae of the C11 and C12 function in various cases as
follows.

• Large mass limit (m2
1 = m2

2 = m3
3 = m2 ≫ p21, p

2
2, q

2)

C11[0, 0, 0;m,m,m] =
1

3m2
. (C.48)

• Large mass limit (m2
1 = m3

3,m
2
2 ≫ p21, p

2
2, q

2)

C11[0, 0, 0;m1,m2,m1] =
1

2(m2
1 −m2

2)
+

m2
1 +m2

2

4(m2
1 −m2

2)
2
− m2

2(2m
2
1 −m2

2)

2(m2
1 −m2

2)
3

ln
m2

1

m2
2

. (C.49)

• Large mass limit (m2
1 = m2

2 = m3
3 = m2 ≫ p21, p

2
2, q

2)

C12[0, 0, 0;m,m,m] =
1

6m2
. (C.50)

• Large mass limit (m2
1 = m3

3,m
2
2 ≫ p21, p

2
2, q

2)

C12[0, 0, 0;m1,m2,m1] =
1

2(m2
1 −m2

2)
− m2

1 +m2
2

4(m2
1 −m2

2)
2
+

m4
2

2(m2
1 −m2

2)
3
ln

m2
1

m2
2

. (C.51)

C.3.3 C21 function

C21(123), C22(123), C23(123) and C24(123) functions are expressed by,

C21(123) = −
∫ 1

0

∫ 1−x

0

dxdy
(1− x)2

G
, (C.52)

C22(123) = −
∫ 1

0

∫ 1−x

0

dxdy
(1− x− y)2

G
, (C.53)

C23(123) = −
∫ 1

0

∫ 1−x

0

dxdy
(1− x)(1− x− y)

G
, (C.54)

C24(123) =
1

4
Div− 1

2

∫ 1

0

∫ 1−x

0

dxdy lnG. (C.55)

We show various approximate formulae of the C2i functions in various cases as follows.
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• Large mass limit (m2
1 = m2

2 = m3
3 = m2 ≫ p21, p

2
2, q

2)

C21[0, 0, 0;m,m,m] = − 1

4m2
. (C.56)

• Large mass limit (m2
1 = m3

3,m
2
2 ≫ p21, p

2
2, q

2)

C21[0, 0, 0;m1,m2,m1] = (C.57)

− m2
1

2(m2
1 −m2

2)
2
− m6

1 −m6
2

9(m2
1 −m2

2)
4
+

m2
1m

2
2

(m2
1 −m2

2)
3
ln

m2
1

m2
2

+
m6

2

3(m2
1 −m2

2)
4
ln

m2
1

m2
2

. (C.58)

• Large mass limit (m2
1 = m2

2 = m3
3 = m2 ≫ p21, p

2
2, q

2)

C22[0, 0, 0;m,m,m] = − 1

12m2
. (C.59)

• Large mass limit (m2
1 = m3

3,m
2
2 ≫ p21, p

2
2, q

2)

C22[0, 0, 0;m1,m2,m1] =
1

18(m2
1 −m2

2)
4

(
−2m6

1 + 9m4
1m

2
2 − 18m2

1m
4
2 + 11m6

2 + 6m6
2 ln

m2
1

m2
2

)
.

(C.60)

• Large mass limit (m2
1 = m2

2 = m3
3 = m2 ≫ p21, p

2
2, q

2)

C23[0, 0, 0;m,m,m] = − 1

8m2
. (C.61)

• Large mass limit (m2
1 = m3

3,m
2
2 ≫ p21, p

2
2, q

2)

C23[0, 0, 0;m1,m2,m1] =
1

36(m2
1 −m2

2)
4

(
− 7m6

1 + 36m4
1m

2
2 − 45m2

1m
4
2 + 16m6

2

+ 12m6
2 ln

m2
1

m2
2

− 18m2
1m

4
2 ln

m2
1

m2
2

)
. (C.62)

• Large mass limit (m2
1 = m2

2 = m3
3 = m2 ≫ p21, p

2
2, q

2)

C24[0, 0, 0;m,m,m] =
1

4
Div− 1

4
lnm2. (C.63)

• Large mass limit (m2
1 = m3

3,m
2
2 ≫ p21, p

2
2, q

2)

C24[0, 0, 0;m1,m2,m1] =
1

4
Div +

1

4
− (m2

1 +m2
2)

8(m2
1 −m2

2)
− 1

4
lnm2 +

m4
2

4(m2
1 −m2

2)
2
ln

m2
1

m2
2

.

(C.64)



Appendix D

1PI diagrams

In this section, we give one-loop fermion, vector boson and scalar boson contributions to the
one, two and three point functions by using Passarino-Veltman functions [111] whose notation
is same as those defined in Ref. [112]. We calculate 1PI diagrams in the ’t Hooft-Feynman gauge
so that the masses of Numbu-Goldstone bosonsmG± andmG0 and those of Fadeev-Popov ghosts
mc± , mc0 and mcγ are the same as corresponding masses of the gauge bosons. We write 1PI
diagram contributions separately for fermion loop contributions and boson loop contributions
which are expressed by index F and B, respectively.

D.1 1PI diagrams in the THDMs

D.1.1 One-point functions

The 1PI tadpole diagrams for h and H are calculated by

T 1PI
h,F = −

∑
f

4m2
f

v
N f

c ξ
f
hA(f), (D.1)

T 1PI
H,F = −

∑
f

4m2
f

v
N f

c ξ
f
HA(f), (D.2)

T 1PI
h,B = sβ−α

[
3gmWA(W ) +

3

2
gZmZA(Z)− 2gm3

W − gZm
3
Z

]
− λH+H−hA(H

±)− λAAhA(A)− λHHhA(H)− 3λhhhA(h)

− λG+G−hA(G
±)− λG0G0hA(G

0), (D.3)

T 1PI
H,B = cβ−α

[
3gmWA(W ) +

3

2
gZmZA(Z)− 2gm3

W − gZm
3
Z

]
− λH+H−HA(H

±)− λAAHA(A)− 3λHHHA(H)− λHhhA(h)

− λG+G−HA(G
±)− λG0G0HA(G

0). (D.4)

123
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D.1.2 Two-point functions

The 1PI diagram contributions to the scalar boson two point functions are calculated as

16π2Π1PI
hh (p2)F = −

∑
f

4m2
fN

f
c

v2
(ξfh)

2

[
A(f) +

(
2m2

f −
p2

2

)
B0(p

2; f, f)

]
, (D.5)

16π2Π1PI
HH(p

2)F = −
∑
f

4m2
fN

f
c

v2
(ξfH)

2

[
A(f) +

(
2m2

f −
p2

2

)
B0(p

2; f, f)

]
, (D.6)

16π2Π1PI
Hh(p

2)F = −
∑
f

4m2
fN

f
c

v2
ξfhξ

f
H

[
A(f) +

(
2m2

f −
p2

2

)
B0(p

2; f, f)

]
, (D.7)

16π2Π1PI
AA(p

2)F = −
∑
f

4m2
fN

f
c

v2
ξ2f

[
A(f)− p2

2
B0(p

2; f, f)

]
, (D.8)

16π2Π1PI
AG(p

2)F = −
∑
f

4m2
fN

f
c

v2
ξf

[
A(f)− p2

2
B0(p

2; f, f)

]
, (D.9)

16π2Π1PI
hh (p2)B = g2 sin2(β − α)(3m2

W − p2)B0(p
2;W,W ) +

g2

2

[
4− sin2(β − α)

]
A(W )

+
g2Z
2

sin2(β − α)(3m2
Z − p2)B0(p

2;Z,Z) +
g2Z
4

[
4− sin2(β − α)

]
A(Z)

− g2

2
cos2(β − α)

[
2A(W )− A(H±) + (2m2

H± −m2
W + 2p2)B0(p

2;W,H±)
]

− g2Z
4

cos2(β − α)
[
2A(Z)− A(A) + (2m2

A −m2
Z + 2p2)B0(p

2;Z,A)
]

−
[
sin2(β − α) + 1/2

]
(2g2m2

W + g2Zm
2
Z)

− 2λH+H−hhA(H
±)− 2λAAhhA(A)− 2λHHhhA(H)− 12λhhhhA(h)

− 2λG+G−hhA(G
±)− 2λG0G0hhA(G

0)

+ λ2
H+H−hB0(p

2;H±, H±) + λ2
G+G−hB0(p

2;G±, G±) + 2λ2
H+G−hB0(p

2;H±, G±)

+ 2λ2
AAhB0(p

2;A,A) + 2λ2
G0G0hB0(p

2;G0, G0) + λ2
AG0hB0(p

2;A,G0)

+ 2λ2
HHhB0(p

2;H,H) + 18λ2
hhhB0(p

2;h, h) + 4λ2
HhhB0(p

2;h,H), (D.10)

16π2Π1PI
HH(p

2)B = g2 cos2(β − α)(3m2
W − p2)B0(p

2;W,W ) +
g2

2
[4− cos2(β − α)]A(W )

+
g2Z
2

cos2(β − α)(3m2
Z − p2)B0(p

2;Z,Z) +
g2Z
4

[
4− cos2(β − α)

]
A(Z)

− g2

2
sin2(β − α)

[
2A(W )− A(H±) + (2m2

H± −m2
W + 2p2)B0(p

2;W,H±)
]

− g2Z
4

sin2(β − α)
[
2A(Z)− A(A) + (2m2

A −m2
Z + 2p2)B0(p

2;Z,A)
]

−
[
cos2(β − α) + 1/2

]
(2g2m2

W + g2Zm
2
Z)

− 2λH+H−HHA(H
±)− 2λAAHHA(A)− 12λHHHHA(H)− 2λHHhhA(h)

− 2λG+G−HHA(G
±)− 2λG0G0HHA(G

0)

+ λ2
H+H−HB0(p

2;H±, H±) + λ2
G+G−HB0(p

2;G±, G±) + 2λ2
H+G−HB0(p

2;H±, G±)

+ 2λ2
AAHB0(p

2;A,A) + 2λ2
G0G0HB0(p

2;G0, G0) + λ2
AG0HB0(p

2;A,G0)

+ 18λ2
HHHB0(p

2;H,H) + 2λ2
HhhB0(p

2;h, h) + 4λ2
HHhB0(p

2;h,H), (D.11)
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16π2Π1PI
Hh(p

2)B = sβ−αcβ−α

×
{
g2(3m2

W − p2)B0(p
2;W,W )− g2

2
A(W )

+
g2Z
2
(3m2

Z − p2)B0(p
2;Z,Z)− g2Z

4
A(Z)

+
g2

2
[2A(W )− A(H±) + (2m2

H± −m2
W + 2p2)B0(p

2;W,H±)]

+
g2Z
4
[2A(Z)− A(A) + (2m2

A −m2
Z + 2p2)B0(p

2;Z,A)]− (2g2m2
W + g2Zm

2
Z)
}

− λH+H−HhA(H
±)− λAAHhA(A)− 3λHHHhA(H)− 3λHhhhA(h)

− λG+G−HhA(G
±)− λG0G0HhA(G

0)

+ λH+H−hλH+H−HB0(p
2;H±, H±) + λG+G−hλG+G−HB0(p

2;G±, G±)

+ 2λH+G−hλH+G−HB0(p
2;H±, G±)

+ 2λAAhλAAHB0(p
2;A,A) + 2λhG0G0λG0G0HB0(p

2;G0, G0)

+ λAG0hλAG0HB0(p
2;A,G0) + 6λHHhλHHHB0(p

2;H,H)

+ 6λhhhλHhhB0(p
2;h, h) + 4λHhhλHHhB0(p

2;H, h), (D.12)

16π2Π1PI
AA(p

2)B = 2g2A(W ) + g2ZA(Z)−
1

2
(2g2m2

W + g2Zm
2
Z)

− g2

2

[
2A(W )− A(H±) + (2m2

H± −m2
W + 2p2)B0(p

2;W,H±)
]

− g2Z
4

cos2(β − α)
[
2A(Z)− A(h) + (2m2

h −m2
Z + 2p2)B0(p

2;Z, h)
]

− g2Z
4

sin2(β − α)
[
2A(Z)− A(H) + (2m2

H −m2
Z + 2p2)B0(p

2;Z,H)
]
,

− 2λH+H−AAA(H
±)− 12λAAAAA(A)− 2λAAHHA(H)− 2λAAhhA(h)

− 2λG+G−AAA(G
±)− 2λAAG0G0A(G0)

+ 2|λH+G−A|2B0(p
2;H±, G±) + 4λ2

AAhB0(p
2;A, h)

+ 4λ2
AAHB0(p

2;A,H) + λ2
AG0hB0(p

2;h,G0) + λ2
AG0HB0(p

2;H,G0), (D.13)

16π2Π1PI
AG(p

2)B = sβ−αcβ−α

×
{g2Z

4

[
2A(Z)− A(H) + (2m2

H −m2
Z + 2p2)B0(p

2;Z,H)
]

− g2Z
4
[2A(Z)− A(h) + (2m2

h −m2
Z + 2p2)B0(p

2;Z, h)]
}

− λH+H−AG0A(H±)− 3λAAAG0A(A)− λAG0HHA(H)− λAG0hhA(h)

− λG+G−AG0A(G±)− 3λAG0G0G0A(G0)

+ 2λAAhλAG0hB0(p
2;A, h) + 2λAAHλAG0HB0(p

2;A,H)

+ 2λAG0hλG0G0hB0(p
2;G0, h) + 2λAG0HλG0G0HB0(p

2;G0, H). (D.14)
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The 1PI diagram contributions to the gauge boson two point functions are calculated as

16π2Π1PI
WW (p2)F =

∑
f,f ′

g2N f
c

(
2p2B3 −B4

)
(p2; f, f ′), (D.15)

16π2Π1PI
γγ (p2)F =

∑
f

8e2Q2
fN

f
c p

2B3(p
2; f, f), (D.16)

16π2Π1PI
Zγ (p

2)F =
∑
f

egZN
f
c

[
2p2(2IfQf − 4s2WQ2

f )B3

]
(p2; f, f), (D.17)

16π2Π1PI
ZZ (p

2)F =
∑
f

g2ZN
f
c

[
2p2(4s4WQ2

f − 4s2WQfIf + 2I2f )B3 − 2I2ff
2B0

]
(p2; f, f), (D.18)

16π2Π1PI
WW (p2)B = g2

{
1

4
B5(p

2;A,H±) +
1

4
sin2(β − α)B5(p

2;H,H±)

+
1

4
cos2(β − α)B5(p

2;h,H±)

+ sin2(β − α)

(
m2

WB0 +
1

4
B5

)
(p2;h,W )

+ cos2(β − α)

(
m2

WB0 +
1

4
B5

)
(p2;H,W )

+

[(
1

4
+ 2c2W

)
B5 + (m2

W − 4s2Wm2
W +m2

Z − 8p2c2W )B0

]
(p2;Z,W )

+ 2s2W

[
B5 + (2m2

W − 4p2)B0

]
(p2; 0,W )− 2

3
p2

}
, (D.19)

16π2Π1PI
γγ (p2)B = e2B5(p

2;H±, H±)− e2p2
[
12B3 + 5B0(p

2;W,W ) +
2

3

]
, (D.20)

16π2Π1PI
Zγ (p

2)B =
egZ
2

B5(p
2;H±, H±)− egZp

2

(
10B3 +

11

2
B0 +

2

3

)
(p2;W,W )

− sW
cW

Π1PI
γγ (p2)B, (D.21)

16π2Π1PI
ZZ (p

2)B = g2Z

{
1

4
B5(p

2;H±, H±) +
1

4
sin2(β − α)B5(p

2;H,A)

+
1

4
cos2(β − α)B5(p

2;h,A)]

+ sin2(β − α)

(
m2

ZB0 +
1

4
B5

)
(p2;h, Z)

+ cos2(β − α)

(
m2

ZB0 +
1

4
B5

)
(p2;H,Z)

+
[
(2m2

W − 23

4
p2)B0 − 9p2B3

]
(p2;W,W )− 2

3
p2

}

− 2sW
cW

Π1PI
Zγ (p

2)B − s2W
c2W

Π1PI
γγ (p2)B, (D.22)
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where the fermion-loop contributions are the same as those in the SM.

The fermion two point functions can be decomposed into the following three parts

16π2Π1PI
ff (p2) = p/Π1PI

ff,V (p
2)− p/γ5Π

1PI
ff,A(p

2) +mfΠ
1PI
ff,S(p

2). (D.23)

Each part is caluclated as

16π2Π1PI
ff,V (p

2) = −e2Q2
f (2B1 + 1)(p2; f, γ)− g2Z(v

2
f + a2f )(2B1 + 1)(p2; f, Z)

− g2

4
(2B1 + 1)(p2; f ′,W )

−
m2

f

v2

[
(ξfh)

2B1(p
2; f, h) + (ξfH)

2B1(p
2; f,H) + ξ2fB1(p

2; f, A) +B1(p
2; f,G0)

]
−

m2
f +m2

f ′

v2
B1(p

2; f ′, G±)−
m2

fξ
2
f +m2

f ′ξ2f ′

v2
B1(p

2; f ′, H±),

16π2Π1PI
ff,A(p

2) = −2g2Zvfaf (2B1 + 1)(p2; f, Z)− g2

4
(2B1 + 1)(p2; f ′,W )

+
m2

f −m2
f ′

v2
B1(p

2; f ′, G±) +
m2

fξ
2
f −m2

f ′ξ2f ′

v2
B1(p

2; f ′, H±),

Π1PI
ff,S(p

2) = −2e2Q2
f (2B0 − 1)(p2; f, γ)− 2g2Z(v

2
f − a2f )(2B0 − 1)(p2; f, Z)

+
m2

f

v2

[
(ξfh)

2B0(p
2; f, h) + (ξfH)

2B0(p
2; f,H)− ξ2fB0(p

2; f, A)−B0(p
2; f,G0)

]
− 2

m2
f ′

v2
[
B0(p

2; f ′, G±) + ξfξf ′B0(p
2; f ′, H±)

]
, (D.24)

where vf and af are the coefficient of the vector coupling and axial vector coupling of Zff̄
vertex given as

vf =
If
2

− s2WQf , af =
If
2
. (D.25)

D.1.3 Three-point functions

In this subsection, we give analytic expressions for the 1PI diagram contributions to the three
point functions. The assignment for external momentum is taken in such a way that p1 and
(p2) is the incoming momnetum of h (h), V (V ) and f (f̄) for the hhh, hV V and hff̄ vertices,
respectively, and q = p1 + p2 is the outgoing momentum of h for all the above vertices.

First, the 1PI diagrams for the hhh coupling is calculated as

16π2Γ1PI
hhh(p

2
1, p

2
2, q

2)F = −
∑
f

8m4
fN

f
c

v3
(ξfh)

3
[
B0(p

2
1, f, f) +B0(p

2
2, f, f) +B0(q

2, f, f)

+ (4m2
f − q2 + p1 · p2)C0(f, f, f)

]
, (D.26)
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16π2Γ1PI
hhh(p

2
1, p

2
2, q

2)B =
g3

2
m3

W s3β−α

[
16C0(W,W,W )− C0(c

±, c±, c±)
]

− g3

2
mW sβ−α

[
s2β−αC

SV V
hhh (G±,W,W ) + c2β−αC

SV V
hhh (H±,W,W )

]
+

g3Z
4
m3

Zs
3
β−α

[
16C0(Z,Z, Z)− C0(cZ , cZ , cZ)

]
− g3ZmZ

4
sβ−α

[
s2β−αC

SV V
hhh (G0, Z, Z)c2β−αC

SV V
hhh (A,Z, Z)

]
+

g2

2
λG+G−hs

2
β−αC

V SS
hhh (W,G±, G±) +

g2

2
λH+H−hc

2
β−αC

V SS
hhh (W,H±, H±)

+
g2

2
λH+G−hsβ−αcβ−α[C

V SS
hhh (W,G±, H±) + CV SS

hhh (W,H±, G±)]

+
g2Z
2
λG0G0hs

2
β−αC

V SS
hhh (Z,G0, G0) +

g2Z
2
λAAhc

2
β−αC

V SS
hhh (Z,A,A)

+
g2Z
4
λAG0hsβ−αcβ−α[C

V SS
hhh (Z,A,G0) + CV SS

hhh (Z,G0, A)]

+ 2g3mW sβ−α[B0(p
2
1,W,W ) +B0(p

2
2,W,W ) +B0(q

2,W,W )]− 3g3mW sβ−α

+ g3ZmZsβ−α[B0(p
2
1, Z, Z) +B0(p

2
2, Z, Z) +B0(q

2, Z, Z)]− 3

2
g3ZmZsβ−α

+ 2λH+H−hλH+H−hh[B0(p
2
1, H

±, H±) +B0(p
2
2, H

±, H±) +B0(q
2, H±, H±)]

+ 2λhG+G−λhhG+G− [B0(p
2
1, G

±, G±) +B0(p
2
2, G

±, G±) +B0(q
2, G±, G±)]

+ 4λH+G−hλH+G−hh[B0(p
2
1, H

±, G±) +B0(p
2
2, H

±, G±) +B0(q
2, H±, G±)]

+ 4λAAhλAAhh[B0(p
2
1, A,A) +B0(p

2
2, A,A) +B0(q

2, A,A)]

+ 4λG0G0hλG0G0hh[B0(p
2
1, G

0, G0) +B0(p
2
2, G

0, G0) +B0(q
2, G0, G0)]

+ 2λAG0hλAG0hh[B0(p
2
1, A,G

0) +B0(p
2
2, A,G

0) +B0(q
2, A,G0)]

+ 4λHHhλHHhh[B0(p
2
1, H,H) +B0(p

2
2, H,H) +B0(q

2, H,H)]

+ 12λHhhλHhhh[B0(p
2
1, h,H) +B0(p

2
2, h,H) +B0(q

2, h,H)]

+ 72λhhhλhhhh[B0(p
2
1, h, h) +B0(p

2
2, h, h) +B0(q

2, h, h)]

− 2λ3
H+H−hC0(H

±, H±, H±)− 2λ3
G+G−hC0(G

±, G±, G±)− 8λ3
G0G0hC0(G

0, G0, G0)

− 8λ3
AAhC0(A,A,A)− 8λ3

HHhC0(H,H,H)− 216λ3
hhhC0(h, h, h)

− 2λH+H−hλ
2
H+G−h[C0(G

±, H±, H±) + C0(H
±, G±, H±) + C0(H

±, H±, G±)]

− 2λG+G−hλ
2
H+G−h[C0(H

±, G±, G±) + C0(G
±, H±,W ) + C0(G

±, G±, H±)]

− 2λAAhλ
2
AG0h[C0(G

0, A,A) + C0(A,G
0, A) + C0(A,A,G

0)]

− 2λG0G0hλ
2
AG0h[C0(A,G

0, G0) + C0(G
0, A,G0) + C0(G

0, G0, A)]

− 8λHHhλ
2
Hhh[C0(h,H,H) + C0(H,H, h) + C0(H, h,H)]

− 24λhhhλ
2
Hhh[C0(h, h,H) + C0(H, h, h) + C0(h,H, h)], (D.27)

where

CSV V
hhh (X, Y, Z) ≡

[
p21C21 + p22C22 + 2p1p2C23 + 4C24 −

1

2
− (q + p1)(p1C11 + p2C12) + qp1C0

]
(X, Y, Z)

+
[
p21C21 + p22C22 + 2p1p2C23 + 4C24 −

1

2
+ (3p1 − p2)(p1C11 + p2C12) + 2p1(p1 − p2)C0

]
(Z,X, Y )

+
[
p21C21 + p22C22 + 2p1p2C23 + 4C24 −

1

2
+ (3p1 + 4p2)(p1C11 + p2C12) + 2q(q + p2)C0

]
(Y, Z,X),

(D.28)
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CV SS
hhh (X, Y, Z) ≡[
p21C21 + p22C22 + 2p1p2C23 + 4C24 −

1

2
+ (4p1 + 2p2)(p1C11 + p2C12) + 4p1 · qC0

]
(X,Y, Z)

+
[
p21C21 + p22C22 + 2p1p2C23 + 4C24 −

1

2
+ 2p2(p1C11 + p2C12)− p1(p1 + 2p2)C0

]
(Z,X, Y )

+
[
p21C21 + p22C22 + 2p1p2C23 + 4C24 −

1

2
− 2p2(p1C11 + p2C12)− q(p1 − p2)C0

]
(Y, Z,X).

(D.29)

The hff̄ vertex can be decomposed into the following 8 form factors

Γ1PI
hff (p

2
1, p

2
2, q

2) =

F S
hff + γ5F

P
hff + p1/ F V 1

hff + p2/ F V 2
hff + p1/ γ5F

A1
hff + p2/ γ5F

A2
hff + p1/ p2/ F T

hff + p1/ p2/ γ5F
PT
hff . (D.30)

Each form factor can be calculated by

16π2
(mf

v

)−1

F S
hff = −2g4Zv

2(v2f − a2f )sβ−αC0(Z, f, Z)

− 4ξfh

{
e2Q2

f [m
2
fC0 + p21(C11 + C21) + p22(C12 + C22) + p1 · p2(2C23 − C0) + 4C24 − 1](f, γ, f)

+ g2Z(v
2
f − a2f )[m

2
fC0 + p21(C11 + C21) + p22(C12 + C22) + p1 · p2(2C23 − C0) + 4C24 − 1](f, Z, f)

}
+ ξfh

m2
f

v2

[
(ξfh)

2CFSF
hff (f, h, f) + (ξfH)

2CFSF
hff (f,H, f)− CFSF

hff (f,G0, f)− ξ2fC
FSF
hff (f, A, f)

]
− ξf

′

h

2m2
f ′

v2

[
CFSF

hff (f ′, G±, f ′) + ξfξf ′CFSF
hff (f ′, H±, f ′)

]
−

m2
f

v

{
6(ξfh)

2λhhhC0(h, f, h) + 2(ξfH)
2λHHhC0(H, f,H) + 2ξfhξ

f
HλHhh[C0(h, f,H) + C0(H, f, h)]

− 2λG0G0hC0(G
0, f, G0)− 2ξ2fλAAhC0(A, f,A)− ξfλAG0h[C0(A, f,G

0) + C0(G
0, f, A)]

}
+

2m2
f ′

v

{
λG+G−hC0(G

±, f ′, G±) + ξfξf ′λH+H−hC0(H
±, f ′, H±)

+
1

2
λH+G−h(ξf + ξf ′)[C0(G

±, f ′, H±) + C0(H
±, f ′, G±)]

}
− g2

4
sβ−α

[
CV FS

hff (W, f ′, G±) + CSFV
hff (G±, f ′,W )

]
− g2

4
ξfcβ−α

[
CV FS

hff (W, f ′, H±) + CSFV
hff (H±, f ′,W )

]
− g2Z

8
sβ−α

[
CV FS

hff (Z, f,G0) + CSFV
hff (G0, f, Z)

]
− g2Z

8
ξfcβ−α

[
CV FS

hff (Z, f, A) + CSFV
hff (A, f, Z)

]
, (D.31)
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16π2
(mf

v

)−1

F P
hff = λH+G−h

m2
f ′

v
(ξf ′ − ξf )[C0(G

±, f ′, H±)− C0(H
±, f ′, G±)]

− g2

4
sβ−α

[
CV FS

hff (W, f ′, G±)− CSFV
hff (G±, f ′,W )

]
− g2

4
ξfcβ−α

[
CV FS

hff (W, f ′, H±)− CSFV
hff (H±, f ′,W )

]
− g2ZvfIfsβ−α

[
CV FS

hff (Z, f,G0)− CSFV
hff (G0, f, Z)

]
− g2ZvfIfξfcβ−α

[
CV FS

hff (Z, f, A)− CSFV
hff (A, f, Z)

]
, (D.32)

16π2F V 1
hff =

2m2
f

v
ξfh

[
g2Z(v

2
f + a2f )(C0 + 2C11)(f, Z, f) + e2Q2

f (C0 + 2C11)(f, γ, f)
]

+ g2
m2

f ′

2v
ξf

′

h (C0 + 2C11)(f
′,W, f ′)

− sβ−αg
4
Zv(v

2
f + a2f )(C0 + C11)(Z, f, Z)− sβ−α

g4

4
v(C0 + C11)(W, f ′,W )

+ ξfh
m4

f

v3

[
(ξfh)

2(C0 + 2C11)(f, h, f) + (ξfH)
2(C0 + 2C11)(f,H, f)

+ (C0 + 2C11)(f,G
0, f) + ξ2f (C0 + 2C11)(f, A, f)

]
+

m2
f ′

v3
ξf

′

h

[
(m2

f +m2
f ′)(C0 + 2C11)(f

′, G±, f ′) + (m2
fξ

2
f +m2

f ′ξ2f ′)(C0 + 2C11)(f
′, H±, f ′)

]
−

m2
f

v2

{
6(ξfh)

2λhhh(C0 + C11)(h, f, h) + 2(ξfH)
2λHHh(C0 + C11)(H, f,H)

+ 2ξfhξ
f
HλHhh[(C0 + C11)(H, f, h) + (C0 + C11)(h, f,H)]

+ 2λG0G0h(C0 + C11)(G
0, f, G0) + 2ξ2fλAAh(C0 + C11)(A, f,A)

+ ξfλAG0h[(C0 + C11)(A, f,G
0) + (C0 + C11)(G

0, f, A)]
}

− λG+G−h

v2
(m2

f +m2
f ′)(C0 + C11)(G

±, f ′, G±)− λH+H−h

v2
(m2

fξ
2
f +m2

f ′ξ2f ′)(C0 + C11)(H
±, f ′, H±)

− λH+G−h

v2
(m2

fξf +m2
f ′ξf ′)[(C0 + C11)(G

±, f ′, H±) + (C0 + C11)(H
±, f ′, G±)]

− g2
m2

f ′

4v

[
sβ−α(2C0 + C11)(W, f ′, G±) + sβ−α(−C0 + C11)(G

±, f ′,W )

− ξf ′cβ−α(2C0 + C11)(W, f ′, H±)− ξf ′cβ−α(−C0 + C11)(H
±, f ′,W )

]
− g2Z

m2
f

8v

[
sβ−α(2C0 + C11)(Z, f,G

0) + sβ−α(−C0 + C11)(G
0, f, Z)

− ξfcβ−α(2C0 + C11)(Z, f, A)− ξfcβ−α(−C0 + C11)(A, f, Z)
]
, (D.33)
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16π2F V 2
hff =

2m2
f

v
ξfh

[
g2Z(v

2
f + a2f )(C0 + 2C12)(f, Z, f) + e2Q2

f (C0 + 2C12)(f, γ, f)
]

+ g2
m2

f ′

2v
ξf

′

h (C0 + 2C12)(f
′,W, f ′)

− sβ−αg
4
Zv(v

2
f + a2f )C12(Z, f, Z)− sβ−α

g4

4
vC12(W, f ′,W )

+ ξfh
m4

f

v3

[
(ξfh)

2(C0 + 2C12)(f, h, f) + (ξfH)
2(C0 + 2C12)(f,H, f)

+ (C0 + 2C12)(f,G
0, f) + ξ2f (C0 + 2C12)(f, A, f)

]
+ ξf

′

h

m2
f ′

v3

[
(m2

f +m2
f ′)(C0 + 2C12)(f

′, G±, f ′) + (m2
fξ

2
f +m2

f ′ξ2f ′)(C0 + 2C12)(f
′, H±, f ′)

]
−

m2
f

v2

{
6(ξfh)

2λhhhC12(h, f, h) + 2(ξfH)
2λHHhC12(H, f,H) + 2ξfhξ

f
HλHhh[C12(H, f, h) + C12(h, f,H)]

+ 2λG0G0hC12(G
0, f, G0) + 2ξ2fλAAhC12(A, f,A) + 2ξfλAG0h[C12(G

0, f, A) + C12(A, f,G
0)]
}

− λG+G−h

v2
(m2

f +m2
f ′)C12(G

±, f ′, G±)− λH+H−h

v2
(m2

fξ
2
f +m2

f ′ξ2f ′)C12(H
±, f ′, H±)

− λH+G−h

v2
(m2

fξf +m2
f ′ξf ′)[C12(G

±, f ′, H±) + C12(H
±, f ′, G±)]

− g2

4

m2
f ′

v

[
sβ−α(2C0 + C12)(W, f ′, G±) + sβ−α(−C0 + C12)(G

±, f ′,W )

− ξf ′cβ−α(2C0 + C12)(W, f ′, H±)− ξf ′cβ−α(−C0 + C12)(H
±, f ′,W )

]
− g2Z

8

m2
f

v

[
sβ−α(2C0 + C12)(Z, f,G

0) + sβ−α(C12 − C0)(G
0, f, Z)

+ ξfcβ−α(2C0 + C12)(Z, f, A) + ξfcβ−α(C12 − C0)(A, f, Z)
]
, (D.34)

16π2FA1
hff = −4g2Zvfaf

m2
f

v
ξfh(C0 + 2C11)(f, Z, f)− g2

m2
f ′

2v
ξf

′

h (C0 + 2C11)(f
′,W, f ′)

+ 2sβ−αg
4
Zvfafv(C0 + C11)(Z, f, Z) + sβ−α

g4

4
v(C0 + C11)(W, f ′,W )

+
m2

f ′

v3
ξf

′

h

[
(m2

f −m2
f ′)(C0 + 2C11)(f

′, G±, f ′) + (m2
fξ

2
f −m2

f ′ξ2f ′)(C0 + 2C11)(f
′, H±, f ′)

]
− λG+G−h

v2
(m2

f −m2
f ′)(C0 + C11)(G

±, f ′, G±)− λH+H−h

v2
(m2

fξ
2
f −m2

f ′ξ2f ′)(C0 + C11)(H
±, f ′, H±)

− λH+G−h

v2
(m2

fξf −m2
f ′ξf ′)[(C0 + C11)(G

±, f ′, H±) + (C0 + C11)(H
±, f ′, G±)]

+
g2

4

m2
f ′

v

[
sβ−α(2C0 + C11)(W, f ′, G±) + sβ−α(−C0 + C11)(G

±, f ′,W )

− ξf ′cβ−α(2C0 + C11)(W, f ′, H±)− ξf ′cβ−α(−C0 + C11)(H
±, f ′,W )

]
+ g2ZIfvf

m2
f

v

[
sβ−α(2C0 + C11)(Z, f,G

0) + sβ−α(−C0 + C11)(G
0, f, Z)

+ ξfcβ−α(2C0 + C11)(Z, f, A) + ξfcβ−α(−C0 + C11)(A, f, Z)
]
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16π2FA2
hff = −4ξfhg

2
Zvfaf

m2
f

v
(C0 + 2C12)(f, Z, f)− ξf

′

h g2
m2

f ′

2v
(C0 + 2C12)(f

′,W, f ′)

+ 2sβ−αg
4
ZvfafvC12(Z, f, Z) + sβ−α

g4

4
vC12(W, f ′,W )

+ ξf
′

h

m2
f ′

v3

[
(m2

f −m2
f ′)(C0 + 2C12)(f

′, G±, f ′) + (m2
fξ

2
f −m2

f ′ξ2f ′)(C0 + 2C12)(f
′, H±, f ′)

]
− λG+G−h

v2
(m2

f −m2
f ′)C12(G

±, f ′, G±)− λH+H−h

v2
(m2

fξ
2
f −m2

f ′ξ2f ′)C12(H
±, f ′, H±)

− λH+G−h

v2
(m2

fξf −m2
f ′ξf ′)[C12(G

±, f ′, H±) + C12(H
±, f ′, G±)]

+
g2

4

m2
f ′

v

[
sβ−α(2C0 + C12)(W, f ′, G±) + sβ−α(−C0 + C12)(G

±, f ′,W )

− ξf ′cβ−α(2C0 + C12)(W, f ′, H±)− ξf ′cβ−α(−C0 + C12)(H
±, f ′,W )

]
+ g2ZIfvf

m2
f

v

[
sβ−α(2C0 + C12)(Z, f,G

0) + sβ−α(−C0 + C12)(G
0, f, Z)

+ ξfcβ−α(2C0 + C12)(Z, f, A) + ξfcβ−α(−C0 + C12)(A, f, Z)
]
, (D.36)

16π2
(mf

v

)−1

F T
hff = ξfh

m2
f

v2

[
(ξfh)

2(C11 − C12)(f, h, f) + (ξfH)
2(C11 − C12)(f,H, f)

− (C11 − C12)(f,G
0, f)− ξ2f (C11 − C12)(f,A, f)

]
− ξf

′

h

2m2
f ′

v2

[
(C11 − C12)(f

′, G±, f ′) + ξfξf ′(C11 − C12)(f
′, H±, f ′)

]
− g2

4

[
sβ−α(−2C0 − 2C11 + C12)(W, f ′, G±) + sβ−α(−C0 − C11 + 2C12)(G

±, f ′,W )

+ ξfcβ−α(−2C0 − 2C11 + C12)(W, f ′, H±) + ξfcβ−α(−C0 − C11 + 2C12)(H
±, f ′,W )

]
− g2Z

8

[
sβ−α(−2C0 − 2C11 + C12)(Z, f,G

0) + sβ−α(−C0 − C11 + 2C12)(G
0, f, Z)

+ ξfcβ−α(−2C0 − 2C11 + C12)(Z, f, A) + ξfcβ−α(−C0 − C11 + 2C12)(A, f, Z)
]
, (D.37)

16π2
(mf

v

)−1

F PT
hff =

g2

4

[
sβ−α(2C0 + 2C11 − C12)(W, f ′, G±)− sβ−α(C0 + C11 − 2C12)(G

±, f ′,W )

− ξfcβ−α(−2C0 − 2C11 + C12)(W, f ′, H±)− ξfcβ−α(C0 + C11 − 2C12)(H
±, f ′,W )

]
− g2ZIfvf

[
sβ−α(−2C0 − 2C11 + C12)(Z, f,G

0) + sβ−α(C0 + C11 − 2C12)(G
0, f, Z)

+ ξfcβ−α(−2C0 − 2C11 + C12)(Z, f, A) + ξfcβ−α(C0 + C11 − 2C12)(A, f, Z)
]
, (D.38)
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where

CFSF
hff (X,Y, Z) ≡

[m2
FC0 + p21(C11 + C21) + p22(C12 + C22) + 2p1 · p2(C12 + C23) + 4C24](X, Y, Z)− 1

2
,

CV FS
hff (X,Y, Z) ≡

[p21(2C0 + 3C11 + C21) + p22(2C12 + C22) + 2p1 · p2(2C0 + 2C11 + C12 + C23) + 4C24](X, Y, Z)− 1

2
,

CSFV
hff (X,Y, Z) ≡ [p21(C21 − C0) + p22(C22 − C12) + 2p1 · p2(C23 − C12) + 4C24](X, Y, Z)− 1

2
.

(D.39)

The 1PI diagram contributions to the form factors of the hZZ and hWW vertices which
are defined in Eq. (7.73) are calculated as

Γ1,1PI
hZZ (p21, p

2
2, q

2)F =
∑
f

m2
fm

2
ZN

f
c

π2v3

{
(v2f + a2f )

[
B0(p

2
1, f, f) +B0(p

2
2, f, f) + 2B0(q

2, f, f)

+ (4m2
f − p21 − p22)C0(f, f, f)− 8C24(f, f, f)

]
− (v2f − a2f )

[
B0(p

2
2, f, f) +B0(p

2
1, f, f) + (4m2

f − q2)C0(f, f, f)
]}

, (D.40)

Γ2,1PI
hZZ (p21, p

2
2, q

2)F = −
∑
f

2m2
fm

4
ZN

f
c

π2v3[
(v2f + a2f )(4C23 + 3C12 + C11 + C0) + (v2f − a2f )(C12 − C11)

]
(f, f, f), (D.41)

Γ3,1PI
hZZ (p21, p

2
2, q

2)F =
∑
f

4m2
fm

4
ZN

f
c

π2v3
vfaf (C11 + C12 + C0)(f, f, f), (D.42)

Γ1,1PI
hWW (p21, p

2
2, q

2)F =
∑
f,f ′

m2
Wm2

fN
f
c

4π2v3

[
1

2
B0(p

2
2, f, f

′) +B0(q
2, f, f) +

1

2
B0(p

2
1, f, f

′)

− 4C24(p
2
1, p

2
2, q

2, f, f ′, f) +
1

2
(2m2

f + 2m2
f ′ − p21 − p22)C0(f, f

′, f)

]
+ (mf ↔ mf ′), (D.43)

Γ2,1PI
hWW (p21, p

2
2, q

2)F =
−m4

Wm2
fN

f
c

4π2v3
(4C23 + 3C12 + C11 + C0) (f, f

′, f) + (mf ↔ mf ′), (D.44)

Γ3,1PI
hWW (p21, p

2
2, q

2)F =
−m4

Wm2
fN

f
c

4π2v3
(C11 + C12 + C0) (f, f

′, f) + (mf ↔ mf ′), (D.45)
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16π2Γ1,1PI
hZZ (p21, p

2
2, q

2)B = 2g2ZλG+G−hm
2
W s4WC0(G

±,W,G±)

+ g3mW sβ−α

{
2c2WCV V V

hV V 1(W,W,W )− 2c2WC24(c
±, c±, c±) + s2WCSV V

hV V 1(G
±,W,W ) + s2WCV V S

hV V 1(W,W,G±)

− 2
s4W
c2W

m2
W sβ−αC0(W,G±,W )− (c2W − s2W )

s2W
c2W

[C24(W,G±, G±) + C24(G
±, G±,W )]

}
+

g3Z
2
mZsβ−α

{
− 2m2

Z

[
s2β−αC0(Z, h, Z) + c2β−αC0(Z,H,Z)

]
+ s2β−α[C24(G

0, h, Z) + C24(Z, h,G
0)]

+ c2β−α

[
C24(A, h, Z) + C24(Z, h,A) + C24(G

0, H, Z) + C24(Z,H,G0)− C24(A,H,Z)− C24(Z,H,A)
] }

+ 2g2Zm
2
Z

{
3λhhhs

2
β−αC0(h, Z, h) + λHHhc

2
β−αC0(H,Z,H) + λHhhsβ−αcβ−α[C0(H,Z, h) + C0(h, Z,H)]

}
− 2g2Z(c

2
W − s2W )2

[
λG+G−hC24(G

±, G±, G±) + λH+H−hC24(H
±, H±, H±)

]
− 2g2Zs

2
β−α

[
3λhhhC24(h,G

0, h) + λHHhC24(H,A,H) + λGGhC24(G
0, h,G0) + λAAhC24(A,H,A)

]
− 2g2Zc

2
β−α

[
3λhhhC24(h,A, h) + λHHhC24(H,G0, H) + λAAhC24(A, h,A) + λGGhC24(G

0, H,G0)
]

− 2g2Zsβ−αcβ−αλHhh[C24(h,G
0, H) + C24(H,G0, h)− C24(h,A,H)− C24(H,A, h)]

− 2g2Zsβ−αcβ−αλAGh[C24(A, h,G
0) + C24(G

0, h, A)− C24(A,H,G0)− C24(G
0, H,A)]

+
g2Z
2
λG+G−h(c

2
W − s2W )2B0(q

2, G±, G±) +
g2Z
2
λH+H−h(c

2
W − s2W )2B0(q

2, H±, H±)

+
g2Z
2
λGGhB0(q

2, G0, G0) +
g2Z
2
λAAhB0(q

2, A,A) +
g2Z
2
λHHhB0(q

2, H,H) +
3g2Z
2

λhhhB0(q
2, h, h)

− g3
s4W
c2W

mW sβ−α[B0(p
2
2,W,G±) +B0(p

2
1, G

±,W )]− g3Z
2
mZsβ−α[B0(p

2
1, h, Z) +B0(p

2
2, h, Z)]

− 6g3c2WmW sβ−αB0(q
2,W,W ) + 4g3c2WmW sβ−α, (D.46)

16π2(g2Zm
2
Z)

−1Γ2,1PI
hZZ (p21, p

2
2, q

2)B = 2gmW c4W sβ−αC
V V V
hV V 2(W,W,W )− 2gc4WmW sβ−αC1223(c

±, c±, c±)

+ gmW s2W c2W sβ−α[C
SV V
hV V 2(G

±,W,W ) + CV V S
hV V 2(W,W,G±)]

− gmW (c2W − s2W )s2W [CSSV
hV V 2(G

±, G±,W ) + CV SS
hV V 2(W,G±, G±)]

+
gZ
2
mZ [C

V SS
hV V 2(Z, h,G

0) + CV SS
hV V 2(G

0, h, Z)]

+
gZ
2
mZs

3
β−α[C

V SS
hV V 2(Z, h,G

0) + CSSV
hV V 2(G

0, h, Z)]

+
gZ
2
mZsβ−αc

2
β−α[C

V SS
hV V 2(Z, h,A) + CV SS

hV V 2(Z,H,G0)− CV SS
hV V 2(Z,H,A)

+ CSSV
hV V 2(A, h, Z) + CSSV

hV V 2(G
0, H, Z)− CSSV

hV V 2(A,H,Z)]

− 2(c2W − s2W )2
[
λG+G−hC1223(G

±, G±, G±) + λH+H−hC1223(H
±, H±, H±)

]
− 2s2β−α

[
3λhhhC1223(h,G

0, h) + λHHhC1223(H,A,H) + λGGhC1223(G
0, h,G0) + λAAhC1223(A,H,A)

]
− 2c2β−α

[
3λhhhC1223(h,A, h) + λHHhC1223(H,G0, H) + λAAhC1223(A, h,A) + λGGhC1223(G

0, H,G0)
]

− 2sβ−αcβ−αλHhh[C1223(h,G
0, H) + C1223(H,G0, h)− C1223(h,A,H)− C1223(H,A, h)]

− 2sβ−αcβ−αλAGh[C1223(A, h,G
0) + C1223(G

0, h, A)− C1223(A,H,G0)− C1223(G
0, H,A)],

(D.47)

Γ3,1PI
hZZ (p21, p

2
2, q

2)B = 0, (D.48)
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16π2Γ1,1PI
hWW (p21, p

2
2, q

2)B =

g3mW sβ−α[C
V V V
hV V 1(Z,W,Z) + c2WCV V V

hV V 1(W,Z,W ) + s2WCV V V
hV V 1(W, γ,W )

− C24(cZ , c
±, cZ)− c2WC24(c

±, cZ , c
±)− s2WC24(c

±, cγ, c
±)]

− g3

2
mW s2W sβ−α[C

SV V
hV V 1(G

±, Z,W )− CSV V
hV V 1(G

±, γ,W ) + CV V S
hV V 1(W,Z,G±)− CV V S

hV V 1(W, γ,G±)]

− g3m3
W

s4W
c4W

sβ−αC0(Z,G
±, Z)− g3m3

W s3β−αC0(W,h,W )− gm3
W sβ−αc

2
β−αC0(W,H,W )

+ g2
s4W
c2W

m2
WλG+G−hC0(G

±, Z,G±) + s2Wm2
WλG+G−hC0(G

±, γ, G±)

+ 6g2λhhhm
2
W s2β−αC0(h,W, h) + 2g2λHHhm

2
W c2β−αC0(H,W,H)

+ 2g2λHhhm
2
W cβ−αsβ−α[C0(h,W,H) + C0(H,W, h)]

+
g3

2
mW sβ−α

{
s2β−α[C24(W,h,G±) + C24(G

±, h,W )]

+ c2β−α[C24(W,H,G±) + C24(G
±, H,W ) + C24(W,h,H±) + C24(H

±, h,W )

− C24(W,H,H±)− C24(H
±, H,W )]

}
+

g3

2
mW

s2W
c2W

sβ−α[C24(G
0, G±, Z) + C24(Z,G

±, G0)]

− g2
[
λG+G−hC24(G

±, G0, G±) + λH+H−hC24(H
±, A,H±)

+ 2λGGhC24(G
0, G±, G0) + 2λAAhC24(A,H

±, A)
]

− g2s2β−α

[
6λhhhC24(h,G

±, h) + 2λHHhC24(H,H±, H)

+ λG+G−hC24(G
±, h,G±) + λH+H−hC24(H

±, H,H±)
]

− g2c2β−α

[
6λhhhC24(h,H

±, h) + 2λHHhC24(H,G±, H)

+ λG+G−hC24(G
±, H,G±) + λH+H−hC24(H

±, h,H±)
]

− g2λH+G−hsβ−αcβ−α[C24(G
±, h,H±) + C24(H

±, h,G±)− C24(G
±, H,H±)− C24(H

±, H,G±)]

− 2g2λHhhsβ−αcβ−α[C24(h,G
±, H) + C24(H,G±, h)− C24(h,H

±, H)− C24(H,H±, h)]

− g3mW sβ−α

[
3B0(q

2,W,W ) + 3B0(q
2, Z, Z)− 4

]
+

g2

2
λG+G−hB0(q

2, G±, G±) +
g2

2
λGGhB0(q

2, G0, G0) +
3g2

2
λhhhB0(q

2, h, h)

+
g2

2
λH+H−hB0(q

2, H±, H±) +
g2

2
λAAhB0(q

2, A,A) +
g2

2
λHHhB0(q

2, H,H)

− g3

2
mW sβ−α

{
B0(p

2
1,W, h) +B0(p

2
2,W, h) +

s4W
c2W

[B0(p
2
1, Z,G

±) +B0(p
2
2, Z,G

±)]

+ s2W [B0(p
2
1, γ, G

±) +B0(p
2
2, γ, G

±)]
}
, (D.49)
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16π2(g2m2
W )−1Γ2,1PI

hWW (p21, p
2
2, q

2)B =

gmW sβ−α

[
CV V V

hV V 2(Z,W,Z) + c2WCV V V
hV V 2(W,Z,W ) + s2WCV V V

hV V 2(W, γ,W )

− C1223(cZ , c
±, cZ)− c2WC1223(c

±, cZ , c
±)− s2WC1223(c

±, cγ, c
±)
]

− g

2
s2WmW sβ−α[C

SV V
hV V 2(G

±, Z,W )− CSV V
hV V 2(G

±, γ,W ) + CV V S
hV V 2(W,Z,G±)− CV V S

hV V 2(W, γ,G±)]

+
g

2
mW s3β−α

[
CV SS

hV V 2(W,h,G±) + CSSV
hV V 2(G

±, h,W )
]

+
g

2
mW sβ−αc

2
β−α

[
CV SS

hV V 2(W,H,G±) + CV SS
hV V 2(W,h,H±)− CV SS

hV V 2(W,H,H±)

+ CSSV
hV V 2(G

±, H,W ) + CSSV
hV V 2(H

±, h,W )− CSSV
hV V 2(H

±, H,W )
]

+
g

2

s2W
c2W

mW s3β−α

[
CV SS

hV V 2(Z,G
±, G0) + CSSV

hV V 2(G
0, G±, Z)

]
−
[
λG+G−hC1223(G

±, G0, G±) + λH+H−hC1223(H
±, A,H±)

+ 2λGGhC1223(G
0, G±, G0) + 2λAAhC1223(A,H

±, A)
]

− s2β−α

[
6λhhhC1223(h,G

±, h) + 2λHHhC1223(H,H±, H)

+ λG+G−hC1223(G
±, h,G±) + λH+H−hC1223(H

±, H,H±)
]

− c2β−α

[
6λhhhC1223(h,H

±, h) + 2λHHhC1223(H,G±, H)

+ λG+G−hC1223(G
±, H,G±) + λH+H−hC1223(H

±, h,H±)
]

− λH+G−hsβ−αcβ−α[C1223(G
±, h,H±) + C1223(H

±, h,G±)− C1223(G
±, H,H±)− C1223(H

±, H,G±)]

− 2λHhhsβ−αcβ−α[C1223(h,G
±, H) + C1223(H,G±, h)− C1223(h,H

±, H)− C1223(H,H±, h)],

(D.50)

Γ3,1PI
hWW (p21, p

2
2, q

2)B = 0, (D.51)

where

CV V V
hV V 1(X, Y, Z) ≡[
18C24 + p21(2C21 + 3C11 + C0) + p22(2C22 + C12) + p1 · p2(4C23 + 3C12 + C11 − 4C0)

]
(X,Y, Z)− 3,

CSV V
hV V 1(X, Y, Z) ≡[
3C24 + p21(C21 − C0) + p22(C22 − 2C12 + C0) + 2p1 · p2(C23 − C11)

]
(X, Y, Z)− 1

2
,

CV V S
hV V 1(X, Y, Z) ≡[
3C24 + p21(C21 + 4C11 + 4C0) + p22(C22 + 2C12) + 2p1 · p2(C23 + 2C12 + C11 + 2C0)

]
(X, Y, Z)− 1

2
,

CV V V
hV V 2(X, Y, Z) ≡ (10C23 + 9C12 + C11 + 5C0) (X,Y, Z),

CSV V
hV V 2(X, Y, Z) ≡ (4C11 − 3C12 − C23) (X, Y, Z),

CV V S
hV V 2(X, Y, Z) ≡ (2C11 − 5C12 − 2C0 − C23) (X, Y, Z),

CV SS
hV V 2(X, Y, Z) ≡ (C23 + C12 + 2C11 + 2C0)(X,Y, Z),

CSSV
hV V 2(X, Y, Z) ≡ (C23 − C12)(X, Y, Z),

C1223(X,Y, Z) ≡ (C12 + C23)(X, Y, Z). (D.52)
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D.2 1PI diagrams in the HSM

D.2.1 One point functions

The 1PI tadpole contributions are calculated by

16π2T 1PI,F
h = −

∑
f

4
m2

f

v
cαN

f
c A(mf ), (D.53)

16π2T 1PI,F
H = −

∑
f

4
m2

f

v
sαN

f
c A(mf ), (D.54)

16π2T 1PI,B
h = −3λhhhA(mh)− λhHHA(mH)− λhG+G−A(mG±)− λhG0G0A(mG0)

− gmW cαA(mc±)−
gZmZ

2
cαA(mc0) +

2m2
W

v
cαDA(mW ) +

m2
Z

v
cαDA(mZ), (D.55)

16π2T 1PI,B
H = −λhhHA(mh)− 3λHHHA(mH)− λHG+G−A(mG+)− λHzzA(mG0)

− gmW sαA(mc±)−
gZmZ

2
sαA(mc0) +

2m2
W

v
sαDA(mW ) +

m2
Z

v
sαDA(mZ), (D.56)

where D = 4− 2ϵ and N f
c indicates the color number of each particle.

D.2.2 Two point functions

The 1PI diagram contributions to the scalar boson two point functions are expressed as

16π2Π1PI,F
hh [p2] = −2

∑
f

(mf

v
cα

)2
N f

c

{
2A(mf )− (p2 − 4m2

f )B0(p
2;mf ,mf )

}
, (D.57)

16π2Π1PI,F
Hh [p2] = −2

∑
f

(mf

v

)2
cαsαN

f
c

{
2A(mf )− (p2 − 4m2

f )B0(p
2;mf ,mf )

}
, (D.58)

16π2Π1PI,F
HH [p2] = −2

∑
f

(mf

v
sα

)2
N f

c

{
2A(mf )− (p2 − 4m2

f )B0(p
2;mf ,mf )

}
, (D.59)
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16π2Π1PI,B
hh [p2] = −2λhhHHA(mH)− 12λhhhhA(mh)− 2λhhG+G−A(mG±)

− 2λhhG0G0A(mG0) + 2
m2

W

v2
c2αDA(mW ) +

m2
Z

v2
c2αDA(mZ)

+ λ2
hG+G−B0(p

2;mG+ ,mG−) + 2λ2
hHHB0(p

2;mH ,mH)

+ 18λ2
hhhB0(p

2;mh,mh) + 4λ2
hhHB0(p

2;mh,mH)

+ 2λ2
hG0G0B0(p

2;mG0 ,mG0) +
4m4

W

v2
c2αDB0(p

2;mW ,mW )

+
2m4

Z

v2
c2αDB0(p

2;mZ ,mZ)

− 2m2
W

v2
c2α
{
2A(mW )− A(mG±) + (2p2 −m2

W + 2m2
G±)B0(p

2;mW ,mG±)
}

− m2
Z

v2
c2α
{
2A(mZ)− A(mG0) + (2p2 −m2

Z + 2m2
G0)B0(p

2;mZ ,mG0)
}

− 2m4
W

v2
c2αB0(p

2;mc± ,mc±)−
m4

Z

v2
c2αB0(p

2;mc0 ,mc0), (D.60)

16π2Π1PI,B
Hh [p2] = −λhHG+G−A(mG±)− 3λhHHHA(mH)− 3λhhhHA(mh)− λhHG0G0A(mG0)

+ 4D
m2

W

v2
sαcαA(m

2
W ) + 2D

m2
Z

v2
sαcαA(m

2
Z)

+ λhG+G−λHG+G−B0(p
2;mG± ,mG±) + 6λhHHλHHHB0(p

2;mH ,mH)

+ 4λhhHλhHHB0(p
2;mh,mH) + 6λhhhλhhHB0(p

2;mh,mh)

+ 2λhG0G0λHG0G0B0(p
2;mG0 ,mG0)

+
4m4

W

v2
sαcαDB0(p

2;mW ,mW ) +
2m4

Z

v2
sαcαDB0(p

2;mZ ,mZ)

− 2m2
W

v2
sαcα

{
2A(mW )− A(mG±) + (2p2 −m2

W + 2m2
G±)B0(p

2;mW ,mG±))
}

− m2
Z

v2
sαcα

{
2A(mZ)− A(mG0) + (2p2 −m2

Z + 2m2
G0)B0(p

2;mZ ,mG0))
}

− 2
m4

W

v2
sαcαB0(p

2;mc± ,mc±)−
m4

Z

v2
sαcαB0(p

2;mc0 ,mc0), (D.61)

16π2Π1PI,B
HH [p2] = −12λHHHHA(mH)− 2λhhHHA(mh)− 2λHHG+G−A(mG±)

− 2λHHG0G0A(mG0) + 2
m2

W

v2
s2αDA(mW ) +

m2
Z

v2
s2αDA(mZ)

+ λ2
HG+G−B0(p

2;mG± ,mG±) + 18λ2
HHHB0(p

2;mH ,mH)

+ 2λ2
hhHB0(p

2;mh,mh) + 4λ2
hHHB0(p

2;mh,mH)

+ 2λ2
HG0G0B0(p

2;mG0 ,mG0) +
4m4

W

v2
s2αDB0(p

2;mW ,mW )

+
2m4

Z

v2
s2αDB0(p

2;mZ ,mZ)

− 2m2
W

v2
s2α
{
2A(mW )− A(mG±) + (2p2 −m2

W + 2m2
G±)B0(p

2;mW ,mG±)
}

− m2
Z

v2
s2α
{
2A(mZ)− A(mG0) + (2p2 −m2

Z + 2m2
G0)B0(p

2;mZ ,mG0)
}

− 2m4
W

v2
s2αB0(p

2;mc± ,mc±)−
m4

Z

v2
s2αB0(p

2;mc0 ,mc0). (D.62)
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The fermion loop contributions to the gauge boson two point functions are calculated as

16π2Π1PI,F
WW [p2] =

∑
f

4m2
WN f

c

v2
[
−B4 + 2p2B3

]
(p2;mf ,mf ′), (D.63)

16π2Π1PI,F
ZZ [p2] =

∑
f

4m2
ZN

f
c

v2
[
2p2(4s4WQ2

f − 4s2WQfIf + 2I2f )B3 − 2I2fm
2
fB0

]
(p2;mf ,mf ),

(D.64)

16π2Π1PI,F
γZ [p2] = −

∑
f

4emZN
f
c

v
p2(−4s2WQ2

f + 2IfQf )B3(p
2;mf ,mf ), (D.65)

16π2Π1PI,F
γγ [p2] =

∑
f

8e2N f
c Q

2
fp

2B3(p
2;mf ,mf ), (D.66)

whereB3(p
2;m1,m2) = −B1(p

2;m1,m2)−B21(p
2;m1,m2) andB4(p

2;m1,m2) = −m2
1B1(p

2;m2,m1)−
m2

2B2(p
2;m1,m2) defined in Ref. [112] and Qf is the electric charge of a fermion f . The boson

loop contributions to the gauge boson two point functions are calculated as

16π2Π1PI,B
WW [p2] =

m2
W

v2

[
s2αB5(p

2,mG± ,mH) + 4s2αm
2
WB0(p

2,mW ,mH)

+ 4c2αm
2
WB0(p

2;mW ,mh) + c2αB5(p
2;mG± ,mh)

− 4

{
(8c2Wp2 − (1− 4s2W )m2

W −m2
Z)B0 − (

9

4
− 2s2W )B5

}
(p2;mW ,mZ)

− 4

{
2s2W

[
(4p2 − 2m2

W )B0 −B5

]
(p2;mW ,mγ) +

2p2

3

}]
, (D.67)

16π2Π1PI,B
ZZ [p2] =

m2
Z

v2

[
s2αB5(p

2,mH ,mG0) + 4s2αm
2
ZB0(p

2;mZ ,mH)

+ 4c2αm
2
ZB0(p

2;mZ ,mh) + c2αB5(p
2;mG0 ,mh)

− 4

[(
23

4
p2 − 2m2

W

)
B0 + 9p2B3

]
(p2;mW ,mW )

− 4
2p2

3
+ 8s2Wp2

[
11

2
B0 + 10B3

]
(p2;mW ,mW ) +

16s2Wp2

3

− 4s4Wp2 [5B0 + 12B3] (p
2;mW ,mW )− 8s4Wp2

3

]
, (D.68)

16π2Π1PI,B
γZ [p2] = −2emZ

v
p2

{[
11

2
B0 + 10B3

]
(p2;mW ,mW )

− s2W [5B0 + 12B3] (p
2;mW ,mW ) +

2

3
(1− s2W )

}
, (D.69)

16π2Π1PI,B
γγ [p2] = −e2p2

{
(5B0 + 12B3)(p

2;mW ,mW ) +
2

3

}
, (D.70)
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where B5(p
2;m1,m2) = A(m1) + A(m2)− 4B22(p

2;m1,m2) [112].

Next, we give one-loop contributions to fermion two point functions, which are composed
of following three kind parts,

Π1PI
ff [p2] = mfΠ

1PI
ff,S[p

2] + /pΠ
1PI
ff,V [p

2]− /pγ5Π
1PI
ff,A[p

2]. (D.71)

They are calculated as

16π2Π1PI
ff,S[p

2] = −2
m2

Z

v2
(v2f − a2f )(2B0[p

2;mf ,mZ ]− 1)− 2(Qfe)
2(2B0[p

2;mf ,mγ]− 1)

+
m2

f

v2
c2αB0[p

2;mf ,mh] +
m2

f

v2
s2αB0[p

2;mf ,mH ]

−
m2

f

v2
B0[p

2;mf ,mG0 ]− 2
m2

f ′

v2
B0[p

2;mf ,mG± ], (D.72)

16π2Π1PI
ff,V [p

2] = −m2
W

v2
(2B1[p

2;mf ′ ,mW ] + 1)− m2
Z

v2
(v2f + a2f )(2B1[p

2;mf ,mZ ] + 1)

− (Qfe)
2(2B1[p

2;mf ,mγ] + 1)−
m2

f

v2
c2αB1[p

2;mf ,mh]−
m2

f

v2
s2αB1[p

2;mf ,mH ]

−
m2

f

v2
B1[p

2;mf ,mG0 ]−
m2

f ′ +m2
f

v2
B1[p

2;mf ,mG± ], (D.73)

16π2Π1PI
ff,A[p

2] = −
m2

f −m2
f ′

v2
B1[p

2;mf ,mG± ] +
m2

W

v2
(2B1[p

2;mf ′ ,mW ] + 1)

+ 2
m2

Z

v2
vfaf (2B1[p

2;mf ,mZ ] + 1), (D.74)

where vf = If − 2s2WQf , af = If and If represents the third component of the isospin of a
fermion f ; i.e., If = +1/2 (−1/2) for f = u (d, e).

D.2.3 Three point functions

In this subsection, we use the simplified form for the three point function of the Passarino-
Veltman as Ci[X, Y, Z] ≡ Ci[p

2
1, p

2
2, q

2;mX ,mY ,mZ ]. The 1PI diagram contributions for each
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form factor of the hZZ and the hWW couplings defined in Eq. (6.27) are calculated as

M1PI,F
hZZ,1[p

2
1, p

2
2, q

2] =
∑
f

32m2
Zm

2
fN

f
c

16π2v3
cα×

[(1
2
I2f − IfQfs

2
W +Q2

fs
4
W

)(
2p21C21 + 2p22C22 + 4p1 · p2C23 + 2(D − 2)C24

+ (3p21 + p1 · p2)C11 + (3p1 · p2 + p22)C12 + (p21 + p1 · p2)C0

)
+ (IfQfs

2
W −Q2

fs
4
W )
(
p21C21 + p22C22 + 2p1 · p2C23 +DC24

+m2
fC0 + (p21 + p1 · p2)C11 + (p1 · p2 + p22)C12

)]
[f, f, f ], (D.75)

M1PI,F
hZZ,2[p

2
1, p

2
2, q

2] =
∑
f

4m2
Zm

2
fN

f
c

16π2v3
cα×

[
(v2f + a2f )

(
4C23 + C11 + 3C12 + C0

)
+ (v2f + a2f )

(
C12 − C11

)]
[f, f, f ],

(D.76)

M1PI,F
hZZ,3[p

2
1, p

2
2, q

2] = −
∑
f

8m2
Zm

2
fN

f
c

16π2v3
cαvfaf [C11 + C12 + C0][f, f, f ], (D.77)

M1PI,F
hWW,1[p

2
1, p

2
2, q

2] =
∑
f

4m2
Wm2

fN
f
c

16π2v3
cα

[
2p21C21 + 2p22C22 + 4p1 · p2C23 + (2D − 4)C24

+ (3p21 + p1 · p2)C11 + (3p1 · p2 + p22)C12 + (p21 + p1 · p2)C0

)]
[f, f ′, f ],

(D.78)

M1PI,F
hWW,2[p

2
1, p

2
2, q

2] = −
∑
f

4m2
Wm2

fN
f
c

16π2v3
cα
[
4C23 + C11 + 3C12 + C0

]
[f, f ′, f ], (D.79)

M1PI,F
hWW,3[p

2
1, p

2
2, q

2] = −
∑
f

4m2
Wm2

fN
f
c

16π2v3
cα[C11 + C12 + C0][f, f

′, f ], (D.80)
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(16π2)M1PI,B
hZZ,1[p

2
1, p

2
2, q

2] = −2g3mW c2W cα(D − 1)B0[q
2;mW ,mW ]

− gg2ZmW s4W cα(B0[p
2
1;mW ,mG± ] +B0[p

2
2;mW ,mG±)

− g3ZmZ

2
cα
{
c2α(B0[p

2
1;mZ ,mh] +B0[p

2
2;mZ ,mh]) + s2α(B0[p

2
1;mZ ,mH ] +B0[p

2
2;mZ ,mH ])

}
+

g2Z
2
(c2W )2λhG+G−B0[q

2;mG+ ,mG+ ] +
3g2Z
2

c2αλhhhB0[q
2;mh,mh]

+ g2ZcαsαλhhHB0[q
2;mh,mH ] +

g2Z
2
s2αλhHHB0[q

2;mH ,mH ] +
g2Z
2
λhG0G0B0[q

2;mG0 ,mG0 ]

+ 2g3mW c2W cαC
hV V,1
V V V [W,W,W ]− 2g2Zgm

3
W s4W cαC0[W,G±,W ]

+ g3mW s2W cα

{
(ChV V,1

V V S [W,W,G±] + ChV V,1
SV V [G±,W,W ])

− c2W
c2W

(C24[W,G±, G±] + C24[G
±, G±,W ])

}
− g3Zm

3
Zcα{c2αC0[Z, h, Z] + s2αC0[Z,H,Z]}

+
g3Z
2
mZcα

{
c2α(C24[Z, h,G

0] + C24[G
0, h, Z]) + s2α(C24[Z,H,G0] + C24[G

0, H, Z])
}

+ 2g2Zm
2
Z{3c2αλhhhC0[h, Z, h] + s2αλhHHC0[H,Z,H]}

+ 2λhhHg
2
Zm

2
Zcαsα{C0[h, Z,H] + C0[H,Z, h]} − 2g3mW c2W cαC24[c

±, c±, c±]

+ 2g2Zm
2
W s4WλhG+G−(m2

W s4WC0[G
±,W,G±]− (c2W )2C24[G

±, G±, G±])

− 2g2Z
{
3λhhhc

2
αC24[h,G

0, h] + λhhHcαsα(C24[h,G
0, H] + C24[H,G0, h])

+ λhHHs
2
αC24[H,G0, H] + λhG0G0(c2αC24[G

0, h,G0] + s2αC24[G
0, H,G0])

}
, (D.81)
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(16π2)M1PI,B
hWW,1[p

2
1, p

2
2, q

2] = −g3mW (D − 1){cαB0(p
2;W,W ) + sαB0(p

2;Z,Z)}

− g3

2
mW cα{c2α(B0[p

2
1;W,h] +B0[p

2
2;W,h]) + s2α(B0[p

2
1;W,H] +B0[p

2
2;W,H])}

− g3

2
s2WmW cα

{
s2W
c2W

(B0[p
2
1;Z,G

±] +B0[p
2
2;Z,G

±]) + (B0[p
2
1; γ,G

±] +B0[p
2
2; γ,G

±])

}
+

g2

2

{
λhG+G−B0[p

2, G±, G±] + 3λhhhc
2
αB0[p

2;h, h] + λhHHs
2
αB0[p

2;H,H]

+ 2λhhHsαcαB0[p
2;h,H] + λhG0G0B0[p

2;G0, G0]
}

+ g3mW c2W cαC
hV V,1
V V V [W,Z,W ] + e2gmW cαC

hV V,1
V V V [W,γ,W ] + g3mW cαC

hV V,1
V V V [Z,W,Z]

− g3

2
mW s2W cαC

hV V,1
V V S [W,Z,G±] +

eg2

2
mW sW cαC

hV V,1
V V S [W,γ,G±]

− g3m3
W cα{c2αC0[W,h,W ] + s2αC0[W,H,W ]} − g2gZm

3
Zs

4
W cαC0[Z,G

+, Z]

− g3

2
mW s2W cα(C

hV V,1
SV V [G±, Z,W ]− ChV V,1

SV V [W,γ,G±])

+
g3

2
mW cα

{
(c2αC24[W,h,G±] + s2αC24[W,H,G±])}+ s2W

c2W
(C24[Z,G

+, G0] + C24[G
0, G±, Z])

}
+ g2m2

W

{
λhG+G−

s4W
c2W

C0[G
±, Z,G±] + λhG+G−s2WC0[G

±, γ, G±] + 6λhhhc
2
αC0[h,W, h]

}
+ 2λhhHg

2m2
W cαsα(C0[h,W,H] + C0[H,W, h]) + 2λhHHg

2m2
W (sα)

2C0[H,W,H]

+
g3

2
mW ch{s2αC24[G

±, h,W ] + c2αC24[G
±, H,W ]}

− g3mW c2W cαC24(c
±, c0, c±)− e2gmW sαC24(c

±, cγ, c±)− g3mW cαC24(c
0, c±, c0)

− λhG+G−g2{c2αC24[G
±, h,G±] + s2αC24[G

±, H,G±] + C24[G
±, G0, G±]}

− 6λhhhg
2c2αC24[h,G

±, h]− 2λhhHg
2cαsα(C24[h,G

±, H] + C24[H,G±, h])

− 2λhHHg
2(sα)

2C24[H,G±, H]− 2λhG0G0g2C24[G
0, G±, G0], (D.82)
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(16π2)M1PI,B
hZZ,2[p

2
1, p

2
2, q

2] = g3mW cα
{
2c2WChV V,2

V V V [W,W,W ] + s2WChV V,2
V V S [W,W,G±]

+ s2W (−C23 + 2C0)
}
[G±,W,W ]− g3mW

s2W c2W
c2W

cα

{
ChV V,2

V SS [W,G±, G±] + C23[G
±, G±,W ]

}
− g3ZmZcα

{
s2W c2W (ChV V,2

V SS [W,G±, G±] + C23[G
±, G±,W ])

− c2α(C
hV V,2
V SS [Z, h,G0] + C23[G

0, h, Z])
}
+

g3Z
2
mZcαs

2
α

{
ChV V,2

V SS [Z,H,G0] + C23[G
0, H, Z]

}
− 2g3mW c2W cαC12[c

±, c±, c±]− 2g2Z

{
c22WλhG+G−C1223[G

±, G±, G±]

+ 3c2αλhhhC1223[h,G
0, h] + cαsαλhhH

{
C1223[h,G

0, H] + C1223[H,G0, h]
}

+ s2αλhHHC1223[H,G0, H] + λhG0G0

{
c2αC1223[G

0, h,G0] + s2αC1223[G
0, H,G0]

}}
, (D.83)

(16π2)M1PI,B
hWW,2[p

2
1, p

2
2, q

2] = g3mW cα

{
c2WChV V,2

V V V [W,Z,W ] + s2WChV V,2
V V V [W, γ,W ]

+ ChV V,2
V V V [Z,W,Z]

}
− g3

2
mW s2W cα

{
ChV V,2

V V S [W,Z,G±] + ChV V,2
V V S [W, γ,G±]

}
− g3

2
mW s2W cα

{
(−C23 + 2C0)[G

±, Z,W ](−C23 + 2C0)[G
±, γ,W ]

}
+

g3

2
mW cα

{
c3α(C

hV V,2
V SS [W,h,G±] + C23[G

±, h,W ]) + s2α(C
hV V,2
V SS [W,H,G±] + C23[G

±, H,W ])

+
s2W
c2W

(ChV V,2
V SS [Z,G±, G0] + C23[G

0, G±, Z])
}

− g3mW cα

{
c2WC12[c

±, c0, c±] + s2WC12[c
±, cγ, c±] + C12[c

0, c±, c0]
}

− g2λhG+G−
{
c2αC1223[G

±, h,G±] + s2αC1223[G
±, H,G±] + C1223[G

±, G0, G±]
}

− 6g2λhhhc
2
αC1223[h,G

±, h]− 2g2λhHHs
2
αC1223[H,G±, H]

− 2g2λhhHcαsα
{
C1223[h,G

±, H] + C1223[H,G±, h]
}
− 2g2λhG0G0C1223[G

0, G±, G0], (D.84)

M1PI,B
hZZ,3[p

2
1, p

1
2, q

2] = M1PI,B
hWW,3[p

2
1, p

2
2, q

2] = 0, (D.85)
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where

ChV V,1
V V V [X, Y, Z] =

{
(6D − 6)C24 + p21(2C21 + 3C11 + C0) + p22(2C22 + C12)

+ p1 · p2(4C23 + 3C12 + C11 − 4C0)
}
[X,Y, Z], (D.86)

ChV V,1
V V S [X, Y, Z] =

{
(D − 1)C24 + p21(C21 + 4C11 + 4C0) + p22(C22 + 2C12)

+ p1 · p2(2C23 + 4C12 + 2C11 + 4C0)
}
[X,Y, Z], (D.87)

ChV V,1
SV V [X, Y, Z] =

{
(D − 1)C24 + p21(C21 − C0) + p22(C22 − 2C12 + C0)

+ 2p1 · p2(C23 − C11)
}
[X,Y, Z], (D.88)

ChV V,2
V V V [X, Y, Z] = [C11 + 9C12 + 10C23 + 5C0][X, Y, Z] (D.89)

ChV V,2
V V S [X, Y, Z] = [2C11 − 5C12 − C23 − 2C0][X, Y, Z] (D.90)

ChV V,2
V SS [X, Y, Z] = [C1223 + 2C11 + 2C0][X, Y, Z], (D.91)

and C1223 = C12 + C23.
We give 1PI diagram contributions to hff̄ couplings, which are composed of following seven

form factors,

F 1PI
hff [p

2
1, p

2
2, q

2] =
{
F 1PI
hff,S + γ5F

1PI
hff,P + /p1F

1PI
hff,V 1 + /p2F

1PI
hff,V 2 + /p1γ5F

1PI
hff,A1 + /p2γ5F

1PI
hff,A2

+ /p1/p2F
1PI
hff,T + /p1/p2γ5F

1PI
hff,TP

}
[p21, p

2
2, q

2]. (D.92)

Each part is calculated as

(16π2)F 1PI
hff,S[p

2
1, p

2
2, q

2] = −4cα
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v

{
m2

Z
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(v2f − a2f )C
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FV F [f, Z, f ] + (Qfe)

2Chff,S
FV F [f, Z, f ]

}

+
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f
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cα
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FSF [f, h, f ] + s2αC
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}
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2
f ′
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Z
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mf (v

2
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− 2
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f
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{
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}
+ 2

m2
f
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{
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v
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0, f, G0] + λhG+G−
mf ′
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C0[G

±, f ′, G±]
}

− cα
m2

Wmf
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− cα
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Zmf
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V FS [Z, f,G0]), (D.93)

F 1PI
hff,P [p

2
1, p

2
2, q

2] = − 1

16π2

mf

v2
cα

{
m2

W (Chff,T
V FS [W, f ′, G±]− Chff,T

SFV [G±, f ′,W ])
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2
Z(C
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V FS [Z, f,G0]− Chff,T

SFV [G0, f, Z])
}
, (D.94)
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(16π2)F V 1
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2
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2
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2] =
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v3
cα
{
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v
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f
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+
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cα
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2
f (v

2
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2
m2

f

v
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(
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f
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+
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f
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2
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}
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Z
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W
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− cα
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W
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}
, (D.95)

(16π2)F 1PI
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2
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2
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2] =
m4

f

v3
cα

{
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v
cα

(
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+
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cα
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2
f (v

2
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}
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v
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+
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f ′
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2
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− cα
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W
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}
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Z
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m2

f

v
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}
, (D.96)
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F 1PI
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2
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1
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{
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W
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±, f ′,W ]
}
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Z
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f
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0]− (C0 − C11)[G
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f
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−
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v
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}
, (D.97)
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2
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}
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Z
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}

+ 2Ifv
2
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Z
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f
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f
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−
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v
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, (D.98)

F 1PI
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16π2

{
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cα
{
c2α(C11 − C12)[f, h, f ] + s2α(C11 − C12)[f,H, f ]

}
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{
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}
+ cα
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W
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mf

v

{
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}

+ cα
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Z
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mf
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(2C0 + 2C11 − C12)[Z, f,G
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, (D.99)
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F 1PI
hff,TP [p

2
1, p

2
2, q

2]

=
1

16π2

{
cα

m2
W

v2
mf

v

{
(2C0 + 2C11 − C12)[W, f ′, G+]− (C0 + C11 − 2C12)[G

+, f ′,W ]
}

+ 2Ifvfcα
m2

Z

v2
mf

v

{
(2C0 + 2C11 − C12)[Z, f,G

0]− (C0 + C11 − 2C12)[G
0, f, Z]

}}
, (D.100)

where

Chff,S
FV F [X,Y,X] = {p21(C11 + C21) + p22(C12 + C22) + p1 · p2(C11 + C12 + 2C23)

+ 4C24 − 1 +m2
XC0}[X, Y,X], (D.101)

Chff,S
FSF [X,Y,X] = {p21(C11 + C21) + p22(C12 + C22) + 2p1 · p2(C12 + C23)

+ 4C24 −
1

2
+m2

XC0}[X, Y,X], (D.102)

Chff,S
SFV [X, Y, Z] = {p21(C21 − C0) + p22(C22 − C12) + 2p1 · p2(C23 − C12) + 4C24 −

1

2
}[X,Y, Z]

(D.103)

Chff,S
V FS [X, Y, Z] = {p21(C21 + 3C11 + 2C0) + p22(C22 + 2C12)

+ 2p1 · p2(C23 + C12 + 2C11 + 2C0) + 4C24 −
1

2
}[X, Y, Z], (D.104)

Chff,T
V FS [X, Y, Z] =

{
p21(3C11 + 2C0 + C21) + p22(2C12 + C22)

+ 2p1 · p2(C12 + C23 + 2C11 + 2C0) +DC24

}
[X, Y, Z], (D.105)

Chff,T
SFV [X, Y, Z] =

{
p21(C21 − C0) + p22(C22 − C12) + 2p1 · p2(C23 − C12) +DC24

}
[X,Y, Z].

(D.106)

D.2.4 1PI diagrams in the HTM

D.2.5 One-point functions

The 1PI diagram contributions to the one-point function are calculated by

T 1PI
h,F = −

4m2
fN

f
c

16π2

cα
vϕ

A(mf ), (D.107)

T 1PI
H,F = +

4m2
fN

f
c

16π2

sα
vϕ

A(mf ), (D.108)
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T 1PI
h,S = − 1

16π2
[λH++H−−hA(mH++) + λH+H−hA(mH+) + λAAhA(mA)

+ λHHhA(mH) + 3λhhhA(mh)], (D.109)

T 1PI
H,S = − 1

16π2
[λH++H−−HA(mH++) + λH+H−HA(mH+)

+ λAAHA(mA) + 3λHHHA(mH) + λHhhA(mh)], (D.110)

T 1PI
h,V =

1

16π2

[
− λG+G−hA(mG+)− λG0G0hA(mG0)

+ gmW (cβcα +
√
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√
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gZmZ

2
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]
, (D.111)

T 1PI
H,V =

1

16π2

[
− λG+G−HA(mG+)− λG0G0HA(mG0)

+ gmW (−cβsα +
√
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√
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2
(−cβ′sα + 2sβ′cα)A(mcZ )

]
, (D.112)

where mG+ (mc+) and mG0 (mcZ ) are the masses of the NG bosons G± and G0 (ghost fields
c± and cZ ), respectively. In the ’t Hooft-Feynman gauge, these masses are the same as the
corresponding gauge boson masses, i.e., mG+ = mc+ = mW and mG0 = mcZ = mZ .

D.2.6 Two-point functions

The 1PI diagram contributions to the scalar boson two point functions are calculated as

Π1PI
hh (p2)F = −

4m2
fN

f
c

16π2
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[
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]
, (D.113)

Π1PI
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A(mf ) +
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, (D.114)

Π1PI
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Π1PI
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c

16π2
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v2ϕ

[
A(mf )−
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B0(p

2,mf ,mf )

]
, (D.117)
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Π1PI
hh (p2)S =

1
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Π1PI
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2)S =
1

16π2
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+
1

16π2
[2λH+G−Aλ

∗
H+G−AB0(p

2,mH+ ,mG+) + 4λ2
AAhB0(p

2,mA,mh)

+ 4λ2
AAHB0(p

2,mA,mH) + λ2
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D.2. 1PI DIAGRAMS IN THE HSM 151

Π1PI
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2,mA,mG+)
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2,mW ,mH+)]

− 2λG+G−HHA(mG+)− g2m2
W

2
(−cβsα +

√
2sβcα)

2B0(p
2,mc+ ,mc+)

+
g2Zm

2
Z

2
(−cβ′sα + 2sβ′cα)

2DB0(p
2,mZ ,mZ) +

g2Z
8
(5 + 3c2α)DA(mZ)

− g2Z
4
(−sαcβ′ + 2cαsβ′)2[2A(mZ)− A(mG0) + (2m2

G0 −m2
Z + 2p2)B0(p

2,mZ ,mG0)]

− g2Z
4
(2cαcβ′ + sαsβ′)2[2A(mZ)− A(mA) + (2m2

A −m2
Z + 2p2)B0(p

2,mZ ,mA)]

− 2λG0G0HHA(mG0)− g2Zm
2
Z

4
(−cβ′sα + 2sβ′cα)

2B0(p
2,mcZ ,mcZ )

}
, (D.126)

Π1PI
Hh(p

2)V =
1

16π2

{
g2m2

W (cβcα +
√
2sβsα)(−cβsα +

√
2sβcα)DB0(p

2,mW ,mW ) +
g2

4
s2αDA(mW )

− g2

2
(cαcβ +

√
2sαsβ)(−sαcβ +

√
2cαsβ)[2A(mW )− A(mG+) + (2m2

G+ −m2
W + 2p2)B0(p

2,mW ,mG+)]

− g2

2
(−cαsβ +

√
2sαcβ)(sαsβ +

√
2cαcβ)[2A(mW )− A(mH+) + (2m2

H+ −m2
W + 2p2)B0(p

2,mW ,mH+)]

− λG+G−HhA(mG+)− g2m2
W

2
(cβcα +

√
2sβsα)(−cβsα +

√
2sβcα)B0(p

2,mc+ ,mc+)

+
g2Zm

2
Z

2
(cβ′cα + 2sβ′sα)(−cβ′sα + 2sβ′cα)DB0(p

2,mZ ,mZ) +
3g2Z
8

s2αDA(mZ)

− g2Z
4
(cαcβ′ + 2sαsβ′)(−sαcβ′ + 2cαsβ′)[2A(mZ)− A(mG0) + (2m2

G0 −m2
Z + 2p2)B0(p

2,mZ ,mG0)]

− g2Z
4
(−cαsβ′ + 2sαcβ′)(sαsβ′ + 2cαcβ′)[2A(mZ)− A(mA) + (2m2

A −m2
Z + 2p2)B0(p

2,mZ ,mA)]

− λG0G0HhA(mG0)− g2Zm
2
Z

4
(cβ′cα + 2sβ′sα)(−cβ′sα + 2sβ′cα)B0(p

2,mcZ ,mcZ )

}
, (D.127)
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Π1PI
AA(p

2)V =
1

16π2

{
g2

4
(3 + c2β′)DA(mW )− 2λG+G−AAA(mG+)

− g2

2
(−cβsβ′ +

√
2sβcβ′)2[2A(mW )− A(mG+) + (2m2

G+ −m2
W + 2p2)B0(p

2,mW ,mG+)]

− g2

2
(sβsβ′ +

√
2cβcβ′)2[2A(mW )− A(mH+) + (2m2

H+ −m2
W + 2p2)B0(p

2,mW ,mH+)]

+
g2m2

W

2
(−cβsβ′ +

√
2sβcβ′)2B0(p

2,mc+ ,mc+)

+
g2Z
8
(5 + 3c2β′)DA(mZ)− 2λAAG0G0A(mG0)

− g2Z
4
(−cαsβ′ + 2sαcβ′)2[2A(mZ)− A(mh) + (2m2

h −m2
Z + 2p2)B0(p

2,mZ ,mh)]

− g2Z
4
(sαsβ′ + 2cαcβ′)2[2A(mZ)− A(mH) + (2m2

H −m2
Z + 2p2)B0(p

2,mZ ,mH)]

}
, (D.128)

Π1PI
AG(p

2)V =
1

16π2

{
g2

4
s2β′DA(mW ) +

3

8
g2Zs2β′DA(mZ)

− g2

2
(sβsβ′ +

√
2cβcβ′)(−sβcβ′ +

√
2cβsβ′)[2A(mW )− A(mH+) + (2m2

H+ −m2
W + 2p2)B0(p

2,mW ,mH+)]

− g2Z
4
(−cαsβ′ + 2sαcβ′)(cαcβ′ + 2sαsβ′)[2A(mZ)− A(mh) + (2m2

h −m2
Z + 2p2)B0(p

2,mZ ,mh)]

− g2Z
4
(2cαcβ′ + sαsβ′)(−sαcβ′ + 2cαsβ′)[2A(mZ)− A(mH) + (2m2

H −m2
Z + 2p2)B0(p

2,mZ ,mH)]

− 3λAG0G0G0A(mG0)− λG+G−AG0A(mG+)

}
. (D.129)

The 1PI diagram contributions to the gauge boson two point functions are calculated as follows.
The fermion-loop contributions are

Π1PI
WW (p2)F =

g2

16π2
N f

c

[
−B4 + 2p2B3

]
(p2,mf ,mf ′), (D.130)

Π1PI
ZZ (p

2)F =
g2Z
16π2

N f
c

[
2p2(4s4WQ2

f − 4s2WQfIf + 2I2f )B3 − 2I2fm
2
fB0

]
(p2,mf ,mf ), (D.131)

Π1PI
γγ (p2)F =

e2

16π2
N f

c Q
2
f

[
8p2B3

]
(p2,mf ,mf ), (D.132)

Π1PI
Zγ (p

2)F = − egZ
16π2

N f
c

[
2p2(−4s2WQ2

f + 2IfQf )B3

]
(p2,mf ,mf ), (D.133)

whereB3(p
2,m1,m2) = −B1(p

2,m1,m2)−B21(p
2,m1,m2) andB4(p

2,m1,m2) = −m2
1B1(p

2,m2,m1)−
m2

2B1(p
2,m1,m2) [?].
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The scalar-boson loop contirbutions are

Π1PI
WW (p2)S =

1

16π2

g2

4

[
4c2βB5(p

2,mH++ ,mH+) + 4s2βB5(p
2,mH++ ,mG+)

+ (cαsβ −
√
2sαcβ)

2B5(p
2,mH+ ,mh) + (cαcβ +

√
2sαsβ)

2B5(p
2,mG+ ,mh)

+ (sαsβ +
√
2cαcβ)

2B5(p
2,mH+ ,mH) + (sαcβ −

√
2cαsβ)

2B5(p
2,mG+ ,mH)

+ (sβ′sβ +
√
2cβ′cβ)

2B5(p
2,mH+ ,mA) + (sβ′cβ −

√
2cβ′sβ)

2B5(p
2,mG+ ,mA)

+ (−cβ′sβ +
√
2sβ′cβ)

2B5(p
2,mH+ ,mZ) + (cβ′cβ +

√
2sβ′sβ)

2B5(p
2,mG+ ,mG0)

]
, (D.134)

Π1PI
ZZ (p

2)S =
1

16π2

g2Z
4

[
4(c2W − s2W )2B5(p

2,mH++ ,mH++) + (c2W − s2W − c2β)
2B5(p

2,mH+ ,mH+)

+ (c2W − s2W − s2β)
2B5(p

2,mG+ ,mG+) + 2s2βc
2
βB5(p

2,mH+ ,mG+)

+ (2cαcβ′ + sαsβ′)2B5(p
2,mH ,mA) + (2sαcβ′ − cαsβ′)2B5(p

2,mh,mA)

+ (sαcβ′ − 2cαsβ′)2B5(p
2,mH ,mG0) + (cαcβ′ + 2sαsβ′)2B5(p

2,mh,mG0)
]
, (D.135)

Π1PI
γγ (p2)S =

e2

16π2

[
4B5(p

2,mH++ ,mH++) +B5(p
2,mH+ ,mH+) +B5(p

2,mG+ ,mG+)
]
, (D.136)

Π1PI
Zγ (p

2)S = − egZ
16π2

[
2(c2W − s2W )B5(p

2,mH++ ,mH++)

+
1

2
(c2W − s2W − c2β)B5(p

2,mH+ ,mH+) +
1

2
(c2W − s2W − s2β±)B5(p

2,mG+ ,mG+)
]
, (D.137)

where B5(p
2,m1,m2) = A(m1) + A(m2) − 4B22(p

2,m1,m2) [?]. The gauge boson loop contri-
butions are

Π
1PI

WW (p2)V = Π1PI
WW (p2)V − 4g2

16π2
(p2 −m2

W )[c2WB0(p
2,mZ ,mW ) + s2WB0(p

2, 0,mW )],

Π
1PI

ZZ (p
2)V = Π1PI

ZZ (p
2)V − 4g2Z

16π2
c4W (p2 −m2

Z)B0(p
2,mW ,mW ),

Π
1PI

γγ (p2)V = Π1PI
γγ (p2)V − 4e2

16π2
p2B0(p

2,mW ,mW ),

Π
1PI

Zγ (p
2)V = Π1PI

Zγ (p
2)V +

4egZ
16π2

c2W

(
p2 − 1

2
m2

Z

)
B0(p

2,mW ,mW ), (D.138)

where Π
1PI

XY (p
2)V functions are the gauge invariant two point functions while Π1PI

XY (p
2)V functions

are the amplitude calculated in the ’t Hooft-Feynman gauge. The second term of the right-
hand side in Eq. (D.138) corresponds to the pinch-terms [?] which are introduced to maintain
the gauge invariance of the gauge boson two point functions. The Π1PI

XY (p
2)V functions are
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calculated as

Π1PI
WW (p2)V =

g2

16π2

{
m2

W

[ (
cβcα +

√
2sβsα

)2
B0(p

2,mh,mW ) +
(
cβsα −

√
2sβcα

)2
B0(p

2,mH ,mW )

+ 4s2βB0(p
2,mH++ ,mW ) +

c2βs
2
β

c2W
B0(p

2,mH+ ,mZ) + s2WB0(p
2,mG+ , 0) +

(s2W + s2β)
2

c2W
B0(p

2,mG+ ,mZ)
]

− c2W
[
(6D − 8)B22 + p2(2B21 + 2B1 + 5B0)

]
(p2,mZ ,mW ) + (D − 1)

[
c2WA(mZ) + A(mW )

]
− s2W

[
(6D − 8)B22 + p2(2B21 + 2B1 + 5B0)

]
(p2, 0,mW )

}
, (D.139)

Π1PI
ZZ (p

2)V =
g2Z
16π2

{
m2

Z

[
(cβ′cα + 2sβ′sα)

2B0(p
2,mh,mZ) + (cβ′sα − 2sβ′cα)

2B0(p
2,mH ,mZ)

]
+m2

W

[
2c2βs

2
βB0(p

2,mH+ ,mW ) + 2
(
s2W + s2β

)2
B0(p

2,mG+ ,mW )
]

− c4W
[
(6D − 8)B22 + p2(2B21 + 2B1 + 5B0)

]
(p2,mW ,mW ) + 2(D − 1)c4WA(mW )

}
, (D.140)

Π1PI
γγ (p2)V = − e2

16π2

[
(6D − 8)B22(p

2,mW ,mW ) + p2(2B21 + 2B1 + 5B0)(p
2,mW ,mW )

− 2(D − 1)A(mW )− 2m2
WB0(p

2,mG+ ,mW )
]
, (D.141)

Π1PI
Zγ (p

2)V = +
egZ
16π2

[
c2W (6D − 8)B22(p

2,mW ,mW ) + c2Wp2(2B21 + 2B1 + 5B0)(p
2,mW ,mW )

− 2c2W (D − 1)A(mW ) + 2m2
W (s2W + s2β)B0(p

2,mG+ ,mW )
]
. (D.142)

D.2.7 Three-point functions

In this subsection, we use the shortened notation for the three-point function of the Passarino-
Veltman function as Ci(m1,m2,m3) ≡ Ci(p

2
1, p

2
2, q

2,m1,m2,m3). The 1PI diagram contributions
to the hhh vertex can be expressed as a function of the incoming momenta p1 and p2 and the
outgoing momentum q = p1 + p2 as

Γ1PI
hhh(p

2
1, p

2
2, q

2)F = −
8m4

fN
f
c

16π2

c3α
v3ϕ

[
B0(p

2
1,mf ,mf ) +B0(p

2
2,mf ,mf ) +B0(q

2,mf ,mf )

+ (4m2
f − q2 + p1 · p2)C0(mf ,mf ,mf )

]
, (D.143)
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Γ1PI
hhh(p

2
1, p

2
2, q

2)S =
1

16π2

{
+ 2λH++H−−hλH++H−−hh[B0(p

2
1,mH++ ,mH++) +B0(p

2
2,mH++ ,mH++) +B0(q

2,mH++ ,mH++)]

+ 2λH+H−hλH+H−hh[B0(p
2
1,mH+ ,mH+) +B0(p

2
2,mH+ ,mH+) +B0(q

2,mH+ ,mH+)]

+ 2λhG+G−λhhG+G− [B0(p
2
1,mW ,mW ) +B0(p

2
2,mW ,mW ) +B0(q

2,mW ,mW )]

+ 4λH+G−hλH+G−hh[B0(p
2
1,mH+ ,mW ) +B0(p

2
2,mH+ ,mW ) +B0(q

2,mH+ ,mW )]

+ 4λAAhλAAhh[B0(p
2
1,mA,mA) +B0(p

2
2,mA,mA) +B0(q

2,mA,mA)]

+ 4λG0G0hλG0G0hh[B0(p
2
1,mZ ,mZ) +B0(p

2
2,mZ ,mZ) +B0(q

2,mZ ,mZ)]

+ 2λAG0hλAG0hh[B0(p
2
1,mA,mZ) +B0(p

2
2,mA,mZ) +B0(q

2,mA,mZ)]

+ 4λHHhλHHhh[B0(p
2
1,mH ,mH) +B0(p

2
2,mH ,mH) +B0(q

2,mH ,mH)]

+ 12λHhhλHhhh[B0(p
2
1,mh,mH) +B0(p

2
2,mh,mH) +B0(q

2,mh,mH)]

+ 72λhhhλhhhh[B0(p
2
1,mh,mh) +B0(p

2
2,mh,mh) +B0(q

2,mh,mh)]
]}

− 1

16π2

{
2λ3

H++H−−hC0(mH++ ,mH++ ,mH++) + 2λ3
H+H−hC0(mH+ ,mH+ ,mH+)

+ 2λ3
G+G−hC0(mW ,mW ,mW ) + 8λ3

G0G0hC0(mZ ,mZ ,mZ)

+ 8λ3
AAhC0(mA,mA,mA) + 8λ3

HHhC0(mH ,mH ,mH) + 216λ3
hhhC0(mh,mh,mh)

+ 2λH+H−hλ
2
H+G−h[C0(mG+ ,mH+ ,mH+) + C0(mH+ ,mW ,mH+) + C0(mH+ ,mH+ ,mW )]

+ 2λG+G−hλ
2
H+G−h[C0(mH+ ,mW ,mW ) + C0(mG+ ,mH+ ,mW ) + C0(mW ,mW ,mH+)]

+ 2λAAhλ
2
AG0h[C0(mZ ,mA,mA) + C0(mA,mZ ,mA) + C0(mA,mA,mZ)]

+ 2λG0G0hλ
2
AG0h[C0(mA,mZ ,mZ) + C0(mZ ,mA,mZ) + C0(mZ ,mZ ,mA)]

+ 8λHHhλ
2
Hhh[C0(mh,mH ,mH) + C0(mH ,mH ,mh) + C0(mH ,mh,mH)]

+ 24λhhhλ
2
Hhh[C0(mh,mh,mH) + C0(mH ,mh,mh) + C0(mh,mH ,mh)]

}
, (D.144)
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Γ1PI
hhh(p

2
1, p

2
2, q

2)V =
1

16π2

[

+
3g3

4
mW (cβcα +

√
2sβsα)(3− c2α)DB0(q

2,mW ,mW ) + 2g3m3
W (cβcα +

√
2sβsα)

3DC0(mW ,mW ,mW )

− g3

2
mW (cβcα +

√
2sβsα)

3Chhh
SV V (mG+ ,mW ,mW )

− g3

2
mW (cβcα +

√
2sβsα)(−sβcα +

√
2cβsα)

2Chhh
SV V (mH+ ,mW ,mW )

+
g2

2
λG+G−h(cβcα +

√
2sβsα)

2Chhh
V SS(mW ,mG+ ,mG+)

+
g2

2
λH+H−h(−sβcα +

√
2cβsα)

2Chhh
V SS(mW ,mH+ ,mH+)

+
g2

2
λH+G−h(cβcα +

√
2sβsα)(−sβcα +

√
2cβsα)[C

hhh
V SS(mW ,mG+ ,mH+) + CV SS(mW ,mH+ ,mG+)]

− g3m3
W

2
(cβcα +

√
2sβsα)

3C0(mc+ ,mc+ ,mc+)

+
3g3ZmZ

8
(cβ′cα + 2sβ′sα)(5− 3c2α)DB0(q

2,mZ ,mZ) + g3Zm
3
Z(cβ′cα + 2sβ′sα)

3DC0(mZ ,mZ ,mZ)

− g3ZmZ

4
(cβ′cα + 2sβ′sα)

3Chhh
SV V (mG0 ,mZ ,mZ)

− g3ZmZ

4
(cβ′cα + 2sβ′sα)(−sβ′cα + 2cβ′sα)

2Chhh
SV V (mA,mZ ,mZ)

+
g2Z
2
λG0G0h(cβ′cα + 2sβ′sα)

2Chhh
V SS(mZ ,mG0 ,mG0) +

g2Z
2
λAAh(−sβ′cα + 2cβ′sα)

2Chhh
V SS(mZ ,mA,mA)

+
g2Z
4
λAG0h(cβ′cα + 2sβ′sα)(−sβ′cα + 2cβ′sα)[C

hhh
V SS(mZ ,mA,mG0) + Chhh

V SS(mZ ,mG0 ,mA)]

− g3Zm
3
Z

4
(cβ′cα + 2sβ′sα)

3C0(mcZ ,mcZ ,mcZ )

]
, (D.145)

where we define

Chhh
SV V (m1,m2,m3) ≡[
p21C21 + p22C22 + 2p1p2C23 +DC24 − (q + p1)(p1C11 + p2C12) + qp1C0

]
(m1,m2,m3)

+
[
p21C21 + p22C22 + 2p1p2C23 +DC24 + (3p1 − p2)(p1C11 + p2C12) + 2p1(p1 − p2)C0

]
(m3,m1,m2)

+
[
p21C21 + p22C22 + 2p1p2C23 +DC24 + (3p1 + 4p2)(p1C11 + p2C12) + 2q(q + p2)C0

]
(m2,m3,m1),

(D.146)

Chhh
V SS(mV ,mS,mS) ≡[
p21C21 + p22C22 + 2p1p2C23 +DC24 + (4p1 + 2p2)(p1C11 + p2C12) + 4p1 · qC0

]
(mV ,mS,mS)

+
[
p21C21 + p22C22 + 2p1p2C23 +DC24 + 2p2(p1C11 + p2C12)− p1(p1 + 2p2)C0

]
(mS,mV ,mS)

+
[
p21C21 + p22C22 + 2p1p2C23 +DC24 − 2p2(p1C11 + p2C12)− q(p1 − p2)C0

]
(mS,mS,mV ).

(D.147)
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The 1PI diagram contributions to the form factors of the hZZ and hWW vertices which
are defined in Eq. (7.73) are calculated as

MhZZ
1,1PI(p

2
1, p

2
2, q

2)F = −
32m2

fm
2
ZN

f
c cα

vϕ(v2 + 2v2∆)

1

16π2

{
− 1

4
(I2f − 2s2W IfQf + 2s4WQ2

f )[
B0(p

2
1,mf ,mf ) +B0(p

2
2,mf ,mf ) + 2B0(q

2,mf ,mf ) +(4m2
f − p21 − p22)C0(mf ,mf ,mf )− 8C24(mf ,mf ,mf )

]
+

s2W
2
(−IfQf + s2WQ2

f )
[
B0(p

2
2,mf ,mf ) +B0(p

2
1,mf ,mf ) + (4m2

f − q2)C0(mf ,mf ,mf )
]}

,

(D.148)

MhZZ
2,1PI(p

2
1, p

2
2, q

2)F = −
32m2

fm
4
ZN

f
c cα

vϕ(v2 + 2v2∆)

1

16π2

×
[1
2
(I2f − 2s2W IfQf + 2s4WQ2

f )
(
4C23 + 3C12 + C11 + C0

)
+ s2W (−IfQf + s2WQ2

f )
(
C12 − C11

)]
(mf ,mf ,mf ), (D.149)

MhZZ
3,1PI(p

2
1, p

2
2, q

2)F = −
32m2

fm
4
ZN

f
c cα

vϕ(v2 + 2v2∆)

1

16π2

If
2
(−If + 2s2WQf )(C11 + C12 + C0)(mf ,mf ,mf ),

(D.150)

MhWW
1,1PI (p

2
1, p

2
2, q

2)F =
4m2

Wm2
tN

f
c cα

vϕv2
1

16π2

[
1

2
B0(p

2
2,mt,mb) +B0(q

2,mt,mt) +
1

2
B0(p

2
1,mt,mb)

− 4C24(p
2
1, p

2
2, q

2,mt,mb,mt) +
1

2
(2m2

t + 2m2
b − p21 − p22)C0(mt,mb,mt)

]
+ (mt ↔ mb),
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MhWW
2,1PI (p

2
1, p

2
2, q

2)F =
−4m4

Wm2
tN

f
c cα

vϕv2
1

16π2
(4C23 + 3C12 + C11 + C0) (mt,mb,mt) + (mt ↔ mb),
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1

16π2
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MhZZ
1,1PI(p

2
1, p

2
2, q

2)S = − 16m2
Z

v2 + 2v2∆

1

16π2

{
2λH++H−−h(c

2
W − s2W )2C24(mH++ ,mH++ ,mH++)

+
1

2
λH+H−h(c

2
W − s2W − c2β)

2C24(mH+ ,mH+ ,mH+)

+
1

8
λH+H−hs

2
2βC24(mH+ ,mG+ ,mH+) +

1

8
λG+G−hs

2
2βC24(mG+ ,mH+ ,mG+)

− 1

4
λH+G−hs2β(c

2
W − s2W − c2β)[C24(mH+ ,mH+ ,mG+) + C24(mG+ ,mH+ ,mH+)]

− 1

4
λH+G−hs2β(c

2
W − s2W − s2β)[C24(mH+ ,mG+ ,mG+) + C24(mG+ ,mG+ ,mH+)]

+
1

2
λG+G−h(c

2
W − s2W − s2β)

2C24(mG+ ,mG+ ,mG+)

+
1

2
λAAh(2cαcβ′ + sαsβ′)2C24(mA,mH ,mA) +

1

2
λAAh(cαsβ′ − 2sαcβ′)2C24(mA,mh,mA)

+
1

2
λHHh(2cαcβ′ + sαsβ′)2C24(mH ,mA,mH) +

3

2
λhhh(cαsβ′ − 2sαcβ′)2C24(mh,mA,mh)

− 1

2
λHhh(2cαcβ′ + sαsβ′)(cαsβ′ − 2sαcβ′) [C24(mH ,mA,mh) + C24(mh,mA,mH)]

− 1

4
λAG0h(2cαcβ′ + sαsβ′)(sαcβ′ − 2cαsβ′) [C24(mA,mH ,mG0) + C24(mG0 ,mH ,mA)]

− 1

4
λAG0h(cαsβ′ − 2sαcβ′)(cαcβ′ + 2sαsβ′) [C24(mA,mh,mG0) + C24(mG0 ,mh,mA)]

+
1

2
λG0G0h(sαcβ′ − 2cαsβ′)2C24(mG0 ,mH ,mG0) +

1

2
λG0G0h(cαcβ′ + 2sαsβ′)2C24(mG0 ,mh,mG0)

+
1

2
λHHh(sαcβ′ − 2cαsβ′)2C24(mH ,mG0 ,mH) +

3

2
λhhh(cαcβ′ + 2sαsβ′)2C24(mh,mG0 ,mh)

− 1

2
λHhh(sαcβ′ − 2cαsβ′)(cαcβ′ + 2sαsβ′) [C24(mH ,mG0 ,mh) + C24(mh,mG0 ,mH)]

}

+
4m2

Z

v2 + 2v2∆

1

16π2

{
2λH++H−−h(c

2
W − s2W )2B0(q

2,mH++ ,mH++)

+
1

4
λH+H−h(2 + c4W − 4c2W c2β + c2β)B0(q

2,mH+ ,mH+)

+
1

4
λG+G−h(2 + c4W − 4c2W s2β − c2β)B0(q

2,mG+ ,mG+) +
1

2
λH+G−hs2β(1− 2c2W )B0(q

2,mH+ ,mG+)

+
1

4
λAAh(5 + 3c2β′)B0(q

2,mA,mA) +
1

4
λG0G0h(5− 3c2β′)B0(q

2,mG0 ,mG0)

+
1

4
λHHh(5 + 3c2α)B0(q

2,mH ,mH) +
3

4
λhhh(5− 3c2α)B0(q

2,mh,mh)

+
3

4
λAG0hs2β′B0(q

2,mA,mG0) +
3

2
λHhhs2αB0(q

2,mh,mH)

}
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MhZZ
2,1PI(p

2
1, p

2
2, q

2)S = − 16m4
Z

v2 + 2v2∆

1

16π2

{
2λH++H−−h(c

2
W − s2W )2C1223(mH++ ,mH++ ,mH++)

+
1

2
λH+H−h(c

2
W − s2W − c2β)

2C1223(mH+ ,mH+ ,mH+)

+
1

8
λH+H−hs

2
2βC1223(mH+ ,mW ,mH+) +

1

8
λG+G−hs

2
2βC1223(mW ,mH+ ,mW )

− 1

4
λH+G−hs2β(c

2
W − s2W − c2β)[C1223(mH+ ,mH+ ,mW ) + C1223(mW ,mH+ ,mH+)]

− 1

4
λH+G−hs2β(c

2
W − s2W − s2β)[C1223(mH+ ,mW ,mW ) + C1223(mW ,mW ,mH+)]

+
1

2
λG+G−h(c

2
W − s2W − s2β)

2C1223(mW ,mW ,mW )

+
1

2
λAAh(2cαcβ′ + sαsβ′)2C1223(mA,mH ,mA) +

1

2
λAAh(cαsβ′ − 2sαcβ′)2C1223(mA,mh,mA)

+
1

2
λHHh(2cαcβ′ + sαsβ′)2C1223(mH ,mA,mH) +

3

2
λhhh(cαsβ′ − 2sαcβ′)2C1223(mh,mA,mh)

− 1

2
λHhh(2cαcβ′ + sαsβ′)(cαsβ′ − 2sαcβ′) [C1223(mH ,mA,mh) + C1223(mh,mA,mH)]

− 1

4
λAG0h(2cαcβ′ + sαsβ′)(sαcβ′ − 2cαsβ′) [C1223(mA,mH ,mZ) + C1223(mZ ,mH ,mA)]

− 1

4
λAG0h(cαsβ′ − 2sαcβ′)(cαcβ′ + 2sαsβ′) [C1223(mA,mh,mZ) + C1223(mZ ,mh,mA)]

+
1

2
λG0G0h(sαcβ′ − 2cαsβ′)2C1223(mZ ,mH ,mZ) +

1

2
λG0G0h(cαcβ′ + 2sαsβ′)2C1223(mZ ,mh,mZ)

+
1

2
λHHh(sαcβ′ − 2cαsβ′)2C1223(mH ,mZ ,mH) +

3

2
λhhh(cαcβ′ + 2sαsβ′)2C1223(mh,mZ ,mh)

− 1

2
λHhh(sαcβ′ − 2cαsβ′)(cαcβ′ + 2sαsβ′) [C1223(mH ,mZ ,mh) + C1223(mh,mZ ,mH)]

}
,
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MhWW
1,1PI (p

2
1, p

2
2, q

2)S = −16m2
W

v2
1

16π2

{
+ λH++H−−hc

2
βC24(mH++ ,mH+ ,mH++) + λH++H−−hs

2
βC24(mH++ ,mG+ ,mH++)

+ λH+H−hc
2
βC24(mH+ ,mH++ ,mH+) + λG+G−hs

2
βC24(mG+ ,mH++ ,mG+)

+ λH+G−hcβsβ[C24(mG+ ,mH++ ,mH+) + C24(mH+ ,mH++ ,mG+)]

+
1

2
λAAh

[(
sβsβ′ +

√
2cβcβ′

)2
C24(mA,mH+ ,mA) +

(
−cβsβ′ +

√
2sβcβ′

)2
C24(mA,mG+ ,mA)

]
+

1

2
λG0G0h

[(
−sβcβ′ +

√
2cβsβ′

)2
C24(mG0 ,mH+ ,mG0) +

(
cβcβ′ +

√
2sβsβ′

)2
C24(mG0 ,mG+ ,mG0)

]
+

1

4
λAG0h

(
sβsβ′ +

√
2cβcβ′

)(
−sβcβ′ +

√
2cβsβ′

)
[C24(mA,mH+ ,mG0) + C24(mG0 ,mH+ ,mA)]

+
1

4
λAG0h

(
−cβsβ′ +

√
2sβcβ′

)(
cβcβ′ +

√
2sβsβ′

)
[C24(mA,mG+ ,mG0) + C24(mG0 ,mG+ ,mA)]

+
1

2
λHHh

[(
sβsα +

√
2cβcα

)2
C24(mH ,mH+ ,mH) +

(
−cβsα +

√
2sβcα

)2
C24(mH ,mG+ ,mH)

]
+

3

2
λhhh

[(
−sβcα +

√
2cβsα

)2
C24(mh,mH+ ,mh) +

(
cβcα +

√
2sβsα

)2
C24(mh,mG+ ,mh)

]
+

1

2
λHhh

(
sβsα +

√
2cβcα

)(
−sβcα +

√
2cβsα

)
[C24(mH ,mH+ ,mh) + C24(mh,mH+ ,mH)]

+
1

2
λHhh

(
−cβsα +

√
2sβcα

)(
cβcα +

√
2sβsα

)
[C24(mH ,mG+ ,mh) + C24(mh,mG+ ,mH)]

+
1

4
λH+H−h

[(
sβsβ′ +

√
2cβcβ′

)2
C24(mH+ ,mA,mH+) +

(
−sβcβ′ +

√
2cβsβ′

)2
C24(mH+ ,mG0 ,mH+)

]
+

1

4
λH+H−h

[(
sβsα +

√
2cβcα

)2
C24(mH+ ,mH ,mH+) +

(
−sβcα +

√
2cβsα

)2
C24(mH+ ,mh,mH+)

]
+

1

4
λG+G−h

[(
−cβsβ′ +

√
2sβcβ′

)2
C24(mG+ ,mA,mG+) +

(
cβcβ′ +

√
2sβsβ′

)2
C24(mG+ ,mG0 ,mG+)

]
+

1

4
λG+G−h

[(
−cβsα +

√
2sβcα

)2
C24(mG+ ,mH ,mG+) +

(
cβcα +

√
2sβsα

)2
C24(mG+ ,mh,mG+)

]
+

1

4
λH+G−h(sβsβ′ +

√
2cβcβ′)(−cβsβ′ +

√
2sβcβ′)[C24(mH+ ,mA,mG+) + C24(mG+ ,mA,mH+)]

+
1

4
λH+G−h(−sβcβ′ +

√
2cβsβ′)(cβcβ′ +

√
2sβsβ′)[C24(mH+ ,mG0 ,mG+) + C24(mG+ ,mG0 ,mH+)]

+
1

4
λH+G−h(sβsα +

√
2cβcα)(−cβsα +

√
2sβcα)[C24(mH+ ,mH ,mG+) + C24(mG+ ,mH ,mH+)]

+
1

4
λH+G−h(−sβcα +

√
2cβsα)(cβcα +

√
2sβsα)[C24(mH+ ,mh,mG+) + C24(mG+ ,mh,mH+)]

}
+

4m2
W

v2
1

16π2

[
λH++H−−hB0(q

2,mH++ ,mH++) + λH+H−h

5 + 3c2β
4

B0(q
2,mH+ ,mH+)

+ λG+G−h

5− 3c2β
4

B0(q
2,mG+ ,mG+) + 2λH+G−h

3s2β
4

B0(q
2,mH+ ,mG+)

+ 2λAAh
3 + c2β′

8
B0(q

2,mA,mA) + 2λG0G0h

3− c2β′

8
B0(q

2,mZ ,mZ) + λAG0h

s2β′

4
B0(q

2,mA,mZ)

+ 2λHHh
3 + c2α

8
B0(q

2,mH ,mH) + 6λhhh
3− c2α

8
B0(q

2,mh,mh) + 2λHhh
s2α
4

B0(q
2,mH ,mh)

]
,
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MhWW
2,1PI (p

2
1, p

2
2, q

2)S = −16m4
W

v2
1

16π2

{
+ λH++H−−hc

2
βC1223(mH++ ,mH+ ,mH++) + λH++H−−hs

2
βC1223(mH++ ,mG+ ,mH++)

+ λH+H−hc
2
βC1223(mH+ ,mH++ ,mH+) + λG+G−hs

2
βC1223(mG+ ,mH++ ,mG+)

+ λH+G−hcβsβ[C1223(mG+ ,mH++ ,mH+) + C1223(mH+ ,mH++ ,mG+)]

+
1

2
λAAh

[(
sβsβ′ +

√
2cβcβ′

)2
C1223(mA,mH+ ,mA) +

(
−cβsβ′ +

√
2sβcβ′

)2
C1223(mA,mG+ ,mA)

]
+

1

2
λG0G0h

[(
−sβcβ′ +

√
2cβsβ′

)2
C1223(mG0 ,mH+ ,mG0) +

(
cβcβ′ +

√
2sβsβ′

)2
C1223(mG0 ,mG+ ,mG0)

]
+

1

4
λAG0h

(
sβsβ′ +

√
2cβcβ′

)(
−sβcβ′ +

√
2cβsβ′

)
[C1223(mA,mH+ ,mG0) + C1223(mG0 ,mH+ ,mA)]

+
1

4
λAG0h

(
−cβsβ′ +

√
2sβcβ′

)(
cβcβ′ +

√
2sβsβ′

)
[C1223(mA,mG+ ,mG0) + C1223(mG0 ,mG+ ,mA)]

+
1

2
λHHh

[(
sβsα +

√
2cβcα

)2
C1223(mH ,mH+ ,mH) +

(
−cβsα +

√
2sβcα

)2
C1223(mH ,mG+ ,mH)

]
+

3

2
λhhh

[(
−sβcα +

√
2cβsα

)2
C1223(mh,mH+ ,mh) +

(
cβcα +

√
2sβsα

)2
C1223(mh,mG+ ,mh)

]
+

1

2
λHhh

(
sβsα +

√
2cβcα

)(
−sβcα +

√
2cβsα

)
[C1223(mH ,mH+ ,mh) + C1223(mh,mH+ ,mH)]

+
1

2
λHhh

(
−cβsα +

√
2sβcα

)(
cβcα +

√
2sβsα

)
[C1223(mH ,mG+ ,mh) + C1223(mh,mG+ ,mH)]

+
1

4
λH+H−h

[(
sβsβ′ +

√
2cβcβ′

)2
C1223(mH+ ,mA,mH+) +

(√
2cβsβ′ − sβcβ′

)2
C1223(mH+ ,mG0 ,mH+)

]
+

1

4
λH+H−h

[(
sβsα +

√
2cβcα

)2
C1223(mH+ ,mH ,mH+) +

(
−sβcα +

√
2cβsα

)2
C1223(mH+ ,mh,mH+)

]
+

1

4
λG+G−h

[(
−cβsβ′ +

√
2sβcβ′

)2
C1223(mG+ ,mA,mG+) +

(
cβcβ′ +

√
2sβsβ′

)2
C1223(mG+ ,mG0 ,mG+)

]
+

1

4
λG+G−h

[(
−cβsα +

√
2sβcα

)2
C1223(mG+ ,mH ,mG+) +

(
cβcα +

√
2sβsα

)2
C1223(mG+ ,mh,mG+)

]
+

1

4
λH+G−h

(
sβsβ′ +

√
2cβcβ′

)(
−cβsβ′ +

√
2sβcβ′

)
[C1223(mH+ ,mA,mG+) + C1223(mG+ ,mA,mH+)]

+
1

4
λH+G−h

(
−sβcβ′ +

√
2cβsβ′

)(
cβcβ′ +

√
2sβsβ′

)2
[C1223(mH+ ,mG0 ,mG+) + C1223(mG+ ,mG0 ,mH+)]

+
1

4
λH+G−h

(
sβsα +

√
2cβcα

)(
−cβsα +

√
2sβcα

)
[C1223(mH+ ,mH ,mG+) + C1223(mG+ ,mH ,mH+)]

+
1

4
λH+G−h

(
−sβcα +

√
2cβsα

)(
cβcα +

√
2sβsα

)
[C1223(mH+ ,mh,mG+) + C1223(mG+ ,mh,mH+)]

}
,
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MhZZ
1,1PI(p

2
1, p

2
2, q

2)V =
1

16π2

{
2g3mW c2W (cαcβ +

√
2sαsβ)CV V V (mW ,mW ,mW )

+ g3mW (cαcβ +
√
2sαsβ)(s

2
W + s2β)C

hV V
SV V (mG+ ,mW ,mW )

+ g3mW (−cαsβ +
√
2sαcβ)sβcβC

hV V
SV V (mH+ ,mW ,mW )

+ g3mW (cαcβ +
√
2sαsβ)(s

2
W + s2β)C

hV V
V V S(mW ,mW ,mG+)

+ g3mW (−cαsβ +
√
2sαcβ)sβcβC

hV V
V V S(mW ,mW ,mH+)

− gg2ZmW (cαcβ +
√
2sαsβ)(c

2
W − s2W − s2β)(s

2
W + s2β)[C24(mW ,mG+ ,mG+) + C24(mG+ ,mG+ ,mW )]

− gg2ZmW (−cαsβ +
√
2sαcβ)(c

2
W − s2W − c2β)sβcβ[C24(mW ,mH+ ,mH+) + C24(mH+ ,mH+ ,mW )]

+ gg2ZmW (cαcβ +
√
2sαsβ)s

2
βc

2
β[C24(mW ,mH+ ,mG+) + C24(mH+ ,mG+ ,mW )]

+ gg2ZmW (−cαsβ +
√
2sαcβ)sβcβ(s

2
W + s2β)[C24(mW ,mG+ ,mH+) + C24(mG+ ,mH+ ,mW )]

− 2gg2Z(s
2
W + s2β)

2m3
W (cαcβ +

√
2sαsβ)C0(mW ,mG+ ,mW )

− 2gg2Zs
2
βc

2
βm

3
W (cαcβ +

√
2sαsβ)C0(mW ,mH+ ,mW )

+ 2λG+G−hg
2
Zm

2
W (s2W + s2β)

2C0(mG+ ,mW ,mG+) + 2λH+H−hg
2
Zm

2
W s2βc

2
βC0(mH+ ,mW ,mH+)

+ 2λH+G−hg
2
Zm

2
W sβcβ(s

2
W + s2β)[C0(mH+ ,mW ,mG+) + C0(mG+ ,mW ,mH+)]

− 2g3c2WmW (cαcβ +
√
2sαsβ)C24(mc+ ,mc+ ,mc+)

− g3c2WmW (cαcβ +
√
2sαsβ)(2D − 2)B0(q

2,mW ,mW )

+ gg2ZmW [−cαcβs
2
W +

√
2(c2W − 2)sαsβ](s

2
W + s2β)[B0(p

2
2,mW ,mG+) +B0(p

2
1,mG+ ,mW )]

+ gg2ZmW [cαsβs
2
W +

√
2(c2W − 2)sαcβ]sβcβ[B0(p

2
2,mW ,mH+) +B0(p

2
1,mH+ ,mW )]

+
g3Z
2
mZ(cαcβ′ + 2sαsβ′)3[C24(mZ ,mh,mG0) + C24(mG0 ,mh,mZ)]

+
g3Z
2
mZ(cαcβ′ + 2sαsβ′)(−cαsβ′ + 2sαcβ′)2[C24(mZ ,mh,mA) + C24(mA,mh,mZ)]

+
g3Z
2
mZ(cαcβ′ + 2sαsβ′)(−sαcβ′ + 2cαsβ′)2[C24(mZ ,mH ,mG0) + C24(mG0 ,mH ,mZ)]

+
g3Z
2
mZ(−sαcβ′ + 2cαsβ′)(2cαcβ′ + sαsβ′)(−cαsβ′ + 2sαcβ′)[C24(mZ ,mH ,mA) + C24(mA,mH ,mZ)]

− g3Zm
3
Z(cαcβ′ + 2sαsβ′)3C0(mZ ,mh,mZ)− g3Zm

3
Z(cαcβ′ + 2sαsβ′)(−sαcβ′ + 2cαsβ′)2C0(mZ ,mH ,mZ)

+ 6λhhhg
2
Zm

2
Z(cαcβ′ + 2sαsβ′)2C0(mh,mZ ,mh) + 2λHHhg

2
Zm

2
Z(−sαcβ′ + 2cαsβ′)2C0(mH ,mZ ,mH)

+ 2λHhhg
2
Zm

2
Z(cαcβ′ + 2sαsβ′)(−sαcβ′ + 2cαsβ′)[C0(mh,mZ ,mH) + C0(mH ,mZ ,mh)]

− g3Z
4
mZ(5− 3c2α)(cαcβ′ + 2sαsβ′)[B0(p

2
1,mh,mZ) +B0(p

2
2,mh,mZ)]

− 3g3Z
4

mZs2α(−sαcβ′ + 2cαsβ′)[B0(p
2
1,mH ,mZ) +B0(p

2
2,mH ,mZ)]

}
, (D.160)
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MhWW
1,1PI (p

2
1, p

2
2, q

2)V =
1

16π2

{
g3cWmZ(cαcβ′ + 2sαsβ′)CV V V (mZ ,mW ,mZ)

+ g3mW [c2W (cαcβ +
√
2sαsβ)CV V V (mW ,mZ ,mW ) + s2W (cαcβ +

√
2sαsβ)CV V V (mW , 0,mW )]

− 1

2
g3mW (cαcβ +

√
2sαsβ)[(s

2
W + s2β)C

hV V
SV V (mG+ ,mZ ,mW )− s2WChV V

SV V (mG+ , 0,mW )]

− 1

2
g3mW (−cαsβ +

√
2sαcβ)sβcβC

hV V
SV V (mH+ ,mZ ,mW )

− 1

2
g3mW (cαcβ +

√
2sαsβ)[(s

2
W + s2β)C

hV V
V V S(mW ,mZ ,mG+)− s2WChV V

V V S(mW , 0,mG+)]

− 1

2
g3mW (−cαsβ +

√
2sαcβ)sβcβC

hV V
V V S(mW ,mZ ,mH+)

− 4g3s2βm
3
W (cαcβ +

√
2sαsβ)C0(mW ,mH++ ,mW )− g3Zm

3
W (s2W + s2β)

2(cαcβ′ + 2sαsβ′)C0(mZ ,mG+ ,mZ)

− g3Zm
3
W s2βc

2
β(cαcβ′ + 2sαsβ′)C0(mZ ,mH+ ,mZ)− g3m3

W (cαcβ +
√
2sαsβ)

3C0(mW ,mh,mW )

− g3m3
W (cαcβ +

√
2sαsβ)(−sαcβ +

√
2cαsβ)

2C0(mW ,mH ,mW )

+ 6λhhhg
2m2

W (cαcβ +
√
2sαsβ)

2C0(mh,mW ,mh)

+ 2λHHhg
2m2

W (−sαcβ +
√
2cαsβ)

2C0(mH ,mW ,mH)

+ 2λHhhg
2m2

W (cαcβ +
√
2sαsβ)(−sαcβ +

√
2cαsβ)[C0(mh,mW ,mH) + C0(mH ,mW ,mh)]

+ 4λH++H−−hg
2m2

W s2βC0(mH++ ,mW ,mH++)

+ λG+G−hg
2
Zm

2
W (s2W + s2β)

2C0(mG+ ,mZ ,mG+) + λhG+G−g2s2Wm2
WC0(mG+ , 0,mG+)

+ λH+H−hg
2
Zm

2
W s2βc

2
βC0(mH+ ,mZ ,mH+)

+ λH+G−hg
2
Zm

2
W sβcβ(s

2
W + s2β)[C0(mH+ ,mZ ,mG+) + C0(mG+ ,mZ ,mH+)]

+ 2g3mW s2β(cαcβ +
√
2sαsβ)[C24(mG+ ,mH++ ,mW ) + C24(mW ,mH++ ,mG+)]

+ 2g3mW sβcβ(−cαsβ +
√
2sαcβ)[C24(mH+ ,mH++ ,mW ) + C24(mW ,mH++ ,mH+)]

+
1

2
g3mW (cαcβ +

√
2sαsβ)

3[C24(mW ,mh,mG+) + C24(mG+ ,mh,mW )]

+
1

2
g3mW (−sαcβ +

√
2cαsβ)

2(cαcβ +
√
2sαsβ)[C24(mW ,mH ,mG+) + C24(mG+ ,mH ,mW )]

+
1

2
g3mW (cαcβ +

√
2sαsβ)(−cαsβ +

√
2sαcβ)

2[C24(mW ,mh,mH+) + C24(mH+ ,mh,mW )]

+
1

2
g3mW (−sαcβ +

√
2cαsβ)(−cαsβ +

√
2sαcβ)(sαsβ +

√
2cαcβ)[C24(mW ,mH ,mH+) + C24(mH+ ,mH ,mW )]

+
1

2
gg2ZmW (s2W + s2β)(cβcβ′ +

√
2sβsβ′)(cαcβ′ + 2sαsβ′)[C24(mG0 ,mG+ ,mZ) + C24(mZ ,mG+ ,mG0)]

+
1

2
gg2ZmW (s2W + s2β)(−cβsβ′ +

√
2sβcβ′)(−cαsβ′ + 2sαcβ′)[C24(mA,mG+ ,mZ) + C24(mZ ,mG+ ,mA)]

+
1

2
gg2ZmW sβcβ(−sβcβ′ +

√
2cβsβ′)(cαcβ′ + 2sαsβ′)[C24(mG0 ,mH+ ,mZ) + C24(mZ ,mH+ ,mG0)]

+
1

2
gg2ZmW sβcβ(sβsβ′ +

√
2cβcβ′)(−cαsβ′ + 2sαcβ′)[C24(mA,mH+ ,mZ) + C24(mZ ,mH+ ,mA)]
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− g3cWmZ(cαcβ′ + 2sαsβ′)C24(mcZ ,mc+ ,mcZ )

− g3c2WmW (cαcβ +
√
2sαsβ)C24(mc+ ,mcZ ,mc+)− g3s2WmW (cαcβ +

√
2sαsβ)C24(mc+ ,mcγ ,mc+)

− g3mW (cαcβ +
√
2sαsβ)(D − 1)B0(q

2,mW ,mW )− g3cWmZ(cαcβ′ + 2sαsβ′)(D − 1)B0(q
2,mZ ,mZ)

− 4√
2
g3mW sαsβ[B0(p

2
1,mW ,mH++) +B0(p

2
2,mW ,mH++)]

− 1

4
g3(3− c2α)mW (cαcβ +

√
2sαsβ)[B0(p

2
1,mW ,mh) +B0(p

2
2,mW ,mh)]

− 1

4
g3s2αmW (−sαcβ +

√
2cαsβ)[B0(p

2
1,mW ,mH) +B0(p

2
2,mW ,mH)]

− 1

2
gg2ZmW [cαcβs

2
W −

√
2(c2W − 2)sαsβ](s

2
W + s2β)[B0(p

2
2,mZ ,mG+) +B0(p

2
1,mZ ,mG+)]

+
1

2
gg2ZmW [cαsβs

2
W +

√
2(c2W − 2)sαcβ]sβcβ[B0(p

2
2,mZ ,mH+) +B0(p

2
1,mZ ,mH+)]

− 1

2
ge2mW (cαcβ +

√
2sαsβ)[B0(p

2
2, 0,mG+) +B0(p

2
1, 0,mG+)]

}
, (D.161)

where C1223(m1,m2,m3) ≡ C12(m1,m2,m3) + C23(m1,m2,m3) and

ChV V
V V V (m1,m2,m3) ≡[
6(D − 1)C24 + p21(2C21 + 3C11 + C0) + p22(2C22 + C12) + p1 · p2(4C23 + 3C12 + C11 − 4C0)

]
(m1,m2,m3), (D.162)

ChV V
SV V (m1,m2,m3) ≡[
(D − 1)C24 + p21(C21 − C0) + p22(C22 − 2C12 + C0) + 2p1 · p2(C23 − C11)

]
(m1,m2,m3),

(D.163)

ChV V
V V S(m1,m2,m3) ≡[
(D − 1)C24 + p21(C21 + 4C11 + 4C0) + p22(C22 + 2C12) + 2p1 · p2(C23 + 2C12 + C11 + 2C0)

]
(m1,m2,m3). (D.164)
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